
MIT Open Access Articles

Probabilistically safe motion planning to avoid
dynamic obstacles with uncertain motion patterns

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Aoude, Georges S., Brandon D. Luders, Joshua M. Joseph, Nicholas Roy, and Jonathan
P. How. “Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion
patterns.” Autonomous Robots 35, no. 1 (July 3, 2013): 51-76.

As Published: http://dx.doi.org/10.1007/s10514-013-9334-3

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/81864

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81864
http://creativecommons.org/licenses/by-nc-sa/3.0/

Noname manuscript No.
(will be inserted by the editor)

Probabilistically Safe Motion Planning to Avoid Dynamic Obstacles with
Uncertain Motion Patterns

Georges S. Aoude · Brandon D. Luders · Joshua M. Joseph · Nicholas Roy ·
Jonathan P. How

Received: date / Accepted: date

Abstract This paper presents a real-time path planning
algorithm that guarantees probabilistic feasibility for au-
tonomous robots with uncertain dynamics operating amidst
one or more dynamic obstacles with uncertain motion pat-
terns. Planning safe trajectories under such conditions re-
quires both accurate prediction and proper integration of
future obstacle behavior within the planner. Given that avail-
able observation data is limited, the motion model must pro-
vide generalizable predictions that satisfy dynamic and en-
vironmental constraints, a limitation of existing approaches.
This work presents a novel solution, named RR-GP, which
builds a learned motion pattern model by combining the
flexibility of Gaussian processes (GP) with the efficiency
of RRT-Reach, a sampling-based reachability computation.
Obstacle trajectory GP predictions are conditioned on dy-
namically feasible paths identified from the reachability
analysis, yielding more accurate predictions of future be-
havior. RR-GP predictions are integrated with a robust path
planner, using chance-constrained RRT, to identify proba-
bilistically feasible paths. Theoretical guarantees of proba-
bilistic feasibility are shown for linear systems under Gaus-
sian uncertainty; approximations for nonlinear dynamics
and/or non-Gaussian uncertainty are also presented. Simu-
lations demonstrate that, with this planner, an autonomous
vehicle can safely navigate a complex environment in real-
time while significantly reducing the risk of collisions with
dynamic obstacles.

G. Aoude, B. Luders, Room 41-105
J. M. Joseph, Room 32-331
N. Roy, Room 33-315
J. P. How, Room 33-326
77 Massachusetts Avenue
Tel.: +1-617-314-4375
E-mail: gaoude@alum.mit.edu, luders@mit.edu, jmjoseph@mit.edu,
nickroy@mit.edu, jhow@mit.edu

Keywords Planning under uncertainty · Trajectory
prediction · Gaussian processes

1 Introduction

To operate safely in stochastic environments, it is crucial
for agents to be able to plan in real-time in the presence
of uncertainty. However, the nature of such environments
often precludes the existence of guaranteed-safe, collision-
free paths. Therefore, this work considers probabilistically
safe planning, in which paths must be able to satisfy all con-
straints with a user-mandated minimum probability. A major
challenge in safely navigating such environments is how
to properly address the multiple sources of external uncer-
tainty, often classified as environment sensing (ES) and en-
vironment predictability (EP) (Lavalle and Sharma, 1997).
Under this partition, ES uncertainties might be attributable
to imperfect sensor measurements or incomplete knowledge
of the environment, while EP uncertainties address limited
knowledge of the future state of the environment. This work
focuses on addressing robustness to EP uncertainty, a key
challenge for existing path planning approaches (Melchior
and Simmons, 2007; Fulgenzi et al., 2008; Leonard et al.,
2008; Aoude et al., 2010c).

More specifically, this paper considers the problem of
probabilistically safe motion planning to avoid one or more
dynamic obstacles with uncertain motion patterns. While
existing probabilistic planning frameworks can readily ad-
mit dynamic obstacles (Thrun et al. (2005); LaValle (2006)),
such objects typically demonstrate complex motion patterns
in real-world domains, making them difficult to model and
predict. For instance, to reliably traverse a busy intersection,
an autonomous vehicle would need to predict the underlying
intents of the surrounding vehicles (e.g., turning right vs. go-
ing straight), in addition to estimating the possible trajec-

2 Georges S. Aoude et al.

tories corresponding to each intent. Even with perfect sen-
sors, accurately predicting possible variations in the long-
term trajectories of other mobile agents remains a difficult
problem.

One of the main objectives of this work is to accurately
model and predict the future behavior of dynamic obsta-
cles in structured environments, such that an autonomous
agent can identify trajectories which safely avoid such ob-
stacles. In order to provide long-term trajectory predictions,
this work uses pattern-based approaches for modeling the
evolution of dynamic obstacles, including clustering of ob-
servations (Section 2). Such algorithms group previously-
observed trajectories into clusters, with each represented
by a single trajectory prototype (Bennewitz et al., 2005);
predictions are then performed by comparing the partial path
to each prototype. While this reduces the dependence on
expert knowledge, selecting a model which is sufficiently
representative of the behavior without over-fitting remains a
key challenge.

In previous work (Joseph et al., 2010, 2011), the authors
presented a Bayesian nonparametric approach for modeling
dynamic obstacles with unknown motion patterns. This non-
parametric model, a mixture of Gaussian processes (GP),
generalizes well from small amounts of data and allows
the model to capture complex trajectories as more data is
collected. However, in practice, GPs suffer from two inter-
connected shortcomings: their high computational cost and
their inability to embed static feasibility or vehicle dynam-
ical constraints. To address both problems simultaneously,
this work introduces the RR-GP algorithm, a clustering-
based trajectory prediction solution which uses Bayesian
nonparametric reachability trees to improve the original
GP prediction. Similar to GPs, RR-GP is a data-driven
approach, using observed past trajectories of the dynamic
obstacles to learn a motion pattern model. By conditioning
the obstacle trajectory predictions obtained via GPs on a
reachability-based simulation of dynamically feasible paths
(Aoude et al., 2011), RR-GP yields a more accurate predic-
tion of future behavior.

The other main objective of this paper is to demon-
strate that through appropriate choice of planner, an au-
tonomous agent can utilize RR-GP predictions to identify
and execute probabilistically feasible paths in real-time, in
the presence of uncertain dynamic obstacles. This agent
is subject to limiting dynamical constraints, such as mini-
mum turning rates, acceleration bounds, and/or high speeds.
This work proposes a real-time path planning framework
using chance-constrained rapidly exploring random trees, or
CC-RRT (Luders et al., 2010b), to guarantee probabilistic
feasibility with respect to the dynamic obstacles and other
constraints. CC-RRT extends previously-developed chance
constraint formulations (Blackmore et al., 2006; Calafiore
and Ghaoui, 2007), which efficiently evaluate bounds on the

risk of constraint violation at each timestep, to incorporate
an RRT-based framework. By applying RRT to solve this
risk-constrained planning problem, this planning algorithm
is able to rapidly identify probabilistically safe trajectories
online in a dynamic and constrained environment. As a
sampling-based algorithm (LaValle (2006)), RRT incremen-
tally constructs trajectories which satisfy all problem con-
straints, including the probabilistic feasibility guarantees,
and thus scales favorably with problem complexity.

The proposed planning algorithm tightly integrates CC-
RRT with the RR-GP algorithm, which provides a likeli-
hood and time-varying Gaussian state distribution for each
possible behavior of a dynamic obstacle at each future
timestep. This work shows that probabilistic feasibility can
be guaranteed for a linear system subject to such uncer-
tainty. An alternative, particle-based approximation which
admits the use of nonlinear dynamics and/or non-Gaussian
uncertainty is also presented. Though this alternative can
only approximate the feasibility guarantees, it avoids the
conservatism needed to establish them theoretically. While
this work focuses on intersection collision avoidance, the
proposed algorithm can be applied to a variety of structured
domains, such as mid-air collision avoidance and military
applications.

After Section 2 presents related work, preliminaries are
provided in Section 3, which establishes the problem state-
ment, and Section 4, which reviews the GP-based motion
pattern modeling approach. Section 5 presents the RR-GP
algorithm, with simulation results demonstrating its effec-
tiveness in Section 6. Section 7 extends the CC-RRT frame-
work to integrate RR-GP trajectory predictions, allowing
dynamic obstacles with multiple possible behaviors. Finally,
Section 8 presents simulation results, which demonstrate
the ability of the fully-integrated algorithm to significantly
reduce the risk of collisions with dynamic obstacles.

2 Related Work

Modeling the evolution of dynamic obstacles can be classi-
fied into three main categories: (1) worst-case, (2) dynamic-
based, and (3) pattern-based approaches (Lachner (1997);
Mazor et al. (2002); Vasquez et al. (2008)). In the worst-case
approach, the dynamic obstacle is assumed to be actively
trying to collide with the planning agent, or “host vehicle”
(Miloh and Sharma (1976); Lachner (1997)). The predicted
trajectory of the dynamic obstacle is the solution of a dif-
ferential game, where the dynamic obstacle is modeled as
a pursuer and the host vehicle as an evader (Aoude et al.
(2010a)). Despite providing a lower bound on safety, such
solutions are inherently conservative, and thus limited to
short time horizons in collision warning/mitigation prob-
lems to keep the level of false positives below a reasonable
threshold (Kuchar and Yang (2002)).

Probabilistically Safe Motion Planning 3

The dynamic-based approach predicts an obstacle’s fu-
ture trajectory by propagating its dynamics forward in time,
based on its current state and an assumed fixed mode of
operation. This prediction typically uses a continuous Bayes
filter, such as the Kalman filter or its variations (Sorenson
(1985)). A popular extension in the target tracking literature
is the Interacting Multiple Model Kalman filter (IMM-KF),
which matches the obstacle’s current mode of operation
from among a bank of continuously-updated Kalman filters
(Mazor et al. (2002)). Though useful for short-term predic-
tion, dynamic-based approaches tend to perform poorly in
the long-term prediction of trajectories, due to their inability
to model future changes in control inputs or external factors.

In the pattern-based approach, such as the one used in
this work, target obstacles are assumed to move according
to typical patterns across the environment, learned via pre-
vious observation of the targets. There are two main tech-
niques that fall under this category, discrete state-space tech-
niques and clustering-based techniques. In the discrete state-
space technique, the motion model is developed via Markov
chains; the object state evolves from one state to another
according to a learned transition probability (Zhu (2002)).
In the clustering-based technique, previously-observed tra-
jectories are grouped into different clusters, with each rep-
resented by a single trajectory prototype (Bennewitz et al.
(2005)). Given a partial path, prediction is then performed
by finding the most likely cluster, or computing a probability
distribution over the different clusters. Both pattern-based
techniques have proven popular in solving long-term pre-
diction problems for mobile agents (Fulgenzi et al. (2008);
Vasquez et al. (2008)). However, discrete state-space tech-
niques can often suffer from over-fitting for discretizations
of sufficient resolution, unlike clustering-based techniques
(Joseph et al. (2011)).

Many existing approaches in the literature seek to emu-
late human-like navigation in crowded environments, where
obstacle density is high and interaction between agents and
obstacles can significantly influence behavior. Trautman and
Krause (2010) use GPs to model interactions between the
agent and dynamic obstacles present in the environment. Al-
thoff et al. (2011) use Monte Carlo sampling to estimate in-
evitable collision states probabilistically, while Henry et al.
(2010) apply inverse reinforcement learning for human-like
behavior. By contrast, our algorithm considers constrained,
often non-holonomic agents operating in structured envi-
ronments, where encounters with dynamic obstacles are
less frequent but more heavily constrained. The proposed
algorithm is similar to Fulgenzi et al. (2008), which uses
GPs to model moving obstacles in an RRT path planner;
however, Fulgenzi et al. (2008) relies solely on GPs for its
modeling, which can lead to less accurate prediction, and
uses heuristics to assess path safety.

While several approaches have been previously pro-
posed for path planning with probabilistic constraints, the
approach developed in this work does not rely on the use of
an optimization-based framework (Blackmore et al. (2006);
Calafiore and Ghaoui (2007)). While such optimizations
have been demonstrated for real-time path planning, they
lack the scalability with respect to problem complexity in-
herent to sampling-based algorithms, a crucial consideration
in complex and dynamic environments. For example, MILP-
based optimizations – NP-hard in the number of binary
variables (Garey and Johnson (1979)) – tend to scale poorly
in the number of obstacles and timesteps, resulting in many
approaches being proposed specifically to overcome MILP’s
computational limits (Earl and D’Andrea (2005); Vitus et al.
(2008); Ding et al. (2011)). Because sampling-based algo-
rithms such as CC-RRT perform trajectory-wise constraint
checking, they avoid these scalability concerns – feasible
solutions can typically be quickly identified even in the
presence of many obstacles, and observed changes in the en-
vironment. The trade-off is that such paths do not satisfy any
optimality guarantees, though performance will improve as
more sampled trajectories are made available. Extensions
such as RRT? (Karaman and Frazzoli (2009)) can provide
asymptotic optimality guarantees, with the trade-off of re-
quiring additional per-node computation (in particular, a
steering method).

CC-RRT primarily assesses the probabilistic feasibility
at each timestep, rather than over the entire path. Because
of the dynamics, the uncertainty is correlated, and thus the
probability of path feasibility cannot be approximated by as-
suming independence between timesteps. While path-wise
bounds on constraint violation can be established by evenly
allocating risk margin across all obstacles and timesteps
(Blackmore (2006)), this allocation significantly increases
planning conservatism, rendering the approach intractable
for most practical scenarios. Though this allocation could
also be applied to CC-RRT by bounding the timestep hori-
zon length, it is not pursued further in this work.

This work also proposes an alternative, particle-based
approximation of the uncertainty within CC-RRT, assessing
path feasibility based on the fraction of feasible particles.
Both the approaches of Blackmore et al. (2010) and par-
ticle CC-RRT (PCC-RRT) are able to admit non-Gaussian
probability distributions and approximate path feasibility,
without the conservatism introduced by bounding risk. The
optimization-versus-sampling considerations here are the
same as noted above; as a sampling-based algorithm, parti-
cle CC-RRT can also admit nonlinear dynamics without an
appreciable increase in complexity. While the particle-based
CC-RRT algorithm is similar to the work developed in Mel-
chior and Simmons (2007), the former is generalizable both
in the types of probabilistic feasibility that are assessed
(timestep-wise and path-wise) and in the types of uncer-

4 Georges S. Aoude et al.

tainty that are modeled using particles. This framework can
be extended to consider hybrid combinations of particle-
based and distribution-based uncertainty, though this may
limit the ability to assess path-wise infeasibility. Further-
more, by not clustering particles, a one-to-one mapping
between inputs and nodes is maintained.

