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The recent experimental discoveries about excitation energy transfer (EET) in light harvesting an-
tenna (LHA) attract a lot of interest. As an open non-equilibrium quantum system, the EET demands
more rigorous theoretical framework to understand the interaction between system and environment
and therein the evolution of reduced density matrix. A phonon is often used to model the fluctuat-
ing environment and convolutes the reduced quantum system temporarily. In this paper, we propose
a novel way to construct complex-valued Gaussian processes to describe thermal quantum phonon
bath exactly by converting the convolution of influence functional into the time correlation of com-
plex Gaussian random field. Based on the construction, we propose a rigorous and efficient compu-
tational method, the covariance decomposition and conditional propagation scheme, to simulate the
temporarily entangled reduced system. The new method allows us to study the non-Markovian effect
without perturbation under the influence of different spectral densities of the linear system-phonon
coupling coefficients. Its application in the study of EET in the Fenna-Matthews-Olson model Hamil-
tonian under four different spectral densities is discussed. Since the scaling of our algorithm is linear
due to its Monte Carlo nature, the future application of the method for large LHA systems is attrac-
tive. In addition, this method can be used to study the effect of correlated initial condition on the
reduced dynamics in the future. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808377]

I. INTRODUCTION

The study of irreversible open quantum dissipative pro-
cesses is important in almost every field of condensed-matter
physics and chemistry, such as reaction rate theory, ultrafast
phenomena, tunneling at defects in solids, and quantum op-
tics, etc.1–3 The 2D spectroscopic experiments4 in the light
harvesting antennas (LHAs) reveal the existence of the long-
last coherence in EET. As a result, the real-time dynamics of
EEA in the photosynthetic light harvesting environment at-
tracts a lot of theoretical interest and debates.5 The almost
perfect EET efficiency in the disordered LHA protein envi-
ronment could be related to the preserved quantum coherence.
As an open quantum system, the unique decoherence and re-
laxation due to the LHA protein environment should play an
important role in EET.6

Dynamic relaxation and decoherence due to environmen-
tal fluctuations contains the critical information of reduced
system dynamics and the interaction between system and
bath. For classical systems with linear dissipation, Langevin
equations (or Ito stochastic differential equation (SDE))7, 8

and its extension provide a simple theoretical (and numerical)
framework to describe the interaction between a system and
a complex thermal reservoir in terms of stochastic forces and
memory friction. For open quantum systems, the correspond-
ing account of quantum noise is still an open question. Devel-
oping a new and rigorous numerical methodology to simulate
open quantum dynamics will provide a novel understanding
of EET in biological processes.

a)Deceased.

System bath Hamiltonian with bilinear coupling is the
common model to study dissipative dynamics. Particularly,
the exciton-phonon coupling Hamiltonian has been used to
study exciton transport. In the Liouville space, the collective
motion of environmental phonon modes is reduced to influ-
ence functional, which convolutes the reduced system dynam-
ics. The convolution entangles reduced quantum dynamics.
As a result, calculation complexity grows exponentially over
the time. The traditional way to avoid the computational issue
is using the different truncation schemes based on cumulant
expansion or project operator9–11 in the weak coupling limit.
Therefore, the model based on second-order master equations
can not accurately describe the interaction of system and bath
and introduce the inconsistence about reduced system dynam-
ics. Under some special cases, the integral equation based on
influence functional can be reduced to a non-perturbative hi-
erarchical equation of motion (HEOM)12, 13 and similar ideas
have been explored in different contexts.14 But the HEOM
method is very much limited to the Drude-Lorentzian spectral
density (i.e., exponential kernel). Therefore, HEOM cannot be
used for arbitrary spectral densities, requires ad hoc cutoff of
the infinite iterative equations and the scaling of the method
is nonlinear and unclear. In addition, approaches based on
semiclassical path integral,15–17 hybrid Ehrenfest and NIBA
method,18 iterative tensor product method,19, 20 and quantum
Brownian motion process21, 22 have been proposed recently
and potentially can be used for the general spectral density
cases.

The convolution due to influence functional23 makes the
computation of reduced system dynamics extremely compli-
cated. Due to the similarity between generalized characteristic
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function and influence functional, we can map the convolu-
tion kernel of influence functional to the covariance matrix of
a Gaussian process,

Convolution ←→ Correlation. (1)

So, we can linearize the computational effort with the co-
variance decomposition (CD) method to sample the quan-
tum fluctuation of a phonon environment as a complex-valued
Gaussian random field. In other words, constructing Gaus-
sian random field with the CD method can deconvolute the
reduced system dynamics. This method will give us a gen-
eral computational tool to study the effect of phonon envi-
ronment (including discrete or continuous spectral densities)
on reduced system dynamics in a rigorous and complete way.
The sampling strategy for complex-valued Gaussian random
process of arbitrary temperature will be more complicated
than the real Gaussian random process at the high temper-
ature limit. We will show how to construct the complex-
valued Gaussian random process in this paper. However, I
will present the computational results for the high tempera-
ture limit, i.e., ignoring the imaginary part of the kernel and
quantum detailed balance.24 The sampling strategy for the
complex-valued Gaussian random process based on the com-
plex unitary transformation will be the future work.

The coupling part of system bath Hamiltonian is critical
in determining the interaction between system and environ-
ment. Since the coupling is bilinear in the exciton-phonon
coupling Hamiltonian, the spectral density of the coupling
strength between the system and bath is the major factor in
relaxation and decoherence processes.25 The CD method will
be a computationally efficient tool to study the effect of the
arbitrary distribution (spectral density) of the linear coupling
coefficients on the evolution of reduced density matrix. Two
major challenges from the interaction in the current research
work are: (1) the quantum memory effect of phonon environ-
ment (non-Markovianity); (2) the correlated initial conditions
(inseparability of the system and bath). The CD method will
allow us to address the two challenges in the same frame-
work. Currently, the CD method is based on the influence
functional formalism so that the original assumptions of influ-
ence functional will be kept.26 Some authors15, 27–29 have used
different approaches to construct complex-valued Gaussian
processes. But the approach we offer here is based on multi-
variate complex-valued normal distribution function and can
take advantage of the established numerical Monte Carlo
methods based on normal distribution functions. Our ap-
proach is indifferent to the kernel of influence functional and
the choice of spectral density. For example, you can only gen-
erate a Markov chain for a Gaussian process with a exponen-
tial kernel (Gauss-Markov model) corresponding to the high
temperature limit of Drude spectral density. For the general
spectral density, it is impossible to generate a Markov chain
to sample the corresponding Gaussian process. So our method
is general and efficient.

In Sec. V, we like to find out how the shape, such as
slope, tail, and center of spectral densities can change the re-
laxation and coherence of reduced system dynamics. It is par-
ticularly interesting to examine the optical phonon band that
has different spectral density from the acoustic one.30 We will

look at the geometric impact of the spectral density in this
paper.

