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Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model,
are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH)
systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the
two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The
dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850)
and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing
to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such de-
pendence has been largely suppressed. In the studies of coupled-ring systems, both methods re-
veal an interesting role of dipolar interactions in increasing energy transfer efficiency by introduc-
ing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton
transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-
ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads
to global and local minima of the average trapping time in the presence of a non-zero dephas-
ing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer
when the perfect circular symmetry in the hypothetic system is broken. This study reveals that
dipolar coupling between chromophores may play an important role in the high energy transfer
efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729786]

I. INTRODUCTION

An essential photochemical process in plants and pho-
tosynthetic bacteria is light-harvesting (LH), in which solar
photons are first absorbed by antenna complexes (also known
as the antenna protein), and the resulting excitonic energy
is transferred with a high efficiency to specialized pigment-
protein complexes or the reaction centers. In a photosynthetic
system of bacteriochlorophylls aggregates embedded in pro-
tein scaffolds, it has been suggested that the protein envi-
ronment plays a critical role in protecting excitonic coher-
ence, and consequently, facilitating coherent energy transfer.
The entire process of coherent energy transfer takes place in
a very short period of time, from a few hundred femtosec-
onds to a few picoseconds. Recent studies have shown that
the efficiency of energy transfer from antenna pigments to the
reaction centers is remarkably high (e.g., >95%).1–3 Such a
high efficiency of energy transfer has inspired the designs of
efficient artificial systems to convert solar energy into other
forms. However, an acute lack of reliable simulation tech-
niques and theoretical tools for understanding the exact mech-
anisms of long time quantum coherence in such systems hin-
ders the realistic application of the highly efficient energy
transfer in artificial systems. Currently, the Förster resonance
energy transfer (FRET) theory, based on weak electronic cou-
pling approximation, and the Redfield equation, based on

a)Electronic mail: YZhao@ntu.edu.sg.

the Markovian approximation, are the two commonly applied
methods to deal with the energy transfer processes in these
complexes. The classical Förster theory treats electronic cou-
pling perturbatively and also assumes the incoherent hop-
ping of exciton between single donor and acceptor induced
by point dipole-dipole interaction of transition dipoles4 of the
chromophores. Assumption of point dipole is inadequate in
describing pigments’ aggregation, which results in the break-
down of the approximation.5 To overcome the drawback of
the point-dipole approximation, Jang et al.6–10 developed a
muti-chromophore version of FRET theory, which can be ap-
plied to cope with the transfer pathway interference that is
not accounted for in earlier FRET treatments. However, when
the electronic coupling is strong but the system-bath coupling
is weak, it is necessary to consider relaxation of delocalized
exciton states. In this limit, the dynamics of exciton energy
transfer (EET) can be described by the coupled Redfield equa-
tions in the exciton basis.11–14 The Redfield equations, on the
other hand, are applicable in the weak exciton-phonon cou-
pling limit where the problem can be treated perturbatively.
More importantly, in the Redfield equation,15 the bath de-
gree of freedom has been projected out to obtain a reduced
master equation for the density matrix evolution under the
Markovian approximation. However, for a realistic photosyn-
thetic system, the exciton-phonon coupling is not negligible,
and the Markovian approximation is a poor one in describ-
ing the bath behavior since the typical phonon relaxation time
scale is quite long. Recently, much work has been devoted to

0021-9606/2012/136(24)/245104/17/$30.00 © 2012 American Institute of Physics136, 245104-1
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circumvent the difficulties in the traditional methods, and
the efforts include the method of hierarchy equations,16–19

the linearized density matrix approach based on path
integral,15, 20–22 and quantum master equations using polaron
transformations.23–28

In purple bacteria, the antenna complexes have highly
symmetric multi-ring structures,29–31 which are the subject
of numerous studies regarding the mechanism underlying the
highly efficient energy transfer processes.3, 32–37 Photons are
absorbed mainly by the peripheral antennae complex LH2 of
purple bacteria, where the photo-generated excitons are sub-
sequently transferred to the reaction center within the harvest-
ing complex LH1 in a few picoseconds.38 The LH2 complex
is an eight-unit circular aggregate built from αβ-heterodimers
forming C8 symmetry.29, 30 Each unit contains a pair of
α and β apoproteins, three bacteriochlorophylls-a(BChls-a)
molecules, and a carotenoid, and the BChl-a molecules form
two rings named according to their corresponding absorp-
tion maxima at 800 nm and 850 nm as the B800 and B850
rings, respectively. The B850 ring consists of 16 tightly po-
sitioned BChls-a, with the Mg-Mg distance about 9.36 Å for
the 1α–1β dimer, and about 8.78 Å for the 1α–1β dimer.33

There are many studies on the mechanism behind these highly
efficient photosynthetic processes.3, 32–37 In Ref. 39, optimal
energy transfer conditions in linear and nonlinear systems
were analyzed, and a similar approach was recently applied
to self-assembling light-harvesting arrays40 to study optimal
efficiency. For the antenna complexes of purple bacteria, en-
ergy transfer dynamics in LH1 and LH2 rings is inadequately
understood, and questions regarding how dipolar interactions,
symmetry of the ring and inter-ring coupling etc., affect the
energy transfer efficiency remain unanswered.

Inspired by previous studies, in this work, we study in de-
tail the effect of intra-ring dipolar interactions, ring geometry
and symmetry, and more importantly, inter-ring distances in
determining EET. As a starting point of understanding EET
events, two approaches have been adopted to investigate var-
ious light-harvesting complexes in purple bacteria. For the
low-temperature exciton dynamics, we use the Frenkel-Dirac
time-dependent variational method to simulate the quan-
tum dynamics of the Holstein polaron via the Davydov D1

Ansatz, while for the high-temperature dynamics and trans-
fer efficiency calculations, the Haken-Strobl model,41 equiv-
alent to the Redfield equation at high temperatures, has been
employed.

The rest of the paper is organized as follows. In Sec. II,
the Hamiltonian is introduced, and the methodology to estab-
lish possible optimal conditions and understand energy trans-
fer dynamics in ring systems is elaborated. The effect of var-
ious parameters, including dynamic disorder due to coupling
to phonons and dephasing due to inclusion of environment, on
the optimal energy transfer efficiency in photosynthetic sys-
tems is discussed in detail in Sec. III. Finally, the conclusions
are drawn in Sec. IV.

II. METHODOLOGY

Two approaches are adopted to study the energy transfer
process in the light-harvesting apparatus of the purple bac-

teria, the Frenkel-Dirac time-dependent variational method
making use of the Holstein model, which can be generally re-
garded as a low-temperature treatment, and the Haken-Strobl
method applicable to high-temperature scenarios.

A. Hamiltonian

The Holstein Hamiltonian for the exciton-phonon system
reads42, 43

Ĥ = Ĥex + Ĥph + Ĥex−ph (1)

with

Ĥex = −J
∑

n

â†
n(ân+1 + ân−1), (2)

Ĥph =
∑

q

ωqb̂
†
q b̂q , (3)

Ĥex−ph = − 1√
N

∑
n

∑
q

gqωqâ
†
nân(b̂qe

iqn + H.c.), (4)

where â
†
n (ân) is the creation (annihilation) operator for an

exciton at the nth site, J is the exciton transfer integral,
b̂
†
q (b̂q) is the creation (annihilation) operator of a phonon with

momentum q and frequency ωq, and the Planck’s constant is
set as ¯ = 1. Ĥex−ph is the linear, diagonal exciton-phonon
coupling Hamiltonian with gq as the coupling constant, with∑

q g2
qωq = Sω0. Here S is the well-known Huang-Rhys fac-

tor, and ω0 is the characteristic phonon frequency, which is
set to unity in this paper for simplicity. It is noted that in
this method, phonon dispersions in the Hamiltonian can have
various forms to describe many phonon branches of differ-
ent origins. For example, a linear phonon dispersion with ωq

= ω0[1 + W (2|q|/π − 1)] may be adopted, where W is a
constant between 0 and 1, and the bandwidth of the phonon
frequency is 2Wω0. Furthermore, other forms of exciton-
phonon coupling can also be included, demonstrating the
capability of the current approach in imitating the phonon
spectral density obtained with methods such as molecular
dynamics.44

