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Abstract The Cox-Merz rule and Laun's rule are two empirical relations that allow the 

estimation of steady shear viscosity and first normal stress difference respectively using small 

amplitude oscillatory shear measurements. The validity of the Cox-Merz rule and Laun's rule 

imply an agreement between the linear viscoelastic response measured in small amplitude 

oscillatory shear and the nonlinear response measured in steady shear flow measurements. We 

show that by using a lesser known relationship also proposed by Cox and Merz, in conjunction 

with Laun's rule, a relationship between the rate-dependent steady shear viscosity and the first 

normal stress difference can be deduced. The new empirical relation enables a priori estimation 

of the first normal stress difference using only the steady flow curve (i. e. viscosity vs shear rate 

data). Comparison of the estimated first normal stress difference with the measured values for six 

different polymer solutions and melts show that the empirical rule provides values that are in 

reasonable agreement with measurements over a wide range of shear rates; thus deepening the 

intriguing connection between linear and nonlinear viscoelastic response of polymeric materials. 
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Introduction: The Cox-Merz rule and Laun's rule 

The empirical Cox-Merz rule (Cox and Merz 1958) which states that  

 
 
η * ω( ) ≅ η γ( ) γ =ω      (1) 

is obeyed by many polymeric melts (Booij et al. 1983, Cox and Merz 1958, Dealy and Larson 

2006, Kulicke and Porter 1980, Laun 1986, Winter 2009) and concentrated polymer solutions 

(Al-Hadithi et al. 1992, Kulicke and Porter 1980, Laun 1986, Yasuda et al. 1981) with a wide 

range of chemical structures and molecular weight. The Cox-Merz rule establishes a connection 

between the complex viscosity η * ω( )measured in an oscillatory frequency sweep (at a fixed 

strain amplitude within the linear viscoelastic regime) and the steady shear viscosity  η γ( ) = σ γ  

measured as a function of shear rate  γ . In 1958, Cox and Merz communicated this empirical 

rule as a Letter to the Editor (Cox and Merz 1958), and in the last fifty years, the rule has been 

widely applied (the letter has over 900 citations) and discussed by a number of researchers 

(Booij et al. 1983, Dealy and Larson 2006, Ianniruberto and Marrucci 1996, Larson 1999, Laun 

1986, Marrucci 1996, Renardy 1997, Winter 2009) and is often used by industrial rheologists for 

obtaining estimates of high shear rate viscosity. The Cox-Merz rule often fails for complex fluids 

that exhibit deformation-dependent microstructure (e.g. for associating polymers, suspensions, 

hydrogen bonding polysaccharides)(Al-Hadithi et al. 1992, Annable et al. 1993, Kulicke and 

Porter 1980, Lapasin and Pricl 1995, Larson 1999), though various extensions of the Cox-Merz 

rule have been proposed for suspensions and thixotropic/yielding materials as well as shear 

thickening materials (Doraiswamy et al. 1991, Gleissle and Hochstein 2003, Mujumdar et al. 

2002, Raghavan and Khan 1997).  
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In their letter, Cox and Merz compared apparent shear viscosity measured in capillary 

extrusion viscometer for two polystyrenes with the complex viscosity measured in oscillatory 

shear. Larson and Dealy note that a computation of true viscosity implies that Cox and Merz 

actually found an equivalence of 
 
η * ω( )  with 

  
η γ = 0.79ω( )  or 

 
η * ω( )  with 

  
ηapp

γ app( )  where 

subscript denotes apparent measure (Dealy and Larson 2006), suggesting that Cox-Merz rule 

defined by eq. (1) is somewhat different from what Cox and Merz found. Though Cox and Merz 

graphically compared 
 
η * ω( )  with the apparent viscosity, the text mentions a comparison was 

carried out with true viscosity (after using the Rabinowitz correction), The authors noted that on 

a log-log plot, the difference between the apparent and true viscosity is no longer perceptible. 

