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Probabilistic Feasibility for Nonlinear Systems with
Non-Gaussian Uncertainty using RRT

Brandon Luders*and Jonathan P. How'

Aerospace Controls Laboratory
Massachusetts Institute of Technology, Cambridge, MA

{luders,jhow }@mit.edu

For motion planning problems involving many or unbounded forms of uncertainty, it may
not be possible to identify a path guaranteed to be feasible, requiring consideration of the
trade-off between planner conservatism and the risk of infeasibility. Recent work developed
the chance constrained rapidly-exploring random tree (CC-RRT) algorithm, a real-time
planning algorithm which can efficiently compute risk at each timestep in order to guarantee
probabilistic feasibility. However, the results in that paper require the dual assumptions of
a linear system and Gaussian uncertainty, two assumptions which are often not applicable
to many real-life path planning scenarios. This paper presents several extensions to the
CC-RRT framework which allow these assumptions to be relaxed. For nonlinear systems
subject to Gaussian process noise, state distributions can be approximated as Gaussian by
considering a linearization of the dynamics at each timestep; simulation results demonstrate
the effective of this approach for both open-loop and closed-loop dynamics. For systems
subject to non-Gaussian uncertainty, we propose a particle-based representation of the
uncertainty, and thus the state distributions; as the number of particles increases, the
particles approach the true uncertainty. A key aspect of this approach relative to previous
work is the consideration of probabilistic bounds on constraint satisfaction, both at every
timestep and over the duration of entire paths.

I. Introduction

A major research focus area of current interest to the motion planning community is the development of
verification and validation tools for autonomous systems, subject to complex forms of autonomy and uncer-
tainty.? While guaranteed safety is always ideal, often the quantity or degree of uncertainty is sufficiently
high that a guaranteed-feasible path does not exist. In this case, chance constraints'* can provide an elegant
way to model the trade-off between planner conservatism and the risk of path infeasibility.

The recently-proposed chance-constrained rapidly-exploring random trees (CC-RRT) algorithm leverages
chance constraints? to guarantee probabilistic feasibility for complex motion planning problems, involving
both process noise and environmental uncertainty.'® By using RRT,!! the algorithm enjoys the computa-
tional benefits of sampling-based algorithms while explicitly incorporating uncertainty. Though this algo-
rithm requires only a minimal computational increase, it relies on the assumptions of linear systems and
Gaussian uncertainty, restricting the applicability of this approach. Furthermore, probabilistic feasibility
can only be guaranteed at each timestep, when feasibility estimates over a path are often more useful.

This paper extends the CC-RRT algorithm to consider nonlinear systems and/or systems subject to non-
Gaussian uncertainty. The resulting algorithms approximate the probabilistic feasibility metrics established
for linear Gaussian systems, allowing for their use on more complex dynamics and uncertainty formulations,
and can also provide an estimate of path probabilistic feasibility. A novel contribution of this approach is its
applicability to both open-loop and closed-loop dynamics,” as well as environmental uncertainty. Simulation
results demonstrate the viability of these extensions in assessing probabilistic feasibility for complex dynamics
and/or uncertainty.
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For nonlinear systems subject to Gaussian process noise, state distributions can be approximated as
Gaussian by considering a linearization of the dynamics at each timestep. Since the linearized dynamics
depend on the current vehicle state, the previously considered offline CC-RRT formulation is no longer
applicable, but online CC-RRT can still be used.!® For closed-loop RRT, the reference feedback law must
also be linearized, as demonstrated for a skid-steered vehicle using pure pursuit steering.