For a multiple-ring system, by assuming only exciton
transfer integral and dipolar interaction between rings, the
original Holstein Hamiltonian can be modified as

Ĥ ′
ex =

∑
r1r2

∑
nm

J r1r2
nm âr1†

n âr2
m, (5)

where r1 = 1. . . Nring and r2 = 1..Nring label a pair of rings
(with total number of Nring rings) if r1 �= r2, and the summa-
tion is over all rings. However, if r1 = r2, Eq. (5) becomes

Ĥ ′′
ex =

∑
r

∑
nm

J r
nmâr†

n âr
m, (6)

where r again runs from 1 to Nring. For each ring, the ex-
citon Hamiltonian takes the form of the Frenkel exciton
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Hamiltonian with Jnm given by45

Jnm=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 J1 W1,3 · · · J2

J1 ε2 J2 · · · W2,2N

W3,1 J2 ε1 · · · ·
· · · · · · ·
· · · · ε2 J2 W2N−2,2N

· · · · J2 ε1 J1

J2 · · · W2N,2N−2 J1 ε2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)
where ε1 and ε2 are the on-site excitation energies of an in-
dividual BChl-a, J1 and J2 are the transfer integral between
nearest neighbors, N equals 8 as the system is of C8 sym-
metry, and matrix elements Wi,j are the dipolar coupling for
the non-nearest neighbors. The dipolar coupling between site
i and site j takes the form

Wi,j = C

[
di · dj

|rij |3 − 3(di · rij )(dj · rij )

|rij |5
]
, (8)

where C is the proportionality constant, rij is the vector con-
necting the ith and jth monomers, and di are the unit vectors of
the ith BChl-a. In our calculations in this work, the following
parameters33 are adopted: J1 = 594 cm−1, J2 = 491 cm−1,

and C = 640725 Å3 cm−1. When the Jnm matrix is applied
to the polaron dynamics calculations, it must be scaled by
the characteristic phonon frequency ω0. The Mg-Mg distance
between neighboring B850 BChls is 9.2 Å within the αβ-
heterodimer and 9.25 Å between neighboring heterodimers.
For simplicity, the α and β proteins are assumed to be evenly
distributed with a distance of 9.25 Å.

For multiple-ring systems, the phonon and exciton-
phonon interaction Hamiltonian can be described as

Ĥ ′
ph =

∑
r

∑
q

ωr
q b̂

r†
q b̂r

q , (9)

Ĥ ′
ex−ph = − 1√

N

∑
r

∑
n

∑
q

gr
qω

r
q â

r†
n âr

n(eiqnb̂r
q + H·c·),

(10)
where r is summed over 1 to Nring. b̂

r†
q (b̂r

q) is the creation
(annihilation) operator of a phonon with momentum q and
frequency ωr

q in the rth ring. Similar to the single-ring case,
we can obtain the Huang-Rhys factor S from

∑
q(gr

q)2ωr
q

= Sω0. It is clearly shown in the formalism that the phonons
in different LH2 rings are completely independent of each
other in the current treatment.

B. Polaron dynamics in LH2 systems

The family of the time-dependent Davydov Ansätze, i.e.,
the D1, D̃, and D2 trial states, can be written in a general form
as

|�D(t)〉 =
∑

n

αn(t)â†
nÛ

†
n(t)|0〉ex|0〉ph, (11)

where αn(t) are the variational parameters representing exci-
ton amplitudes, and Û

†
n(t) is the Glauber coherent operator

Û †
n(t) ≡ exp

{ ∑
q

[λn,q(t)b̂†q − H.c.]

}
. (12)

For the D1 Ansatz, λn, q(t) are N × N variational parameters
representing phonon displacements. The D2 and D̃ Ansätze
are two simplified cases of the D1 Ansatz. In the D2 Ansatz,
λn, q(t) are replaced by N independent variational parameters
βq(t), i.e., λn, q(t) = βq(t). While in the D̃ Ansatz, λn, q(t) are
replaced by 2N − 1 variational parameters λ0(t), βq �= 0(t),
and γ q �= 0(t), where λn, q = 0(t) = λ0(t), and λn, q(t) = βq(t)
+ e−iqnγ q(t), q �= 0.

The time evolution of the photo-excited state in a one-
dimensional molecular aggregate follows the time-dependent
Schrödinger equation. There are several approaches to solve
the time-dependent Schrödinger equation. In the Hilbert
space, for example, the time-dependent wave function |
(t)〉
for the Hamiltonian Ĥ is parameterized by a set of time-
dependent variables αm(t) (m = 1, . . . , M):

|
(t)〉 ≡ |{αm(t)}〉. (13)

Assuming that |
(t)〉 satisfies the time-dependent
Schrödinger equation, one has

i
∂

∂t
|
(t)〉 = Ĥ |
(t)〉. (14)

Explicitly putting in the Hamiltonian Ĥ of Eq. (1) and writing
∂|
(t)〉/∂t in terms of αm(t) and their time-derivatives α̇m(t)
(m = 1, . . . , M), one obtains(

i
∂

∂t
− Ĥ

)
|
(t)〉 = |{αm(t)}, {α̇m(t)}〉 = 0. (15)

Projecting Eq. (15) onto M different states |�m〉 (m = 1, . . . ,
M), one obtains M equations of motion for the parameters
αm(t):

〈�m|{αm(t)}, {α̇m(t)}〉 = 0. (16)

The approach we adopt in this work is the Lagrangian
formalism of the Dirac-Frenkel time-dependent variational
method,46 a powerful technique to obtain approximate dy-
namics of many-body quantum systems for which exact so-
lutions often elude researchers. We formulate the Lagrangian
L as follows:

L = 〈
(t)| i¯
2

←→
∂

∂t
− Ĥ |
(t)〉. (17)

From this Lagrangian, equations of motion for the M func-
tions of time, parameters αm(t), and their time-derivatives
α̇m(t) (m = 1, . . . , M), can be obtained by

d

dt

(
∂L

∂α̇∗
m

)
− ∂L

∂α∗
m

= 0. (18)

Furthermore, to better elucidate the correlation between the
exciton and the phonons, the phonon displacement ξ n(t) is in-
troduced and defined as

ξn(t) ≡ 〈�D(t)| b̂n + b̂
†
n

2
|�D(t)〉, (19)

where b̂
†
n = N−1/2 ∑

q e−iqnb̂
†
q . The reader is referred to Ap-

pendix A for discussions on the precision of the Davydov
trial states (defined as (t)) and Appendix B for detailed
derivations of equations of motion for polaron dynamics in
a multiple-ring system.
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Applicability of the time-dependent variation approach
to an exciton-phonon system has been tested systematically
for a wide range of control parameters. The readers are re-
ferred to Refs. 48 and 49 for details, where it is shown that
the D1 trial state has the best performance judging from the
relative magnitude of the deviation vector (with the exact so-
lution of the Schrödinger equation as the reference), a quan-
tity characterizing the trial-state accuracy. It is noted that our
polaron dynamics simulation is a Hamiltonian approach, and
as such, it is performed in a microcanonical ensemble, which
is at variance with other methods. On the other hand, exci-
tonic energy transfer in realistic photosynthetic complexes of-
ten takes place in a rather short period of time (∼ hundreds of
fs).38 Therefore, there is insufficient time to reach a full ther-
mal equilibrium in those systems, as pointed out by a number
of authors.52–54 It is therefore interesting to compare a Hamil-
tonian approach to various other methods, which are often
constructed using canonical ensembles.

To have a better comparison with the other approach in
this work, the Haken-Strobl method, it is beneficial to intro-
duce an additional term describing simple excitonic trapping.
As trapping is intrinsically dissipative, such a term will have
to be non-Hermitian. A trapping matrix γ̂ is therefore added
to the Holstein Hamiltonian to characterize the excitonic trap-
ping process and estimate the efficiency of exciton transfer. If
we know the population on site n, then the average trapping
time τ n, which characterizes the transfer efficiency, can be
obtained as

τn =
∫ ∞

0
ρnn(t)dt, (20)

where ρnn(t) are the diagonal elements of the reduced exciton
density matrix ρ(t) defined as

ρ(t) = Trph[|�D(t)〉〈�D(t)|]. (21)

The reader is referred to Appendix C for further derivation
details. Similar expressions for the trapping time will be
derived when the Haken-Strobl model is introduced in
Subsection II C.