Further, in the second figure of their letter, Cox and Merz compare 
 
η * ω( )  with steady shear 

viscosity data of polyisobutylene-decalin solutions, measured using cone and plate geometry by 

DeWitt and coworkers (DeWitt et al. 1955). Thus eq. (1) is Cox-Merz rule both as defined by the 

authors and as used in practice. Interestingly though, while Cox and Merz used a simplified 

superposition captured by eq. (1), they were motivated by experimental and theoretical 

arguments provided by DeWitt and coworkers (Dewitt 1955, DeWitt et al. 1955, Markovitz 

1975, Padden and Dewitt 1954). Dewitt and coworkers were probably the first to show that the 

suitably normalized
 
η * ω( )  and

 
η γ( )  data can be superimposed on each other. 

In steady shear viscosity measurements carried out on torsional rheometers, concentrated 

polymer solutions and melts exhibit edge fracture at shear rates as low as 10s-1. Though capillary 

extrusion rheometers extend the measurements to comparatively higher shear rates, extrusion 

instabilities limit the overall shear rate range. In such systems, Cox-Merz rule provides valuable 

estimate of viscosity from small amplitude oscillatory shear viscosity measurement. The 
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particular utility of oscillatory shear measurements lie first in the ability to use a smaller sample 

volume compared to conventional capillary rheometers, and second in the great precision and 

wide dynamic range of modern torsional rheometers. However, the nonlinear elastic properties 

manifested as normal stress effects, which lead to rod climbing (Weissenberg 1947), die swell, 

and elastic instabilities, (Barnes et al. 1989, Bird et al. 1987, Harris 1973, Larson 1992, Macosko 

1994, Walters 1975), cannot be directly measured using oscillatory shear measurements.  

In 1986, Laun went on to describe another empirical rule that interrelates the first normal 

stress difference 
   
N1
γ( )  measured using steady shear flow to the storage modulus  ′G ω( )  and 

loss modulus  ′′G ω( )measured in oscillatory shear (Laun 1986):  

   

N1,Laun
γ( )

ω = γ
≅ 2 ′G ω( ) 1+

′G ω( )
′′G ω( )

⎛

⎝
⎜

⎞

⎠
⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

0.7

  (2) 

Laun's rule is found to work for melts and solutions of many commercial polymers 

(polyethylene, polypropylene, polystyrene, polybutadiene) and again emphasizes the relationship 

between the linear and nonlinear response of polymeric fluids (Laun 1986, Winter 2009). The 

present communication is motivated by an intriguing extension of the arguments presented by 

Cox and Merz and by Laun to deduce a relationship between the steady shear viscosity and the 

first normal stress difference. Before describing the new result, we define the notation used to 

represent the various rheological measures in the following section, and then introduce the less-

discussed empirical rules that are also part of the paper where the famous Cox-Merz rule was 

first proposed.  
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Linear and nonlinear viscoelasticity: definitions 

The relevant stress distribution for Non-Newtonian fluids in response to a steady simple 

shear flow given by 
   
vx = γ y, vy = vz = 0  is expressed using three viscometric measures of stress; 

the shear stress 
  
σ xy = σ = η γ( ) γ  and normal stress differences (N1 & N2) defined as follows 

   
σ xx − σ yy = N1

γ( ), σ yy − σ zz = N2
γ( ) . All the other components of the stress tensor are zero. 

The normal stress differences are associated with nonlinear viscoelastic effects, and are 

identically zero for Newtonian fluids and become vanishingly small in linear viscoelastic 

measurements (Bird et al. 1987). They first appear as second order effects, such that 

   
N1
γ( ) = Ψ1

γ 2 , N2
γ( ) = Ψ2

γ 2  where  Ψ1, Ψ2  are called the first and second normal stress 

coefficients respectively (Barnes et al. 1989, Larson 1988). At high shear rates, N1 values can be 

comparable or even larger than the shear stress, σ ; however  N1( γ )  is typically difficult to 

measure for many complex fluid systems and requires very sensitive (and expensive) force 

rebalance transducer technology.  

Laun's relationship provides an approximate relationship between the first normal stress 

difference (N1) and the two components of the complex modulus defined by 

  
G * ω( ) = ′G ω( ) + i ′′G ω( ) , that are measured when a small amplitude oscillatory shear is 

imposed on the sample, with 
  
γ t( ) = γ 0 sinωt  and  γ 0 << 1. The real and imaginary parts of the 

complex modulus represent elastic and viscous contributions and are referred to as the storage 

modulus and loss modulus respectively. Alternatively, the response in oscillatory shear can be 

expressed in terms of the complex viscosity (Gemant 1935), and the components of complex 
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viscosity are given by 
  
η * ω( ) = −iωG * ω( ) = ′η ω( ) − i ′′η ω( ) . The two moduli are related to the 

two viscosities through the expressions   ′′G = ′η ω; ′G = ′′η ω .  