For systems subject to non-Gaussian uncertainty, the above approach may not approximate the state
distributions sufficiently well. In this case, we propose a particle-based representation of the uncertainty, and
thus the state distributions; as the number of particles increases, the particles approach the true uncertainty.
Probabilistic feasibility is then measured in terms of the number of feasible particles at each node, compared
to all particles considered at that node or along the path. While similar approaches have been proposed
for chance constraints' and sampling-based algorithms,'” our algorithm enjoys several key advantages for
assessing probabilistic feasibility. By not clustering particles, the one-to-one mapping between inputs and
nodes is maintained. A fixed number of particles are propagated at each node, by probabilistically resampling
the feasible particles to replace any particles found infeasible. In this manner, high-resolution feasibility
estimates are maintained for every node and path. In the paper, both uniform resampling of particles and
weighted resampling based on the likelihood of each particle are considered; while the former is both faster
and numerically stable, the latter better represents the true likelihood of feasibility at each node, with fewer
samples. Finally, two estimates of probability are assessed at each node: the likelihood of feasibility at
each timestep, and the overall likelihood of feasibility over the entire path. This extends the existing chance
constraint framework, which is restricted to considering likelihood at each timestep, while enabling the use of
either component as part of hard or soft constraints on the system. Simulation results demonstrate the ability
of this approach to efficiently impose probabilistic constraints for challenging uncertainty environments.

This paper is organized as follows. Sections II and III set up the preliminaries for this paper, with the
former establishing the problem statement and the latter reviewing the background work for this paper,
chance constraints and the CC-RRT algorithm. The difference between offline CC-RRT and online CC-
RRT is also reviewed, as the former will not always be applicable when the assumptions of a linear system
and/or Gaussian uncertainty are removed. Section IV considers the implications of allowing nonlinear
dynamics, while Section V introduces a particle-based framework which handles the possibility of non-
Gaussian uncertainty. Section VI presents some representative simulation results, while Section VII offers
concluding remarks and suggestions of future work.

A. Related Work

This paper considers extensions of the CC-RRT algorithm to achieve probabilistic robustness to two main
types of uncertainty, often labeled model uncertainty and environmental sensing uncertainty.'®> Many ap-
proaches have been considered to address the problem of motion planning under uncertainty,'? 24 several of
which are discussed below.

One large class of approaches seek to identify optimal policies in uncertain, possibly partially-observable
environments, such as POMDPs*>2? and the Gaussian overlap A* framework of [6]. These optimal-policy
approaches tend to scale poorly for problems with high-dimensional configuration spaces, hindering their
ability to model complex dynamics and constraints. However, we call particular attention to the work of
Prentice and Roy,?? which constructs a roadmap in the belief state for a linear system subject to Gaussian
noise. The belief roadmap is primarily used to identify paths which maintain strong localization, rather than
avoid uncertain obstacles. Though the propagation of the system mean and covariance is quite similar to the
formulation proposed in the original CC-RRT work,'® the roadmap dictates the use of kinematic planning.

Much existing work on probabilistic uncertainty has focused on environmental sensing uncertainty, using
techniques such potential fields'® and probabilistic roadmaps,? often representing obstacles with uncertain
shapes.” 19 However, these approaches are not applicable to nonholonomic systems, which generally cannot
track the piecewise linear roadmap paths, and require a significant preprocessing phase for roadmap con-
struction. The CC-RRT algorithm extended in this work requires little to no preprocessing and generates
dynamically feasible paths by construction. More recent work has focused on the problem of random-
ized planning subject to configuration uncertainty. Pepy and Lambert?' addresses the ego-sensing problem
through use of an extended Kalman filter and simulated localization feedback, assuming a perfect system
model. Pepy et al.?’ seeks guaranteed robust feasibility for a nonlinear system subject to bounded state
uncertainty. However, the approach uses a conservative box-shaped “wrapper” to approximate and bound
the reachable set at each node. However, the use of an extended Kalman filter is closely related to the
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linearization techniques applied here to remove the assumption of linear dynamics.

Finally, several statistical RRT approaches have been proposed to model vehicles traveling on uneven
terrain. The well-known particle-based approach of Melchior and Simmons'” samples each tree branch
multiple times, using clustering to create nodes. The approach considered in this paper for non-Gaussian
uncertainty differs from this approach in a few key ways. By not clustering particles, a one-to-one mapping is
maintained between inputs and nodes, simplifying the control process. Furthermore, the approach considered
here probabilistically resamples feasible particles to replace any particles found infeasible; thus, without
resampling, the resolution on the probabilistic feasibility is uniform across all nodes. Furthermore, our
work considers two assessments of probabilistic feasibility - at each timestep and over entire paths - both as
soft constraints and hard constraints (Section II). We also note an algorithm which identifies a finite-series
approximation of the uncertainty propagation, in order to reduce model complexity and the resulting number
of simulations needed per node.?

