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Fracture compliance estimation using borehole tube waves

Sudhish Kumar Bakku1, Michael Fehler1, and Daniel Burns1

ABSTRACT

We tested two models, one for tube-wave generation and
the other for tube-wave attenuation at a fracture intersecting
a borehole that can be used to estimate fracture compliance,
fracture aperture, and lateral extent. In the tube-wave gen-
eration model, we consider tube-wave excitation in the
borehole when a P-wave is incident on the fracture. The
amplitude ratio of the pressure due to the tube wave to that
of the incident P-wave is a function of fracture compliance,
aperture, and length. Similarly, the attenuation of a tube
wave in the borehole as it crosses a fracture intersecting
the borehole is also a function of fracture properties.
Numerically solving the dispersion relation in the fracture,
we study tube-wave generation and the attenuation coeffi-
cient as a function of frequency. We observed that measuring
amplitude ratios or attenuation near a transition frequency
can help constrain the fracture properties. The transition fre-
quency corresponds to the regime in which the viscous skin
depth in the fracture is comparable to its aperture. Measure-
ments in the high-frequency limit can place a lower bound
on fracture compliance and lateral extent. We evaluated the
applicability of the tube-wave generation model to a previ-
ously published VSP data set and found that compliance
values of the order 10−10–10−9 m∕Pa are likely in the field.
These observations support scaling of fracture compliance
with fracture size.

INTRODUCTION

Naturally occurring fracture networks account for significant
fluid flow in many petroleum reservoirs, especially in carbonate res-
ervoirs and other less porous formations. Fracture networks also
play an important role in the economic recovery of geothermal en-
ergy and for CO2 sequestration. To model flow in fractured reser-

voirs, we need to know fracture network properties such as the
dominant orientation of the fractures, fracture spacing, and fracture
fluid transmissivity. Direct measurement of some fracture properties
is possible in boreholes. Borehole televiewer and formation micro-
imager (FMI) logs are the most popular tools for characterizing frac-
tures that intersect boreholes. These logs provide the orientation and
spacing of those fractures intersecting the borehole. However, from
these data, it is hard to differentiate between fractures with high or
low fluid transmissivity and it is not possible to estimate the lateral
extent of the fractures. Some of the fracturelike features seen in
the logs could be drilling induced and thus not extend far from
the borehole. Pressure transient tests can give an estimate of fluid
transmissivity of fractures, but these are macroscopic measurements
averaging over a large conducting region.
On a reservoir scale, seismic methods are at the forefront for

detecting and analyzing fracture networks. The scale of a fracture
relative to the seismic wavelength determines the nature of the frac-
ture signature in the wavefield (Fang et al., 2012). Microfractures or
cracks that are much smaller than the seismic wavelength are known
to cause velocity anisotropy. Considerable research has been done
to characterize microfractures through effective medium theories
(e.g., Peacock and Hudson, 1990; Kachanov, 1992). It is common
to apply methods such as amplitude variation with offset and azi-
muth (AVOA) to characterize the velocity anisotropy that can be
interpreted to characterize the preferred orientation of the fractures.
It is not possible to independently estimate the fracture spacing and
fracture transmissivity using AVOA analysis. The focus now is in-
creasingly on detecting large discrete fractures that have a larger
impact on fluid flow. These macrofractures have a lateral extent
comparable to the wavelength of the incident wavefield (tens of
meters) and the spacing between these fractures or fracture zones
may be on the order of a wavelength. Such fractures can scatter the
seismic wavefield (Willis et al., 2006; Burns et al., 2007). They are
treated as distinct features rather than as an effective medium. De-
scriptive distributions of such networks are usually referred to as
discrete fracture networks and can be used to stochastically model
fluid flow in reservoirs. Willis et al. (2006), Burns et al. (2007),
Grandi (2008), and Fang et al. (2012) develop scattering-based
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methods to determine fracture orientation and spacing from seismic
reflection data. Scattered wave signals are a function of fracture
compliance. Grandi (2008) numerically simulates scattering from
a parallel set of discrete fractures and shows that the amplitude
of the scattered wavefield increases with increasing fracture
compliance.

Fracture compliance

Fracture compliance is the inverse of fracture specific stiffness
(Pyrak-Nolte et al., 1990) and is defined as the displacement across
the fracture surfaces when a unit stress is applied across the fracture.
Laboratory studies suggest that fracture compliance and fracture
fluid transmissivity are influenced by the same microscopic features
of the fracture, i.e., aperture distribution, actual contact area, fractal
dimension of the fracture surfaces, and that these are interrelated
(Pyrak-Nolte and Morris, 2000). Therefore, fracture compliance
may be a key link to estimate fracture fluid transmissivity from scat-
tered energy (Brown and Fang, 2012). Measuring the fracture com-
pliance in a borehole, we may be able to assign fracture compliance
and thus, fracture transmissivity, to regions away from the borehole
based on relative scattered energy measured on surface seismic data.
In addition, estimating fracture compliance in a borehole may be
useful for monitoring the efficiency of hydraulic fracturing. There-
fore, it is important to understand the range of compliance values
that can be expected in the subsurface.
Estimates of fracture compliance vary over orders of magnitude

from laboratory to the field. Worthington and Lubbe (2007) suggest
that fracture compliance scales with fracture size, which would
explain the small compliance value measured in the lab (Pyrak-
Nolte et al., 1990; Lubbe et al., 2005) and the scattering effects seen
at field seismic wavelength scales. However, compliance measure-
ments in the field are limited and are mostly based on effective
medium methods by assuming some fracture density. In this paper,
we develop models that estimate fracture compliance, aperture, and
size in the field by studying (1) tube-wave generation and (2) tube-
wave attenuation at a fracture intersecting a borehole. When an ex-
ternal wavefield is incident on a fluid-filled fracture intersecting a
borehole (e.g., VSP), it squeezes the fracture and expels fluid into
the borehole, generating a tube wave in the borehole. The amplitude
of the tube wave is proportional to the amount of fluid exchanged
between the fracture and the borehole. The fluid exchange, in turn,
depends on the compliance and fluid transmissivity of the fracture.
The amplitude ratio of the pressure due to the incident wavefield
measured in the borehole fluid to the pressure due to the tube wave
generated at the fracture can be diagnostic of fracture compliance
and fracture transmissivity. Similarly, when a borehole tube wave
that is generated elsewhere propagates across a fracture, part of its
energy is spent in pushing the fluid into the conducting fracture.
This energy loss depends on the amount of fluid exchanged, and
the attenuation coefficient is a function of the fracture properties.
Tube-wave generation at a fracture is first studied by Beydoun