The paper is organized into five sections: (1) in Sec. II,
we briefly review coherent state path integral and influence
functional formalism; (2) in Sec. III, we introduce the gener-
alized characteristic function and random evolution operator.
With them, we drive the stochastic integral and differential
equations. In addition, we discuss how to derive the Gauss-
Markov model in our framework at the high temperature limit;
(3) in Sec. IV, we introduce the CD method and conditional
propagation scheme; (4) in Sec. V, we present the benchmark-
ing of the conditional propagation scheme according to the
Gauss-Markov model. We also show and discuss the results
for Fenna-Matthews-Olson (FMO) under the influence of dif-
ferent spectral densities.

To go beyond the influence functional (the bilinear cou-
pling of system and bath) for the reduced system dynamics,
the path integral is the last resort, which will allow us to study
the nonlinear coupling of the system and bath motions.

II. INFLUENCE FUNCTIONAL

In this section, we give a brief description of influence
functional based on the following exciton-phonon coupling
Hamiltonian:12, 31

H = HS(a†, a) + HI (a†, a, X) + HB, (2)

where HS(a†, a) =∑k ωk a
†
k ak , where a† and a are the

set of a
†
k and ak, HI = V (a†, a) × X, X = ∑

j cjxj, and

HB =∑j ( p2
i

2mj
+ 1

2mjω
2
j x

2
j ). The interaction between system

and bath is bilinear which decides that there is only one quanta
of energy that can be moved in or out of the system every time.

The evolution of the isolated system density matrix ρS(tf)
under the Hamiltonian of system HS(a†, a) in the path integral
representation can be expressed as

ρS(z∗
f , z′

f , tf ) = |�(tf )〉〈� ′(tf )|

=
∫∫

N−1dz∗
f dzf

∫∫
N−1dz′

f

∗
dz′

f |zf 〉

×K(z∗
f , z′

f , tf , ti)〈z′
f |, (3)

where z and z′ are complex c-numbers for bosons and its con-
jugate, and the kernel defined as

K(z∗
f , z′

f , tf , ti)

=
∫

Df [ Q(τ )]
∫

Df [ Q′(τ )]

× exp[(i/¯)SS( Q, tf , ti)] exp[−(i/¯)S∗
S( Q′, tf , ti)],

(4)

where the prime sign ′ is the indicator of the coordi-
nates associated with the bra state 〈� ′(tf)|,

∫
Df [ Q(τ )]

= limN→∞
∑N−1

i=1

∫
N−1dz∗(τi)dz(τi),

∫
Df [ Q′(τ )]

= limN→∞
∑N−1

i=1

∫
N−1dz′∗(τi)dz′(τi), N is the normaliza-

tion factor of coherent states. SS( Q, tf , ti) and S∗
S ( Q′, tf , ti)
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are actions defined as

SS( Q, tf , ti) =
∫ tf

ti

dτ
(
i¯ z∗(τ )ż(τ ) − HS(z∗(τ ), z(τ ))

)
(5)

and

S∗
S ( Q′, tf , ti) =

∫ tf

ti

dτ (−i¯ ż′∗(τ )z′(τ ) + HS(z′∗(τ ), z′(τ ))),

(6)
Q(τ ) is the short notation for the pair of (z(τ ), z*(τ )) and
Q′(τ ) is the short notation for the pair of (z′(τ ), z′*(τ )). Once
the bath is coupled to the system, assuming that the initial to-
tal density matrix is separable ρtot (0) = ρS(0) ∗ ρe

B(0), where
ρe

b is the equilibrium density matrix of the bath, exp(−βHB )
T r(exp(−βHB )) ,

the evolution of the reduced system ρS(tf ) = Tr(ρ(t)) can be
expressed in the similar expression in Eq. (4) with the new
K(zf

∗, z′
f , tf , ti),

K(z∗
f , z′

f , tf , ti) =
∫

Df [ Q(τ )]
∫

Df [ Q′(τ )]

× exp[(i/¯)Ss( Q, tf , ti)]×F ( Q, Q′; tf , ti)

× exp[−(i/¯)S∗
s ( Q′, tf , ti)], (7)

in which F ( Q, Q′, tf , ti), influence functional, is defined as,

F (Q, Q′; tf , ti)

= exp

{
−
∫ tf

ti

dτ

∫ τ

ti

dσ (V ( Q(τ ))−V ( Q′(τ ))

[γ (τ − σ )V ( Q(σ )) − γ †(τ − σ )V ( Q′(σ ))]

}
, (8)

where γ (t) = L1 − iL2, L1(t) = ∫∞
0 dωJ (ω) coth(β¯ω/2)

cos(ωt), L2(t) = ∫∞
0 dωJ (ω) sin(ωt), and J (ω)

= 1
2

∑
j

c2
j

mj ωj
δ(ω − ωj ) is the spectral density, which

describes the distribution of the coupling strength coefficients
between the system and different Harmonic modes. For the
simplification, we assume ¯ = 1 from now on.

In Sec. III, we will show how to map the convolution
of influence functional to the correlation of Gaussian random
process.

III. GENERAL CHARACTERISTIC FUNCTION
AND RANDOM EVOLUTION OPERATOR

Our construction of Gaussian random process mathe-
matically is based on the general characteristics function of
classical discrete Gaussian process (DGP). The details of
the construction of DGP and general characteristics func-
tion (GCF) are briefly reviewed in Appendix A. By extend-
ing this construction, we can obtain the mapping defined in
Eq. (1), i.e., reproducing the convolution of a reduced sys-
tem quantum dynamics with a Gaussian random process and

associated random evolution operator. The goal of this con-
struction is to replace the convoluted path integral defined in
Eq. (3) with the path integral conditional on the environment
fluctuation.

A. Random evolution operator

In order to map influence functional, we need to extend
the real-valued covariance matrix in Eq. (A3) to a complex-
valued covariance matrix with kernel, γ (τ , σ ) in Eq. (8). As
a result, the complex-valued GCF will be equivalent to in-
fluence functional defined in Eq. (8). To accommodate the
structure of double path integral in Eq. (3), we propose the
following complex-valued Gaussian stochastic process ξ̂ (t)
= [ξ̂ (t), ξ̂ ′(t)]. With the stochastic process, the convolution
due to the influence functional will be decomposed to a ran-
dom evolution operator,

F ( Q, Q′; tf , ti) =
〈
exp

[
−i

∫ tf

ti

dτ (V ( Q(τ ))ξ̂ (τ )

− V ( Q′(τ ))ξ̂ ′(τ ))

]〉
ξ̂ (t)