C. The Haken-Strobl model

The second approach applied to the LH1/LH2 complexes
in this work is the Haken-Strobl model, which has been
previously used to describe the exciton dynamics in Fenna-
Matthews-Olson (FMO) (see, e.g., Ref. 39). We start with the
Liouville equation for the exciton density matrix ρ

ρ̇(t) = −Lρ(t)

= −[Lsys + Ldissip + Ldecay + Ltrap]ρ(t). (22)

Here Lsys is the free evolution super-operator of the pure ex-
citon system, and can be written as Lsys = i[H, ρ]/¯, where
[H]nm = (1 − δnm)Jnm + δnmεn with Jnm the excitonic cou-
pling between site n and site m, and ε the site energy. Ldissip

represents the dephasing and population effects within the ex-
citon manifold. For the convenience of analysis, the coupling
to the environment is given by the standard Bloch-Redfield
equation, which can be written as [Ldissip]nm = (1 − δnm�nm),

where � is the pure dephasing rate. Ldecay represents the de-
cay of the exciton to the ground state and can be expressed
as [Ldecay]nm = (kd,n + kd,m)/2 with kd, n the decay rate on
site n. Ltrap represents the trapping rate, and can be described
as [Ltrap]nm = (kt,n + kt,m)/2 with kt, n the trapping rate on
site n.

In fact, among Ldecay and Ltrap, which represent two pos-
sible channels for irreversible exciton energy loss, the former
is ineffective in the energy transfer. Efficiency of energy trans-
fer can be gauged by the quantum yield q, namely, the trap-
ping probability,37

q =
∑

n kt,nτn∑
n kt,nτn + ∑

n kd,nτn

, (23)

where the mean residence time τ n can be expressed as τn

= ∫ ∞
0 ρn(t)dt , and the population ρn = ρnn is the diagonal

element of the density matrix. In photosynthetic systems, k−1
t

is on the order of ps and k−1
d is on the order of ns, so the

trapping rate is much larger than decay rate, and the quantum
yield is close to unity. The quantum yield can then be approx-
imated as q ≈ (1 + kd〈t〉)−1, where 〈t〉 = ∑

nτ n is the mean
first passage time to the trap state without the presence of the
constant decay, i.e., the average trapping time. Quantum yield
and trapping time have been extensively studied in the context
of molecule photon statistics39 and experimental investigation
was also carried out in a photosynthetic system.47 A shorter
trapping time corresponds to a higher efficiency of exciton
transfer.

III. RESULTS AND DISCUSSION

A. Polaron dynamics in LH2 systems

With the aid of the Frenkel-Dirac time-dependent varia-
tional method, a hierarchy of variational wave functions has
been previously formulated to faithfully describe the dynam-
ics of the Holstein polaron.48, 49 The accuracy of the Davydov
Ansätze has been discussed in length in Refs. 48 and 49, and
it has been shown that for diagonal exciton-phonon coupling,
the D1 Ansatz has the highest precision in the hierarchy of
the Davydov trial states when applied to the solution of the
Holstein Hamiltonian. The increase in the precision of the
D1 Ansatz is achieved mainly by the improved sophistication
of the phonon wave function.48, 49 Such increased sophistica-
tion plays a dramatic role especially in the weak and moder-
ate coupling regime, where the plane-wave-like phonon com-
ponents render it impractical to use a simple linear superpo-
sition of phonon coherent states. The vastly increased num-
ber of variational parameters for the phonon wave function
ultimately results in the higher precision of the D1 Ansatz,
which can be applied reliably to the detailed excitonic energy
transfer dynamics in the LH2 system (with a known moderate
value of Huang-Rhys factor as 0.5).

We first apply the approach to an excitonic polaron evolv-
ing in an isolated LH2 ring. To assure the accuracy of our
approach, the D1 Ansatz has been chosen to deal with the dy-
namics in this paper. For a case of a wide phonon bandwidth
(W = 0.8) and a moderate exciton-phonon coupling strength
(S = 0.5), the time evolution of exciton probability |αn(t)|2
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and phonon displacement ξ n(t) in the presence of only near-
est neighbor transfer integral have been displayed in Figs. 1(a)
and 1(b). The polaron state is initialized as follows: αn(0)
= δn, 8 and λn, q(0) = 0. The corresponding dynamics with re-
alistic LH2 transfer integral matrix [cf. Eq. (7)] has been given
in Figs. 1(c) and 1(d). Time-dependent exciton and phonon
energies as well as the magnitude of deviation vector (t) for
both cases are plotted in Fig. 1(e). For all calculations, a char-
acteristic phonon frequency of ω0 = 1670 cm−1 and a Huang-
Rhys factor of S = 0.5 are chosen.51 The phonon frequency
obtained from molecular dynamics simulation is related to the
stretching mode in either a C=O bond, or a methine bridge.

It is important to compare calculated absorption spectra
with measured ones in order to further validate our approach
and lend support to our simulation of excitation transfer dy-
namics in a photosynthetic complex. Linear absorption spec-
tra are calculated, and compared to measured ones in Fig. 2.
Detailed derivations for absorption spectral calculations can
be found in Refs. 48 and 49. It is noted that results from our
approach can also be compared to those from Ref. 50. Mea-
sured data for B850 complexes are obtained from Ref. 55.
Reasonable agreement is found between theory and experi-
ment, pointing to the applicability of our model to the B850
ring for the parameter set chosen. We note that although the
long tail shown in the measured spectrum is roughly repro-
duced by our approach, the agreement is only qualitative, and
better understanding of the phonon sidebands is needed.

Owing to the aforementioned higher accuracy of the D1

Ansatz as recorded in Refs. 48 and 49 in comparison with
other trial states, as shown in Fig. 1(e), it is therefore an ideal
candidate for the study of excitation dynamics of the LH2
system. The real LH2 system contains pigments that inter-
act via long-range dipolar couplings as given by the pure ex-
citon Hamiltonian Eq. (7). By including dipole-dipole inter-
actions into the Hamiltonian, the accuracy for the D1 Ansatz
has to be rechecked and compared to that for a model system
with nearest neighbor coupling only. A first step toward the
accuracy checkup is the comparison of polaron dynamics in
Figs. 1(a)–1(d), where dramatic changes can be found as a
result of dipolar interactions.

In contrast to the case with only nearest neighbor J shown
in Figs. 1(a) and 1(b), many new features have emerged in
Figs. 1(c) and 1(d). One major finding is that the inclusion
of realistic dipolar interactions in the LH2 system breaks the
symmetry of the ring structure, resulting in asymmetric and
faster exciton dynamics compared to the model system with
only nearest neighbor J. Such an effect can be related to an
emergence of additional energy transfer paths when dipolar
interactions are included. Although the dynamics here does
not contain the coupling to the external heat bath, the essential
physics is captured to a great extent. It is worth noting that in
Figs. 1(b) and 1(d), during the time evolution of phonon dis-
placements ξ n(t), the dominant V-shaped feature survives the
change of the exciton Hamiltonian from nearest neighbor J to
a realistic matrix of Jnm. This can be explained as follows: the
phonon dynamics of the system is not only determined by the
coupling between the exciton and the phonons, but also has its
own propagation pattern, determined by the linear dispersion
relationship given earlier. As a result, once the excitation on

site 8 starts to propagate as shown in the exciton dynamics,
the strong lattice distortion in the vicinity of the excitation
will also propagate. Moreover, the effect of the exciton on
phonon dynamics becomes apparent by comparing Figs. 1(a)
and 1(b), where an exact correspondence between the exciton
and phonon dynamics can be found. However, the moderate
value of exciton-phonon coupling strength S implies that the
exciton generated on site 8 can easily propagate through a
larger distance similar to a bare exciton.