et al. (1985). However, Beydoun does not consider fracture com-
pliance. Later, Hardin et al. (1987) formulate fracture closure as
a function of fracture compliance. Beydoun and Hardin assume
Darcy flow in the fracture, which is a low-frequency approximation
to the dispersion relation in the fracture (Tang, 1990). Cicerone and
Toksöz (1995) and Ionov (2007) study tube-wave generation by
taking the high-frequency approximation solution to the dispersion
relation in the fracture. Though Ionov (2007) does not consider

fracture compliance, Cicerone and Toksöz (1995) attempt to include
fracture compliance indirectly by allowing displacement to be dis-
continuous at the fracture top and bottom surfaces.
Attenuation of tube waves across a fracture was studied by Ma-

thieu (1984), Hornby et al. (1989), Tang and Cheng (1993), and
Kostek et al. (1998a, 1998b). Mathieu (1984) assumes Darcy flow
in the fracture and studies attenuation of tube waves across the frac-
ture. However, the assumption of Darcy flow is not valid for typical
logging frequencies. Hornby et al. (1989) and Tang and Cheng
(1993) solve the problem under a high-frequency approximation,
which is a valid assumption for acoustic logging (kHz range of
frequencies) and fractures like those expected in situ. Later, Kostek
et al. (1998b) extend the theory to include the elasticity of the for-
mation. These studies do not account for the fracture compliance
that play an important role in the tube-wave attenuation.
In this paper, we develop models for tube-wave generation and

attenuation that account for fracture compliance and are valid over a
broad range of frequencies (Hz to kHz). To study tube-wave
generation and attenuation at arbitrary frequency, we numerically
solve for the dispersion relation in the fracture. We first describe
the models for an infinitely long fracture to understand the affects
of fracture aperture and fracture compliance. The models predict a
low-frequency regime, a high-frequency regime, and a transition
regime in which the viscous skin depth is comparable to the fracture
aperture. Based on these observations, we show that measurements
in the transition regime are required to infer fracture aperture and
compliance. However, we discuss how data collected in the high-
frequency regime can be used to place a lower bound on fracture
compliance. We then extend the models to the finite fracture case
and discuss the affect of the finite length of fracture. Finite fracture
models are described in Appendices A and B. Finally, we present a
field data example to argue that fracture compliance of the order of
10−9 is feasible in the field.

THEORETICAL FORMULATION

Tube-wave generation in a borehole

Following previous studies, we consider a horizontal fracture that
is infinite in lateral extent and intersecting a vertical borehole of
radius R as shown in Figure 1. The model is developed to study
the tube-wave generation in the borehole when a plane P-wave
is normally incident on the fracture. However, the results can be
extended to an arbitrary angle of incidence. Fractures are disconti-
nuities in the subsurface, held open by asperities that resist the frac-
ture closure. For simplicity, we assume the fracture to be a parallel
plate with static aperture L0 and normal compliance, Z. For now, we
neglect the effect of roughness, tortuosity, and actual contact area of
the fracture on the fluid motion in the fracture; however, these will
be discussed in a later section. Fracture closure is proportional to the
compliance and the applied effective normal stress. Though fracture
closure and applied stress are nonlinearly related (Pyrak-Nolte et al.,
1990), fracture closure due to the perturbation in the applied stress
over a background lithostatic stress due to an incident wavefield can
be considered locally linear (Schoenberg, 1980). Therefore, the
dynamic fracture LðtÞ aperture at any location can be written as
(Hardin et al., 1987)

LðtÞ ¼ L0 þ Z½pðtÞ − σnðtÞ�; (1)
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where L0 is the static aperture, σnðtÞ is the normal stress on
the fracture face, and pðtÞ is the perturbation in the fracture fluid
pressure due to closure.
For a normally incident P-wave, σnðtÞ ¼ σ0e−iωt, where σ0;ω are

the stress amplitude and frequency of the incident wave. The
incident wave perturbs the fracture aperture and causes a pressure
gradient in the fracture. For simplicity, fluid pressure and flow in the
fracture are averaged over the aperture and only their radial varia-
tion away from the borehole is considered. We use cylindrical
coordinates to accommodate the axial symmetry of the problem.
The net flow out of a volume element 2πrLðtÞ dr between r and rþ
dr from the axis of the borehole, during a time increment dt, should
equal the change in volume of the element due to the perturbation in
the aperture and the change in the fluid volume due to compress-
ibility of the fluid. Thus, we arrive at the mass conservation equa-
tion in the fracture as

−
�
∂q
∂r

þ q
r

�
¼ dL

dt
þ Lγ

∂p
∂t

; (2)

where γ is the fluid compressibility and q is the radial flow per unit
length away from the borehole. Flow in the fracture can be related to
the pressure gradient through dynamic conductivity C̄. Solving for
the flow field of a viscous fluid in an infinitely long rigid fracture,
Tang (1990) shows that the flow averaged over the aperture at any
location could be related to the radial pressure gradient at that
location as

q̄ ¼ −C̄
∂p̄
∂r

¼ −
iωL0

k2rα2fρf

∂p̄
∂r

; (3)

where αf is the acoustic velocity in the fluid, ρf is the fluid density,
and i is the imaginary unit. A bar over a symbol denotes that the
quantity is in the frequency domain. The radial wavenumber of
those specific modes that can exist in a rigid fracture (zero fracture
compliance) is represented by kr and is obtained by solving the
dispersion relation for the velocity field in an infinitely long,
fluid-filled fracture, given by (Tang, 1990)

k2r tan

�
η2L0

2

�
þ η1η2 tan

�
η2L0

2

�
¼ 0; (4a)

η21 þ k2r ¼
ω2

α2f −
4
3
iων

; (4b)

η22 þ k2r ¼
iω
ν
; (4c)

where ν is the kinematic viscosity of the fluid. Given the small
strains associated with exploration seismic waves, and for the range
of the fracture apertures and the fracture compliances that are prac-
tical, fracture closure is small compared to the fracture aperture. So,
we approximate the modes in the fracture with that of a rigid frac-
ture given by Tang’s (1990) dispersion relationship. The effect of
fracture compliance is taken into account in equation 2. Thus,
inserting equation 3 for radial flow and equation 1 for the dynamic
aperture into the mass conservation equation 2 and neglecting
higher order terms, we can write the frequency domain differential
equation for fluid pressure in the fracture as