 

The Forgotten Cox-Merz Rules of Elasticity and Consistency 

Interestingly, even though the Cox-Merz rule 
 
η * ω( ) ≅ η γ( ) γ =ω for viscosity is used 

often to extract estimates of steady shear viscosity from the oscillatory shear data, two additional 

empirical rules for the dynamic viscosity and the elastic modulus, also postulated in the original 

article by Cox and Merz (1958) are now largely ignored by the rheological community (to the 

best of our knowledge and based on a survey of many papers and books that invoke the Cox-

Merz rule (Al-Hadithi et al. 1992, Barnes et al. 1989, Bird et al. 1987, Doraiswamy et al. 1991, 

Ianniruberto and Marrucci 1996, Kulicke and Porter 1980, Larson 1999, Laun 1986, Marrucci 

1996, Mead 2011, Venkatraman et al. 1990, Winter 2009, Yasuda et al. 1981)). 

Cox and Merz related the dynamic viscosity ′η ω( )  to a quantity defined as consistency 

  ηc = dσ d γ , i.e. a tangent viscosity that be computed directly from the flow curve measured in 

steady shear. They graphically showed that  

 
′η ω( ) ≅ ηc γ( ) γ =ω        (3) 

The equivalence is shown on the two plots in their 1958 paper that also showed the well-

known equivalence of eq. (1). We refer to this empirical rule as the forgotten Cox-Merz rule of 

consistency.  Booij and coworkers (Booij et al. 1983) considered the internal consistency of the 

two rules originally proposed by Cox and Merz.  By considering a class of integral models that 
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satisfy time-strain factorizability, they showed that to exactly satisfy either rule requires an 

oscillatory and unphysical strain-dependent damping function.  They also showed that it is not 

formally possible to exactly satisfy both the Cox-Merz rule and the forgotten consistency rule at 

the same time.  Nonetheless, experimental data for a range of entangled polymeric materials 

(which are described by molecularly-motivated damping functions of markedly different 

functional form to those determined by Booij et al (Dealy and Larson 2006, Doi and Edwards 

1988, Renardy 1997)) are repeatedly found to be in good agreement with eq. (1). Furthermore, 

Cox & Merz presented results for a polystyrene (PS) melt (Mn = 79 kg/mol, Mw = 340 kg/mol) 

and 13% and 20% solutions of polyisobutylene (PIB) in decalin and found that both eq. (1) and 

the forgotten consistency rule were both equally valid.  

In the original letter, Cox and Merz (Cox and Merz 1958) also introduced the following 

equation for estimation of elastic modulus from steady shear viscosity data:  

   ′G ω( ) ≅ γ η2 −ηc
2( )1 2

      (4) 

Following Cox and Merz, we note that eq. (4) formally follows from the use of the forgotten 

Cox-Merz rule of consistency (eq. (3)) in conjunction with eq. (1) and the identity 

  
η * ω( ) 2

= ′η( )2
+ ′G ω( )2

. While Cox and Merz noted that the measured values of storage 

modulus for polystyrene and high density polyethylene  (HDPE) matched the value obtained by 

using eq. (4), no plots were provided.  

Figure 1 shows a comparison of the frequency dependent storage modulus  ′G ω( )  

measured in small amplitude oscillatory shear (SAOS) and the values computed by using eq. (4) 

for two canonical materials: a commercial polystyrene melt (Larson 1988, Larson 1999, Laun 
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1986, Laun et al. 1979, Macosko 1994) and a concentrated polystyrene/1-chloronapthalene 

(PS/1-CN) solution (Bird et al. 1987, Yasuda et al. 1981). Additional details about experimental 

methods and materials are summarized in Table 1. It is clear from the fig.1 that the estimated 

values, computed using this forgotten Cox-Merz rule for elasticity, are in close agreement with 

the experimentally measured values. 