More interestingly, the revival and localization phe-
nomenon shown in Fig. 1(a) is nearly absent in Fig. 1(c) as
a result of broken symmetry as well as multiple transfer chan-
nels due to the presence of dipolar interaction within the ring.
However, there are certain possible positions such as on site
8 where it appears to exhibit possible revival of the exciton
amplitude at around 6 phonon periods similar to those shown
in Fig. 1(a) on site 8 at around 10 phonon periods. These
observations lend further support to the speed up of exciton
dynamics (in terms of delocalization) due to the inclusion
of dipolar interactions. From above discussions, by including
long-range excitonic coupling other than that between near-
est neighbors (which is true for many realistic cases such as
the LH2 system investigated in this paper), the exciton can
more efficiently and evenly spread over the entire ring in the
presence of exciton-phonon coupling. In other words, nature
has designed a unique way for the light harvesting complexes
such as LH2 to maximize their excitonic energy transfer effi-
ciency in spite of exciton-phonon coupling that is responsible
for the localization and dephasing of the excitons. It appears
the symmetry breaking of the energy transfer pathways plays
a positive role in LH2 complexes.

Furthermore, it is also important to note in Fig. 1(e) that
for the chosen parameter sets, the D1 Ansatz is capable to de-
scribe the realistic LH2 system with great precision. Com-
paring to the maximum absolute value of phonon or exciton-
phonon interaction energy shown in the figure, the magnitude
of deviation vector (t) is less then 30% of the average sys-
tem energy (here we use phonon energy as the reference). In-
clusion of complex dipolar coupling does not further increase
the error of the D1 Ansatz in describing the system dynamics.
Although the deviation magnitude does not change much, the
exciton-phonon dynamics deviates substantially upon inclu-
sion of dipolar coupling if one compares Figs. 1(a)–1(d).

Using the D1 Ansatz, we also examined the exciton-
phonon dynamics of a realistic two-ring system with long-
range dipolar interactions. Results from the dynamics calcu-
lations are shown in Figs. 3 and 4 for two inter-ring distances
(15 and 20 Å, respectively). The choice of the distances for
the two-ring system is in accordance with the one shown
in Ref. 51, which suggests the Mg-Mg distance of around
24 Å for the closest chromophores between two adjacent LH2
rings. Considering the size of the chromophores, it is bene-
ficial to slightly reduce the distance to consider the exciton
transfer from the tip of one molecule to the other, thus two
different distances, i.e., 15 and 20 Å are used in this study.
To have better understanding of the roles of intra- and inter-
ring excitonic transfer, the two-ring system is initialized as
follows: αr

n(0) = δr,1δn,8 and λr
n,q(0) = 0, i.e., a single exci-

tation at site 8 of ring-1, after a subsequent spreading within
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FIG. 1. Real space dynamics of (a) exciton probability |αn(t)|2 and (b) phonon displacement ξn(t) for a single-ring with only nearest neighbor transfer integral
J = 0.3557, a moderate exciton-phonon coupling strength S = 0.5, and a wide bandwidth W = 0.8 of phonon dispersion. Corresponding real space dynamics
are displayed for (c) exciton probability |αn(t)|2 and (d) phonon displacement ξn(t) for a single realistic LH2 ring transfer integral matrix. The D1 Ansatz is
used for the simulation. The time evolution of energy components for exciton, phonon, exciton-phonon interaction, and deviation magnitude (t) for both cases
has also been given in (e). Note that the value of the nearest neighbor transfer integral is taken from the largest element (scaled by the characteristic phonon
frequency ω0) of the realistic LH2 transfer integral matrix.
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FIG. 2. Comparison of calculated linear absorption spectra and measured
ones in a single B850 ring. A realistic matrix for the LH2 transfer integral
is adopted. Parameters used are S = 0.5, ω0= 1670 cm−1, W = 0.8, and a
damping factor of 0.12.

ring-1, the exciton population is transferred to site 1, which is
the closet point to site 10 (and nearby sites) of ring-2, at about
3 phonon periods from t = 0. This exciton transfer process is
clearly revealed in Figs. 3(c) and 4(c).

It is always helpful to compare the value of (t) rel-
ative with system energies as the first check. As shown
in Figs. 3(e) and 4(e), the accuracy of the D1 Ansatz
applied to the two-ring system with different inter-ring
distances does not alter much as compared to the one-
ring system since the magnitude (t) remains close to
that for the one-ring case. The value of (t) also be-
comes fairly stable after initial 5 phonon periods, thereby
confirming the validity of this method applied to study
the multiple-ring exciton dynamics using time-dependent
variation.

At a first glimpse, one may spot few differences between
Figs. 3 and 4 during the first 10 phonon periods. One can also
find a resemblance of the exciton probabilities and phonon
displacement between the two-ring system and the one-ring
system in Fig. 1 if comparison is made during the same pe-
riod of time. This is due to the fact that a very small amount
of exciton population is transferred to the second ring of
the two-ring system during this period as clearly revealed in
Figs. 3(c) and 4(c). Thus, the dynamics of both the exciton and
phonons are essentially those of the one-ring case. However,
after 10 phonon periods, as the transfer of exciton population
increases, |αn(t)|2 and ξ n(t) become quite different for the two
cases of different inter-ring distances.

Interestingly, as one may observe from Figs. 3(c) and
4(c), many bright spots appear in the exciton probability con-
tour of ring-2, indicating possible pathway interference within
the ring. The origins of the bright spots are explained as fol-
lows. Among the nearest neighbors of ring-1 [cf. Fig. 3(f)],
sites 8 to 10 of the second ring show pronounced changes in
exciton probability, if one compares Figs. 3(c) and 4(c). It is
also true that interactions between sites 1, 2, and 16 of ring-1
and sites 8, 9, and 10 of ring-2 dominate inter-ring transfer
according to Eq. (7), resulting in multiple inter-ring exciton
transfer pathways.

Due to strong interactions between site 1 of ring-1 and
site 9 of ring-2 owing to their proximity, it is somewhat coun-
terintuitive to observe the relatively smaller exciton probabil-
ity on site 9 of ring-2. The explanation lies in the dimeriza-
tion of LH2 rings, which results in opposite signs of dipole
moments of site 1 of ring-1 and site 9 of ring-2, as shown in
Fig. 3(f). Besides dimerization, it is also helpful to consider
the intra-ring interference in ring-2 between exciton wave
packets that travel through multiple paths from ring-1 to ring-
2. Figures 3(c) and 4(c) suggest that sites 8 and 10 of ring-2
(especially, site 10) can be treated as input sites strongly con-
nected to ring-1. Appearance of bright spots on sites 8 and
10 can be simply understood as a combined effect of exciton
transfer from ring-1 to ring-2 and a constructive interference
of exciton wave packets in ring-2. However, on locations far
from site 10, such as sites 2, 5, 13, and 15 of the second ring,
the effect of constructive interference is more prominent. As
sites 2 and 16 of ring-2 are opposite to the aforementioned
input sites, it is not surprising to observe bright spots on sites
2 and 16 as a result of constructive interference, as shown in
Figs. 3(c) and 4(c). Effects of multiple pathways for inter-ring
exciton transfer may thus play a role in the appearance of ad-
ditional bright spots on ring-2.

Even more interestingly, one can also calculate the exci-
ton population of a given ring, i.e.,

∑
n |αr

n(t)|2 in ring-r (with
r the ring index) as a function of time to shed light on the
overall exciton dynamics of the two-ring system with inter-
ring distance of 15 and 20 Å. Calculation results are displayed
in Fig. 5, where exciton populations corresponding to Figs. 3
and 4 are plotted as a function of time. A supplementary cal-
culation for a much longer time is also given in the inset of
Fig. 5 for an inter-ring distance of 15 Å. Short-time results
suggest a nearly stepwise population transfer from ring-1 to
ring-2. The stepwise features of population profiles in Fig. 5
coincide with the increase in the exciton probabilities on sites
8 to 10 in the second ring as shown in Figs. 3(c) and 4(c),
lending further support to our previous discussion on inter-
ring exciton transfer. Long-time calculation for the case with
an inter-ring distance of 15 Å reveals that it takes about 200
phonon periods to have the complete transfer of the exciton
population, as shown in the inset of Fig. 5. As one phonon
period is equal to about 20 fs, the estimated total transfer time
of 4 ps is in good agreement with the findings in Ref. 45.