∂2p̄
∂r2

þ 1

r
∂p̄
∂r

þ ζ2p̄ ¼ σ0
ρfZζ2α2eff

L0

; (5)

where ζ ¼ krαf∕αeff , 1∕α2eff ¼ 1∕α2f þ ρfZ∕L0, ζ is the wave-
number for the pressure field in a compliant fracture, and αeff is
the propagation velocity of the pressure field at the high-frequency
limit. As r → ∞; flow in the radial direction tends to zero and we
require that ∂p̄∕∂r ¼ 0. At the borehole wall, we require that the
fluid pressure in the fracture p̄ðωÞjr¼R be equal to the fluid pressure
due to the tube wave generated in the borehole p̄tðωÞ. The homo-
geneous solutions to equation 5 are Hankel functions of the first and
second kind taking complex arguments. However, the Hankel func-
tion of the second kind diverges as r → ∞, while the first kind
approaches zero. Taking Hankel functions of the first kind and sat-
isfying the boundary condition at the borehole, the pressure in the
fracture can be written as

p̄ðω; rÞ ¼
�
p̄tðωÞ −

ρfZα2eff
L0

σ0

�
H1

0ðζrÞ
H1

0ðζRÞ
þ ρfZα2eff

L0

σ0; (6)

where Hn
m is the Hankel function of the nth kind and order m.

The pressure in the fracture, given by equation 6 satisfies the
wave equation when ζ2 and k2r are real and it follows a diffusion
equation when ζ2 and k2r are imaginary. Tang (1990) solves the
dispersion relation at high- and low-frequency limits and shows that
k2r is real at the high-frequency limit and is imaginary at the low-
frequency limit. At the high-frequency limit, the fracture aperture is
much greater than the viscous skin depth, δ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2ν∕ω
p

, and the in-
ertial forces dominate. At the low-frequency limit, the fracture aper-
ture is much smaller than the viscous skin depth and the viscous
forces dominate. For ν ¼ 10−6 m2∕s (value typical for water)
and for the range of natural fracture apertures (0.1–1 mm), δ∕L0

varies from 0.07 to 1.78 over the typical VSP frequency band of
10–60 Hz. Hence, either the high- (δ∕L0 ≪ 1) or low-frequency
(δ∕L0 ≫ 1) approximation is not valid. In this transition zone,
k2r is complex and the pressure field has propagative and dispersive
components. To address this, for an arbitrary frequency, we solved
the dispersion relation, equation 4, numerically for k2r. The disper-
sion relation is nonlinear and has an infinite number of solutions
corresponding to higher modes. Because the contribution to flow
from the higher modes is negligible, we use the fundamental mode
solution for k2r. Taking the numerical solution for k2r, equation 6

r r

z

dr

L0

2R

z = 0

z = L0

r = R

Borehole

Fracture

Incident wavefield

Tube 
wave Flow into borehole

Figure 1. Diagram showing tube-wave generation at a fracture
intersecting a borehole.
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encapsulates diffusion and wave propagation. Because ζ is com-
plex, the propagation velocity of the pressure field is given by
ω∕Refζg and the attenuation factor is given by Imfζg. The
dispersion relation for the propagation velocity for different fracture
compliance values and apertures is shown in Figure 2. The
propagation velocity approaches zero toward low frequencies, as
the pressure field is more diffusive. At the high-frequency limit,
the propagation velocity approaches αeff and for a rigid fracture,
the propagation velocity approaches the speed of sound in the fluid.
Note that the propagation velocity decreases with increasing com-
pliance and decreasing aperture. This is analogous to a pressure
pulse propagating in an elastic tube. The speed of the pulse de-

creases, as the tube is more elastic. Figure 3 shows the attenuation
factor as a function of frequency. As expected, higher frequencies
attenuate more. As the aperture decreases, viscous forces dominate
and attenuation increases. As compliance increases, the propagation
velocity decreases and the pressure pulse attenuates more in the
same travel distance.
We now proceed to estimate the amplitude of tube wave gener-

ated in the borehole. Knowing the distribution of pressure in the
fracture from equation 6, the pressure gradient at the borehole wall
and thus the flow into the borehole can be estimated from equa-
tion 3. The rate of volume injection into the borehole dV∕dt is equal
to the volume of fluid flowing from the fracture into the borehole
per unit time and is given by

dV
dt

¼ −2πRqjr¼R: (7)

Because q denotes fluid flowing away from the origin, the negative
sign is needed for fluid flow into the borehole. This fluid exchange
between the fracture and the borehole acts as a volume source and
generates a tube wave of amplitude pt given by (Lee and Balch,
1982)

pt ¼
ρfct
2πR2

dV
dt

; (8)

where ct ¼ αf∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρfα

2
f∕ðρsβ2Þ

q
(White, 1983), is the tube-wave

velocity in the borehole and ρs; β are the density and shear wave
velocity of the formation, respectively. Tube-wave velocity is very
weakly dispersive over the frequency range of interest (Hz to kHz)
(Cheng and Toksöz, 1982) and thus, taking the low-frequency
approximation solution given by White (1983) does not affect sub-
sequent analysis. Eliminating the rate of fluid injection from equa-
tions 7 and 8 and using equations 3 and 6, we arrive at the
expression for an equivalent pressure source for the tube wave in
the frequency domain as

p̄tðωÞ ¼ σ0
ω

krαf

ct
αeff

L0

R

pfα
2
eff

L0∕Z

×
�

iH1
1ðζRÞ∕H1

0ðζRÞ
1þ ω

krαf
ct
αeff

L0

R iH1
1ðζRÞ∕H1

0ðζRÞ

�
: (9)

At the same time, the incident P-wave traveling along the borehole
induces dynamic pressure in the borehole given by (White, 1983)

p̄iðωÞ ¼ σ0
ρfc2t
ρsβ

2

�
1 − 2β2∕α2

1 − c2t ∕α2

�
: (10)