II. Problem Statement

Consider the discrete-time system with process noise and uncertain localization,

Tip1 = [z, ue,wy) (1)
zg ~ P(xog), (2)
wy ~  Plwy), (3)

where z; € R™ is the state vector, u; € R™ is the input vector, and w; € R"* is a disturbance vector
acting on the system. Here P(a) represents a random variable whose probability distribution is known. The
disturbance w; is unknown at current and future time steps, but has the known probability distribution (3).

The system itself is subject to two forms of uncertainty. Equation (2) represents uncertainty in the initial
state xg, corresponding to an uncertain initial localization. Equation (3) represents a possibly non-Gaussian
process noise, in the form of independent and identically distributed random variables w; (P(w;) = P(w) V t).
This noise may correspond to model uncertainty, external disturbances, and/or other factors.

The objective of this paper is to obtain results on probabilistic feasibility which are valid (or approximately
valid) even if the dynamics remain nonlinear, and/or the uncertainty remains non-Gaussian. However, there
will be times where one or both assumptions (linear dynamics, Gaussian uncertainty) remain in place, such as
when introducing the existing CC-RRT algorithm in Section III. Under the assumption of linear dynamics,
(1) takes the linear time-invariant form

T4l — A{Et + But =+ wy. (4)

Under the assumption of Gaussian uncertainty, (2)-(3) take the form
CUO ~ N(C%O7P$0)7 (5)
wy ~ N(0,Py,), (6)

where N (a, P,) represents a random variable whose probability distribution is Gaussian with mean 4 and
covariance P,.

There are also constraints acting on the system state and input. These constraints are assumed to take
the form

T € N=X-Xy—-— s, (7)
Uy € Z/l, (8)
where X', X1, ..., Xsp C R™ are convex polyhedra, &Y C R™ and the — operator denotes set subtraction.
The set X defines a set of time-invariant convex constraints acting on the state, while X1, ..., X;p represent

B convex, polytopic obstacles to be avoided. The time dependence of &; allows the inclusion of both static
and dynamic obstacles. For each obstacle, the shape and orientation are assumed to be known, while the
placement is uncertain. This is represented as

Xyj = X)+cy, Vj€lip, Vi (9)
Ctj ~ P(Ctj) VJ € Zl,B; Vit (10)
3of 13
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where the + operator denotes set translation and Z, , represents the set of integers between a and b inclusive.
In this model, XJQ C R"* is a convex polyhedron of known, fixed shape, while ¢;; € R"* is a possibly time-
varying translation. This can be used to represent dynamic obstacles whose future state distributions are
known, such as other vehicles with known intentions. Note that if the obstacle uncertainty is also assumed
to be Gaussian, then (10) takes the form

Ctj N(éjt,cht) V] S ZI,B7 Y t. (11)
The primary objective of the planning problem is to reach the goal region Xyo. C R"™* in minimum time,
tgoal = inf{t € ZO,tf | T € Xgoal}v (12)

while ensuring the constraints (7)-(8) are satisfied at each time step t € {0,...,tg0a} with probability of at
least psate- In practice, since there is uncertainty in the state, we assume it is sufficient for the distribution
mean to reach the goal region Xyoa. A secondary objective may be to avoid some undesirable behaviors,
such as proximity to constraint boundaries, and can be represented through a penalty function ¥ (z, Xy, U).

Problem 1. Given the initial state distribution (Z, Py,) and constraint sets X} and U, compute the input
control sequence uy, t € Zoi;, ty € Zo,0o that minimizes

tgoal

J(0) = tgoar + > (x4, X, U) (13)

t=0

while satisfying (1) for all time steps ¢ € {0,...,tg0a1}, and satisfying (7)-(8) at each time step ¢ €
{0, ..., tg0a1} With probability of at least psafe.