Effects of static disorder on polaron dynamics have also
been examined in order to test the applicability of the current
approach to photosynthetic systems. Simulation results with
Gaussian-distributed static disorder are included in Fig. 5.
The on-site energy average is set to zero, and a standard devi-
ation of σ = 0.1ω0 is adopted in accordance with Ref. 56.
For simplicity, only on-site energy disorder is included al-
though it will not be difficult to examine off-diagonal dis-
order. Over 100 realizations have been simulated in the cal-
culation. Figure 5 provides a comparison on the exciton
population transfer with and without the energetic disorder.
While some population fluctuations have been smoothened
out, the overall energy transfer efficiency is not signifi-
cantly affected by the addition of static disorder. Further-
more, in the absence of any exact or more reliable dy-
namics studies, our approach here provides a useful guide
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FIG. 3. Real space dynamics of (a) exciton probability |αn(t)|2 and (b) phonon displacement ξn(t) in ring-1 for a two-LH2-ring system with realistic LH2 ring
transfer integral matrix, a moderate exciton-phonon coupling strength S = 0.5, and a wide bandwidth W = 0.8 of phonon dispersion. The D1 Ansatz is used
for the simulation. Corresponding real space dynamics in ring-2 are displayed for (c) exciton probability |αn(t)|2 and (d) phonon displacement ξn(t). The time
evolution of energy components from exciton, phonon, exciton-phonon interaction, deviation magnitude (t) has also been given in (e). The distance between
two rings is set to 15 Å, with interaction between two rings given by Eq. (8). (f) The schematics of two connected LH2 complexes. r is the distance between the
tips of the rings.
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FIG. 4. Real space dynamics of (a) exciton probability |αn(t)|2 and (b) phonon displacement ξn(t) in ring-1 for a two-LH2-ring system with realistic LH2 ring
transfer integral matrix, a moderate exciton-phonon coupling strength S = 0.5, and a wide bandwidth W = 0.8 of phonon dispersion. The D1 Ansatz is used
for the simulation. Corresponding real space dynamics in ring-2 are displayed for (c) exciton probability |αn(t)|2 and (d) phonon displacement ξn(t). The time
evolution of energy components from exciton, phonon, exciton-phonon interaction, deviation magnitude (t) has also been given in (e). The distance between
two rings is set to 20 Å, with interaction between two rings given by Eq. (8).
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FIG. 5. Exciton population dynamics (
∑

n |αr
n(t)|2) for the two different sep-

arations shown in Figs. 2 and 3, where a long time dynamics of the exciton
population has also been given in the inset for the ring system with a distance
of 15 Å. Exciton population dynamics for the inter-ring distance of 15 Å with
on-site energy static disorder has also been given in the figure.

to the dynamics of excitonic energy transfer in LH1-LH2
systems.

B. Exciton population dynamics of N-site symmetric
simple ring systems and LH2 complexes

Dynamics study in Sec. III A reveals the effect of dipo-
lar interactions on exciton transfer efficiency at low tempera-
tures, but it is also interesting to look at the opposite limit of
high temperatures. As a starting point, it is preferable to use
simple ring systems to analyze what may affect the energy
transfer efficiency at high temperatures. Here, we first study
the energy transfer in symmetric ring systems of three, four,
six, seven, eight, and sixteen pigments. Efficiency of the en-
ergy transfer with respect to various trapping positions will
be examined, and for an N-site ring system, analytical solu-
tions will be obtained using the stationary condition on the
off-diagonal density matrix element ρnm.

For a three-site ring system, we assume that all the site
energies are the same, i.e., the energy difference is zero. The
coupling between neighboring sites is assumed to be constant
with J12 = J21 = J13 = J31 = J23 = J32 = J. Furthermore,
the coupling with the environment (dephasing) is �12 = �21

= �13 = �31 = �23 = �32 = �. If the system is excited at
site 1 and the excitation is trapped at the same location, the
average trapping time is given by 〈t〉 = 3k−1

t , independent of
� and J. If a photon is absorbed at site 1, and the excitation is
trapped at site 2, the average trapping time takes the form

〈t〉 = 3

kt

+ 1

�
+ 1

2� + kt

+ 2� + kt

4J 2
, (24)

which depends on � and J. It is greater than that of the previ-
ous situation.

For a four-site ring system, if we only consider near-
est neighbor couplings, the analytical expression for the res-
idence time and the average trapping time can be easily ob-
tained. If a photon is absorbed at site 1, and the excitation is

also trapped at site 1, the average trapping time is given by
〈t〉 = 4k−1

t . If a photon is absorbed at site 1, and the excita-
tion is trapped at site 2 (or equivalently, site 4), the average
trapping time is

〈t〉 = 4

kt

+ 1

�
+ 1

� + kt/2
+ 3(2� + kt )

8J 2
. (25)

If a photon is absorbed at site 1, and the excitation is trapped
at site 3, the average trapping time is

〈t〉 = 4

kt

+ �

J 2
+ 3kt

8J 2
. (26)

By comparing the three equations for the four-site ring sys-
tem, it is found that the average trapping time of the first sys-
tem is the smallest among the three scenarios, and that of the
second is larger than that of the third.

As indicated by the definition of 〈t〉, exciton population is
proportional to the value of average trapping time. Thus, we
can also probe the dynamics of the system using the exciton
population. It is interesting to note that the exciton population
of site 3 grows larger than that of site 2 and site 4 even though
it is farther away from site 1, where the exciton is initially lo-
cated. The phenomenon also happens for the second and third
scenarios. To explain this, one can consider the two distinct
paths for the exciton produced at site 1, in clockwise and and
counterclockwise directions. They have the same phase when
they meet at site 3, where the exciton population is greatly en-
hanced due to quantum interference. As a result, the exciton
population of site 3 is larger than that of site 2 and site 4 even
though they are closer to site 1.

Furthermore, we note a few differences among these sce-
narios: ρ1(t) is larger in the second scenario than others, there-
fore, it has the largest average trapping time, which leads to
the lowest energy transfer efficiency, and ρ2(t) and ρ4(t) are
exactly the same in the first scenario due to positional symme-
try. ρ4(t) is slightly larger in the third scenario than the first,
because the trap at site 2 destroys the symmetry.

C. Energy transfer in single ring systems

It is more interesting to look into the energy transfer ef-
ficiency of the ring system from the point of view of average
trapping time, and as a starting point, simple single-ring sys-
tems with six, seven, eight, and sixteen sites have been stud-
ied. The average trapping times at different trapping positions
for the ring systems (with other parameters kt = 2, �t = 20,
J = 100) are given in Fig. 6(a). Site 1 is located at the ori-
gin (0◦), and other sites are distributed in the ring uniformly.
Taking a six-site system as an example, the zero-degree trap-
ping corresponds to the case in which a photon is initially
absorbed at site one and the excitation is trapped at the same
site. Similarly, (180◦) trapping corresponds to the situation
in which a photon is absorbed at site 1, and the excitation is
trapped at site 4. It is interesting to find that the systems with
an even number of sites have a comparatively smaller aver-
age trapping time when the exciton is trapped at the exactly
opposite position (e.g., 180◦) of photon absorption. Since this
phenomenon does not occur in systems with odd number of
sites, it can be inferred from the simple ring systems that the
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FIG. 6. (a) The average trapping time versus varying trapping positions for simple single-ring systems. From bottom upwards, the square, circle, triangle, down
triangle, left triangle, and right triangle correspond to three, four, six, seven, eight, and sixteen-sites ring systems, respectively. For clarity, the schematics of the
ring systems as well as trapping positions relative to the x-axis (with the angle measured in degrees) are shown in (b). For all systems, the parameters chosen for
the Haken-Strobl model are: kt = 2, �t = 20, and J = 100. The same quantity obtained from polaron dynamics for a sixteen-site ring system is also displayed
in (a) as red line and triangles. The parameters chosen for polaron dynamics are: ω0 = 1, γ n = 0.007, J = 0.3, S = 0.5, and W = 0.8. Be noted that the energy
unit for the polaron dynamics calculation is the characteristic phonon frequency ω0.
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constructive and destructive interference, closely related to
the symmetry of a system, plays a significant role in deter-
mining the energy transfer efficiency.

