
High Level Compilation for Gate Reconfigurable

Architectures

by

Jonathan William Babb

S.M.E.E., Massachusetts Institute of Technology (1994)
B.S.E.E., Georgia Institute of Technology (1991)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2001

@ Massachusetts Institute of Technology 2001. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

August 2001

Certified by....

I

Accepted by.............

Anant Agarwal

Professor of Computer Science and Engineering

Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Students

MASSACHUSETTS IN TITUTE
OF TECHNOLOGY

BARKER NOV 0 1 2001

LIBRARIES

High Level Compilation for Gate Reconfigurable Architectures
by

Jonathan William Babb

Submitted to the Department of Electrical Engineering and Computer Science
on August 2001, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A continuing exponential increase in the number of programmable elements is turning man-

agement of gate-reconfigurable architectures as "glue logic" into an intractable problem; it

is past time to raise this abstraction level. The physical hardware in gate-reconfigurable
architectures is all low level - individual wires, bit-level functions, and single bit registers

- hence one should look to the fetch-decode-execute machinery of traditional computers

for higher level abstractions. Ordinary computers have machine-level architectural mecha-
nisms that interpret instructions - instructions that are generated by a high-level compiler.

Efficiently moving up to the next abstraction level requires leveraging these mechanisms

without introducing the overhead of machine-level interpretation. In this dissertation, I
solve this fundamental problem by specializing architectural mechanisms with respect to

input programs. This solution is the key to efficient compilation of high-level programs to

gate reconfigurable architectures.
My approach to specialization includes several novel techniques. I develop, with others,

extensive bitwidth analyses that apply to registers, pointers, and arrays. I use pointer

analysis and memory disambiguation to target devices with blocks of embedded memory.
My approach to memory parallelization generates a spatial hierarchy that enables easier-

to-synthesize logic state machines with smaller circuits and no long wires. My space-time

scheduling approach integrates the techniques of high-level synthesis with the static routing

concepts developed for single-chip multiprocessors.
Using DeepC, a prototype compiler demonstrating my thesis, I compile a new benchmark

suite to Xilinx Virtex FPGAs. Resulting performance is comparable to a custom MIPS

processor, with smaller area (40 percent on average), higher evaluation speeds (2.4 x), and

lower energy (18 x) and energy-delay (45 x). Specialization of advanced mechanisms results
in additional speedup, scaling with hardware area, at the expense of power. For comparison,
I also target IBM's standard cell SA-27E process and the RAW microprocessor. Results
include sensitivity analysis to the different mechanisms specialized and a grand comparison

between alternate targets.

Thesis Supervisor: Anant Agarwal
Title: Professor of Computer Science and Engineering

Acknowledgments

I am indebted to my advisor, Anant Agarwal, both for inspiration and patience. Professors

Martin Rinard and Srinivas Devadas served as readers on my thesis committee. Professors

and researchers Saman Amarasinghe, Krste Asanovid, Norman Margolus and Tom Knight

also provided helpful advice anytime I solicited it. The bio-circuit research of Tom and my

friend and fellow windsurfer Ron Weiss has kept me humble.

Many pieces of the DeepC compilation system were contributed or co-developed by other

researchers. The pointer analysis package was developed by Radu Rugina. The bitwidth

analysis package was implemented by Mark Stephenson. The space-time scheduling algo-

rithm is an extension of Walter Lee's algorithm for the Raw Machine. This algorithm is

partly based on scheduling for Virtual Wires, which was developed at MIT and extended by

Charlie Selvidge and others at Virtual Machine Works, a company I founded with Anant and

Russell Tessier. The memory disambiguation algorithms were developed by Rajeev Barua

for his PhD. The Verilog generator is built on the data structures of VeriSUIF (Robert

French, Monica Lam, Jeremy Levitt, Kunle Olukotun). All these passes make extensive

use of Stanford's SUIF infrastructure. In addition, many of the benchmarks in DeepC are

leveraged from the Raw Benchmark Suite, which also inspired the DeepC Project. Bench-

mark authors include: Matthew Frank, Victor Lee, Elliot Waingold, Rajeev Barua, Michael

Taylor, Jang Kim, and Devabhaktuni Srikrishna. The SOR benchmark is contributed by

Benjamin Greenwald, who also supported many of the Raw system utilities required to

generate my results. The Raw simulator was written and supported by Elliot Waingold

and Michael Taylor. Alex Kupperman implemented the latest host interface used to real-

ize some of my results. Many other members of MIT's compiler and computer architecture

groups indirectly contributed to the success of DeepC, including: Gleb Chuvpilo, Albert Ma,
Matthew Frank, Fae Ghodrat, Jason Kim, Samuel Larsen, Diego Puppin, Maria Cristina

Marinescu, Darko Marinov, Jason Miller, Michal Karczmarek, Chriss Kappler, Vivek Sarkar,
David Wentzlaff, Kevin Wilson, Michael Zhang, and Csaba Andras Moritz. I enjoyed shar-

ing an office with Andras who also provided much additional guidance. Special thanks to

Matt Frank for valuable feedback on an early draft. The MIT Writing Center was also an

incredible help when it came time to communicate my results.

The original inspiration for this work began with the Virtual Wires Project (Russell

Tessier, Matthew Dahl, Silvina Hanono, David Hoki, Ed Oellette, Trevor Bauer, and later

Charlie Selvidge and other staff at Virtual Machine Works) and with ideas for reconfigurable

computing that Russ and I have batted back and forth for many years. Russ also helped

interface DeepC to the VPR place and router (contributed by Vaughn Betz, Jonathan Rose

and others at Toronto) and developed the static router implementation for the network

overclocking study. Andre Dehon has also been a valuable sounding board for reconfigurable

ideas during our overlap at MIT.

This research was funded in part by numerous ARPA and NSF grants. The VirtuaLogic

emulation system was donated by Ikos Systems. Cadence, Synopsys, and Xilinx contributed

many of the CAD tools used under their outstanding university programs.

Thanks to Viktor Kuneak, Patrick Lam, and Karen Zee, the fortunate last group of

students to share an office with me. Ed Hurley and Joost Bonsen have kept up my en-

trepreneurial spirit while finishing. Last, but not least, my close family is always available

when advice is needed and has tolerated my absence from some important family events in

the past year to get this done. Finally, all errors are mine.

6

Contents

1 Introduction 17
1.1 Compiler/CAD Convergence . 18
1.2 My Thesis: How DeepC Closes The Gap . 19

1.2.1 Summary of Contributions . 21

1.3 Motivation for Specialization . 22

1.3.1 Five Classes of Mechanisms to Specialize 22
1.3.2 The Big Picture: Specialization in General 24

1.3.3 Counterarguments . 28
1.4 Previous Work . 30

1.4.1 My Previous Work . 30
1.4.2 Computer-Aided Design (CAD) . 32
1.4.3 Computer Architecture . 34
1.4.4 Compiler and Language Implementation 36
1.4.5 Summary . 38

1.5 Guide to Dissertation . 39

2 Problem and Analysis 41
2.1 The Old Problem: Compiling to Processors 41

2.2 The New Problem: Compiling to Gate Reconfigurable Architectures 42

2.3 Theory of Evaluation Modes . 45

2.4 A Special Relationship . 49

2.5 Summary of Result . 50

3 Specialization of Basic Mechanisms 51
3.1 Specializing Combinational Functions . 52

3.1.1 Approach . 52
3.1.2 Examples . 56
3.1.3 Ease of Implementation . 58

3.2 Specializing Storage Registers . 58
3.2.1 Approach . 58
3.2.2 Examples . 62
3.2.3 Ease of Implementation . 64

3.3 Specializing Control Structures . 64
3.3.1 Approach . 64
3.3.2 Examples . 70
3.3.3 Ease of Implementation . 75

3.4 Summary . 77

7

4.1 Specializing Memory Mechanisms . 80
4.1.1 Approach . 80
4.1.2 Examples . 86
4.1.3 Ease of Implementation . 86

4.2 Specializing Communication Mechanisms 87
4.2.1 Approach . 90
4.2.2 Examples . 93
4.2.3 Ease of Implementation . 94

4.3 Summary . 95

5 DeepC Compiler Implementation 97
5.1 Compiler Lineage and Use . 97
5.2 Overview of Compiler Flow . 98

5.2.1 Traditional Frontend Phase . 98
5.2.2 Parallelization Phase . 100
5.2.3 Space-Time Scheduling Phase . 102
5.2.4 Machine Specialization Phase . 105
5.2.5 CAD Tool Phase . 107

5.3 Target Hardware Technologies . 109
5.4 Simulation and Verification Environment . 110

5.4.1 Direct Execution on Workstation . 112
5.4.2 Parallel Simulation with RawSim . 112
5.4.3 Compiled-code Simulation with HaltSUIF 113
5.4.4 RTL Simulation with Verilog Simulator 114
5.4.5 Verification with a Logic Emulation 116

5.5 Summary . 116

6 Results 117
6.1 Experimental Setup . 117
6.2 The Deep Benchmark Suite . 119
6.3 Basic Results . 121

6.3.1 Mode 0 Basic Results . 122
6.3.2 Mode IBasic Results. 124

6.4 Basic Sensitivity Analysis . 128
6.4.1 Mode 0 Basic Sensitivity . 130
6.4.2 Mode I Basic Sensitivity . 131

6.5 Advanced Results . 133
6.5.1 Mode 0 Advanced Results . 135
6.5.2 Mode I Advanced Results . 135

6.6 Advanced Sensitivity Analysis . 136
6.6.1 Memory Sensitivity. 140
6.6.2 Communication Sensitivity . 143

6.7 Grand Finale: Comparing All Modes . 146
6.8 Summary . 150

8

4 Specialization of Advanced Mechanisms 79

7 Conclusions
7.1 W rap U p .
7.2 Future Prospects .
7.3 A New Philosophy for Architecture Design
7.4 Parting Words to the Compiler Community

A Complete Evaluation Modes
A.1 High-Level Compilation Modes
A.2 High-Level Interpretation Modes
A.3 Hybrid M odes .

B Emulation Hardware
B.1 DeepC Compilation Results and Functional Verification
B.2 Host Interfaces

B.2.1
B.2.2
B.2.3

WILD-O
SLIC Ho
Transit F

... os. Inerc..................
NE Host Interface
st Interface
ost Interfaces

C Data For Basic Results
C.1 Mode 0 Basic Results
C.2 Mode I Basic Results
C.3 Basic Sensitivity Results

D Data For Advanced Results
D.1 Mode 0 Advanced Results . . .
D.2 Mode I Advanced Results . . .
D.3 Advanced Sensitivity Results .

E VPR Data and FPGA Layouts 183
E.1 Input Data and Results . 183
E.2 Wire Length Distribution and Layouts .

9

153
153
153
155
155

157
157
160
161

163
163
165
166
168
169

171
171
173
173

177
177
179
179

183

.

10

List of Figures

1-1 Convergence of progress in compilers and CAD
1-2 DeepC compiler usage and flags
1-3 My thesis for compiling without instructions
1-4 Example of combinational function specialization
1-5 Example of storage register specialization
1-6 Example of control structure specialization
1-7 Example of memory mechanism specialization
1-8 Example of communication mechanism specialization . . .
1-9 Specialization in time .
1-10 Specialization in space .
1-11 Summary of previous Raw Benchmark results

2-1 Matrix multiply inner loop
2-2 SPARC assembly for inner loop of integer matrix multiply
2-3 DLX pipeline .
2-4 Xilinx XC4000 interconnect
2-5 Xilinx XC4000 CLB .
2-6 Basic evaluation modes
2-7 Evaluation dominos .
2-8 Review of denotational semantics

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17

Specialization of combinational logic
Specialization of combinational adders
IEEE 32-bit floating point format
Example of eliminating a logical OR
Example of address specialization
A subset of transfer functions for bi-directional data-range
Example of turning a register into a wire
Sample C code illustrating bitwidth analysis
Example for bitwidth sequence detection
Simplified control flow of a von Neumann Architecture . .
Controller and datapath
Structure of generic while program (in Verilog)
Increm enter PC .
Zero-hot PC .
Forward, cycle-driven, critical-path-based list scheduler . .
Loop nest with three cycle body
Transitions for loop nest with three cycle body

propagation

11

18
20
21
22
23
24
25
25
26
27
31

42
43
43
44
45
46
47
48

53
54
55
56
57
61
62
63
63
65
66
67
68
68
71
72
72

3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25

4-1
4-2
4-3
4-4
4-5
4-6

IF-THEN-ELSE construct
State transitions for IF-THEN-ELSE construct
Predication example: IF-THEN-ELSE construct
Predication example: Verilog after eliminating control flow .
Another predication example
Another predication example: resulting Verilog
Procedure call example .
While Program with procedure call (in Verilog).

Memory specialization example . . .
Logic for partial unification example
Partial unification example
Equivalence class unification
Modulo unrolling in two steps
Tiled architecture

4-7 Example of a static router
4-8 Example of router operations
4-9 Global binding example
4-10 Space-time scheduling example
4-11 Local binding example

5-1 DeepC compiler lineage
5-2 Overview of DeepC compiler flow
5-3 Steps of Parallelization Phase
5-4 Steps of Space-Time Scheduling Phase
5-5 Steps of Machine Specialization Phase
5-6 Steps of CAD Tool Phase
5-7 VirtuaLogic Emulator
5-8 A newer generation VirtuaLogic Emulator
5-9 Simulation by direct execution on a workstation
5-10 Simulation with the Raw Simulator
5-11 Simulation with HaltSUIF
5-12 RTL simulation .
5-13 RTL power estimation

6-1 Mode 0 versus Mode II
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13

Runtime comparisons between DeepC, Raw, and an UltraSPARC
IBM SA-27E ASIC non-memory power and area
M ode Iversus M ode II .
Speedup, LUT and register area for Virtex-E-8
Absolute and relative power reported by the Xilinx Power Estimator 1.5
Energy and energy-delay comparison .
Minimum track width to place and route each benchmark
adpcm layout and wire length distribution
Components of cycle count speedup .
Benefits of bitwidth reduction in Mode 0
Mode 0 performance normalized to one Raw tile.
M ode 0 speedup .

12

73
73
74
74
74
74
75
76

. 81

. 84

. 84

. 86

. 87

. 88

. 89

. 92

. 93

. 94

. 95

. 98

. 99

. 100

. 102

. 105

. 108

.111

.111

. 112

. 113

. 114

. 115

. 116

121
122
123
124
125
126
126
127
128
129
130
134
135

6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25

A-1 Complete evaluation dominos
A-2 Dominos arranged on the corners of a cube

Gatecount after synth
Verification with a log
Host interface to emu
Annapolis Micro Syst

B-5 Back of WILD-ONE
B-6 Components of host i
B-7 SLIC interface . . .

E-1 VPR architecture file, virtex.ar
E-2 Continuation of VPR architect
E-3 Settings for VPR

esis to VirtuaLogic Emulator
ic em ulator

lator .
ems WILD-ONE with custom connector card
. .
nterface .

. .

rcb

Ure file

E-4 adpcm wire length distribution
E-5 bubblesort wire length
E-6 convolve wire length
E-7 histogram wire length
E-8 intfir wire length
E-9 intmatmul-vl wire length . . .
E-10 jacobi wire length
E-11 life-v2 wire length
E-12 median wire length
E-13 mpegcorr wire length
E-14 parity-vl wire length
E-15 pmatch-vl wire length
E-16 sor wire length
E-17 adpcm layout
E-18 bubblesort layout
E-19 convolve layout
E-20 histogram layout
E-21 intfir layout
E-22 intmatmul-vl layout
E-23 jacobi layout
E-24 life-v2 layout

13

Performance as a function of LUT area.
Performance as a function of power .
Performance as a function of total energy
Clock frequency versus number of states
Long-distance messages .
Jacobi inner loop before and after blocking transformation
Improvements after blocking for sixteen-tile Jacobi
Performance improvements after increasing communication ports . . .
Improvements from overclocking the routing network
Sensitivity to variations in network speed
Grand comparison of performance as a function of non-memory area .
Grand comparison of performance as a function of non-memory energy

B-1
B-2
B-3
B-4

137
138
139
141
142
142
143
145
146
147
149
151

158
159

164
165
166
167
167
168
169

185
186
186
187
188
188
188
188
189
189
189
189
190
190
190
190
191
192
193
194
195
196
197
198

E-25 median layout . 199
E-26 mpegcorr layout . 200
E-27 parity-vi layout . 201

E-28 pmatch-vl layout . 202

E-29 sor layout . 203

14

List of Tables

5.1 Heuristically determined timing estimates 103
5.2 Sim ulators . 110

6.1 Description of DeepC experimental components 118
6.2 Other experimental tools . 118
6.3 DeepC Benchmark Suite . 119
6.4 Sensitivity of LUT area to specialization flags 132
6.5 Sensitivity of register bit area to specialization flags 132
6.6 Sensitivity of clock frequency to specializations 132
6.7 Minimum track width . 144
6.8 Assumptions and estimates for important parameters 148

A.1 Complete evaluation modes with examples 157

B.1 VMW gate count . 164

C .1 Cycle counts . 171
C.2 Power and area estimates . 172
C.3 Synthesis to Xilinx Virtex-E-7 process . 173
C.4 Synthesis results after place and route to Xilinx Virtex-E-8 174
C.5 More synthesis results after place and route to Xilinx Virtex-E-8 174
C.6 Energy and energy-delay comparison . 175
C.7 Cumulative contribution of specializations to cycle count reduction 176
C.8 Synthesis to IBM SA27E process without bitwidth analysis 176

D.1 Multi-tile cycle counts with and without router specialization 177
D.2 Estimated total cell area for IBM SA-27E 177
D.3 Estimated total power for IBM SA-27E . 178
D.4 Clock frequency after parallelization . 179
D.5 Number of LUTs . 179
D.6 Number of registers . 180
D.7 Estimated switching activity . 180
D.8 Estimated power for Xilinx Virtex-8 . 180
D.9 Number of states used in scatter plot . 181

E.1 V PR statistics . 184
E.2 Expected value of 2-pin net lengths . 187

15

16

Chapter 1

Introduction

Hypercomputer systems amalgamate sets of FPGA chips into a generally-useful criti-
cal mass of computing resource with variable communication and memory topologies to
form what the company believes is the first massively-parallel, reconfigurable, third-order
programmable, ultra-tightly-coupled, fully linearly-scalable, evolvable, asymmetrical mul-
tiprocessor.

- from the website of StarBridgeSystems.com,
a reconfigurable computing startup in Utah.

The above cold fusion-like description by Star Bridge Systems may be over-exuberant;
however, when compared to traditional computer architectures, systems of Field Pro-
grammable Gate Arrays (FPGAs), and more generally Gate Reconfigurable Architectures,
are fundamentally different: they have no pre-ordained instruction set. That is, the GRA
software interface is lower than computer instructions - it is bit-level, exposes a parallel
geometry of gate-level logic and wiring, and supports multiple clocks at user-determined
frequencies.

Lack of an instruction set is both a shortcoming and an advantage. On the one hand,
without an instruction set, the only current users of GRAs are hardware designers who have
the ability to handcraft applications at the Register Transfer Level (RTL). In contrast, any
technologist can program a traditional computer; high-level programming languages and
efficient compilers to support them are abundant and free. On the other hand, without
an instruction set, users are relieved of the obligations, obstructions, and entanglement of
decades of binary instruction compatibility; at the instruction level, users can easily adapt
and "custom-fit" the hardware for each application. This flexibility is a result of gate- or
logic-level programmability. Furthermore, silicon densities are approaching the extremes
of physical limits. Consider future architectures based on quantum dots [90], chemically-
assembled nanotechnology [62], and the in vivo digital circuits of Weiss et al. [139]. At
these extremes, the simplicity of gate reconfigurable architectures will become a significant
advantage over their instruction-programmable counterparts.

'This dissertation uses the term Gate Reconfigurable Architecture (GRA) to refer to the broad class
of computing devices that can be modified at the gate or logic level. These devices have historically been
likened to hardware that is capable of "rewiring" itself, although this claim is a stretch of the imagination.
We restrict our study to the class of GRAs that is easily reprogrammable (SRAM-based FPGAs and not
antifuse-based FPGAs).

17

high

C
.2

C)

(U

(0

4)

low

time

Figure 1-1: Convergence of progress in compilers and CAD

Improvements over time in compilers allow successively lower architectural abstrac-
tions levels, while CAD improvements raise the abstraction level of hardware design.
DeepC lies at the convergence of these trends.

This work seeks to retain the advantages of gate reconfigurability while overcoming
the limitations. The key to achieving this goal lies in the development of a compiler
from high-level languages to gates, without the need for instruction interpretation - in
essence repositioning the hardware-software dichotomy. Progress in compilers and progress
in computer-aided design (CAD) tools are converging on a solution to this problem. The
next section demonstrates this convergence and how my work completes the solution.

1.1 Compiler/CAD Convergence

Over time, advances in CAD tools have raised the hardware design abstraction while ad-
vances in compilers have allowed the abstractions for computer architecture to be lowered
(Figure 1-1). The top line shows the continuing ascent of high-level programming lan-
guages. The arrows descending represent compilation to target machine architectures. The
first architecture is a Complex Instruction Set Computer (CISC), followed by a Reduced
Instruction set Computer (RISC) and a Very Long Instruction Word (VLIW) machine.
While CISC architectures contain a large set of instructions, RISC architectures include
only the most frequent instructions, enabling a simpler and therefore faster implementa-
tion. A VLIW approach further transfers complexity from hardware to software, processor

18

progreautomated
regions

CISC
RISC

Arogrgress VLIW
'9 nconpilQUo1 RAW

(tiled arrays)

behavioral
0

ess RTL
equation/
schematic

ss laguage'

DeepC
(this work)

layout

to compiler, by performing instruction scheduling in software. This approach leads to a
simpler, more efficient, easier-to-design processor. Thus, as technology advances from one
point to the next, the abstraction level is lowered and the compiler's work is increased.

The last instruction-level architecture is a Reconfigurable Architecture Workstation
(Raw) [136], a wire-efficient architecture that interconnects tiles to scale with increasing
transistor densities. Raw exposes even more hardware detail, including wires, the spa-
tial arrange of function units, and the on-chip power grid (RawICE). Raw shares a common
theme with previous architecture improvements: a lower target machine abstraction permits
a simpler architecture, with higher performance, at the cost of a more complex compiler.

In contrast to descending high-level compiler targets, CAD tools are raising the abstrac-
tion level for designers, allowing them to do more with less. The first CAD tools raised the
hardware level of abstraction from a knife and vellum to automatic layout tools. Designers
with more than a few transistors to manage soon needed the next level: logic equations and
schematic capture. Following this level are language-based abstractions (Verilog, VHDL)
that support RTL design. The last stand-alone CAD level is the behavioral level, represented
by languages such as Behavioral Verilog. This level enables an algorithmic description of
hardware, but is much lower than high-level computer languages - it does not include
high-level mechanisms such as complex data structures, pointers, and procedure calls.

In Figure 1-1, compilation and CAD progress converge at the point labeled DeepC.
The system in this work, pronounced "Deep Sea", lies here. All the ideas, premises, and
arguments that support my thesis are embodied in this working compilation system. DeepC
spans the abstraction gap between compilers and CAD tools. DeepC also integrates existing
compilers, CAD tools, and simulators. To illustrate the depth and functionality of DeepC,
which internally contains over 50 passes, Figure 1-2 shows the usage and feature flags. I do
not discuss these features now - you will learn about them as you read this dissertation
and study the resulting performance metrics.

Closing the abstraction gap permits high-level compilation to GRAs. But why close the
gap? Why compile to gates? The advantage of gate-level computing, without an instruction
set, is that architectural structures can be matched to the algorithm, resulting in cheaper,
faster, smaller, and lower power implementations. Furthermore, these implementations
will more easily scale to future technologies. Although I demonstrate cases where gate
reconfigurable architectures outperform traditional architectures, my goal is not to prove
that gate reconfigurable computers are better than other classes of machines. Instead, my
goal is to show how to program them.

1.2 My Thesis: How DeepC Closes The Gap

The topic of this dissertation is how DeepC closes the abstraction gap, how to compile
without instructions, and how such compilation relates to the traditional mechanisms of
instruction set architectures. My solution is to specialize architectural mechanisms. Special-
ization is a general technique in which a program or system is customized for a given input,
state, or environmental condition. Given this technique, a precise statement of my thesis
(Figure 1-3) is: specialization of architectural mechanisms with respect to an input program
is the key to efficient compilation of high-level programs to gate-reconfigurable architectures.
This statement is broken down as follows. Specialization of architectural mechanisms refers
to a compilation approach in which mechanisms more traditionally used for interpreting
processor instructions are instead customized. Section 1.3 discusses why specialization is

19

Usage: deepc <flags> <infile> [<outfile> I

Flags:
-nprocs

-O<i>
number of tiles

optimization level (1-6)

Feature Flags:

-fno-addr address calculation optimization

-fbit bitwise optimization

-fbeopt additional backend porky optimization passes

-fbram enable Virtex on-chip block RAM synthesis

-fno-ecmap equivalence class mapping

-ffeopt additional frontend porky optimization passes

-floop loop invariant optimization

-fmacro macro instruction identification

-fmeopt additional machine porky optimization passes

-fopt all additional frontend/backend/machine optimization passes

-fno-part partitioning logic into tiles

-freg enable register allocation

-froute enable router synthesis

-fno-vliw vliw scheduling

-cports <i> maximum number of ports per communication channel

-cportwidth <i> data width of comm ports

-imul <i> maximum number of integer multiplier (per tile, default 1)

-max-unroll <i> unroll inner loops at most <i> times total

-max-width <i> maximum datapath width (default 32)

-min-unroll <i> unroll inner loops at least <i> times total

-min-unrollx <i> unroll inner loops at least <i> times per processor

-mports <i> maximum number of ports per memory

-netmult <i> factor to overclock routing network

-nmems <i> number of memories, if larger than number of processors

Target Flags:

-t soft

-t raw
rawsim
haltsim
rtlsim

syn
gatesim
virtex
vpr
vwires
vlerun

execute in software on localhost

raw multiprocessor compilation

raw multiprocessor simulation

compiled-code basic-block level simulation

rtl verilog simulation

synthesize

post-synthesis simulation

Xilinx Virtex place and route

VPR place and route

virtualwires multi-FPGA compilation and timing

load and run on IKOS VirtuaLogic Emulator

re-synthesis

Synthesis Flags:

-fsynopt

-fsynarea
-max-area

-fsynspeed

-clock-speed

-fsm-style <s>
-resource <s>

-technology

-part

optimize RTL synthesis

area optimizations

target gate/cell area per tile (parsyn)

speed optimizations

target clock speed in MHz

fsm enoding style: none I binary I one-hot I gray
resource allocation: none I area I constraint-driven (default)

target hardware: ibm27 1 xc4000 I vmw I vpr I virtex (default)

part number for Xilinx

Figure 1-2: DeepC compiler usage and flags

20

-t

-t

-t

-t

-t

-t

-t

-t

-t

Specialization of traditional architectural mechanisms with respect
to an input program is the key to efficient compilation of high-level
programs to gate-reconfigurable architectures.

Figure 1-3: My thesis for compiling without instructions

a good idea. With respect to an input program refers to the input high-level program that
is responsible for the customization conditions. That is, the invariant or static conditions
applied during specialization are a function of the input program. Finally, efficient compi-
lation refers to a non-naive compilation method that optimizes performance - not just a
theoretical demonstration that compilation is possible. Consider that emitting a logic-level
description of a processor, along with instructions, is a valid, but inefficient, compilation
strategy.

Given this thesis statement, I use specialization theory to show what it means to compile
without instructions and then exemplify techniques for specializing both basic and advanced
architectural mechanisms. The following contributions elaborate further.

1.2.1 Summary of Contributions

In this dissertation, I make the following contributions:

" I develop a theory of evaluation modes that highlights the differences between tradi-
tional processors and gate reconfigurable architectures as a difference between compil-
ing and interpreting at different abstraction levels. I formulate my thesis theoretically
with specialization terminology.

" I present approaches to specializing the basic mechanisms of von Neumann Archi-
tectures. As a part of these approaches, I have developed, with others, a bitwidth
specialization technique and have applied it to reconfigurable architectures. My ap-
proach also specializes the control flow of imperative languages.

" I present approaches to specializing the advanced mechanisms of distributed archi-
tectures. This approach integrates compiler passes for memory disambiguation and
pointer analysis; it also includes a space-time scheduling strategy for tiled architec-
tures. My new scheduling strategy, developed with others, merges the scheduling
approaches from high-level synthesis with static routing techniques from parallel pro-
cessing, digitizing both space and time at the logic level.

" I contribute an implementation of the ideas in the dissertation in a single compilation
system, the Deep C Silicon Compiler. DeepC is capable of compiling C and FORTRAN
programs into parallel hardware in ASIC (Application Specific Integrated Circuit) and
FPGA technologies.

" I present the Deep Benchmark Suite and evaluate the results obtained when compiling
this suite with DeepC. This suite consists of fourteen programs; seven that can use
significant parallel hardware. My results include general metrics such as area, power,
and latency, as well as FPGA-specific metrics such as minimum track width. My
results also include a grand comparison of four alternate evaluation modes.

21

1.3 Motivation for Specialization

Why specialize? There is a single overriding reason for specializing the instruction-level

architecture in gate reconfigurable systems: efficiency. Since a gate reconfigurable archi-

tecture is already programmable, adding another interpretative layer will slow down the

system by about an order of magnitude. The system will also be larger, more expensive,

and power hungry. The only way to avoid these overheads is to specialize architecture-level

mechanisms.
This section continues motivating specialization in several ways. First, it demonstrates

specialization of five sets of mechanisms commonly found in digital systems. Second, it

gives examples of the spatial and temporal application of specialization to consumer sys-

tems. Finally, it addresses the counterarguments to my claim, some that can be summarily

dismissed and others that remain a constant tension throughout this work.

1.3.1 Five Classes of Mechanisms to Specialize

This section previews five classes of architectural mechanisms that can be specialized: com-

binational functions, storage registers, control structures, memory mechanisms, and com-

munication mechanisms. These are presented in detail in Chapter 3 and Chapter 4.

Combinational Functions Section 3.1 focuses on specialization of combinational func-

tions. If certain inputs of a Boolean function are known ahead of evaluation, then those

inputs can be substituted and the remaining logic simplified. Compile-time knowledge can

be used to eliminate gates, resulting in smaller, faster, lower power circuits. Consider Fig-

ure 1-4. In (1), one of three inputs to an AND gate is determined at compile time. This

gate is then specialized into a two-input gate. In (2), static analysis of data dependencies

determines that one ADD is immediately followed by a second ADD. Hence, specializing forms

a three-input adder.

(1) Z Z

BB

A B
A B C

C -- ,w +

(2)
z

Zz

Figure 1-4: Example of combinational function specialization

22

i (before)
32 bit 1-11-- --- ---

i (after)
7 bit "

int i;

for (i=O;i<100;i++)

Figure 1-5: Example of storage register specialization

Storage Registers Section 3.2 focuses on specialization of storage registers. In many
cases, a register can be converted into a wire. In other cases, register bitwdith can be
reduced, as in Figure 1-5. The integer i, when declared in the C programming language,
often has thirty-two bits by default. However, after analysis of i's use, the register can be
specialized down to seven bits. In a general processor, all 32 bits are needed, even though
a large number are unused.

Control Structures Section 3.3 focuses on specialization of control structures. The input
program is used as static data to specializing von Neumann control flow mechanisms. To
translate imperative control flow into a controller and datapath, a program counter register
is introduced to determine the state of the machine. In this case, a branch instruction implies
manipulation of the program counter beyond the default of advancing to the next state.
The datapath performs the appropriate calculations on each clock cycle. Consider the loop
in Figure 1-6. The control structures are specialized into state machines that orchestrate
the combinational functions and storage registers in the body of the input program.

Memory Mechanisms Section 4.1 focuses on specialization of memory mechanisms. The
goal is to decompose the default main memory into many small address spaces. Physically,
these smaller spaces can occupy small local memories, allowing computation to be migrated
close to data. Consider the example in Figure 1-7, in which storage cells are formed into
a memory with a selecting multiplexer. If some data accesses can be disambiguated, this
memory can be specialized into separate memory banks, each accessed only by local logic.

Communication Mechanisms Section 4.2 focuses on specialization of communication
mechanisms, introducing tiled architectures. Each replicated, identical tile contains a pro-
cessing core, data RAM, and a router that interconnects neighboring tiles. Tiling enables

23

for (i = 0; i< 100; i++) {
for j = 0; j < 100; j++) {

[bodyil

[body2]

[body3]

I

case (pc)

0: begin
i = 0;
pc = 1;

end
1: begin

j = 0;
pc = 2;

end
2: begin

j = j + 1;
[bodyl]
pc = 3;

end
3: begin

[body2]
testj = (j < 100);

pc = 4;

end
4: begin

[body3]
pc = testj ? 2 : 5;

end

5: begin
i = i + 1;

testi = (i < 100);

pc = testi ? 1 : 6;
end

endcase

Figure 1-6: Example of control structure specialization

A loop nest with a three-cycle body (left) and the resulting state machine in Verilog
(right). In each state, a program counter (pc) is updated appropriately. The body
of the program is scheduled across these states.

geometry management. Consider Figure 1-8, in which function units are conventionally

arranged on a bus, with all-to-all connectivity. In the specialized arrangement, connections

are statically scheduled onto a two dimensional topology that more closely matches physical

constraints.

DeepC includes approaches for specializing all the above mechanisms. The following

section overviews some example systems in which specialization techniques may be well

suited.

1.3.2 The Big Picture: Specialization in General

This section demonstrates the benefits of specialization from a broader perspective. Skip

this section if you are already comfortable with the concept of specialization. Recall that

specialized systems, in comparison to unspecialized systems, are expected to be cheaper,
faster, smaller and lower power. While in this work specialization is applied to a specific

system layer (the architecture of a computer), in the big picture, specialization can be

applied to all aspects of a system, from the subsystems in a chip to the devices in a network.

The following examples demonstrate specialization in time and specialization in space of

wireless systems.

24

storage bits

5 address tMULTIPLEXER

bits

read pord

computation logic

addrA aU ddrTB MUX

read port A read port B

local logic local logic

potential
communication

Figure 1-7: Example of memory mechanism specialization

function units

busses

Figure 1-8: Example of communication mechanism specialization

25

external event: external event:
user enters building, software update,
protocol change bug fix

adapt adapt adapt adapt
initial state:~. spcilie speci--- v- AalieCelphone speclze specialized specaizeds zed

new state: cordless phone low power
cordless phone with update GPS locator GPS locator

external event: internal event:time user switches modes, battery low,
position locator reconfigure voltage

General Purpose System

Figure 1-9: Specialization in time

Each state change is an adaptation to a new specialized machine. Briefly, the states

are cellular phone, cordless phone, cordless phone with update, position locator,
and low power position locator. Each state change is triggered by an internal or

external event.