3 Problem Statement

Consider a discrete-time linear time-invariant (LTI) system
with process noise,

xt+1 = Axt +But + wt, (1)

x0 ∼ N (x̂0, Px0
), (2)

wt ∼ N (0, Pwt), (3)

where xt ∈ Rnx is the state vector, ut ∈ Rnu is the input
vector, and wt ∈ Rnx is a disturbance vector acting on
the system; N (â, Pa) represents a random variable whose
probability distribution is Gaussian with mean â and co-
variance Pa. The i.i.d. random variables wt are unknown at
current and future timesteps, but have the known probability
distribution Eq. (3) (Pwt ≡ Pw ∀ t). Eq. (2) represents
Gaussian uncertainty in the initial state x0, corresponding
to uncertain localization; Eq. (3) represents a zero-mean,
Gaussian process noise, which may correspond to model
uncertainty, external disturbances, and/or other factors.

The system is subject to the state and input constraints

xt ∈ Xt ≡ X − Xt1 − · · · − XtB , (4)

ut ∈ U , (5)

where X ,Xt1, . . . ,XtB ⊂ Rnx are convex polyhedra, U ⊂
Rnu , and the − operator denotes set subtraction. The set X
defines a set of time-invariant convex constraints acting on
the state, while Xt1, . . . ,XtB represent B convex, possibly
time-varying obstacles to be avoided. Observations of dy-
namic obstacles are assumed to be available, such as through
a vehicle-to-vehicle or vehicle-to-infrastructure system.

For each obstacle, the shape and orientation are assumed
known, while the placement is uncertain:

Xtj = X 0
j + ctj , ∀ j ∈ Z1,B , ∀ t, (6)

ctj ∼ p(ctj) ∀ j ∈ Z1,B , ∀ t, (7)

where the + operator denotes set translation and Za,b rep-
resents the set of integers between a and b inclusive. In this
model, X 0

j ⊂ Rnx is a convex polyhedron of known, fixed
shape, while ctj ∈ Rnx is an uncertain and possibly time-
varying translation represented by the probability distribu-
tion p(ctj). This can represent both environmental sensing
uncertainty (Luders et al., 2010b) and environmental pre-
dictability uncertainty (e.g., dynamic obstacles), as long as
future state distributions are known (Section 7.2).

The objective of the planning problem is to reach the
goal region Xgoal ⊂ Rnx in minimum time,

tgoal = inf{t ∈ Z0,tf | xt ∈ Xgoal}, (8)

while ensuring the constraints in Eqs. (4)-(5) are satisfied at
each timestep t ∈ {0, . . . , tgoal} with probability of at least
psafe. In practice, due to state uncertainty, it is assumed suffi-
cient for the distribution mean to reach the goal region Xgoal.
A penalty function ψ(xt,Xt,U) may also be incorporated.

Problem 1. Given the initial state distribution (x̂0, Px0) and
constraint setsXt and U , compute the input control sequence
ut, t ∈ Z0,tf , tf ∈ Z0,∞ that minimizes

J(u) = tgoal +

tgoal∑
t=0

ψ(xt,Xt,U) (9)

while satisfying Eq. (1) for all timesteps t ∈ {0, . . . , tgoal}
and Eqs. (4)-(5) at each timestep t ∈ {0, . . . , tgoal} with
probability of at least psafe. ut

3.1 Motion Pattern

A motion pattern is defined here as a mapping from states to
a distribution over trajectory derivatives.1 In this work, mo-
tion patterns are used to represent dynamic obstacles, also
referred to as agents. Given an agent’s position (xt, yt) and
trajectory derivative (∆xt∆t ,

∆yt
∆t), its predicted next position

(xt+1, yt+1) is (xt + ∆xt
∆t ∆t, yt + ∆yt

∆t ∆t). Thus, modeling
trajectory derivatives is sufficient for modeling trajectories.
By modeling motion patterns as flow fields rather than sin-
gle paths, the approach is independent of the lengths and
discretizations of the trajectories.

3.2 Mixtures of Motion Patterns

The finite mixture model2 defines a distribution over the ith
observed trajectory ti. This distribution is written as

p(ti) =

M∑
j=1

p(bj)p(t
i|bj), (10)

where bj is the jth motion pattern and p(bj) is its prior
probability. It is assumed the number of motion patterns,M ,
is known a priori based on prior observations, and may be
identified by the operator or through an automated clustering
process (Joseph et al. (2011)).

1 The choice of ∆t determines the time scales on which an agent’s
next position can be accurately predicted, making trajectory derivatives
more useful than instantaneous velocity.

2 Throughout the paper, a t with a superscript refers to a trajectory,
while a t without a superscript refers to a time value.

Probabilistically Safe Motion Planning 5

4 Motion Model

The motion model is defined as the mixture of weighted
motion patterns (10). Each motion pattern is weighted by
its probability and is modeled by a pair of Gaussian pro-
cesses mapping (x, y) locations to distributions over trajec-
tory derivatives ∆x

∆t and ∆y
∆t . This motion model has been

previously presented in Aoude et al. (2011), Joseph et al.
(2011); Sections 4.1 and 4.2 briefly review the approach.

4.1 Gaussian Process Motion Patterns

This section describes the model for p(ti|bj) from Eq. (10),
the probability of trajectory ti given motion pattern bj . This
model is the distribution over trajectories expected for a
given mobility pattern.

There are a variety of models that can be chosen to
represent these distributions. A simple example is a linear
model with Gaussian noise, but this approach cannot capture
the dynamics of the variety expected in this work. Discrete
Markov models are also commonly used, but are not well-
suited to model mobile agents in the types of real-world
domains of interest here, particularly due to challenges in
choosing the discretization (Tay and Laugier, 2007; Joseph
et al., 2010, 2011). To fully represent the variety of tra-
jectories that might be encountered, a fine discretization
is required. However, such a model either requires a large
amount of training data, which is costly or impractical in
real-world domains, or is prone to over-fitting. A coarser
discretization can be used to prevent over-fitting, but may
be unable to accurately capture the agent’s dynamics.

This work uses Gaussian processes (GP) as the model
for motion patterns. Although GPs have a significant math-
ematical and computational cost, they provide a natural
balance between generalization in regions with sparse data
and avoidance of overfitting in regions of dense data (Ras-
mussen and Williams (2005)). GP models are extremely
robust to unaligned, noisy measurements and are well-suited
for modeling the continuous paths underlying potentially
non-uniform time-series samples of the agent’s locations.
Trajectory observations are discrete measurements from its
continuous path through space; a GP places a distribution
over functions, serving as a non-parametric form of interpo-
lation between these discrete measurements.

After observing an agent’s trajectory ti, the posterior
probability of the jth motion pattern is

p(bj |ti) ∝ p(ti|bj)p(bj), (11)

where p(bj) is the prior probability of motion pattern bj
and p(ti|bj) is the probability of trajectory ti under bj . This

distribution, p(ti|bj), is computed by

p(ti|bj) =

Li∏
t=0

p

(
∆xt
∆t

∣∣∣∣xi0:t, yi0:t, {tk : zk = j}, θGPx,j
)

· p
(
∆yt
∆t

∣∣∣∣xi0:t, yi0:t, {tk : zk = j}, θGPy,j
)
, (12)

where Li is the length of trajectory ti, zk indicates the
motion pattern trajectory tk is assigned to, {tk : zk = j}
is the set of all trajectories assigned to motion pattern j,
and θGPx,j and θGPy,j are the hyperparameters of the Gaussian
process for motion pattern bj .

A motion pattern’s GP is specified by a set of mean
and covariance functions. The mean functions are written
as E

[
∆x
∆t

]
= µx(x, y) and E

[
∆y
∆t

]
= µy(x, y), both of

which are implicitly initialized to zero for all x and y by
the choice of parametrization of the covariance function.
This encodes the prior bias that, without any additional
knowledge, the target is expected to stay in the same place.
The “true” covariance function of the x-direction is denoted
by Kx(x, y, x′, y′), which describes the correlation between
trajectory derivatives at two points, (x, y) and (x′, y′). Given
locations (x1, y1, .., xk, yk), the corresponding trajectory
derivatives (∆x1

∆t , ..,
∆xk
∆t) are jointly distributed according

to a Gaussian with mean {µx(x1, y1), .., µx(xk, yk)} and
covariance Σ, where the Σij = Kx(xi, yi, xj , yj). This
work uses the squared exponential covariance function

Kx(x, y, x′, y′) = σ2
x exp

(
− (x− x′)2

2wx2
− (y − y′)2

2wy2

)
+σ2

nδ(x, y, x
′, y′), (13)

where δ(x, y, x′, y′) = 1 if x = x′ and y = y′ and zero oth-
erwise. The exponential term encodes that similar trajecto-
ries should make similar predictions, while the length-scale
parameters wx and wy normalize for the scale of the data.
The σn-term represents within-point variation (e.g., due to
noisy measurements); the ratio of σn and σx weights the
relative effects of noise and influences from nearby points.
Here θGPx,j is used to refer to the set of hyperparameters σx,
σn, wx, and wy associated with motion pattern bj (each
motion pattern has a separate set of hyperparameters). While
the covariance is written above for two dimensions, it can
easily be generalized to higher dimensional problems.

For a GP over trajectory derivatives trained with tuples
(xk, yk,

∆xk
∆t), the predictive distribution over the trajectory

derivative ∆x
∆t

∗
for a new point (x∗, y∗) is given by

µ∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y)−1

∆X

∆t
, (14)

σ2
∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y)−1Kx(X,Y,x

∗,y∗),

where the expression Kx(X,Y,X, Y) is shorthand for the
covariance matrix Σ with terms Σij = Kx(xi, yi, xj , yj),

6 Georges S. Aoude et al.

with {X,Y } representing the previous trajectory points. The
equations for ∆y

∆t

∗
are equivalent to those above, using the

covariance Ky .
In Eq. (12), the likelihood is assumed to be decoupled,

and hence independent, in each position coordinate. This
enables decoupled GPs to be used for the trajectory position
in each coordinate, dramatically reducing the required com-
putation, and is assumed in subsequent developments. While
the algorithm permits the use of correlated GPs, the resulting
increase in modeling complexity is generally intractable for
real-time operation. Simulation results (Section 8) demon-
strate that the decoupled GPs provide a sufficiently accurate
approximation of the correlated GP to achieve meaningful
predictions of future trajectories.

4.2 Estimating Future Trajectories

The Gaussian process motion model can be used to cal-
culate the Gaussian distribution over trajectory derivatives
(∆x∆t ,

∆y
∆t) for every location (x, y) using Eq. (14). This

distribution over the agent’s next location can be used to
generate longer-term predictions over future trajectories, but
not in closed form. Instead, the proposed approach is to
draw trajectory samples to be used for the future trajectory
distribution.

To sample a trajectory from a current starting location
(x0, y0), first a trajectory derivative (∆x0

∆t ,
∆y0
∆t) is sampled

to calculate the agent’s next location (x1, y1). Starting from
(x1, y1), the trajectory derivative (∆x1

∆t ,
∆y1
∆t) is sampled to

calculate the agent’s next location (x2, y2). This process is
repeated until the trajectory is of the desired length L. The
entire sampling procedure is then repeated from (x0, y0)

multiple times to obtain a set of possible future trajectories.
Given a current location (xt, yt) and a given motion pattern
bj , the agent’s predicted positionK timesteps into the future
is computed as

p(xt+K , yt+K |xt, yt, bj)

=

K−1∏
k=0

p(xt+k+1, yt+k+1|xt+k, yt+k, bj)

=

K−1∏
k=0

p

(
∆xt+k+1

∆t
,
∆yt+k+1

∆t

∣∣∣∣xt+k, yt+k, bj)

=

K−1∏
k=0

p

(
∆xt+k+1

∆t

∣∣∣∣xt+k, yt+k, bj)
· p
(
∆yt+k+1

∆t

∣∣∣∣xt+k, yt+k, bj)
=

K−1∏
k=0

N
(
xt+k+1;µ

j,
∆xt+k+1

∆t

, σ2

j,
∆xt+k+1

∆t

)

· N
(
yt+k+1;µ

j,
∆yt+k+1

∆t

, σ2

j,
∆yt+k+1

∆t

)
, (15)

where the Gaussian distribution parameters are calculated
using Eq. (14). When this process is done online, the trajec-
tory’s motion pattern bj will not be known directly. Given
the past observed trajectory (x0, y0), ..., (xt, yt), the dis-
tribution can be calculated K timesteps into the future by
combining Eqs. (10) and (15). Formally,

p(xt+K , yt+K |x0:t, y0:t)

=

M∑
j=1

p(xt+K , yt+K |x0:t, y0:t, bj)p(bj |x0:t, y0:t) (16)

=

M∑
j=1

p(xt+K , yt+K |xt, yt, bj)p(bj |x0:t, y0:t), (17)

where p(bj |x0:t, y0:t) is the probability of motion pattern bj
given the observed portion of the trajectory. The progres-
sion from Eq. (16) to Eq. (17) is based on the assumption
that, given bj , the trajectory’s history provides no additional
information about the future location of the agent (Joseph
et al., 2010, 2011).

The GP motion model over trajectory derivatives in this
paper gives a Gaussian distribution over possible target lo-
cations at each timestep. While samples drawn from this
procedure are an accurate representation of the posterior
over trajectories, sampling N1 trajectories N2 steps in the
future requires N1 × N2 queries to the GP. It also does
not take advantage of the unimodal, Gaussian distributions
being used to model the trajectory derivatives. By using
the approach of Girard et al. (2003) and Deisenroth et al.
(2009), which provides a fast, analytic approximation of the
GP output given the input distribution, future trajectories
are efficiently predicted in this work. In particular, given the
inputs of a distribution on the target position at time t, and
a distribution of trajectory derivatives, the approach yields a
distribution on the target position at time t + 1, effectively
linking the Gaussian distributions together.