For a ring system with even number of sites, it is possible
to have constructive interference at the site exactly opposite
to the photon absorption site in the ring, where the exciton
amplitudes are now in phase due to their symmetrical transfer
path. In this scenario, the constructive interference provides
almost exactly the same average trapping time compared to
the case where exciton is created and trapped at the same
site. However, it should be noted that for systems with larger
sizes, dephasing becomes increasingly important, resulting in
a slight reduction in the energy transfer efficiency.

It is also interesting to compare our polaron dynamics
simulation with the Haken-Strobl approach. Here, we only
consider the case of a toy model with 16 sites and nearest
neighbor transfer integrals. The trapping rate on site n, γ n,
is assumed to be 0.007ω0, which translates into kt ≈ 2ps−1.
To compare with the output of the Haken-Strobl approach,
the polaron dynamics result is also included in Fig. 6(a) (red
line and triangles). As indicated in Fig. 6(a), similar behavior
in the dependence of the average trapping time on trapping
positions is found in the polaron dynamics results and those
calculated by the Haken-Strobl method, despite many differ-
ences between the two approaches. This is especially true on
site 1 (0◦), and the site opposite to site 1 (180◦), where the
trapping time reaches minima. On other sites, off diagonal el-
ements of the density matrix, neglected in the Haken-Stroble
approach, seem to play a more important role in determining
the trapping time.

Now we turn to more realistic systems of photosynthe-
sis, where capture of solar photons is often facilitated by
light-harvesting antennae, and excitons, first created in the
antennae, are transferred to reaction centers. Motivated
by the results of simple ring systems, we further examine how
the trapping position would affect excitonic energy transfer in
a realistic ring system that includes dipole-dipole interactions
between all transition-dipole pairs that are not nearest neigh-
bors. Figure 7(a) displays the dependence of average trapping
time on the trapping position, and the inset of Fig. 7(a), a
schematic of B850 ring of LH2, in which solid dots denote
the α-apropotein, and the hollow dots, the β-apropotein. In-
terestingly, a dip corresponding to a minimal average trapping
time is found to appear at site 9, in addition to the one at site
1. In comparison to the uniform ring systems shown in Fig.
6, there emerge zig-zag features in the trapping-time versus
site-number plot in Fig. 7(a). Although the steepest dip can
be simply explained with constructive interference, the ap-
pearance of multiple dips is directly related to the inclusion
of long-range dipolar interactions, and therefore, multiple ex-
ction transfer pathways. It is also noted that the dependence
of average trapping time on the site index no longer has the
symmetries that exist for uniform rings. Furthermore, the non-
symmetric dependence of 〈t〉 on the trapping position makes it
possible to have different clockwise and anti-clockwise paths,
an effect that can be related to the dimerization of the LH2
ring.

Dependence of average trapping time on trapping posi-
tion has also been examined for a single LH1 ring, and the

FIG. 7. Average trapping time versus trapping site for the inset schematics
of B850 ring of (a) LH2, and (b) LH1. Solid dots represent the α-apropoteins
and hollow dots, the β-apropoteins. The directions of the dipoles are tan-
gential to the circle, with α-apropoteins pointing in clockwise direction, β-
apropoteins, anti-clockwise. A photon is absorbed at 1α BChl, trapped at
different BChls. For all calculations, the trapping rate kt is set to 1 and de-
phasing rate � is equal to 5. The rest of parameters, i.e., Jnm, are given in
Eqs. (7) and (8).

results are shown in Fig. 7(b). The exciton Hamiltonian of
LH1 has a form similar to Eq. (7) with the total number of
sites increased from 16 to 32. Chromophores are assumed to
be evenly distributed with a distance of about 10 Å, and other
parameters for the LH1 system are taken from Ref. 33. Re-
sults similar to the LH2 case can be obtained from Fig. 7(b),
and a dip appears around the middle point of the ring at site 17
with an obvious loss of symmetry. Due to the increase in the
total site number, which mitigates interference effects, a much
smoother curve is obtained in Fig. 7(b). For both the LH2 and
LH1 rings, we have found that the long-range dipolar cou-
pling reduces substantially the effect of quantum inference, in
agreement with similar earlier findings in polaron dynamics
simulations.
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D. Energy transfer in multiple connected ring systems

To expand our study of energy transfer efficiency to
multiple-ring systems, two-ring toy models, as depicted in
Fig. 8, are examined first. Intra-ring nearest-neighbor interac-
tions are assumed with coupling strength J, and site energies
are set to be the same. The two rings are coupling through
site 16 and site 17 with coupling strength V . Our findings
are shown in Fig. 8, and an optimal coupling strength for ef-
ficient energy transfer is discovered at zero pure dephasing
rate � = 0. This optimal strength found is close to the value
of intra-ring coupling J, a result of system symmetry loss. If
the trapping site is moved from site 32 to site 31, the opti-
mal trapping time is found at a nonzero pure dephrasing rate
� = 0.2, as shown in Fig. 8(c). It can be speculated that,
to optimize the energy transfer efficiency, system symmetry
imperfections can be compensated by the introduction of the
pure dephasing or the dissipation of system coherence by the
environment. Such a finding is applicable for the design of
artificial photosynthetic systems in general.

Next, we will look at a realistic two-ring LH2 system
with long-range dipolar interactions as illustrated in Fig. 9(a).
Two rings interact via dipole-dipole coupling, according to
Eq. (8). An initial state in which all sites in the first ring
are evenly excited is selected, i.e., at t = 0, ρnn = 1/16 for
n = 1, 2, . . . ..16 in the first ring. We also assume that the exci-
tation is evenly trapped in the second ring. It is found that the
trapping time increases with the edge-to-edge inter-ring dis-
tance r as expected, and for r > 20 Å (or with higher dephas-
ing rates), it increases rapidly. It is known that quantum coher-
ence may help enhance the efficiency of energy transfer.34 At
higher dephasing rates, with the destruction of coherence, the
excitation is transported classically, resulting in longer trap-
ping times and lower efficiency.

The findings on average trapping time in Fig. 9 suggest
an extremely distance-dependent nature of energy transfer. As
indicated in Ref. 57, the sites too close to each other in certain
orientations will lead to non-fluorescent dimers, which can
serve as excitation sinks that deplete excitations.

One can also observe an optimal value of inter-ring dis-
tance of around 5 Å, corresponding to the highest strength
of dipolar interaction between the nearest neighbor dipoles.
This value is not close to the realistic inter-ring distance of
LH2 complexes in a close packed membrane. Although it has
been pointed out in Ref. 57 that typical inter-chromophore
center-to-center distances of neighboring molecules are con-
sequently close (6 to 25 Å). Thus, the global minimum ob-
tained with the method introduced in this paper is only an
ideal case such that two molecular aggregates are in con-
tact with each other without any support of protein scaffold.
Although the value only corresponds to the ideal case with
highest inter-ring coupling strength, the existence of the local
minimum is non-negligible. Such local minimum in aver-
age trapping time with non-zero dephasing rate appears in
a continuous fashion throughout a large range of distances
between the rings as shown in Figs. 9(b) and 9(c). Its exis-
tence can be explained by the role environment related de-
phasing plays in increasing energy transfer efficiency for a
system with asymmetric properties. The symmetry-breaking

FIG. 8. (a) Schematic of a two-ring toy model. (b) Contour map of 〈t〉 as a
function of � and V, with trapping site locating at site 32 of the second ring
as shown in (a). (c) Contour map of 〈t〉 as a function of � and V, with trap-
ping site locating at site 31 of the second ring. The value of nearest neighbor
coupling strength is set to J = 1 and the trapping rate kt = 1.