Specialization in time is similar to biological adaptation. The scenario in Figure 1-
9 demonstrates a handheld device that evolves over time, from being a cellular phone,
to being a low-power positioning system. Each major state change is stimulated by an
external or internal event. The first triggering event occurs when an assumed user, holding
the device, enters a building: the communication mode switches to that of a cordless phone.
Given the new state, the device specializes its internal configuration to best communicate

with wireless transceivers in the building. In the second adaptation, the device responds
to a remote request to upload a software bug fix, perhaps improving the security protocol.
Next, the user decides to locate his or her position by switching to position locator mode.
With specialization, the circuitry previously encoding his or her voice is reconfigured to run
position location software. Finally, the device detects an internal event (low battery), and
reduces the voltage. In low voltage mode, a configuration that updates the position less
frequently is loaded, resulting in yet another specialization of the device. At any given time
in the scenario, the device is highly specialized. However, the device considered over a longer
period is general. In contrast, consider the complex requirements of a single device trying
to be all these at all times: multiple radio circuits, a fast and a low-power processor, and
multiple custom chips for special functions. Moreover, the bug fix would require exchanging
the entire system for new hardware! A system with adaptable components can thus benefit
significantly from specialization.

Specialization in space naturally arises in collaborative systems. Figure 1-10 shows a
collaborative bodynet scenario in which a woman is wearing three devices while fitness
walking: an earphone/microphone, a heart monitor, and the handheld device from the
previous scenario. A fourth device, a wireless router, is on a nearby telephone pole. Because

26

General Purpose System

Figure 1-10: Specialization in space

Each device in space is specialized to a different function. Device 1 is a heart moni-

tor; Device 2 is an earphone/microphone; Device 3 is a handheld PDA with a display

and entry mechanism; Device 4 is a wireless router. These devices communicate
over a local wireless network (bodynet), forming a more general wearable system.

these devices can collaborate, they are specialized. Only one device needs to be connected to

the Internet in order to store a heart rate graph, generated during the exercise period, on her

private website. The heart rate monitor can communicate with the earphone/microphone
device to signal whenever she exceeds her target aerobic range. The handheld device can be

used to enter a workout program and view results in real time. Each device in this scenario

is highly specialized; however, the collaborative system comprising the devices is general. In

contrast, consider the expense and bulkiness of a system in which each device is a general-

purpose workstation. Even using popular handheld PDAs (personal digital assistants), the
total system would still be overly cumbersome. A system with collaborative components is

thus also an excellent candidate for specialization.
Relating these examples back to the topic of specializing architectural mechanisms,

temporal and spatial specialization play a big role in high-level compilation to gate recon-

figurable architectures. The compiler needs to adapt spatial regions of the architecture

to evaluate different parts of an application collaboratively. As the mix of applications

changes, the compiler needs to adapt, or re-specialize, the architecture over time. Archi-

tectural specialization enables application-level adaptation with minimal sacrifice in cost,
performance, and power. Computing systems designed with these techniques can adapt to
users rather than force users to adapt to the computer.

27

device 12

device 4ddevice 4

heart nanit.r _Vrphne/aic wi.l==rUter
specialized specialized specialized
device 1 device 2 device 4

olboration

hndh.d
lrtio

specialized
device 3

1.3.3 Counterarguments

This section presents thesis counterarguments as a list of frequently asked questions (a
FAQ). You may wish to return to these questions, with more background, as they arise in
your mind during the course of reading the following chapters.

1. The applicability question: Given the universality of processors, why use GRAs at all?
Answer: First, this dissertation compares many modes of evaluation. Depending on the
application and circumstances, any one mode may have characteristics superior to others.
The common comparisons are cost, speed, size, and power, but non-technical factors may be
just as important. Second, in Chapter 6, most of the benchmarks studied perform better on
GRAs than processors. Thus, in many cases a GRA is a better match for the application at
hand. But GRAs are not always better.

2. The market-inertia question: Given the business inertia of the "killer micro", and the
billions invested in its development, won't the processor eventually obsolete alternatives?
Answer: First, a substantial fraction of the billions invested has been invested in semicon-
ductor fabrication, and this technology benefits approaches that compete with processors,
including GRAs, as much as it does processors. Second, conventional processor microarchi-
tects claim to be nearing the "end of the road" (Vikas Agarwal et. al [1]) given physical
constraints, and these architects are adopting more configurable approaches (multimedia ex-
tensions in Pentium, ALU-chaining in Pentium 4, and static scheduling of function units
in Itanium). Hence, the solutions to GRA compilation problems will likely apply to future
processor architectures as well.

3. The lack-of-coarse-grain-features question: Aren't gate-level architecture hugely disad-
vantaged without coarse-grain function units and pipelined datapaths?
Answer: FPGAs already embed coarse-grain functions such as multipliers without giving
up gate-level programmability for the majority of the device. However, the advantage of the
gate-level approach is that generic coarse-grain functions can be specialized to a particular
use. A prime example is multiplication by a constant value. In this work, I show how to
specialize common mechanisms found in coarser-grained architectures to overcome fine-grain
disadvantages. In fact, the disadvantages are only important if specialization is not used -
the contrapositive of my thesis.

4. The applications-are-not-bit-level question: But do applications really have many bit-
level operations?
Answer: First, architectural mechanisms are bit-level - consider combinational logic, state
machines, registers, branch prediction bits, cache tags. Thus, specialization of these mech-
anisms results in many bit-level operations. Second, everyday applications do have many
bit-level operations. Researchers at MIT, Berkeley, and Princeton (see Section 1.4.4) have
applied static and dynamic analysis to discover bit-level operations in benchmarks such as the
SPEC benchmark suite. In addition to narrow bitwidths, constant bit values can be discovered
or predicted. Third, applications with bit-level parallelism are often coded with bit-vectors
that retrofit traditional ISAs for bit-level computation.

5. The virtualization question: Aren't GRAs confined to running a single application? What
about multithreading and process virtualization?
Answer: This is a valid counterargument to replacing a workstation processor with a GRA
in a multi-programmed, multi-user environment. There is active research in reconfigurable
computing to overcome this problem (see Caspi et al. [38]), however there are also many
applications that do not need virtualization. These applications will benefit from the high-
level compilation techniques in this thesis.

6. The appropriate-language question: Are imperative languages like C an appropriate
choice for hardware design?
Answer: My view is that languages are for describing algorithms, not hardware. The lan-
guage choice should be based on usability and human-centric aspects, not the eventual target

28

architecture. There are millions of C programs, thus a strong justification must be made for
the use of an alternate language. Compilation technology must exist to support the constructs
of C before languages like C++ and Java can be considered. In any case, this dissertation
focuses on mechanisms rather than particular language idiosyncrasies, thus my case is for
higher-level languages rather than for a particular language.

7. The existing-industrial-compiler question: Is industry already compiling C to gates?
Answer: There are several companies, introduced in the following related work section,
building compilers from C to RTL-level hardware. Some techniques proposed here are also
implemented in their schemes. Most of these companies are at a startup or research phase,
with development efforts paralleling the work on which this dissertation rests. Companies
rarely publish the full inner workings of their system for academic review or commit their
approaches to the body of scholarly knowledge. Industry standards for generating gate-level
hardware from a high-level are beginning to be considered, but the approach is not generally
accepted or widely adopted by engineers.

8. The unproven-research-passes question: But doesn't the DeepC approach rely on new
compilation techniques such as pointer analysis, bitwidth analysis, and static scheduling that
are unproven in industry?
Answer: The national compiler infrastructure (including projects such as SUIF [140]) has
been created to enable rapid sharing of compiler passes among researchers. Having access
to new techniques as soon as they are developed is an advantage, not a disadvantage. Most
of these techniques are used by multiple research projects and are quickly proven. But this
is a valid counterargument - problems in new techniques have been inherited by DeepC. An
example problem is the excess unrolling caused by one of the parallelizing techniques leveraged
- Section 6.6.1 studies this problem in depth.

9. The large-program question: But can large programs, for example databases, be compiled
to gate-level state machines? Won't the resulting state machine be prohibitively large?
Answer: For many small programs such as filters, software radios, software routers, and
encryption algorithms this question is not an issue. Existing FPGA applications, expressed
at a high-level, are small programs. Large programs can be handled in several ways. First,
even though a program may be long, the inner loop is usually much smaller (maybe ten
percent or less), allowing softcore processors or simple instruction ROMs to encode the non-
critical program paths. Second, a hybrid system can continue to leverage traditional processors
for unwieldy procedures while retaining the GRAs speed and power benefits for inner loops.
Finally, dynamic reprogrammability, or a successful virtualization technique, can allow circuits
to be cached and replaced over time to accommodate larger or multiple critical regions. To
partially address these issues, this dissertation explores the effect of state machine size on
clock speed - the proposed specialization techniques help by reducing the total states and
the logic needed in each state.

10. The slow-compiler question: Aren't CAD tools too slow to be used as compilers for
computing?
Answer: Because of the number of abstraction layers crossed and the optimization efforts
expended when compiling to the gate-level, compile time is longer than when compiling to
the instruction-level - hours instead of minutes. In a sense, a portion of the work spent
synthesizing or manually designing a processor must be repeated by the compiler for each
application. But this cost can be amortized across many application users. Moreover, gate-
level compilation is parallelizable - regions can be synthesized and compiled in a divide-
and-conquer fashion. Finally, this is a counterargument for FPGAs, not the approach in this
work: faster and incremental compilation is an open problem in CAD for FPGAs. In fact, this
dissertation speeds compilation by applying specializations at higher level and by partitioning
the design into manageable tiles. Section 6.6.2 demonstrates that routers reduce the minimum
FPGA track width and reduce the workstation memory needed for place and route.

29

11. The specialization-versus-parallelization question: Aren't the benefits from specializa-
tion just benefits from instruction-level parallelization?
Answer: Specialization does often exposes parallelism, and parallel structures can often be
specialized. However, specialization and parallelization are two separate concerns. As much
as possible, Chapter 6 separates specialization gains and parallelization gains. The important
point of this work is that the maximum performance for GRAs cannot be obtained without
architectural specialization. Parallelization alone is not enough.

12. The reductio-ad-absurdum question: Your thesis is that specialization is the key to compi-
lation. Is this a tautology?
Answer: Without discipline, the compilation possibilities for crossing the abstraction gap
from high-level languages to gates are overwhelming. But the architectural mechanisms of
instruction-level processors have been studied for many decades and are well understood.
Thus, specializing these mechanisms rather than trying to build a compiler from scratch is a
smart strategy. The particular relation between these architectural mechanism and compila-
tion to GRAs is intricate, and previous research has not identified or explained rigorously the
important principles.

13. The better-approach question: Aren't there better approaches to architecture generation,
maybe term rewriting systems [73], for example?
Answer: There are many possible formalisms for manipulating architectural mechanisms,
and alternate sets of mechanisms may be chosen (for example queues); however, in the end
these general mechanisms must be specialized to the application at hand to overcome the inter-
pretative overheads that result from their generality. For example, Marinescu and Rinard [97]
convert conceptually unbounded queues to synchronous, pipelined circuits, with finite queues,
as a function of specified applications. The advantages of DeepC's approach are that it accepts
familiar imperative programs and targets familiar FPGA devices. Moreover, the intervening
specializations are of familiar architectural mechanisms. The following related work section
addresses many other complementary and competing approaches.

1.4 Previous Work

Besides culminating my own work, the contributions in this dissertation draw upon work

in several disciplines of computer engineering. These disciplines are themselves interrelated

and overlapping, including computer-aided design (CAD), computer architecture, and com-
piler and language implementation. The next section discusses how earlier work laid the

foundation for this work.

1.4.1 My Previous Work

Logic emulation has been the most significant application of reconfigurable computing.
A logic emulator enables hardware designers to functionally verify complex systems at a
clock speed four to six orders of magnitude faster than software simulators. In previous
work, developed with others, I invented a new technique for constructing FPGA-based
logic emulators based on a technology called "Virtual Wires" [12]. Virtual Wires overcome
pin-limitations in multi-FPGA systems by intelligently pipelining and multiplexing inter-
FPGA signals. This technology has been commercialized as the VirtuaLogic Emulator
(presently sold by IKOS Systems) and is the basis for the emulation system described in
Section 5.3 and Appendix B. When programming at the gate-level, as a hardware designer,
this technology enables one to treat a collection of FPGAs as a single, gigantic FPGA.

Dynamic Computation Structure [9] and Raw Benchmark Suite [10] work, developed
with others, uses this emulation system to evaluate some general computing benchmarks,

30

1 0 0 0 0

1000 -- - - - - - - - - - - - -
0

C.,
CL

W > 100 -

CLI

UU!

N LO W N 0) O MO N (O (DI'
N~ ~ N U) 04 U) C X
4) (1~ N ~ CL0 C) CO t

o~~~~ 0. 4 . 0 ~
E .6 cr cM

C E

Figure 1-11: Summary of previous Raw Benchmark results

The parenthesis after each case contain the FPGA count - the part used is Xilinx
XC4013. The comparison is versus a 50MHz SparcStation 20 (about the same
vintage technology). Specific details for each case are in an earlier paper [10].

obtaining large speedups (Figure 1-11) when compared to a workstation. This comparison
is between FPGAs and a workstation of the same vintage (circa 1996); however, both
technologies have advanced exponentially, according to Moore's Law, since then. FPGA
speedup ranges from about 2 x to over 1000 x faster than the workstation across benchmarks
including mergesort, binary heap, nqueens, shortest path, FFT, DES, matrix multiply,
transitive closure, jacobi, and the game of life. A subset of these benchmarks is also compiled
with DeepC in Chapter 6.

To generate the Raw Benchmark Suite results, my colleagues and I leveraged Virtual
Wires, in conjunction with behavioral synthesis (Section 1.4.2), to treat an array of FPGAs
as a machine-independent computing fabric. This treatment enables application-specific,
architecture-independent hardware design. However, this system implements a generator,
not a compiler. Another major limitation is that design logic is not multiplexed onto
the system - hardware area grows in proportion to problem size. This approach also
does not support applications with significant memory requirements as it does not support
embedded memory blocks in FPGAs. DeepC overcomes these limitations, and raises the
design abstraction from Verilog to C.

The Raw Benchmark Suite motivated both the DeepC project and its sibling, the Raw
project [136]. While DeepC automates all the transformations performed on these bench-
marks, the compiler for Raw only automates the highest-level transformations. The Raw
project eliminates the low-level transforms by upgrading the architecture to a coarse-grain,

31

multiprocessor-based system. While an improved architecture is a laudable goal, unless
such improvements are widely adopted by the majority of FPGA vendors and new devices
supplant the existing base of gate-reconfigurable architectures, the high-level compilation
problem for FPGAs will remain important and unsolved. The Raw project is valuable for
gate-reconfigurable computing in that the high-level transforms can be leveraged. For ex-
ample, I have developed, with others, a space-time static scheduling algorithm for DeepC
that is derived from a simpler Raw scheduler (Lee et al. [89]).

In [11], I discuss the first proof-of-concept version of DeepC. This work briefly mentions
the application to gate-reconfigurable architectures and focuses on the problem of paralleliz-
ing programs into custom hardware. The major contribution of that work, which extends
to this dissertation, is an approach for applying automatic parallelization technology for
multiprocessors to the problems of silicon compilation.

Work with Stephenson et al. [127] extends DeepC 1.0 with a bitwidth analysis facility
(Bitwise). Results show significant power, area, and latency savings. Those results are
improved and included here with DeepC Version 2.0.

This dissertation is the culmination of all the previous work mentioned here. DeepC
2.0, the major system in this thesis, is a complete system integrating the concepts of several
generation of previous systems: Virtual Wires, The Raw Benchmarks Suite, The Raw
Compiler, DeepC 1.0, and the Bitwise Compiler. Evaluating DeepC indirectly evaluates
the concepts in these systems as well. The next section continues with discussion of the
external related work that motivated the DeepC system.

1.4.2 Computer-Aided Design (CAD)

A product of the Electronic Design Automation (EDA) industry, CAD tools automate the
design of electronic systems. One of the principle goals in this area has always been to raise
the abstraction level for designers. The highest abstraction level attained in CAD is the
behavioral level. This section focuses on non-specific behavioral synthesis tools (for both
FPGAs and ASICs), on high-level synthesis tools tailored for FPGAs, and on how both
relate to DeepC.

Behavioral Synthesis

The goal of behavioral synthesis, or high-level synthesis, is to transform an algorithmic
description into a digital system. A debated aspect of this goal is whether transforming
the programming languages of the software world is a good idea (see Gupta et al. [67]).
The focus of the debate is on which programming languages would make a good choice and
whether architecture design, the task of hardware designers, can be automated.

The major advantage of behavioral synthesis over the more commonly used RTL syn-
thesis is that behavioral synthesizers are capable of scheduling, or assigning, operations to
clock cycles. However, both an RTL synthesizer and a behavioral synthesizer can perform
resource binding (assignment of operations to physical function units). DeepC leverage
some aspects of a behavioral compiler found in the Synopsys Behavioral Compiler [129].
However, because DeepC statically orchestrates the schedules of multiple communication
state machines, it did not need behavioral scheduling.

Recent work in behavioral synthesis is focused on moving the abstraction level up to
C, C++, or even Java [71]. In particular, the SpC pointer synthesis in Semeria et al. [121
is related to DeepC. While DeepC disambiguates pointer references and leverages pointer

32

analysis to maximize parallelism and to analyze bitwidths, SpC uses pointer analysis to

determine the best encoding of resolved pointers. SpC leverages techniques from the CAD
problems of state encoding and state minimization. Section 4.1.1 discusses these issues in
more detail.

Earlier work in behavioral synthesis includes the optimization of address generation in
Schmit et al. [117], which describes addressing schemes both similar to and more sophis-
ticated than those in Section 3.1.2. Another early work, Filo et al. [54], studies interface
optimization along with the scheduling of inter-process communication. A common goal
with my work is to reduce synchronization by statically resolving communication schedules.

High-Level Synthesis to FPGAs

Reconfigurable computing experts have adopted high-level synthesis for FPGAs. Splash [59]
and PAM [135] were the first substantial reconfigurable computers; systems like Teramac [4]
followed later. As part of the Splash project, a team led by Maya Gokhale ported data-
parallel C [100] to the Splash reconfigurable architecture. This effort was one of the first to
compile programs, rather than design hardware, for a reconfigurable architecture. Although
data-parallel C extended the language to handle bit-level operations and systolic commu-
nication, the host managed all control flow. Hardware compilation only operated within
basic blocks of parallel instructions. This approach was ported to National Semiconductors
processor/FPGA chip based on the CLAy architecture [61].

Programmable Active Memory (PAM) [135], designed at Compaq Paris Research Lab,
connect to a host processor through memory-mapped I/O. The programming model treats
the reconfigurable logic as a memory capable of performing computation. The design of
the configuration for each PAM application is specified in a C-syntax hardware description
language, but in this case, C was not used as a high-level programming language.

Beyond large reconfigurable computers, compiler projects included PRISM [124], which
took functions derived from a subset of C and compiled them into an FPGA. The PRISM-I
subset included IF-THEN-ELSE as well as for loops of fixed count; however, all code in
functions assigned to hardware is scheduled to a single clock cycle. Hence, the PRISM-I
system was limited to creating configurable instructions. The later PRISM-II subset added
variable length FOR loops, WHILE, DO-WHILE, SWITCH-CASE, BREAK, and CON-
TINUE. Like PRISM, Transmogrifier C of Galloway et. al [57] is an elementary (4000 lines-
of-code) compiler for a tiny subset of C (no multiplies, divides, pointers, arrays, structures,
or recursion), extended with variable bitwidth types. Trasmogrifier's semantics assume
a clock edge only at the beginning of a while loop or function call. In another compiler
project, Peterson et al. [110] describe a partitioning and scheduling-based compiler targeted
to multi-FPGA systems. Following function block partitioning, this system simultaneously
schedules both intra-FPGA function unit and inter-FPGA communication using topology-
sensitive resource pools. Other early projects include compilation of Ruby [66] - a language
of functions and relations, and compilation of vectorizable loops in Modula-2 for reconfig-
urable architectures [138]. In several systems, high-level languages are used to specify the
construction, and often placement, of hardware modules without invoking high-level algo-
rithms to synthesize state machines and schedule operations. Example system using this
approach, often termed module generation, include GAMA [32], Cynlib [44], SystemC [130],
and JHDL [17]. Many favorite programming and specification languages have been claimed
suitable for hardware description; consider the proposals for using ADA [50], Smalltalk-80
blocks [112], Haskell [21], Matlab [13], Java bytecode [35] and TRS [73] for hardware de-

33

sign. Space prohibits a detailed description of each proposed systems; in summary, they
each contribute to high-level compilation, but over-emphasize the importance of the input
language.

Research in hardware-software co-synthesis [68] has always been relevant for FPGA
compiler research. This relevance is because FPGA systems commonly include a host com-
puter or attach an FPGA to a processor as a function unit. For recent work, consider the
CORDS project of Dick et al. [49], which targets distributed embedded systems that contain
reconfigurable devices. CORDS relies on task graph scheduling and an evolutionary algo-
rithm (CORDS breeds architectures!) to explore the high-level architectural design space
for embedded application. This system also supports dynamic reconfiguration, in which
the FPGA bitstream is re-loaded during the execution of a single application, even given
real-time constraints. Both hardware/software partitioning and dynamic reconfiguration
are orthogonal yet complementary to work in DeepC.

Recent projects building complete systems for compiling high-level languages into hard-
ware are in industry: HP's PICO project [118], Synopsys's Nimble project [91], Celoxica's
Handel-C [39], and C-Level Design's C2Verilog [126]. At the time of this writing, the
PICO and Nimble projects are at the research stage while Celoxica and C-Level Design
have working products that embody many concepts that support my thesis. For practical
reasons, these systems often impose needless constraints on the high-level language. These
constraints burden the programmer. For example, in Handel-C every statement executes in
one clock cycle; the addition of a "par" statement forces the programmer to specify which
statements are executed concurrently.

Improvements Over Previous CAD Tools

I improve on previous high-level synthesis work in several ways. Previous Virtual Wires work
improved on the Splash and PAM systems by eliminating the domain-specific interconnect-
topology between FPGAs; DeepC adopts and extends this virtualization. For example,
the Splash system was designed to function as a SIMD array, not as a general-purpose
system. Next, reconfigurable systems often rely on a host computer, or attached proces-
sor, to perform operations not considered "suitable" for hardware implementation. DeepC
instead compiles entire programs into hardware and generates scheduled state machines.
DeepC integrates high-level parallelizing transformations, space-time scheduling, architec-
ture specialization, and logic synthesis. Rather than extending the language to allow the
programmer to specify bit-level functionality or parallelism, DeepC detects parallelism and
bitwidths from ordinary C programs. Furthermore, the focus of DeepC is not on the C lan-
guage, but instead on the high-level features of C - pointers, arrays, control flow, and data
types. DeepC is distinguished by its specialization of advanced architectural mechanisms,
including the distributed memory and tiled communication mechanisms that are featured
in the Raw architecture. Finally, the evaluation in this dissertation is more comprehensive
than any previous work, comparing to both processor and custom alternatives, and ana-
lyzing the sensitivity of each optimization rather than only presenting apples-to-oranges
speedup comparisons with a workstation.

1.4.3 Computer Architecture

Although DeepC is a compiler, it specializes architectural mechanisms. Thus, there is re-
lated work in computer architecture as well. In fact, many computer architectures support

34

specialization of some architectural mechanisms. The following discussion of these mecha-

nisms is divided into three sections - advanced features added to FPGAs, FPGA-inspired
features in new architectures, and exposed mechanisms in other architectures.

Advanced Architectural Mechanisms in FPGAs

DeepC specializes two advanced architectural mechanisms previously studied by FPGA
researchers: distributed memory and pipelined interconnect. Distributed memory has been
migrated into the FPGA architecture and the resulting memory/logic interface has been
studied by Wilton et al. [142]. High-level compiler support for memory blocks has also been
studied by Gokhale et al. [60].

Hardware-based pipelining has been proposed but not added to existing FPGAs. Singh
et al. [123] recently proposed pipelined interconnect in the context of a new FPGA with
wave-steered logic. Tsu et al., in HSRA [133], describe a LUT-based FPGA that con-
tains registers embedded with communication switchboxes. Marshall et al. [98] describe
the CHESS architecture with coarser-grained functional units and pipelined wiring. In con-
trast to DeepC's approach, which supports cycle-by-cycle communication reconfiguration,
these architectures support only fixed communication patterns between processing elements.
The proposed FPGA that is most similar to DeepC's communication synthesis approach is
the Time-Switched FPGA (TSFPGA), described by Dehon [48]. TSFPGA supports time-
switched communication between groups of LUTs. Unlike DeepC's high-level approach,
compilation to TSFPGA has not been extended beyond the gate level. Moreover, DeepC
can leverage hardware support if available - Section 6.6.2 studies this possibility.

Architectural Mechanisms in FPGA-Inspired Architectures

Results such as those in Figure 1-11 have inspired computer architects to propose new
FPGA-like architectures that attempt to capture these gains while minimizing programming
difficulties. In addition to Raw [136], these architectures include Matrix [103], RaPiD [64],
GARP [70], PipeRench [63], and Smart Memories [96]. To the extent that these new archi-
tectures expose lower-level logic and wiring details to the compiler, architectural mechanisms
such as busses, pipelines, and new instructions can be specialized to the application with-
out requiring full compiler support for gate-level reconfigurability. Furthermore, low power
reconfigurable architecture [137, 146] and energy-exposed architecture [8] take advantage
of this exposure to reduce power and energy consumption. Finally, exposed mechanisms
can improve performance in reconfigurable/intelligent memory systems [109, 105, 81] and
configurable memory controllers [36]. Of the above architectures, both PipeRench and Garp
have developed compilation systems to automate construction of architectural mechanism
in software.

PipeRench's DIL compiler [28] applies the same basic optimizations as DeepC to compile
programs to the PipeRench architecture, a pipelined, reconfigurable fabric. This compiler is
not targeted to commercial FPGAs, thus direct comparison with existing reconfigurable ap-
proaches is difficult; instead, application speedup versus a 300MHz UltraSparc is reported.
Assuming a hypothetical 100MHz chip with 496 (31 stripes of width 16) 8-bit processing
elements, performance ranging from 15x to 1925x is reported with an impressive 8 sec-
ond compile time. Like DeepC, the PipeRench compiler also includes a form of bitwidth
analysis (bit value analysis [29]) as well as common sub-expression elimination, dead code
elimination, algebraic simplification, register reduction, and interconnect simplification.

35

Like the earlier PRISC project [113], The GARP project advocates extending a proces-
sor with reconfigurable instructions. Compiler work related to this project includes work
on instruction-level parallelism (Callahan et al. [34]) and software pipelining (Callahan et
al. [33]). The software pipelining work, although targeted to GARP and not conventional
FPGAs, significantly extends previous pipelining work for reconfigurable architectures and
goes beyond the affine loop unrolling in this work. However, this system does not support
distributed architectures. Interestingly, the GARP work has been leveraged in the industrial
Nimble project mentioned in Section 1.4.2.

Exposed Architectural Mechanisms in Other Architectures

This section briefly mentions three classes of architectural mechanisms found in other archi-
tectures not influenced by FPGAs. First, the Transport-Triggered Architecture (TTA) [42]
exposes the data-movement inside a VLIW to more precise software control. Specialization
of this architecture as a synthesis technique has also been proposed (Corporaal et al. [43]).
Like other VLIW research, TTA research has considered partitioned architectures, but has
focused on designs with large busses rather than distributed architectures with spatial lo-
cality.

Second, existing multimedia extensions for subword parallelism (Lee [88]), as well as
proposed exploitation of superword parallelism (Larsen et al. [84]), modify conventional
architectures by enabling compilers and assembly-code writers to pack multiple shorter-
width instructions into a single wide (or super-wide) instruction. For example, packing four
8-bit additions into a single 32-bit ALU instruction treats the architecture as if it has four
datapaths. FPGAs with special carry-chains support the most general form of this concept,
allowing the single-bit carry computations to be composed into a 32-bit adder on one clock
cycle, four 8-bit adders on the next, and something altogether different on the next.

Third, research labs [55] and startups [131] have developed tools to synthesize "custom-
fit", or configurable (but not necessarily reconfigurable), architectures with instruction sets
optimized for a given application or domain. The added instructions are exposed to the
compilation system, which must also be customized. Besides instruction addition and dele-
tion, systems such as Extensa [131] also modify high-level structures such as the processor
cache. These or similar systems can be targeted to FPGAs or other reconfigurable devices;
however, they still interlard an ISA, albeit customized, between the application and the
already programmable hardware. ISA customization is only able to capture a portion of
the specialization possible with complete ISA elimination.

1.4.4 Compiler and Language Implementation

DeepC leverages two deep analysis packages that have previous related work in the compiler
and language implementation field: bitwidth analysis, and pointer analysis. Also, research
on partial evaluation is related to DeepC's specialization techniques. The next section
discusses these three topics.

Bitwidth Analysis

Empirical studies of narrow bitwidths workloads (Brooks et al. [27] and Caspi [37]) fore-
shadow my findings that a wide range of applications, particularly multimedia applications,
will benefit from bitwidth reduction. Although DeepC does not attempt to capture the
dynamic opportunities for bitwidth specialization, in many cases static analysis can find all

36

or a significant fraction of the savings. Other static bitwidth work includes Scott Ananian's

data flow techniques for Java [5] (nis published method of propagating data-ranges is less
precise for discovering bitwidths, although additional work is underway), Rahul Razdan's
technique for PRISC [113] (except for loop induction variables, his analysis does not handle
loop-carried expressions well), and the approach in Budiu et al. [29] (mentioned earlier).
Bondalapati and Prasanna's work on dynamic precision management [22] extends the static
approach by dynamically reconfiguring the architecture as a result of runtime variations in
bitwidths. Although DeepC does not evaluate dynamic reconfiguration alternatives, such
a dynamic approach is compatible with and would complement the other specializations
applied. Finally, private communication with Preston Briggs [26], working on the compiler
for Tera Computer (now Cray), reveals that bitwidth optimization has been investigated
in supercomputer compilers. Briggs proposed to use bitwidth optimizations to perform
bitwise dead code elimination, bitwise constant propagation, propagation of sign extension
bits, and avoidance of type conversions.

Memory Disambiguation

The compiler techniques for memory disambiguation [51], and more recently pointer anal-
ysis [141], have been studied in many contexts, including vector processors [87, 7], systolic
processors [6, 23], multiprocessors [3], DSP processors [116], VLIW processors [95], FP-
GAs [60], and hardware synthesis [121]. Although memory bank disambiguators for vector
processors must resolve whether addresses reference the same bank, they do not need to
further make static the access to a particular bank. Previous systolic compilers mapped
programs into coarse-grain static streams rather than tackling ILP-level memory parallelism
like my approach of leveraging MAPS (Barua et al. [14]). Similarly, previous multiproces-
sor work focused on creating coarse-grain threads. Memory disambiguation for DSPs and
VLIWs have generally not supported programs with arbitrary pointers, although these tech-
niques could leverage DeepC's pointer analysis and equivalence class unification algorithms
(Section 4.1.1). Although Gokhale's FPGA compiler [60] maps arrays to memory banks,
it does not further synthesize pipelined communication schedules to avoid long wires. Fi-
nally, for hardware synthesis, the work of Semeria et al. [121] (already mentioned) leverages
a pointer analysis algorithm similar to DeepC's, although the complementary focus is on
pointer encoding and representation rather than large-scale scheduling of parallelism.

Partial Evaluation

Partial evaluation[80] is a form of program specialization in which the portion of the pro-
gram's instructions that depend on known data are evaluated at compile time. But the
instructions that depend on dynamic data become a residual program, to be evaluated
later, when the remaining data becomes available 2 . Constant propagation is a simple ex-
ample of partial evaluation. An example of a full application is described in Berlin et al. [19].
They partially evaluated the static data corresponding to a solar system simulation with
differential equations. The residual program was then statically scheduled onto a multipro-
cessor. A more general partial evaluator is Tempo [41]. Tempo can be applied to any C
program.

2Partial evaluation and specialization are often used synonymously, though some researchers claim spe-
cialization to be more general.

37

Partial evaluation is known for eliminating interpretation layers and has been used to
make operating systems more efficient. The Synthesis Kernel [99] uses partial evaluation to
eliminate synchronization and increase I/O performance. In "Hey, You Got Your Compiler
in My Operating System!", Howell and Montague [75] conjecture that partial evaluation can
be extended to eliminate the Application Binary Interface (ABI). The ABI separates the
compiler and operating system. In comparison, DeepC eliminates a similar interface: the
Instruction Set Architecture (ISA). With the advent of gate reconfigurable architectures,
the ISA has become the abstraction layer that systems can no longer afford to interpret.

1.4.5 Summary

In summary, substantial work in CAD, architecture, compilers, and languages has addressed
architectural specialization. This work has been converging on a complete solution for com-
piling high-level languages down to the gate level. However, many previous solutions have
been ad hoc and unconnected. Part of the problem lies in the interposed boundaries between
fields; part of the problem lies in research that has been too focused on an application, lan-
guage, or technology. To overcome these problems, an overriding goal of the DeepC project
has been to integrate, extend, and formalize this related work into a complete system,
crossing as many abstraction boundaries as needed.

38

1.5 Guide to Dissertation

This section serves as a guide to the remaining chapters of this dissertation.

" Problem and Analysis: Chapter 2 unfolds and then re-folds the possible inter-
pretation and compilation alternatives for evaluating high-level programs. Emerging
from this re-folding is a new taxonomy of evaluation modes - four of these modes are
explicitly addressed in later results. My reason for exploring these alternatives is to
free the reader's mind from the instruction-set thinkspeak of traditional architecture
teachings. Further analysis leads to my specialization hypothesis: high-level programs
can be compiled to gate-reconfigurable architectures by specializing traditional archi-
tecture mechanisms with respect to the input program.

" Basic Approach: The next two chapters address this problem of specializing tradi-
tional architectural mechanisms. Chapter 3 starts gently with specialization of com-
binational functions and registers. Next, the concept of bitwidth reduction is intro-
duced. Bitwidth reduction is one of the best specialization techniques and pervades
this dissertation. This chapter ends with a basic transform for partially-evaluating
the control flow of a von Neumann Architecture with respect to a program.

" Advanced Approach: Chapter 4 describes specialization of advanced architectural
features, with a focus on distributed architectures. The approaches are divided into
two sections: specialization of memory mechanisms, dominated by the problem of
disambiguation, and specialization of communication mechanisms, dominated by the
problem of space-time scheduling. Overcoming the physical limits imposed when
leveraging large silicon area requires implementation of both sets of approaches.

" Implementation: Chapter 5 describes the prototype system built to test my hypoth-
esis. This system embodies the approaches discussed in Chapter 3 and Chapter 4. This
chapter describes the compiler passes, hardware targets, and DeepC's simulation and
verification environment. The chapter focuses on the phases of the compiler, includ-
ing a Traditional Frontend Phase, a Parallelization Phase, a Space-Time Scheduling
Phase, a Machine Specialization Phase, and a CAD Tool Phase.