, (9)

where 〈 〉ξ̂ (t) is the expectation average over the trajectories

ξ̂ (t), which are independent of Q(t) and Q′(t), therefore
V ( Q(t) and V ( Q′(t). The detailed derivation can be found
in Appendix B. Since the Gaussian random process ξ̂ (t) is
independent of the system operators, the reduced system den-
sity, ρs in terms of path integral in Eq. (3), can be re-written
as

ρs(tf ) =
∫

Df [ Q(τ )]
∫

Df [ Q′(τ )] (10)

exp[(i/¯)Ss( Q(τ ), tf , ti)] × F ( Q, Q′; tf , ti)

× exp[−(i/¯)S∗
s ( Q′(τ ), tf , ti)]

=
∫

Df [ Q(τ )]
∫

Df [ Q′(τ )]

〈exp[(i/¯)(SS( Q(τ ), tf , ti) + V ( Q(τ )) ∗ ξ (τ )]

exp[−(i/¯)(S∗
S( Q′(τ ), tf , ti)

+V ( Q′(τ )) ∗ ξ ′(τ ))]〉ξ̂ (τ ) (11)

=
〈
T exp

{
−i

∫ tf

ti

dτ [HS +V (a†, a) ξ̂ (τ )]

}
ρS(0)

T exp

{
i

∫ tf

ti

dτ [HS + V (a†, a) ξ̂ ′(τ )]

} 〉
ξ̂ (τ )

, (12)

where T is time ordering operator. Equation (12) gives the lin-
ear random evolution operators for the forward and backward
propagation. By sampling the trajectories of ξ̂ (t) and applying
the above equation of motion, we can calculate the evolution
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of the reduce system density matrix, ρS(t) = 〈ρ(t |ξ̂ )〉ξ̂ (t). With
Eq. (9), we convert the influence functional convolution to an
expectation average of the reduced system dynamics condi-
tional on the Gaussian random field trajectories. The equiva-
lent differential form of Eq. (12) can be expressed as

dρS(t |ξ̂ )

dt
= −i LS ρS(t |ξ̂ ) − i [V (a†, a) ξ (t) ρS(t |ξ̂ )

− ρS(t |ξ̂ ) V (a†, a) ξ ′(t)], (13)

where LS = [HS, ·]. At the high temperature limit, the two
distinct processes, ξ (t) and ξ ′(t) will collapse to one ξ (t) and
the term V (a†, a) ξ (t) ρS(t) − ρS(t) V (a†, a) ξ ′(t) will be-
come a commutator bracket, [V (a†, a) ξ (t), ρ(t)]. Then we
can recover the stochastic Liouville equation which is exten-
sively used in the study of the exciton transport,32

dρS(t |ξ̂ )

dt
= −i L(t) ρS(t |ξ̂ ), (14)

where L(t) = [Hs + V (a†, a) ξ (t), ·]. The details of the re-
duction of quantum noise to classical noise are discussed in
Appendix C.

The structure of influence functional determines that co-
variance matrix is non-Hermitian, so that it is different from
the one proposed by Miller33 for the signal processing and
others. The difference is clearly reflected in Eq. (B3). Sim-
ply speaking, ξ (t) and ξ ′(t) are not conjugate to each other,
which is the nature of the open quantum dynamics embed in
the influence functional.

B. Multichromophore Frenkel-exciton system

For the multichromophore Frenkel-exciton system, we
need to consider the path interference. As a result, extra steps
should be taken to replicate the right influence functional ker-
nel since besides the time correlation, the correlation between
different sites can exist due to path interference. Here, we take
a dimer system as an example to explain the extra steps. The
exciton-phonon coupling in a dimer is defined as

H = HS + V × X + I × HB, (15)

where

HS =
(

ε1 J

J ε2

)
, (16)

V =
(

V1 0

0 V2

)
, (17)

where X is the bath operator and I is identity matrix. There-
fore, in order to replicate the convolution kernel, we need
two independent Gaussian random processes, ξ̂ 1(t) and ξ̂ 2(t)
with the same kernel. The details of the construction of the
Gaussian processes for the dimer Hamiltonian are presented
in Appendix D. The independence means there is no spatial
correlation between ξ̂ 1(t) and ξ̂ 2(t) or the two Gaussian pro-
cesses have two independent covariance matrices as defined
in Eq. (B3). At the high temperature limit, if the phonon band

is only coupled to the site energy, the Hamiltonian of dimer in
Eq. (15) can be reduced to the stochastic Hamiltonian,

H (t) =
(

ε1 + ξ1(t) J

J ε2 + ξ2(t)

)
. (18)

If V has the off-diagonal matrix elements, Vij , then spatial
correlation will appear between different sites due to the in-
terference between different paths as discussed in the paper of
the enhanced coherence.34

C. High temperature limit and Gauss-Markov model

Gauss-Markov (Ornstein-Uhlenbeck) model has been
used for the study of exciton transport process with memory.
The environmental fluctuation is modeled with the Ornstein-
Uhlenbeck (OU) process which is a real Gaussian process
with exponential kernel. Although Gauss-Markov model is a
phenomenological model, we can derive the Gauss-Markov
from Eq. (13) with a proper assumption of the spectral
density.

If the spectral density is a Drude-form Lorentzian func-
tion, J (ω) = �2

2π

βγω

γ 2+ω2 , then L1 = �2 βγ

2 exp(−γ (σ − τ )),

and L2 = �2exp ( − γ (σ − τ )) as discussed in the
literature.12, 31 It can be clearly shown that at the high tem-
perature limit (i.e., β → 0), βγ

2 → 0 and L1 → 0. However,
L2 has the exponential form. As a result, the Gauss-Markov
model can be considered as the high temperature limit of
the complex-valued Gaussian process with the Drude-form
Lorentzian spectral density.

The Gauss-Markov model35, 36 has the stochastic Hamil-
tonian, H = Hs + ξ (t), where ξ (t) is the OU process with the
kernel γ (τ − σ ) = �2exp (σ − τ ). As a result, 〈ξ (τ )ξ (σ )〉
= 〈ξ ′(τ )ξ ′(σ )〉 = 〈ξ ′(τ )ξ (σ )〉 = 〈ξ (τ )ξ ′(σ )〉 = γ (τ − σ ) in
Eq. (B3). In other words, the Gauss-Markov model is a spe-
cific case of Eq. (14) when the Gaussian process kernel is
exponential. The details of the reduction of complex-valued
Gaussian processes to real-valued ones are presented in
Appendix C.

IV. METHODOLOGY

In this section, we propose the simulation method based
on the derivations of Gaussian processes. First, we will dis-
cuss the CD method and Monte Carlo sampling strategy to
generate the trajectories of environment fluctuations. Second,
we present the conditional propagation scheme to simulate the
reduced system quantum dynamics conditional on the trajec-
tories generated from the CD method.