dipolar interaction in the LH2 system leads to multiple non-
nearest neighbor energy transfer pathways, which can en-
hance the energy transfer within the ring greatly as shown in
the polaron dynamics calculations, however, it is more prefer-
able to have more exciton populations that can be trapped
at certain site. Thus, it is preferable to have finite dephasing
to increase the inter-ring transfer efficiency by maximizing
the amount of exciton populations that can be trapped in the
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FIG. 9. (a) Schematic of a two-ring LH2 system. r is the distance between
the edges of the rings. (b) Short distance 〈t〉 contour map as a function of �

and r. (c) Long distance 〈t〉 contour map as a function of � and r. In the calcu-
lations of 〈t〉s, the first ring on the left is evenly excited, and exciton is evenly
trapped in the ring-2. Inter-ring interaction takes same form of the intra-ring
dipole-dipole coupling. The trapping rate in the calculations is assumed to be
a constant, with kt = 1.

trapping site of the second ring through multiple pathway in-
terference. This small amount of dephasing is not sufficient to
destroy the quantum coherence in the system, which gives us
a hint on how important the unique arrangements and inter-
actions between chromophores in the LH2 complexes as well
as the way with which each complex interacts with others are
in optimizing the energy transfer in the presence of an envi-
ronment that is coupled to the system. More interestingly, in a
recent work on FMO complex,58 even for this finite-size, dis-
ordered molecular network can effectively preserve coherent

excitation energy transfer against ambient dephasing, which
lends a further support to what we have revealed in this sec-
tion. Furthermore, the role of dipolar interaction in increasing
the exciton transfer efficiency through introducing multiple
pathways for inter-ring exciton transfer has been made amply
evident.

IV. CONCLUSIONS

In this paper, two distinct approaches have been applied
to study the excitation energy transfer in the ring systems.
From both methods, non-nearest neighbor dipolar interaction
is found to be helpful in increasing intra- or inter-ring exciton
transfer efficiency as a result of multiple pathways.

Using the Haken-Strobl model, the energy transfer in the
ring systems with coupling to environment is studied in de-
tails. The energy trapping efficiency is found to be dependent
on the trapping position in both the hypothetic and the real-
istic ring systems. For the hypothetic system, with the trap
positioned diametrically opposite to the site of the initial ex-
citation (which is possible only in systems with even number
of sites), we observe a sudden drop of the trapping time due to
the constructive interference between the clockwise and anti-
clockwise paths leading to the trap. The situations in a LH2
(B850) ring and LH1 ring are similar to the hypothetic sys-
tems, but owing to the broken symmetry caused by the dimer-
ization of BChls and dipolar couplings, the drop of the trap-
ping time is not significant. In other words, the ring becomes
more homogeneous in terms of energy transfer, which further
supports the findings of polaron dynamics studies of one-ring
system.

The Haken-Strobl method is a high-temperature treat-
ment centering on the population dynamics while neglect-
ing coherence dynamics among neighboring pigments. In
comparison, the Holstein Hamiltonian dynamics adds an al-
ternative, low-temperature perspective to the problem. Due
to the femtosecond nature of the energy transfer in photo-
synthetic complexes, full thermal equilibrium may be hard
to attain before the exciton is transferred from an an-
tenna complex to a reaction center, and it makes sense
that the system is also modeled as a microcanonical en-
semble. The simulation on polaron dynamics adds far more
quantum details to the femtosecond energy transfer using a
non-equilibrium framework in a supposedly low-temperature
setting.

The polaron dynamics of the coupled rings revealed an
interesting role of dipolar interaction in increasing energy
transfer efficiency by introducing multiple transfer paths be-
tween the rings, and the time scale of inter-ring exciton trans-
fer is in good agreement with previous studies. Moreover,
when the Haken-Strobl model is applied for the coupled rings,
an optimal coupling strength is obtained between the hypo-
thetic two-ring systems with zero dephasing rate, while in a
two-LH2 system, owing to the intrinsic symmetry breaking,
the global minimum and local minimum of average trapping
time is always found with non-zero depahsing rate. In both
the cases, the efficiency drops with a further increase of de-
phasing rate, due to the loss of quantum coherence. The find-
ings in this paper regarding exciton transfer processes in ring
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systems might assist us in designing more efficient artificial
light harvesting systems.
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APPENDIX A: PRECISION OF THE TIME-DEPENDENT
DAVYDOV ANSÄTZE

For a trial wave function |�(t)〉 that does not strictly obey
the time-dependent Schrödinger equation, the deviation vec-
tor |δ(t)〉 can be defined as

|δ(t)〉 ≡ i
∂

∂t
|�(t)〉 − Ĥ |�(t)〉, (A1)

and the deviation amplitude (t) is defined as

(t) ≡
√

〈δ(t)|δ(t)〉. (A2)

For the Holstein Hamiltonian Ĥ defined in Eqs. (1)–(4),
one can derive the explicit expression of 〈δ(t)|δ(t)〉 for the D1

Ansatz,

〈δD1 (t)|δD1 (t)〉
=

∑
n

|iα̇n(t) + Tn(t) + αn(t)Rn(t)|2

+
∑

αn(t)�=0

∑
q

|αn(t)

[
iλ̇n,q(t) + gq√

N
ωqe

−iqn − ωqλn,q(t)

]

+�n,q (t)|2 + 2
D(t) −

∑
αn(t)�=0

∑
q

|�n,q(t)|2 (A3)

with

Rn(t) ≡ Re
∑

q

[
iλ̇n,q(t)+ 2gq√

N
ωqe

−iqn−ωqλn,q(t)

]
λ∗

n,q(t),

(A4)
where Tn(t), �n, q(t), and 2

D(t) are three expressions, which
have no item of α̇n(t) or λ̇n,q(t).

For the D2 Ansatz, Eq. (A3) can be further derived to

〈δD2 (t)|δD2 (t)〉
=

∑
n

|iα̇n(t) + Tn(t) + αn(t)Rn(t)|2

+
∑

q

|iβ̇q(t) + gq√
N

ωq

∑
n

|αn(t)|2e−iqn − ωqβq(t)|2

+ 1

N

∑
q

g2
qω

2
q

[
1 −

∣∣∣∑
n

|αn(t)|2e−iqn
∣∣∣2

]
. (A5)

And for the D̃ Ansatz, Eq. (A3) can be further derived to

〈δD̃(t)|δD̃(t)〉
=

∑
n

|iα̇n(t) + Tn(t) + αn(t)Rn(t)|2

+ |iλ̇0(t) + gq√
N

ω0 − ω0λ0(t)|2

+
∑
q �=0

∣∣∣iγ̇q(t) + ξq(t)iβ̇q(t) + yq(t)
∣∣∣2

+
∑
q �=0

[1 − |ξq(t)|2]

∣∣∣∣iβ̇q(t) + dq(t)

1 − |ξq(t)|2
∣∣∣∣
2

+
∑
q �=0

{∑
n

|�n,q(t)|2 −
[
|yq(t)|2 + |dq(t)|2

1 − |ξq(t)|2
]}

+2
D(t) −

∑
n

∑
q

|�n,q(t)|2, (A6)

where ξ q(t), �n, q(t), yq(t), and dq(t) are four expressions,
which have no item of α̇n(t), β̇q(t), γ̇q(t), or λ̇0(t).

Substituting Eq. (11) into Eqs. (2)−(4), one obtains the
expressions for the system energies by the Davydov Ansätze
in the Holstein model,

Eex(t) ≡ 〈�D(t)|Ĥex|�D(t)〉
= − 2JRe

∑
n

α∗
n(t)Sn,n+1(t)αn+1(t), (A7)

Eph(t) ≡ 〈�D(t)|Ĥph|�D(t)〉
=

∑
n

[
|αn(t)|2

∑
q

ωq |λn,q(t)|2
]
, (A8)

and

Eex−ph(t) ≡ 〈�D(t)|Ĥex−ph|�D(t)〉

= − 2√
N

∑
n

[
|αn(t)|2Re

∑
q

gqωqλn,q(t)eiqn
]
,

(A9)

where Sn, m(t) is the Debye-Waller factor.
Note that since the unit of (t) is that of the energy, by

comparing (t) with the main component of the system ener-
gies such as Eph(t) and Eex−ph(t), one can observe whether the
deviation of an Ansatz from obeying the Schrödinger equation
is negligible or not, in the concerned case. From this perspec-
tive, the comparison between (t) and energy components of
the system provides a good reference for the validity of an
Ansatz.