If an estimate for the probability of constraint satisfaction over the entire path is available (Section
V), then this may be incorporated. Also note that ¢ can be designed to incorporate soft constraints on
probability of constraint satisfaction over each timestep or path, if desired.

III. The CC-RRT Algorithm

This section reviews the previously-developed CC-RRT algorithm,'® first by developing the chance con-
straint formulation,? then incorporating it within the RRT algorithm.!

A. Chance Constraints

Note that here and in the remainder of this section, the assumptions of linear dynamics and Gaussian
uncertainty remain in place; the implications of removing these assumptions are considered in subsequent
sections.

Given a sequence of inputs ug,...,uy_1, under the assumptions of linear dynamics and Gaussian un-
certainty, the distribution of the state z; (represented as the random variable X;) can be shown to be
Gaussian:?

P(Xilug, ... ,un—1) ~ N(&,Pr,) VtE€Zn,

where N is some time step horizon. The mean #; and covariance P,, can be updated implicitly using the
relations

£t+1 = Ai;+Bu; Vte ZO’Nfl, (14)
P,,., = AP, A"+ P, YteZyn_1. (15)

The key advantages of the chance constraint approach for linear systems and Gaussian noise are made clear
at this point: (14) updates the distribution mean #; using the nominal, disturbance-free dynamics, while
(15) is independent of the input sequence and thus can be computed a priori. This second advantage is not
necessarily available if the dynamics are not linear (Section IV).

To ensure that the probability of collision with any obstacle on a given time step does not exceed
A = 1 — pgate, it is sufficient to show that the probability of collision with each of the B obstacles at
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that time step does not exceed A/B.2 The jth obstacle is represented through the conjunction of linear
inequalities

5

T T
/\ aijajt < aijCijt V t S Z(),tf’ (16)
i=1

where n; is the number of constraints defining the jth obstacle, and ¢;j; is a point nominally (i.e. ¢jr = é;¢)
on the ith constraint at time step ?; note that a;; is not dependent on ¢, since the obstacle shape and
orientation are fixed. To avoid all obstacles, the system must satisfy B disjunctions of constraints at each
time step,

j
\/ aiszt > aichijt VJ S Zl,Bv Vte Z(],N. (17)
=1

For each obstacle - consider the jth one below - it is sufficient to not satisfy any one constraint in the
conjunction (16). Thus, the probability of collision is lower-bounded by the probability of satisfying any
single constraint:

P(collision) < P(a}; Xy < aj;ciji) Vi€ Zyp,. (18)

Pulling everything together, to prove the probability of collision with the jth obstacle does not exceed A/B,
it is sufficient to show that

\/ Plal;X; < al;Cijs) < A/B, (19)
=1

where Cjji = ¢i¢ + (¢t — €5¢) is a random variable due to (11).
Next, a change of variables is made to render the problem tractable for path planning algorithms. For
the ith constraint of the jth obstacle at time step ¢ apply the change of variable

V = ag;-Xt — ag;-Cijt; (20)

it can be shown'® that the mean and covariance for V are

v = a;fg-fct—ag;-cijt, (21)
P, = \/ag;(Pwt+cht)aij. (22)

With this change of variables, the probabilistic constraint can then be written as
PV <0)<A/B. (23)
This probabilistic constraint can be shown to be equivalent to a deterministic constraint,?

P(V<0)<A/B & ©>V2Perf! (1 - 22) : (24)

where erf(-) denotes the standard error function. Using this, the constraints (17) are probabilistically satisfied
for the true state x; if the conditional mean z; satisfies the modified constraints

nj

\/ afiér > by +biye ¥j€Lup, Vi€, (25)
i=1

biji = V2Perf! <1—22). (26)

The term b;j; represents the amount of deterministic constraint tightening necessary to ensure probabilistic
constraint satisfaction.
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Root

Goal

Figure 1. Diagram of the chance constrained RRT algorithm. Given an initial state distribution at the tree
root (blue), the algorithm grows a tree of state distributions in order to find a probabilistically feasible path
to the goal (yellow star). The uncertainty in the state at each node is represented as an uncertainty ellipse.
Each state distribution is checked probabilistically against the constraints (gray). If the probability of collision
is too high, the node is discarded (red); otherwise the node is kept (green) and may be used to grow future
trajectories.