By taking the pressure amplitude ratio p̄t∕p̄i, we eliminate σ0.
Figure 4 shows the amplitude ratio plotted against frequency for
a given fracture compliance and aperture. For comparison, the am-
plitude ratios found using the low- and high-frequency approxima-
tion solutions to the dispersion relation in the fracture are plotted as
well. At the low-frequency limit, the amplitude ratio tends toward
zero. With increasing frequency, the amplitude ratio increases and
reaches a maximum at the transition from low- to high-frequency
regimes and then decreases with further increase in frequency. How-
ever, at a high frequency, the amplitude ratio reaches a constant
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Figure 2. Propagation velocity for fluid pressure in the radial direc-
tion in a fracture ω∕Refζg is plotted against frequency for different
values of compliance and aperture. The solid lines represent varying
compliance when fracture aperture is 0.5 mm. The dotted lines
represent varying fracture aperture when fracture compliance is
10−9 m∕Pa. The propagation velocity is obtained by numerically
solving Tang’s dispersion relation using the following: αf ¼
1500 m∕s, α ¼ 5800 m∕s, β ¼ 3300 m∕s, ρf ¼ 1000 kg∕m3,
ρ ¼ 2700 kg∕m3, and ν ¼ 10−6 m2∕s. The fluid properties corre-
spond to water.
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parameters for this study are the same as in Figure 2.
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value roughly proportional to
ffiffiffiffiffiffiffiffiffi
ZL0

p
. Over the entire frequency

range, the amplitude ratio increases with fracture compliance
(see Figure 5). It is easier to squeeze more fluid into the borehole
because the fracture is more compliant. However, the location of the
peak in the amplitude ratio is independent of the fracture compli-
ance. The peak occurs at the transition from the low- to high-
frequency limit and depends on the fracture aperture and the
viscosity of the fluid. For larger apertures, the peak occurs at lower
frequencies (see Figure 6), and for higher viscosities, the peak
occurs at higher frequencies (see Figure 7). Thus, the location of
the peak can be indicative of the fracture aperture, and the amplitude
ratio can be indicative of fracture compliance.

Tube-wave generation at a finite fracture

The amplitude ratio for a finite-length fracture is derived in
Appendix A. Figure 8 shows the amplitude ratio plotted for varying
fracture lengths. The effect of the finite length of a fracture is that
the wave reflects at the fracture tip. As a result, the amplitude ratio is
amplified at those frequencies that interfere constructively and
attenuated at those frequencies that interfere destructively. This re-
sults in a series of peaks and troughs overlaid on the infinite fracture
response. Higher frequencies attenuate more (see Figure 3) over the
same fracture length, and as a result the peaks/troughs reduce in
amplitude with increasing frequency. As shown in Appendix A,
frequencies greater than ωd ¼ 5.3ðαeffL0∕δðD − RÞÞ are insensitive
to the finite extent of the fracture and the amplitude ratio matches
with that of an infinitely long fracture. This frequency ωd can be
suggestive of fracture length. The spacing between consecutive
peaks or troughs in the amplitude ratio varies with frequency
and is dependent on the fracture compliance, fracture aperture,
and the length of the fracture. However, under the high-frequency
approximation, the spacing between consecutive peaks or troughs
Δ (in Hz) is constant and relates fracture length to aperture and
compliance through (see Appendix A): Δ ¼ αeff∕2ðD − RÞ.

Tube-wave attenuation in a borehole

We next consider tube-wave attenuation across an infinitely long
horizontal fracture intersecting a borehole. Figure 9 shows a sche-
matic diagram of tube-wave attenuation. The geometry is the same
as that described for tube-wave generation in the previous section.
When a tube wave crosses a fracture intersecting the borehole, part
of its energy is spent in pushing the fluid into the fracture and part of
the energy is reflected at the interface. As a result the transmitted
wave is attenuated. The attenuation of the tube wave depends on the
amount of fluid pushed into the fracture, which in turn depends on
the fracture transmissivity and compliance. Considering the con-
tinuity of the pressure field in the borehole at the fracture top
(z ¼ 0) and, applying mass conservation in the borehole while
accounting for the flow into the fracture, Mathieu (1984) obtains
the transmission coefficient as

p̄tt

p̄ti
¼ 1

1þ fL0

2

I0ðfRÞ
I1ðfRÞ

ρfct
ZF

; (11a)

f ¼ ω

ci

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c2t
α2f

s
; (11b)

where f is the radial wavenumber of the tube waves in the borehole;
ZF is the fracture acoustic impedance, defined as the ratio of average
pressure to average fluid velocity across the fracture at the borehole
wall; and Im is the modified Bessel function of the first kind of order
m. Because the wavelength of the tube wave is larger than the bore-
hole radius and the fracture aperture, the pressure in the borehole is
assumed to be constant over the borehole radius and over the frac-
ture aperture. Mathieu (1984) obtains ZF by assuming Darcy flow
in the fracture, a low-frequency approximation, and did not consider
the effect of the fracture compliance. The dynamic aperture of the
compliant fracture, in our model, is given by equation 1. However,
we take σnðtÞ to be zero, because we do not have an external wave-
field that is incident on the fracture in the tube-wave attenuation
model. The differential equation for the pressure field in the fracture
p̄ is obtained by following the same steps as described in the tube-
wave generation model and is given by
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Figure 4. Tube to P-wave pressure amplitude ratio is plotted
against frequency for a 0.5-mm-wide fracture with a fracture com-
pliance of 10−9 Pa∕m, intersecting a 15-cm diameter borehole. The
formation and fluid properties are the same as in Figure 2.
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∂2p̄
∂r2

þ 1

r
∂p̄
∂r

þ ζ2p̄ ¼ 0 (12)

with the following boundary conditions: (1) At the borehole wall,
the pressure in the fracture should be equal to that of the transmitted
tube wave; i.e., p̄ðRÞ ¼ p̄ttðRÞ. Here, we assume that the pressure
due to the transmitted wave in the borehole drives the flow into the
fracture. (2) Flow in the radial direction tends to zero at infinity, and
we require that ∂p̄∕∂r ¼ 0, as r → ∞. Solving equation 12, the
pressure in the fracture can be written as

p̄ðrÞ ¼ p̄tt
H1

0ðζrÞ
H1

0ðζRÞ
: (13)

Knowing the distribution of pressure in the fracture from equa-
tion 13 and using equation 3, the radial flow into the fracture is
given by

q̄ðRÞ ¼ p̄ttζ
iωL0

k2rα2fρf

H1
1ðζRÞ

H1
0ðζRÞ

: (14)