By estimating the target’s future trajectories analytically,
only N2 queries to the GP are needed to predict trajectories
N2 steps into the future, and the variance introduced by
sampling future trajectories is avoided. This facilitates the
use of GPs for accurate and efficient trajectory prediction.

5 RR-GP Trajectory Prediction Algorithm

Section 4 outlined the approach of using GP mixtures to
model mobility patterns and its benefits over other ap-
proaches. However, in practice, GPs suffer from two in-
terconnected shortcomings: their high computational cost
and their inability to embed static feasibility or vehicle
dynamical constraints. Since GPs are based on statistical
learning, they are unable to model prior knowledge of road

Probabilistically Safe Motion Planning 7

Trajectory

Generation
RRT-Reach

Intent

Prediction
GP Mixture

Probabilistic

Trajectory

Predictions

Typical

Motion

Patterns

Dynamical

Model

Environment

Map

Sensor

Measurements

Trajectory

Prediction

Algorithm

(TPA)

Intent

distribution

Position

distribution

using GPj

Fig. 1 RR-GP high level architecture

boundaries, static obstacle location, or dynamic feasibility
constraints (e.g., minimum turning radius). Very dense train-
ing data may alleviate this feasibility problem by capturing,
in great detail, the environment configuration and physical
limitations of the vehicle. Unfortunately, the computation
time for predicting future trajectories using the resulting
GPs would suffer significantly, rendering the motion model
unusable for real-time applications.

To handle both of these problems simultaneously, this
section introduces a novel trajectory prediction algorithm,
denoted as RR-GP (Figure 1). RR-GP includes two main
components, rapidly-exploring random trees (RRT), and a
GP-based mobility model. For each GP-based pattern bj ,
j ∈ {1, . . . ,M} as defined in Section 4, and the current
position of the target vehicle, RR-GP uses an RRT-based
technique to grow a tree of trajectories that follows bj while
guaranteeing dynamical feasibility and collision avoidance.
More specifically, it is based on the closed-loop RRT (CL-
RRT) algorithm (Kuwata et al. (2009)), successfully used
by the MIT team in the 2007 DARPA Grand Challenge
(Leonard et al., 2008). CL-RRT grows a tree by randomly
sampling points in the environment and simulating dynami-
cally feasible trajectory towards them in closed-loop, allow-
ing the generation of smoother trajectories more efficiently
than traditional RRT algorithms.

In contrast to the original CL-RRT approach, the RR-
GP tree is used not to create paths leading to a goal location,
but instead to grow trees toward regions corresponding to
the learned mobility patterns, or intents, bj (Figure 2). RR-
GP does not approximate the complete reachability set of
the target vehicle; instead, it generates a tree based on each
potential motion pattern, and computes the likelihood of
each based on the observed partial path. In this manner, RR-
GP conditions the original GP prediction by removing infea-

Root

Obstacle

Δt

2Δt

T
h

Fig. 2 Simple RR-GP illustration (M = 1). RR-GP grows a tree (in
brown) using GP samples (orange dots) sampled at ∆t intervals for a
given motion pattern. The green circles represent the actual size of the
target vehicle. The resulting tree provides a distribution of predicted
trajectories of the target at δt� ∆t increments.

Algorithm 1 RR-GP, Single Tree Expansion
1: Initialize tree TGP with node at (x(t), y(t)); gp ← GP motion

pattern b; tGP ← t+∆t; K ← 1; nsuccess ← 0; ninfeas ← 0
2: while tGP − t ≤ Th do
3: Take sample xsamp from gp initialized with (x(t), y(t)), K

timesteps in the future using Eq. (15), and variance heuristics
if necessary

4: Among nodes added at tGP − ∆t, identify N nearest to xsamp

using distance heuristics
5: for each nearest node, in the sorted order do
6: Extend TGP from nearest node using propagation function

until it reaches xsamp

7: if propagated portion is collision free then
8: Add sample to TGP and create intermediate nodes as ap-

propriate
9: Increment successful connection count nsuccess

10: else
11: Increment infeasible connection count ninfeas and if limit is

reached goto line 18
12: end if
13: end for
14: if nsuccess reached desired target then
15: tGP ← tGP +∆t; K ← K + 1; nsuccess ← 0; ninfeas ← 0
16: end if
17: end while
18: return TGP

sible patterns and providing a finer discretization, resulting
in better trajectory prediction.

5.1 Single Tree RR-GP Algorithm

Algorithm 1 details the single-tree RR-GP algorithm,
which constructs a tree of dynamically feasible motion
segments to generate a distribution of predicted trajecto-
ries for a given intent b, dynamical model, and low-level
controller. Every time Algorithm 1 is called, a tree TGP

8 Georges S. Aoude et al.

is initialized with a root node at the current target vehicle
position (x(t), y(t)). Variable tGP , which is used for time
bookkeeping in the expansion mechanism of TGP , is also
initialized to t + ∆t, where t is the current time, and ∆t is
the GP sampling time interval.

At each step, only nodes belonging to the “time bucket”
tGP −∆t are eligible to be expanded, corresponding to the
nodes added at the previous timestep tGP . To grow TGP ,
first a sample xsamp is taken from the environment (line 3)
at time tGP + K∆t, or equivalently K timesteps in the
future, using Eq. (15). The nodes added in the previous step
(i.e., belonging to time bucket tGP −∆t) are identified for
tree expansion in terms of some distance heuristics (line 4).
The algorithm attempts to connect the nearest node to the
sample using an appropriate reference path for the closed-
loop system consisting of the vehicle and the controller. The
resulting path is dynamically feasible (by construction) and
is then checked for collisions. Since the TGP is trying to gen-
erate typical trajectories that the target vehicle might follow,
only a simulated trajectory that reaches the sample without a
collision is kept, and any corresponding nodes are added to
the tree and tGP time bucket (line 8). When the total number
of successful connections nsuccess is reached, tGP and K are
incremented, and the next timestep is sampled (line 15).

RR-GP keeps track of the total number of unsuccessful
connections ninfeas at each iteration. When ninfeas reaches
some predetermined threshold, the variance of the GP for
the current iteration is temporarily grown to capture a more
dispersed set of paths (line 3). This heuristic is typically
useful to generate feasible trajectories when GP samples
are close to obstacles. If ninfeas then reaches a second,
larger threshold, RR-GP “gives up” on growing the tree,
and simply returns TGP (line 11). This situation usually
happens when the mobility pattern b has a low likelihood
and is generating a large number of GP samples in infeasible
regions. These heuristics, along with the time bucket logic,
facilitate efficient feasible trajectory generation in RR-GP.

The resulting tree is post-processed to produce a dense,
time-parametrized distribution of the target vehicle position
at future timesteps. Since the RR-GP tree is grown at a
higher rate compared to the original GP learning phase, the
resulting distribution is generated at δt � ∆t increments,
where δt is the low-level controller rate. The result is a
significant improvement of the accuracy of the prediction
without a significant increase in the computation times (Sec-
tion 6).

5.2 Multi-Tree RR-GP Algorithm

This section introduces the Multi-Tree RR-GP (Algo-
rithm 2), which extends Algorithm 1 to consider multiple
motion patterns for a dynamic obstacle. The length of the
prediction problem is T seconds, and the prediction time

Algorithm 2 RR-GP, Multi-Tree Trajectory Prediction
1: Inputs: GP motion pattern bj ; p(bj(0)) ∀j ∈ [1, . . . ,M]
2: t← 0
3: while t < T do
4: Measure target vehicle position (x(t), y(t))
5: Update probability of each motion pattern p(bj(t)|x0:t, y0:t)

using Eq. (11)
6: for each motion pattern bj do
7: Grow a single T j

GP tree rooted at (x(t), y(t)) using bj (Al-
gorithm 1)

8: Using T j
GP , compute means and variances of predicted dis-

tribution (x̂j(τ), ŷj(τ)), ∀τ ∈ [t+ δt, t+ 2δt, . . . , t+ Th]
9: end for

10: Adjust probability of each motion pattern using dynamic feasi-
bility check (Algorithm 3)

11: Propagate updated probabilities backwards, and recompute
p(x̂(τ), ŷ(τ)) ∀τ ∈ [0, δt, . . . , t] if any motion pattern prob-
ability was updated

12: p(x̂(τ), ŷ(τ)) ←
∑

j p(x̂j(τ), ŷj(τ)) × p(bj(t)|x0:t, y0:t)
∀τ ∈ [t+ δt, t+ 2δt, . . . , t+ Th] using Eq. (17)

13: t← t+ dt

14: end while

Algorithm 3 Dynamic Feasibility Adjustment
1: Inputs: GP motion pattern bj ; T j

GP trees ∀j ∈ [1, . . . ,M]
2: for each motion pattern bj do
3: if T j

GP tree ended with infeasibility condition then
4: p̃(bj(t))← 0
5: else
6: p̃(bj(t))← p(bj(t))
7: end if
8: end for
9: for each motion pattern bj do

10: if
∑

j p̃(bj(t)) > 0 then

11: p(bj(t))←
p̃(bj(t))∑
j p̃(bj(t))

12: end if
13: end for

horizon is Th seconds. The value of Th is problem-specific,
and depends on the time length of the training data. For
example, in a threat assessment problem for road intersec-
tions, Th will typically be on the order of 3 to 6 seconds
(Aoude et al., 2010b). The RR-GP algorithm updates its
measurement of the target vehicle every dt seconds, chosen
such that the inner loop (lines 6-9) of Algorithm 2 reaches
completion before the next measurement update. Finally,
the time period of the low-level controller is equal to δt,
typically 0.02− 0.1 s for the problems of interest.

The input to Algorithm 2 is a set of GP motion patterns,
along with a prior probability distribution, proportional to
the number of observed trajectories belonging to each pat-
tern. In line 4, the position of the target vehicle is measured.
Then, the probability that the vehicle trajectory belongs to
each of the M motion patterns is updated using Eq. (11).
For each motion pattern (in parallel), line 7 grows a single-
tree RR-GP rooted at the current position of the target ve-
hicle using Algorithm 1. The means and variances of the
predicted positions are computed for each motion pattern

Probabilistically Safe Motion Planning 9

at each timestep, using position and time information from
the single-tree output (line 8). This process can be paral-
lelized for each motion pattern, since there is no information
sharing between the growth operations of each RR-GP tree.
Note that even if the vehicle’s position has significantly de-
viated from the expected GP behaviors, each GP prediction
will still attempt to reconcile the vehicle’s current position
(x(t), y(t)) with the behavior.

The probability of each motion pattern is adjusted using
Algorithm 3, which removes the probability of any pattern
that ended in an infeasible region (line 4) due to surpassing
the second ninfeas threshold. By using dynamic feasibility to
recalculate the probabilities (line 11), this important mod-
ification helps the RR-GP algorithm converge to the more
likely patterns faster, yielding an earlier prediction of the
intent of the target vehicle. In the event that all RR-GP trees
end with an infeasible condition, probability values are not
adjusted (line 10). In practice, this infeasibility case should
rarely occur, since the target vehicle is assumed to follow
one of the available patterns.

If any of the motion pattern probabilities is altered, line
11 of Algorithm 2 recomputes the probability distribution of
the positions of the target vehicle (x̂(t), ŷ(t)) for times τ ∈
[0, δt, 2δt, . . . , t]. This step is called backward propagation
(BP), as it propagates the effects of the updated likelihoods
to the previously computed position distributions. Finally,
line 12 of Algorithm 2 combines the position predictions
from each single-tree RR-GP output into one distribution,
by incorporating the updated motion pattern probabilities bj .
This computation is performed for all time τ where τ ∈ [t+

δt, t+2δt, . . . , t+Th], resulting in a probability distribution
of the future trajectories of the target vehicle that is based on
a mixture of GPs.

In subsequent results, it is assumed that the target vehicle
has car-like dynamics, more specifically a bicycle dynam-
ical model (LaValle, 2006). The target vehicle inputs are
approximated by the outputs of a pure-pursuit (PP) low-
level controller (Amidi and Thorpe (1990)) that computes a
sequence of commands towards samples generated from the
GP. This path is then tracked using the propagation function
of a PP controller for steering and a proportional-integral
controller for tracking the GP-predicted velocity.

Figure 3 demonstrates the dynamic feasibility and colli-
sion avoidance features of the RR-GP approach on a simple
example consisting of two motion patterns, corresponding
to passing a single obstacle on the left or right. (Training
and testing procedures of RR-GP scenarios are explained in
detail in Section 6.) In this illustration, the test trajectory
belongs to the left motion pattern. At each step, Algorithm
2 updates the likelihoods of each motion pattern using
Eqs. (11) and (12), and generates two new dynamically
feasible trees.

At time t = 0 s (Figure 3(d)), the target vehicle is
pointing straight at the obstacle. By t = 1 s (Figure 3(e)), the
vehicle has moved forward and rotated slightly left. Due to
the forward movement and left rotation, RR-GP finds more
feasible left trajectories than right trajectories (this can be
seen by comparing the trajectories as they pass the corners
of the obstacle), a behavior GP samples alone cannot capture
(Figure 3(b)). At t = 2 s (Figure 3(f)), the vehicle has more
clearly turned to the left; the RR-GP algorithm returns an
incomplete right tree, reflecting that all attempts to grow the
tree further along the right motion pattern failed.

Note that the GP samples for the right pattern are not all
infeasible at t = 2 s (Figure 3(c)); an algorithm based on
GP samples alone would not have predicted the dynamic
infeasibility of the right pattern. Furthermore, simple in-
terpolation techniques would not have been able to detect
dynamic infeasibility, highlighting the importance of the
dynamic model embedded within the RR-GP algorithm.
RR-GP also predicts that the left-side trees are dynamically
feasible and reaching collision-free regions. This early de-
tection of the correct motion pattern is a major advantage of
RR-GP compared to GP algorithms alone.
Remark. (complexity) The proposed approach scales lin-
early with both the number of dynamic obstacles and the
number of intents for each. However, both Algorithm 1
and Algorithm 2 can be run in parallel, with a separate
process running for each potential behavior of each dynamic
obstacle. Assuming the computational resources are avail-
able to implement this parallelization, runtime scaling with
dynamic obstacle complexity can be effectively eliminated.