B. Algorithm Overview

This section reviews the chance constrained RRT (CC-RRT) algorithm, an extension of the traditional
RRT algorithm which allows for probabilistic constraints. Whereas the traditional RRT algorithm grows a
tree of states which are known to be feasible, the chance constrained RRT algorithm grows a tree of state
distributions which are known to satisfy an upper bound on probability of collision (Figure 1).

The fundamental operation in the standard RRT algorithm is the incremental growth of a tree of dynam-
ically feasible trajectories, rooted at the system’s current state x;.'' Crucially, the RRT algorithm employs
trajectory-wise constraint checking, allowing for the incorporation of possibly complex constraints. The
CC-RRT algorithm can leverage this by explicitly computing a bound on the probability of collision at each
node, rather than simply satisfying tightened constraints for a fixed bound. To grow a tree of dynamically
feasible trajectories, it is necessary for the RRT to have an accurate model of the vehicle dynamics (1)
for simulation. Since the CC-RRT algorithm grows a tree of state distributions, in this case the model is
assumed to be the propagation of the state conditional mean (14) and covariance (15), rewritten here as

Tiprg1e = Apyrpe + Bugprg, (27)
Piipyp = APt+k|tAT + Py, (28)

where ¢ is the current system time step and (-);4x; denotes the predicted value of the variable at time step
t+ k.

The CC-RRT tree expansion step, used to incrementally grow the tree, is given in Algorithm 1. Algorithm
2 shows how the algorithm executes some portion of the tree while continuing to grow it. Please consult [16]
for more details on the algorithms and their implementation. Note that pg.te denotes the lower bound on
the likelihood of constraint satisfaction at each timestep.

There are two ways to utilize the chance constraint formulation within the CC-RRT framework: Offline
CC-RRT and Online CC-RRT. In the Offline CC-RRT approach, similar to the formulation presented
by Blackmore et al.,> a fixed probability bound A/B is applied evenly across all obstacles, resulting in
tightened deterministic constraints (25) which can be computed off-line for each time step. During tree
growth, one can compute whether the deterministic chance constraints (25) are satisfied for all obstacles for
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Algorithm 1 CC-RRT, Tree Expansion
1: Inputs: tree 7T, current time step ¢
2: Take a sample Zsamp from the environment
3: Identify the M nearest nodes using heuristics
4: for m < M nearest nodes, in the sorted order do

5: Npear + current nodes

6:  (£44kpt, Pryrje) < final state distribution of Nnear

7: while Ak (Ei4k)t, Pivrje) < 1 — psate and T4y has not reached zsamp do
8: Select input usqre € U

9: Simulate (Z¢qpt1j¢; Pryr1je) using (27)-(28)
10: Create intermediate nodes as appropriate
11: k< k+1

12:  end while
13:  for each probabilistically feasible node N do

14: Update cost estimates for N

15: Add N to T

16: Try connecting N to Xgoal (lines 5-13)

17: if connection to Xyoa1 probabilistically feasible then
18: Update upper-bound cost-to-go of N and ancestors
19: end if

20:  end for

21: end for

a given conditional mean & and covariance P,. Growth of the simulated trajectory continues only if these
deterministic chance constraints are satisfied.

It is also possible to identify a more precise bound on the probability of collision specific to each time
step, as used for Online CC-RRT. This approach leverages the relationship in (24) to compute the exact
probability of satisfying each individual constraint for a given distribution N'(Z, P,.) - an operation which is
possible due to iterative constraint checking in the RRT algorithm. Through repeated use of this operation,
a bound can be computed for each time step on the probability of collision. The tradeoff is the computational
complexity introduced by computing this bound at each time step, though the increase is sufficiently small
to maintain the approach’s suitability for on-line implementation.