Thus, the impedance of the fracture can be written as

ZF ¼ < p̄ðRÞ >
< v̄FðRÞ >

¼ p̄tt

q̄ðRÞ∕L0

; (15a)

¼ k2rα2fρf
iωζ

H1
0ðζRÞ

H1
1ðζRÞ

: (15b)

Inserting ZF from equations 15 into equation 11, the transmission
coefficient can be estimated. Taking ζ ¼ kr ¼ ω∕αf , equation 15
matches the solutions given by Hornby et al. (1989) and Tang
and Cheng (1993) for a rigid fracture (Z ¼ 0), at the high-frequency
limit. The transmission coefficient, for an infinitely long fracture, is
plotted against frequency for a given compliance and aperture in
Figure 10. For comparison, the transmission coefficients under
the low- and high-frequency approximations are plotted as well.
At the low-frequency limit, ðH1

1ðζRÞÞ∕ðH1
0ðζRÞÞ approaches zero

and the transmission coefficient tends toward unity. In contrast,
Hornby (1989) predicts that the transmission coefficient goes to
zero toward low frequencies, consistent with the high-frequency
limit solution (see Figure 10). However, his solution does not
account for viscosity, which dominates at lower frequencies. The
transmission coefficient shows a transition from low to high fre-
quency, similar to the tube-wave generation model. With increasing
frequency, the transmission coefficient decreases and reaches a
minimum at the transition from low- to high-frequency and then
increases with further increase in frequency. However, in the high-
frequency regime, the transmission coefficient reaches a constant
value. In general, as compliance increases, the transmission coef-
ficient decreases over the entire frequency band (see Figure 11).
Thus, a compliant fracture can explain low transmission coefficients
observed in the field without demanding excessively high apertures,
which is the case when fracture compliance is not considered
(Hornby et al., 1989). For a given compliance, the location of
the frequency having the minimum in the transmission coefficient
depends on the viscosity of the fluid and the fracture aperture. In-
creasing viscosity pushes the minimum toward higher frequencies
and larger aperture moves the minimum toward lower frequencies
(see Figures 12 and 13). This dependence of transition regime fre-
quency on compliance, aperture, and viscosity is the same as seen
for tube-wave generation from an incident P-wave in the previous
sections.

Tube-wave attenuation at a finite fracture

Fracture impedance for a finite-length fracture is derived in
Appendix B. Figure 14 shows transmission coefficients for a finite
fracture case. The effect of the finite length of the fracture is to cause
peaks/troughs overlaid on the infinite fracture response, similar to
the tube-wave generation model. The decay of the peaks/troughs
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Figure 6. Tube to P-wave pressure amplitude ratios are plotted
against frequency for different values of aperture, taking Z ¼
10−9 m∕Pa, while other parameters are kept constant. Note that
the transition regime moves toward higher frequencies with decreas-
ing aperture. Also, the amplitude ratio decreases with the decreasing
aperture. Medium parameters are the same as in Figure 4.
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and the spacing between consecutive peaks/troughs at high frequen-
cies are suggestive of the fracture length for the same reasons dis-
cussed in the tube-wave generation section. We find that the
expressions for the frequency, ωd, at which the finite fracture re-
sponse matches the infinite fracture response, and the spacing be-
tween consecutive peaks/troughs at high frequencies, Δ, are the
same as that for the tube-wave generation model and are derived
in Appendices A and B.

Effect of dynamic tortuosity and permeability

Real fractures are rough surfaces in contact (Brown and Scholz,
1985) and are rarely parallel plates, as idealized in the models dis-
cussed in this paper. In a fracture, aperture is spatially varying and it
is zero at the asperities, where the fracture surfaces are in contact.
At a microscopic level, fractures are similar to porous media.
Johnson et al. (1987) describe wave propagation in a porous
medium in terms of dynamic tortuosityΩ and dynamic permeability
K given by

Ω ¼ Ω∞ þ iμϕ
ωK0ρf

FðωÞ; (16a)

K ¼ iμϕ
Ωωρf

; (16b)

where ϕ is the porosity, Ω∞ is the real valued tortuosity at infinite
frequency, K0 is the real valued permeability at zero frequency, and
FðωÞ is a complex-valued function such that (1) the dynamic tor-
tuosity reduces to Ω∞ at infinite frequency and (2) the dynamic
permeability reduces to K0 at zero frequency. At frequencies in be-
tween, the dynamic tortuosity and dynamic permeability are com-
plex. From equation 16, we can see that dynamic tortuosity and
dynamic permeability are related and either can be used to describe
wave propagation in porous media. The real part of the dynamic
tortuosity reduces the wave propagation velocity. At infinite fre-
quency, the propagation velocity is reduced to αf∕

ffiffiffiffiffiffiffi
Ω∞

p
due to

tortuosity (Johnson et al., 1987). The imaginary part is related to
attenuation and dispersion due to viscous losses. Viscous losses
are proportional to the solid-fluid contact area, and it is assumed
that parallel plate flow accounts for most of the viscous losses.
The parallel plate assumption is well tested in the laboratory and
is valid for rough fractures as long as the actual contact area at
the asperities is less than 30% of the fracture surface area (With-
erspoon et al., 1980; Tsang, 1984). The actual contact area depends
on the aperture distribution and normal stress. Laboratory measure-
ments by Bandis et. al (1983) on several granite and limestone sam-
ples show that actual contact area is between 40% and 70% for
normal stresses above 30 MPa. For fractures with a large actual con-
tact area, the flow is more complicated (Zimmerman and Bodvars-
son, 1996) and the flow rate drops by orders of magnitude (Tsang,
1984). Such fractures may not be of practical interest. Moreover, the
stress at which the parallel plate assumption breaks down depends
on the aperture distribution and may scale up for large discrete frac-
tures that have broader distributions of apertures (Tsang and
Witherspoon, 1983). For the current discussion, we assume that
the parallel plate law adequately represents the viscous losses. Tang
(1990) shows that under the low-frequency approximation, the dy-
namic permeability estimated from his model approaches that from
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Figure 8. Tube to P-wave pressure amplitude ratio is plotted
against frequency for fractures of different fracture lengths, taking
Z ¼ 10−9 m∕Pa and L0 ¼ 0.5 mm, while other parameters are kept
constant. All other parameters are the same as in Figure 4.
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Figure 10. Transmission coefficient is plotted against frequency
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of 0.5 mm. The parameters for this study are the same as in Figure 4.
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the parallel plate law. Thus, the estimates of the pressure amplitude
ratio or the transmission coefficient, at the low-frequency limit,
are reliable for fractures with actual contact area less than 30%.
However, the dynamic tortuosity estimated from Tang’s model
approaches one at high frequencies implying no tortuosity. To look
at the effect of dynamic tortuosity at the high-frequency limit, we
solve the dispersion relation in the fracture by taking the velocity of
wave propagation in the fracture fluid to be αf∕