A. Covariance decomposition and Monte Carlo
sampling of environment fluctuation

The Gaussian random process of our construction is
independent of the system degree of freedom. Therefore,
we can sample them before we calculate the reduced sys-
tem propagation conditional on the Gaussian random pro-
cess. With the complex-valued probability density function
(PDF) in Eq. (B5), potentially we can sample the discrete
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complex-valued Gaussian process on the discrete time lat-
tice. At the high temperature, we show in Appendix C, the
complex-valued PDF becomes a real-valued one. For the real-
valued PDF, the Cholesky decomposition, as an efficient CD
technique for the symmetric positive definite matrix,37 is used
to sample the discrete Gaussian trajectories by transform-
ing correlated random variables to uncorrelated ones, which
decomposes the covariance matrix in Eq. (C1) into a prod-
uct of lower and upper triangle matrix, � = LLT where
� = γ −1, the inverse of covariance matrix γ , L is a lower
triangle matrix. Given the nature of CD, we can parallel the
decomposition.

DGP is a multivariate Gaussian random vector. For a N
dimension multivariate Gaussian random vector,38, 39 ξ̂ , its co-
variance matrix γ is defined as in terms of time correlation
functions (kernel of influence functional),

γ = 〈ξ̂ ξ̂ T 〉. (19)

In order to generate the random vector, ξ̂ in Eq. (A1) with
Cholesky decomposition, we need to generate N independent
normal distributed random variables, ζ i, with Monte Carlo

according to the normal distribution function, 1
2π

exp(− ζ 2
i

2 ).
The random vector ξ̂ can be defined as, ξ̂ = L ∗ ζ̂ , where
ζ̂ = [ζ0, ζ1, . . . , ζN ]T . With this construction, we can recover
the following equality:

〈ξ̂ ξ̂ T 〉 = 〈Lζ̂ ζ̂ T LT 〉 = 〈LILT 〉 = γ , (20)

where ζ̂ ζ̂ T = I since 〈ζ iζ j〉 = δij. For the complex-valued
Gaussian process, since the covariance matrix of PDF
in Eq. (B5) is not complex symmetric or Hermitian, find-
ing the reliable algorithm of decomposition is challenging but
possible.40 We will discuss how to sample a complex-valued
Gaussian process in the future paper. So previous work of
Shao27, 28 shows that the convergence of the complex-valued
Gaussian process is slow based on their construction. But
we anticipate that this construction with tweaks can improve
the efficiency of the Monte Carlo for the complex-valued
Gaussian process. In this paper, we will limit our method to

the high temperature limit and real-valued Gaussian process
as used in Eq. (14).

B. Conditional propagation scheme

Once we can sample the environment fluctuations ξ̂ (t)
corresponding to influence functional, we can propagate the
reduced density matrix according to Eq. (14). We propose a
conditional propagation scheme to calculate the reduced den-
sity evolution by averaging over the Gaussian trajectories. In
the propagation scheme, we need to generate one realization
of the discrete Gaussian process ξ̂ first using the CD method
for the whole discrete time grid, [0, t1, t2, . . . , tN − 1, t] as
discussed in Subsection IV A. We can solve the stochastic
Liouville equation in Eq. (13) by propagating the conditional
density matrix using the fourth order Runge-Kutta scheme.
We can also propagate the conditional density matrix with the
following iterative scheme based on the time-sliced stochastic
evolution operator exp [−i dt (Hs + V ξ (t))]:

ρS(t + dt |ξ̂ (t + dt)) = exp [−i dt (Hs + V ξ (t))] ρ(t |ξ̂ (t))

× exp[i dt (Hs + V ξ ′(t))]. (21)

The steps of the scheme can be described as

1. Generate ξ̂ using the Monte Carlo according to PDF in
Eq. (B5) using the CD method.

2. Propagate the conditional density matrix ρS(t | ˆξ (t)) to
ρS(t + dt |ξ̂ (t + dt)) using Eq. (21) step by step.

From the scheme, we can see that at every step, the
density matrix is conditional on the environmental Gaus-
sian random field, ξ (t) and ξ ′(t). For the initial density ma-
trix, ρS(0) is conditional on the ξ (0) so that we can write
it as ρS(0|ξ̂ (0)). We choose the left end point, t, of the in-
terval [t, t + dt] to define our stepwise evolution operator,

(a) (b)

FIG. 1. Comparison of the results of the conditional propagation scheme and POP second-order master equation at the weak damping limit.
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exp (−i dt (HS + V ξ (t))) and exp
(
i dt (HS + V ξ ′(t))

)
. It

might be interesting to explore the numerical scheme using
the middle point or higher order approximation in the step-
wise evolution operator to have better efficiency and accuracy
at larger time step size, dt.

V. RESULTS AND DISCUSSION

We introduce the conditional propagation scheme to
compute the evolution of conditional reduced density ma-
trix, ρS(t |ξ̂ ) dependent on Gaussian trajectories, ξ (t). Since
the Gauss-Markov model has been used widely before, it can
serve as a good benchmark model to validate the propagation
scheme. Besides it, we will apply the scheme on the FMO
system to study the dynamic effect of spectral densities.

A. Benchmark with Gauss-Markov model

The Gauss-Markov model has been extensively used to
study exciton transport.36 We take a symmetric dimer again as

an example, which has the following stochastic Hamiltonian:

H=
2∑

k=1

εk|k〉〈k|+J (|1〉〈2|+ |2〉〈1|) + δε1|1〉〈1|+ δε2|2〉〈2|,
(22)

where the energy fluctuations, δεi, are the Gauss-Markov pro-
cess with exponential kernel:

〈δεi(t)δεj (t ′)〉 = �2 exp(−γ |t − t ′|)δij . (23)

For the symmetric dimer (ε1 = ε2), the local master equation
(partial ordering prescription (POP)) of reduced density ma-
trix is a set of coupled integro-differential equation,41

ps(y)

dy
= ψs(y),

(24)
ψs(y)

dy
= −(1 − 2�2

s g1(y)
)

ps(y) − 2�2
s g2(y) ψs(y),

where P(t) = ρ11 − ρ22(t), ψ(t) = i(ρ21(t) − ρ12(t)), ps(y)
= P(y/2J), ψ s(y) = ψ(y/2J), y = 2Jt, t is the time, and
�s = �

2J
. Using the symmetric dimer, we can benchmark

our conditional propagation scheme in two ways: (1) the
first benchmarking compares the results of the conditional

(a) (b)

(c)

FIG. 2. Comparison of the results of the MCMC and CD methods (the imaginary parts of the populations ρ11 and ρ22 in (a) and (b) are at the magnitude of
1.0 × 10−10).
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FIG. 3. We present four spectral densities: Ohmic spectral density with
Lorentzian cutoff, Ohmic spectral density with exponential cutoff, and spec-
tral densities with Gaussian cutoff with σ = γ and σ = 2γ (γ = 5 ps−1).

propagation scheme with the results of Eq. (24) at the weak
damping limit, �/J 	 1; (2) the second benchmarking com-
pares the CD method with the Markov chain Monte Carlo

(MCMC) sampling method which only works for the expo-
nential kernel.42

In the calculations, we choose ε1 = ε2 = 0, J = 0.5,
� = 0.05, and γ = 1.0. Figure 1 shows the first bench-
marking results for the population ρ11 − ρ22 and coherence
ρ21 − ρ12. The two results agree with each other very well.
Figure 2 shows the second benchmarking results for the pop-
ulation ρ11 − ρ22 and coherence ρ21 − ρ12. In the second
benchmarking, the MCMC method is used to generate the
independent Gauss-Markov processes ξ (t). We have a good
agreement as well. For both benchmarkings, we use 5000
trajectories.