The key to the Online CC-RRT approach is the relationship

pw <o L (1-a[2]), )

which has been shown'® to be derived from (24). Again consider the ith constraint of the jth obstacle at
time step ¢, using the change of variables (20). Let A;;+(Z, P;) denote the probability that this constraint is
satisfied for a Gaussian distribution with mean & and covariance P,; using (29), we have that

1 alz, —alc;
Dije(@,Pr) = 5 | L - et ek Y e L (30)
\/2a3; (Pa:t + ch )aij
Now define
B
Ai(dr, Pp) =) min  Agy(ie, Pr,), (31)
= i=1,...,n;

used in line 8 of Algorithm 1; it can be shown that this term provides an upper bound on the probability of
a collision with any obstacle at time step ¢.

IV. Nonlinear Dynamics

In this section, the implications of removing the assumption of linear dynamics on the CC-RRT algorithm
are considered. The key step in our approach is to linearize the dynamics at each timestep, based on the
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Algorithm 2 CC-RRT, Execution Loop
1: Initialize tree 7 with node at (£o, Py,),t =0
2: while Z; € Xgoa1 do
3:  Use measurements, if any, to repropagate state distributions
4 while time remaining for this time step do
5 Expand the tree by adding nodes (Algorithm 1)
6: end while
7: Use cost estimates to identify best path {Nroot, - - . , Ntarget }
8.
9

if no paths exist then
: Apply safety action and goto line 17
10:  end if
11:  Repropagate the path state distributions using (27)-(28)
12:  if repropagated best path is probabilistically feasible then

13: Apply best path

14:  else

15: Remove infeasible portion of best path and goto line 7
16:  end if

17: t+t+ At
18: end while

current system state and input, in order to maintain a predicted state distribution which is Gaussian. In
particular, though the theoretical guarantees on probabilistic constraint satisfaction are lost through this
Gaussian approximation, the resulting bounds can provide a useful estimate on path safety, especially as the
timestep duration and the degree of nonlinearity decrease.

A. Open-Loop Dynamics

Suppose that the true system dynamics take the form (1),(5)-(6). The primary impact of the loss of linear
dynamics is that the future state distributions can no longer be assumed to be Gaussian, which invalidates
(14)-(15). The key question is then how to modify lines 7 and 8 of Algorithm 1, in which inputs are selected
and used to simulate the state distribution dynamics, in order to reasonably admit nonlinear dynamics.
Those steps use equations (32)-(33), repeated here:

Tippg1e = ATpgrpe + Bugprg, (32)
Pk = APt+k|tAT + Py. (33)

The key missing piece is the lack of an A matrix in the case of nonlinear dynamics; however, this can be
obtained by linearizing the nonlinear dynamics. First, assume the disturbance free (i.e., zero-mean) dynamics
w; = 0. For a given state x; and input u;, the nonlinear dynamics (1) can be linearized as follows:

Ti41 =~ AI’t + But, (34)
N 0
i = L), (39)
~ P
B = S, (36)

where %(xt, ut) denotes the partial derivative of f with respect to x at the point (z = ¢, u = uz, w = 0).

In the case of open-loop dynamics, only A is necessary to perform covariance updates; the full nonlinear
model can and should still be used to update the mean of the state distribution, Z;4;. Thus, in the case of
nonlinear open-loop dynamics, the system model (27)-(33) takes the form

ft+k+1\t = f(fct+k|ta Ut k|ts 0), (37)
Piigypy = APt+k\tAT + Pu, (38)

where A is defined in (35).
Note that due to this linearization, the theoretical guarantees previously presented for the case of linear
dynamics under Gaussian noise'® are no longer valid; however, it it straightforward to show that the quality of

the approximation will improve as the timestep duration and the degree of nonlinearity are decreased. Each
of these results in the linearization presenting a more accurate approximation of the nonlinear dynamics.