ffiffiffiffiffiffiffi
Ω∞

p
. As ω → ∞,

kr is given by
ffiffiffiffiffiffiffi
Ω∞

p ðω∕αfÞ and H1
1ðζRÞ∕H1

0ðζRÞ approaches -i.
Thus, taking the high-frequency approximation, the amplitude of
the generated tube wave, equation 9, and the fracture impedance,
equation 15, can be written as

p̄tðωÞ ¼ σ0
ρfctZ

R
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω∞
α2f

þ ρfZ
L0

r ; (17a)

ZF ¼ ρf
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω∞
α2f

þ ρfZ
L0

r : (17b)

Johnson et al. (1987) show that the values ofΩ∞ range from one for
a parallel plate to three for a typical porous medium; therefore, the
value for fractures should lie between one and three. When
ðρfZÞ∕ðL0Þ ≫ ðΩ∞Þ∕ðα2fÞ, the effect of tortuosity is negligible
on the amplitude ratios and transmission coefficients. This is
true for compliance values greater than 10−11 m∕Pa. When
ðρfZÞ∕ðL0Þ ≪ ðΩ∞Þ∕ðα2fÞ, the amplitude ratio and fracture imped-
ance are reduced by a factor of 1∕

ffiffiffiffiffiffiffi
Ω∞

p
. In a porous medium, the

transition from low to high frequency depends on the viscous skin
depth relative to the pore size (Johnson et al., 1987). For fractures,
the mean fracture aperture L0 is a good estimate of the pore size
and, thus, the transition frequency is captured well by comparing
the viscous skin depth to the parallel plate fracture aperture.

FIELD DATA ANALYSIS

Overview

The magnitude of the amplitude ratio of the generated tube wave
to that of the incident P-wave can be easily determined from the
power spectra of the VSP data and can be used to invert for fracture
properties (Hardin et al., 1987). The waveforms corresponding to
the incident wave and the generated tube wave are separated in time
on the traces recorded in the borehole as you move away from the
fracture. At a receiver far enough from the fracture such that the two
waveforms are separated in time, the waveforms are windowed and
their amplitude spectra are calculated. The ratio as a function of
frequency is measured by taking the ratio of the amplitude spectra
at each frequency. We can set up an inverse problem to estimate the
aperture and compliance such that the observed amplitude ratio at
all the frequencies matches with the tube-wave generation model. If
the data span the transition regime, the location of the maximum can
be used to first estimate the fracture aperture. The maximum occurs
when the viscous skin depth is comparable to the fracture aperture.
Viscous skin depth at the frequency corresponding to the maximum
in the amplitude ratio is a good estimate of the fracture aperture.
Knowing the fracture aperture, fracture compliance can be esti-
mated from the amplitude ratio at high frequencies. Thus, the in-
verse problem is well constrained when we have data spanning
the transition regime. If the amplitude ratio is measured only in
the high-frequency regime, different combinations of compliance
and aperture can satisfy the high-frequency limit (the flat region
of the curve in Figure 4) and data collected in this regime cannot
independently constrain compliance and aperture. The inverse
problem will be ill constrained if the data are collected only in
the high-frequency regime. However, the behavior of the amplitude
ratio as a function of compliance and aperture does allow us to place
a bound on the fracture compliance value. We varied the aperture
values from 0.1 to 1 mm and compliance from 10−14 to 10−5 m∕Pa
and plotted contours for constant values of amplitude ratio at a given
frequency as shown in Figure 15. We can see that the amplitude
ratio flattens after some aperture value (when δ ≪ L0) and is not
greatly influenced by the aperture beyond this point. At these large
apertures, an observed amplitude ratio corresponds to a single
compliance value. However, at smaller apertures, the contours bend
toward higher compliance values. To retain the same amplitude ratio
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Figure 11. The transmission coefficient is plotted against frequency
for different fracture compliance values, taking L0 ¼ 0.5 mm,
while other parameters are kept constant. Note that the transmission
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are the same as in Figure 4.
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at smaller apertures, the fracture should be more compliant. So,
every amplitude ratio corresponds to a minimum compliance, over
the range of apertures that are practical. Allowing a large aperture
(probably using the apparent aperture measured from FMI log), we
can place a minimum bound on the compliance. Of course, it would
be best to collect data at frequencies spanning the transition regime
to better constrain all fracture parameters. For practical purposes,
the transition regime lies between 1 and 30 Hz for water (ν ¼
10−6 m2∕s and an aperture range of 0.1 to 1 mm) and it increases
to 300 Hz for crude oil (ν ¼ 10−5 m2∕s and an aperture range of 0.1
to 1 mm). Crude oil is more viscous. So the transition regime shifts
to higher frequencies.
Amplitude ratios from real data may have multiple peaks/troughs

due to the finite extent of the fractures. However, because we
showed that these peaks/troughs are superimposed on the infinite
fracture response, we can take a moving average of the amplitude
ratio data and analyze it using an infinite fracture model to obtain
fracture aperture and compliance. Knowing fracture aperture and
compliance, we can simulate the amplitude ratio for the infinite
fracture case and compare it to the unsmoothed data. If the peaks
and troughs can be resolved in the data, we can measure the spacing
between consecutive peaks/troughs, Δ, to estimate the fracture
length based on equation A-6. Also, we can locate the frequency
ωd at which the amplitudes of these peaks/troughs decay to the in-
finite fracture response to estimate fracture length by using equa-
tion A-7. When the data are collected in the high-frequency regime,
we can only place a lower bound on the fracture compliance and
then, equation A-6 or A-7 can only be used to obtain a lower bound
on fracture length. However, we observe that a fracture that is tens
of meters long appears to be an infinite fracture for tube-wave gen-
eration or attenuation, and, thus, we may not be able to characterize
the length of hydraulic fractures by analyzing the modes that travel
through the fracture fluid.
The discussion above is equally valid for obtaining fracture