While there are no theoretical limitations with respect
to the number of dynamic obstacles or motion patterns
considered, in practice few are needed at any one time
for the structured environments in this work’s domain of
interest. Complex obstacle environments can typically be
broken down into a sequence of interactions with a smaller
number of dynamic obstacles, while most of the “decisions”
associated with motion intentions can be broken down to a
series of consecutive decisions involving fewer branching
paths. The trade-off in this case is that the time horizons
being considered may need to be reduced.

6 RR-GP Demonstration on Human-Operated Target

To highlight the advantages of the RR-GP algorithm, Algo-
rithm 2 is applied on an example scenario consisting of a
single target vehicle traversing past several fixed obstacles.
The purpose of this example is to compare the performance
(in terms of accuracy and computation time) of the RR-GP
approach against two baseline GP mixture algorithms, given
either sparse training data (Sparse-GP) or dense training
data (Dense-GP). The results below demonstrate that RR-
GP, given only the same data as Sparse-GP, matches or

10 Georges S. Aoude et al.

Obstacle

t = 0 s

GP-only
(a) t=0 s

Obstacle

t = 1 s

GP-only
(b) t=1 s

Obstacle

t = 2 s

GP-only
(c) t=2 s

Obstacle

t = 0 s

RR-GP
(d) t=0 s

Obstacle

t = 1 s

RR-GP
(e) t=1 s

Obstacle

t = 2 s

RR-GP
(f) t=2 s

Fig. 3 Snapshots of the GP samples (top row) and Algorithm 2 output (bottom row) on a test trajectory

exceeds the accuracy of Dense-GP while maintaining the
runtime benefits of sparse data.

6.1 Setup

Trajectories were manually generated by using a steering
wheel to guide a simulated robot through a virtual urban
environment described in Aoude et al. (2010c). The vehicle
uses the iRobot Create software platform (iRobot (2011))
with a skid-steered vehicle, modified in software to emulate
the standard bicycle model

ẋ = v cos (θ), ẏ = v sin (θ),

θ̇ =
v

L
tan (δ), v̇ = a,

(18)

where (x, y) is the rear axle position, v is the forward
speed, θ is the heading, L is the wheelbase equal to 0.33 m,
a is the forward acceleration, and δ is the steering angle
(positive counter-clockwise). The state of the vehicle is s =

(x, y, θ, v) ∈ S, while the input is u = (δ, a) ∈ U , including
the constraints amin ≤ a ≤ amax and |δ| ≤ δmax, where
amin = −0.7 m/s2, amax = 0.4 m/s2, and δmax = 0.6 rad.
Starting from its initial location, the vehicle is either driven
to the left of the obstacle or to the right, for a total ofM = 2

motion patterns.

Fig. 4 Training trajectories generated in the simulated road environ-
ment according to two motion patterns. The black circle (bottom)
represents the target vehicle, and the arrow inside the circle represents
its heading. The orange arrows point in the direction of each pattern
(left and right)

A total of 30 (15 left, 15 right) trajectories were gen-
erated for training, with data collected at 50 Hz (Figure 4).
Each motion pattern is learned according to Eqs. (11) – (14);
both RR-GP and Sparse-GP use data that were downsam-
pled to 1 Hz, while Dense-GP was trained with 2-Hz data.
The test data consists of 90 additional trajectories (45 left,
45 right) generated in the same manner as the training data.
In testing, the algorithms received simulated measurements
from the test trajectories at one-second intervals, i.e., dt =

Probabilistically Safe Motion Planning 11

1s in Algorithm 2. For each timestep, Sparse-GP, Dense-
GP, and RR-GP are run using the current state of the target
vehicle for a time horizon Th = 8s.

In the RR-GP implementation, the control timestep is
δt = 0.1 s, while the GP samples are produced at ∆t = 1s.
The limits of successful and infeasible connections per ∆t
(lines 9 and 11 of Algorithm 1) are 30 and 150, respec-
tively. The approach of Yepes et al. (2007) is followed in
calculating prediction error as the root mean square (RMS)
difference between the true position (x, y) and mean pre-
dicted position (x̂, ŷ). The mean is computed using Eq. (17)
for the Sparse-GP and Dense-GP techniques, and the multi-
tree probability distribution for RR-GP. Prediction errors are
averaged across all 90 test trajectories at each timestep.

6.2 Simulation Results

This section presents simulation results for the RR-GP al-
gorithm which compare the prediction accuracy and com-
putation time with both Sparse-GP and Dense-GP. Two
variations of RR-GP are implemented, one with backward
propagation (BP; line 11 of Algorithm 2) and one without.

6.2.1 Motion Pattern Probabilities

Figure 5 and Table 1 show the probability of identifying the
correct motion pattern given the observed portion of path
followed by the target vehicle, computed as a function of
time. While Sparse-GP and Dense-GP only use Eq. (11) to
update these probabilities, RR-GP embeds additional logic
for dynamic feasibility (see Algorithm 3). Note that the
probability corresponding to RR-GP without BP is the same
as RR-GP with BP.

At time t = 0 s, Sparse-GP and Dense-GP’s likelihoods
are based on the size of the training data of each motion
pattern. Since they are equal, the probability of the correct
motion pattern is 0.5. On the other hand, by using colli-
sion checks and backward propagation RR-GP is able to
improve its “guess” of the correct motion pattern from 0.5
to more than 0.92. At time t = 1 s, using observation of
the previous target position, all three algorithms improve in
accuracy, though RR-GP maintains a significant advantage.
After three seconds, the probability of the correct motion
pattern has nearly reached 1.0 for all algorithms.

6.2.2 Prediction Errors

Figure 6 shows the performance of each algorithm in terms
of the RMS of the prediction error between the true value
and the predicted mean position of the target vehicle. At
the start of each test, when time t = 0 s (Figure 6(a)),
the four algorithms are initialized with the same likelihood

0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

Time (sec)

P
ro

b
a
b
ili

ty
 o

f
 C

o
rr

e
c
t
M

o
ti
o
n
 P

a
tt
e
rn

RR−GP(w/ BP)

GP(1Hz)

GP(2Hz)

Fig. 5 Average probability (over 90 trajectories) of the correct motion
pattern for RR-GP (w/ BP), Sparse-GP (1Hz), and Dense-GP (2Hz)
algorithms as function of time. For example, the values at t = 1 s
represent the probability of the correct motion patterns after the target
vehicle has actually moved for one second on its path

values for each motion pattern. This is seen in the Sparse-
GP and Dense-GP plots, which are almost identical. RR-
GP (w/o BP) also has a similar performance from t = 0 s
until t = 4 s because no dynamic infeasibilities or collisions
with obstacles happen in this time range. However, the target
first encounters the obstacle around t = 5 s, at which point
the prediction of RR-GP (w/o BP) improves significantly
compared to the GP algorithms since the algorithm is able
to detect the infeasibility of the wrong pattern, and therefore
adjust the trajectory prediction. The full RR-GP algorithm,
denoted as RR-GP (w/ BP) in Figure 6, displays the best
performance. Using the backward propagation feature, its
prediction accuracy shows significant improvement over
that of RR-GP (w/o BP), between t = 1 s and t = 5 s. This is
accomplished by back-propagating knowledge of the future
dynamic infeasibility to previous timesteps, which improves
the accuracy of the earlier portion of the prediction. This
reduces the RMS prediction errors by a factor of 2.4 over
the GP-only based algorithms at t = 8 s.

After one second has elapsed (Figure 6(b)), the vehicle
has moved to a new position, and the likelihood values
of each motion pattern have been updated (Figure 5). The
probability of the correct motion pattern computed using
Eq. (11) has slightly increased, leading to lower errors for
all three algorithms. But as in Figure 6(a), a trend is seen for
the four algorithms; the performance of the RR-GP (w/ BP)
algorithm is consistently and significantly better than both
Sparse-GP and Dense-GP, as well as RR-GP (w/o BP) in the
time range prior to the collision detection. Note that Dense-
GP performs slightly better than Sparse-GP between t = 5 s
and t = 8 s, due to a more accurate GP model obtained
through additional training data.

After three seconds have elapsed (Figure 6(c)), the prob-
ability of the correct motion pattern has approached 1.0
(Figure 5), yielding decreased prediction error across all al-
gorithms. The vehicle has moved to a region where dynamic
feasibility and collision checks are not significant, due to the
negligible likelihood of the wrong motion pattern predic-
tion. Eq. (17) then simplifies to p(xt+K , yt+K |xt, yt, bj∗),

12 Georges S. Aoude et al.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Time Step (sec)

R
M

S
 E

rr
o

r
(m

)

RR−GP(w/ BP)

RR−GP(w/o BP)

GP(1Hz)

GP(2Hz)

(a) t = 0 s

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Time Step (sec)

R
M

S
 E

rr
o

r
(m

)

RR−GP(w/ BP)

RR−GP(w/o BP)

GP(1Hz)

GP(2Hz)

(b) t = 1 s

3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time Step (sec)

R
M

S
 E

rr
o

r
(m

)

RR−GP(w/ BP)

RR−GP(w/o BP)

GP(1Hz)

GP(2Hz)

(c) t = 3 s

Fig. 6 Average position prediction errors (over 90 trajectories) for Sparse-GP (1Hz), Dense-GP (2Hz), and the two variations of the RR-GP
algorithm at different times of the example

0 1 2 3 4 5 6 7 8

−3

−2.5

−2

−1.5

−1

−0.5

0

Time Step (s)

E
rr

o
r

D
if
fe

re
n
c
e
 D

is
tr

ib
u
ti
o
n
 (

m
)

(a) t = 0 s

1 2 3 4 5 6 7 8

−3

−2.5

−2

−1.5

−1

−0.5

0

Time Step (s)

E
rr

o
r

D
if
fe

re
n
c
e
 D

is
tr

ib
u
ti
o
n
 (

m
)

(b) t = 1 s

3 4 5 6 7 8
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time Step (s)

E
rr

o
r

D
if
fe

re
n

c
e

 D
is

tr
ib

u
ti
o

n
 (

m
)

(c) t = 3 s

Fig. 7 Box plots of the difference of prediction errors (for the 90 test trajectories) between Sparse-GP (1Hz) and the full RR-GP algorithm at
different times of the example

Table 1 Average probability of correct motion pattern (over 90 tests)
XXXXXXXXAlg.

Time(s) 0 1 2 3

RR-GP 0.922 0.935 1.0 1.0
GP(1Hz) 0.5 0.633 0.995 1.0
GP(2Hz) 0.5 0.665 0.988 1.0

where j∗ is the index of the “correct” motion pattern, and
thus the prediction accuracy is only related to the position
distribution of the correct motion pattern. This explains why
Sparse-GP and both RR-GP variations show a very similar
accuracy, since their position distributions are based on the
same sparse data. On the other hand, Dense-GP, due to more
dense data, is the best performer, as expected, with RMS
errors 1.5 times smaller than the other algorithms at t = 8 s.

Figure 7 presents box-and-whisker plots of the average
difference between the prediction errors of Sparse-GP (1Hz)
and RR-GP (w/ BP), using the same data as Figure 6. The
length of the whisker (dashed black vertical line) is W =

1.5, such that data are considered outliers if they are either
smaller thanQ1−W ×(Q3−Q1) or larger thanQ3+W ×
(Q3 − Q1), where Q1 = 25th percentile and Q3 = 75th

percentile.

At t = 0 s, Figure 7(a) shows the improvement of RR-
GP (w/ BP) over Sparse-GP consistently increase, reaching
a 2.5 m difference at t = 8 s. The outliers in this case are
the test trajectories that are dynamically feasible at t = 0 s.
Here, either of the two motion patterns may be followed,
and RR-GP does not have an advantage over Sparse-GP,
leading to no error difference. But in the majority of tests,
as shown by the whisker lengths and box sizes, RR-GP (w/
BP) significantly reduces prediction error.

Figure 7(b) presents the error difference after 1 s; a sim-
ilar trend can be seen. The median of the difference grows
with the timesteps, but its magnitude slightly decreases com-
pared to the previous timestep, reaching 2.1 m difference
at t = 8 s. Here the whiskers have increased in length,
eliminating many of the outliers from the prior timestep.
Finally, after the target vehicle has moved for t = 3 s (Figure

Probabilistically Safe Motion Planning 13

Table 2 Average computation times per iteration (over 90 trajectories)

Algorithm Computation Time (s)
Sparse-GP (1 Hz) 0.19
Dense-GP (2 Hz) 2.32

RR-GP 0.69

7(c)), the differences between RR-GP (w/ BP) and Sparse-
GP are not statistically significant.

6.2.3 Computation Times

Table 2 summarizes the average computation times per it-
eration of the three algorithms over the 90 testing paths.
Both RR-GP variations have identical computation times,
so only one computation time is shown for RR-GP. Note
that the implementation uses the GPML MATLAB toolbox
(Rasmussen and Williams, 2005), and these tests were run
on a 2.5 GHz quad-core computer.

As expected, Sparse-GP has the lowest computation
time, while the RR-GP algorithm ranks second with times
well below 1 s, which are suitable for real-time application
as shown in Section 7.2. Out of the 0.69 s of RR-GP com-
putation time, an average 0.5 s is spent in the RR-GP tree
generation while the remaining 0.19 s is used to generate the
GP samples. On the other hand, Dense-GP had an average
computation time of 2.3 s, which is significantly worse than
the other two approaches and violates the dt = 1 s measure-
ment cycle. Such times render the GP mixture model useless
for any typical real-time implementation, as expected due
to GP’s matrix inversions. If dt is changed to 2.3 s for the
Dense-GP tests, the prediction accuracy decreases due to
slower and fewer updates of the probabilities of the different
motion patterns. Additional details on computation time can
be found in Aoude (2011).