For calculating the consistency from the experimental data, the rate-dependent viscosity 

was first fit using a Cross model (Cross 1965) 

 
η γ( ) = η∞ +

η0 −η∞

1+ γ γ c( )m
    (5) 

The Cross model incorporates four parameters: the zero shear viscosity η0 , the critical strain rate 

 γ c  and an exponent m were used as fitting parameters; the high shear rate viscosity was taken to 

be either the solvent viscosity for the solutions or alternately set to η∞ = 0 for the melts. Table 1 

lists the fit parameters extracted from the original data in the cited papers.  

 

The first normal stress difference and the AbNormal rule 

An interesting corollary follows if we combine Laun's rule for the first normal stress 

difference (eq. (2)) along with the forgotten Cox-Merz rules for elasticity and consistency (or eq. 

(3) and eq. (4)). This results in a new empirical rule (we call it the AbNormal rule) that can be 

written as follows (using eq. (2) & (3)): 
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N1,AbNormal
γ( ) ≅ 2 γ η2 −η2

c( )0.5
1+

η2 −η2
c( )

η2
c

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

0.7

  (6) 

which then simplifies to the following equation: 

   
N1,AbNormal

γ( ) ≅ 2 γ η 1−
η2

c

η2

⎛

⎝
⎜

⎞

⎠
⎟

0.5
η2

c

η2

⎛

⎝
⎜

⎞

⎠
⎟

−0.7

    (7) 

This expression provides an a priori estimate of the first normal stress difference based 

exclusively on the shape of the steady flow curve 
 
σ γ( ) . Interestingly, eq. (7) involves the ratio 

of the consistency and the steady shear viscosity, which is quite reminiscent to experimental 

rheologists from the correction term    d logσ d log γ ≡ ηc η  that appears in the well-known 

Weissenberg-Rabinowitch-Mooney equation (Macosko 1994) and which is used to calculate the 

true viscosity for non-Newtonian fluids in capillary flow measurements. It must be remarked 

here that the AbNormal rule is limited to shear thinning fluids (with non-zero consistency) and 

cannot be used for estimating the first normal stress difference for dilute solutions, or for 

viscoelastic fluids (like telechelic polymer solutions) that display a single exponential Debye-

Maxwell relaxation, or Boger fluids i.e. elastic fluids engineered to have rate-independent, 

Newtonian viscosity response. 

The N1 data obtained by Laun (Laun 1986, Laun et al. 1979) for three commercial, 

polydisperse polymer melts: HDPE 1, PS and LDPE (closed symbols) are compared to the N1 

values computed using eq. (7) (open symbols) in fig. 2. Also shown (as a dotted line) are the N1 

values estimated by Laun using eq. (2) (in conjunction with small amplitude oscillatory shear 

data). Visually, the measured N1 values seem to be in closer agreement with the Abnormal rule 
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than with Laun's rule. To quantify this, we introduce a parameter S to characterize the goodness 

of the estimate over the entire dataset, defining S by  

  

S = exp
1
k

log N ( j )
1,computed − log N ( j )

1,measured( )2

j=1

k

∑
⎛

⎝
⎜

⎞

⎠
⎟ = exp

1
k

log
N ( j )

1,computed

N ( j )
1,measured

⎛

⎝
⎜

⎞

⎠
⎟

2

j=1

k

∑
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 (8) 

where  
  
N1,computed

( j ) is the jth element of the dataset, computed using eq. (7) at 
  
γ j =ω j  which 

is compared to the corresponding measured value of the first normal stress difference.  A value 

of S = 1 is obtained when the computed values agree exactly with the measured values, and S = 2 

when on an average every computed value is within a factor of two of the measured values. The 

values of S (AbNormal) for each data set are listed in Table 1.  For the melts and solutions that 

follow the Cox-Merz rule (eq. (1)), application of the AbNormal rule consistently estimates the 

measured values of N1 within a factor of two, whereas the corresponding measures from 

application of Laun's rule (obtained by using eq. (2) and plotted as a dotted line in fig. 2a & 2b;) 

are consistently worse than the new rule and correspond to S (Laun) = 3.71 for LDPE, 1.17 for 

HDPE and 3.35 for PS.  