parameters from tube-wave attenuation data. Typical well-log data
are generally in the kHz-frequency range and perhaps as low as
500 Hz. Thus, well-log data are in the high-frequency regime
and we will not be able to independently measure fracture aperture
and compliance. We may be able to analyze the attenuation of tube
waves that are excited in the borehole in a VSP setting. Alterna-
tively, microseismic events accompanying hydraulic fracturing
are reported to have a dominant frequency band ranging from
200 to 1 kHz (Warpinski, 2009) and occasionally as low as
30 Hz (Fehler and Phillips, 1991). Similarly, microseismic events
generated during production are reported to have a frequency band
of 10–50 Hz (Kiselevitch, 1991). We propose that analyzing the
amplitude ratio of tube waves generated at a fracture during micro-
seismic events and measuring the attenuation of these tube waves as
they cross other fractures intersecting the borehole can be useful to
characterize the fractures. This methodology may also be applied to
evaluate the performance of hydraulic fracturing procedures.

Field example

Hardin et al. (1987) report amplitude ratios from a field VSP ex-
periment at a well in Mirror Lake, New Hampshire. The Mirror
Lake borehole was drilled to a depth of about 225 m with a diameter
of 0.15 m in a metamorphic sequence of schist and gneiss, intruded
by thick, irregular veins of quartz monzonite. Standard wireline
logs, full-wave acoustic log (2–20 kHz), and hydrophone VSP

(10–1000 Hz) data were collected. The VSP data were bandpass
filtered, and the tube-wave to P-wave amplitude ratio was estimated
over the frequency range 100–300 Hz. The amplitude ratios, at a
frequency of 150 Hz (source band center frequency), corresponding
to a fracture at 45 m depth, ranged from 10 to 15. Comparing the
observed amplitude ratio to amplitude ratio contours (at 150 Hz)
from a model with parameters appropriate for the field study, the
lower bound on compliance was found to lie between 3 × 10−10

and 10−9 m∕Pa (see Figure 15). However, analyzing the same data,
Hardin et al. (1987) suggest that compliance values should be of the
order of 10−12 to 10−13 m∕Pa. While relating radial flow to the pres-
sure gradient in the fracture, Hardin used Darcy’s law applied to
parallel plates. This corresponds to the low-frequency approxima-
tion of Tang’s dynamic conductivity equation 3. Thus, Hardin ap-
plies a model valid for the low-frequency regime to data from the
high-frequency regime and thus underestimates the fracture compli-
ance. We also analyzed amplitude ratios corresponding to a fracture
at 290-m depth in a water well at Hamilton, Massachusetts, drilled
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Figure 13. The transmission coefficient is plotted against frequency
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ing viscosity. The parameters other than viscosity are the same as in
Figure 4.
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in a gabbro-granodiorite formation (Hardin, 1986). We find that the
lower bound on compliance for this fracture is between 10−10

and 10−9 m∕Pa.

Discussion

It should be noted that the tube-wave generation model is devel-
oped for a normal incidence wave on a fracture that intersects the
borehole at a right angle, e.g., a vertical borehole and horizontal
fracture. However, with increasing depth, fractures are more in-
clined and tend to be subvertical. Moreover, the incident wavefield
may not be parallel to the borehole. When a wave is incident at an
angle to the borehole, the pressure amplitude of that wave measured
in the borehole increases compared to that of a wave propagating
parallel to the borehole (White, 1983). At the same time, nonnormal
incidence on a fracture reduces the normal stress on the fracture and
decreases the pressure amplitude of the generated tube wave in the
borehole. As a result, any deviation from the assumed geometry in
the field would mean reduced amplitude ratios and, therefore, frac-
tures of a given compliance will be harder to observe. In other
words, an inclined fracture must be more compliant than a horizon-
tal fracture for the same amplitude ratio. Hence, the lower bound on
fracture compliance estimated by assuming a horizontally intersect-
ing fracture and normal incidence on the fracture still serves as a
lower bound. In addition, the effect of asperities and tortuosity on
flow would be to reduce the pressure amplitude ratios. So, the lower
bound on fracture compliance from our model is conservative.
The estimate of the lower bound on fracture compliance (on the

order of 10−10 m∕Pa) for the meter-scale fractures in the Mirror
Lake experiment is orders of magnitudes larger than the fracture
compliance from laboratory measurements and supports the scaling
of fracture compliance with fracture length (Worthington et al.,
2007). Higher compliance values at larger scales are not surprising.
Brown and Scholz (1985) analyze the natural rock surfaces and find
that the profiles are fractal and the spatial frequencies have a red-
noise power spectrum. Other authors (Hakami and Larsson, 1996)

report that apertures are normally distributed. This means that larger
apertures are few and spread out spatially at larger distances. When
a wave is incident on a fracture, it samples regions on the order of its
wavelength. Larger wavelengths sample larger fracture surface and
sample larger apertures. A few large apertures can drastically in-
crease the compliance and also increase fluid transmissivity. How-
ever, Brown and Scholz (1985) also suggest that fracture surfaces
should be correlated after a certain scale. In such a case, we will see
an increase in compliance with scale until we reach the correlation
length. Although we predict high compliance values (of the order
of 10−10 m∕Pa), one should be careful when applying them to
numerical modeling of wave propagation using a linear-slip model
(Schoenberg, 1980). A fluid-filled fracture may have compliance
similar to a dry fracture under drained conditions, but it becomes
much stiffer due to the incompressibility of the fluid under un-
drained conditions. The overall compliance could also be frequency
dependent due to fluid motion, depending on the drainage length
compared to the wavelength.