B. Effect of spectral density in the FMO system

Spectral density plays an important role in the dynamics
of reduced system since the distribution of coupling coeffi-
cient decides how the energy flows into and out of the sys-
tem. Mathematically, the relaxation process due to stochastic
Gaussian environment is governed by the kernel of Gaussian
process. The system of FMO has been studied4, 43 exten-
sively, we take the FMO model as an example to look at
the influence of different kernels. The system Hamiltonian in
Refs. 44–46 is used. The recent work of Moix et al.5 shows

(a) (b)

(c) (d)

FIG. 4. Kernels of four different spectral densities, Lorentzian (a), exponential cut (b), Gaussian with σ 1 = γ (c), and Gaussian with σ 2 = 2γ (d) (γ = 5 ps−1).
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that the coherence in FMO system could depend on the initial
condition. However, we in this paper will focus on how de-
phasing rates get manipulated by the spectral density given a
fixed initial condition at site 1 and thereof coherence. We treat
the Hamiltonian more as another model system.

The real part of kernel γ (τ − σ ) is determined by spectral
densities,

L1(τ − σ ) =
∫ ∞

0
dωJ (ω) coth(β¯ω/2) cos(ωt). (25)

Ohmic spectral density has the form J(ω) = ηω and it leads
to the δ(t) spectral density.47 However, Ohmic spectral den-
sity with Lorentzian or exponential cutoff is used extensively
in the study of non-Markovian excitation energy transfer in
the light harvesting complex. Ohmic spectral density with
Lorentzian cutoff or Drude spectral density is particularly
popular because of its connection to Gauss-Markov process
(exponential kernel) as revealed in Subsection III C. For the

current model, the geometry of spectral density should play
an role in the dynamics of reduced systems. For example, at
the high temperature or strong coupling limit, the probability
of multiphonon gets high and the phonon side band becomes
closer to a Gaussian distribution.48, 49 The shift will change the
reduced dynamics. The Gaussian spectral density is used to
model the optical phonon band.30 It is interesting to study the
effect of a optical Gaussian phonon on EET.50 It is also impor-
tant to notice that the different cutoffs of the Ohmic spectral
density will generate different non-δ kernels at high tempera-
ture limit and different non-Markovian effect on the reduced
system.

In this section, we choose four different kernels: (1)
the kernel of Drude spectral density, J (ω) = ηω

γ

π(γ 2+ω2) in
Ref. 12; (2) the kernel of Ohmic spectral density with expo-
nential cut-off J (ω) = ηω 1

2ωc
exp(−ω/ωc) with ωc = 5 ps−1;

(3) the kernel of the first Gaussian spectral density

ηω 1
σ
√

2π
exp(− (ω−ωop)2

2σ 2 ) with ωop = 0 with σ = γ ; (4) the
kernel of the second Gaussian spectral density with σ = 2γ .
All the parameters are set up according to Ref. 34.

(a) (b)

(c) (d)

FIG. 5. Population dynamics of FMO, ρii(t), in the site representation for the kernels of four different spectral densities: Lorentzian, exponential cutoff, and
Gaussians with two different σ ’s. (a) The results for Lorentzian, (b) the results for exponential cut, and (c) and (d) the results for Gaussians with two different
widths, σ 1 = γ and σ 2 = 2γ (γ = 5 ps−1).
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The Drude spectral density is used as the reference re-
organization energy η = �2β

2 . In order to compare results at
the same level, we normalize the four spectral densities to the
reference reorganization energy,

∫∞
0 dωJ (ω)/ω.51 The super-

imposing of the four different spectral densities is shown in
Figure 3. In the figure, Ohmic with exponential cut has the
peak around 15 cm−1, the Drude and first Gaussian spectral
density around 25 cm−1, and the second Gaussian spectral
density around 40 cm−1. The major difference between the
Drude and first Gaussian is the weight of high frequencies.
The Drude has longer tail and more weight at the high fre-
quency domain. Ohmic spectral density with exponential cut-
off, compared to other spectral density, mostly concentrates
in the low frequency domain. The comparisons of the four
corresponding kernels are shown in Fig. 4. Panel (a) in Fig. 4
shows that the real part of the kernel of the Drude spectral
density is almost identical to the exponential kernel and tells
us that at high temperature, the model with Drude Ohmic
spectral density will collapse to the Gauss-Markov Model.
We can also observe that even though the Drude and first
Gaussian spectral densities have the same peak, they have dif-
ferent kernels in Fig. 4. The real part of the kernel of the Drude

spectral density has longer curve and bigger area under the
curve compared to the first Gaussian spectral density.

Figure 5 shows population dynamics ρ ii(t) for the four
different spectral densities. Figure 6 clearly shows the imag-
inary parts of populations converge to zero. We can see that
the Drude spectral density and second Gaussian spectral den-
sity give the fastest decay since both have more weight in the
high frequency domain and smaller area under the real part
of kernel curve in Fig. 4. Our conditional propagation scheme
uses 5000 sampling trajectories for all the FMO results.

We can also see that while the Drude and first Gaussian
spectral densities have the same peak, they have different ar-
eas under kernel curves and different decay rates. Based on
these observations, we can draw a simple conclusion that the
low frequencies lead to the non-Markovian effect (memory
effect) and high frequencies are more associated with damp-
ing and decay.18 But the areas under the kernel curves essen-
tially decide decay/damping rates. However, the connection
between spectral density and the area under the kernel curve
is nonlinear. It suggests that tweaking with the shape of spec-
tral density gives us more interesting insight to the interplay
between coherent and incoherent motions.

(a) (b)

(c) (d)

FIG. 6. (a)–(d) Corresponding imaginary part (in reference to Fig. 5) of the populations, ρii(t) (y-axis scale is at the magnitude of 1.0 × 10−9 or 1.0 × 10−10

for (d)).
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(a) (b)

(c) (d)

FIG. 7. (a) The spectral densities with differential exponential cutoffs, ωc = 2, 5, 10 ps−1 and (b)–(d) the comparison of the results, the population dynamics
of reduced systems, ρii, for the three different spectral densities.