" Results: Chapter 6 discusses use of the prototype system to compile and simulate
new benchmarks called the Deep Benchmark Suite. Specializing basic mechanisms is
very effective. The new system is not only efficient, but outperforms the traditional
approach for most cases. Basic sensitivity analysis uncovers the specializations that
are beneficial. Advanced results are also good, with parallel speedup on the bench-
marks that could be parallelized. However, these results were not as good as desired.
Thus, an advanced sensitivity section studies improvements.

" Conclusions and Appendices: Chapter 7 summarizes the dissertation and makes
prospects for future work. The implications of DeepC for the free hardware commu-
nity are discussed, and I challenge the compiler community to continue this work,
to compile to gates. Several appendices follow. Appendix A presents the full eight
evaluation modes discussed in the analysis. Appendix B describes a logic emulation
system, with host interface, and results using DeepC to target this real hardware.
Appendices C and D contain tables of data for basic and advanced results. Finally,
Appendix E concludes with VPR place and route data and FPGA layouts.

39

40

Chapter 2

Problem and Analysis

Try to imagine an analogous evaluator for electrical circuits. This would be a circuit
that takes as input a signal encoding the plans for some other circuit, such as a filter.
Given this input, the circuit evaluator would then behave like a filter with the same
description. Such a universal electrical circuit is almost unimaginably complex.

- Abelson and Sussman on metacircular evaluators,
Structure and Interpretation of Computer Programs,

second edition (1996), page 386.

This chapter qualitatively compares and contrasts the programming of two universal
architectures: von Neumann [30], or instruction-programmable, architectures and gate-

reconfigurable architectures (GRAs). This comparison leads to a theoretical analysis that
develops a language-centric model of program evaluation. This model characterizes architec-

tural differences with a new taxonomy of eight different evaluation modes (four of these are

studied in detail). Further analysis leads to an important result: the technology needed for
programming GRAs at a high-level is a compiler from an intermediate, machine-level lan-
guage down to low-level logic. Furthermore, there is a direct relationship between this new
compilation step and the mechanisms of computer architecture. This relationship reveals
the GRA compiler's task - to specialize the architectural mechanisms already understood.

The next section draws insight from the old problem of compiling high-level programs
to microprocessors. Given this insight, Section 2.2 analyzes the problem now encountered
when compiling to GRAs. This comparison leads to the theory of evaluation modes in
Section 2.3. It also leads to a special relationship between the old and the new problem in
Section 2.4. Section 2.5 summarizes these findings.

2.1 The Old Problem: Compiling to Processors

Consider evaluation of the section of a high-level C program for multiplying two integer
matrices (Figure 2-1). In earlier eras of computer science - during the 1970s - sophisti-
cated hardware closed the semantic gap between programming languages and architectures;
a processor could be expected to evaluate these instructions almost line-by-line. However,
since the advent of RISC architectures, system builders close this gap with sophisticated
compilation technology that translates the program into machine code. RISC systems stress
compilation rather than interpretive mechanisms, allowing hardware to be dedicated to per-
formance, not semantics.

41

for (i = 0; i < 32; i++) {

for (j = 0; j < 32; j++) {
dest [i] [j] = 0;

}

for (j = 0; j < 32; j++) {
for (k = 0; k < 32; k++)

dest [i] [k] += srcA[i][j] * srcB[j] [k]

}
}

Figure 2-1: Matrix multiply inner loop

Figure 2-2 contains a snippet of assembly for the inner loop of the multiply, compiled to

a SPARC [128] architecture. The assembly instructions include move (mov), add (add), shift

left logical (sil), load (1d), store (st), compare (cmp), branch if less than or equal to (ble),
and a procedure call (call). Implementing these operations at the physical transistor level

requires a hardware abstraction.
As an example hardware abstraction, consider the illustration in Figure 2-3 of the basic

organization of a standard five stage pipeline [72]. This pedagogical architecture demon-

strates direct hardware support for the machine level instructions in the matrix multiply

example: there is an ALU that can perform additions, comparisons, and shifts; there is logic

to determine whether the machine should branch and to set the program counter; there is

a data memory for loads and stores'. We can conclude that today's processors close the

abstraction gap between machine-level opcode and physical transistors.

2.2 The New Problem: Compiling to Gate Reconfigurable
Architectures

Now consider the mechanisms in a GRA, typified by the Field Programmable Gate Arrays

(FPGAs) available from Xilinx. An FPGA is an array of configurable logic blocks (CLBs)
interconnected by programmable switches (Figure 2-4). In the figure, single lines connect

adjacent switches while double and long lines connect to more distant neighbors. Figure 2-

5 shows the CLB for the Xilinx XC4000 series FPGA [143]. Each CLB includes several
look-up tables (LUTs) and single-bit registers. The remaining logic consists of control
and multiplexers. This logic also functions to configure other features inside the CLB, for
example the S/R Control (set/reset control) and the carry-chain (not shown).

GRAs are a promising technology. The number of programmable features in the largest

devices is approaching one million. Just as the move from CISC to RISC enabled simpler

'An astute reader at this point may have noticed that SPARC instructions can not be executed on a
DLX processor, even though the two architectures contain similar mechanisms - ah, the problems of binary
compatibility!

42

Figure 2-2: SPARC assembly for inner loop of integer matrix multiply

fetch

1 L .

add mux

pc

SIR

Instruction
Memory

decode

IR6: 10

IR11:15 Registers

execute

ZERO?

taken

~TALU

ii

(From Hennessy and Patterson, Figure 3.4, Page 134)

Figure 2-3: DLX pipeline

The first stage includes a program counter (PC) and logic to update the program counter. The

program counter indexes into an instruction memory, whose output is stored in the instruction

register (IR). If a branch is taken, the PC is loaded from the previous instruction's ALU output.

Otherwise the PC is incremented to the next instruction. In the second stage, separated from the

first stage by pipeline registers, a multi-ported register file is addressed by the IR. Two output

ports generate values for the following execute stage. In the execute stage, an arithmetic and

logic unit (ALU) performs binary operations on values from the register file, the previous program

counter, or immediate data. In the final stage, values are written to and read from the data

memory. See [72] for further details.

43

.LL28:
mov X17,7.oO
add /13,7XiO,7X10

add /l5,%i0,Xo1

add XiO,1,%iO

sli %ol,2,%ol

ld [%14+%71],%o1
call .umul,0

sil %10,2,%10

ld [716+710],Xol

cmp Ui,31
add %o1,%00,%01
ble .LL28

st Xol,[%16+%10]

memory

...F F

writeback

]

Switch
Matrix

-0

F4 C4 G4

G1

CLB G3T

C3

XQF3

F2 C2 GW

Double

Single

Double

> Longline

> Longline

Figure 2-4: Xilinx XC4000 interconnect

Configurable Logic Blocks (CLBs) are interleaved with switch matrices, connected
by single, double, and long lines. The internals of the CLB are shown in Figure 2-5.

architectural primitives, gate-level features are even simpler and are easier to design. These

features expose parallelism and spatial locality at a fine grain, enabling high-performance,
low-power designs. In some ways, GRAs return to a pre-von-Neumann, pre-stored-program
era of computing, in which programs were built into special-purpose computer at a low level
with wires, patch cables, and basic circuits. In other ways, programmatic configurability of
GRAs retains the stored-program features of von-Neumann architectures, but without the
resulting sequential bottlenecks.

Like RISC architectures, GRAs are very closely associated with, if not inseparable from,
their compilation tools. However, in comparison to processor compilers, GRA tools operate
at a low level. The usual input is a netlist or RTL-level design. Input sequential state
machines must be mapped into Boolean functions of four inputs and single-bit registers.
These "functions of four" and registers are further compiled into a configuration for a
particular GRA device. The configuration of a GRA is its program, a bitstream loaded
when the device boots. These bits determine the LUT function; they also control internal
multiplexers. Thus, although a GRA supports logical structure, it does not include support
for machine instructions. We thus conclude that a gate reconfigurable architecture only
closes the abstraction gap between logic-level gates and physical transistors.

Herein lies the problem of this dissertation. Compiling high-level programs to GRAs
requires development of a software infrastructure that closes the abstraction gap between
machine instructions and logic gates. This solution must be compatible with existing com-
pilation approaches for translating high-level programs to machine-level intermediate forms.

44

C1 C2 C3 C4

I I I
H1 DIN S/R EC

G4 - DIN
G4 Logic F

G3 - Function
G2 - oft

G1 G1-G4

FLnog-i -

S/R1
Control SD

D Q XQ

EC
RD

and H1 S/R
F4 - ontrol
F2 - Function F F

SID
F - F D Q YQ

EC
-1EC RD

Y

Figure 2-5: Xilinx XC4000 CLB

Two functions of four, one function of three, and two single bit registers make up the
Xilinx XC4000 CLB. Additional multiplexers and set/reset control (S/R control)
permit a range of gate-level configurations.

It must also be compatible with existing computer-aided design tools used to generate the
GRA bitstream. These tools must be integrated for an automatic solution.

Although some functions (adders, multipliers, block memories) have been added to new
generations of GRAs, these are efforts to close the abstraction gap with the hardware of the
GRA. As this work will show, this gap can be closed with software. So, should computer
engineers resist the rush to move all the features of von Neumann architecture into the fabric
of GRAs? Or alternatively, are there advantages, significant advantages to having software
control over architectural mechanisms? Before beginning to address these questions, the
next section further develops the concept of "closing the gap with software".

2.3 Theory of Evaluation Modes

This section contains an intuitive, language-centric analysis of what it means to evaluate
a program on a GRA rather than evaluating it on an instruction-programmable proces-
sor. This analysis develops four different evaluation modes that correspond to historically
familiar approaches to computing. These modes are important because they distinguish
high-level compilation to GRAs from other approaches (other approaches including proces-
sors, custom chips, and softcore processors). These modes also reveal a general compiler
design strategy: they show the importance of specializing architectural mechanisms.

To get started, consider four levels of abstraction: High-level (H), machine-level (M),
logic-level (L), and the physical-level (P). H corresponds to the high-level imperative
languages (C, for example) to be evaluated - each instruction or statement corresponds to
several instructions in machine language; M corresponds to the architectural mechanisms
required to evaluate machine code - machine language is commonly generated from a high-

45

Mode Example level high machine logic
(H -M) (M-4L) (L -P)

Mode 0 Custom ASIC 0 compile compile compile
Mode I FPGA 1.L compile compile interpret
Mode II RISC Processor 1.M compile interpret compile
Mode III Processor-on-FPGA 2.ML compile interpret interpret

Figure 2-6: Basic evaluation modes

Modes correspond to different implementations of a high-level application. Mode 0
is a system compiled at all levels, for example a custom ASIC designed to evaluate
a single application. But a processor designed in an ASIC is not Mode 0 - the
processor is a machine-level interpreter! Mode I is a system in which only the logic-

level is interpreted, for example an application implemented on an FPGA. Mode II

is a system with a processor and a high-level compiler. Note that in Mode II the
processor must be implemented in a custom process. If the processor is "soft", for

example a processor implemented on a GRA, the system is termed Mode III.

level language by a compiler; L corresponds to the logic and state machine level - this
level is customary in the design of hardware systems; P corresponds to the lowest physical
level specified prior to fabrication -- usually a rectangle-level layout such as the Caltech
Intermediate Format (CIF).

Three translations are needed in order to span the abstraction gap between H and P.

Each of the three translations can be performed with either a compiler-based approach
or an interpreter-based approach, resulting in eight possible modes of evaluation. At this

point, I restrict further discussion to the four evaluation modes that include high-level

compilation; an overview of all eight modes is included in Appendix A for completeness.
The results in this dissertation compare these four modes (Table 2-6). The "level" column
lists the number of levels of interpretation followed by the letters H, M, or L to denote
which levels are interpreted. Neither the exact boundary between abstraction levels nor the
number of abstraction levels is overly significant; there is a continuum of system mechanisms
between the mathematical high level and the physical low level. However, the model chosen
matches previous technology generations and best explains the differences between gate
reconfigurable modes and other alternatives while emphasizing compilation. See Dehon [48]
for an alternate model.

Before continuing, consider a broader definition of compilation. For a particular level,
compilation software may not exist. Compilation must then be performed manually. Compi-
lation is not a common term for manual design, although mathematically a human designer
and a compiler solve the same translation problems. For example, an RTL description of a
processor can be synthesized, placed, and routed on an ASIC. Alternately, three hundred
engineers can implement the processor rectangle-by-rectangle. The labor intensity of man-
ual design relegates it to scenarios in which the design can be reused across a large number
of instances. Manual compilation at high levels is rare.

The translation alternatives lead to the four evaluation modes. Figure 2-7 graphically
represents the modes as possible compiler and interpreter nestings. Each domino represents
either a compiler (horizontal) or an interpreter (vertical). These are similar to the T-
diagrams first introduced in 1961 by Bratman [24], with the exception that they ignore the

46

compHM compML compLP

Application-Specific Integrated Circuit
(Custom Chip)

Mode 0
Zero levels of interpretation

coMPHM CompML compkM IntML

intLp

High-level Compilation Compilation to
to Reconfigurable Lo ic custom RISC processor
(e.g. DeepC, this work (e.g. MIPS core)

Mode I Mode II One level of interpretation

compHM

H M tM Lint ML

intLP

Processor-on-FPGA (softcore)

Mode III Two levels of interpretation

H = high level F
M = machine level Interpreter
L = logic level (unspecialized)
P = physical level

Compiler
KEY (specialized)

Figure 2-7: Evaluation dominos

implementation language of the compilers and focus on the nesting. This visualization is
not picky about legal placement when making turns - a more consistent approach would
be to overlap identical letters.

Consider the modes grouped by number of interpretation levels. A system with zero
levels of interpretation, totally compiled, is superior to interpreted systems in area, speed,
and power; however these advantages come at the sacrifice of reprogrammability. Thus,
evaluation Mode I and Mode II, the most efficient fully-programmable modes, are the pri-
mary focus of this dissertation. These level one modes are termed singly-interpreted. Both
FPGAs and microprocessors have a single level of interpretation. Thus, despite conven-
tional beliefs, FPGAs are not more customized than microprocessors, only customized at
a different level of abstraction. Evaluation Mode III, processor-on-GRA or softcore pro-
cessor, is interesting in that a new compilation strategy is not needed: a user can design
a processor (machine-level interpreter), run it through standard CAD tools, and compile
high-level programs with conventional compilers. Furthermore, in the context of GRAs, a
performance comparison of the advantages of Mode I over Mode III isolates the benefits of
machine-level specialization.

The next paragraphs further elaborate the evaluation modes to be studied, including de-
notational semantics for each mode. To support this discussion, Figure 2-8 reviews standard

47

Let [[p denote the meaning of program p and [[]IL denote the semantic function of language L. Furthermore, define
the result r of evaluating program p with input data d in language H as:

[]]H d = r
This section now proceeds with the standard definitions of interpretation, compilation, and specialization [80]. An
interpreter is a program that takes as input another program and data to produce a result. Formally, the direct
evaluation of program p in language H is related to the program's interpretation with an M interpreter written in
language M, denoted IH-+M, assuming all languages are Turing general, as follows:

E1Pl]H d [[IH-* MIM <p,d>
A compiler is a program that transforms an input program written in one language into a program in a second
language. As before, the direct evaluation of program p in language H can be related to the compiled program's
evaluation with compiler CH+M as follows: [[pIIH d ECH-+M p Em d
Compilers and interpreters can be stacked to multiple levels. The following example demonstrates nestings:

* Nested interpreters: f]H d = [[IH-MM <pd> [[IML]L < IHM,< p,d >>

" Nested compilers: [[p]]H d [[]CH-*MI P]M d [[[[CML] ([[CH-MMl p) 1]L d

" Compiling H to an M interpreter in L: [IPHH d [JCH M] p dM = lIM-LlL < (W]H-*M] p),d >

Note that when the evaluation language is unimportant (as is the compiler's implementation language), the language
subscript can be dropped. Finally, let us review specialization theory, derived from Kleene's S-M-N theorem. Given
an input program p, static data s, and dynamic data d:

[{P]H < s, d > = [[[[mix]] < p, s >]] d, where mix is a program specializer.
The residual program r = [[mix]] < p, s > is the result of specializing (sometimes called partially evaluating) program
p with respect to static data s. A classic result is that specialization of an interpreter is equivalent to compilation.
This result is a motivator for this dissertation. Observe that:

Rmi4 < IM L , P > = [[CM, Lf P-
In other words, a compiler from a machine-level language to a logic-level language is equivalent to a specialization of
a machine-level interpreter with respect to some input machine-level program.

Figure 2-8: Review of denotational semantics

denotational semantics (hopefully familiar from your programming languages course).

Mode 0 A custom chip can be designed to evaluate a particular high-level behavior.
The high-level behavior is customized into a machine-level behavior, usually represented in
Register Transfer Language (RTL), which is then further customized to logic. This logic
is in turn used to generate a physical layout. Specialization may be performed automat-
ically, manually, or in some combination. This mode is the most efficient because there
are zero levels of interpretation. However, a custom chip designed in this manner is not
reprogrammable - it can only evaluate one high-level behavior.

The semantics for Mode 0 are: [[CLPj (JCML (WCH_+MJ p))]p d,
meaning: first compile program p from language H to M, and then from language M to L,
and then from language L to P. The result is a physical realization of p in hardware that
is capable of processing data d.

Mode I The gate reconfigurable approach is the primary focus of this dissertation. A
high-level language is compiled into machine-level mechanisms that are further specialized
to the logic-level. This logic, unlike Mode 0, is not further specialized, but instead evaluates
on programmable logic. Thus, this mode has one level of interpretation and is less efficient
than Mode 0. Yet, with this level of interpretation the system is fully programmable and thus
universal - different high-level behaviors can be evaluated on the same physical hardware.

The semantics for Mode I are: [IL-PMp < CM-*L (VCHMI p),d >,

48

meaning: compile the program p from language H to M and from language M to L. Then,
interpret language L, along with data d, on a pre-fabricated IL-*P machine.

Mode II Traditional processors offer the most conventional form of computing. Lan-
guages are compiled to the instruction set architecture of a processor. The processor is in
effect an interpreter for machine-level programs. The processor is implemented in logic that
is further specialized, manually or automatically, to the physical-level. Like Mode I, Mode
II is also universal because of the machine level interpretation layer.

The semantics for Mode II are: [[CLIP I IM ML I p <(CHM I p), d >,
meaning: compile program p from language H to M and interpret it on a machine-level
interpreter IML. This machine-level interpreter is written in language L and pre-fabricated
by compiling language L to P. Note that this last compilation step can be done manually.

Mode III Softcore processors consist of a combination of the interpreter in Mode I with
the interpreter in Mode II. Although the high-level language is compiled to machine instruc-
tions, neither is the machine further specialized to logic nor is the logic further specialized
to the P. Thus, these systems have two levels of interpretation. FPGA vendors have re-
leased softcore processors into the marketplace. With softcore processors, new high-level
programs can be evaluated without re-specializing to FPGA logic. However, with double
the interpretation, one can expect roughly double the overhead in comparison to Mode I or
Mode II.

The semantics for Mode III are: [ILP] p < M-L, < (CH-+M1 p), d >>, meaning:
compile program p from language H to M and interpret the compiled program, along with
its data d, on a machine-level interpreter IM-+L. This interpreter is written in language L
and is itself interpreted by a logic-level interpreter ILP-

In summary, there are four evaluation alternatives that include an initial compilation
from a high-level language to a machine-level language. These alternatives differ in whether
they compiler or interpret the lower level languages. Because there are two translation
steps, there are four permutations of compilers and interpreters. Exactly one interpretation
level is needed for both universality and efficiency. Both GRAs (Mode 1) and traditional
processors (Mode II) share this property. The next section continues by demonstrating a
relationship between the two modes.

2.4 A Special Relationship

The section shows that the goal of compilation to GRAs should be to specialize the architec-
tural mechanisms present in von Neumann processors. First, substitute the specialization
equation from Figure 2-8:

[CML P = [mix < IMIL,P >
(recall that mix is a program specializer) into the Mode Iequation:
Pj H d = ILP I p < CM-L J(CH M I p)),d >

to yield:
[p] H d = L*P-+ p < Tnx < IMIL, (CH- MM P) >), d >.

This equation means: given an input program p, written in a high-level language H, first ap-
ply high-level compilation technology (CH-M) to generate a machine level program. This
resulting machine level program is the input to another evaluation stage that is itself a
compiler. This compiler is constructed from the specialization (mix) of the mechanisms of

49

machine-level interpretation 2 . The result of applying this second compiler to the machine-

level program is a logic-level program. This logic-level program, along with the input data

d, can be interpreted by ILp to generate the desired result.

The previous equation shows that, given a good program specializer, and a description

of a machine architecture it can understand, nothing else would be left to do; ideally mix, a

general program specializer, can remove all interpretation overhead! Although well-specified

processors are available, program specializers are not yet mature enough for this general

application. Thus, my compiler, DeepC, is a result of the manual construction of a system

that performs this specialization.

2.5 Summary of Result

This chapter has made a theoretical case for my thesis that specialization of architectural

mechanisms with respect to an input program is the key to efficient compilation of high-level

programs to gate-reconfigurable architectures. The benefits predicted include:

1. smaller, cheaper, more cost-effective computing,

2. faster, lower latency computing,

3. computing with lower power, lower energy, and lower energy-delay.

This theory does not predict that these benefits will outweigh the overheads of gate-level

interpretation. According to the theory, the relative overheads of interpretation at the

gate-level versus instruction-level will determine the better approach. Using the DeepC

implementation in Chapter 5, the empirical results in Chapter 6 include evaluations of this

comparison for select benchmarks. But first, the following two chapters offer specialization

exemplars for important architectural mechanisms.

2 Recall that this theory specializes the architecture with respect to the input program, not the input

program with respect to a static component of its data. Further program specialization is compatible with

my approach - there are public domain C specializers that can be added to the front of the DeepC compiler

flow.

50

Chapter 3

Specialization of Basic Mechanisms

If compilation is to achieve substantial efficiency gains over interpretation, the structure
of the target language must be tractable enough that the compilation algorithms can
be designed with a reasonable amount of effort. In other words, good algorithms for
system design must be available in the target language. A target language that is loaded
with exceptions, global interactions, and limiting cases is more difficult to compile to.
This partly explains our use of interpretation for relatively difficult-to-compile-to target
languages as electronic circuits and logic diagrams."

- Ward and Halstead on Interpretation versus Compilation,
from Computation Structures (1990), page 276.

Replacing an interpretative layer with a compilation layer is a major challenge. However,
the previous chapter concluded that specialization of architectural mechanisms is the key for
efficient program evaluation on gate reconfigurable architectures (GRAs). Thus, significant
support is needed to prove this claim. The next two chapters provide concrete support
by developing a set of approaches for specializing individual mechanisms. Specialization of
the most basic mechanisms, described in this chapter, has a large impact on all areas of
system performance. Specialization of advanced mechanisms, in the sequel, helps maintain
performance advantages under difficult technological constraints, such as signal propagation
limits on long wires, and help take advantage of opportunities created by parallelization
technology.

Recall from the previous chapter that an interpretation layer adds overhead. When
considering Mode II (traditional processor) versus Mode 0 (custom device), specialization
of architecture mechanisms leads to performance gains as interpretation overheads (IM-+L)
are removed. When comparing Mode 0 to Mode I (GRA), performance is lost: logic-level
interpretation overhead (IL-p) is added. Thus, when comparing Mode I versus Mode II,
the gains of architectural specialization are offset by the losses of gate-level interpretation.
In other words, without architecture specialization, there will be no gains to offset inter-
pretation overheads, resulting in a non-competitive approach for GRAs. Finally, besides
absolute performance, choice of device may be determined by many practical business and
engineering factors, for example availability, reliability, brand, industrial partnerships, and
even personal preference. If the overheads cannot be totally offset, specialization is still
essential to increase the marketplace competitiveness of the GRA approach.

51

I continue with the mechanisms discussed in this chapter, grouped into three sets of

basic architectural mechanisms:

e Combinational Functions,

9 Storage Registers,

e Control Structures.

Each section presents the basic approach, several examples, and concludes by discussing

ease of implementation.

3.1 Specializing Combinational Functions

3.1.1 Approach

Combinational functions are the most basic mechanisms that can be specialized. The essence

of a combinational function is a continual evaluation of some Boolean function, usually

once per clock period in a synchronous system. If certain inputs of a Boolean function are

known ahead of evaluation, then those inputs can be substituted into the logic and the new

equations can be simplified or otherwise reduced. The basic idea is to use compile-time

knowledge to eliminate gates. The resulting logic can be implemented with smaller, faster,
lower-power circuits.

At the lowest level, all architectural features are ultimately composed of combinational

functions, or gates. Thus, a reductionist view is that all specialization can take place at this

level. However, in practice it is better to specialize at the highest level possible, both to

improve compilation time and to avoid the need to re-discover high-level information. Still,
many opportunities for combinational specialization remain low-level. For example, folding

constants into circuitry can only be performed at the gate level.

Logic Functions

Figure 3-1 summarizes some basic logic simplifications that can be applied to the standard

AND, OR, and MUX (multiplexer) gates used in computer design. Inputs that are labeled

0 or 1 are discovered at compile time, allowing the gates on the left to be specialized into

the gates on the right. From top to bottom: the first gate on the left is a NOT gate, the

next two gates are AND gates, and then two OR gates, and then a three-input AND gate,
and finally a two and three input MUX. In each case, the specialized gate on the right is

simpler, or even trivial, when compared to the gate on the left. For example, the three

input AND simplifies to a two input AND.
The specialization approach complements customary digital logic optimizations. It ex-

poses new simplifications and reductions that arise only after folding information from the

input program into lower-level circuitry. Because it can leverage mature optimizations from

synthesis, it is a powerful compilation technique.

Arithmetic Functions

Arithmetic functions such as addition (ADD), subtraction (SUB), and multiplication (MUL)
are often constructed as combinational functions (as opposed to sequential functions) even

though they are more complex than ANDs and ORs. Recall from the DLX example, in

52

z

Z

Z

Z

z

Z

0

1 Z

0

{O:D}

t- z

A Z

A Z

--- ~LD z

- A Z

A

B
-Tz

Figure 3-1: Specialization of combinational logic

Inverters, AND gates, OR gates, and multiplexers can be specialized into simpler
logic if some inputs are known at compile time. The pullups and pulldowns shown
represent logical ones and zeros, respectively.

53

1

A

1

A

B

A

B

A

B
C

A

A s 1

Z 8

1.

A4 B2

2.
t

Zs

A B

3. + C

+

Z

4.

A 4

IV

A 7:0 B 7 :0
5,6.

A=xxx00000
B=00000xxx

Z 7:0

A
8

INCREMENT

Z 8

A4 B2

Z

A B C

Z

A

LZ
A B

OR

Z

Figure 3-2: Specialization of combinational adders

The subscripts denote the bitwidth, or range of bits, for each variable.

54

B2:7 00

ON 7 .0

31 30 23 22 0

sign exponent fraction

Figure 3-3: IEEE 32-bit floating point format

Chapter 2, that arithmetic functions are used for internal calculations such as incrementing
the program counter and calculating addresses. As a result, fixed function bitwidths are
exposed to the assembly-level programmer and compiler back-end. For example, In C, the
char type is 8 bits, short is 16 bits, and int is 32 or 64 bits, depending on the architecture.

With a multi-bit function, finding the precise bitwidth of operands and datapaths is
an important analysis. A more general theory for analyzing and optimizing bitwidths is
developed in Section 3.2.1, after registers are introduced. At this point, I give several
examples of my approach for specializing functions operating on vectors of bits. Figure 3-2
shows the following cases:

" If one of the inputs is known to be a constant, then the function can be specialized
with respect to that constant (1.).

" If the bitwidth of an operator is less than the standard bitwidth, the upper bits of the
function can be eliminated (2.).

" Two or more such functions may be chained or otherwise combined into a special
function (3.).

" Under certain conditions arithmetic operators can be strength reduced to simpler
operators: MUL to SHIFT (4.), ADD to OR (5.), OR to bit concatenate (6.).

Signed Integers

Consider current hardware description languages. VHDL supports user-defined data types,
but Verilog does not even support signed integers. When the sign can be determined at
compile-time, signed integers can be specialized into unsigned integers. In DeepC, this
specialization is implemented in the range-propagator, part of bitwidth analysis. When a
signed representation is needed, the code generator modifies comparison statements, which
are always unsigned in Verilog, to handle the sign bit. The correct modification is to XOR
the sign bits with the result of any comparison. The default properties of two's complement
numbers take care of other operations on signed numbers.

Floating Point

Many scientific programs use floating-point arithmetic. Thus, architecture support for float-
ing point is quite common, especially support for the IEEE standard [771. Numbers in this
format are composed of three fields: a sign bit, an exponent, and a fraction (Figure 3-3).
The exponent is a power of two and the fraction stores the floating point mantissa.

Although the main thrust of this research has not included floating point and my re-
sults are focused on multimedia and integer applications, I have explored two approaches
for specializing floating point. In the first approach, floating-point functions are manu-
ally designed and instantiated at the logic level. A fixed number of such floating-point

55

functions (ADD, MUL, DIV) are included in the architecture. Then, during scheduling,
floating-point operations are mapped onto these functions. Specialization occurs around
the floating-point operations (loads and stores, multiplexers, control), but the computation
within the float point function units is lifted to runtime. That is, the computation inside
the function call is not unfolded or partially evaluated at compile time. DeepC 2.0 includes
scheduling support for this first approach but it does not yet have an interface to a library
of well-designed floating-point functions. However, well-designed floating-point functions,
optimized for FPGAs, have been studied by Fagin et al. [53], Ligon et al. [94] and Shirazi
et al. [122], and several free designs are available on the Internet.

In the second approach, the floating-point functions are described as library calls in
the high level language (C). The approach first inlines these library calls into the program,
dismantling floating-point functions into their constituent integer and logical operations. In
other words, each floating-point operation in the program has been replaced with a set of in-
teger and bit level micro-operations. My technique is similar to Dally's proposal [46] - these
resulting micro-operations are optimized and scheduled. Because the constituent exponent
and mantissa micro-operations are exposed, a compiler can exploit the parallelism inside
individual floating-point operations and also between different floating-point operations. In
DeepC 2.0, a prototype of this approach has been tried but not fully explored.

The second approach allows more specialization, and thus would be expected to yield
better results. However, the code explosion resulting from inlining such complex operators
has so far prohibited exploiting this approach. Backend CAD tools cannot yet handle the
complexity of the resulting state machines. Finally, manual optimizations applicable in the
lifted approach cannot be applied in the second approach.

3.1.2 Examples

The following examples further clarify combinational specialization approaches.

Eliminating a logical OR

if (delta >= step) {
delta J= 1;

}

Figure 3-4: Example of eliminating a logical OR

The code in Figure 3-4 is a part of the ADPCM benchmark. The lowest bit of the
variable delta is set to 1 when delta is greater than or equal to the variable step. Consider
just the assignment for now, Section 3.3 will consider the conditional. At a certain point in
the evaluation of the program, the lowest order bit of delta should be set to 1. Assuming
delta is stored in a register, what was a multi-bit OR in a traditional processor ALU is
reduced to an assignment of 1 to a single register bit.

Simplifying a Comparison

Consider the comparison of the variable sum to the value 3 in the following expression from
the newlife benchmark:

(sum==3) I (datal[i] [j] & (sum==2))

56

A
CL
CL
CD

j data

Figure 3-5: Example of address specialization

The address calculation for the array reference A [i] [jI can be entirely eliminated.

Instead, the values of i and j are placed on the corresponding address wires.

This example is only considering the (sum == 3) portion of the expression, not the entire

expression. Comparison of sum (a three-bit number) to the number three would usually

require a subtraction, or at minimum an XOR in an unspecialized processor. In this case,
the logic need only check that bits 0 and 1 are TRUE and bit 2 is false, as computed by
the expression: sumo A sum, A sum 2 . Note that a similar approach can be used for the

(sum == 2) comparison, after which the entire expression can be optimized at the logic
level.

ADD/SUB function

In a generic ALU, a standard function unit of RISC processors, the subtract operation is im-

plemented in two's complement by inverting (applying NOT to) the term being subtracted.
Because this inversion is conditioned on whether the operation is a subtract, an XOR gate
is needed. With specialization, this gate is eliminated in the ADD case and reduced to
NOT in the SUB case.

Strength Reducing Address Generation Equations

This longer example explains strength reduction within an address calculation. Consider

what happens when referencing a 32-bit, two dimensional array, like A[i][j]. The naive code
for this address calculation is

A + (i * YDIM + j) * 4.
Note that the constant 4 adjusts 32-bit addresses for byte-addressable memory. When
YDIM is a power of 2, the multiplication operations are usually realized as shifts to pro-
duce:
A + (i << log2 (YDIM) + j) << 2.
In an unspecialized architecture, this is the minimal calculation to reference a two dimen-
sional array. Combinational specialization, on the other hand, can do much better. Assume
that the array can be fully disambiguated from other arrays and variables. (Memory disam-
biguation is described in Section 4.1.) Thus, the A array has its own private memory space.
Every reference will lie at an offset from location 0 of the memory for array A, so the first
addition operation can be eliminated. Furthermore, the memory for A can be built with
the same width as the data word, so that the final multiplication by 4 can be eliminated,
leaving i << log2(YDIM) + j. Next, the add operation can be transformed into OR
operations. First, calculate the maximum width of j. Because j < YDIM, the maximum
value of j never consumes more than log2 (YDIM) bits, so the bits of j and the bits of

57

i << 10g2(YDIM) never overlap. The addition in this expression can be optimized away
to produce i << log2(YDIM) I j. Finally, because the OR of anything with 0 produces
that value, the OR gates can be eliminated and replaced with wires. The result is that the
two values, i and j, can be concatenated to form the final address. This final transformation
is in Figure 3-5. If only some conditions for strength reduction hold, then only a portion of
these optimizations are applied.

Floating Point Division

Consider dividing a floating-point number with a constant that can be written as a factor
of two, e.g., y = X/2.0. Executing this division operation would take many cycles on a
traditional floating-point execution unit.

However, by deconstructing the division into the micro-operations on its exponent and
mantissa, and then generating specialized hardware for each, performance is increased by
an order of magnitude. The micro-operation to perform such a division is to subtract 1
from the exponent of x. The time to execute the floating-point division operation reduces
to the latency of a single fixed-point subtraction.

3.1.3 Ease of Implementation

Specialization of Boolean logic is commonly studied in logic or digital design. Large circuits
can be re-optimized with tools such as ESPRESSO [25]. In practice, the target technology
should be taken into account to minimize multiple objectives such as area, delay, and power.
These objectives are common in commercial synthesis tools. Combinational specialization
can be implemented with the following three steps:

1. identify static values from the input program,

2. substitute static values into architectural gates,

3. optimize with commercial tools.

In this way, logic optimization techniques developed for circuit synthesis, now a mature
field, can perform the majority of the work for specializing combinational functions.