APPENDIX B: DETAIL DERIVATION OF POLARON
DYNAMICS IN MULTIPLE-RING SYSTEM

The system energies of the multiple-ring system can
be obtained as follows by apply Davydov Ansätze to the
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modified Holstein Hamiltonian given in Eqs. (5), (9),
and (10):

Eex(t) =
∑
r1r2

∑
nm

J r1r2
nm αr1∗

n (t)αr2
m (t)Sr1r2

nm (t), (B1)

Eph(t) =
∑

r

∑
n

∣∣αr
n(t)

∣∣2 ∑
q

ωr
q

∣∣λr
nq(t)

∣∣2
, (B2)

Eex−ph(t) = − 2√
N

∑
r

∑
n

∑
q

gr
qω

r
q

∣∣αr
n(t)

∣∣2
Re

[
eiqnλr

nq(t)
]
,

(B3)
with Debye-Waller factor Sr1r2

nm (t) given by

Sr1r2
nm (t) = exp

{∑
q

[
λr1∗

nq (t)λr2
mq(t)δr1r2

−1

2

∣∣λr1
nq(t)

∣∣2 − 1

2

∣∣λr2
mq(t)

∣∣2]}
, (B4)

and the index r1 and r2 all runs over 1 to Nring.
Since D1 is the used for all calculations in this paper, here

we only give the expression of 〈δ(t)|δ(t)〉 for D1, which can be
derived as follows:

〈δD1 (t)|δD1 (t)〉
=

∑
r

∑
n

∣∣iα̇r
n(t) + αr

n(t)Rr
n(t) + T r

n (t)
∣∣2

+
∑

r

∑
αr

n(t)�=0

∑
q

∣∣αr
n(t)�r

nq(t) + �r
nq(t)

∣∣2 + 2
D(t)

−
∑

r

∑
αr

n(t)�=0

∑
q

∣∣�r
nq(t)

∣∣2 −
∑

r

∑
n

∣∣T r
n (t)

∣∣2
. (B5)

Minimization of the first two terms in Eq. (B5) leads to
the equations of motions for the time-dependent variational
parameters αr

n(t) and λr
nq(t) as

α̇r
n(t) = i

[
T r

n (t) + αr
n(t)Rr

n(t)
]
, (B6)

and

λ̇r
nq(t) = i

[
�r

nq(t)

αr
n(t)

+ gr
q√
N

ωr
qe

−iqn − ωr
qλ

r
nq(t)

]
. (B7)

Each collected term in Eqs. (B6) and (B7) is given as

�r
nq(t) = iλ̇r

nq(t) + gr
q√
N

ωr
qe

−iqn − ωr
qλ

r
nq(t), (B8)

Rr
n(t) = Re

∑
q

[
�r

nq(t) + gr
q√
N

ωr
qe

−iqn

]
λr∗

nq(t), (B9)

T r1
n (t) = −

∑
r2

∑
m

J r1r2
nm αr2

m (t)Sr1r2
nm (t), (B10)

�r1
nq(t) = −

∑
r2

∑
m

J r1r2
nm αr2

m (t)Sr1r2
nm (t)

[
λr2

mq(t)δr1r2 − λr1
nq(t)

]
,

(B11)

and

2
D(t) =

∑
r1

∑
n

[ ∑
r ′

2m
′

∑
r2m

J
r1r

′
2

nm′ J
r1r2
nm α

r ′
2∗

m′ (t)αr2
m (t)S

r ′
2r2

m′m(t)

]
.

(B12)

APPENDIX C: TRAPPING IN POLARON
DYNAMICS SIMULATION

Based on the Trotter decomposition, we have

|�D(t)〉 = e−iĤ t− 1
2 γ̂ t |�D(0)〉

= lim
t→0

[e−iĤt− 1
2 γ̂ t ]N |�D(0)〉

= lim
t→0

[e− 1
2 γ̂ te−iĤt ]N |�D(0)〉, (C1)

where t = Nt with N an integer, γ̂ is the trapping matrix, and
Ĥ is the Holstein Hamiltonian. The fourth-order Runge-Kutta
method will have enough precision if t is sufficiently small.
From Eq. (C1) and assuming γ̂ is a diagonal matrix, for each
time step t, only a trapping factor γn′ is added at site n′ in
Eq. (B6), which can be explicitly expressed as

α̇r
n(t) = i

[
T r

n (t) + αr
n(t)Rr

n(t)
] − δn,n′γn′αr

n′(t). (C2)

The reduced density matrix is again

ρ(t) = Trph[|�D(t)〉〈�D(t)|]. (C3)

We can obtain the reduced density matrix in the site represen-
tation

ρmn(t) = 〈m|ρ(t)|n〉, (C4)

where the population is denoted by ρnn(t).
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52T. Ritz, A. Damjanović, and K. Schulten, Chem. Phys. Chem. 3, 243

(2002).
53H. D. Kim, Y. Tanimura, and M. H. Cho, J. Chem. Phys. 127, 075101

(2007).
54E. O. Potma and D. A. Wiersma, J. Chem. Phys. 108, 4894 (1998).
55J. L. Herek et al., Biophys. J. 78, 2590 (2000).
56S. Jang, S. E. Dempster, and R. J. Silbey, J. Phys. Chem. B 105, 6655

(2001).
57G. D. Scholes et al., Nat. Chem. 3, 763 (2011).
58T. Scholak et al., Phys. Rev. E 83, 021912 (2011).

Downloaded 24 Oct 2012 to 18.74.6.138. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3636081
http://dx.doi.org/10.1063/1.2977974
http://dx.doi.org/10.1063/1.3247899
http://dx.doi.org/10.1063/1.3608914
http://dx.doi.org/10.1038/374517a0
http://dx.doi.org/10.1016/S0969-2126(96)00063-9
http://dx.doi.org/10.1063/1.4704656
http://dx.doi.org/10.1038/nature03429
http://dx.doi.org/10.1103/PhysRevE.69.032902
http://dx.doi.org/10.1103/PhysRevB.78.085115
http://dx.doi.org/10.1016/j.bpj.2009.08.033
http://dx.doi.org/10.1073/pnas.0708222104
http://dx.doi.org/10.1073/pnas.0908989106
http://dx.doi.org/10.1017/S0033583501003754
http://dx.doi.org/10.1017/S0033583501003754
http://dx.doi.org/10.1021/jp9032589
http://dx.doi.org/10.1021/jp106838k
http://dx.doi.org/10.1007/BF01399723
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90003-X
http://dx.doi.org/10.1021/jp106542v
http://dx.doi.org/10.1021/jp963777g
http://dx.doi.org/10.1073/pnas.2533896100
http://dx.doi.org/10.1073/pnas.2533896100
http://dx.doi.org/10.1039/c0cp00663g
http://dx.doi.org/10.1002/pssc.201000721
http://dx.doi.org/10.1021/jp202344s
http://dx.doi.org/10.1021/jp202344s
http://dx.doi.org/10.1103/PhysRevE.65.031919
http://dx.doi.org/10.1103/PhysRevE.65.031919
http://dx.doi.org/10.1002/1439-7641(20020315)3:3�egingroup count@ "003Celax elax uccode `~count@ uppercase {gdef 0{~}}endgroup setbox 	hr@@ hbox {0}dimen z@ wd 	hr@@ dimen z@ ht 	hr@@ dimen z@ dp 	hr@@ 0243::AID-CPHC243�egingroup count@ "003Eelax elax uccode `~count@ uppercase {gdef 0{~}}endgroup setbox 	hr@@ hbox {0}dimen z@ wd 	hr@@ dimen z@ ht 	hr@@ dimen z@ dp 	hr@@ 03.0.CO;2-Y
http://dx.doi.org/10.1063/1.2754680
http://dx.doi.org/10.1063/1.475898
http://dx.doi.org/10.1016/S0006-3495(00)76803-2
http://dx.doi.org/10.1021/jp010169e
http://dx.doi.org/10.1038/nchem.1145
http://dx.doi.org/10.1103/PhysRevE.83.021912