In summary, this simulated environment with a human-
driven target vehicle shows that the RR-GP algorithm con-
sistently performs better than Sparse-GP and Dense-GP in
the long-term prediction of the target vehicle motion. It is
important to highlight that RR-GP can predict trajectories
at high output frequencies, significantly higher than both
Sparse-GP (1Hz) and Dense-GP (2Hz). While the GP ap-
proach could be augmented with some form of interpolation
technique, the solution approach developed in this work
systematically guarantees collision avoidance and dynamic
feasibility of the trajectory predictions at the higher rates.
Another feature of the RR-GP algorithm is its low compu-
tation time (Table 2), which is small enough to be suitable
for real-time implementation in collision warning systems
or probabilistic path planners.

Finally, note that RR-GP was also validated in Aoude
(2011) on intersection traffic data collected through the
Cooperative Intersection Collision Avoidance System for

Fig. 8 Diagram of the chance constrained RRT algorithm. Given an
initial state distribution at the tree root (blue) and constraints (gray), the
algorithm grows a tree of state distributions to find a probabilistically
feasible path to the goal (yellow star). The uncertainty in the state at
each node is represented as an uncertainty ellipse. If the probability of
collision is too high, the node is discarded (red); otherwise the node is
kept (green) and may be used to grow future trajectories

Violations (CICAS-V) project (Maile et al. (2008)). The ob-
tained results demonstrated that RR-GP reduced prediction
errors by almost a factor of 2 when compared to two stan-
dard GP-based algorithms, while maintaining computation
times that are suitable for real-time implementation.

7 CC-RRT Path Planning with RR-GP Predictions

As noted in Section 1, one of the main objectives of this
work is to demonstrate that through appropriate choice of
planner, an autonomous agent can utilize RR-GP predictions
to identify and execute probabilistically feasible paths in
real-time, in the presence of uncertain dynamic obstacles.
This section introduces a path planning algorithm which
extends the CC-RRT framework (Figure 8) of Luders et al.
(2010b); Luders and How (2011) to guarantee probabilistic
robustness with respect to dynamic obstacles with uncer-
tain motion patterns. These guarantees are obtained through
direct use of RR-GP trajectory predictions (Section 5). As
these predictions are provided in the form of Gaussian un-
certainty distributions at each timestep for each intent, they
are well-suited for the CC-RRT framework. After the chance
constraint formulation of Blackmore et al. (2006) is re-
viewed, the CC-RRT framework is presented, then extended
to consider dynamic obstacles with uncertain motion pat-
terns. Finally, an alternative particle-based approximation
of CC-RRT for nonlinear dynamics and/or non-Gaussian
uncertainty is also presented.

14 Georges S. Aoude et al.

7.1 Extension of CC-RRT Chance Constraint Formulation

Recall the LTI system Eqs. (1)-(3); for now, assume that the
uncertainty of each obstacle, Eqs. (6)-(7), can be represented
by a single Gaussian distribution:

cjt ∼ N (ĉjt, Pcjt) ∀ j ∈ Z1,B , ∀ t. (19)

In the context of RR-GP, this implies that the dynamic
obstacle is following a single, known behavior, though its
future state is uncertain.

Given a sequence of inputs u0, . . . , uN−1 and the dy-
namics of Eq. (1), the distribution of the state xt (repre-
sented as the random variable Xt) can be shown to be
Gaussian (Blackmore et al. (2006)):

P (Xt|u0, . . . , uN−1) ∼ N (x̂t, Pxt) ∀ t ∈ Z0,N ,

whereN is some timestep horizon. The mean x̂t and covari-
ance Pxt can be updated implicitly using the relations

x̂t+1 = Ax̂t +But ∀ t ∈ Z0,N−1, (20)

Pxt+1
= APxtA

T + Pw ∀ t ∈ Z0,N−1. (21)

Note that by using Eqs. (20)-(21), CC-RRT can simulate
state distributions within an RRT framework in much the
same way that a nominal (e.g., disturbance-free) trajectory
would be simulated. Instead of propagating the nominal
state, the distribution mean is propagated via Eq. (20); Eq.
(21) can be used to compute the covariance offline.

As presented in Blackmore et al. (2006), to ensure that
the probability of collision with any obstacle on a given
timestep does not exceed ∆ ≡ 1 − psafe, it is sufficient to
show that the probability of collision with each of the B
obstacles at that timestep does not exceed ∆/B. The jth
obstacle is represented through the conjunction of linear
inequalities
nj∧
i=1

aTijxt < aTijcijt ∀ t ∈ Z0,tf , (22)

where nj is the number of constraints defining the jth ob-
stacle, and cijt is a point nominally (i.e., cjt = ĉjt) on the
ith constraint at timestep t; note that aij is not dependent on
t, since the obstacle shape and orientation are fixed.

It is shown in Blackmore et al. (2006) (for optimization-
based frameworks) and Luders et al. (2010b) (for sampling-
based frameworks) that to ensure the probability of con-
straint satisfaction exceeds psafe, the system must satisfy
a set of deterministic but tightened constraints for each
obstacle, where the degree of tightening is a function of
the degree of uncertainty, number of obstacles, and psafe.
These tightened constraints can be applied offline to assure
probabilistic guarantees; however, this requires applying a
fixed probability bound∆/B across all obstacles, regardless
of how likely they are to cause infeasibility, leading to
conservative behavior (Blackmore et al., 2006).

Alternatively, the CC-RRT algorithm leverages a key
property of the RRT algorithm – trajectory-wise constraint
checking – by explicitly computing a bound on the proba-
bility of collision at each node, rather than simply satisfy-
ing tightened constraints for a fixed bound (Luders et al.,
2010b). In doing so, CC-RRT can compute bounds on the
risk of constraint violation online, based on the most recent
RR-GP trajectory prediction data.

As shown in Luders et al. (2010b), the upper bound on
the probability of collision with any obstacle at timestep t is

∆t(x̂t, Pxt) ≡
B∑
j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt), (23)

∆ijt(x̂t, Pxt) ≡
1

2

1− erf

 aTij x̂t − aTijcijt√
2aTij(Pxt + Pcjt)aij

 ,

where erf(·) denotes the standard error function. Thus,
for a node/timestep with state distribution N (x̂t, Pxt) to
be probabilistically feasible, it is sufficient to check that
∆t(x̂t, Pxt) ≤ 1− psafe.

Now, suppose the jth obstacle is one of the dynamic
obstacles modeled using RR-GP (Section 5) and that it
may follow one of k = 1, . . . ,M possible behaviors. At
each timestep t, and for each behavior k, the RR-GP al-
gorithm provides a likelihood δkj and Gaussian distribution
N (ĉkjt, P

k
cjt). Thus, the overall state distribution for this

obstacle at timestep t is given by

cjt ∼
M∑
k=1

δkjN (ĉkjt, P
k
cjt). (24)

At each timestep, the probability of collision with dynamic
obstacle j can be written as a weighted sum of the proba-
bilities of collision for the dynamic obstacle j under each
behavior. With this modification, it can be shown that all
existing probabilistic guarantees (Luders et al., 2010b) are
maintained by treating each behavior’s state distribution as
a separate obstacle with the resulting risk scaled by δkj :

P (collision) ≤
B∑
j=1

P (col. w/ obstacle j) (25)

=

B∑
j=1

M∑
k=1

δkj P (col. with obstacle j, behavior k)

≤
B∑
j=1

M∑
k=1

δkj min
i=1,...,nj

P (aTijXt < aTijC
k
ijt)

=

B∑
j=1

M∑
k=1

δkj min
i=1,...,nj

∆k
ijt(x̂t, Pxt),

where Ckijt is a random variable representing the translation
of the jth obstacle under the kth behavior, and ∆k

ijt is used
as in Eq. (23) for the kth behavior. By comparison with Eq.
(23), the desired result is obtained.

Probabilistically Safe Motion Planning 15

7.2 CC-RRT with Integrated RR-GP

To perform robust planning this work uses chance con-
strained RRTs (CC-RRT), an extension of the traditional
RRT algorithm that allows for probabilistic constraints.
Whereas the traditional RRT algorithm (LaValle, 1998)
grows a tree of states that are known to be feasible, the
chance constrained RRT algorithm grows a tree of state
distributions that are known to satisfy an upper bound on
probability of collision (Figure 8), using the formulation
developed in Section 7.1.

The fundamental operation in the standard RRT algo-
rithm is the incremental growth of a tree of dynamically
feasible trajectories, rooted at the system’s current state xt.
To grow a tree of dynamically feasible trajectories, it is nec-
essary for the RRT to have an accurate model of the (linear)
vehicle dynamics, Eq. (1), for simulation. Since the CC-RRT
algorithm grows a tree of Gaussian state distributions, in this
case the model is assumed to be the propagation of the state
conditional mean and covariance, Eqs. (20)-(21). These are
rewritten here as

x̂t+k+1|t = Ax̂t+k|t +But+k|t, (26)

Pt+k+1|t = APt+k|tA
T + Pw, (27)

where t is the current system timestep and (·)t+k|t denotes
the predicted value of the variable at timestep t+ k.

The CC-RRT tree expansion step, used to incrementally
grow the tree, is given in Algorithm 4. Each time the algo-
rithm is called, a sample state is taken from the environment
(line 2), and the nodes nearest to this sample, in terms
of some heuristic(s), are identified as candidates for tree
expansion (line 3). An attempt is made to form a connection
from the nearest node to the sample by generating a prob-
abilistically feasible trajectory between them (lines 7–12).
This trajectory is incrementally simulated by selecting some
feasible input (line 8), then applying Eqs. (26)-(27) to yield
the state distribution at the next timestep. This input may
be selected at the user’s discretion, such as through random
sampling or a closed-loop controller, but should guide the
state distribution toward the sample. Probabilistic feasibility
is then checked using RR-GP trajectory predictions with
Eqs. (23) and (25); trajectory simulation continues until
either the state is no longer probabilistically feasible, or the
distribution mean has reached the sample (line 7). Even if
the latter case does not occur, it is useful and efficient to keep
probabilistically feasible portions of this trajectory for future
expansion (Kuwata et al., 2009), via intermediate nodes (line
10). As a result, one or more probabilistically feasible nodes
may be added to the tree (lines 13–16).

A number of heuristics are also utilized to facilitate tree
growth, identify probabilistically feasible trajectories to the
goal, and identify “better” paths (in terms of Eq. (9)) once
at least one probabilistically feasible path has been found.

Algorithm 4 CC-RRT with RR-GP, Tree Expansion
1: Inputs: tree T , current timestep t
2: Take a sample xsamp from the environment
3: Identify the Λ nearest nodes using heuristics
4: for m ≤ Λ nearest nodes, in sorted order do
5: Nnear ← current node
6: (x̂t+k|t, Pt+k|t)← final state distribution of Nnear

7: while ∆t+k(x̂t+k|t, Pt+k|t) ≤ 1 − psafe and x̂t+k|t has not
reached xsamp do

8: Select input ut+k|t ∈ U
9: Simulate (x̂t+k+1|t, Pt+k+1|t) using Eqs. (26)-(27)

10: Create intermediate nodes as appropriate
11: k ← k+ 1
12: end while
13: for each probabilistically feasible node N do
14: Update cost estimates for N
15: Add N to T
16: end for
17: end for

Algorithm 5 CC-RRT with RR-GP, Execution Loop
1: Initialize tree T with node at (x̂0, Px0), t = 0
2: while x̂t 6∈ Xgoal do
3: Retrieve most recent observations and RR-GP predictions
4: while time remaining for this timestep do
5: Expand the tree by adding nodes (Algorithm 4)
6: end while
7: Use cost estimates to identify best path {Nroot, . . . , Ntarget}
8: Repropagate the path state distributions using Eqs. (26)-(27)
9: if repropagated best path is probabilistically feasible then

10: Apply best path
11: else
12: Remove infeasible portion of best path and goto line 7
13: end if
14: t← t+∆τ

15: end while

Samples are identified (line 2) by probabilistically choosing
between a variety of global and local sampling strategies,
some of which may be used to efficiently generate com-
plex maneuvers (Kuwata et al. (2009)). The nearest node
selection (lines 3-4) strategically alternates between several
distance metrics for sorting the nodes, including an explo-
ration metric based on cost-to-go and a path optimization
metric based on estimated total path length (Frazzoli et al.
(2002)). Each time a sample is generated, m ≥ 1 attempts
are made to connect a node to this sample before being
discarded. Additional heuristics include attempting direct
connections to the goal anytime a new node is added, and
maintaining bounds on the cost-to-go to enable a branch-
and-bound pruning scheme (Frazzoli et al. (2002)).

For the real-time applications considered in this work,
the CC-RRT tree should grow continuously during the
execution cycle to account for changes in the situational
awareness, such as updated RR-GP predictions. Algorithm
5 shows how the algorithm executes some portion of the tree
while continuing to grow it. The planner updates the current
path to be executed by the system every ∆τ seconds, using

16 Georges S. Aoude et al.

the most recent RR-GP predictions for any dynamic obsta-
cles as they become available (line 3). During each cycle, for
the duration of the timestep, the tree is repeatedly expanded
using Algorithm 4 (lines 4-6). Following this growth, some
cost metric is used to select the “best” path in the tree (line
7). Once a path is chosen, a “lazy check” (Kuwata et al.,
2009) is performed in which the path is repropagated from
the current state distribution using the same model dynam-
ics, Eqs. (26)-(27), and tested for probabilistic feasibility
(line 8). Due to the presence of dynamic obstacles, it is
crucial to re-check probabilistic feasibility at every iteration,
even if the agent itself is deterministic. If this path is still
probabilistically feasible, it is chosen as the current path
to execute (line 10); otherwise the infeasible portion of the
path is removed and the process is repeated (line 12) until
a probabilistically feasible path is found. In the event that
no probabilistically feasible path can be found, mitigation
strategies can be implemented to maximize safety, e.g. Wu
and How (2012).