8 of 13

American Institute of Aeronautics and Astronautics



B. Closed-Loop Dynamics

Consider the case of closed-loop dynamics, where the feasible input in line 7 of Algorithm 1 is computed
using some closed-loop control law. In closed-loop, some reference state » € R™ is propagated based on the
sample Zsamp; the input is then selected through the controller

u= k(x,r), (39)

where u is the input to be applied to the node with state z and & is the (nonlinear) control law. Through
the reference r, the trajectories can be designed to meet certain qualitative considerations, such as a desired
speed.1®

For the assumption of linear dynamics, this control law would most typically take the form

Uy = K(xt - Tt), (40)

where K is some gain matrix. It is straightforward to show that upon this application of the closed-loop
control law, the equations (14)-(15) become

Typppe = (A4 BE)Zyk)e — Brigr), (41)
Piigie = (A+BK)Py(A+BK)" +P,. (42)

Note that in both equations, A has become A + BK, indicating the closed-loop nature of the uncertainty
environment.'?

If the assumption of linear dynamics is lifted, (34)-(36) can still be used to approximate the state distri-
butions as Gaussian; however, in this case, it is also necessary to linearize the control law (39). Thus, in the
case of nonlinear closed-loop dynamics, the system model (27)-(33) takes the form

ft+k+1\t = f(fit+k|ta ﬁ(mt-s-k\tart-s-k\t),o)v (43)
Pt+k‘+1‘t - (A+BK)Pt+k|t(A+BK)T+Pw, (44)
- Ok
K = %(mt; rt). (45)

where (45) is defined in the same manner as (35)-(36).

V. Non-Gaussian Uncertainty

In the case of nonlinear dynamics subject to Gaussian noise, it was reasonable to approximate a future
state distribution as Gaussian by linearizing the dynamics. However, when even the noise itself is non-
Gaussian, it is likely that a Gaussian model is no longer appropriate to capture the predicted uncertainty. In
this case, a particle-based framework can be used to statistically approximate this uncertainty, at a resolution
which can be dictated by the user. This section introduces the particle-based chance constraint framework
used to approximate both timestep and path feasibility when subject to non-Gaussian uncertainty.

Algorithm 3 presents the tree expansion step and execution loop, respectively, for the particle-based
extension of CC-RRT, referred to here as PCC-RRT; the modifications to Algorithm 2 are straightforward
and omitted for brevity. A set of Pyax particles are maintained at each node, each with a position x and
a weight w (weights are discussed below). There are two parameters the user can specify to indicate the
degree of probabilistic constraint violation allowed - the average likelihood of feasibility at each node cannot
exceed pi%de while the average likelihood of feasibility over an entire path cannot exceed p2%d€. The latter
bound is a key advantage of this particle-based approach, as it is quite difficult to approximate theoretically.
The former likelihood is computed by averaging the weights of all feasible nodes, Zp wl(ki)kl , (line 7), while
the latter is computed iteratively over a path by multiplying the prior node’s path probability by the weight
of existing nodes that are still feasible (line 15).

The tree expansion step is carried out as follows. After identifying the nearest nodes (line 3) to a new
sample (line 2), the number of particles is first resampled up to Ppax (line 8), such that the number of
simulations per step is constant at Ppax. After identifying the appropriate input across all particles (line 9),
each particle is simulated used the vehicle uncertain dynamics (line 11); disturbances are sampled using the
process noise distribution. A weight is then assigned to each particle (see below; line 12). By removing any
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Algorithm 3 PCC-RRT, Tree Expansion
1: Inputs: tree 7T, current time step ¢
2: Take a sample Zsamp from the environment
3: Identify the M nearest nodes using heuristics
4: for m < M nearest nodes, in the sorted order do

5: Nhpear < current node
6: {mgi)k‘t, wifr)k‘t} <« set of feasible particles at Nyear, with weights
7:  while Zp wg_)k‘t > prode and P,f‘“h > pfsfteh and Iy, has not reached Zsamp do
8: Resample particles up to count of Ppax, using weights wt(i)k‘ .
9: Select input us4xe € U
10: for each particle p do
11: Simulate xii)k 1) using (1) and sampled disturbance wex
12: Assign weight wgi)kﬂ‘t to particle
13: end for
14: Remove infeasible particles
. ath ath (p)
15: PISil — PP Zp Wy k|t
16: k+—k+1

17:  end while
18:  for each probabilistically feasible node N do

19: Update cost estimates for N

20: Add N to T

21: Try connecting N to Xgoa (lines 5-13)

22: if connection to Xgoa1 probabilistically feasible then
23: Update upper-bound cost-to-go of N and ancestors
24: end if

25: end for

26: end for

particles that are infeasible, the sum of weights of remaining particles indicates the likelihood of constraint
satisfaction at that node, which can be used to iteratively compute the likelihood of constraint satisfaction
of the path up to that point (line 15). Any paths which reach a new sample while satisfying these bounds
(line 7) is added to the tree (lines 18-25).