Figure 7 shows that the comparisons of the population
dynamics for three different Ohmic spectral densities with
three different exponential cutoffs, ωc = 2, 5, 10 ps−1. It is
clearly shown that by fixing the reorganization energy, the
more the spectral density is shifted to the higher frequency,
the faster the relaxation/decay is.

In summary, based on the model we have here, the low
frequencies are associated with the memory (non-Markovian)
effect and high frequencies are more associated with damp-
ing or decay. When we change the weight among low and
high frequencies, we can change the curve of kernel and the
relaxation process. All these arguments are based on the fixed
initial conditions.

VI. CONCLUDING REMARK

In the paper, we review coherent state path integral and
influence functional. By exploiting the similarity between
GCF and influence functional, we can construct complex-
valued Gaussian processes to deconvolute the dynamics of
reduced system temporarily. In the construction, we build the
covariance matrix of PDF of discrete Gaussian proposed ac-

cording to convolution kernel of influence functional. Using
the CD method, we can sample the discrete Gaussian process.
On top of it, we propose conditional propagation scheme to
simulate dynamics of the reduced system under the influence
of different spectral densities.

Using the CD method and conditional propagation
scheme, we examine EET in the FMO complex under the in-
fluence of different spectral densities. We find that the geome-
try of spectral density can change the reduced system dynam-
ics. In this paper, we find that the low frequencies are more
associated with the non-Markovian effect (memory effect)
and high frequencies are more associated with damping and
decay. Since the connection between spectral density and
the area under the kernel curve is nonlinear, tweaking with
the shape of spectral density may give us more interest-
ing insight to the interplay between coherent and incoherent
motions.

For the future work, we will extend the CD method to
sample complex-valued Gaussian process according to the
complex-valued non-Hermitian covariance matrix. We also
like to apply the method to study the correlated initial con-
dition for the open quantum system.
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APPENDIX A: DGP AND GCF

This representation of the stochastic DGP, ξ (t) is char-
acterized by its kernel, i.e., two time correlation function,
γ (t) = 〈ξ (t)ξ (0)〉. In this section, we would like to show how
we can construct the proper Gaussian process by treating the
influence functional as a GCF. Physicists are more familiar
with the Fokker-Plank equation when we discuss the Brown-
ian motion. From the practical perspective, Gaussian fluctu-
ation’s dynamic properties are determined by the correlation.
Most of dynamical systems that we meet are stationary, which
means the two-time correlation function is only dependent on
the time difference, ti − ti − 1.

DGP can be defined as a random vector ξ̂ on the discrete
time lattice, [t0, . . . tn], defined as,

ξ̂ = [ξ (t0), ξ (t1), . . . , ξ (tn−1), ξ (tn)]T , (A1)

where t0 = 0 and tn = t. For the simplification of notations,
we replace ξ (ti) with ξ i. The joint probability density function
(PDF) of DGP ξ̂ is a multivariate Gaussian function. To define
the multivariate Gaussian PDF, we need two structure param-
eters, mean vector, m̂ = [m1,m2, · · · ,mn]†, where mi = 〈ξ i〉,
and covariance matrix, γ = [γij ], where γ ij = 〈(ξ i − mi)(ξ j

− mj)〉. Based on the mathematical properties of multivariate
Gaussian function, PDF of DGP is defined as,

P (ξ̂ ) = N exp[−(ξ̂ − m̂)†γ −1(ξ̂ − m̂)], (A2)

where

γ =

⎡
⎢⎢⎣

〈(ξ0 − m0)(ξ0 − m0)〉 〈(ξ0 − m0)(ξ1 − m1)〉 · · ·
〈(ξ1 − m1)(ξ0 − m0)〉 〈(ξ1 − m1)(ξ1 − m1)〉 · · ·

...
...

. . .

⎤
⎥⎥⎦ ,

(A3)

and N = 1
(2π)n/2|γ |1/2 is the normalization factor and | · | is de-

terminant. Without loss of generality, we assume that m̂ = 0
in the context of mean field.

The Gaussian process ξ (t) is the continuous limit to the
DGP, ξ̂ when dt → 0. What is the meaning of the limitation?
How do we express the limitation in terms of what quantity?
PDF of DGP ξ̂ governs the discrete Gaussian environmen-
tal fluctuations. However, PDFs for continuous Gaussian pro-
cesses do not exist. In other words, we cannot take the contin-
uous limit on PDF. The Fourier transform of PDFs, i.e., GCF,
provides the equivalent information to PDFs. We can use GCF
as the quantity to define the continuous limitation of DGP. In
Appendix B, we will define the GCF and show the connection
of GCF to influence functional.

Corresponding to Eq. (A2), the GCF of DGO is defined
as〈

exp

(
− i

∑
i

ŝT ξ̂ dt

)〉
ξ̂

= exp

(
− 1

2

∑
ij

ŝT γ ŝ dt2

)
,

(A4)
where we assume homogeneous time lattice, ti − ti − 1 = dt,
and ŝ = [s(t0), s(t1), s(t2), . . . , s(tn)]†, the dummy vector (a
discrete deterministic process). This is essentially the aver-
age of the Fourier transform of PDF. By taking dt → 0 in
Eq. (A4), the integral sign,

∫
, will replace the sum sign,

∑
.

Given the symmetry of the kernel, γ (−t) = γ (t), we have the
continuous-time Gaussian process GCF,〈

exp
(
−i
∫ t

0 ŝ†ξ̂ dt
)〉

= exp
[− 1

2

∫ t

0 dτ
∫ t

0 dσs(τ )γ (τ, σ )s(σ
)]

= exp
[− ∫ t

0 dτ
∫ τ

0 dσs(τ )γ (τ, σ )s(σ )
]
. (A5)

The continuous Gaussian process kernel, γ (σ , τ ) is the con-
tinuous limit of the discrete covariance matrix γ in Eq. (A3).

GCF for real (continuous-time) Gaussian process will
give us the lead to construct the quantum Gaussian random
field to reproduce the influence functional. The simple com-
parison already shows that influence functional is similar to
GCF. Therefore, constructing the proper covariance matrix,
γ , for the complex-valued quantum Gaussian random field,
we can achieve our goal to map the convolution of influence
functional to a random field. We will show how to construct
the mapping in Appendix B.