The disadvantage of relying on commercial synthesis tools is that they are often slow.
They are tuned for hardware design, where long compilation time is more acceptable than in
the software world. Thus, a good implementation lightens the synthesis burden by finding
optimizations at as a high a level possible. For example, many arithmetic and bitwidth
reductions discovered at the logic level are easily detected during earlier compiler phases.
As another example, the address generation specialization described in the previous section
can be implemented during array dismantling.

3.2 Specializing Storage Registers

3.2.1 Approach

There are two primary register optimizations:

1. register-to-wire conversion

2. bitwidth reduction

58

I do not consider optimizations at the register file level because of the availability of large

quantities of individual registers in today's FPGAs. As an example, a register file can be

partly specialized into smaller groups of registers with shared ports [79]. Likewise, register

spilling is another mechanism that can be specialized.

Wire Discovery

When a value is consumed in the same cycle that it is produced, any registering can be
eliminated altogether and replaced with a wire.

To explain specialization of registers to wires, I introduce sequencing. This concept
will be covered more generally in Section 3.3. The basic idea of sequencing is that some
operations will be scheduled to occur at different times during program executing. For
example, consider the expression A = B[i]; C = A + D. The first assignment accesses an
element of the array B and stores the result in the variable A. There is a dependence of
the second assignment on the first (through the variable A). Because of this dependence,
the addition cannot be scheduled earlier than the load. If the addition is scheduled one
or more clock cycles after the load, then the value for the variable A must be stored in
a register. However, with specialization, these two operations can be chained in the same
clock period. In this case, if the value A is not used elsewhere, then the register can be
replaced with a wire. This register-to-wire replacement policy applies to the case when all
potential producers and consumers of an intermediate variable are scheduled in the same
clock cycle.

Bitwidth Reduction

Just as the bitwidth of combinational functions can be specialized, so can the bitwidth of
a register. I have mentioned bitwidth reduction in previous sections. Now, I take the op-
portunity to further elaborate those concepts and formally present a bitwidth optimization
approach. In particular, datawidths of program variables and the operations performed
on them can be used in both forward and backwards propagation of data-ranges. These
data-ranges ultimately determine the minimum register bitwidths. Elimination of logic in
combinational functions can be derived during logic synthesis once registers are appropri-
ately reduced. Because FPGAs are register rich, the savings from eliminating registers
comes from elimination of the associated logic.

Bitwidth Analysis Algorithm

Although a compiler could expect the programmer to annotate bitwidth information by
specifying more precise data types [85] (e.g., int3, int13), a more elegant and satisfactory
approach is to have the compiler determine the bitwidth of variables and operators. In
addition to storage registers, a compiler can also use bitwidth analysis to determine function
unit and memory widths.

The goal of bitwidth analysis is to analyze each static instruction in a program to
determine the narrowest return type that retains program correctness. This information
can in turn be used to find the minimum number of bits needed to represent each program
operand. Library calls, I/O routines, and loops make static bitwidth analysis challenging.
Because of these constructs, the analysis may have to make conservative assumptions about
an operand's bitwidth. Nevertheless, with static analysis, bitwidth information can be
inferred.

59

My approach to bitwidth analysis is to propagate data-ranges both forward and back-
ward over a program's control flow graph (Stephenson et al. [127]). A data-range is a single
connected subrange of the integers from a lower bound to an upper bound (e.g., [1..100] or
[-50..50]). Thus, a data-range keeps track of a variable's lower and upper bounds. Because
only a single range is used to represent all possible values for a variable, this representation
does not permit the elimination of low-order bits. However, it does allow precise oper-
ation on arithmetic expressions. Technically, this representation maps bitwidth analysis
to the more general value range propagation problem. Value range propagation is used in
value prediction, branch prediction, constant propagation, procedure cloning, and program
verification [108, 115].

Figure 3-6 shows a subset of the transfer functions for propagation. The forward prop-
agated values in the figure are subscripted with a down arrow (4), and the backward prop-
agated values with an up arrow (t). In general, the transfer functions take one or two
data-ranges as input and return a single data-range. Intermediate results on the left are
inputs to the transfer functions on the right.

Consider the transfer functions in Figure 3-6 in more detailed. The variables in the
figure are subscripted with the direction in which they are computed. The transfer function
in (a) adds two data-ranges, and (b) subtracts two data-ranges. Both of these functions
assume saturating semantics that confine the resulting range to be between the bounds of
its type. The AND-masking operation for signed data-types in (c) returns a data-range
corresponding to the smaller of its two inputs. This operation uses the bitwidth function,
which returns the bitwidth needed to represent the data-range. The typecasting operation
in (d) confines the resulting range to be in the range of the smaller data-type. Because
variables are initialized to the largest range that can be represented by their types, ranges
are propagated seamlessly, even through type conversion. The function in (e) is applied
when it is known that a value is in a specified range. For instance, this rule is applied to
limit the data-range of a variable that is indexing into a static array. Note that rule (e) is
not directionally dependent. Rule (f) is applied at merge points, and rule (g) is applied at
locations where control-flow splits. In rule (g), xb corresponds to an occurrence of xa such
that xa < y. This information can be used to refine the range of xb from the outcome of
the branch test, X" < y. As a final extension (not shown in the figure), note that rule (d)
is not directionally dependent if b's value is dead after the assignment.

Forward Propagation

Initially, all intermediate variables (after renaming) are initialized to the maximum range
allowable for their type. Informally, forward propagation traverses an SSA graph [45] in
breadth-first order, applying the transfer functions for forward propagation. Because there
is one unique assignment for each variable in SSA form, bitwidth analysis can restrict a
variable's data-range if the result of its assignment is less than the maximum data-range of
its type.

Backward Propagation

Forward propagation allows identification of a significant number of unused bits, sometimes
achieving near optimal results. However, further minimization can be performed with back-
ward propagation. For example, when data-ranges step outside of known array bounds, this
fact can be back-propagated to reduced the data-range of instructions that have used its

60

(a) bt = (bl, bh)
Ct = (c, ch)

at = (atah)

a=b+c

bt = b H (al - Ch, ah - cl)
Ct = C n (al - bh, ah - b1)

at = at H (b + cl, bh + Ch)

(b) b4 = (bI, bh) b 1 = b F (al + c, ah + Ch)
C = (c, ch) cT = c: H (al + bl, ah + bh)

a~b-c

at = (al, ah) 4- = at - (bl - Ch, bh - cl)

(c) b = (bI, bh) bt = bj
c:C (cl , ch) C4 = c

a b&c

at = (alah) a at F (-2n-1,2n-1 - i)
where n = min(bitwidth(b.L), bitwidth(ct))

(d) b = (bl, bh)

a b

a = (al, ah) a = a F b

(e) x = (a,, ah) x = x F (x, Xh)

{X1 < x < Xh}

xb =(bl,bh) xbT xbt RXat

Mfx) = (Kcl,ch) xb c XCt X% Xat

xa = X% Xac)

xa = (al, ah) X%; = Xat F,(bL u X%)

(g) X , (a,, ah)
YtL (Yl, Yh)

Xat - H (Xbf U Xc

x4
xa <

xb= (bl,bh)
xC= (c, ch)

xb x C
xb xa ,x bH (al,yh -1)
xc - xa cT n (y, ah)

Figure 3-6: A subset of transfer functions for bi-directional data-range propagation

61

deprecated value to compute their results. The back propagation algorithm begins at the

node where the boundary violation is found and propagates the reduced data-range in a
reverse breadth-first order, using the transfer functions for backward propagation. Back
propagation halts either when the graph's entry node is reached, or when a fixed point is
reached. (Note that a fixed point is reached when the algorithm finds a solution that cannot

be refined further.) Forward propagation then resumes.

Sequence Solver

Along with data-range propagation, a solver can be applied to find closed-form solutions

to loop-carried expressions using the techniques introduced by Gerlek et al. [58]. These
techniques allow identification and classification of mutually dependent instructions called
sequences. Figure 3-9 in Section 3.2.2 further elaborates this technique.

3.2.2 Examples

The following examples further clarify register specialization approaches.

Turning A Register into a Wire

Consider the code in Figure 3-7. Assume that the first two additions are "chained" in the
same cycle and the value a is not consumed elsewhere. In this case the value for a should
be carried on a wire (during that same cycle) and not stored in a register. Assume that the
subtraction is scheduled in a later cycle. The value for e must be stored in a register1 .

a = b + 1; // scheduled on clock cycle 1
e = a + b; // scheduled on clock cycle 1

f = c - e; // scheduled on clock cycle 2

Figure 3-7: Example of turning a register into a wire

General Bitwidth Analysis Example

The C code fragment in Figure 3-8, an excerpt of the adpcm benchmark in the Deep Bench-
mark Suite (Chapter 6), is typical of important multimedia applications. Each line of code in
the figure is annotated with a line number for the following discussion. The excerpt contains

several structures, such as arrays and conditional statements, that provide bitwidth infor-
mation. The bounds of an array can be used to set an index variable's maximum bitwidth.
Other analyzable structures include AND-masks, divides, right shifts, type promotions, and
Boolean operations.

Assume the precise value of delta, referenced in lines (1), (7), and (9), is not known.
Because it is used as an index variable in line (1), its value is confined by the base and
bounds of indexTable 2 . By restricting delta's range of values, its bitwidth can be reduced.

'Under certain circumstances e could also remain on a wire. However, this case would violate the
synchronous design principle that all values settle by the end of the clock period. In order to explore this
case, a researcher would need to re-implement or modify backend tools such as timing analyzers.

2The analysis assumes that the program being analyzed is error free. If the program exhibits bound vio-
lations, arithmetic underflow, or arithmetic overflow, changing operand bitwidths may alter its functionality.

62

(1) index += indexTable [delta];
(2) if (index < 0) index = 0;

(3) if (index > 88) index = 88;

(4) step = stepsizeTable [index];

(5)
(6) if (bufferstep) {
(7) outputbuffer = (delta << 4) & Oxf0;

(8) } else {

(9) *outp++ = (delta & OxOf) I
(10) (outputbuffer & Oxf0);

(11) }
(12) bufferstep = !bufferstep;

Figure 3-8: Sample C code illustrating bitwidth analysis

This code fragment was taken from the loop of adpcm-coder in the adpcm multi-
media benchmark.

addr = 0;
even = 0;
line = 0;
for (word = 0; word < 64; word++) {

addr = addr + 4;

even = !even;

line = addr & Oxic;

}

Figure 3-9: Example for bitwidth sequence detection

Similarly, the code on lines (2) and (3) ensures that index is restricted to be between 0
and 88. The AND-mask on line (7) ensures that outputbuffer is no greater than Oxf 0.
Bitwidth analysis can also determine that the assignment to *outp on line (9) is no greater
than Oxf f (OxOf I Oxf 0). Finally, bufferstep is either true or false after the assignment
on line (12) because it results from the Boolean not (!) operation.

Bitwidth Sequence Example

This example demonstrates sequence detection, an advanced optimization of bitwidth spe-
cialization. A sequence is a mutually dependent group of instructions that form a strongly
connected component in a program's dependence graph. Figure 3-9 is an example loop
with a tripcount range of < 0,63 >. Knowing the tripcount allows analysis of sequences
in the loop. Consider the calculation of addr. Bitwidth analysis can determine its range,
< 0, 255 >, symbolically from the tripcount and the increment value. Note that the se-
quence includes the addr = addr + 4 increment instruction, but it does not include the
initialization, addr = 0, since the initialization does not depend on any other instructions
(it is loading a constant) and is therefore not part of a strongly connected component.

As mentioned, any strongly connected components in the body of a loop can be used
to form a sequence dependence graph. In this example the sequence is a linear sequence.

63

In general, this result is more conservative than finding the precise range for each variable,
but it works well in practice [127].

Unlike linear sequences, not all sequences are readily identifiable. In such cases, iter-

ating over the sequence will reach a fixed point. For example, consider the calculation of
even in Figure 3-9. A fixed point of < 0, 1 > can be reached after only two iterations.
Not surprisingly, sequences that contain Boolean operations, AND-masks, left-shifts, or
divides - all common in multimedia kernels - can quickly reach a fixed-point. For cases
when a fixed-point is not reached quickly, see my prior publication with Stephenson and
Amarasinghe [127], which also gives more details of this example.

3.2.3 Ease of Implementation

Wire inferencing is a common optimization performed during RTL synthesis (Section 5.2.5).
But register sharing (assigning more than one virtual register to a single physical register)
can hide wires. Thus, wire inferencing should come earlier in the compiler flow (between
scheduling and register allocation). One strategy is to annotate the registers that will
become wires so that they will not participate in register allocated. Because wires do not
consume resources explicitly, there is no reason to assume a bound on the wires used in a
given clock cycle.

Deriving bitwidths from data-range propagation is well understood. However, analyzing
loops and identifying common sequences can uncover many more reductions. At first, DeepC
performed limited bitwidth analysis for address calculations. However, DeepC 2.0 uses a
new set of compiler passes, called Bitwise [127].

3.3 Specializing Control Structures

3.3.1 Approach

A gate-level architecture does not have hardware support for control flow. There is no fetch-
decode-execute sequence as in a von Neumann processor. However, the input sequential
programs to be compiled are written in imperative languages. Efficient compilation of these
languages to gates requires the ability to specialize their control flow.

How can this control flow be specialized? Consider the RTL equations for branching in
a processor (Figure 3-10). Now consider the standard finite state machine (FSM) controller
and datapath that can be created by logic synthesis tools (Figure 3-11). The controller con-
sists of a state register and combinational logic that computes the next state as a function
of 1) the previous state and 2) a condition from the datapath. In any given clock cycle,
the values of the state register, as well as other datapath registers, are updated as a com-
binational function of the register state. All signal propagation must complete during the
clock period (unless the circuit is wave-pipelined [31]). Without loss of generality, assume
a global synchronous clock to each register. On a given clock cycle in the datapath, the
output of a set of registers is routed through a set of multiplexers to function units and
then back to registers. This register-mux-logic-mux-register structure is a standard in logic
synthesis tools such as the Synopsys Behavioral Compiler [129].

My approach uses the input program as data for specializing von Neumann control
flow mechanisms (Figure 3-10) into a controller and datapath (Figure 3-11). One way to
translate imperative control flow into a controller and datapath is to have a program counter
register that determines the state of the machine. In this case, a branch instruction implies

64

Figure 3-10: Simplified control flow of a von Neumann Architecture

Among other instructions, the opcode may be a jump (JMP), a compare (CMP), or
a conditional branch, such as branch-if-greater-than (BGT). The program counter
(PC) is by default incremented by one unless these instructions otherwise modify
it.

manipulation of the program counter beyond the default of advancing to the next state.
The datapath is then responsible for performing the appropriate calculations on each clock
cycle.

To automate this translation, I take advantage of a well known folk theorem that all
programs can be written as while programs [69] (or see Kozen's example [82] for a more
recent discussion of this classic theorem). The structure of my while program consists of a
case statement with a single large while loop. This structure is in Figure 3-12. In Verilog,
an always @(posedge Clock) statement is executed indefinitely, once per clock cycle. RTL
synthesis (Section 5.2.5), translates this code into a finite state machine. After reset, the
state machine will advance to the following state. In any given state, the ellipses represent
combinational work that is performed. An example of a looping operation on the program
counter (a back edge in the control flow) is in state 4. An IF-THEN operation is in state
5. A state machine in this form is Turing general.

Two alternative ways to update the program counter include incrementing the PC and
using zero-hot encoding (Figure 3-14). (Note that zero-hot encoding is an extension to
one-hot encoding with a initial state vector of zero; for example: {000, 001, 010, 100}.)
For small programs, I did not find an advantage from either alternative. As a heuristic,
the current compiler uses an incrementer for procedures larger than 100 states. Zero-hot
encoding was not effective because control signals usually are recombined when controlling
resources shared across multiple states.

65

IF(OPCODE==JMP)

PC=BRANCHTARGET

ELSE

PC=PC+'

IF (OPCODE==CMP)

CONDITION = (R1 > IMMEDIATE)

IF(OPCODE==BGT)

IF(CONDITION)

PC=BRANCHTARGET

ELSE

PC=PC+i

ELSE

PC=PC+'

Controller . Combinational
.: Logic

State Regs

control , , 1return
signals condition(s)

Datapath 0 *

D 0

Reg Outputs Function Reg InputsReg Units

Figure 3-11: Controller and datapath

A synthesized design has two parts: a controller and a datapath. The controller

includes state registers, combinational logic to compute the next state, and output

control signals to the datapath. Return conditions connect from the datapath back

to the controller, for data-dependent state transitions. The datapath contains func-

tion units sandwiched between register outputs and register inputs. Note that a

single physical register contributes one input and one output. Multiplexers control

the routing of registers to function units on each cycle of a global synchronous clock.

Predication: Converting IFs to Multiplexers

In some cases, an IF-THEN or IF-THEN-ELSE control structure can be efficiently repre-
sented as a multiplexer rather than state transitions. It must be reasonable to execute the
body of the structure in a single clock cycle. In general, the traditional "if-conversion"

compiler transformation, by predicating individual instructions, always satisfy this case. In
DeepC 2.0, the default IF body must be manually sized to avoid resource conflicts and/or
clock cycle "bloat" with this specialization. My approach is to emit Verilog IF-THEN or
IF-THEN-ELSE code that is to be executed in a single state.

Basic Blocks

Although a general state machine can jump to any state from any other state, when the
state machine is produced by specialization of a high level program, often straightline sets
of states contain only pc increments in all but the last state. These correspond to basic
blocks. Ideally, a basic block will take only one cycle to execute. However, both timing and
resource constraints will lengthen basic block beyond one cycle. Timing constraints result
from program dependencies and the evaluation time of operations in the target technology.
Resource constraints arise when two or more operations share the same physical resource

66

always 0(posedge Clo
begin

if (Reset) begin

PC = 0; //
end

else begin
case (pc)

0: begin

PC = 1;
end
1: begin

PC = 2;

end
2: begin

PC = 3;

end
3: begin

pc 4;
end
4: begin

testi =
pc = (testi)

end
5: begin

test2 =

pc = (test2)
end
6: begin

pc 7;
end
7: begin

pc = 7;
Finish = 1;

end
endcase

end
end

reset to initial state

// example of straight line control

? 1: 5;

? 6 : 7;

// example of LOOP type control

// example of IF-THEN type control

// identify final state

Figure 3-12: Structure of generic while program (in Verilog)

67

always 0(posedge Clock)

begin

pc = pc + 1;
if (Reset) begin

pc = 0;
end

else begin

case (pc)

0: begin

end
1: begin

end

2: begin

end

3: begin

end

4: begin

test=

if (testi) pc = 1;

end
5: begin

test2 =
if (!test2) pc = 7;

end
6: begin

end

7: begin

pc = 7;
Finish = 1;

Figure 3-13: Incrementer PC

always 0(posedge Clock)

begin

PC = PC << 1;
if (Reset) begin

pc = 0;
end
else begin

case (pc)
0: begin

end

1: begin

end

2: begin

end

4: begin

end

8: begin

testi =
if (testi) pc = 1;

end
16: begin

test2 =

if (!test2) pc = 64;

end
32: begin

end

64: begin

pc = 64;
Finish = 1;

Figure 3-14: Zero-hot PC

68

and thus must be evaluated in non-overlapping time intervals.

Instruction Scheduling

I now introduce my approach to instruction scheduling in basic blocks. Scheduling is com-
mon in both the compiler and microprogramming fields as well as in architectural synthesis.
My approach includes chained operations, multi-cycle operations, and pipelined function
units. Chained operations are dependent operations that are executed combinationally in
a single clock cycle. A multi-cycle operation is scheduled in one clock cycle, but does not
complete until a later clock cycle. A pipelined function concurrently supports more than
one multi-cycle operation with the constraint that only one operation can start at a time.

The goal of scheduling is to determine the precise clock cycle, cyclei, to start each
operation, i. Scheduling determines the concurrency needed in the resulting hardware;
therefore, it is valuable to include resource constraints for memories and expensive functions
such as multiplication.

I use the partial order relation -< to denote the precedence constraints on operations.
Thus, i -< j denotes that operation i must complete before operation j begins. Precedence
is derived from potential data dependencies. The predecessors of i in the data dependencies
graph (DDG), a direct acyclic graph G = (V, E), where vertices denote operations and
edges denote data dependencies, is the set predi {j E I 1j - i }. All operations in
predi must be scheduled before i.

I consider both pipelined and unpipelined multi-cycle operations. For example, in mod-
ern processors a multiplier is usually pipelined, while a divider is not. By separating latency
from throughput, either case can be modeled as well as the continuum between the two.
Specifically, I use two parameters: latency and cost. The latency of operation vi, denoted by
li, is the minimum number of clock cycles after operation vi is initiated before a dependent
operation can be initiated. If vi -< vj, then a + i < c-, where o- is the completion time
of operation vi. The occupancy cost of operation vi, denoted by ci, is the number of clock
cycles that operation vi will occupy its resource. There are several possibilities:

" If ci = 1i then the operation is unpipelined.

" If ci 1 then the operation is fully pipelined.

" If ci < 1i then the operation is partially pipelined.

In the general case, an operation may consume more than one resource and ci is augmented
with a resource vector resi,, T E [0, ci). This vector includes the set of resources required
for i at each cycle, with offset r = [0, ci), during its execution. Space-time resource vectors
come in handy in Section 4.2.1, which extends this approach to schedule communication as
well as computation instructions.

Next, consider sub-cycle latencies. I assume that resources can only be re-used across
clock cycles. Thus, ci > 1. However, an operation may have a latency of less than one
clock cycle. If 1i < 1, then the operation can be chained with other operations in the same
cycle. In this context, chaining refers to the scheduling of an operation in the same clock
cycle as the operations predecessor. Chaining is common in high-level synthesis and the
Pentium 4 has an ALU that can support chain-like operations (although a faster clock is
used as well). In order to chain, the combined latency of the chained operations, which may
be a tree, not just a linear sequence, must be less than one clock period.

69

Chaining and bitwidth reduction complicate sub-cycle latency calculations. Chaining is

further complicated because sub-cycle latencies can be a function of both the data and the
preceding operation. For example, an addition followed by another addition would be faster

than an addition followed by a store. Although a bit-by-bit timing analysis can be carried

out (Park et al. [107]), I instead define latency as a function of both parent and child: lij.
With bitwidth reduction, generic 32-bit or 64-bit operations will be replaced with smaller,
faster operations. Thus, lij must be adjusted to match the bitwidth of each operation.

I solve the scheduling problem with a forward, cycle-driven, critical-path-based, list

scheduler [102]. In contrast to backward scheduling, forward scheduling assigns the roots

of the precedence graph in the earliest possible time slots and moves forward through the
graph, scheduling all operations that are ready. As opposed to operation-driven scheduling,
cycle-driven scheduling greedily solves each cycle before moving on the next cycle. Finally,
basing the scheduler's selection heuristic on the critical-path avoids congesting resources

with non-critical work. A critical-path schedule is the same as a height/depth/level-priority
schedule that uses the length of the longest path from an operation to the leaves of the
precedence graph as a priority function. These approaches are well known in the scheduling
community.

The specification of my algorithm is in Figure 3-15. The given inputs have been discussed
in the preceding few paragraphs. Briefly, a ReadyList is kept updated with unscheduled
operations. Operations are sorted by a priority function, CriticalSelect, which returns the
instructions with the longest chain of successors. An operation can be scheduled to a re-
source only when that resource is available. Operations may begin and end in the middle
of the cycle, with the worst latency for preceding instructions determining the start time.
However, except for multi-cycle operations, instructions must complete by the end of the
cycle. Once an instruction is scheduled, it is removed from the set of unscheduled instruc-
tions I, and the availability of the consumed resource is decremented. Finally, ReadyList is
updated and the algorithm continues until all operations are scheduled. My implementation
of this algorithm is further described in Section 5.2.3.

3.3.2 Examples

The following examples further clarify control structure specialization approaches.

Loop Nest Example

Consider a loop nest with a body that takes three cycles to execute (Figure 3-16). Also con-
sider the resulting state transitions (Figure 3-17). Because there is no fetch-decode-execute
cycle, the update of the program counter is always a direct calculation of the previous state.
In the new state, the circuit has the information it needs to compute the appropriate control
signals without an instruction fetch or decode. Furthermore, the resulting state machine
contains the artifacts predicted by the specialization theory of Jones et al. [80]: the control
flow of the residual program (the output) matches the control flow of the static specializa-
tion data (the input program) while the operations match the mechanisms in the algorithm
being specialized (the von Neumann architecture). These artifacts provide evidence that
supports my thesis.

70

Given:
I : set of unscheduled instructions
predi : precedence set for each instruction i
ci cost of instruction i
lij latency for instruction i preceded by j
Vlij > 1; lIj = [lij] : no non-integer delays greater than one
li : worst latency for instruction i preceded by any instruction
resi, : resource vector for instruction i at time offset T E [0, ci)
R set of resources
n, number of resources of type r
T set of cycles
0- (intermediate) completion time, not necessarily integer, for instruction i
availrt : (intermediate) availability of resource r at time t

Produce:
V i E I, cyclei : output schedule time cyclei for each instruction i

Procedure Schedule {
t +-0
S -0
ViE I; Oci +- 00
V r C R, t E T; availrt +- nr
ReadyList <- {i E I predi = 0}
while (I # 0) {

i = CriticalSelect(ReadyList) // select most critical instruction
cyclei = t
oj max(t + li, maxjEprrediOj + li) // fraction ending time
I =I\ i
T E [0, ci), r E resi,,: availr,t+r - -

if (I : 0) {
do {

ReadyList <- {i C I I V j E predi, oa + min(lij, 1) < t + 1;
Vr E ci,V r E resi,,, avail,(t+,) > 0}

if (ReadyList = 0) t ++
} until (ReadyList # 0)

}

Figure 3-15: Forward, cycle-driven, critical-path-based list scheduler

Supported features includes fractional delays instructions consuming multiple re-
sources across multiple cycles. CriticalSelect contains the priority heuristic, in this
case returning the instruction with the longest chain of successors.

71

for (i = 0; i < 64; i++) {
for (j = 0; j < 64; j++) {

[bodyl]

[body2]

[body3]

}
}

Figure 3-16: Loop nest with three cycle body

0: begin

i = 0;
pc = 1;

end

1: begin
j 0;
pc = 2;

end

2: begin

j = j + 1;
[bodyl]
pC = 3;

end
3: begin

[body2]
testj = (j < 64);

pc = 4;
end

4: begin

[body3]
pc = testj ? 2 : 5;

end

5: begin

i = i + 1;
testi = (i < 64);
pc = test ? 1 : 6;

Figure 3-17: Transitions for loop nest with three cycle body

72

if (i == 0)
a = 1;

else
b = 1;

Figure 3-18: IF-THEN-ELSE construct

0: begin
test = (i==0);

pc = test ? 1 2;
end

1: begin

a = 1;
pc = 3;

end
2: begin

b = 1;
pc = 3;

end

3: begin

Figure 3-19: State transitions for IF-THEN-ELSE construct

If-then-else Example

Consider an IF-THEN-ELSE construct (Figure 3-18) and the resulting state transitions
(Figure 3-19). This example is clear, but what happens in the unspecialized case? The
difference between setting the pc to 1 versus 2 only changes a single register bit, while in
the unspecialized case a large program counter would be updated, an instruction memory
or cache accessed and loaded into an instruction register, that instruction register would be
decoded, and only then would the machine "know" to conditionally change its pc.

Predication Example

Consider an if-then-else construct as in Figure 3-20. The control flow can be eliminated
with predication. The resulting Verilog is in Figure 3-21. Because synthesis is required
to complete both the test and the assignment in clock cycle 0, the resulting digital logic
includes a multiplexer.

Next, consider an if-then-else construct in Figure 3-22. In this case, more than one
multiplexer is needed. However, embedding of the IF statement in Verilog can leverage
RTL synthesis to generate predicating multiplexers (Figure 3-22).

Procedure Call Example

I briefly describe an example procedure call. Small, non-recursive procedures can be inlined.
When procedures are not inlined, a callsite must pass return information to the procedure.
Consider Figure 3-24 and the resulting Verilog (without inlining) in Figure 3-25. Rather

73

if (i == 0)
a =b;

else
a = c;

Figure 3-20: Predication example: IF-THEN-ELSE construct

0: begin
test = (i==0);

a = test ? b : c;
pC = 1;

Figure 3-21: Predication example: Verilog after eliminating control flow

if (i == 0)
a = b;

else
c = d;

Figure 3-22: Another predication example

0: begin
test = (i==0);

if (test) begin
a = b;

end
else begin

c = d;

end
pC = 1;

Figure 3-23: Another predication example: resulting Verilog

74

main {

if (i == 0)
d = mult(a,b);

else

d = mult(a,c);

}
mult(inl,in2,out) {

out = inl*in2;

}

Figure 3-24: Procedure call example

than storing the program counter state, the compiler can optimize for the two callsites
present, using only one dynamic bit to resolve the return state. The callsite state pointers
are specialized into the pc calculation in state 5.

Besides just encoding the return state, support for procedure calls, especially recursive

ones, requires saving and restoring other registers and managing a call stack. Although
this support is beyond the scope of DeepC 2.0, a casual reading of assembly-code for RISC
processors with general-purpose registers (MIPS for example) is enough to see that compilers
already specializes procedure calls - calls are dismantled into register, memory, and branch

instructions. Specialization to logic additionally requires dismantling the remaining jump-
and-link instruction (an optimized instruction combining a register move and a branch).

3.3.3 Ease of Implementation

The basic concept of sequencing straight-line code was introduced as a scheduling problem;

however, during implementation the scheduling interactions are more complex. Critical

path timing calculations must be extended to fractional cycles. Generation of specialized
Verilog control flow from program control flow is not difficult once the expectations of
the RTL synthesize tool being used are well characterized. Although general control flow
can be treated with this approach, restructuring compiler passes, which find loops and
IF-THEN-ELSEs from GOTOs, are valuable. Although partial unrolling of loops is easy
and advantageous, the more-difficult-to-implement strategy of loop pipelining is known to
produce more compact circuits.

The controlling state machine totally replaces the program counter, instruction regis-
ter, and instruction memory in a basic RISC architecture. Unrestricted specialization of
a large program will lead to inefficiencies that can only be overcome by compressing the
unimportant states back into a ROM-type structure. This problem can be avoided with
configuration selection and configuration sequencing algorithms [92]. These algorithms se-
lect important loops and use caching strategies, with only a portion of the program loaded
at any given time, to support longer programs. Alternately, known techniques for placing
large decoders into FPGA block RAMs may solve this problem by indirectly re-compressing
over-specialized instructions [2].

75

always 0(posedge Clock)
begin

if (Reset) begin
PC = 0; // reset to initial state

end
else begin

case (pc)

0: begin

test =

pc = (test) ? 1 : 3; // branch
end
1: begin

inl = a;
in2 = b;
callsite = 0;

PC = 5; // first call site
end
2: begin

d = out;
pc = 6; // unconditional jump

end
3: begin

inl = a;
in2 = c;
callsite =1;

pc = 5; // second call site

end
4: begin

d = out;
pc = 6; // unconditional jump

end
5: begin // multiply sub-procedure

out =in * in2;

pc callsite ? 2 : 4; // return

end
6: begin

pc = 6;
Finish = 1;

end
endcase

end

end

// identify final state

Figure 3-25: While Program with procedure call (in Verilog).

76

3.4 Summary

This chapter introduced approaches for specializing basic architectural mechanisms: combi-
national functions, registers, and control structures. These approaches included several new
techniques. For combinational functions, which conventional logic synthesis can handle at
the low level, specialization of language-specific logic, such as address generation, is intro-
duced earlier in the compiler flow. For registers, this chapter introduced general techniques
for discovering wires and for performing bitwidth analyses on data flows and sequences in
loops. For control structures, this chapter introduced specializing to a Verilog while loop
that can evaluate any program. This chapter also discussed support for predication and pro-
cedures calls. These constructs are the building blocks of stored program computers. Thus,
they must be specialized for gate reconfigurable architectures to be competitive with other
evaluation modes. The following chapter continues with specialization of more advanced
mechanisms: memory and communication.

77

78

Chapter 4

Specialization of Advanced
Mechanisms

Scaling of the technology to higher densities is producing effects that may be clarified by
analogy with events in civil architecture. Decades ago, standard bricks, two-by-fours, and
standard plumbing were used as common basic building-blocks. Nevertheless, architects
and builders still explored a great range of architectural variations at the top level of
the time: the building of an individual home. Today, due to enormous complexities of
large cities, many architects and planners have moved on to tackle the larger issues of
city and regional planning. The basic blocks have become the housing tract, the business
district, and the transportation network. While we may regret the passing of an older
style and its traditions, there is no turning back the forces of change.

In present LSI, where we can put many circuits on a chip, we are like the earlier builder.
While we no longer tend to explore and locally optimize at the circuit level (the level of
bricks and two-by-fours), we still explore a great range of variation at the level of the
individual computer system. In future VLSI, where we may put many processors on a
chip, architects will, like the city planners, be more interested in how to interconnect,
program, and control the flow of information and energy among the components of the
overall system. They will move on to explore a wider range of issues and alternatives
at that level, rather than occupy themselves with the detailed internal structure, design,
and coding of each individual stored program machine within a system.

- Mead and Conway reflecting on the classical stored-program machine,
from their seminal VLSI textbook:

Introduction to VLSI Systems (1980), page 216.

The basic architectural mechanisms of the previous chapter concerned small regions
of hardware, limited to combinational logic, registers, and a single finite state machine.
Semiconductor technology now offers a wealth, or some say an excess, of hardware. So,
this chapter turns to specialization of advanced architectural mechanisms, with a focus on
specializing mechanisms for distributed architectures. This focus is motivated by Mead
and Conway's correct projection: architects are now more concerned with interconnecting
distant regions of a chip than with new designs for basic functions1 .

'However, in some sense the quote goes against my thesis because Mead and Conway did not forecast the
role of high-level compilation in specializing both the basic building blocks and the interconnect. Designers
can occupy themselves with system-level issues while the compiler manages the details.

79

Specialization of basic mechanisms (Chapter 3) either eliminates logic or dismantles
features expected by the language, but not supported in the architecture. In contrast,
specialization of advanced mechanisms is not required by language semantics, but instead
is needed for high-performance, given physical constraints. Sequential programs can be
mapped to parallel architectures by unrolling loops across space, allowing application of
dense hardware, with billions of transistors, to a single problem. While unrolling exposes
parallelism, the resulting distributed programs expose physical constraints such as wire
delay and power limitations.

This chapter divides these issues into approaches for specializing memory mechanisms

and communication mechanisms. Memory and communication mechanisms are interde-
pendent; for example, consider the decomposition of a large memory structure into smaller
memories and send/receive messages. Furthermore, because these mechanisms are not com-

pletely understood, their specialization is even more challenging.
The advanced mechanisms in this section borrow heavily from the mechanisms of the

Raw Project (www.cag.lcs.mit.edu/raw). When possible, they leverage and reuse Raw ap-
proaches directly. Some Rawcc compiler approaches are extended or otherwise generalized.
Some parts of the Raw hardware - namely the static router and the concept of tiling -
are moved to software. I make these distinctions clearer when discussing DeepC implemen-
tation details in Chapter 5. In any case, the following approaches are indebted to other
Raw Project members and their ideas.