In figure 2b, the measured N1 data (filled circles) for the well-known LDPE Melt I data 

set are compared with values obtained using eq. (7) (hollow circles); again the first normal stress 

difference is approximated better by the AbNormal rule than by Laun’s original rule, even 

through the agreement between the estimated storage modulus,   ′G (ω )  computed using eq. (4) 

(open triangles) and the actual oscillatory data (filled triangles, inset in fig. 2b) is not as good as 

we obtained for the PS melt in fig. 1.   
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We note that the polymeric fluids listed in Table 1 are relatively high molecular weight 

and entangled and have a large polydispersity. Also, a large shear rate or frequency range was 

accessed for these samples by the use of time-temperature superposition (tTs), implying that 

most of the systems described here also exhibit thermorheological simplicity, i.e. molecular 

mechanisms underlying relaxation processes accessed using a range of oscillation frequencies 

show similar temperature dependence (Ferry 1980). Additional comparisons of measured and 

computed N1 values using the new rule of eq. (7) are shown in fig. 3, including the classical data 

from Lodge & coworkers (Lodge et al. 1987) that established that N1 values measured by 

different methods coincide for a PIB/Decalin system. The two datasets acquired by Al-Hadithi 

and coworkers (Al-Hadithi et al. 1992) for a polypropylene copolymer melt and an aqueous 

solution of a polysaccharide called vascarin are also shown. In their paper, these authors (Al-

Hadithi et al. 1992) also proposed an alternate relationship between oscillatory shear 

measurements and N1  (obtained "after much trial and error", and by including zero shear 

viscosity, η0): 

   
N1,AhBW

γ( ) ≅ 2 ′G ω( ) 1+
η0 + ′η( ) ′G ω( )

2ω ′η 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

0.5

          (9)  

It is possible to again invoke the forgotten Cox-Merz rules of elasticity and consistency and write 

an alternate version of eq. (9) to estimate the first normal stress difference from the steady flow 

curves, but a quantitative comparison of the datasets listed in Table 1 over extended shear rate 

range, show that the AbNormal rule (based on Laun's rule) gives uniformly better agreement 

with the experimental data (i.e. lower values of S) than eq. (9).   
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Discussion and Outlook 

The validity of the Cox-Merz rule, Laun's rule and the AbNormal rule (eq. (7)) all imply 

an interconnection between the linear viscoelastic response measured in small amplitude 

oscillatory shear and the nonlinear viscometric response measured in steady shear flow. Normal 

stress measurements are relatively difficult to perform and the dynamic range of deformation 

rates accessible is typically limited (due to the quadratic scaling of the measured normal force 

with imposed shear rate). By contrast, measurements of the complex viscosity/modulus (in 

oscillatory shear) or steady flow curves are now relatively straightforward with modern 

rheometric instrumentation, are far more accurate and can be performed over a very wide 

dynamic range. This new rule may thus find applicability in making a priori estimates of the 

relative magnitude of the first normal stress difference from knowledge of the flow curve of a 

polymeric material. While complex correlations (based on complicated memory kernels and/or 

constitutive equations) that relate first normal stress difference to steady shear viscosity data 

exist in literature (Stastna and Dekee 1982, Wagner 1977); eq. (7) presents the simplest, 

constitutive model-independent estimate of the first normal stress difference.   

Linear viscoelasticity describes the response to small amplitude deformations under 

conditions where the imposed strain causes only vanishingly small chain stretch and increase in 

local segmental orientation (Dealy and Larson 2006). By contrast, the appearance of elastic 

normal stresses and the onset of shear thinning in steady shear flow both arise from the distortion 

of the microstructure or in a change in the effective drag acting on chain segments (this is 

typically diminished as the chains deform and orient with flow). Connecting the underlying 

polymer physics of non-linear viscoelasticity (which is dominated by dynamics such as chain 

orientation and convective constraint release) to linear viscoelasticity (which is a result of 
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diffusive dynamics) is still an unresolved challenge that has attracted much theoretical attention 

(Ianniruberto and Marrucci 1996, Marrucci 1996, Mead 2011, Milner 1996).  An important 

recognition is that measurements of the nonlinear rate-dependent shear viscosity include both a 

dissipative contribution and also a contribution related to the effective recoverable strain (i.e. a 

manifestation of elasticity), as described by Laun (Laun 1986), and others (Barnes et al. 1989, 

Cross 1979, Doraiswamy et al. 1991, Mead 2011). The challenge is to describe the time-

dependent and strain-dependent contributions to the relaxation modulus (and the corresponding 

memory function) in a self-consistent manner to capture both linear and nonlinear effects, and 

relate these contributions to constitutive equations based on either continuum mechanics (Bird et 

al. 1987, Larson 1988) or molecular viscoelasticity (Doi and Edwards 1988).  