7.3 Particle CC-RRT

In the case of nonlinear dynamics and/or non-Gaussian
noise, an alternative particle-based framework (Figure 9)
can be used to statistically represent uncertainty at a reso-
lution which can be dictated by the user (Luders and How
(2011)). Though the generation of particles increases the
per-node complexity, the algorithm maintains the benefits of
sampling-based approaches for rapid replanning. The par-
ticle CC-RRT (PCC-RRT) framework of Luders and How
(2011) is generalizable both in the types of probabilistic
feasibility that are assessed (timestep-wise and path-wise)
and in the types of uncertainty that are modeled using par-
ticles. This framework can be extended to consider hybrid
combinations of particle-based and distribution-based un-
certainty; for example, an agent’s dynamics/process noise
can be represented via particles, while interactions with
dynamic obstacles are modeled using traditional Gaussian
distributions. However, this may limit the ability to assess
path-wise infeasibility.

Algorithm 6 presents the tree expansion step for the
particle-based extension of CC-RRT, PCC-RRT. A set of
Pmax particles are maintained at each node, each with a
position x and a weight w (

∑
w = 1 across all particles

at each timestep). There are two parameters the user can
specify to indicate the degree of probabilistic constraint
violation allowed: the average likelihood of feasibility at
each node cannot exceed pnode

safe , while the average likelihood
of feasibility over an entire path cannot exceed ppath

safe . The
latter bound is a key advantage of this particle-based ap-
proach, as it is quite difficult to approximate analytically in
real-time without introducing significant conservatism. The

Fig. 9 Diagram of the PCC-RRT algorithm for a single, forward sim-
ulation step. Each green circle/path represents a simulated particle that
terminates in a feasible state, while each red circle/path represents a
simulated particle that terminates in an infeasible state

former likelihood is computed by summing the weights of
all feasible nodes,

∑
p w

(p)
t+k|t (line 7), while the latter is

computed iteratively over a path by multiplying the prior
node’s path probability by the weight of existing nodes that
are still feasible (line 15).

One of several resampling schemes may be used for
identifying new particles as older ones become infeasible
(line 8). In the uniform resampling scheme, all particles are
assigned an identical weight at line 12,w(p)

t+k+1|t = 1/Pmax.
When this is the case, every particle has an equal likelihood
of being resampled. In the probabilistic resampling scheme,
each particle is assigned a weight based on the likelihood
of that particle actually existing; this is a function of the
likelihood of each portion of the uncertainty that is sampled.
This can be computed iteratively by node, as

w
(p)
t+k+1|t ∝ w

(p)
t+k|t · P (Xt+k+1|t = xt+k+1|t). (28)

This requires additional computation, especially as the com-
plexity of the uncertainty environment increases; however, it
can provide a better overall approximation of the state dis-
tribution at each timestep, for the same number of particles.

8 Results

This section presents simulation results which demonstrate
the effectiveness of the RR-GP algorithm in predicting the
future behavior of an unknown, dynamic vehicle, allowing
the CC-RRT planner to design paths which can safely avoid
it. Examples are provided for three scenarios of varying
complexity, in terms of dynamics, environment, and pos-
sible behaviors. In the first two examples, planning is per-
formed on a vehicle with linear dynamics, such that the

Probabilistically Safe Motion Planning 17

Algorithm 6 PCC-RRT, Tree Expansion
1: Inputs: tree T , current timestep t
2: Take a sample xsamp from the environment
3: Identify the M nearest nodes using heuristics
4: for m ≤M nearest nodes, in the sorted order do
5: Nnear ← current node
6: {x(p)

t+k|t, w
(p)
t+k|t} ← set of feasible particles at Nnear, with

weights
7: while

∑
p w

(p)
t+k|t ≥ pnode

safe and P
path
k ≥ p

path
safe and x̂t+k|t has

not reached xsamp do
8: Resample particles up to count of Pmax, using weights

w
(p)
t+k|t

9: Select input ut+k|t ∈ U
10: for each particle p do
11: Simulate x(p)

t+k+1|t using Eq. (1) and sampled disturbance
wt+k

12: Assign weight w(p)
t+k+1|t to particle

13: end for
14: Remove infeasible particles
15: P

path
k+1 ← P

path
k ·

∑
p w

(p)
t+k|t

16: k ← k+ 1
17: end while
18: for each probabilistically feasible node N do
19: Update cost estimates for N
20: Add N to T
21: Try connecting N to Xgoal (lines 5-13)
22: if connection to Xgoal probabilistically feasible then
23: Update upper-bound cost-to-go of N and ancestors
24: end if
25: end for
26: end for

extended theoretical framework of Section 7 is valid. The
final example considers a vehicle with car-like dynamics,
using the PCC-RRT algorithm of Section 7.3 to approximate
path-wise feasibility. Though a single dynamic, uncertain
obstacle (in these examples, a “target vehicle”) is present
in each case, the approach can be extended to multiple dy-
namic, uncertain obstacles without further modification, and
in fact will scale well under such conditions if parallelization
is utilized.

8.1 Infrastructure

Algorithms 2-5 have been implemented using a multi-
threaded, real-time Java application, modular with respect
to all aspects of the problem definition. All simulations were
run on a 2.53GHz quad-core laptop with 3.48GB of RAM.

The software implementation consists of three primary
modules, each in a separate thread. The Vehicle thread man-
ages the overall simulation, including all simulation objects;
it is run in real-time at 10-50 Hz, and operates continu-
ously until a collision has occurred or the vehicle has safely
reached the goal. The RRT thread implements Algorithms 4-
5, growing the CC-RRT tree while periodically sending the
current best path in the tree to the Vehicle thread. Finally,

the RRGP thread maintains predictions on the likelihoods
and future state distributions of possible behaviors for each
dynamic obstacle by incorporating Algorithm 2, embedded
as a MATLAB program.

To ensure the RR-GP algorithm is tested on realistic
driving behavior, the target vehicle’s motion is chosen from
among a set of simulated trajectories, pre-generated for each
behavior by having a human operator manually drive the
vehicle in simulation. As in Section 6.1, the target vehicle
dynamics are based on the iRobot Create platform; the sim-
ulated vehicle was driven via a wireless steering apparatus,
tuned to emulate traditional, nonlinear control of an auto-
mobile. During each trial, one of these paths is randomly
selected as the trajectory for the target vehicle.

8.2 Intersection Scenario

Consider a ground vehicle operating in a constrained, two-
dimensional environment (Figure 10). This environment is
a representative road network designed to emulate a real-
world driving environment within the RAVEN testbed (How
et al., 2008). The road network is 11.2× 5.5 m2 in size, and
is capable of accommodating multiple intersection types.

In this scenario, the objective of the host vehicle is to go
straight through the intersection at bottom-center of Figure
10(a), reaching a goal location on the opposite side. How-
ever, to get there, the host vehicle must successfully avoid
an errant (rule-violating) driver which is traveling through
the intersection in the perpendicular direction, and is likely
to cross the intersection at the same time as the host vehicle.
There are three possible behaviors for the target vehicle as it
enters the intersection: (a) left turn, (b) right turn, and (c)
straight. The host vehicle is assumed to have a radius of
0.2m, while the target vehicle has a radius of 0.14m; both
start at zero velocity.

The host vehicle is modeled as a double integrator,
xt+1

yt+1

vxt+1

vyt+1

 =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xt
yt
vxt
vyt

+

dt2

2 0

0 dt2

2

1 0

0 1

[uxt + wxt
uyt + wyt

]
,

where dt = 0.1s, subject to avoidance constraints X (in-
cluding velocity bounds) and input constraints

U = {(ux, uy) | |ux| ≤ 4, |uy| ≤ 4}.

To emphasize the impact of the dynamic obstacle’s uncer-
tainty, the host vehicle’s own dynamics are assumed deter-
ministic: wxt ≡ wyt ≡ 0. Trajectories are simulated and
executed in closed-loop via the controller

uxt = −1.5(xt − rxt)− 3(vxt − r
vx
t),

uyt = −1.5(yt − ryt)− 3(vyt − r
vy
t),

18 Georges S. Aoude et al.

where (rxt , r
y
t) is the reference position and (rvxt , r

vy
t) is the

reference velocity; the reference rt is moved continuously
between waypoints at a fixed speed of 0.35 m/s. The speed
of the target vehicle is capped at 0.4 m/s.

In Algorithms 4–5, the tree capacity is limited to 1000
nodes, with a replan time interval (line 14, Algorithm 5) of
0.5s. In Algorithms 1-2, Th = 8s and ∆t = 1s, though
the vehicle dynamics are simulated at 10 Hz. The limits of
successful and infeasible connections per ∆t (lines 9 and
11, Algorithm 1) are 20 and 100, respectively. The RR-GP
algorithm is called once every 1.0 seconds, each time giving
Algorithm 2 a total of 0.3 seconds to grow its trees. If the
time limit is reached, the algorithm is terminated without
reaching the time horizon Th.

A total of 400 trials were performed, consisting of 50
trials each for eight different algorithms:

– Naive RRT: nominal RRT (no chance constraints) in
which target vehicle is ignored; this sets a baseline for
the minimum expected likelihood of safety

– Nominal RRT: nominal RRT in which target vehicle is
treated as a static obstacle at its most recent location

– Velocity-Avoidance RRT: nominal RRT in which the
future position of the target vehicle is predicted by prop-
agating its current position based on its current velocity
and heading

– CC-RRT (5 cases): Algorithms 4-5 with psafe = 0.5, 0.8,
0.9, 0.99, or 0.999. Note that since psafe is a bound on
feasibility at each timestep, rather than over an entire
path, it does not act as a bound on the percentage of paths
which safely reach the goal.

Each trial differs only in the path followed by the target
vehicle and the random sampling used in the RR-GP and
CC-RRT algorithms; the sequence of target vehicle paths is
consistent across all sets of 50 trials. Four quantities were
measured and averaged across these trials: the percentage of
trials in which the vehicle safely reaches the goal; the aver-
age duration of such paths; the average time to generate an
RRT/CC-RRT tree node; and the average time per execution
of Algorithm 2.

Table 3 presents the averaged results over the 50 trials
for each case. Note that in all five cases using CC-RRT, the
host vehicle safely navigates the intersection with a much
higher likelihood than any of the cases not using chance
constraints. Furthermore, the CC-RRT results demonstrate
the clear trade-off between overall path safety (in terms of
percentage of trials which reach the goal) and average path
duration when using CC-RRT. As psafe is increased from
0.5 to 0.999, the percentage of safe trajectories generally
increases (the exception of psafe = 0.5 is not statistically
significant), culminating with the host vehicle using CC-
RRT with psafe = 0.999 reaching the goal safely in all fifty
trials. On the other hand, as psafe is increased and the planner

becomes more conservative, the average time duration of the
safe trajectories increases.

Figure 10 sheds some light on how different values of
psafe affect the types of paths chosen by the planner. In this
particular trial, the target vehicle ultimately makes a left
turn through the intersection, and would collide with the
host vehicle if it did not deviate from an initial straight-
path trajectory. The RR-GP algorithm is initially undecided
whether the target vehicle is going straight or turning left
(as indicated by the shading on the predicted trajectories in
Figures 10(a) and 10(b)); by t = 6 seconds RR-GP is very
confident that the vehicle is turning left (Figures 10(c) and
10(d)). When psafe = 0.8, the planner selects a path with the
minimum perturbation needed to avoid the target vehicle’s
most likely trajectories (Figure 10(a)). As the target vehicle
closes in on the intersection (Figure 10(c)), the host vehicle
continues to hedge that it can cross the intersection safely
and avoid the target vehicle’s approach in either direction,
and thus does not modify its plan. In contrast, when psafe =

0.999, the planner selects a larger initial perturbation to
maintain the host vehicle’s distance from the target vehi-
cle (Figure 10(b)). After several RR-GP updates, the host
vehicle demonstrates a much more risk-averse behavior, by
loitering outside the intersection (Figure 10(d)) for several
seconds before making its approach. Ultimately, the host
vehicle using psafe = 0.8 reaches the goal (Figure 10(e))
before the host vehicle using psafe = 0.999 (Figure 10(f)).
In realistic driving scenarios, the most desirable behavior is
likely somewhere between these two extremes.

Table 3 shows that with Naive RRT, by ignoring the tar-
get vehicle, the time-optimal path is almost always achieved,
but a collision takes place in a majority of trials, with
collisions occurring in most instances of the target vehicle
going straight or left. In some instances, the Nominal RRT
algorithm maintains safety by selecting an alternative tra-
jectory when the target vehicle’s current position renders
the host vehicle’s current trajectory infeasible; however, the
overall likelihood of safety is still low. In many cases, the
target vehicle collides with the host vehicle from the side,
such that a replan is not possible. Of the nominal RRT
algorithms, the velocity-avoidance RRT algorithm performs
the most competitively with CC-RRT, with 74% of trials
yielding a safe trajectory. Since the target vehicle always
starts by driving straight toward the intersection (right to
left in the figures), the host vehicle responds in nearly all
trials by immediately perturbing its own path, based on the
assumption that the target vehicle will go straight through
the intersection. This contributes to the larger average path
duration obtained by velocity-avoidance RRT compared to
the other nominal algorithms in Table 3. However, in many
instances, velocity-avoidance RRT is still unable to respond
to rapid changes in the target vehicle’s heading, such as if the
target vehicle makes a rapid, left turn inside the intersection.

Probabilistically Safe Motion Planning 19

Table 3 Simulation results, intersection scenario

Algorithm psafe % to Path Time per Time per
Goala Duration, sb Node, msc RR-GP, sd

Naive RRT – 38% 10.01 (0.11%) 0.611 –
Nominal RRT – 46% 10.90 (8.96%) 0.662 –

Velocity-Avoidance RRT – 74% 11.14 (11.4%) 0.948 –
CC-RRT 0.5 92% 11.52 (15.2%) 1.610 0.598
CC-RRT 0.8 88% 11.65 (16.5%) 1.620 0.598
CC-RRT 0.9 92% 11.69 (16.9%) 1.620 0.590
CC-RRT 0.99 96% 12.51 (25.1%) 1.537 0.592
CC-RRT 0.999 100% 12.84 (28.4%) 1.492 0.587

a Percentage of trials where system executed a path to goal without colliding with any obstacles. (recall that psafe refers to feasibility for a single
timestep, whereas this entry corresponds to feasibility across the entire path)
b Percentage is average increase in path duration relative to minimal-time (obstacle-free) path, 10.0s. Only paths which reach goal are included
c Cumulative time in Algorithm 4 divided by number of nodes generated
d Time spent in Algorithm 2

Finally, note that the average time to either generate an
RRT node or call RR-GP is largely independent of psafe

for CC-RRT. There is a modest increase in average time
per node when moving from naive or nominal RRT to
velocity-avoidance RRT (scales by a factor of 1.5) or CC-
RRT (scales by a factor of 2.5), though previous work has
demonstrated that these factors scale well with environment
complexity (Luders et al., 2010b).