4.1 Specializing Memory Mechanisms

4.1.1 Approach

The conventional memory model of imperative, von Neumann-style languages is a single,
giant address space. Even in large parallel systems, there is a strong bias to support a
shared address space for all memory. The goal of memory mechanism specialization is to
decompose this giant address space, often called the main memory, into many small ad-
dress spaces. Physically, these smaller spaces can occupy small local memories, allowing
computation to be migrated much closer to its data than in traditional systems. Specializa-
tion of memory, by distinguishing which memory location an address points to at compile
time, also exposes parallelism in the input algorithm; disambiguated loads and stores can
be granted unhindered access to memory resources, with no potential for conflict.

I motivate this approach with an example. Consider Figure 4-1 (a), a 32x1 memory
implemented as a single multiplexer. Only the read port is shown, followed by some com-
putation logic. Functionally, this multiplexer can be thought of as a tree of many smaller
multiplexers. We can divide the multiplexer into two levels, as in Figure 4-1 (b), creating
two sets of storage bits. A small 2-1 multiplexer, controlled by one of the address bits,
chooses between the two sets. Finally, in Figure 4-1 (c), we can expose the inputs to the 2-1
multiplexer and separate the computation logic into two smaller functions. If we know stat-
ically which set of storage bits are referenced by a memory access, then that access and its
associated logic can be assigned to the computation logic close to those bits. Note that the
computation partitions may need to communicate if there are dependencies between other
non-memory functions in the computation. Specialization of this resulting communication
will be addressed in Section 4.2.

Besides partitioning the main memory and specializing bank multiplexers, my approach
also includes specialization of address generation logic as introduced in an example in Sec-

80

storage bits

(a)

5 adressMULTIPLEXER5 address
bits

read port

computation logic

(b)

5 adess

read port

computation logic

(c)

addrA MUX addrB MUX

read port A read port B

local oIc local logic

potential
co001 ation

Figure 4-1: Memory specialization example

(a) A 32x1 memory implemented as a single MUX. (b) A 32x1 memory implemented
as two 16x1 memories and a 2-1 multiplexer. (c) Two 16x1 memories with separate
ports and locally assigned computation.

81

tion 3.1.2. Specialization of more advanced memory structures, beyond the approaches here,
include software specialization of caching structures (Moritz et al. [104]), and compiler-
directed adaptation of cache line size (Gupta et al. [134]). The positive results in these
papers support my thesis by demonstrating the feasibility of specializing other advanced
memory mechanisms.

Although code generation algorithms to create smaller memories from larger memories
are not difficult, algorithms to determine which memories can be decomposed are challeng-
ing. Programs with pointers and large arrays require special analysis to disambiguate loads
and stores at compile time. Luckily, memory disambiguation algorithms such as pointer
analysis are available from the broader compiler community. The following sections explain
how I integrate these analyses into my approach. They also demonstrate how to extend
bitwidth analysis techniques to handle pointers and arrays.

Pointer Analysis

Without pointer analysis, a single pointer in the input program will thwart memory spe-
cialization. This is true because the data structures in C-like high-level languages share
a single address space. Fortunately, disambiguation of pointers in sequential programs is
a well-understood problem with available compiler passes that can be reused. To disam-
biguate targets of loads and stores, I use Rinard and Rugina's SPAN [114], a flow-sensitive,
context-sensitive interprocedural pointer analysis package. Flow sensitive analysis takes
the statement ordering into account, providing more precise results than flow-insensitive
algorithms. Context sensitive analysis produces a different result for each different calling
context of a procedure. All memory references are tagged with location set information.
Location set information is also determined for every pointer in the program. A pointer's
location set list records the abstract data objects that it can reference. Pointer analysis can
determine the location set a pointer may or must reference. SPAN also distinguishes be-
tween reference location sets, and modify location sets: a reference location set is a location
set annotation that occurs on the right hand side of an expression (such as a read), whereas
a modify location set occurs on the left hand side of an expression (such as a write).

Equivalence Class Unification

Given the results of pointer analysis, my approach is to apply a static promotion technique
called Equivalence Class Unification (ECU), coined by Barua et al. [16]. ECU collects
memory objects into groups called equivalence classes. The goal is to form classes where
the class of every memory reference can be determined statically, at compile time. While
the equivalence class must be statically determinable, the exact object to be selected in a
class may be selected dynamically, at runtime.

ECU works by first determining alias equivalence classes - groups of pointers related
through their location set lists2 . Pointers in the same alias equivalence class can alias to the
same object; pointers in different equivalence classes can never reference the same object.

Unification takes place when all objects referenced by the same alias equivalence class
are formed into a memory. In the worst case, for example if a pointer aliases every memory
object, unification will create a single memory. In practice, multiple classes are found,

2 More formally, alias equivalence classes are the connected components of a graph whose nodes are
pointers and whose edges are between nodes whose location set lists have at least one common element.

82

resulting in many smaller memories. Then, all pointers to an alias class will reference a
single small memory associated with that class.

Pointer Representation In the ECU approach, pointer information is encoded in the
memory and port name that is referenced and in the address within that memory. If more
than one array is stored in the same RAM (because of aliasing), then the address will have
a base and offset in the traditional style of computer addressing modes. In the static case,
the port name is evaluated at compile time, forming wires and eliminating multiplexers.
That is, disambiguated references do not need selection logic to determine which memory
they should access. When a base address is needed, if that base address is known in a given
state, this address becomes an immediate value that can be encoded in the controller state
machine rather than in a general register. Beyond this specialization, the address itself can
be bitwidth reduced.

Partial Unification ECU is an all or nothing approach. If a single reference ever has
the opportunity to access two memory blocks, then those blocks must be located in the
same memory. This works well for arrays in some applications. However, there are many
instances where partial unification is more desirable. When objects are partially unified,
there will exist dynamic references that must be resolved at runtime. These references are
resolved with multiplexers. A portion of the address controls the multiplexer in the same
manner as the decoders in a conventional RAM. The asymmetry here is in sharp contrast
to the more regular structures created by full ECU and the modulo unrolling approach in
Section 4.1.1.

Example Figure 4-3 shows a short piece of code with two arrays, C and D. The points-
to-set of the pointer q is < C, D >; the points-to-set of the pointers p is < C >. With
ECU, C and D will be in the same equivalence class and assigned to the same memory.
With partial unification, the arrays can be decomposed. Figure 4-2 shows the read ports
after decomposition. The pointer p has a dedicated port to C while q selects either C or D
as a function of its most significant bit (MSB), a common encoding. A control multiplexer
is inferred on C's address port. However, the control multiplexer on D's address port has
been specialized away.

More complex multiplexer formations are possible. Hardware synthesis research is be-
ginning to consider similar issues, including pointer encoding (Semeria et al. [120]), and
synthesis of structures to support dynamic memory allocation(Semeria et al. [119]). This
work supports my thesis claim by demonstrating that good algorithms for advanced mem-
ory specialization either already exist, or can be designed from existing CAD approaches.
For example, the pointer encoding algorithm cited is like an earlier approach for state
minimization.

Modulo Unrolling

A major limitation of equivalence class unification is that arrays are treated as single objects
that belong to a single alias equivalence class. Mapping an entire array to a single memory
sequentializes accesses to that array and destroys the parallelism found in many loops.
Therefore, my approach is to leverage another advanced strategy, called modulo unrolling
(Barua et al. [15]), to distribute arrays across different memories. This approach is similar
to the bank allocation strategies for VLIWs, originally proposed by Ellis [51]).

83

C
Data ,r . *p

1 Kx8 8
P -o

q 1 1 Addr

9:0 10
control *q

D[] :q 8

Data q41
1 Kx8 8 1

Op- Addr

Figure 4-2: Logic for partial unification example

int C[1024];
int D[1024];

p = C;
if (foo) {

q = C;
else

q =D;

}
for(i=O; i<1024; i++) {

*q = i;
*p = 0;
p++;

q++;

}

Figure 4-3: Partial unification example

There are three cases: (a) when p references C, no output multiplexer is needed, (b)
when q references D, no input multiplexer is needed, but in (c) when q references

C, both multiplexers are required. Note that p never references D.

84

Modulo unrolling can be applied to array accesses whose indices are affine functions

of enclosing loop induction variables. First, arrays are partitioned into smaller memories

through low-order interleaving. In this scheme, consecutive elements of the array are in-

terleaved in a round-robin manner across different memory banks. Given this data layout,
modulo unrolling can perform static promotion on the array accesses in certain loops.

Modulo unrolling first identifies affine array accesses inside loop-nests. An unroll factor
is computed for each loop. This factor is determined for each affine array access in the loop
from its enclosing loop-nest. The symbolic derivations of the minimum unroll factors and
the code generation techniques needed are described further in Barua et al. [15]. Given the
unroll factors for each affine access, the final unroll factor for any loop is computed with a
least common multiple lcm function. This lcm function often leads to an undesirable side
effect of modulo unrolling: code explosion. Section 6.6.1 has more to say about how this
problem affects synthesized structures.

Memory and Pointer Bitwidth Analysis

Just as the width of a register can be minimized, so can the width of an entire array or other
structure. To perform this advanced specialization, the bitwidth analysis of Section 3.2.1 is
extended to treat arrays and pointers as scalars. When treating an array as a scalar, if an
array is modified, bitwidth analysis must insert a new SSA q-function to merge to array's
old data-range with the new data-range. A drawback of this approach is that a q-function
is needed for every array assignment. Every element in an array will have the same size -
in this approach, this size becomes the memory width for the resulting embedded RAMs.
The following example demonstrates how to extend SSA to treat de-referenced pointers in
exactly the same manner as scalars.

Example: Consider the following C memory instruction, assuming that pO is a pointer
that can point to variable aO or bO, and that qO is a pointer that can only point to variable
bO:
*pO = *qO + 1

The location set that the instruction may modify is {aO, b0}, and the location set that the
instruction must reference is {bO}. Because there is only one variable in the instruction's
reference location set, it must reference bO. Because there are two variables in the modify
location set, either aO or bO may be modified.

To keep the SSA guarantee that there is one unique assignment associated with each
variable in the instruction's modify location set, aO and bO must be renamed. Furthermore,
because either variable may be modified, a #-function has to be inserted for each variable
in the modify location set to merge the previous version of the variable with the renamed
version:
{al,bl} = {bO} + 1
a2 = #(a0,al)
b2 = q(bO, bl)
If the modify location set has only one element then the element must be modified, and a
0-function is not inserted.

85

von Neumann StyleBnkA
B kBBank A Bank Becaid

(a) Data x00 x00 x00 - d()A[] NO b O O base address

memory allocated to x80 A[] B[]
single address spac equivalence class

Code
Code K.exposed memory

computation assigned for(i=O;i<128;i++) for(i=O;i<128;i++) -. * parallelism
to single processor A[i]=A[i]*B[i+5] A[i]=A[i]*B[i+5]

Figure 4-4: Equivalence class unification
(a) initial program; (b) after equivalence class unification;

4.1.2 Examples

Equivalence class unification

Figure 4-4 introduces a running example that illustrates the steps for advanced specialization
of memory. This same example will continued in Section 4.2. Figure 4-4(a) shows the initial
code and data fed to the compiler. The code contains a for loop with affine references to two
arrays, A and B. Initially, the two data arrays are mapped to the same monolithic memory
bank. Figure 4-4(b) shows the results of equivalence class unification. Because no static
reference in the program can address both A and B, pointer analysis determines that A and
B are in different alias equivalence classes. This analysis allows the two arrays to be mapped
to different memories while ensuring that each memory reference only addresses a single
memory. In the figure, this mapping results in a specialized base address (zero) for each
array. Also, this technique has exposed memory parallelism between the two equivalence
classes.

Modulo Unrolling

Figure 4-5(c) shows the result of four-way low-order interleaving and Figure 4-5 (d) shows
the following output of the unrolling phases of modulo unrolling. Low order interleaving
splits each array into four sub-arrays whose sizes are a quarter of the original. Modulo
unrolling uses symbolic formulas to predict that the unroll factor for static disambiguation
is four. In this figure, it is apparent that each reference always goes to one memory.
Specifically, A[i], A[i+1], A[i+2] and A[i+3] access sub-arrays 0, 1, 2 and 3; B[i+5], B[i+6],
B[i+7] and B[i+8] access sub-arrays 1, 2, 3 and 0. In the figure, the array references have
been converted to reference the partitioned sub-arrays, with appropriately updated indices.
Thus bank selection is now determined statically, eliminating the bank multiplexers formed
after unrolling (c).

4.1.3 Ease of Implementation

Pointer analysis and equivalence class analysis are available as research compiler passes in
the MIT compiler infrastructure. However, leveraging these passes into a more complex
compiler flow is challenging. Bitwidth analysis of memories and pointers is more difficult
than data-range propagation for scalars. Supporting arrays and pointers requires extensions
to standard SSA representation.

86

After ECU Unroll Loop Static Promotion

A[] B[I A _ _

B[

for(i=O0i<1 28;+=4) i =0;

for(i= ;120;i<1 28;i+=4)
A[i]=A[i]*B[i+5] A[i+1]=A[i+1]*B[i+6] A i']=A[i']*B,[i'+1]

A[i+2)=A[i+2]*B[i+7} A2[i']=A[i']B 3[i'+1]
A[i+3}=A[i+3]*B[i+8]A QA[i]B41

i' =i'+ 1

multiplexers bank selection
between banks now determined
not shown statically

Figure 4-5: Modulo unrolling in two steps
(b) after equivalence class unification; (c) after modulo unrolling step 1; (d) after
modulo unrolling step 2. The index for array B now is assigned a new base offset,
[old'ase j, a result of static promotion.

Of these techniques, only modulo unrolling can expose large amounts of parallelism.
However, the decision to leverage modulo unrolling leads to considerable backend headaches
because of code explosion. Code explosion can translate into large and thus slow state
machines that can ultimately defeat the point of parallelization. For example, in Figures 6-
17 - every 10x increase in states leads to 3x reduction in clock frequency! Attempting to
handle the most general loops yields an approach that unrolls too much and creates low-
order interleaving that destroys locality - low-order interleaving splatters physical memory
space with objects that are otherwise close together in program memory space. For example,
the second and third element of an array, may be spread across different memory banks.
Thus, more work is needed to develop an approach for practical integration of modulo
unrolling.

One architectural technique to integrate with modulo unrolling is pipelining. Pipelining
in software is a well-known compiler optimization that exposes parallelism with minimum
unrolling. Other researchers, including Petkov et al. [111] and Callahan et al. [33], have
begun applying and improving pipelining techniques for hardware synthesis and for recon-
figurable architectures. Their work demonstrates that the overheads of unrolling can be
kept in check. Their work also demonstrates that pipelined architectural mechanisms can
be specialized, supporting my thesis.

In synthesis, memory is not as standardized as registers and logic, so work is needed to
generate the appropriate memory primitives for a target technology. Furthermore, low-level
module generation work is needed to optimize the size of the memories generated and the
size of the memory blocks in gate reconfigurable architectures. These blocks must be wired
together to form larger memories. Although tedious, this work is well defined.

4.2 Specializing Communication Mechanisms

My approach to specializing communication mechanisms is to specialize tiled architectures.
Because tiled architectures are new, this section departs slightly from the format of my

87

Tiled Architecture Single Tile

Figure 4-6: Tiled architecture

A tiled architecture comprises a replicated set of identical tiles. Each tile contains a
processing core, data RAM, and a router that interconnects neighboring tiles. Both
the processing core and the router can evaluate in any of the Modes introduced in
Chapter 2. Although a single memory is shown in each tile, this memory may be
composed of many smaller memories.

previous approach sections. The following paragraphs first introduces tiled architectures,
before Section 4.2.1 describing how to specialize them.

Introduction to Tiled Architectures

Unlike the more familiar computer architecture mechanisms described thus far, the archi-
tectural mechanisms specialized here are less traditional and are from parallel processing.
The goal is to specialize architectures that consist of a set of regularly connected tiles. A
tile is a region of hardware in which communication is cheap (local) and between which
communication is expensive (global). Inside each tile is a machine that communicates with
machines in other tiles through a pipelined, point-to-point network.

Spatial tiling helps us separate the micro-architectural design issues from the macro-
architectural issues. Until now, I have focused on micro-architectural design issues, defining
how computation takes place in a tile-sized region of hardware. Macro-architectural design
issues focus on how communication takes place between tiles, independent of how compu-
tation is executed in a single tile.

Tiling and tile sizes are motivated by two sets of constraints. First, computation and
memory density constraints are imposed by the current technology feature size. In the
limit, mass-producing atomic-sized features is difficult. Second, physical interconnect con-
straints are imposed by wire delays. In the limit, communicating near light-speed over short
distances is difficult.

Given density constraints, the tiling approach allocates the area in each tile to three
parts: a processing unit for computation, a data memory for storage, and a router. These
tiles are arranged in an array, as in Figure 4-6. Their regular nature simplifies device layout,
scalability, and verification.

Given interconnect constraints, tiling introduces a point-to-point communication net-
work between neighboring tiles. This work is restricted to static communication networks.
A network is static if the space-time location of both the sender and the receiver of a message

88

K-3 Crossbar

Swout[31:0]

Nout[31:0]

|Ceck Wout=07 Jump Sout[31:01 -

ComnpOut Eout[31:0] 4

Wout[31:0] -

Mux~e NextJumnpEnable

PC8use N WC

Out

PC - 11

A 3

Nin[31:0]
SIn(31:0)
Ein[31:0]

Wln[31:0]

Figure 4-7: Example of a static router

A state table controls multiplexers in a crossbar. This table determines the connec-
tivity of north, south, east, west, and processor ports as a function of an indexing
program counter. A branching mechanism supports dynamic control flow. This
example is from Liang et al. [93].

can be determined at compile time. Although not considered here, the general approach of
architecture specialization can also be applied to dynamic messages. For example, dynamic
messages are partially specialized in the turnstiles of [14]. For unresolved dynamic messages,
either busses or dynamic routers need to be instantiated in the resulting gate-level logic.

An example architecture for a static router is in Figure 4-7. The central component
of the switch is a crossbar between north, south, east, west, and a processor port. This
crossbar can change connectivity on every clock cycle as a function of a lookup table. The
table can be viewed as microcode for a tiny processor in the switch, with its own PC and
control logic.

Alternatives for Router Specialization

In Chapter 3, I demonstrated how to specialize traditional architecture features to gate-level
logic. This logic replaces the processing core in the tiled architectures. For specializing the
router, there are three choices:

1. Specialize static routing instructions into the microcode of the router. This special-
ization is equivalent to the specialization performed in architectures like Raw [136].

2. Specialize the routing engine into custom logic. The basic specializations are per-
formed on the routing engine, but long distances routes will continue to pass through
intermediate tiles and there will be no long wires.

3. Specialize the routers into global crossbars - point-to-point connections between all

89

J L- - Nin

I- "

5 Pin

communicating tiles. In this case, the routers are specialized all the way down to
individual wires. Although these wires can be pipelined, the default allows long wires,
as in a traditional FPGA.

All the above options are available in my implementation: DeepC can emit a general routing
engine with instructions or DeepC can generate specialized logic for either the router or the
crossbar communication structure.

4.2.1 Approach

My approach for specializing tiled architectures consists of three parts: global binding,
space-time scheduling, and local binding. Global binding, performed by the global place-
ment algorithms, results in each operation being localized to a region: a single tile. During
scheduling, local constraints are observed (for example, a maximum of two multiplies per
cycle), but local resource assignments are left unspecified. Local binding is performed by
later RTL synthesis algorithms. The following sections describe each in detail.

Global Binding

Section 4.1 described my approach to memory specialization and demonstrated how to
decompose program data structures into separate memories. As a part of communication
specialization, the location of computation must be determined. Computation should be
assigned close to the most appropriate memory - I refer to this process as global binding.

My approach is to assign load and store instructions that access a memory to the tile
containing that memory. The remaining computation can be assigned to any tile; its actual
assignment minimizes two factors: communication between tiles and the latency of the
critical path.

My approach for assigning computation to memory tiles leverages the non-uniform re-
source architecture (NURA) algorithms developed for Raw [89]. Instruction-level parallelism
within a basic block is orchestrated across multiple tiles. This work is in turn an exten-
sion of the MIT Virtual Wires Project [12] work, in which circuit-level, or combinational,
parallelism within a clock cycle is orchestrated across multiple tiles.

The NURA approach to global binding consists of three steps: clustering, merging, and
placement. Clustering groups together instructions that have no parallelism and that, given
communication cost, can not be assigned to different tiles profitably. Merging combines
clusters until there is one cluster, or virtual tiles per physical tile. Placement maps virtual
tiles onto physical tiles while minimizing communication cost and observing interconnect
constraints. Section 5.2.3 describes my exact implementation of these steps as part of the
Global Partitioning, Global Memory Placement, and Global Placement compiler passes.

Space-Time Scheduling

DeepC's space-time scheduler is an extension to the scheduling algorithm introduced in Sec-
tion 3.3.1. Recall that this approach uses a forward list scheduler operating on a precedence
graph, and each operation i has predecessors predi, a cost c., and latency li. The algorithm
for extending this approach, from the approach in Lee et al. [89], is as follows:

1. Perform global binding, as described in the previous section, such that every operation
is localized to a tile.

90

2. Replace inter-tile communication, due to precedences between operations in different
locations, with a sequence of route operations.

3. Globally bind route instructions to the appropriate router, dismantling all global
precedences.

4. List schedule all tiles simultaneously, observing local resource constraints and prece-
dence constraints.

Because all operations are bound to a specific tile prior to scheduling, the list scheduling
algorithm in Section 3.3.1 does not need to be modified. This design decision is not the
best - in Virtual Wires scheduling [12], shortest path routing is used as an inner loop
of the list scheduler. However, this approach leverages the same algorithm as Raw -
both because the code was available for modification and for accurate comparisons. One
limitation/feature of the Raw algorithm is that it does not support/require storage in the
network - channel resources are allocated along an entire path before the send operation is
initiated. Another limitation of the Raw routing algorithm is that all routes are dimension-
ordered - the X dimension is completely routed and then the Y dimension. Although
dimension ordering can eliminate certain deadlock situations in dynamic routing, static
routing does not need ordered dimensions. DeepC inherits these limitations from Raw,
although the general cases are not difficult to implement3 . There is no other reason for
using dimension-ordered routing.

Static Routing Example Although evaluating instructions in a distributed system elim-
inates long memory communication latencies in comparison to monolithic processor design,
new inter-tile communication paths are required for correct program execution. The data
dependencies between instructions assigned to each tile will require communication, or route
instructions. Figure 4-8 (a) illustrates the generation of route operations from the prece-
dence graph for a short loop that is fully unrolled. The array A has four elements. These
elements are low-order interleaved across four processors, one element per processor. In the
now flattened loop, each array element is assigned the value of variable X, however X can
only be loaded from the first tile. Hence, route instructions are needed to communicate the
value of X to neighboring processors. The values are transmitted through the processor's
respective routers. However, processor three does not have a direct communication channel
with processor zero. Thus, a through-route, or hop, must be created. In this embedding,
the route operations have predecessors and successors in only neighboring tiles. Thus, as
long as resource constraints are observes, the list scheduler in Section 3.3.1 can be used
without other modifications.

Handshaking and Asynchronous Global Branching In my approach, static routing
may be cycle-counted or handshaken. When routing is cycle-counted, no synchronization
is needed between tiles; a send on cycle 14 is always received on cycle 15 (with a delay
of one in this case). In contrast, handshaken routing includes request (from the sender
to the receiver) and acknowledge (from the receiver to the sender) signals that can stall
the state machine on either tile. Handshaking is needed for dynamic events that are not

3Because Raw's static network is fast in comparison to the processor and the compiler code quality,
network contention was not a problem and these limitations were not important in the context of Raw
research.

91

for(i=O;i<4;i++) A[i]=X;

router 0

pro essor 0

route

processor 2

router 1

processor 1

router 3

processor 3

Figure 4-8: Example of router operations

Variable X is stored on Tile 0 and variable A is low-order-interleaved across all
four-tiles. The shaded operations are embedded into the topology graph of a four
tile architecture with routers.

explicitly accounted for by the compiler (for example a cache miss). Cycle counting is a
specialization of handshaking, possible when the compiler can determine the clock cycles
on which communication will take place; thus this work focus on the cycle-counted option.

My approach also uses static messages to control flow between basic blocks, explicitly
orchestrating asynchronous global branching, a concept first described in Lee et al. [89]. The
branch condition is computed on one tile and then statically routed to the other tiles, turning
control dependencies into data dependencies. With cycle counting, this mechanism becomes
a synchronous branch with a prefetching broadcast of the branch condition, allowing a
predetermined overlap of computation with branch condition transmittal.

Local Binding

During scheduling, I have relaxed the resource allocation problem for both registers and
combinational logic, while retaining the constraints for memory accesses and inter-tile com-
munication channels. Furthermore, my approach supports resource bounds on some compu-
tationally expensive functions, such as multiplication, by limiting the maximum concurrency
per tile during scheduling. The computation schedule for a given program state will deter-
mine the resource needed in each tile. These resources, both registers and functions, may
be shared between states by resource allocation. Allocation of these remaining resources
is performed during RTL synthesis, in the CAD tool phase of DeepC (Section 5.2.5). My
approach to parallelizing sequential code is limited by memory and communication cost,
thus constraints for logic and register bits are not necessary. That is, logic and register

92

After Modulo Unrolling

(d)

for(i 0 <1 0;i+=4) {

A-i I]=A,[i']*B[i'+1]
A i)i']* [1]
A 3[i A3[iP]*B0[i'+2]

1

(e)

load assigne
locallyA[]B[A[]B[

4* h tmp3=4% [4'2] tm pO=B, [4'+1]

= > AO[i']=Al ']*t m p A ,[i']=A ,[i' *tm p1

tmp1=B2 [i'+1] tmp2=B[i'+1]
A 2[i']=A 2[']*tMp A,[i']=A,[i']*tmp3

communication
to be inferred

Figure 4-9: Global binding example

This figure continues the running example, showing the transformed code in (d)
after modulo unrolling, and in (e) after global binding;

areas are only limited by the amount of parallelism exposed during unrolling.

4.2.2 Examples

Global Binding

Figure 4-9(d) continues the end-to-end example with the results of global binding. As
I described in the previous section, each tile contains two memories, one for each array.
Computation is assigned to small memories. In the figure, each tile has been assigned a
subset of the original instructions. In Figure 4-9(e) the data dependences between tiles
are shown as temporary variables introduced in the code. For example, tmp0 needs to be
communicated between the upper-left tile and the upper-right tile.

Scheduling

Figure 4-10(f) shows the code in the running example after communication scheduling.
At this point, all operations are assigned to specific clock cycles, labeled to the left of
each statement. Data and control dependencies are communicated by send and receive
instructions added to each state machine. These instructions multiplex communications
across the inter-tile channels. Finally, memory addresses are dereferenced, resulting in
loads and stores to local memory ports.

Local Binding

Figure 4-11 completes my example with the last steps of (g) state machine synthesis and (h)
RTL generation. These transforms are from the approach described in Section 3.3. Only
tile zero is shown. The local binding step generates custom logic, converting machine-level

93

After Global Binding

After Space-Time Scheduling

cycle scheduled

communication
instructions

A.[]=B[] A,][] B,[]
F F0

tmp3=R [i'+2] tmpO=Bi [i'+1]
Ali']=A,[i']*tmpO A,[i']=A,[i']*tmp1 I

tmp1=B 2i'+ 1] tMp2=BR[i'+1]
A2V1'=A2[i']*tmp2 Ali']=A,[P']*tmp3

1: t= '1
tmp3=IdB (t)
t2=dA(i')

2: send(tmp3)
3: tmpO=rcv()
4: t3=t2*tmpO
5: stA(i')

1: tmpl=IdB2(i')
t2=IdA 2(i')

2: send(tmpl)
3: tmp2=rcvo
4: t3=t2*tmp2
5: stA2(i')

1: tmpO=dB,(i')
t2=dA,(i')

2: send(tmpO)
3: tmp1=rcv(
4: t3=t2*tmpl
5: stA,(i')

1: tmp2=dB(i')
t2=dA(i')

2: send(tmp2)
3: tmp3=rcv(
4: t3=t2*tmp3
5: stA3(i')

Figure 4-10: Space-time scheduling example

This figure continues the running example, showing the transformed code in (e)

after global binding, and in (f) after space-time scheduling;

instructions to pipeline registers and multiplexers. These registers and multiplexers are in

turn controlled by bits from the tile's state machine.
Several features are noticeable in these final transformations. The operations scheduled

to each clock cycle form a complex instruction. In (g), state 5 also shows the branch targets

(dropped in the earlier figures) for the loop. The branch is implemented with a conditional

assignment of the program counter, as described in Section 3.3.
In (h), more features are dismantled. Loads and stores become accesses to the address

and data ports of RAMs. Sends and receives, including through-routes, become accesses to

the communication channels between tiles. The RTL also shows other features discussed in

Chapter 3, including the chaining of two instructions, and values stored on both wires and

registers.

4.2.3 Ease of Implementation

Static routing is easy and fun. DeepC's static routing implementation is an extension of a

simpler list scheduler coded for the Raw project. Because routing instructions are bound

globally before scheduling, the scheduling algorithm is not further complicated. During

implementation, interactions between scheduling and register allocation should be studied.
However, this phase ordering problem arises in traditional compilation and is not new here.

In this approach to communication specialization, scheduling is limited to basic block, sim-

plifying the overall problem. However, to hide message latencies, long-term solutions should

include pipelining across both the temporal control flow and the spatial communication net-

work. Latency hiding also makes it desirable to extend these specialization techniques to

multi-threaded architectural mechanisms.

94

(e)

After Global Binding

(f) (g) (h)

each case is
a complex instruction switch (pc)

case 1: mmory while(1) begin
t=i'+1 inferencing case(pc) begin chained addition
tm3=I- () Wti and load from B

pc=2 Baddr = t;
case 2: Aaddr = I;

1 m =B send(tmp3,3 pc = 2;

t2=dAB ') case 3: tmp3=B data through-route via tile 1
2: send(tmp3) tmp0=rcv(1) t2 = A_d ata;
3: tmpO=rcv() pc=4 channel 01 =tmp tmp3 will be a wire
4: t3=t2*tmp0 interfac 3:

Ca s=e* 5: synthesis tmpO = channel-1 0;
5: stA.(i') example i(i'<128) pc = 4; tmpo will be a registerexampl -III-pc=1..

branch else
targets pc=6

program counter
is explicit

Figure 4-11: Local binding example

This figure continues the running example, showing the transformed code in (f)
after space-time scheduling, in (g) after state machine synthesis, and in (h) after
RTL generation.

I have not treated cases where dynamic routing is needed. One approach is to implement
the pseudo-static methods of Raw (Barua et al. [15]). Another approach, common in VLIW
machines, is to have a slow "back door" to all of memory (Ellis [51]). This earlier works
demonstrates that dynamic events are not a counterexample to the claims in this thesis,
although dynamism can limit specialization opportunities.

4.3 Summary

This chapter has explained my approach to specializing advanced architectural mechanisms,
including memory and communication mechanisms. Specialization of the mechanisms com-

monly found in distributed architectures is necessary to achieve the highest performance
while meeting physical constraints. The introduced ideas underlying memory specializa-

tion are based on transforms for unrolling, partitioning, decomposing, disambiguating,
and otherwise separating memory elements into spatially locatable parts. The introduced
techniques for communication specialization use tiled architectures, replacing traditionally
global features with a tessellation of computation, memory, and routing structures. Both
of these approaches borrowed heavily from compiler and architecture work in the Raw
Project. The following chapter continues with a description of my implementation of the
specialization approaches discussed thus far.

95

96

Chapter 5

DeepC Compiler Implementation

At first blush compiling high level languages for VLIWs might appear to be an impossible
task, given that they are programmed at such a fine-grained level. But in fact the Bulldog
compiler isn't that much different from a traditional optimizing compiler.

- John Ellis on the implemention of Bulldog,
from his Yale PhD, Bulldog: A Compiler for VLIW Architectures (1988)

Gate reconfigurable architectures are significantly finer grained than traditional pro-
cessor architectures, even than VLIWs, so compilation to gates requires substantial and
more diverse technologies. While the frontend compiler passes are similar to traditional
optimizing compilers, the middle passes are dominated by parallelization techniques, and
the backend passes are akin to hardware synthesis tools. Furthermore, construction of a
complete system is needed to demonstrate the techniques for architectural specialization in-
troduced in the previous two chapters; an implementation strongly supports my thesis (that
specialization of traditional architectural mechanisms with respect to an input program is
the key to efficient compilation of high-level programs to gate-reconfigurable architectures).
Therefore, this chapter describes my implementation: the DeepC Silicon Compiler. DeepC
is a prototype research compiler that is capable of translating sequential applications, writ-
ten in either C or FORTRAN, into a hardware netlist. This chapter also includes DeepC's
environment: the target platforms, simulators, and verification approaches needed for a
complete system.

5.1 Compiler Lineage and Use

DeepC comes from a rich line of research compilers. Figure 5-1 shows the genealogy of
DeepC. All members of the DeepC development effort were also members of the Raw Project.
As a result, DeepC reuses many passes of Rawcc, the main compiler for the Raw Micropro-
cessor. Likewise, because the Raw processor consists of an array of MIPS-like processors,
Rawcc extends Harvard's MachSUIF compiler [125]. Both Rawcc and DeepC also use the
SPAN pointer analysis package, also developed at MIT. DeepC furthermore uses the Bit-
wise Compiler, developed at MIT, and leverages the VeriSUIF Compiler [56], constructed
at Stanford. All these compilers are built upon the SUIF infrastructure.

Version 1.0 of DeepC was released to others in academia on September 10, 1999. Re-
searchers at MIT, Princeton, and the University of Massachusetts have used DeepC for
reconfigurable computing and system-on-a-chip (SOC) research. This was the first release

97

SUIF

MachSUIF SPAN VeriSUIF

\/ \
Rawcc Bitwise

DeepC

Figure 5-1: DeepC compiler lineage

of a parallelizing compiler from high-level languages to gate-level reconfigurable hardware.
Previous compilers were only able to transform small C expressions or were only able to

map a sequential program into a sequential state machine. The results in this dissertation
correspond to DeepC 2.0.

5.2 Overview of Compiler Flow

The compiler generates a specialized parallel architecture for every application. To make this

translation feasible, the system incorporates the latest code optimization and parallelization

techniques as well as modern logic synthesis tools.

Figure 5-2 divides the DeepC compiler flow into two paths, basic and advanced. The
basic path specializes the mechanisms described in Chapter 3. The basic path includes
three major phases: a Traditional Frontend Phase, a Machine Specialization Phase, and a

CAD Tool Phase. The frontend performs traditional compiler optimizations and analysis.

Pointer analysis and bitwidth analysis, used for both basic and advanced specialization,
are shown as separate packages following the Frontend Phase. The Machine Specialization

Phase includes finite state machine generation, wire identification, register allocation, and
other passes that produce RTL Verilog. The CAD Tool Phase includes commercial CAD
tools that translate from RTL Verilog to the final logic-level hardware description.