APPENDIX B: INFLUENCE FUNCTIONAL
AND COMPLEX-VALUE GAUSSIAN PROCESS

In order to draw the linkage between influence functional
and general characteristic function, we need to discretize in-
fluence function. Given that influence function in Eq. (8) is a
time ordered double integral and the symmetry of the kernel
γ ( − t) = γ †(t), we have

F ( Q, Q′; tf , ti)

= exp

{
−
∫ tf

ti

dτ

∫ τ

ti

dσ (V ( Q(τ )) − V ( Q′(τ ))

[γ (τ − σ )V ( Q(σ )) − γ †(τ − σ )V ( Q′(σ ))]

}

= exp

{∫ tf

ti

dτ

∫ τ

ti

dσ − V ( Q(τ ))γ (τ − σ )V ( Q(σ )

}

+ exp

{∫ tf

ti

dτ

∫ τ

ti

dσ − V ( Q′(τ ))γ †(τ − σ )V ( Q′(σ )

}

+ exp

{∫ tf

ti

dτ

∫ τ

ti

dσ + V ( Q′(τ ))γ (τ − σ )V ( Q(σ )

}

+ exp

{∫ tf

ti

dτ

∫ τ

ti

dσ + V ( Q(τ ))γ †(τ − σ )V ( Q′(σ )

}
.

(B1)
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We define N homogenous discrete time grid ti where
i = 0, 1, 2, . . . , N, t0 = ti, tN = tf, and dt = (tf − ti)/N,
Vi = V ( Q(ti))dt , V ′

i = −V ( Q′(ti))dt , and covariance matrix
element, γ ij = γ (ti − tj), γ

†
ij = γ †(ti − tj ). The discrete ver-

sion of F ( Q, Q′; tf , ti) can be defined as

exp

⎛
⎝−

N∑
i=0

i∑
j=0

ViγijVj −
N∑

i=0

i∑
j=0

V ′
i γ

†
ijV

′
j

−
N∑

i=0

i∑
j=0

V ′
i γijVj −

N∑
i=0

i∑
j=0

Viγ
†
ijV

′
j

⎞
⎠ . (B2)

Following the constructive approach in Sec. III, the co-
variance matrix for discrete complex-value Gaussian process,
ξ̂ (t), is defined as

γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈ξ0ξ0〉 〈ξ0ξ1〉 · · · 〈ξ0ξ
′
0〉 〈ξ0ξ

′
1〉 · · ·

〈ξ1ξ0〉 〈ξ1ξ1〉 · · · 〈ξ1ξ
′
0〉 〈ξ1ξ

′
1〉 · · ·

...
...

. . .
...

...
...

〈ξ ′
0ξ0〉 〈ξ ′

0ξ1〉 · · · 〈ξ ′
0ξ

′
0〉 〈ξ ′

0ξ
′
1〉 · · ·

〈ξ ′
1ξ0〉 〈ξ ′

1ξ1〉 · · · 〈ξ ′
1ξ

′
0〉 〈ξ ′

1ξ
′
1〉 · · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B3)

where

ξ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ0

ξ1

...

ξn

ξ ′
0

ξ ′
1

...
ξ ′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B4)

where ξ i = ξ (ti) and ξ ′
i = ξ ′(ti) and the means of ξ i and ξ ′

i

are zeros, 〈ξ iξ j〉 = 〈ξ jξ i〉 = γ ij, 〈ξ ′
i ξ

′
j 〉 = 〈ξ ′

j ξ
′
i 〉 = γ

†
ij , 〈ξiξ

′
j 〉

= 〈ξ ′
j ξi〉 = γ

†
ij , where i ≥ j and 〈ξiξ

′
j 〉 = 〈ξ ′

j ξi〉 = γij , where

i ≤ j. Also γii = γ
†
ii . Therefore, 〈ξiξi〉 = 〈ξ ′

i ξ
′
i 〉 = 〈ξ ′

i ξi〉
= 〈ξiξ

′
i 〉 = γii = γ

†
ii . This matrix is non-Hermitian which is

one intrinsic property of quantum open systems.
The corresponding complex-valued PDF of ξ̂ can be ex-

pressed as

P = N exp

(
−1

2
ξ̂

T
γ −1 ξ̂

)
, (B5)

where N is the normalization factor. The corresponding GCF
is defined as〈

exp

(
−i
∑

i

V̂
T
ξ̂

)〉
ξ̂

= exp

(
−1

2
V̂

T
γ V̂
)

, (B6)

where the dummy vector,

V̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V0

V1

...

VN

V ′
0

V ′
1

...

V ′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After comparing Eqs. (B6) and (B2), we can found our con-
struction of complex-value Gaussian noises generates GCF
equal to influence functional for the discrete version. In order
to prove the equality, we define the two vectors V̂ 1 and V̂ 2

and four blocks γ 11, γ 22, γ 12, and γ 21 as follows:

V̂ 1 =

⎡
⎢⎢⎢⎢⎣

V0

V1

...

VN

⎤
⎥⎥⎥⎥⎦ ,

V̂ 2 =

⎡
⎢⎢⎢⎢⎣

V ′
0

V ′
1

...

V ′
n

⎤
⎥⎥⎥⎥⎦ ,

γ 11=

⎡
⎢⎢⎣
〈ξ0ξ0〉 〈ξ0ξ1〉 · · ·
〈ξ1ξ0〉 〈ξ1ξ1〉 · · ·

...
...

. . .

⎤
⎥⎥⎦ , γ 22 =

⎡
⎢⎢⎣
〈ξ ′

0ξ
′
0〉 〈ξ ′

0ξ
′
1〉 · · ·

〈ξ ′
1ξ

′
0〉 〈ξ ′

1ξ
′
1〉 · · ·

...
...

. . .

⎤
⎥⎥⎦,

(B7)

γ 12=

⎡
⎢⎢⎣
〈ξ0ξ

′
0〉 〈ξ0ξ

′
1〉 · · ·

〈ξ1ξ
′
0〉 〈ξ1ξ

′
1〉 · · ·

...
...

. . .

⎤
⎥⎥⎦ , γ 21 =

⎡
⎢⎢⎣
〈ξ ′

0ξ0〉 〈ξ ′
0ξ1〉 · · ·

〈ξ ′
1ξ0〉 〈ξ ′

1ξ1〉 · · ·
...

...
. . .

⎤
⎥⎥⎦.

(B8)

Equation (B6) can be re-written as

exp

(
−1

2
V̂

T

1 γ 11V̂ 1 − 1

2
V̂

T

1 γ 22V̂ 2

−1

2
V̂

T

2 γ 21V̂ 1 − 1

2
V̂

T

1 γ 12V̂ 2

)
. (B9)

Since γ 11 and γ 22 are symmetric matrices ac-

cording to their definitions, exp(− 1
2 V̂

T

1 γ 11V 1)

= exp(−∑N
i=0

∑i
j=0 ViγijVj ) and exp(− 1

2 V̂
T

2 γ 22V 2)

= exp(−∑N
i=0

∑i
j=0 V ′

i γ
†
ijV

′
j ). For the remaining two terms,
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we have to consider the following equality:

exp

(
−1

2
V̂

T

1 γ 12V̂ 2 − 1

2
V̂

T

2 γ 21V̂ 1

)