The canonical model for consistently capturing the first onset of nonlinear viscoelastic 

effects is the Third Order Fluid (Bird et al. 1987) in which the shear stress and first normal stress 

difference in steady simple shear flow are given respectively by 

 

σ yx = b1 γ − 2(b12 − b1:11) γ
3 +O( γ 5 )...

σ xx − σ yy = −2b2 γ
2 +O( γ 4 )...                                          

(9) 

It is well known that the material coefficients that appear at first and second order interconnect 

the viscometric properties and moments of the linear viscoelastic relaxation spectrum; 

b1 ≡ η0 = G(s)ds∫  and −2b2 ≡ Ψ10 = sG(s)
0

∞
∫ ds  (Bird et al. 1987). It can also be shown that 

the grouping of coefficients (b12 − b1:11) > 0  (Bird et al. Chap 6) and this term describes the first 

onset of shear-thinning in steady shear flow.  From the definitions of the viscosity and the 

consistency it is clear that at third order  ηc ≤ η( γ ) . Substituting the expressions in eq. (10) into 
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(respectively) the righthand and lefthand side of eq. (7) we obtain, at leading order (within the 

domain of validity of this model (Bird et al. 1987)) 

 Ψ10 γ
2 ≅ 4 2η0(b12 − b1:11)( )1/2 γ 2                                          (10) 

The Abnormal rule thus encompasses the correct quadratic asymptotic scaling at low shear rates 

that is expected theoretically for a simple fluid and that is also observed in the experimental data 

sets shown in Figs 1, 2.  Validity of the rule also implies a new interrelationship (given by 

−2b2 = 4 2b1(b12 − b1:11)( )1/2 ) between all of the independent material coefficients obtained at 3rd 

order in the Ordered Fluid expansion.   

Looking ahead, a deeper understanding of the relationship between steady shear viscosity 

and material measures of the rheological response in large amplitude oscillatory shear (LAOS) is 

likely to provide the basis for distinguishing strain-dependent and time-dependent effects that 

simultaneously contribute to the rate-dependence of the shear viscosity and the first normal stress 

difference and to any interconnections between the three viscometric measures. Indeed very 

recently Giacomin and coworkers (Giacomin et al. 2011) have shown that for the corotational 

Maxwell model the Cox-Merz rule is not obeyed; but instead a nontrivial alternate expression is 

obtained;  

 
η * (ω ) η0 ω→ γ = η( γ ) η0        (12) 

We note that the eq. (12) given above should replace the eq. (87) in the paper by 

Giacomin and coworkers(Giacomin et al. 2011), as η0 is required in denominator on the both 

sides (in eq. (87) of their paper) to make the equation dimensionally consistent. Much closer 

agreement with the Cox-Merz rule is recovered, however, when the co-rotational Maxwell model 
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is generalized to include a spectrum of relaxation times (Giacomin et al. 2011). This model is 

arguably the simplest canonical nonlinear viscoelastic equation of state that incorporates linear 

viscoelasticity, rheological invariance as well as shear-thinning material functions. It will be 

interesting to explore more complex constitutive models derived from both continuum 

mechanics and from molecular theory within the LAOS framework. 

We expect that the use of the forgotten Cox-Merz rule of elasticity to obtain G' from 

steady shear viscosity data (eq. (3)) and the new AbNormal rule, eq. (7), for estimating N1 from 

steady shear data will be successful only for a limited class of fluids (i.e. entangled polymer 

melts/solutions) in which both the Cox-Merz rule and Laun's rule are valid. Yet as an 

experimentally-motivated correlation, the use of the forgotten Cox-Merz rule of elasticity is 

arguably just as justified as the use of the conventional Cox-Merz rule or Laun's rule; and 

quantitative comparison shows that it performs equally well (cf. fig. 1). Furthermore, the 

AbNormal rule that directly follows from combining these well-tested rules can be used for 

estimating the first normal stress difference with a simple measurement of the steady flow curve 

  
σ xy =η γ( ) γ . The apparent validity of the AbNormal rule documented in the present work is an 

interesting and intriguing result, and we hope our note will stimulate further comparisons and 

discussions.  
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Table 1: Summary of the molecular weight and molecular weight distribution of polymers, 

corresponding measurement techniques and conditions, Cross model parameters corresponding 

to each system and reference(s) corresponding to each dataset. 