The phases in the advanced path are required to specialize the mechanisms described
in Chapter 4. The advanced path includes two phases for automatic parallelization: the
Parallelization Phase and the Space-Time Scheduling Phase. The advanced path is invoked
with the compiler parameter -nprocs. The following sections describe each of the five phases.

5.2.1 Traditional Frontend Phase

The first phase of DeepC is the Traditional Frontend Phase. Lexical and syntax analysis,
followed by parsing, produce an intermediate form with symbol tables and abstract syntax
trees. FORTRAN programs are transformed to C while retaining relevant array informa-
tion. Optimizations include constant propagation, loop invariant code motion, dead-code
elimination, and strength reduction. Following the Traditional Frontend Phase are two new
analyses: Pointer Analysis and Bitwidth Analysis, described next.

98

C or Fortran Program
(Software)

Traditional Frontend Phase

-~ .-.... _
Bitwidth Analysis

Memory Parallelization Phase

Basic I Advanced
Path I I Path

SpaceTime Scheduling Phase

xMachine Specialization Phase

Hardware
(ASIC tapeout or FPGA bitstream)

Figure 5-2: Overview of DeepC compiler flow

Pointer Analysis DeepC performs pointer analysis as early as possible. Pointer analysis
is used by MAPS, Bitwise, and in DeepC memory formation. DeepC uses SPAN, a pointer
analysis package developed at MIT by Rinard and Rugina [114]. SPAN can determine the
sets of variables - commonly referred to as location sets - a pointer may or must reference.
The analysis package tags all memory references with location set information.

Bitwidth Analysis I helped Mark Stephenson develop the Bitwise Compiler [127] as a
part of DeepC. This set of passes performs Bitwidth Analysis. The goal of Bitwidth Analysis
is to analyze each static instruction in a program to determine the narrowest return type
that retains program correctness. This information can in turn be used to find the minimum
number of bits needed to represent each program operand. The Bitwidth Analysis approach
is described in detail in Section 3.2.1.

Because instructions are generated during parallelization, DeepC 2.0 performs Bitwidth
Analysis after Modulo Unrolling. However, the Bitwidth Analysis pass can be executed
in several locations along the advanced specialization path. In general, Bitwidth Anal-
ysis should be executed multiple times if intermediate passes do not propagate bitwidth

99

SUIF code with pointer
and bitwidth annotations

Structure Control Flow

Frward-Propagate to Array Indices

Equivalence-Class Unification

Modulo Unrolling

I Memory-Dependence Analysis i

ismt e ud Addresses

SUIF Code Ready for
Space-Time Scheduling

Figure 5-3: Steps of Parallelization Phase

information or naively create unoptimized temporaries.

5.2.2 Parallelization Phase

The Parallelization Phase (Figure 5-3) leverages Rawcc technology developed for MAPS [14].
This technology, in combination with the following Space-Time Scheduling Phase, creates
parallel threads from a sequential program. These parallel threads communicate statically
when possible. Rawcc's support for dynamic communication is not included in DeepC 2.0.
The following paragraphs continue with the important steps of the Parallelization Phase.

Control Flow Structuring This task is performed with several standard SUIF passes.
Structured control flow is built from unstructured control flow using the program structure.
If possible, while loops are formed. If an induction variable can be recognized, while loops
are transformed into for loops with the SUIF pass porky. This transformation is important
because the later Modulo Unrolling pass is restricted to for loops in DeepC 2.0.

Forward-Propagate to Array Indices In preparation for later MAPS passes, DeepC
invokes a standard compiler pass called forward-propagation. This task moves forward

100

certain local variable calculations. In particular, Modulo Unrolling benefits from cases
where index expressions of array references can be replaced by affine functions.

Equivalence-Class Unification Equivalence Class Unification (ECU) is one of the core
memory disambiguations performed by MAPS. Barua [15] summarizes ECU as follows:

First, the results of pointer analysis are used to construct a bi-partite graph.
Next, connected components of the graph are found; the connected components
form an equivalence class. Finally, each equivalence class is mapped to a unique
virtual bank.

DeepC uses ECU to disambiguate arrays into equivalence classes. However, rather than
assigning these classes to virtual banks, DeepC groups the arrays in a class into a single
large memory. For FPGAs, when a memory is larger than one internal block RAM, several
block RAMs are composed with multiplexers.

Modulo Unrolling This step groups a series of MAPS passes that modulo unroll loops.
The steps, described in detail in Barua's Phd thesis [14], are:

1. Detect affine accesses

2. Reshape arrays

3. Compute unroll factor

4. Unroll loops producing mod-region assertions

5. Strip-mine distributed arrays

6. Strength-reduce integer remainder (mod) and divide (div) operators

7. Infer mod values using mod-region assertions

After Modulo Unrolling, multiple small memories have been created from initial arrays.
Modulo Unrolling allows these memories to be stored in banks that can then be accessed
in parallel, without conflicts. In the common case, the analyzable arrays in each unrolled
loop will be transformed into n arrays, where n is the number of tiles.

For DeepC, an undesirable side effect of Modulo Unrolling is that loops are sometimes
unrolled prodigiously. Although some unrolling is good, the depth of unrolling needed to
expose static array accesses can be large.

Memory-Dependence Analysis DeepC uses the general Memory-Dependence Analysis
pass in MAPS. This pass introduces dependence edges between all pairs of memory refer-
ences that can access the same location. Dependence edges are computed using pointer
analysis and further refined using array-index analysis. Although MAPS enforces depen-
dence in different ways, in DeepC only static-static memory dependencies are supported.
Static-static dependencies are enforced by explicit serialization on the disambiguating tile.

Localize Disambiguated Accesses This pass replaces global accesses disambiguated
by Modulo Unrolling with local addresses. The local addresses are derived from the corre-
sponding array address computation by dropping the last dimension. Because the address
is disambiguated, the last dimension contains the constant bank number, which is then
annotated on the memory reference. This annotation is used during data placement in the
Space-Time Scheduling Phase.

101

SUIF code from
Parallelization Phase

Dependence/Timing Analysis

Global Partitioning

Global Memory Assignment

Control Flow Cloning

Local Memory Assignment

Space-Time Scheduling

SUIF Code Ready
for Machine Specialization

Figure 5-4: Steps of Space-Time Scheduling Phase

5.2.3 Space-Time Scheduling Phase

The Space-Time Scheduling Phase is responsible for partitioning and scheduling instructions
into communicating physical tiles. At the end of the Space-Time Scheduling Phase every
instruction has been assigned to a tile and time-slot. Communication between tiles is
likewise constrained. Figure 5-4 shows the steps of the Space-Time Scheduling Phase.
Before the first step, variables are renamed to SSA form. The following paragraphs discuss
each step in turn.

Dependence/Timing Analysis In Rawcc, Dependence Analysis determines the data
dependence graph, or precedence graph, for the instructions in each basic block. In the

same pass, Rawcc computes the time to execute each instruction. DeepC extends this
analysis to include fractional cycle delays. In some cases, the input to an instruction is
a constant, and the delay can be reduced. Likewise, address calculation that is expected
to be optimized away can be assigned a negligible cost. DeepC 2.0 uses the timing data
in Table 5.1. This estimated data was tuned during prototyping of the compiler. These

102

0

I I

Suif General [Has constant I
Instruction (cycles) (cycles)

add 0.7 0.4
and 0.1 0.05
asr 0.2 0.0

cpy 0.0 0.0
cvt 0.0 0.0
ior 0.1 0.05
ldc 0.0 0.0
lod 1.0 1.0
lsl 0.2 0.0
lsr 0.2 0.0
mul 0.9 0.9
neg 0.7 0.4
not 0.05 na
rot 0.2 0.0
seq 0.2 0.2
sl 0.7 0.4
sle 0.7 0.4
sne 0.4 0.2
str 0.0 na
sub 0.7 0.4
xor 0.1 0.05
predicate 0.9 na

Table 5.1: Heuristically determined timing estimates

The first column contains the SUIF opcode for the instruction. The second column
shows the delays used in the general case while the last column shows the delay
estimated when one input is a constant. The estimated number of clock cycles
allocated for each SUIF instruction is used during scheduling to determine the
assignment of instructions to control states.

estimates are heuristics, they are not exact -
period; low estimates will result in extra clock

high estimates will results in a slower clock

Global Partitioning This pass groups all non-memory instructions into virtual tiles.
Two opposing goals complicate this pass: minimizing communication and maximizing paral-
lelism. DeepC included an unmodified version of the Rawcc partitioning pass (from Rawcc's
space-time scheduler), which employs a multiprocessor task-scheduling algorithm. In Rawcc,
partitioning is performed by two phases: clustering and merging.

Clustering assumes non-zero communication cost but infinite resources. Instructions
are grouped if they have no parallelism that is exploitable given communication overheads.
Grouping is performed by Dominant Sequent Clustering [145], a greedy technique minimiz-
ing the estimated completion time. The algorithm visits instructions in topological order.
At each step, it selects, from a list of candidates, the instruction on the longest path. It
then checks whether merging that instruction into the cluster of a parent instruction will
improve performance. The algorithm completes when all nodes have been visited exactly
once.

Merging combines clusters until the number of clusters equals the target number of
tiles, assuming a crossbar-like interconnect. Rawec's algorithm uses load balancing and
communication minimizing heuristics as follows. The compiler initializes an empty partition
for each tile and then visits clusters in decreasing order of size. A cluster is merged into

103

the partition with the most communication between the clusters in that partition and the
visited cluster. However, if merging would increase the size of a partition to more than
twenty percent of the average partition size, the smallest partition is chosen.

Global Memory Assignment This pass assigns the home location of all scalars and
arrays. Arrays that have been Modulo Unrolled are distributed across tiles. As much as
possible, scalars are assigned to tiles near where they are most frequently accessed. This
step is unmodified from the Rawcc space-time scheduler.

Global Placement At this point in the compiler flow, instructions and data have been
formed into tiles. However, these tiles are virtual and not yet assigned, or "placed" on
physical tiles. This phase uses simulated annealing to minimize communication and thus
reduces routing requirements. This step is unmodified from the Rawcc space-time scheduler,
with the exception that the input timing analysis is calculated differently, as described in
the earlier paragraph on dependence/timing analysis.

Control Flow Cloning With the exception of predicated instructions, every tile executes
the same control flow. While ordinary instructions are assigned to particular tiles, control
flow instructions must by copied to each tile. This step is part of the Rawcc space-time
scheduler, with a few unimportant modifications for DeepC.

Because of control flow cloning, each branch instruction becomes a global branch in-
struction. For most tiles, the branch condition is not computed locally and adds to the
global communication for the basic block. By default, DeepC 2.0 uses a synchronous global
branch in which every tile branches on the same cycle. If handshaking synthesis is turned
on (-fhand), DeepC generates asynchronous global branches identical to those of Rawcc.

Note that some control flow is not cloned. DeepC includes a modification of Rawcc's
control localization (macro formation) technique for IF-conversion. During scheduling, these
short code sequences are treated as a single instruction.

Local Memory Assignment Local memory assignment is a new pass. Memory as-
signment determines the final mapping of program arrays into on-chip memories. In the
completely disambiguated case, for example with no pointers, no two arrays will share the
same memory. However, if access to one or more arrays is ambiguous, then these arrays
will be grouped into one memory. Memory assignment in DeepC 2.0 uses the following
algorithm. The first array is given an offset AO of zero. The nth array is given an offset of
An = A_ 1 + sizen_ 1 . The width of the memory is the maximum data width of all arrays
assigned to the same physical memory.

Space-Time Instruction Scheduler and Static Router For each basic block in the
program, DeepC applies a list scheduler to schedule both instructions and static routes.
This scheduler is forward, cycle-driven, and critical-path-based (see Section 3.3.1). In con-
trast to the Rawcc scheduler, DeepC's scheduler supports concurrent instructions in the
same tile. Instructions scheduled in the same cycle may be executed in parallel (VLIW-
style) or sequentially (chained-style). To support chaining, instructions are scheduled to
the thousandth of a cycle. This accuracy is only an estimate - the exact schedule, even
the clock period, is not determined until synthesis. When chaining, DeepC does not permit
operations to be scheduled across clock boundaries.

104

SUIF code ready for
Machine Specialization

Array Disrnantling/

Finite State Machine Construction

Wire Identification

L MRegister Allocation

Memory Specification

VgeerGeration

RTL Verilog ready for
CAD Tool Processing

Figure 5-5: Steps of Machine Specialization Phase

In list scheduling, a priority queue maintains a list of available items to be scheduled.

Because routing paths are determined before scheduling, the resulting communication in-

structions can be included in the list, permitting usage of a single list. The priority scheme

uses the critical path length from an instruction to the end of the basic block. The Rawcc

metric of average fertility, defined as the number of descendants of a node, is not used.

This scheduler fits into an overall approach of global binding, space-time scheduling,
and local binding. Global binding, performed by the global placement algorithms described

in the previous steps, results in each operation being localized to a particular region (a

tile). During scheduling, local constraints are observed (for example, a maximum of two

multiplies per cycle), but local resource assignments are left unspecified. Local binding is

performed during later RTL synthesis by downstream CAD tools.

5.2.4 Machine Specialization Phase

The Machine Specialization Phase (Figure 5-5) is responsible for generating a hardware im-

plementation from communication and computation schedules. First, the system generates

a finite state machine that controls the cycle-by-cycle operation of all the memories, regis-

ters, and functional units that make up a tile. Then, the finite state machine is synthesized

into a technology-independent RTL specification of the final circuit.
Programs have several properties when they enter the Machine Specialization Phase. On

105

the advanced path, previous phases have mapped data to memories, extracted concurrency,
and generated parallel threads of instructions for each tile. The basic path is a degenerate of
this case - the memories are not partitioned and all concurrency is restricted to a single tile.
An exception is that Equivalence Class Unification (ECU) is permitted on the basic path.
A tile also has scheduled evaluation at this point: each memory access, communication
operation, and computation instruction has been mapped to a specific cycle. Finally, the
space-time scheduler has mapped the computation and communication to a specific location
in the memory array. Thus, at the beginning of the Machine Specialization Phase, the
program, in SUIF format, has the following properties:

1. Spatiality: Every operation executes on exactly one tile.

2. Temporality: Operations are scheduled to time steps in each basic block.

3. Causality: Operation order preserves dependencies.

4. Monosemy: All loads and stores unambiguously reference a single memory port.

Given the previous program properties, the Machine Specialization Phase is responsible
for synthesizing the following structures to Verilog:

1. branch/jump instructions

2. load/store instructions with base plus offset addressing mode

3. pointer dereferences

4. floating point operations

5. signed integers

6. Special Send and Recv instructions that statically denote all inter-tile communication

In order to compile to a gate-level executable, these features must be constructed in
software. The following paragraphs explain the steps for doing so.

Array Dismantling and Address Strength Reduction DeepC dismantle arrays with
Porky, a SUIF pass developed at Stanford that performs assorted code transformations.
DeepC modifies Porky's address calculation logic to take account of gate-level targets.
Specifically, when dismantling arrays, this new Porky performs the strength reduction in-
troduced in Section 3.1.2.

Finite State Machine Construction Finite state machine (FSM) construction gener-
ates code for the approach discussed in Section 3.3. This step takes the threads of scheduled
instructions and produces a state machine for each thread. This state machine contains a
state register, called babb-pc, which serves a function similar to the program counter in a
processor. Each state of the FSM contains the work to be done in a single cycle of the
resulting hardware. That is, each state of the FSM contains a set of directed-acyclic graphs
(DAGs) of dependent operations. The FSM generator turns these DAGs in each state into
combinational logic. Any dependence between operations in the same state will result in
wires between the dependence-related functions. For any data values that are live between
states (produced in one state and consumed in another), registers will be inferred during
later RTL synthesis.

106

Wire Identification This step identifies scalar variables that are generated and con-
sumed in the same clock cycle. These variables should not be allocated to registers because
later RTL synthesis will be able to map them to wires. Wires are identified by walking the
instruction tree and finding variables that have a lifetime shorter than one clock cycle.

Register Allocation Register sharing is performed with a register allocator. DeepC
uses the MachSUIF [125] register allocator, raga, and a target machine with hundreds of
registers. This is not the ideal register allocator for DeepC, but it was easy to construct.
Because the allocator is not aware of bitwidth-reduced registers, some sharing may waste
bits. After register allocation, the bitwidth of each physical register is computed as the
maximum bitwidth of the virtual registers assigned to it. DeepC does not include a code
generator for register spills, although the hooks for spilling are in place from MachSUIF.

Memory Specification For Xilinx targets, DeepC declares special modules to instantiate
block RAMs. A single memory may need more than one block RAM. For emulation, this
pass generates the vmw.mem file used to describe design memories.

Verilog generation This pass takes SUIF as input and generates RTL Verilog. This
pass was created by modifying the VeriSUIF code generator. This approach maps SUIF
instructions to Verilog instructions whenever possible, allowing compiler transforms to be
made in SUIF, not VeriSUIF. A few optimizations, such as final address computation and
some bitwidth related calculations are performed in this phase for practical reasons.

5.2.5 CAD Tool Phase

This phase uses standard CAD tools to translate RTL Verilog into FPGA bitstreams. Given
RTL Verilog, many compatible tools can be applied. Figure 5-6 shows the tool flow sup-
ported by DeepC. The center flow corresponds to the tool flow for FPGA compilation. An
RTL Verilog design is synthesized by Synopsys and then processed by FPGA vendor tools
to produce the final bitstream. The figure also shows two alternate flows. When targeting
an ASIC process, a different technology library is needed for synthesis. The output of Syn-
opsys, when using an ASIC technology library, is a netlist ready to be processed by ASIC
vendor tools. The other alternative is multi-FPGA logic emulation, in which the Virtual-
Wires synthesis algorithm [12] partitions and schedules the design across multiple FPGAs.
The output is a collection of FPGA files that can be processed by the FPGA tools. The
next paragraphs review the CAD tool steps for a single FPGA.

Behavioral/RTL Synthesis The general theory of behavioral synthesis includes many
of the algorithmic optimizations performed by higher-level steps of the DeepC compiler.
DeepC takes advantage of the fact that industrial behavioral synthesizers, namely the Syn-
opsys Behavioral Compiler (BC), already perform a subset of these optimizations. In par-
ticular, DeepC's compiler flow invokes the resource sharing and carry-save arithmetic (CSA)
features of Synopsys. DeepC also uses Synopsys Design Compiler's RTL synthesis approach
to infer registers and control logic from a cycle-by-cycle description of state machines.

While DeepC leverages some behavioral/RTL features, it does not use all the behavioral
features currently available. Operation scheduling and memory inferencing are performed
by new DeepC passes rather than by invoking similar algorithms in the CAD tools. For

107

RTL Verilog

In y

L Behavioral/RTL Synthe

Logic Optimization

technology
library Technology Mapping

- -- -- .J vmw netlist

netlist for ASIC
tool flow

IKOS
Virtual Wires Synthesis
(octional multi-FPGA flow) Ia EEMMna

XNF/blif
XilinxNPR

FPGA Packing

FPGA Placement

I ~~ FPGA out ingng

Bitstream ready
to Download

Figure 5-6: Steps of CAD Tool Phase

operation scheduling, the need to synthesize distributed architectures required a new spa-
tially aware scheduler. Also, memory inferencing was not suitable mature in BC at the
time DeepC was developed. A final problem to note is that the user interface of behavioral
and RTL compilers is targeted at manual design, where a developer has the opportunity
to fix small problems and work around quirky behaviors in the tool. This problem would
be overcome if tool vendors exported a useful API (application programmer interface) for
developers of higher-level compilers.

Logic Optimization Synthesis and optimization of circuits at the logic level determines
the microscopic structure of a circuit. Steps include flattening multi-level logic to two-
level logic, performing Boolean factorization and reduction, and reducing area by removing
redundant logic. Additional timing optimizations reduce the critical path while minimizing
the resulting area increase. See [102] for more on this subject.

Technology Mapping A technology mapper takes optimized Boolean logic and maps it
to an input target library. All logic functions must be implemented by specific cells in the
target library. For FPGAs, the mapping problem is simplified to a covering problem - the

108

input logic is covered with functions of four inputs (or five inputs). An example covering
algorithm for FPGAs is Flowmap [40]. In practice, fast carry chains and vendor macros for
multiplication and RAM complicate this step.

FPGA Packing The FPGA packer groups basic FPGA elements, such as LUTs and
registers, into a cluster of logic blocks. Unless the technology mapper is aware of all FPGA
constraints, this step is needed to match input logic to the internal structure of the FPGA.

FPGA Placement Placement determines the specific location of logic gates or clusters
in the pre-fabricated array of LUTs on the FPGA. The goal of placement is to improve
routability by placing communicating gates close to one another. After an initial placement,
pairs of blocks are swapped in a search to reduce an overall cost function, such as total wire
length. A common algorithm to enhance placement is iterative simulated annealing, in
which some higher-cost permutations are accepted to avoid local minima.

FPGA Routing An FPGA Router assigns the connections between logic blocks to exact
routing segments and switches in the FPGA. In contrast to ASIC routing, FPGA routing
is constrained by a fixed routing grid. Maze-routing algorithms [86] are known to work well
for FPGAs, although path-based algorithms [132] are faster. A timing driven router can be
used to assign critical nets to faster routing resources.

5.3 Target Hardware Technologies

The previous section presented a complete path for compiling a high-level program written
in the C language to a logic-level program. This section overviews the physical platforms
DeepC targets.

In order to target a platform, the compiler needs a technology library for that platform.
The library is specified with the compiler flag -technology and is also an input to technology
mapping in the CAD phase of the compiler (see Figure 5-6). The DeepC 2.0 library options
are: ibm (IBM SA-27E ASIC), virtex (Xilinx Virtex), vpr (Toronto academic FPGA target),
and vmw (IKOS VirtuaLogic Emulator). The following paragraphs overview of each of these
targets.

ASIC Target: IBM SA-27E A target library from IBM is used to synthesis to the
SA-27E process. Unlike the following Xilinx case, the resulting RTL cannot be compiled
into hardware with only a touch of a button; work is needed to place pads, generate test
vectors, and perform detailed timing, power, and noise analysis. Although DeepC generates
area, timing, and power estimates for this library, these results do not reflect the complete
design of a chip. The results reported in this dissertation reflect the post-synthesis estimates
determined by the Synopsys Design Compiler given the IBM technology library.

FPGA Target: Xilinx Virtex DeepC supports several Xilinx libraries, including the
libraries for Virtex [144]. The resulting gate-level netlist can be compiled into hardware
with the touch of a button. DeepC supports the block RAMs in this technology.

109

Table 5.2: Simulators

Academic FPGA Target: VPR DeepC also supports Toronto's Versatile Place and
Route (VPR) tool [20]. V-TPACK and VPR are packing, placement, and routing tools for
FPGAs. These tools are downloadable for academic use. After synthesis (using the Xilinx
5200 library for Synopsys), the output netlist is converted to BLIF format for use with
VPR. The FPGA model is described in the architecture file virtex.arch (see Appendix E).

Commercial Emulation Target: IKOS VirtuaLogic DeepC supports IKOS's Virtual
Logic Emulator, as pictured in Figure 5-7, with the top board partly removed. Figure 5-8
shows a newer generation emulator. The programmable hardware in a logic emulator is at
the logic or gate-level. Emulators have a massive number of gates from the combination of
many Field Programmable Gate Arrays into a single system. In the VirtuaLogic system,
an automated resynthesis process is used to allow the array of FPGAs to be treated as a
single, giant FPGA. Section B.2 describes host interfaces to emulation systems, when used
for computing.

5.4 Simulation and Verification Environment

Although peripheral to the main compiler implementation, it would be a mistake to discuss
compilation to gates without adequately addressing simulation and verification. DeepC
supports several alternatives, summarized in Table 5.2. First, because DeepC compiles
from a high-level language, the design can be compiled and executed on a workstation.
Second, parallelization can be verified on a multiprocessor simulator. Third, DeepC includes
profile-based simulation using a modified version of Harvard's HaltSUIF profiler (part of
MachSUIF [125]). Unlike the general multiprocessor simulation, this technique is cycle
accurate when communication patterns are static.

Tight integration with CAD tools enables the next set of alternatives. Post-synthesis
RTL simulation provides cycle accuracy that can handle data-dependent control flow. How-
ever, CAD tools can only determine cycle time and gate area after RTL synthesis. Note
that synthesis may be time consuming, but is not a function of program runtime. Thus gate
area and cycle time can be obtained for a constant cost. DeepC also includes a post-RTL
synthesis methodology that quickly estimates dynamic power consumption. Finally, logic
emulation can be used for high-speed gate-level verification.

Table 5.2 also shows the runtimes for each of these approaches simulating a four tile,
32x32 Matrix Multiply benchmark. All cases are normalized to the fastest simulator, the
workstation execution, which simulates all four tiles at an effective 40M cycles/second. As

110

Simulation Approach Detail and Accuracy Speed Run
time

Workstation Execution (300MHZ) Functional, no timing Very Fast 1
Parallel Simulation (RawSim) Functional Slow 5K

Profiling (HaltSUIF) Cycle-accurate Fast 5
RTL Simulation - pre-synthesis Cycle-accurate Medium 1K

RTL Sim. - post-synthesis Timing accurate Very Slow 50K
RTL Sim. - power estimation Cycle-accurate Medium 1K
Logic Emulation (5MHZ) Cycle-accurate Very Fast 1.5

Figure 5-7: VirtuaLogic Emulator

Figure 5-8: A newer generation VirtuaLogic Emulator

111

C/FORTRAN Program

DeepC Workstation Compiler

I Executable
(microprocessor binary)

Gate-Level Typical Input Data
Configuration run program - TpclIptDt

(Workstation Evaluation)

Result

Does program execute
as expected?

Figure 5-9: Simulation by direct execution on a workstation

accuracy is increased, the runtime is lengthened. An exception is logic emulation, which
is cycle accurate and very fast due to the use of multiple FPGAs running at MHz speeds.
In fact, as the number of tiles is increased, logic emulation exceeds the speed of a single
workstation because of its internal parallelism. For example, emulation is 3x faster for
sixteen tiles.

5.4.1 Direct Execution on Workstation

The easiest way to test a C program is to run it on your workstation! Figure 5-9 depicts
this scenario. In the figure, the exact same program can be input to DeepC or gcc (the
GNU C compiler, developed by Richard Stallman and other free software hackers).

If the input program computes the correct answer on a workstation, then the output
hardware should also compute the correct answer. But what if the compiler has a bug? For
non-reconfigurable hardware, designers do not trust the compilation/synthesis tool suite to
be bug free. The cost of a re-spin could exceed a million of dollars. But for reconfigurable
hardware, a re-spin is comparatively trivial. Just recompile and reload the bitstream. Thus,
when targeting FPGAs, many designers may be content with software-only verification
without further simulation. Because compilation for FPGA is significantly longer than
compilation for processors, direct execution on a workstation provides a fast way to verify
program functionality.

A major drawback to software only verification is that while the user can verify func-
tionality, only very simple timing analysis is possible. In real-time and embedded systems,
accurate verification of timing conditions is important. Even if timing conditions are relaxed,
normal development is usually iterative. A developer not only wants to know whether the
code is correct, but also wants to know certain performance metrics. Each of the following
sections increases simulation detail to provide more accurate system measurements.

5.4.2 Parallel Simulation with RawSim

One of the first options beyond testing program correctness is to test how amenable the
program is to parallelization. This approach is useful when the programmer intends to

112

C/FORTPAN Pr gram

DeepC Cile Ra Compiler - nprocs=1 Raw Copiler - nprocs=n

I Raw object file
Raw object files

Gate-Level II
Configuration Raw Ass Raw Asse

Raw binary j Raw binary

Raw Simulat Typical Raw Simulator TypicalF (rawsim) Input (rawsim) Input
Data Data

Results Results
Sequential Runtime Parallelized Runtime

Does program execute Does program execute
as expected? as expected?

Does speedup (Sequential/Parallel Runtime)
meet expectations?

Figure 5-10: Simulation with the Raw Simulator

compile to multiple tiles. The programmer may have made a mistake in algorithm design,
or more likely failed to understand the limitations of the parallelizer. Because DeepC is
integrated with the Raw Compiler, it can target a Raw Machine with a similar number of
tiles. The result is then run on a Raw Simulator (or perhaps a Raw chip!). Figure 5-10
depicts this approach. A DeepC compiler flag (-t raw) generates Raw code rather than RTL.
In summary, the basic premise of this approach is that parallelization of the user program
can be analyzed quickly, before the more complicated task of specializing and parallelizing.

5.4.3 Compiled-code Simulation with HaltSUIF

The next approach verifies compilation up to the instruction-scheduling phase. The idea is
to feed the scheduled execution time of each basic block to a compiled-code profiler. Using
a modified version of Harvard's HaltSUIF profiler, DeepC annotates each basic block with
its static length. Then during profiling, dynamic runtime is accumulated with the following
equation:

Runtime = Ebbeprogram basic blocks lengthbb x f requencybb,

where lengthbb is the number of clock cycles (states) needed to execute basic block bb.
The variable frequencybb is the number of times the block is executed dynamically, given
some typical input data.

Figure 5-11 shows the flow for HaltSUIF simulation. Compilation interrupts paralleliza-
tion to generate a matching sequential program. Then, the run length of each basic block,
after parallelization and space-time scheduling, is determined. Given these lengths and
following the HaltSUIF profiling methodology, runtime statistics can be generated.

A caveat to this approach is that HaltSUIF cannot execute a multi-threaded version of

113

C/FORTRAN Program

DeepC Compilation Steps
DeepC Compiler Through basic block formation

I i

Gate-Level
Configuration

DeepC Compilation Steps matching sequent
up to Instruction Scheduling program (SUIF)

basic block ---
run lengths Annotate SUIF

for HaltSUIF
Profiling

SUIF

Unparse Instrumented
C Program

C Program

C Compilation
on Workstation

Workstation Binary

Typical Input Data _Workstation Execution

Program

I Profile Output

Accumulation
Statistics

ial

S I

HaltSUIF
Methodology

Total Cycles Executed

Figure 5-11: Simulation with HaltSUIF

the program. The program, annotated with the basic block schedule lengths, is unparal-

lelized, so this approach only works for programs with data-independent control flow.

5.4.4 RTL Simulation with Verilog Simulator

Verilog simulation can be performed at several downstream locations. This section focuses
on pre-synthesis, post-synthesis simulation, and use of simulation for power estimation. As
in the previous cases, a DeepC compiler flag invokes one of these modes.

Pre-Synthesis / Behavioral

Figure 5-12 depicts the overall compilation flow for pre- and post-synthesis simulation.
Just before RTL synthesis, the DeepC compiler outputs Behavioral Verilog. This generated
Verilog is lower level than that accepted by Synopsys's Behavioral Compiler. In contrast to
structural Verilog, the code has many unmapped parts, such as adders and shifters. Pre-
synthesis verification is fast and cycle-accurate. That is, the total number of simulation
clock ticks will equal the total program runtime, in clock ticks. However, this approach
does not determine information such as gate area, clock speed, and power.

114

I

C/FORTRAN Program

DeepC Compiler
Through RTL Generation

Verilog Behavioral RTL Typical Input Data

RTL Logic Synthesis

Typical Input Data
Verilog

Structural
RTL

SStructal Verilog Behavioral Verilog
Vendor Specific Synthesis SRtiuc ilog Beha Smulation

Result Result
Runtime (cycles) Runtime (cycles)

Gate Level Configuration Cycle Latency
Gate Area

Does program execute Does program execute
as expected? as expected?

Are runtime, cycle latency,
gate area acceptable?

Figure 5-12: RTL simulation

Post-Synthesis / Structural

The gate-level Verilog generated by synthesis can be simulated. Post-synthesis simulation
is much slower than pre-synthesis simulation. This scenario is depicted in Figure 5-12, with
post-synthesis output fed to a simulator. Besides functional verification after synthesis (and
thus catching any synthesis introduced bugs), the post-synthesis results include runtime,
clock cycle latency, and gate area. If these results are not acceptable, the user will need to
modify the input program.

Dynamic Power Estimation

One final use of Verilog simulation is dynamic power estimation. Dynamic power estimation,
as the name suggests, dynamically estimates the power consumed by hardware. In contrast,
static power estimation, because it does not execute the program, cannot accurately predict
power consumption.

Simulating gate-level hardware gives a dynamic estimate as follows. First, an analysis
pass annotates the RTL Verilog to record how many times each register switches. Second,
behavioral simulation, performed with an input dataset, determines the number of times
each register switches. Third, a zero-delay simulation determines the switching probabili-
ties of all signals. Finally, the total dynamic power is calculated with the following equation:

DynamicPower = ClockFrequency gateai gates (Energygate x Probgate),

where Energygate is the switching energy of a gate and Probgate is the switching prob-
ability resulting from the simulation.

Figure 5-13 depicts the CAD flow to perform dynamic power estimation. The flow is

115

DeepC Compiler
Through RTL Generation

Verilog Behavioral RTL

Belhavioral Verilog
RTSimulation

Register Switching Activities

RTL Logic Synthesis

Static and Dyna
Gate Area

Verilog Structural RTL Cycle Latency

nic Power Estimates

Vendor Specific Synthesis

Gate-Level Configuration

Figure 5-13: RTL power estimation

the same as that of manual hardware designers and is common in industry. The resulting
estimations are more accurate than static power estimation, but still limited by the accuracy
of the technology library and by the design compilers ability to estimate interconnect costs.
DeepC has a compiler flag to invoke power estimation; this flag requires that the target
synthesis libraries contains power information.

5.4.5 Verification with a Logic Emulation

DeepC can target a logic emulator (see [12] for tool flow) for high-speed, gate-level veri-
fication. Note that the methodology introduced in Section 5.3, where a logic emulator is
described as a DeepC target, is very similar to traditional verification approaches. Because
the details of logic emulation are closing related to previous FPGA computing research,
Appendix B provides additional details on my early integration of DeepC with logic emu-
lation.

5.5 Summary

This chapter has described the components of the DeepC compiler, including a Traditional
Frontend Phase, a Machine Specialization Phase, and a CAD Tool Phase. An advanced path
includes a Parallelization Phase and a Space-Time Scheduling Phase. These passes leverage
compilers from academia and CAD tools from industry. Many new passes, predominately
in the Machine Specialization and SpaceTime Scheduling Phase, were developed exclusively
for DeepC. Finally, this chapter explained the hardware and simulation platforms needed.

116

C/FORTRAN Program Typical Input Data

Chapter 6

Results

With future silicon budgets approaching 100M transistors, we need to consider integra-
tion of other platform components (e.g. Memory controller, graphics). We need to con-
sider special purpose logic, programmable logic, and separately programmable engines.
But all have very complex/costly software issues.

- Fred Pollack, Intel Fellow, Director of Microprocessor Research Lab,
Micro32 Keynote speech slides, November 1999.