8.3 Complex Scenario

In this scenario, the problem complexity is increased, with
more obstacles and more possible behaviors for the target
vehicle (Figure 11). This environment is the same size as the
previous one, with rearranged obstacles; as the target vehicle
moves from one side of the environment to the other, it may
display as many as six possible behaviors, corresponding to
whether each of the four obstacles is passed by the target
vehicle on its left or right. Furthermore, by design the target
vehicle has a higher maximum speed than the host vehicle,
meaning that the host vehicle is at risk of being overtaken
from behind if its path is not planned carefully.

Figure 11(b) shows the trajectories generated by RR-GP
for the six behaviors in this scenario. This demonstrates the
RR-GP algorithm’s ability to model complex behaviors for
long time horizons, building off available training data in the
form of synthetic training trajectories (Figure 11(a)).

The same double integrator dynamics and controller are
used as in Section 8.2, but in this case the reference move-
ment speed is increased from 0.35 m/s to 0.6 m/s. Due to the
increased number of behaviors and more complex environ-
ment, the Gaussian process formulation is more challenging;
as a result, several of the parameters in Algorithms 1-2
have been tuned to improve performance. Here, the limits
of successful and infeasible connections per ∆t (lines 9 and
11, Algorithm 1) are 10 and 100, respectively. The RR-
GP algorithm is called once every 1.25 seconds, each time

giving Algorithm 2 up to a full second to grow trees for each
behavior, with the time horizon Th increased from 8 seconds
to 12 seconds. Both vehicles have a radius of 0.2 m and start
at zero velocity.

The objective of this scenario is to demonstrate the
ability of the CC-RRT algorithm, using RR-GP dynamic
obstacle predictions, to exhibit safe driving behavior for
long-duration missions. The same eight algorithms used
in Section 8.2 are again used here; however, rather than
performing 50 trials, each algorithm is used to guide the
host vehicle through a continuous sequence of 50 waypoints.
The host vehicle starts on the left side of the room, and each
subsequent waypoint is among a set of four, located near
each of the room’s corners. The host vehicle is given the next
waypoint as soon as the current waypoint is reached; consec-
utive waypoints are required to be on opposite sides of the
room, with respect to the room’s long axis. While the host
vehicle completes this sequence, the target vehicle moves
continuously back and forth between the left and right ends
of the room, each time selecting one of the six possible be-
haviors and one of the four pre-generated trajectories for that
behavior (Figure 11).3 Note that the sequences of waypoints
and target vehicle behaviors are both consistent across all
algorithms.

If the host vehicle collides with either the target vehicle
or an element of the environment, the mission continues;
however, the target vehicle is penalized for this collision by
being re-set back to its last reached waypoint. This allows
the trial for each algorithm to be performed as a single,
continuous simulation, while also providing a figure of merit
which factors in both path duration/length and collision risk.

Four quantities were measured and averaged for each
algorithm: the total time required to reach all 50 waypoints,
including collision time penalties; the number of collisions
which take place; the average time to generate an RRT/CC-

3 When the target vehicle moves from left to right, the trajectories
shown in Figure 11 are reflected across the room’s short axis.

20 Georges S. Aoude et al.

(a) psafe = 0.8, t = 2 seconds (b) psafe = 0.999, t = 2 seconds

(c) psafe = 0.8, t = 6 seconds (d) psafe = 0.999, t = 6 seconds

(e) psafe = 0.8, t = 11 seconds (f) psafe = 0.999, t = 11 seconds

Fig. 10 Representative screenshots of the RR-GP and CC-RRT algorithms during trial #25 of the intersection scenario, for two different values
of psafe. The host vehicle’s path history and current path are in orange. The objective of the host vehicle (large orange circle) is to reach the goal
position (green circle) while avoiding all static obstacles (black) and the dynamic target vehicle (magenta diamond). The blue paths indicate the
paths predicted by the RR-GP algorithm for each possible behavior, including 2 − σ uncertainty ellipses; more likely paths are indicated with a
brighter shade of blue. All objects are shown at true size; the gray lines are lane markings, which do not serve as constraints

(a) Training trajectories (b) RR-GP outputs based on target vehicle’s starting position

Fig. 11 Environment used in the complex scenario, including possible behaviors for the target vehicle (at right)

Probabilistically Safe Motion Planning 21

Table 4 Simulation results, complex scenario

Algorithm psafe # Mission Time per Time per
Collisionsa Duration, sb Node, ms RR-GP, s

Naive RRT – 13 737.1 0.731 –
Nominal RRT – 20 819.5 0.812 –

Velocity-Avoidance RRT – 4 766.3 1.421 –
CC-RRT 0.5 6 821.2 5.112 0.665
CC-RRT 0.8 8 818.9 5.596 0.654
CC-RRT 0.9 2 811.7 4.343 0.635
CC-RRT 0.99 4 820.5 5.142 0.643
CC-RRT 0.999 6 834.1 4.693 0.639

a Number of collisions which took place over a single trial. Collisions which take place within 0.5 seconds of each other are not counted as
separate collisions.
b Total time required for host vehicle to reach 50 waypoints; note that the vehicle is reset to its last reached waypoint each time a collision takes
place.

RRT tree node; and the average time per execution of Algo-
rithm 2.

Table 4 presents the results for each algorithm. The most
desirable behavior is achieved using CC-RRT with psafe =

0.9, with only 2 collisions taking place over a sequence of 50
waypoints. Two aspects of this scenario tend to increase the
likelihood of collision across all algorithms, such that 100%
safety becomes unreasonable for this scenario. First, when
the target vehicle changes direction, the RR-GP prediction
environment changes rapidly, and the host vehicle may not
be able to react quickly enough if nearby. Second, the host
vehicle may find itself in a corridor being pursued by the
target vehicle; since the target vehicle has a larger maximum
speed, a collision may become inevitable. Regardless, CC-
RRT outperforms both Naive RRT and Nominal RRT for all
values of psafe tested, as well as Velocity-Avoidance RRT
when psafe = 0.9.

Observing the nominal RRT results in Table 4, it is clear
that neither Naive RRT nor Nominal RRT can provide a
sufficient level of safety for the host vehicle, with a double-
digit number of collisions occurring in each case. On the
other hand, Velocity-Avoidance RRT is quite competitive
with CC-RRT. Though it does not achieve the minimum
number of collisions obtained by CC-RRT for psafe = 0.9,
Velocity-Avoidance RRT still only has 4 collisions, as well
as a mission duration significantly shorter than any of the
CC-RRT trials. Since the trajectories executed by the target
vehicle are relatively straight, with few sharp turns (espe-
cially compared to Section 8.2), the forward propagation
done in this case actually tends to be a good prediction,
allowing the host vehicle to make a rapid response when
needed.

A notable trend in these results is that as psafe increases,
both the number of collisions and mission duration tend
to decrease, reach minimum values at psafe = 0.9, then
actually increase beyond that value. As psafe is increased, the
minimum required probability of feasibility at each timestep
is increased, effectively reducing the set of probabilistically

feasible paths that may be identified and selected by the CC-
RRT algorithm. Thus, assuming the algorithm continues to
identify probabilistically feasible paths satisfying the psafe

requirement, the performance (in terms of percentage of safe
trials) is expected to increase, with a trade-off of additional
path conservatism. However, if this assumption is broken,
the agent may be unable to find a path at all, and will come to
a stop. This “frozen robot” behavior (Trautman and Krause
(2010)) actually puts the agent at added risk in a dynamic
environment. This is particularly likely to occur in heavily
constrained environments for large values of psafe, as is the
case here. Many of the collisions in this scenario are caused
by the agent being unable to find any safe paths at all to
execute. In such cases, it is important for the operator to tune
psafe to best meet the needs of the problem being considered.

Figure 12 demonstrates how CC-RRT can exhibit com-
plex, robust avoidance behavior for large values of psafe in
order to remain risk-averse. In each trial, the agent’s first
task (shown in the figure) is to move from the left side of the
room to the waypoint at bottom-right; the shortest path is
to move along the bottom of the room. The target vehicle’s
trajectory takes it to the left of the first and last obstacles,
and down the central corridor. When the first RR-GP update
is performed, there is little data available to infer which
way the target vehicle is going, and thus all six behaviors
are equally likely. For psafe = 0.8, the planner selects a
complete trajectory which reaches the goal (Figure 12(a)).
Even though this would lead to a head-on collision for one
of the behaviors, the likelihood of that behavior being active
is roughly 1 in 6, an acceptable risk for psafe = 0.8 (< 5/6).
On the other hand, when psafe = 0.999, the planner is not
willing to select a trajectory with crosses the target vehicle’s
path for any possible behavior. Instead, it selects a partial
path behind one of the central obstacles, the location which
brings it closest to the goal without being in any of the target
vehicle’s possible paths (Figure 12(b)).

As the mission progresses, the target vehicle’s path is
revealed to go through the central corridor. For psafe = 0.8,

22 Georges S. Aoude et al.

(a) psafe = 0.8, t = 1 seconds (b) psafe = 0.999, t = 1 seconds

(c) psafe = 0.8, t = 8 seconds (d) psafe = 0.999, t = 9 seconds

(e) psafe = 0.8, t = 9 seconds (f) psafe = 0.999, t = 10 seconds

Fig. 12 Representative screenshots of the RR-GP and CC-RRT algorithms as the host vehicle approaches the first waypoint in the complex
scenario, for two different values of psafe

this was not the behavior that risked a head-on collision, so
it continues on its initial trajectory (Figures 12(c) and 12(e)),
reaching the goal state quickly. On the other hand, when
psafe = 0.999, the agent holds its position behind the ob-
stacle until the target vehicle has passed through the central
corridor (Figure 12(d)); once the target vehicle has passed
by, the agent identifies a new trajectory which reaches the
goal (Figure 12(f)), though it arrives at the goal significantly
later than if a lower value of psafe were used.

The average runtime needed to generate a tree node us-
ing CC-RRT is larger than the average runtime for nominal
RRT, by a factor which is larger than the one observed in
Section 8.2. Nonetheless, the runtime per node averages
only 5ms, meaning many hundreds of nodes can be gener-
ated every second. Coupled with the fact that the RR-GP
update averages a fraction of a second (about 0.65s), the

CC-RRT algorithm with RR-GP is still amenable to real-
time implementation for this more complex example. To
better demonstrate the operation of this example, a video
showing a representative simulation is available at http:
//acl.mit.edu/rrgp.mp4.

8.4 Nonlinear Dynamics Example

In this final example, the same environment and behaviors
are used as in the previous example (Figure 11); however,
the host vehicle is now modeled as nonlinear car dynamics

xt+1 = xt + (dt)v cos θt + wxt ,

yt+1 = yt + (dt)v sin θt + wyt ,

θt+1 = θt + (dt)
v

Lw
tan δt + wθt ,

http://acl.mit.edu/rrgp.mp4
http://acl.mit.edu/rrgp.mp4

Probabilistically Safe Motion Planning 23

Table 5 Simulation results, nonlinear dynamics scenario

Algorithm p
path
safe % to Path Time per

Goal Duration, s Node, ms
Naive RRT – 54% 26.91 0.529

Nominal RRT – 46% 27.46 0.536
Velocity-Avoidance RRT – 67% 29.29 0.736

PCC-RRT 0.8 83% 32.12 9.422

(a) PCC-RRT, ppath
safe = 0.8, t = 2.5 seconds (b) PCC-RRT, ppath

safe = 0.8, t = 10.0 seconds

(c) PCC-RRT, ppath
safe = 0.8, t = 10.5 seconds (d) PCC-RRT, ppath

safe = 0.8, t = 13.0 seconds

Fig. 13 Representative screenshots of the PCC-RRT algorithm for ppath
safe = 0.8 for the nonlinear dynamics scenario. Agent’s PCC-RRT tree is

shown in green; the executed path is shown in orange (RR-GP output is suppressed for clarity)

where v = 0.4 m/s, dt = 0.1s, (x, y) is the vehicle position,
θ is the heading, Lw = 0.2 m, and δt ∈ [−π/4,+π/4] is
the steering angle input. As in Section 5, a pure-pursuit low-
level controller is applied for steering control. In each trial,
the agent’s objective is to cross the environment from top-
left to bottom-right, while avoiding the dynamic obstacle
moving from right to left (as in the previous example).

However, the agent is subject to a non-Gaussian uncer-
tainty: the steering control is subject to an unknown, fixed
bias

δt = δ̄t + δ̂t,

where δ̄t is the control input and δ̂t is a fixed, unknown
offset uniformly sampled on the interval [−π/10,+π/10].
This bias does not change over the course of the mission;
however, the agent does not receive observations of its own
state, and thus cannot ascertain the value of δ̂t. By using
closed-loop RRT, this poor mapping will only result in a
bounded error (Luders et al. (2010a)), making it still possi-
ble to control safely through the environment. Nonetheless,

PCC-RRT is appropriate here to address the non-Gaussian
uncertainty, as well as the nonlinear dynamics.

The PCC-RRT algorithm, given in Algorithm 6, is struc-
tured in this case by generating 20 particles for each trajec-
tory state. Each particle samples on a joint distribution for
both δ̂t and the dynamic obstacle placement, which is itself
distributed according to the likelihoods generated by the
RR-GP prediction. The dynamic obstacle state is assumed
to be correlated along each trajectory, modeled as a fixed
white noise sample that is transformed relative to each state
distribution. A path is deemed probabilistically feasible if
ppath

safe ≥ 0.8 is satisfied.