Material 
Mw, Mw/Mn 

Method & comments Cross Model 
parameters,  
η0,  γ c  m 

S 
(Laun) 
eq. 2 

S  
  
eq. 7 

Ref. 

LDPE Melt 1 
Mw = 460 kg/mol 
Mw/Mn = 22 
T = 150 oC, tTs  

N1 & η with WRG, RSR; CR  53079.95 Pa s 
0.57 s-1 
0.74 

3.7 1.86 
 
 

(Laun 1986) 

HDPE I 
Mw = 98 kg/mol 
Mw/Mn = 10 
T = 150 oC 
 

N1 & η with WRG, RSR; 
Capillary rheometer (plus tTs) 

7215.08 Pa s 
0.31 s-1 
0.50 

1.17 1.13 
 
 

(Laun 1986) 

PS II 
Mw = 240 kg/mol 
Mw/Mn = 2.76 
T = 170 oC, tTs 

 

N1 & η with WRG, RSR; CR  98827.04 Pa s 
0.16 s-1 
0.67 

3.35 1.75 
 
 

(Laun 1986, 
Laun et al. 
1979) 

PS (Linear) in 1-
Chloronaphthalene (1-
CN) 
Mw = 2000 kg/mol 
Mw/Mn = 1.3 
T = 25 oC, tTs 
c/c* = 66; 0.15 g/ml  
 

G', G": eccentric rotating disk 
on (RMS) 
η: C&P on RMS; IRR; CR  

1587.29 Pa s 
0.63 s-1 
0.85 

- - (Yasuda et al. 
1981) 

Polyisobutylene in 
Decalin 
Mw = 400 kg/mol 
T = 21-25 oC 
c = 10 wt % 
 

N1 &  η  with C&P on WRG; 
PPG: TSR; Slit die on Lodge 
Stressmeter  

3.11 Pa s 
175.44 s-1 
0.57 

- 1.51 (Lodge et al. 
1987) 

Viscarin in distilled 
water 
c = 2% 
T = 20 oC 

C&P (3.75 cm / 1.5o & 1.25 cm/ 
2o) on WRG, model R 16  

4.22 Pa s 
3.03 s-1 
0.57 

- 1.89 (Al-Hadithi et 
al. 1992) 

PP copolymer melt 
T = 260oC 
 

C&P (3.75 cm / 1.5o & 1.25 cm/ 
2o) on WRG, model R 16 

386.053 
510.2 s-1 
0.53 

- 1.8 (Al-Hadithi et 
al. 1992) 

C&P: Cone and Plate; Weissenberg Rheogoniometer (WRG); Rheomatrics Mechanical Spectrometer (RMS); 
Rheometrics Stress Rheometer (RSR); Instron Rotatory Rheometer (IRR), tTS: time Temperature superposition 
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Figure 1 Comparison of storage modulus (filled squares) measured by Laun (replotted from 
(Laun, 1979, 1986)), and by Yasuda et al (replotted from Yasuda et al, 1981) in oscillatory shear 
and the values computed using the forgotten Cox-Merz rule of elasticity (eq. (4)), using steady 
shear viscosity data from the quoted papers. 
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Figure 2 Measured first normal stress difference data (filled symbols) is compared to the values 
(open symbols) computed using the AbNormal Rule (eq. (7)) using Laun's data (adapted from 
Laun, 1986 and Laun, 1979). Laun's formula that uses oscillatory shear data is also shown (as 
dotted line. (a) Comparison of N1 values (measured, Laun's rule, AbNormal rule) for PS and 
HDPE melts. (b) Comparison of the corresponding N1 values for LDPE is shown with an inset 
plot that compares the measured (filled triangles) and computed values (open triangles) of  ′G  
(the x-axis in inset has same label as x-axis on the main plot). 
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Figure 3 Measured first normal stress difference data (filled symbols) is compared to the values 
(open symbols) computed using the AbNormal Rule (eq. (7)); using data reported by Lodge et al 
(1987) and Al-Hadithi et al (1992) (see text and Table 1 for details). 
 
 
 
 
 
 
 
 
 