IBM and Xilinx recently announced a partnership to create a new generation of devices
for use in communication, storage, and consumer applications. Under the agreement,
we are working together to embed IBM PowerPC processor cores in Xilinx VirtexTM-II
FPGAs.

- Ann Duft, Manager of North American PR, Xilinx, February 2001.

The industrial movement to merge gate reconfigurability and instruction programmabil-
ity is underway. Undoubtedly their merger will not be perfectly balanced - one paradigm
will take the leading role. The chance for programmable logic to take the lead, or at least
play more than a peripheral extra, is slim unless its compiler is competitive. Therefore, I
include extensive results to support my thesis that specialization of traditional architectural
mechanisms with respect to an input program is the key to efficient compilation of high-level
programs to gate-reconfigurable architectures.

These results provide coverage of many practical issues that arise when building a com-
pilation system of this complexity. Interactions between compiler phases have been notori-
ously problematic - a complete system of this size, combining specialization, paralleliza-
tion, and logic synthesis, requires demonstration of its viability.

I begin by delineating experimental apparatus and presenting a new benchmark suite.
The chapter focus is then on basic and advanced results, along with sensitivity analysis of
important specializations.

6.1 Experimental Setup

The experimental setup includes the software tools that constitute the DeepC Compiler
implementation described in Chapter 5, along with other tools. Table 6.1 lists the major
compiler tools and version numbers. These tools are products of collaboration across sev-
eral compiler and computer architecture groups at MIT. Bitwise [127] is a set of compiler

117

Table 6.1: Description of DeepC experimental components

Company/Group Program/Tool Description Version Date

MIT (Raw Project) RawSim Raw Simulator version 0 beta 4 Apr 2000
MIT (Raw Project) rbinutils Raw Utilities version 2 release 0 Apr 2000
Cadence Affirma NC Simulator Verilog Simulator v2.1.(p2) Nov 1998
Chronologic VCS Verilog Simulator version 5.2 Dec 2000
GNU gcc C++ compiler version 2.95.2 Oct 1999
Synopsys Design Compiler Synthesis 1999.10 Sep 1999
Toronto VPR Academic FPGA Tool Flow version 4.30 Mar 2000
Xilinx ngdbuild, par, etc FPGA Tool Flow v3.2.0.5i D.24 Oct 2000
IKOS/VMW vlc,synopsys library VirtuaLogic Compiler version 2.0.12 Oct 1998

Table 6.2: Other experimental tools

analyses implemented by Mark Stephenson and tightly coupled into DeepC. Bitwise is gen-
erally applicable, a set of standard SUIF passes, although it has been incorporated only in
the DeepC system. DeepC also leverages Radu Rugina's pointer analysis package (SPAN),
a package developed in Martin Rinard's group and in wide use for compiler research. Fi-
nally, DeepC invokes many Rawcc compiler passes. Rawcc passes include Rajeev Barua's
static memory analysis passes in MAPS [14], and Walter Lee's scheduling and partition-
ing algorithms [89]. These passes are based on a version of the Stanford SUIF compiler
infrastructure maintained as a part of the MIT Raw project.

Auxiliary tools are in Table 6.2. These tools include compilers, synthesizers, simulators,
emulators, and the requisite computer workstations (not shown in the table). The Raw
simulator and utilities enable comparison of FPGAs and embedded processors. The Verilog
simulators permit gathering of cycle counts for programs compiled to the gate level as well as
performing traditional verification. The Gnu C compiler and a 300 MHz Sun UltraSPARCII
generate workstation cycle counts and run times. Synopsys synthesizes to several targets,
including IBM SA-27E ASIC, Xilinx FPGA, and an academic model for VPR. The IKOS
software and a donated VirtuaLogic Emulator serve as a reconfigurable platform and a
verification platform. These or similar tools are needed in order to reproduce my results.

Version 2.0

These results were generated with DeepC version 2.0. Previous results published in [11]
were generated with DeepC Version 1.0. Version 2.0 is more robust, with many exten-
sions, including bitwidth analysis, code generation for multiple tiles, network overclocking,
multiple network and memory ports, and support for Xilinx Virtex parts and block RAMs.

118

Company/Group Program Description] Version Date J Ref.

MIT (Deep Project) deepc DeepC Silicon Compiler 2.0.1 May 2001 this work
MIT (Deep Project) dbench Deep Benchmark Suite 2.0.1 May 2001 this work
MIT (Deep Project) bitwise Bitwidth Analysis 2.0.1 Apr 2000 [127]
MIT (Raw Project) rawcc Raw Compiler 3 beta 8 Apr 2000 [136]
MIT (Rinard Group) SPAN Pointer Analysis 1 beta 5 Apr 2000 [114]
Stanford/MIT SUIF Compiler Infrastructure 1.2/mit/0.b13 Apr 2000 [140]

IBenchma.-r± rI 'Tpe / qniirre /.C-C C run I Primary (qer) DaTanf Iescrintinn

time Array sizeWidth
adpcm Multimedia / Mediabench / 216 1.5M 2407 8 Speech compression
bubblesort Dense Mat. / Nasa7:Spec92 / 80 1.6M 512 32 Bubble Sort
convolve Multimedia / Mediabench / 94 61K 16(256) 16 Convolution
histogram Multimedia / Mediabench / 139 81K 64x256 8 Image histogram
intmatmul-vl Dense Matrix / Rawbench / 100 429K 32x32(32x32) 16 Integer Matrix Mult.
intmatmul-v2 Dense Matrix / Deepbench / 109 429K 16x128(16x16) 16 Integer Matrix Mult.
intfir Multimedia / Mediabench / 80 7.1M 32x32 16 Integer FIR Filter
jacobi Dense Matrix / Rawbench / 95 317K 64x64 8 Jacobi Relaxation
life-vi Dense Matrix / Rawbench / 167 567K 32x32 1 Life
life-v2 Dense Matrix / Deepbench / 129 269K 32x32 1 Life (v2)
median Multimedia / Mediabench / 105 723K 16x16 32 Median filter
mpegcorr Multimedia / UC Berkeley / 153 14K 32x32 16 MPEG-1 Encoder
parity-vi Reduction / Deepbench / 74 112K 128(1024) 32 Parity / checksum
parity-v2 Reduction / Deepbench / 74 240K 128(1024) 32 Parity / checksum (v2)
pmatch-vl Reduction / Deepbench / 83 1.0M 128(1024) 32 Pattern Matcher
pmatch-v2 Reduction / Deepbench / 89 1.0M 128(1024) 32 Pattern Matcher (v2)
sor Dense Mat. / Greenwald / 86 62.0K 64x64 32 Successive Over Relax.

Table 6.3: DeepC Benchmark Suite

Column runtime shows the run times, in clock cycles, for uniprocessor code gener-

ated by GCC 2.95.2 -05 on an UltraSPARC IIi. LOC is lines of code, including

comments. Data width is for the main arrays. Several benchmarks have two versions

with slightly different source code.

6.2 The Deep Benchmark Suite

These benchmarks are released as the Deep Benchmark Suite version 2.0. Basic benchmark
characteristics are in Table 6.3. Each benchmark is a self-initializing C program. Some
benchmarks are from the Raw Benchmark Suite [10]. Others benchmarks are simplified

versions of the University of Toronto (UT) Mediabench benchmarks (adpcm, convolve,
histogram, intf ir, median). I have also added three programs: parity, pmatch, and sor.

The following paragraphs describe the benchmark programs in more detail. An asterisk

identifies the benchmarks used in the advanced results: intmatmul, jacobi, mpegcorr,
life-v2, pmatch, and sor. These cases are parallelizable.

ADPCM (adpcm) Adaptive differential pulse code modulation is a family of speech com-
pression and decompression algorithms. This implementation is from 16-bit linear PCM
samples and compresses them 4:1 into 4-bit samples. This coder is from the IMA Compat-
ibility Project, Version 1.0, 7-Jul-92. I have manually removed structs to avoid supporting
them in DeepC's prototype frontend.

Bubblesort (bubblesort) The bubblesort benchmark is the familiar sorting algorithm
from introductory computer science textbooks. This algorithm has an 0(n2) time com-
plexity. This version is hand-coded in a manner that is amenable to predication. Note
that for this benchmark the best source code for logic synthesis significantly penalizes the
performance of the processor case. I avoid this problem by using alternate source code, that

best matches processors, for processor results.

119

Convolve (convolve) The convolve benchmark is a typical media benchmark that com-
putes the convolution of two input vectors at each step in time. For a length M input vector
and a length N input vector, the output is a vector of length M+N-1.

Histogram (histogram) The histogram benchmark is from the Mediabench suite. The
program enhances a 256-gray-level, 64x64 pixel image by applying global histogram equal-
ization. The program uses routines and algorithms found in [52].

Integer FIR (intf ir) Finite input response filter is a media benchmark that multiplies
an input stream by a tap filter. This version multiplies integers - the more standard FIRs
work with complex reals.

Integer Matrix Multiply* (intmatmul-vt) This benchmark multiplies two integer ma-
trices. It uses a simple algorithm with a triply nested loop.

Integer Matrix Multiply Version 2* (intmatmul-v2) In this version, array indices
have two dimensions instead of one, a[i] [j] instead of a[i * JSIZE + j].

Jacobi* (jacobi) Jacobi relaxation is an iterative algorithm. Given a set of boundary
conditions, it finds discrete solutions to differential equations of the form V 2 A + B = 0.
Each step of the algorithm re-computes points in a grid, assigning each point the average
of the values of its nearest neighbors. This version is integer.

Life (lif e-vt) Conway's Game of Life program [18] is represented on a two-dimensional
array of cells, each cell being alive or dead at any given time. The program begins with an
initial configuration for the cells and obeys the following set of rules: a living cell remains
alive if it has exactly two or three living neighbors, otherwise it dies; a dead cell becomes
alive if it has exactly three living neighbors, otherwise it stays dead.

Life Version 2* (lif e-v2) This re-written version of lif e uses Boolean algebra instead
of control flow in the inner loop.

Median Filter (median) Median filter is a common multimedia benchmark. Given a
2-D input array, it produces a 2-D output array where each output element is the median
of its nine neighbors in the input array.

MPEG Kernel* (mpegcorr) The MPEG standard includes encoders and decoders for
video bitstream playback. This benchmark is an implementation of the correlator in the
MPEG-1 Software Video Encoder. This version is a kernel, not a full MPEG implementa-
tion.

Parity* (parity-vt) The parity benchmark computes the parity of 32-bit elements
and accumulates the result into a checksum. An inner loop contains a parity calculation
equation.

120

Mode 0 Mode II

comPHM intML
compHM compML comPLP

[HEE IEKE Versus Hg M coMnpLP

L L L

DeepC -> ASIC Rawcc -> MIPS

H = high level Interprleter
M = machine level (unspecalized)
L = loic level Li
P = ph ysical level ComplHer
KEY (speciallzed)

Figure 6-1: Mode 0 versus Mode II

Parity Version 2* (parity-v2) In this version, the iteration space is transposed to

expose low-order parallelism. It also fixes a bug in the previous version that uses an OR

instead of XOR (previous version results were not re-compiled because of time limitation).

The transposition, which DeepC does not perform automatically, is needed because the

parallelizer unrolls inner loops.

Pattern Match* (pmatch-vl) Given a string of length M and a pattern of length N,
Pattern Match determines if the string contains the pattern. A nested inner loop compares

characters of the pattern with characters of the string.

Pattern Match Versions 2* (pmatch-v2) In this version the iteration space is trans-

posed to expose parallelism in the inner loop.

Successive Over Relaxation* (sor) The source code for the sor benchmark, a well-

known five point stencil relaxation, is borrowed from Greenwald's Master's Thesis [65]. This

benchmark is similar to jacobi.

6.3 Basic Results

Recall the evaluation modes introduced in Chapter 2 and summarized in Figures 2-6 and 2-

7. The modes studied in basic results include: Mode 0 (for example, ASICs), Mode I (for

example, FPGAs), and Mode II (for example, RISC processors). In order to support my

thesis, this section applies specialization to the architectural mechanisms commonly found

in a processor (Mode I). Without any other changes, this specialization yields results for

the uninterpreted Mode 0 (Section 6.3.1). Combining this specialization with gate recon-

figurable FPGA targets (IL-p) gives Mode I results (Section 6.3.2). Data tables for these

results are included in separate appendices, which the following text references.

121

15 -

10

I*

(D 5

0
E
C.)
0~
~0
(U

V
0

~0 C
0
0.

E
(U

(0

C

E
(U
E
C

0. O

O gcc -00 to UltraSparc

o Rawcc to MIPS core

O gcc -05 to UltraSparc

* DeepC to IBM ASIC

-~w

C..4 C
(U

~0
U)
E

0
C.,
C,
U)
0~
E

0
Cn

(U
0~ E

CL

Figure 6-2: Runtime comparisons between DeepC, Raw, and an UltraSPARC

The data for this graph is in Appendix Table C.1. The graph is normalized to the
Rawcc data. Performance is the inverse of the number of clock cycles needed to
evaluation each benchmark. Target clock speed is 300 MHz.

6.3.1 Mode 0 Basic Results

Recall from Chapter 2 that Mode 0 does not have interpretation layers. DeepC transforms
Mode II evaluation into Mode 0 evaluation by specializing the machine level interpreter

(IML). DeepC can generate results by targeting Verilog RTL and then synthesizing to
the same IBM ASIC target library used for Raw. Notice from the dominos in Figure 6-1
that this comparison isolates the difference between compilation and interpretation at the
machine-level, with the fewest changes elsewhere.

RTL Verilog Target: Pre-Synthesis

Figure 6-2 shows the runtime, in clock cycles, after compiling the Deep Benchmark Suite

to RTL Verilog. The figure compares these results to Rawcc targeting a 300 MHz MIPS
processor. For more comparisons, the figure also presents the cycle counts on a 300 MHz
UltraSPARC IIi. For the UltraSPARC, I obtained data using gcc's -00 flag (unoptimized)
and the -05 flag (highly optimized). (Recall that gcc is the GNU C Compiler developed by
Richard Stallman and others.) Because the benchmarks are short, I repeatedly executed
each for one second.

122

' - - -

Figure 6-3: IBM SA-27E ASIC non-memory power and area

Results are obtained after Synopsys synthesis to IBM SA-27E ASIC technology.
Area numbers shown assume a cell size of 3.762 um 2 with 50 percent routability.
Area and power estimates do not include RAM cost or additional overhead for pads
and periphery circuitry. A clock rate of 300 MHz or more is achieved. Power is
estimated at 300 MHz. Appendix Table C.2 lists the complete data.

Being a research compiler, the Rawcc compiler is missing some traditional frontend
compiler optimizations. The Raw cycle counts thus fall between the optimized and the
unoptimized gcc cycle counts. Notice that the differences between Rawcc and gcc are
reduced for convolve, which is already unrolled and thus easier to optimize.

Along with incorporation of advanced compiler optimizations, the UltraSPARC pro-
cessor and gcc combination also has advanced architectural features such as superscalar
scheduling. These techniques are neither implemented in the Raw processor nor specialized
by DeepC. Thus, at least a portion of the difference between the Rawcc and the optimized
UltraSPARC cycle counts should be transferable to a commercial DeepC implementation. In
addition, some differences will not transfer because some gains result from DeepC speeding
up under-optimized intermediate code.

Given the above caveats, specialization decreases cycle count by 5x to 13x versus the
interpretive MIPS core, resulting in a similar performance gain. Even when conservatively
comparing to the commercial UltraSPARC case, specialization averages a gain of 3.7x.
When clock frequencies are the same, these gains are absolute.

123

10 - -- - - --- 7 0.25
10 - - 0.25------

M Power 1 Area

8 --- ------------------------------ ------ --------------------- 0.20

6 - - -------------- --------- - - - --------- - -- - - --- 0.15 E

00

C . 4 -- ----- ---- - - ---- - -- - -- - 0.10 (

0

2 005.!!'

El E E .N

J! Em

.SE

Mode I
Mode II

compHM compML compHM int ML

H M ML tL Versus LKM| | COMPLP

Pint LP L L P

DeepC -> Virtex FPGA Rawcc -> MIPS

H =high level FlInterpreter
M = machine level (unspecialized)
L = logic level
P = physical level Compiler
KEY (specialized)

Figure 6-4: Mode I versus Mode II

ASIC Synthesis Target: IBM SA-27E Process

Figure 6-3 graphs the power and area reported by Synopsys after synthesizing to the IBM
SA-27E technology library. The area numbers are manually converted from generic "cells" to
physical numbers using the technology constants in the IBM Cell Library Guide [76]. More
accurate data could be obtained by applying downstream physical design tools proprietary
to IBM. I used this technology because it was available at MIT in conjunction with Raw,
allowing comparison of evaluation modes across constant silicon technology. At 300 MHz,
in the IBM process, benchmark power varied from less than 2 mW to over 8 mW. Area
varied from under 0.05 mm 2 to just over 0.20 mm 2 . Most of the benchmarks were under
0.10 mm 2 and consumed power in the 3 - 4 mW range. These results do not include I/O
and RAM power and area.

6.3.2 Mode I Basic Results

As expected, Mode 0 results are excellent when compared to Mode II because there is one
less interpretation layer. This section adds back an interpretation layer, but at the logic
level rather than the machine level, forming Mode I. Comparing the Mode I and Mode II
dominos in Figure 6-4 reveals this interpreter-exchange relationship.

Mode I logic-level interpretation is supported on traditional FPGAs. The next two
sections present both commercial and academic FPGA results. Results for the IKOS logic
emulator are in Appendix B.

Commercial FPGA Target: Place and Route to Xilinx Virtex-E-8

To generate Mode I FPGA experiments, I used Synopsys to synthesize the RTL for each
benchmark to Xilinx Virtex-E-8. Note that 8 refers to the speed grade of the FPGA. DeepC
contains scripts to automate synthesis. Synthesis data is in Appendix Table C.3.

Speedup versus a MIPS core, along with lookup table (LUT) and register area, is in
Figure 6-5. The average performance gain is 2.4x. Although a few of the benchmarks are
larger than one thousand LUTs, most are small, consuming only a few hundred LUTs. The
average combinational area consumed is 700 LUTs and the average register usage is 300
flip-flops.

124

E DeepC to Virtex-8
O Rawcc to MIPS core *4-LUTs IRRegister Bits

1500 -- 1500

4- ---------- - - -------- ------- ---

C100k speeds -anged -r-m ------- M--z ----------d--- ar1e0re00og w th o h r a a

44)

40)

0 0 0~~01) 0 *

20 0 C4 :5~

.0 E

Fiur 6-5 Spedp LUT and reise are forr VirtxE1

Appendix Table C.4. Performance for intfir, intmatmul, and intmatmul-v2 is

half speed because a synthetic multiplier is used instead of faster vendor soft macros.

The clock speed of several benchmarks is less than the target 100 MHz for a couple
of reasons. First, the bubblesort and life clock speeds were limited by the multiplex-
ers created from unpipelined predication instruction. Without these multiplexers, or with
pipelined ones, a target clock of 100 MHz is possible. Also, intfir and intmatmul were
limited by a synthetic multiplier, which reduced performance by 2 x. Activation of the Xil-
inx XBLOX multiplier can overcome this limitation (DeepC does not do this). Moreover,
newer FPGAs have built in hard multipliers. I verified that the rest of the circuit would
run at speed by substituting adders for the multipliers. However, to be conservative, the
results here are based on the clock speeds I obtained.

Figure 6-6 shows the absolute and relative power reported by the Xilinx Power Estima-
tor, Version 1.5. The right graph shows relative power consumption sorted by percent of

power consumed by RAMs. Data for these results is in Appendix Table D.8 and Table C.6.
Table C.5 contains the data, including switching activity, used to generate this result. This

comparison assumes a MIPS core consuming 1 Watt at 300 MHz. Quiescent power is a
function of the FPGA device. The remaining cumulative power bars are for LUTs, register

bits, and block RAMs.
For SOR, I hand partitioned the RAMs generated by DeepC to minimize the total

number of RAM enables. This improvement, labeled sor-mem4, would fit into DeepC's
Machine Specialization Phase. It reduces RAM power from 414mW to 182mW. There are
likely similar improvements that save even more power.

Figure 6-7 shows the energy and the energy-delay product versus a MIPS core. The

125

2000 ---------------------- -------------------------------- r 2000

400 4---

200 4--

100

0 ill Ii

oram
Drgs

mislts
-- --------- --------- 43 escent_

E

0

a.

100%

80%

60%

40%

20% -

I i i
M 0 :6 a E - E,

Er EEE

cm- E 2 :3E
2C E~ L .0

Figure 6-6: Absolute and relative power reported by the Xilinx Power Estimator 1.5

50 -

40 -

0

LL3
C

0

>%20-
0,

C

o1t

0

-L 2 - - 75 050JC -0
-c0> M) ~ ~ C
wZCO 2E E a

0 -w
cc c
ECE

IT

.0

U

120 -

100

80 -

60

40

-CN
aE ? E 0

a-WWW

E 1=a)E CV Z; N C

CU T > 0!E O

0 - -

.C

Figure 6-7: Energy and energy-delay comparison

DeepC specializing to Virtex-E-8 (Mode 1) versus a MIPS (Mode II).

126

E
'-300

0

CL

6 0 0 - - -..

500 -----------

a a7

- , -, - -, - , - - - - - --.-- - - -

[1

F1

rams
Dregs
a ists
C3quiescent

0%

UI I

70-

60- -- -

6 0 - --- - - ---- - --- - --- ------ -- - -- - ----- -- ----

50 - --

U)

10 - - - -- -- -- --- - I- - - l-- - -- - ---- -- -----

0

10 -

0-

E a) E -04 Z C14 CC)
C0 0. 0 .c cC -r r
MB . EEE

0
E

.0 E E

Figure 6-8: Minimum track width to place and route each benchmark

reduction factors for energy range from 5x to nearly 50x in favor of Mode I. The Energy-
delay reduction is even more dramatic, ranging from 10 - 100x better for it Mode I.

Academic FPGA Target: Experiments with VPR

In this section, DeepC's interface to VPR (Section 5.3) is configured to find, with a binary
search, the minimum number of tracks needed to route the design. Other FPGA parameters
are set to match the Xilinx Virtex part - see Appendix E.

Most FPGA silicon area is devoted to routing, so the number of routing tracks and
the number of transistors needed for routing provides informative metrics of specialization
efficiency (beyond LUT counts). This version of VPR does not support embedded RAMs,
so generating this result required making all memories external to the FPGA. To make
design memories external, I formed a new design from all the non-memory circuitry and
left only connections to external memories. Along with memory connections, all other I/Os
are connected to the periphery of the layout. Section 6.5 uses this methodology to compare
partitioned versus unpartitioned designs for parallelized benchmarks.

Figure 6-8 shows results for minimum routing tracks. The minimum routing track results
range from 25 to 66 tracks, low compared to recent FPGA track capacities. A full suite of

VPR results is in Appendix E. This suite includes statistics for the number of blocks, nets,
global nets, average input pins per LUT, average net length, total wire length, routing area

per LUT, critical paths, and total tracks and segments.
DeepC includes a modified version of VPR's X-Windows interface. This version gener-

127

0
0

Di CLBs

Probability Distribution of 2-pin Nets

Routing succeeded with a channel width factor of 43.

Figure 6-9: adpcm layout and wire length distribution

ates a postscript output of the resulting layout. Figure 6-9 shows a layout of adpcm generated
from the place and route with VPR along with its associated wire length distribution. The
distribution of 2-pin net lengths is a good metric for routability. This data is generated
with DeepC's default -05 compiler flag. In the layout, each small square represents a CLB
containing four LUTs and four registers. Shaded squares contain active logic. The density
of interconnecting wires should give the reader an intuitive feel for the compilation effort
required. Non-orthogonal lines represent turns through the routing switches, which are not
otherwise in the figure. Layouts and wire-length distributions for the remaining benchmarks
are included in Appendix E.

6.4 Basic Sensitivity Analysis

In order to provide more supporting evidence for my thesis, this section studies the sensitiv-
ity of basic results to the specialization of particular mechanisms. Before examining post-
synthesis effects, this section first studies the components of cycle count speedup. Varying
DeepC compiler flags demonstrates that memory disambiguation and control predication
yield worthy increases. Extra unrolling benefits all benchmarks, although some gains will
be offset by a post-synthesis decrease in clock speeds.

Simulation of DeepC-generated RT L is introduced in Section 5.2.5 as a means of verifying
the correctness of the compiled input program. A successful simulation predicts the program
execution time in units of clock cycles. The number of clock cycles is determined by the
number of iterations in each inner loop multiplied by the length of the basic blocks in the
respective loop. In DeepC, the length of the loop basic block is determined statically, during
instruction scheduling (Section 3.3.1). Among other things, the schedule length is sensitive
to the following three DeepC feature flags:

128

100

El plus unroll four times

A plus predication

* plus disambiguation

O base case

0

-10 C -f y -- speed-
aA.

:3 EO~~ > E

-0 E

Figure 6-10: Components of cycle count speedup

A base case averages over 6 x speedup versus the MIPS core simulated by RawSim.
Specialization of memory (ecmap) and control structure (predication, unroll four
times) increases gains to 12x. Appendix Table C.7 contains the cumulative data
presented here.

* -fecmap and -fno-ecmap turn on and off equivalence class mapping, a form of mem-
ory disambiguation described in Section 4.1.1 as equivalence class unification. When
ecmap is turned off, all memory is assigned to a single address space, generating one
large RAM structure. When ecmap is turned on, different arrays are assigned to
different local memories when references can be disambiguated.

" -fmacro and -fno-macro turn on and off macro formation code, the predicate generator
in DeepC. When macro formation is turned on, some conditional control structures
are converted to multiplexer logic, as described in Section 3.3.1.

" -min-unrollx 4 unrolls the inner loop an extra four times. For basic results, the default
unroll factor is one, so the result is 4 x unrolling. This flag leverages the unroll routine
used in the advanced modulo unroll phase, described in Section 4.1.1.

Varying these flags exposes the components of cycle count speedup (Figure 6-10). As before,
all speedups are with respect to the MIPS core simulated by RawSim. Note that the
figure is on a logarithmic scale to permit proper comparison of multiplicative optimizations
(otherwise the top components on the bar chart would appear artificially enlarged). The
first component, the base case, includes traditional compiler optimizations and all DeepC
defaults except -fecmap and -fmacro. The default case keeps loops rolled. The remaining
components result from cumulatively turning on -fecmap, -fmacro, and -min-unrollx 4.

129

70% - ----------------------- 0--------

60% --- - - -- -- - - --- -- 70% ------------------------------------ --- ---- ---------- ----------

60 0% --- - - -- - - -

40%

50% - -

0 %50% - -- -- - -- - ----

.340%%- -

40%

30% - - --- -- - - - - -- -- -- ----- - -1%

00
C. f 30%

20% UH H 20%Hi

0% - - 0%
E 1 E E V- E ~ N 00 6 0 >

5 0 .2 0 0 g 0 >0EtE

SE E
.a~E E a L aE Ma

Figure 6-11: Benefits of bitwidth reduction in Mode 0

These comparisons are derived from data in Appendix Tables C.2 and C.8.

The component breakdown is quite revealing. The cumulative average speedup is 12x,
more than double the base case speedup of 6 x. Disambiguation with equivalence class
unification has a small benefit for five of the thirteen benchmarks. As expected, this benefit
only occurs when memory references are on the critical path. Likewise, predication can only
help if there are potential IF-conversions in the inner loops of the program, true for only
five benchmarks. For example, bubblesort has a convertible inner IF that permits a 2.9x
speedup from predication. In addition, the more complex adpcm gains 2 x from predication
of several inner IFs.

Unrolling has the most consistent gain, increasing performance by 40 percent, on aver-
age, across all benchmarks. Unrolling has the most applicable benefits because it increases
the size of basic blocks and amortize branch overhead for inner loops. However, because
unrolling increases the total number of states, post-synthesis clock speed may be penalized
(Section 6.6.1 studies this problem). Unrolling also generates more hardware and increases
synthesis time.

These cycle count speedups are roughly the same for Mode 0 and for Mode L How-
ever, cycle count is only one component of total performance. Therefore, the next section
continues by studying how individual specializations affect synthesis in both modes.

6.4.1 Mode 0 Basic Sensitivity

This section presents a single Mode 0 sensitivity result: sensitivity to bitwdith reduction.
It discusses the effect of bitwidth reduction on power, area, and clock speed. These results
demonstrate superior performance after bitwidth reduction.

130

80%

Bitwidth Reduction is Necessary

Effective bitwidth reduction is an important contributor to efficient machine-level com-

pilation. Both this section and the sequel present evidence to this point. This study

re-synthesizes the designs reported in Section 6.3.1 with bitwidth optimizations turned off

(-fno-bit). Figure 6-11 shows the savings of the original results versus this less optimized ver-
sion. Savings include both power (37 percent on average) and area (49 percent on average).
Power and area savings are correlated, but not exactly. Without bitwidth optimization, one
third of the results (bubblesort, intfir, jacobi, life-vi, and sor) failed to meet the
target clock speed of 300 MHz. DeepC achieved or exceeded this speed on all the original
results. Specializing the bitwidths of architectural features is a wonderful optimization -
it improves all aspects of system performance without any offsetting overheads.

6.4.2 Mode I Basic Sensitivity

This section shows that Mode I synthesis results, like Mode 0, are sensitive to bitwidth
reduction. Studies find that turning off two multiplexing optimizations - register allocation
and resource allocation - permits specializations that improve performance but sacrifice
area. Cumulatively, bitwidth reduction and register allocation save registers, but have a
mixed effect on speed. A final data set shows that increased synthesis effort increases the
chances of meeting target clock speed, although perhaps with an area penalty.

The results in this section are generated with FPGA vendor (Xilinx) tools. The details
are contained in the following tables: Table 6.4 (LUT count), Table 6.5 (register count), and
Table 6.6 (clock speed). The DeepC flags varied are: -fbit, -freg, -resource none, -frnacro,
and -fsynopt. The following prose discusses the important points.

Bitwidth Reduction is Good

Bitwidth reduction is a good optimization on all accounts, as Mode 0 results also showed.
Bitwidth reduction greatly reduces synthesis time and workstation memory requirements,
as they are in proportion to total hardware size. One benchmark, intmatmul-v2, failed to
compile on a 1GB RAM workstation without this specialization. On average, clock speeds
were penalized 26 percent when benchmarks are compiled without bitwidth reduction. LUT
area increased 146 percent and registers increased 12 percent. Register usage increased 43
percent with register allocation also turned off.

Register Allocation and Resource Sharing Reduce Performance

Register allocation and resource sharing are two optimizations that multiplex hardware
resources. Recall from Section 5.2.3 that DeepC's register allocator uses MachSUIF's raga
pass. Resource sharing is done during RTL synthesis with the Synopsys CAD tool.

Turning off register allocation increases the number of registers, but usually reduces
multiplexers and thus LUTs. Without register allocation, every intermediate variable is
assigned to its own FPGA register. Likewise, turning off resource allocation reduces the
sharing of function units generated during RTL synthesis.

When not multiplexed, the logic surrounding these registers and resources can be further
specialized. In the tables here (Tables 6.4, 6.5, and 6.6), the -06 optimization level has
register allocation and resource sharing turned off, while -05 has both on. Turning off
register allocation increases clock speed 4 percent and turning off resource sharing increases

131

Benchmark -06 -05 noreg noshare nosynopt nobit nobit-noreg1
LUTs LUTs LUTs LUTs LUTs LUTs LUTs

adpcm 814 823 751 758 839 1413 1115
bubblesort 351 337 324 344 340 550 550
histogram 443 463 392 409 471 862 741
jacobi 461 601 494 466 608 1153 984
life-vI 867 1721 810 863 1718 3862 1834
life-v2 572 784 555 582 757 2202 1579
median 742 1034 641 650 1050 1201 835
mpegcorr 425 416 351 373 429 917 908
parity-vI 166 161 145 143 164 300 300
parity-v2 197 189 158 169 193 355 355
pmatch-vl 258 254 213 233 258 447 447
pmatch-v2 308 254 213 233 258 447 447
sor 269 405 333 365 404 754 746

Table 6.4: Sensitivity of LUT area to specialization flags

Benchmark -06 -05 noreg noshare nosynopt nobit nobit-noreg
Regs Regs Regs Regs Regs Regs Regs

adpcm 576 361 575 575 361 611 759
bubblesort 221 201 221 221 201 247 247
histogram 377 306 391 391 306 367 402
jacobi 376 248 376 376 248 446 557
life-vI 893 368 897 897 368 794 1477
median 822 686 831 831 686 752 853
mpegcorr 397 281 397 397 281 496 577
life-v2 453 245 435 453 245 624 1062
parity-vi 158 137 158 158 137 241 241
parity-v2 172 153 171 171 153 264 274
pmatch-vl 254 300 310 310 300 311 311
pmatch-v2 337 300 310 310 300 311 311
sor 215 257 293 293 245 390 391

Table 6.5: Sensitivity of register bit area to specialization flags

Benchmark -06 -05 noreg noshare nosynopt nobit nobit-noreg
MHz MHz MHz MHz MHz MHz MHz

adpcm 105 53 66 100 67 53 57
bubblesort 83 79 63 78 70 87 84
histogram 98 81 95 101 102 67 77
intmatmul-v2 60 47 fail 52 46 fail fail
jacobi 101 88 66 104 80 62 56
life-vi 79 55 72 86 57 37 39
median 90 96 92 100 76 71 79
mpegcorr 88 95 87 102 94 78 63
life-v2 97 73 65 83 81 65 42
parity-vI 97 104 101 92 99 104 104
parity-v2 110 104 110 107 106 72 104
pmatch-vl 98 93 100 106 105 69 80
pmatch-v2 103 101 104 90 94 82 86
sor 94 100 105 105 103 51 59

Table 6.6: Sensitivity of clock frequency to specializations

Target clock frequency is 100 MHz. -06, is equivalent to -05 -fnoreg -fnoshare
-fbram. Block ram synthesis is enabled with -fbram. Only -06 includes -fbram.

132

clock speed 12 percent on average. The LUT count is reduced 34 percent and 25 percent,
respectively. As expected, register count is increased - by an average of 40 percent in both

cases. However, registers are not a critical resource and not worth sharing in most of the

earlier end-to-end basic results. An exception is that for large programs there are pragmatic

reasons for sharing - sharing eases the synthesis burden.

Faster Synthesis Reduces Performance

Logic synthesis, in the CAD phase, performs the lowest level specializations in DeepC.
Therefore, if synthesis effort is reduced, there should be less specialization and lower per-
formance. This study reduces Synopsys's synthesis effort from DeepC's default medium to
low with the -fnosynopt flag. These results should be compared to the "-05" column. The
major effect of reducing Synopsys optimization effort is a reduction in clock speed for some
benchmarks and a lower chance of meeting the target clock speed. However, some designs
were faster with low optimization, leading to the conclusion that either the synthesis tools
are unpredictable or perhaps the difference between low and medium is not significant. A
longer synthesis time (1 week) on high effort would permit better optimization, however I
did not collect this data given time limitations. The difficulties of specializing the entire
design at this lowest level highlight the importance of specializing architectural features at
levels where they are recognized rather than trying to uncover all optimizations during logic
synthesis.