A. TUniform Resampling

In the uniform resampling scheme, all particles are assigned an identical weight at line 12, say (without loss
of generality) w® = 1. When this is the case, every particle has an equal likelihood of being resampled

p
t+k+1]t
at line 8.

B. Probabilistic Resampling

In the probabilistic resampling scheme, each particle is assigned a weight based on the likelihood of that
particle actually existing; this is a function of the likelihood of each portion of the uncertainty that is sampled.
This can be computed iteratively by node, as follows:

wt(i)kJrllt = wt(i)kﬁ PWigr = wipr)- (46)

This requires addition computation, especially as the complexity of uncertainty environment increases; how-
ever, it can provide a better overall approximation of the state distribution at each timestep, for the same
number of particles.

VI. Results

The following results demonstrate the validity of both approaches in extending the CC-RRT framework to
provide probabilistic constraint satisfaction bounds for nonlinear dynamics and/or non-Gaussian uncertainty.
Future revisions will significantly expand these results to include multiple types of system model, closed-loop
dynamics for Section IV, probabilistic resampling, and statistical analysis of reaching the goal safely.'6
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Consider the operation of a skid-steered vehicle in a 2D environment, with nonlinear dynamics

Topr = xp +dt(1/2)(vF + vft) cos b,
Yer1 =y +dt(1/2)(vF + o) sin 6y,
1 = O +dt(vff —vf),
vl = sat (0¢ + 0.5Av; + wk, 0.5),
v = sat (v, — 0.5Av, + wi, 0.5),

where dt = 0.02 s, (x,%) is the vehicle position, @ is the heading, v and v are the left and right wheel
speeds, respectively, sat is the saturation function and (w%,w®) is a bounded disturbance. The system
inputs are specified in terms of a mean velocity v and differential velocity Av. A variation of the pure
pursuit controller'? is applied, assuming forward direction only. Simulations were performed using a Java
implementation, run on an Intel 2.53 GHz quad-core laptop with 3.48GB of RAM.

Figure 2 demonstrates the use of Algorithm 1 using the open-loop linearization (37)-(38); paths are
expanded by randomly sampling many inputs, then selecting those inputs that guide the vehicle closer
to the sample (this leads to much of the observed “zig-zag” behavior). Figure 3 demonstrates the use of
Algorithm 3 using the uniform resampling scheme; note that the per-node safety bound is fixed in both
figures, whereas the per-path safety bound is increased in the rightmost figure.

VII. Conclusions

This paper has presented several extensions to the previously-developed CC-RRT path planning frame-
work, which can be used to generate paths in real-time which satisfy probabilistic bounds on constraint
satisfaction at each timestep. These extensions seek to remove the two assumptions which limit the appli-
cability of the existing approach, linear dynamics and non-Gaussian uncertainty. The former assumption
is removed by allowing the state distribution covariance at future timesteps to be approximated via a lin-
earization of the nonlinear dynamics; though the probabilistic bounds can no longer be guaranteed, the
approximation can still be quite useful for sufficient small timesteps and systems that are not highly non-
linear. The assumption of non-Gaussian uncertainty is removed by addressing the uncertainty statistically,
through a particle-based framework. By using the same number of particles at each timestep, and maintain-
ing bounds on constraint satisfaction both at every node and along every path, the user maintains a great
deal of control on the level of allowable risk in the formulation.

Future work will consider the use of additional heuristics to take advantage of the computed risk eval-
uations, such as probabilistic selection heuristics.!®2% We will also consider the use of techniques from the
unscented Kalman filter to maintain state distributions for highly nonlinear system dynamics.
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