= exp

⎛
⎝−1

2

N∑
i=0

i∑
j=0

V i
1 γ

ij

12V
j

2 − 1

2

N∑
i=0

N∑
j=i+1

V i
1 γ

ij

12V
j

2

−1

2

N∑
j=0

j∑
i=0

V i
2 γ

ij

21V
j

1 − 1

2

N∑
j=0

N∑
i=j+1

V i
2 γ

ij

21V
j

1

⎞
⎠

= exp

⎛
⎝−1

2

N∑
i=0

i∑
j=0

V i
1 γ

ij

12V
j

2 − 1

2

N∑
i=0

N∑
j=i+1

V i
1 γ

ij

12V
j

2

−1

2

N∑
j=0

j∑
i=0

V
j

1 γ
ij

21V
i

2 − 1

2

N∑
j=0

N∑
i=j+1

V
j

1 γ
ij

21V
i

2

⎞
⎠

= exp

⎛
⎝−1

2

N∑
i=0

i∑
j=0

V i
1 γ

ij

12V
j

2 − 1

2

N∑
i=0

N∑
j=i+1

V i
1 γ

ij

12V
j

2

−1

2

N∑
i=0

i∑
j=0

V i
1 γ

ji

21V
j

2 − 1

2

N∑
i=0

N∑
j=i+1

V i
1 γ

ji

21V
j

2

⎞
⎠ .

(B10)

If γ
ij

12 = γ
ji

21 = γ
†
ij when i > j and γ

ij

12 = γ
ji

21 = γij when i
< j which are satisfied in the covariance matrix Eq. (B3), the
equality becomes

exp

⎛
⎝−1

2

N∑
i=0

i∑
j=0

V i
1 γ

ij

12V
j

2 − 1

2

N∑
i=0

N∑
j=i+1

V i
1 γ

ij

12V
j

2

−1

2

N∑
i=0

i∑
j=0

V i
1 γ

ji

21V
j

2 − 1

2

N∑
i=0

N∑
j=i+1

V i
1 γ

ji

21V
j

2

⎞
⎠

= exp

⎛
⎝−

N∑
i=0

i∑
j=0

V i
1 γ

ij

12V
j

2 −
N∑

i=0

N∑
j=i+1

V
j

2 γ
ji

21V
i

1

⎞
⎠ .

(B11)

It is easy to show that
∑N

i=0

∑N
j=i+1 V

j

2 γ
ji

21V
i

1

=∑N
i=0

∑i
j=0 V i

2 γ
ij

21V
j

1 . With this, we complete our
proof,〈

exp

(
−i
∑

i

V̂
T
ξ̂

)〉
ξ̂

= exp

⎛
⎝−

N∑
i=0

i∑
j=0

ViγijVj −
N∑

i=0

i∑
j=0

V ′
i γ

†
ijV

′
j

−
N∑

i=0

i∑
j=0

V ′
i γijVj −

N∑
i=0

i∑
j=0

Viγ
†
ijV

′
j

⎞
⎠ , (B12)

because V i
1 corresponds Vi and V i

2 corresponds to V ′
i . By

taking the continuous limit of Eq. (B6), the corresponding

continuous-time GCF should match the influence functional
in Eq. (8). In other words, we prove the equality in Eq. (9).

APPENDIX C: COMPLEX GAUSSIAN AND CLASSICAL
GAUSSIAN NOISES

At the classical high temperature, the complex covariance
matrix will become

γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈ξ0ξ0〉 〈ξ0ξ1〉 · · · 〈ξ0ξ
′
0〉 〈ξ0ξ

′
1〉 · · ·

〈ξ1ξ0〉 〈ξ1ξ1〉 · · · 〈ξ1ξ
′
0〉 〈ξ1ξ

′
1〉 · · ·

...
...

. . .
...

...
...

〈ξ ′
0ξ0〉 〈ξ ′

0ξ1〉 · · · 〈ξ ′
0ξ

′
0〉 〈ξ ′

0ξ
′
1〉 · · ·

〈ξ ′
1ξ0〉 〈ξ ′

1ξ1〉 · · · 〈ξ ′
1ξ

′
0〉 〈ξ ′

1ξ
′
1〉 · · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C1)

which becomes a symmetric real-valued matrix, i.e., the
four matrices become equal to each other, γ 11 = γ 22 = γ 21

= γ 12. In order to reproduce the high temperature real-valued
covariance matrix, the random vector ξ̂ can be simplified to
be

ξ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ0

ξ1

...

ξn

ξ0

ξ1

...

ξn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C2)

i.e., ξ ′
i = ξi .

APPENDIX D: GAUSSIAN PROCESS FOR DIMERS

The influence functional can be defined as (for example,
in the Refs. 19 and 20)

I (s+
0 , s+

1 , . . . , s, s−
0 , s−

1 , . . . , s ′)

= TrB[e−i(HI (s,X)+I×HB (X))dt/2e−i(HI (s+
N−1,X)+I×HB (X))dt . . .

e−i(HI (s+
1 ,X)+I×HB (X))dt e−i(HI (s+

0 ,X)+I×HB (X))dtρB(0)

ei(HI (s−
0 ,X)+I×HB (X))dt ei(HI (s−

1 ,X)+I×HB (X))dt . . .

ei(HI (s−
N−1+I×HB (X)),X)dt ei(HI (s ′,X)+I×HB (X))dt/2], (D1)

where si is the discrete system variables, since

HI = V × X =
(

HI1 0

0 HI2

)
(D2)

is diagonal, where HI1 = V1 ∗ X and HI2 = V2 ∗ X in the
dimer Hamiltonian in Eq. (15),
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e−i(HI (si ,X)+I×HB (X))dt =
(

exp(−i(V1(si) ∗ X + HB(X))dt) 0

0 exp(−i(V2(si) ∗ X + HB(X))dt)

)
. (D3)

And the following influence functional:

I (s+
0 , s+

1 , . . . , s, s−
0 , s−

1 , . . . , s ′)

= TrB

[(
e−iHe1(s,X)dt e−iHe1(s+

N−1,X)dt . . . e−iHe1(s+
0 ,X)dt 0

0 e−iHe2(s,X)dt e−iHe2(s+
N−1,X)dt . . . e−iHe2(s+

0 ,X)dt

)

×ρB(0)

(
eiHe1(s−

0 ,X)dt . . . eiHe1(s−
N−1,X)dt eiHe1(s ′,X)dt 0

0 eiHe2(s−
0 ,X)dt . . . eiHe2(s−

N−1,X)dt eiHe2(s ′,X)dt

)]
,

where ρB(0) = exp(−βHB)/Tr(exp(−βHB)), He1 = V1(si)
∗ X + HB(X), and He2 = V2(si) ∗ X + HB(X). After inte-
grating over the degree of freedom of bath for the diagonal
matrix elements in Eq. (D4), we get two separate influence
functionals for each diagonal matrix element. As a result, we
should have two independent Gaussian random processes for
each matrix elements.
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