In this scenario, 24 trials are performed (one for each
trajectory in the training data); the same algorithms are com-
pared, but this time only using ppath

safe = 0.8 for comparison.
Three quantities were measured and averaged across these
trials: the percentage of trials in which the vehicle safely
reaches the goal; the average duration of such paths; and
the average time to generate an RRT/PCC-RRT tree node.
Table 5 shows the results for the trials performed. Not only

24 Georges S. Aoude et al.

does PCC-RRT successfully guide the uncertain agent to the
goal in more trials than the nominal RRT algorithms, but it
also exceeds the desired probabilistic bound of 0.8 across
the path. As expected, though, there is a significant trade-off
in per-node computational complexity.

Figure 13 shows a typical execution of the PCC-RRT
algorithm for this example, as well as a demonstration of
typical CC-RRT trees generated in this work (RR-GP output
is suppressed for clarity), showing the nonlinearity of the
dynamics. The agent initially plans a path above all obsta-
cles to the goal (Figure 13(a)); however, this path becomes
infeasible as the planner assesses that the likely trajectory of
the dynamic obstacle (magenta) will cause a sufficient num-
ber of particles to become infeasible (Figure 13(b)). On the
subsequent step, the planner selects an alternative, incom-
plete path which successfully avoids the obstacle (Figure
13(c)). Within several seconds, a new path to the goal has
been found (Figure 13(d)).

9 Conclusion

This paper has developed a real-time path planning frame-
work which allows autonomous agents to safely navigate
environments while avoiding dynamic obstacles with un-
certain motion patterns. A key contribution of the algo-
rithm is the RR-GP learned motion model, which efficiently
identifies predicted trajectories for a dynamic obstacle with
multiple behaviors by combining Gaussian processes with a
sampling-based reachability computation. As demonstrated,
this motion model is capable of developing motion pre-
dictions conditioned on dynamic feasibility with runtimes
suitable for real-time operation. Further, by integrating these
RR-GP predictions within an appropriately modified CC-
RRT planning framework, an autonomous agent can iden-
tify probabilistically safe trajectories in the presence of
these dynamic obstacles. Real-time simulation results have
demonstrated the effectiveness of the integrated approach in
improving overall vehicle safety for a variety of dynamics,
environments, and behaviors.

Future work will focus on ways to potentially increase
the complexity of the GP modeling while maintaining real-
time suitability. By increasing the GP model complexity, a
wide variety of potentially relevant behaviors can be rep-
resented, such as correlated position GPs, dynamic obsta-
cles with more complex dynamics, and interaction terms
between the agent and dynamic obstacles. However, any
such increase in the model complexity can significantly af-
fect real-time performance, requiring a careful trade-off and
continued improvements to algorithmic performance. Other
future work includes demonstration of RRT? integration
(Karaman and Frazzoli (2009)) and simultaneous interaction
with multiple dynamic obstacles.

References

Althoff D, Wollherr D, Buss M (2011) Safety assessment of
trajectories for navigation in uncertain and dynamic envi-
ronments. In: IEEE International Conference on Robotics
and Automation (ICRA)

Amidi O, Thorpe C (1990) Integrated mobile robot control.
SPIE Mobile Robots V pp 504–523

Aoude G, Joseph J, Roy N, How J (2011) Mobile Agent Tra-
jectory Prediction using Bayesian Nonparametric Reach-
ability Trees. In: AIAA Infotech@Aerospace Conference

Aoude GS (2011) Threat Assessment for Safe Navigation in
Environments with Uncertainty in Predictability. PhD the-
sis, Massachusetts Institute of Technology, Department of
Aeronautics and Astronautics, Cambridge, MA

Aoude GS, Luders BD, How JP (2010a) Sampling-based
threat assessment algorithms for intersection collisions
involving errant drivers. In: IFAC Symposium on Intel-
ligent Autonomous Vehicles, Lecce, Italy

Aoude GS, Luders BD, Lee KKH, Levine DS, How JP
(2010b) Threat assessment design for driver assistance
system at intersections. In: IEEE Conference on In-
telligent Transportation Systems, Maderia, Portugal, pp
1855–1862

Aoude GS, Luders BD, Levine DS, How JP (2010c) Threat-
aware path planning in uncertain urban environments. In:
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Taipei, Taiwan, pp 6058–6063

Bennewitz M, Burgard W, Cielniak G, Thrun S (2005)
Learning motion patterns of people for compliant robot
motion. International Journal of Robotics Research
24:31–48

Blackmore L (2006) A probabilistic particle control ap-
proach to optimal, robust predictive control. In: AIAA
Guidance, Navigation, and Control Conference (GNC)

Blackmore L, Li H, Williams B (2006) A probabilistic ap-
proach to optimal robust path planning with obstacles. In:
American Control Conference (ACC)

Blackmore L, Ono M, Bektassov A, Williams BC (2010)
A probabilistic particle-control approximation of chance-
constrained stochastic predictive control. IEEE Transac-
tions on Robotics 26(3):502–517

Calafiore GC, Ghaoui LE (2007) Linear programming with
probability constraints – part 1. In: American Control
Conference (ACC)

Deisenroth MP, Huber MF, Hanebeck UD (2009) Analytic
Moment-based Gaussian Process Filtering. In: Interna-
tional Conference on Machine Learning (ICML), Mon-
treal, Canada, pp 225–232

Ding H, Reißig G, Groß D, Stursberg O (2011) Mixed-
integer programming for optimal path planning of robotic
manipulators. In: IEEE International Conference on Au-
tomation Science and Engineering

Probabilistically Safe Motion Planning 25

Earl M, D’Andrea R (2005) Iterative MILP methods for ve-
hicle control problems. IEEE Trans on Robotics 21:1158–
1167

Frazzoli E, Dahleh MA, Feron E (2002) Real-time motion
planning for agile autonomous vehicles. AIAA Journal of
Guidance, Control, and Dynamics 25(1):116–129

Fulgenzi C, Tay C, Spalanzani A, Laugier C (2008)
Probabilistic navigation in dynamic environment using
rapidly-exploring random trees and gaussian processes.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Nice, France, pp 1056–1062

Garey MR, Johnson DS (1979) Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Free-
man, San Francisco, CA, USA

Girard A, Rasmussen CE, Quintero-Candela J, Murray-
smith R (2003) Gaussian process priors with uncertain
inputs - application to multiple-step ahead time series
forecasting. In: Advances in Neural Information Process-
ing Systems, MIT Press, pp 529–536

Henry P, Vollmer C, Ferris B, Fox D (2010) Learning to
navigate through crowded environments. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA)

How JP, Bethke B, Frank A, Dale D, Vian J (2008) Real-
time indoor autonomous vehicle test environment. IEEE
Control Systems Magazine 28(2):51–64

iRobot (2011) iRobot: Education & research robots. URL
http://store.irobot.com/shop/index.
jsp?categoryId=3311368

Joseph J, Doshi-Velez F, Roy N (2010) A Bayesian Non-
parametric Approach to Modeling Mobility Patterns. In:
AAAI

Joseph J, Doshi-Velez F, Huang AS, Roy N (2011) A
Bayesian nonparametric approach to modeling motion
patterns. Autonomous Robots 31(4):383–400

Karaman S, Frazzoli E (2009) Sampling-based motion
planning with deterministic µ-calculus specifications. In:
IEEE Conference on Decision and Control (CDC)

Kuchar JK, Yang LC (2002) A review of conflict detection
and resolution modeling methods. IEEE Transactions on
Intelligent Transportation Systems 1(4):179–189

Kuwata Y, Teo J, Fiore G, Karaman S, Frazzoli E, How
JP (2009) Real-time motion planning with applications to
autonomous urban driving. IEEE Transactions on Control
Systems Technology 17(5):1105–1118

Lachner R (1997) Collision avoidance as a differential
game: Real-time approximation of optimal strategies us-
ing higher derivatives of the value function. In: IEEE
International Conference on Systems, Man, and Cyber-
netics, vol 3, pp 2308–2313

LaValle SM (1998) Rapidly-exploring random trees: A new
tool for path planning. Tech. Rep. 98-11, Iowa State Uni-
versity

LaValle SM (2006) Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K.

Lavalle SM, Sharma R (1997) On motion planning in
changing, partially-predictable environments. Interna-
tional Journal of Robotics Research 16:775–805

Leonard J, How JP, Teller S, Berger M, Campbell S, Fiore
G, Fletcher L, Frazzoli E, Huang A, Karaman S, Koch O,
Kuwata Y, Moore D, Olson E, Peters S, Teo J, Truax R,
Walter M, Barrett D, Epstein A, Maheloni K, Moyer K,
Jones T, Buckley R, Antone M, Galejs R, Krishnamurthy
S, Williams J (2008) A perception-driven autonomous
urban vehicle. Journal of Field Robotics 25(10):727–774

Luders B, How JP (2011) Probabilistic feasibility for non-
linear systems with non-Gaussian uncertainty using RRT.
In: AIAA Infotech@Aerospace Conference, St. Louis,
MO

Luders B, Karaman S, Frazzoli E, How JP (2010a) Bounds
on tracking error using closed-loop rapidly-exploring ran-
dom trees. In: American Control Conference (ACC), Bal-
timore, MD, pp 5406–5412

Luders B, Kothari M, How JP (2010b) Chance constrained
RRT for probabilistic robustness to environmental un-
certainty. In: AIAA Guidance, Navigation, and Control
Conference (GNC), Toronto, Canada

Maile M, Zaid FA, Caminiti L, Lundberg J, Mudalige P
(2008) Cooperative Intersection Collision Avoidance Sys-
tem Limited to Stop Sign and Traffic Signal Violations.
Tech. rep., midterm Phase 1 Report

Mazor E, Averbuch A, Bar-Shalom Y, Dayan J (2002) In-
teracting multiple model methods in target tracking: a
survey. Aerospace and Electronic Systems, IEEE Trans-
actions on 34(1):103–123

Melchior NA, Simmons R (2007) Particle RRT for path
planning with uncertainty. In: IEEE International Confer-
ence on Robotics and Automation (ICRA)

Miloh T, Sharma S (1976) Maritime collision avoidance as
a differential game. Institut fur Schiffbau der Universitat
Hamburg

Rasmussen CE, Williams CKI (2005) Gaussian Processes
for Machine Learning. The MIT Press

Sorenson H (1985) Kalman filtering: theory and application.
IEEE

Tay C, Laugier C (2007) Modelling Smooth Paths Using
Gaussian Processes. In: International Conference on Field
and Service Robotics

Thrun S, Burgard W, Fox D (2005) Probabilistic Robotics.
MIT Press, Cambridge, MA

Trautman P, Krause A (2010) Unfreezing the robot: Navi-
gation in dense, interacting crowds. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS)

Vasquez D, Fraichard T, Aycard O, Laugier C (2008) In-
tentional motion on-line learning and prediction. Machine

http://store.irobot.com/shop/index.jsp?categoryId=3311368
http://store.irobot.com/shop/index.jsp?categoryId=3311368

26 Georges S. Aoude et al.

Vision and Applications 19(5):411–425
Vitus MP, Pradeep V, Hoffmann GM, Waslander SL, Tomlin

CJ (2008) Tunnel-MILP: Path planning with sequential
convex polytopes. In: AIAA Guidance, Navigation, and
Control Conference (GNC), Honolulu, HI

Wu A, How J (2012) Guaranteed infinite horizon avoidance
of unpredictable, dynamically constrained obstacles. Au-
tonomous Robots pp 1–16

Yepes J, Hwang I, Rotea M (2007) New algorithms for
aircraft intent inference and trajectory prediction. AIAA
Journal on Guidance, Control, and Dynamics 30(2):370–
382

Zhu Q (2002) Hidden Markov model for dynamic obstacle
avoidance of mobile robot navigation. IEEE Transactions
on Robotics and Automation 7(3):390–397

Georges S. Aoude is a consul-
tant at the Dallas office of the
Boston Consulting Group. He re-
ceived the B.Eng. degree in Com-
puter Engineering from McGill
University in 2005 and the S.M.
and Ph.D. in Aeronautics and
Astronautics from MIT in 2007
and 2011, respectively. On the
MIT SPHERES team, he designed
spacecraft reconfiguration maneu-
vers performed onboard the ISS.
Research interests include intent
prediction, threat assessment, and
path planning under uncertainty.

Brandon D. Luders is a Ph.D.
candidate in the Department of
Aeronautics and Astronautics at
MIT, is a member of the Aerospace
Controls Laboratory, and partici-
pated in the Agile Robotics for
Logistics program at MIT from
2008-2010. He received his B.S. in
Aerospace Engineering at Georgia
Tech in 2006, and his S.M. in Aero-
nautics and Astronautics at MIT
in 2008. Research interests include
path planning under uncertainty for
autonomous vehicles.

Joshua M. Joseph is a graduate
student in the Department of Aero-
nautics & Astronautics at MIT and
is currently a member of the Com-
puter Science and Artificial In-
telligence Laboratory. He received
a B.S. in Mechanical Engineer-
ing and Applied Mathematics from
Rochester Institute of Technology
and a S.M. from MIT. He is inter-
ested in decision-making under un-
certainty in data-limited, unknown
environments using reduced-order
models and Bayesian nonparamet-
rics.

Nicholas Roy is an Associate Pro-
fessor in the Department of Aero-
nautics & Astronautics at the Mas-
sachusetts Institute of Technology
and a member of the Computer
Science and Artificial Intelligence
Laboratory (CSAIL) at MIT. He
received his Ph. D. in Robotics
from Carnegie Mellon University
in 2003. His research interests in-
clude mobile robotics, decision-
making under uncertainty, human-
computer interaction, and machine
learning.

Jonathan P. How is the Richard
Maclaurin Professor of Aeronau-
tics and Astronautics at MIT. He
received a B.A.Sc. from the U. of
Toronto in 1987 and his S.M. and
Ph.D. in Aeronautics and Astro-
nautics from MIT in 1990 and
1993. Prior to joining MIT in 2000,
he was an Assistant Professor at
Stanford University. Research in-
terests include robust coordination
and control of autonomous vehi-
cles. He is an Associate Fellow
of AIAA, and a senior member of
IEEE.

	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Motion Model
	5 RR-GP Trajectory Prediction Algorithm
	6 RR-GP Demonstration on Human-Operated Target
	7 CC-RRT Path Planning with RR-GP Predictions
	8 Results
	9 Conclusion