CONCLUSIONS

Tube-wave generation and attenuation at a fracture intersecting a
borehole is modeled accounting for the intrinsic fracture compli-
ance. The pressure field in the fracture was solved without any
low/high approximations on frequency. Thus, amplitude ratios and
tube-wave attenuation over a range of frequencies and fracture
compliances were analyzed. The amplitude ratio/transmission coef-
ficient has a maximum/minimum at a transition frequency. The
models suggest that measurements taken near the transition fre-
quency can constrain fracture compliance and aperture more
effectively. A finite-length fracture manifests peaks/troughs super-
imposed the infinite fracture response. If we can resolve the spacing
between consecutive peaks/troughs or the decay of the peaks/
troughs, we can estimate the fracture length knowing the fracture
aperture and fracture compliance. When we have only a minimum
bound on the fracture compliance, we can place a minimum bound
on the fracture length. Comparing the tube-wave generation model
to previously published VSP data suggests that fracture compliance
values of the order of 10−10 to 10−9 m∕Pa can be expected in the
field. With these values, scattering of seismic waves from such frac-
tured regions should be observed using surface seismic data.
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APPENDIX A

TUBE-WAVE GENERATION AT A FINITE
FRACTURE

The theory described for an infinitely long fracture can be ex-
tended to a finite fracture. We consider a penny-shaped horizontal
fracture of diameter 2D intersecting a borehole at its center. In this
case, the differential equation for fluid pressure in the fracture is still
given by equation 5. For a finite fracture, we require the zero flow
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Figure 15. Amplitude ratio contours are plotted in the aperture
compliance parameter space for a frequency of 150 Hz. The param-
eters for the study are the same as in Figure 2 and correspond to the
field study at the Mirror Lake borehole (Hardin et al., 1987) dis-
cussed in the field example section. Amplitude ratios estimated
from the field data lie between 10 and 15. This suggests that the
lower bound on the compliance lies between 3 × 1010 and
10−9 m∕Pa (indicated by the black dotted lines) when the fracture
aperture is assumed to be lower than 1 mm.
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boundary condition to be satisfied at r ¼ D. As a result, the solu-
tions to the homogeneous form of equation 5 include incoming and
outgoing waves. The complete solution can be written as

p̄ðω; rÞ ¼ AH1
0ðζrÞ þ BH2

0ðζrÞ þ
ρfZα2eff
L0

σ0: (A-1)

The coefficients A B are determined from the boundary conditions
p̄ðωÞjr¼R ¼ p̄tðωÞ and ∂p̄∕∂rjr¼D ¼ 0. Applying the boundary
conditions, the equation for fluid pressure in the finite fracture
can be written as

p̄ðω;rÞ¼
�
p̄tðωÞ−

ρfZα2eff
L0

σ0

�

×
H1

0ðζrÞH2
1ðζDÞ−H1

1ðζDÞH2
0ðζrÞ

H1
0ðζRÞH2

1ðζDÞ−H1
1ðζDÞH2

0ðζRÞ
þρfZα2eff

L0

σ0: (A-2)

Following similar steps as for an infinite fracture, the expression for
the equivalent pressure source for a tube wave, for the finite fracture
case, can be obtained as

p̄tðωÞ ¼ σ0
ω

krαf

ct
αeff

L0

R
ρfα2eff
L0∕Z

×
�

iΘH1
1ðζRÞ∕H1

0ðζRÞ
1þ ω

krαf
ct
αeff

L0

R iΘH1
1ðζRÞ∕H1

0ðζRÞ

�
; (A-3a)

Θ ¼
�
1 −

H2
1ðζRÞ

H1
1ðζRÞ

H1
1ðζDÞ

H2
1ðζDÞ

�
∕
�
1 −

H2
0ðζRÞ

H1
0ðζRÞ

H1
1ðζDÞ

H2
1ðζDÞ

�
:

(A-3b)

Using asymptotic expansion of the Hankel functions for large argu-
ments and neglecting higher order terms, Θ can be expanded as

Θ ¼ 1 − ei2ζðD−RÞ

1þ ei2ζðD−RÞ ¼
1 − e−2ImfζgðD−RÞe−i2RefζgðD−RÞ

1þ e−2ImfζgðD−RÞe−i2RefζgðD−RÞ :

(A-4)

Thus, as D → ∞, Θ goes to unity, and the solution for the finite
fracture case approaches the solution for the infinite fracture case
as given by equation 8. For the high-frequency approximation, we
take the high-frequency solution for the dispersion relation from
Tang (1990), and ζ can be written as

ζ ¼ krαf
αeff

¼ ω

αeff

�
1 −

ffiffi
i
2

q
δ
L0

� ≈
ω

αeff

�
1þ i

δ

2L0

�
: (A-5)

Using equations A-4 and A-5, Θ ≈ 1 − 2ei2ζðD−RÞ ¼
1 − 2e−½ðωδ∕αeffL0ÞðD−RÞ�eið2ω∕αeff ÞðD−RÞ. Thus, the spacing between
consecutive peaks/troughs in the high-frequency approximation
limit, in Hz, is given by

Δ ¼ αeff
2ðD − RÞ : (A-6)

The frequency at which the amplitude of the peaks/troughs is 1% of
the amplitude ratio from infinite fracture response ωd is given by

2e
−
h

ωdδ
αeffL0

ðD−RÞ
i
¼ 0.01 ⇒ ωd ¼ 5.3

αeffL0

δðD − RÞ : (A-7)

APPENDIX B

TUBE-WAVE ATTENUATION AT A FINITE
FRACTURE

As discussed in Appendix A, the solution for a finite fracture
involves solving the differential equation for the pressure field in
the fracture with a zero flow boundary condition at r ¼ D. The solu-
tion, including incoming waves and outgoing waves, is given by

p̄ðrÞ ¼ p̄tt
H1

0ðζrÞH2
1ðζDÞ −H1

1ðζDÞH2
0ðζrÞ

H1
0ðζRÞH2

1ðζDÞ −H1
1ðζDÞH2

0ðζRÞ
: (B-1)

From equations B-1 and 3, the flow into the fracture at r ¼ R is
given by

q̄ðRÞ ¼ p̄ttζ
iωL0

k2rα2fρf

H1
1ðζRÞ

H1
0ðζRÞ

Θ; (B-2)

where Θ is as defined in equation A-3b. Hence, the impedance for a
finite fracture can be written as

ZF ¼ < p̄ðRÞ >
< v̄FðRÞ >

¼ p̄tt

q̄ðRÞ∕L0

¼ k2rα2fρf
iωζ

H1
0ðζRÞ

H1
1ðζRÞ

1

Θ
:

(B-3)

Similar to the amplitude ratios in Appendix A, Θ causes peaks/
troughs in the transmission coefficient for a finite fracture. At
the high-frequency limit, equation A-6 again gives the spacing
between consecutive peaks/troughs and equation A-7 gives the
frequency at which the amplitude of peaks/troughs in ZF is reduced
to 1%.
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