6.5 Advanced Results

This section considers specialization of advanced architectural mechanisms as described in
Chapter 4. Advanced specialization can increase performance beyond what is reported
in the previous basic results section. Most of the programs considered in basic results
only occupy a tiny corner of silicon, leaving plenty of silicon area to leverage for higher
performance. Although the parallelism needed to keep the silicon area of a large chip busy
is not present in all applications, a handful of the Deep Benchmarks can be parallelized
(intmatmul, jacobi, mpegcorr, life-v2, pmatch, and sor). These benchmarks can be
parallelized with the loop-unrolling techniques in the Rawcc-derived frontend.

The general approach in this section is to vary DeepC's -nprocs flag. This flag determines
how many spatial tiles are used to represent the computation. Recall that each tile contains
its own finite state machine for computation. Experiments with router specialization use
the -f route flag. Recall that with routers a second state machine is added to each tile
for communication. These approaches can be compared to a monolithic approach, with a
unified state machine. The monolithic approach is invoked with the -fnopart flag, in which
loops are unrolled and memories specialized, but tiles are not created. Note that for post-
synthesis results, experimentation time is saved by only compiling a sample tile (tile zero)
rather than synthesizing an entire parallel machine.

This section continues by demonstrating advanced results for these benchmarks with a
focus on efficient scalability. It compares performance per area, performance per power,
and performance per energy as parallelism is increased. As in the basic results, first Mode
0 performance is treated, and then Mode L

133

------------------------------------- I --------- --- -.--

........... ------- --------- ----- --------------- -- - ---------

...................................... .. -------------------- -

----------- I ----------- I ------- --------------------------------

-------------- ------

--- ------------- :: -1 -
Z -- -----------

14 16
Number of Tiles

1 --

PMATCH-V2
-- ------------------ -------------------------
-0-Mode 0 (ASIC, crossbar)

-$-Mods 0 (ASIC, router) --------------

-49- Mods 11 (RAW)
------ I -------------------------------- --

100

90

80

70

60

50

40-

30

20

10

0

INTMATMUL-V2
------------------------- -------- ------------------

-4F- Mode 0 (ASIC crossb
-*-Mods 0 (ASIC: router)
-*-Mode 11 (RAW)

- -------------- ----------------- ---------

----------------- ---- ---

---------- --------

- - -----------------------------------

- ------------ - --------------- ---------------

----------- ---------------------

---------- -------- --------- ---------- -----

-------- --------------- ----------------------------

0 2 4 6 8 10 12 14 16

100

90

80

70

CL 60Z
50

Ck.
u) 40

30

20

10

0

CL

JACOBI
100 -------- ------------------------------------

-W Mode 0 (ASIC, crossbar)

go -*-Mods 0 (ASIC, router) -

-0- Mods 11 (PAM

80 1 ----- -- --- -- ----------- --------------

70 4 -- -- ------ --

60 -T - - - ---- -- - --------- ---- ---- --- ---

50 1 ----- ------------- --------

40 --- ----------------- ------ - ---------

30 ------------------------------ --------------

20 ---------------- ---------------------------

10 , * ----------- ----------- - ,------------------- ------ - -- -------

0

LIFE-V2

-411-Mode 0 (ASIC, crossbar)

--*-Mods 0 (ASIC, router)

--w-Mode 11 SAW) -------- ------ - - ------

--- ---------------------------- ----- ---------- ------------- -

........... ------------------------- -- --------------------------

--------------- - ----- -I --- -------

............ -------- - ------------

120-

1100-
80

CL

60
CL

40-

2o 4

CL

w

.......... --------

I
0 2 4 6 8 10 12

Number of Tiles

0 2 4 6 8 10 12 14 16

Number of Tiles

IVIPEGCORR

100 ---
-11-ModoO(ASICcm.)

go _ '1 0 (ASIG. -b ------------------------------
-41-MDdG 11 (RAW)

80 --

70 --- --

CL oo ------- --- ---
:3

90
1 50 ---------- ------ -----------

40 -- ---------

30 --- --------------

20 --

10 --------------- ------------------------------ -

0

0 2 4 6 8 10 12 14 16

Number of Tiles

0
0 2 4 6 8 10 12 14 16

Number of riles

SOR

100 -- ---------------
-*-Mode 0 (ASIC, crouliarl

go _ -*-Mode 0 (ASIC, router)
-G-Mode, 11 (RAVV)

80 ------------------ --- --

70 --------- ------- --------- ---- ----- ----- ------------

CL 60 ----- --- ----------
V
4) 50 - -- ----------- I ----------- ------------------ I -------- ------
0
CL
(0 40 ------------- ------------ -------- ---- --- ------------------

30 ------------------------------- ------------------------------

20 -------------------- --

10 -1 -------- ------------------ ---

0
0 2 4 6 8 10 12 14 16

Number of Tiles

Figure 6-12: Mode 0 performance normalized to one Raw tile.

134

Figure 6-13: Mode 0 speedup

Comparison is of a crossbar at 300 MHZ in IBM SA-27E process versus a single
MIPS core. Table D.1 contains additional router data.

6.5.1 Mode 0 Advanced Results

Detailed graphs in Figure 6-12 compare both the crossbar and router case across the ad-

vanced benchmarks. The same graph includes the Rawcc speedup curve. The initial special-
ization speedup gives the Mode 0 cases a boost that Rawcc never overcomes. However, the
router case looses much of this gain to poor parallelization, a problem that Section 6.6 will
address. Note that equal tile count does not correspond to equal silicon area. Figure 6-13
displays the absolute speedup of the crossbar cases on the same graph for comparison.

Appendix Table D.2 and Table D.3 contain area and power results similar to the results
in Figure 6-3. However, without running the ASIC place and route tools or estimating
the size and power of the respective embedded RAMs, this data was difficult to decipher.
The following section reports this class of data for the Mode I results, which are of more
relevance to this dissertation.

6.5.2 Mode I Advanced Results

Once again, the Mode 0 results have shown dramatic gains from specialization, this time
in the context of large parallel structures. This section now turns to Mode I, to see if

gate reconfigurable architectures can maintain their specialization gains alongside the par-

allelization gains.
The discussion in this section focuses on performance per area, performance per power,

and performance per energy. The appendix contains the corresponding data: Table D.4 con-
tains the clock frequencies achieved, Table D.5 and Table D.6 contain the number of LUTs

135

120 - ------ - - - - - -

-U-bfe-v2
110 pary-V2

-- pmatch-v2
100 --- --a - - ---

1 0 .- A - ---ob --- - --- ---- ----- - ------- --- - -- - -

-4- sor
-intmatmu-2

90 -r-mpegcorr ---- ------ -------- -- -----

80 --- - --- --- ---- ------ ----------- - -- ----- - --- ----- - --- -

4 0 -- --- - - - - -- - - ----------- - - -- -- -- --- - - -- - - -- --- -- -

80

0.

4 0 - - - - - -- - --- - - - -- --- - --- -- - - --- - - -- --- - - -

2 0 - -- - - - - - ----- ---- - - - - - - - ------ - --- - -- - - -- -

10

50

0 2 4 6 8 10 12 14 16

Number of Tiles

and registers, Table D.7 show average switching activity (as described in Section 5.4.4), and
Table D.8 the estimated power.

Performance per Area

Figure 6-14 shows performance as a function of LUT area. Except for intmatmul-v2,
which consumes exorbitant area because of excessive unrolling (producing logic ten times
current FPGA sizes), each design will easily fit on an FPGA sold at the time of this
publication. LUT area increases faster than performance in many benchmarks because
of high parallelization overheads. An exception is life-v2, which exhibits super-linear
speedup in area for the crossbar case.

Performance per Power

Figure 6-15 graphs performance as a function of power. I was not able to gather switching
activity for the Xilinx mapping, so I use the register switching activity gathered during
ASIC synthesis and applied it to the FPGA netlists, taking the average of the register
activity as a rough approximation of the overall activity. Appendix Table D.7 contains the
estimated switching activity. For the crossbar cases, the performance per power is close to
linear. The router case does not scale - Section 6.6 will revisit this issue. Note that the
area for the router case does not include the static routers themselves. In practice, this area
is about 10-20 percent of the size of the main tile.

Performance per Energy

Because specialization both reduces power and increases performance, performance per
energy graphs are steep, as shown in Figure 6-16. First, consider the crossbar cases. The
first data point to the left is for the one tile case and the highest data point is for the 16-tile
case. If both performance and hardware area scaled linearly with tile count, these curves
should be vertical. However, the overall scalability is low in some cases, so these curves are
not as steep as expected. This result is caused by inefficiencies that generate idle hardware
that does not penalize total energy. The large cases, with a slow clock speed, magnify this
problem. Some curves bend backwards as the parallelization overhead becomes amortized
into total energy.

Next, consider the router cases. In several benchmarks (intmatmul, mpegcorr, and
pmatch) a large parallelization startup overhead precludes any performance gain. Further-
more, energy consumption increases dramatically. Although parallelism is not effective in
these cases, do not dismiss them - there are improvements, discussed in Section 6.6, that
can overcome these problems. Because the crossbar case is not physically scalable and the
router case can be improved, more accurate results will lie somewhere in the region between
these two cases.

6.6 Advanced Sensitivity Analysis

Performance is sensitive to the advanced architectural mechanism specialized. The following
sections discuss sensitivities to both memory and communication structures. These results
support my thesis by revealing limitations in both the parallelization strategy and in the

136

0 100000 200000
LUTs

Jacobi

Crossbar
Router

---- --- ---

0 10000 20000
LUTs

300000

Intmatmul-v2

Crossbar
- Router

- -- - --- - - -- -

--------- -- -- --- ----- ---- -------

pmatch-v2

Crossbar
Router

-- ------ -- - -- - -

0 50000
LUTs

life-v2

25

20 -

0.15-

V) 10

5

0
30000 0 5000

LUTs

Mpegcorr

0 10000 20000

LUTs

30000 40000

12
sor

Crsbar]
Router

10-

8-
0.

6-

U)

4

2-

0
0 10000 20000

LUTs

Figure 6-14: Performance as a function of LUT area.

137

12.0-

10.0

8.0

6.0
a)0.

4.0

2.0-

0.0

7

6

5

0.
4

0.3

2

1

0

14

12

10

100000

+ Crossbar
- Router

------- ---------------- - -- ------

--------------------------- - -. ... ---.. ..C.

a)

U)

8

6

4

2

0

Crossbar
Router

-~ ~ ~ ~ -- ------------- - --- -----------

10000

4

3

C.

2

0

30000

Intmatmul-v2

Crossbar
-Router-------- - ---- -- -- ---------------- -------------

- ---- - --- -- -- ---- ---- ------- -- -- -

. 4.0

n 3.0-

0 2000 4000 6000 8000 10000 12000
Power (mW)

Jacobi

0 500 1000 1500 2000 250

Power (mW)

Mpegcorr

0 200 400 600 800 1000 1200

Power (mW)

Pmatch-v2

0.

0)

12.00

10.00

8.00-

6.00

4.00-

2.00

0.00

25.00

20.00

15.00
0
E24-
'a

0z

0 2000 4000 6000 80

Power (mW)

Life-v2

I.

5.00 1

0.00
0 500 1000 1500

Power (mW)

Sor
12.00-

10.00

8.00

0.

* 6.00
0.
U)

4.00-

2.00

0.00 -

00

2000

1400 0 500 1000 1500 2000

Power (mW)

Figure 6-15: Performance as a function of power

138

7.0

6.0 -

5.0

Crossbar

Router

-- ----- ---- ---- -------- -- -- --- -- ---

-- -- ---------- I --- --- ------ ---- -

------~ ~ ~ ~ ~ ~ ~ -------------- ------ ---2.0

1.0

0.0

14.00

12.00

+ Crossbar
- Router

--------------------- - - -- ..---- -

---------------- ----- --- ------ -- -

--- Crossbar
Router

10.00 4

C. 8.00

02 600

4.00 -

2.00

+Crossbar!
Router

- - --- ---- ----- -- ---------- ---- -- ---- -

Crossbar
Router

0.00

350

3.00

2.50

2.00

U3 1.50

1.00

0.50

0.00

i

Intmatmul-v2
100

10

0.

~1

0.1

10000 100000

00

Jacobi

Crossbar
Router

---------------------------- - -------

--- --- -- -- -- ---- -------- --- --------

I --- - -- ------ ------ --- -

------ - .-L --- - --- ----------

-

150 500 1000

Energy (uJ)

Mpegcorr

0 20 40 60 80
Energy (uJ)

100

A
-------- ------- ---- ----

-U-ASIC
-h- Crossbar
--- Router
-- RAW

* Softcore (est.)

Figure 6-16: Performance as a function of total energy

139

Pmatch-v2

100

10 - - A------ - -

- AIC-
Crossbar

-- Router
-oRAW

0 Softcore (est.)

0.1
1 10 100 1000 10000 100000

Energy (uJ)

Life-v2

25.0

+ Crossbar
-Router

20.0 ----- ---

15.0........................... - -

10.0................................-------------------

5.0 - -- - --.- --

----- -- - ---- --------

0.0
0 200 400 600 80D 1000 1200

Energy (uJ)

Sor
12.0

+ Crossbar
- Router

10.0 - - -- - - -

8.0 - -- ----. .

, 6 .0 ----- -- --- --- -------------------
C.

4. -- ------------------- -- ----

2.0 -- - -

0.0
0 100 200 300 400 500

Energy (uJ)

10 100 1000

Energy (uJ)

14.0

12.0 -

10.0

C 8.0 -

co 6.0 -

4.0-

4.0 -

2.0-

0.0

--Crossbar
+Router

------------ -- --- ------ - --------

------ -- ----------------- ---- ------

--- ------- -------------- ---- ------
----- -- -

0.

.50a

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1

1

communication structures that are specialized. These limitations, rather than the special-
ization technique, reduce the effectiveness of the advanced cases in the previous section.
Furthermore, there is evidence that the limitations can be overcome.

6.6.1 Memory Sensitivity

The DeepC system did not generate perfect speedup when parallelizing applications that
should be easy to parallelize. To understand why, this section studies the sensitivity of
DeepC to memory parallelization. There are two main results:

" unrolling increases the total number of states and the number of states is correlated
with a decrease in clock speed,

" low order interleaving produces square root speedup that can be overcome with known
blocking transformations.

Another study, not further discussed here, is sensitivity to the number of ports per memory
(DeepC flag -mports) - none of the parallel cases were sensitive to this parameter.

Clock Speed Slows with Increasing States

One problem with unrolling is that it increases the total number of states. As the frontend
unrolls loops during parallelization, these extra states reduce clock speed as RTL synthesis
adds extra multiplexers. This effect can be demonstrated by correlating the number of
states with the clock speed (Figure 6-17). This clock slowdown is one reason the multi-tile
cases do not meet the target clock of 100 MHz. Because other factors may limit clock speed,
the correlation is most pronounced near the upper end of the clock speed achieved for a
given number of states. The empirical trend line drawn in this area of the graph shows that
the best clock periods are reduced by a factor of 3x for every 10x state space explosion.
Other factors limit data points not lying near this trend line. For example, studying the
output netlists reveals that large crossbar multiplexers limit the crossbar data points, not
the finite state machine.

Besides minimizing unrolling, for example by software pipelining, improvements to RTL
synthesis could also help alleviate this problem. It would help to encode states better and to
predict the next state so that state calculation can be pipelined. This improvement would
lead to specialization of the architectural mechanism of branch prediction. Alternately, the
state machine can be decomposed into smaller state machines. Although the interaction of
state machines synthesis and loop unrolling is a complex problem, there are many potential
solutions.

Low-Order Interleaving Creates Long-Distance Messages

This section shows that the low-order interleaving strategy of the frontend parallelizer sig-
nificantly inhibits performance. If this strategy works well for a sixteen tile Raw machine,
should it also work for a sixteen tile specialized machine? The answer is no. The fact that
a specialized machine takes fewer cycles to evaluation inner loops magnifies the overheads
of transforms that do not preserve locality. The MAPS parallelization strategy, because it
relies on low-order interleaving, produces long-distance messages that must cross the chip
during the evaluation of a basic block. For example, consider the long message in Figure 6-
18, a common occurrence in affine expressions such as A[i] = A[i + 1]. Between certain

140

Figure 6-17: Clock frequency versus number of states

Data is in Table D.9. Clock period is reduced by roughly 3x for every 1Ox increase
in state space size, as shown by the line market empirical limit. The trend line is
a rough empirical observation of a limit imposed by the size of the state machine.
Note that it only applies to the crossbar cases - the other cases were not limited.

"local" assignments, messages will need to cross the entire chip! Asymptotically, this limits
speedup to roughly the number of tiles divided by the diameter of the network - a familiar
square-root speedup. Instead of solving the long wire problem, the long wires have been
replaced with long-distance messages with the exact same scalability problem1 .

Fortunately, there exist parallelization approaches for certain classes of loops that can
preserve locality. A source code transformation can be used to "trick" the parallelizer into
blocking rather than low-order interleaving. Figure 6-19 gives an example of this trick
applied to the inner loop of jacobi. In the figure, SIZEX and SIZEY are the original
sizes of the X and Y dimensions. Two new parameters, NX and NY, encode the blocking
factors in the respective dimensions. Notice that the data arrays a and b have an added
dimension in the transformed code. The indices, il and j1, are also dimensioned to enable
local indices on each tile. Boundary condition code is needed to handle the edges of the
block.

Figure 6-20 presents the results from blocking a sixteen tile jacobi. Although other
inhibitors, such as transmittal of the branch condition, add overhead, blocking improves the
total performance substantially. Thus, more traditional frontend parallelization approaches
would interact better with specialization.

'This result also imply that the early Raw compilation strategies will not scale to machines with faster
processor versus network speed or large diameter networks.

141

100 - - --- --- -

One Tile
" Crossbar
A Router

N empirical limit

8 0 - --- -------------- -- - - --- -- -- ----- ------ -----

2) 0 --- -- ------ ------- ---- -% --- --- -- - --- ------
0

Z560------------------- ----------------------

E AZ
E * A A

x3 60------------------- ---- A -----------

* A

A '

* % A A
4 0 --- -- - - -- - - -- - -- -- - - -- -- - - - A- - - - - - -

30-
10 100 1000

State Machines Size
(number of states)

A[15]=A[161

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 6-18: Long-distance messages

Messages are created by the expression A[15] = A[16] when A is low-order inter-

leaved across sixteen tiles. Even though elements fifteen and sixteen are adjacent,
low-order leaving places them as far apart as possible.

AFTER:

BEFORE:

for (i=1;i<SIZEX-l;i++)
for (j=1;j<SIZEY-1;j++)

a[i] [j]=
(b[i-l][j
+b[i+l] [j]
+b~i] j->;
+b~i] j+l]) >2;

for (i=1;i<SIZEX/NX-i;i++) {
for (n=0;n<N;n++) {
jl[n]=1;
il[n]=i;

}
for (j=1;j<SIZEY/NY-1;j++) {
for (n=0;n<N;n++) {
ail [n]] Eji[n]] [n]=
(b[il[n]-1] [jl[n]] [n]

+b[il[n]+1] [j1[n]] [n]

+b[il [n]] [j1[n]-1] [n]
+bEi1[n]] [j1[n]+1] [n])>>2;
jl[n]++;

/* copy boundary conditions */
for (i=l;i<SIZEX/NX-l;i++)

for (n0;nN;n++)
if~n % NX)
a[i] [0] [n]=

a[i] [SIZEY/NY-2] [n-1];
for (n=0;n<N;n++)
if ((n+l) . NX)

a[i] [SIZEY/NY-i1 [n=
a[i] [1] [n+1] ;

for (n=O;n<N;n++)

if (n>=NX)
a [0] [i] [n]=
a[SIZEX/NX-2][i][n-NX];

for (n=0;n<N;n++)
if (n<N-NX)
a[SIZEX/NX-1] [i] [n]=
a[1] [i] En+NX] ;

Figure 6-19: Jacobi inner loop before and after blocking transformation

142

16 1

1 unblocked
0 blocked

1 2 -.. ---- -. - - - - - - - - - - - - - -

10 ---- --- -- - --- -------- ---- - - ------- --- - ------- --- ---- -

0 8

C',

router crossbar

Figure 6-20: Improvements after blocking for sixteen-tile Jacobi

The crossbar case is reduced from 15K cycles to 12K, improving speedup from 6.3x
to 8.1x. The router case is reduced from 40K cycles to 22K, improving speedup
from 2.4 x to 4.3 x.

6.6.2 Communication Sensitivity

Efficient parallel machine synthesis requires specialization of communication mechanisms.
The advanced results demonstrated great performance when specializing a partitioned de-
sign with crossbar-like communication structures. However, the results were less impressive
for router specialization, especially when compared to the nice scalability of the router-based
Mode II systems (Raw). Section 6.6.1 blames the increase in state size and subsequent de-
crease in clock speed for part of this problem. For example, at sixteen tiles the clock speed
of the router cases average twenty percent slower than the crossbar cases, even though the
crossbar communication structures were more complex because of large multiplexers. Yet,
crossbars do not scale physically, and ultimately only routers can be used for large silicon
areas.

This section continues with sensitivity studies that investigate the communication net-
work. First, using VPR I compare the sensitivity of FPGA routing track count to commu-
nication structure. Beyond four tiles of parallelism, track resource needs become prohibitive
without partitioning. In addition, the router case needs fewer tracks than the crossbar case.
Second, increasing the number of communication ports per tile yields small improvements
for some benchmarks, demonstrating bandwidth limitations due to network congestion.
This section concludes by investigating the sensitivity of absolute performance results to
the speed of the static network. By overclocking the network, the number of states can
be reduced and the component of the critical path that passes through the network can be
shortened, partly closing the gap between the router performance and the idealistic crossbar
performance.

Routers Reduce Minimum Track Width

Minimum track width is a measure of the routability of a design when mapped to a target
FPGA family. Although heuristics, such a leaving unused LUTs, allow use of a lower track
width FPGA, in practice FPGAs are designed with more than the minimum number of

143

Benchmark One Tile Two Tiles Four Tiles Eight Tiles
I nopart / xbar / router nopart / xbar /router nopart / xbar /router

jacobi 39 63 / 50 / 51 79 / 51 /53 105 /59 /59
mpegcorr 34 56 / 41 / 47 66 / 49 /52 91 /51 /51
life-v2 41 57/ 57 / 59 92 / 58 /63 */65 /63
pmatch 29 55 /55 / 55 83 /73 /71 */89 /83
sor 33 54 /51 / 53 * /68 /62 */67 /56

Table 6.7: Minimum track width

These results are generated with the VPR tool performing a binary search on routing
tracks. * denotes a case that failed to place and route in 1GB of memory.

tracks for the class of designs they support. Recall that in the basic results section, Fig-
ure 6-8 showed the benchmarks requiring between 25 and 66 routing tracks. This section
continues in this vein and determines the sensitivity of tracks to the advanced communi-
cation specializations. It compares three communication structures. In the nopart case,
memory structures are parallelized; yet no tiles are formed. The crossbar and router case
should be familiar. The crossbar case may be optimistic because it does not consider the
constraints of routing the global wires between tiles. The router case is realistic.

The findings in Table 6.7 show that the unpartitioned case begins to fail at four tiles
and fails for most of the benchmarks at eight tiles. These cases fail because VPR could not
route them in 1GB of memory, and likely they need more than 100 tracks. In addition, the
crossbar case begins to underperform the router at eight tiles. This underperformance will
only worsen with more tiles.

Partitioning is thus essential beyond a small amount of internal parallelism. Further-
more, a limited number of crossbar-like connections may be desirable to around eight tiles,
but the router case is better at eight tiles and beyond. Given the importance of the router
case, the next two sections investigate sensitivity to improvement in specialized communi-
cation mechanism.

Multiple Communication Ports Increase Performance

The performance of routers can be improved by adding more communication ports between
each router and the main tile logic. Figure 6-21 shows the results for a select set of bench-
marks. These results are generated with DeepC's -cports 2 and -cports 4 options. All cases
show at least a small improvement, demonstrating that there are at least small routing
bandwidth bottlenecks. In lif e-v2 and especially mpegcorr, large gains are demonstrated
with multiple ports, showing that serious bottlenecks exist for these cases. For comparison,
Raw has two static networks, and each static network has two input ports from the router
and one output port to the router. Therefore, specialization of architectures with multiple
communication ports is a good idea. A benefit of the Mode I approach is that extra ports
can be eliminated when they are not needed.

Overclocking the Static Network Increases Performance

Another technique for improving the performance of the router communication mechanism
is to run the routing network at a faster clock speed than the main tile logic. There are
four practical ways to running a faster network:

144

Benchmark cport II cport 2 [cport 4

intmatmul 54464 54016 54016

jacobi 40329 39073 39073
mpegcorr 3970 3186 3122
life-v2 19279 16995 16995
pmatch 289424 286902 286902
sor 16194 16186 16186

60%

50%

40% -
E
0

30%

20%

10%

0%
-5
E
M
E
.S;

0 I)

0.

E

04 cports
I* 2 cports

04 0

E

Figure 6-21: Performance improvements after increasing communication ports

Ports per tile is increased from one to two and four. The table reports the clock

cycles for sixteen tile router cases; the graph is normalized to the single cport case.

" Run the router faster if it is less complex than the tile computation.

* Underclock the main tile to conserve power and reduce states.

" Handcraft fast softcore routers inside the FPGA.

" Embed fast hardcore routers in FPGAs.

Because FPGA clock speeds are slower and specialized tiles are smaller when compared to

a tiled-machine like Raw, it should be possible to cross several tiles in a fast clock cycle

before wire delay becomes a problem.
To see whether these approaches would help, DeepC has a feature that allows the routing

network to run faster than the tile network, set with the -netclock flag. With this flag, the

scheduler and state machine generators can allocate multiple network clocks to each main
tile clock. For synchronization purposes, the network clock must be a multiple of the main
tile clock (in general any rational clocking scheme will work). The main tile can only

inject/receive messages to/from the network on a main tile clock boundary. Therefore, the
main tile can only transfer data to the network at the rate of the main clock, but once in
the network data can traverse the chip at the faster network clock speed.

145

100% - - -
[O 4X

EM 2X
80% -_--- -

E

2 40%-- -

0%
E0%
E E CU CLJ M

M a- E~

E o E

Figure 6-22: Improvements from overclocking the routing network

Figure 6-22 shows the resulting improvements for the 16-tile router case. A 2x faster
clock, easily doable, yields substantial improvements for all cases (30 percent on average).
A 3x and 4x faster clock also continues to yield improvements, to nearly 80 percent for
some cases. Figure 6-23 shows the more detailed speedup graphs, comparing these results
to both the crossbar and router results from earlier in this chapter. Note that it does not
help to overclock more than the network diameter, so there are no data points for some
small tile counts. Even if overclocking is unlimited, synchronization and pipeline startup
overheads prohibit achieving full crossbar performance.

As the system scales to a much larger number of tiles, crossbar-like performance cannot
be maintained - ultimately wire delays will dominate. Two areas of future research are
needed to address these issues. First, circuit-level designers should develop the fastest
possible routers and embed them into FPGA architectures. Because router speed is a
large determinant of system speed, the architecture with the fastest routers may be the
best architecture. Second, it is possible to work around the problem in the compiler by
specializing more advanced multithreaded architectures and/or software pipelining the inner
loops.

To illustrate this point, jacobi in Figure 6-23 contains a result labeled "router6x-u4"
in which the router is overclocked substantially and the inner loop is unrolled four times.
The extra unrolling permits more overlap of computation with communication, and thus
comes close to achieving the ideal crossbar level of performance.

6.7 Grand Finale: Comparing All Modes

As a grand finale, this section compares the performance per area and performance per
energy of all the modes encountered so far. It also includes a rough Mode III (softcore, or
processor-on-GRA) data point based on recently released information from Xilinx.

146

intmatmul-v2 pmatch-v2
6.05.

- - crossbar 0
-a-router4X -Oa- crossbar
-+-router3X . --- router4X

5.0 - e-router2X - -e-router3X
-- router 4.0 --e-router2x - - - -

-o-router

4.0 --- - - - - - --- - .- - - - - - - -- - - - -- -

. -- - - ------ - -- - - 2 - - - -- - - - - - --3.- -

2.0-- ---- - - -----
2.0--- - - -- -- ---

2.0o

1.01 - -------- 1.0+ - - -

0.5-

0.0
0 100000 200000 300000 0.0

0 20000 40000 60000 80000 100000
luts lute

Jacobi life-v2
6.0 . 4. 9.0 .

- W- crossbar

8.0 -'- router4X _ _ _ _ _ _ _ _ _ _ _

5.0 --- rax - - - - - - - - - -- router3X
- - 7.-0 - router2X

4.0 .6.0- - router

I5 .
4.0 -- -- - --.-- -- - -- - -- --- - 6.0 ---- - - -- - -- - -----

5.0 - - - - - - - -
3. --- - - - - ---- - - - --

4.0 -- - ---

2.0---------------------------- 3.0-----------

2.0- -- 2.0- - - - -

1.0 - -

1.0 - - -------

0.0 . 0.0
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000

luts luts

mpegcorr sor
4.5

1.4
- 5- crossbar

- -cosbr 4.0- -a-router4X --- - -

1.2 ----------------- - , - - - -ror -- router3X
-router4X--router2X

-a-router3X -- router
X -- uter2X

1.0 ---- r- --- -0-router 3.0 - - - - - - - - - - - - - - - - -

- 52.0--- - - --- -

* 0.6- --- -- ---------- ---
1.5- - -- - -- ----

0.4-- - - ------ ----
1.0- - -- - - ---

0.2------------------------ 0.5- ---------- -- --

0.0 1 , 0.0-

0 5000 10000 15000 20000 25000 30000 0 10000 20000 30000 40000

lute lute

Figure 6-23: Sensitivity to variations in network speed

As the network speed is "overclocked" by 2x, 3x, and 4x, performance approaches
crossbar-like performance. A point is added for jacobi, where it is unroll four extra
times and the network is overclocked by 6x to get crossbar-like performance.

147

Table 6.8: Assumptions and estimates for important parameters

There are a few caveats to these results. First, Raw is a research architecture and the
clock range, power, and performance are estimates. Second, the ASIC and FPGA case do
not include RAM power. The ASIC case would be penalized more by inclusion of RAM
and I/O power as the computation logic consumes much less energy than in the other cases.
Furthermore, for the crossbar case, scalability may breakdown as soon as 8 or 16-tiles, so
the projected performance may be artificially high. Tools to estimate power are immature
and not entirely trustworthy. Finally, the softcore estimates are based on preliminary data
from Xilinx, and they assume a MIPS/MHz ratio similar to Raw. Given these caveats, these
results support my thesis by comparing all four evaluation modes introduced in Chapter 2
and by demonstrating an ability to efficiently specialize advanced architectural mechanisms.

Grand Comparison of Performance Per Area

Figure 6-24 compares performance per area for the Deep Benchmark Suite. Speedup is
normalized to a base MIPS core and area is calculated in LUTs. Assumptions and estimates
are in Table 6.8. The area for the ASIC and Raw case is translated into equivalent LUTs
using the assumptions in Table 6.8. The softcore case is from press releases about Xilinx's
Microblaze softcore (Xilinx claims 900 LUTs; these result assume 2000 LUTs to include
routing area and for good measure). Tile sizes are twice the size of processor cores to
account for router and multiprocessing overhead. Because calculation of memory area is
difficult, these results do not include the RAM area.

The difference in performance between modes can be attributed to the number of in-
terpretation levels. The Mode 0 case (ASIC, no interpretation) is significantly smaller and
higher performance than the other cases (Mode IMode II,Mode III). In general the crossbar
Mode I case outperforms Raw (Mode Ii), although the router case underperforms Raw given
the same area. The router 4x case (see Section 6.6.2) has similar performance to Raw as
the clock speed of the networks are roughly the same! These results are so similar because
Mode I and Mode II are both singly interpreted. Finally, there is the doubly interpreted
softcore case - the worst performer because it is Mode III. Without the architectural spe-
cialization techniques in this thesis, Mode I would not be possible and all evaluation of
high-level programs on FPGA would be in Mode III.

148

Parameter Estimate

ASIC cell area 3.762 micron
LUT area 690K A 2
A 0.09 micron
Raw speed 300 MHz
MIPS core size 1500 LUT (equivalent)
MIPS core power 1 Watt A 300MHZ
Raw tile size 3000 LUT (equivalent)
Raw power 2 Watts / tile
Softcore speed 125 MHz
Softcore speed 125 MHz
Softcore size 2000 LUT
Softcore tile size 4000 LUT (rough)
Softcore performance 75 MIPS

intmnatmul-v2pm chv

I I I I 100 1

I I I 10

I--- A I I Im I I

-- *----I-
Iosfo I- --*.-routerI

1 -I- + 10- -D 100 10010O 000

-U-A5I I I-u-si
-0-RAW I -0-R-w

100-t to -*-osa

lI 10
I otoeet)

lutsrutr4 Hiltmuer

Jacoi Iie-v

I0Sfcr (et. I

0

-- ASIC--AC
-- -crssbarI -0-ASICrX

-0ruterX -- @-RAWI

-* -RAW -- 0-router4X

- -- otoer (0~ or est.)-*-rue

~~Ssftuoreftor (es.t.) ____

0.1 I 0.1 ______________________ I ____

1 10 100 1000 10000 100000 1 10 100 1000 1000 10000

Mue luts

Fiur 624 Gan cmpacrisnorefomnea suctonfnnmeoyae

149

pmatch-v2

Grand Comparison of Performance Per Energy

This section concludes with a grand comparison of performance as a function of energy for
Modes 0-III (Figure 6-25). The absolute energy difference between modes is dramatic. The
graphs span four orders of magnitude in energy and two orders of magnitude in performance.
Except for the softcore case, the data points are generated by varying the number of tiles
from one to sixteen. The leftmost data point is for the one tile case.

The assumptions for these results are in Table 6.8. Although the ASIC and Raw cases
execute at 300 MHz, the crossbar and router FPGA cases are much slower (23-108 MHz).
The ASIC and FPGA cases are optimistic by a factor as high as 2x in comparison to
Raw as memory and pin power consumption are included for Raw only. Many low power
optimizations can be applied to all cases; improving low-power architectural mechanisms is
an active area of research.

As total energy input to the system is increased, it is desirable to increase performance.
With perfect parallelism, increases in performance should not increase energy needs. Only
the work resulting from parallelization overheads cost extra energy. For these benchmarks,
the Raw results and the crossbar results scale well. In comparison, the router cases scale
poorly. However, Section 6.6 has discussed the problem associated with these cases and
proposed solutions. These results do not include any of those solutions. Therefore, better
Mode I results will fall between the crossbar and router data.

It may be tempting to emphasize the differences between the FPGA and processor cases,
especially when the FPGA case is one or more orders of magnitude better for some bench-
marks. However, the relevant difference in support of my thesis is between the softcore
processor and the left most FPGA data point (one tile). This difference best captures the
benefits of architectural specialization. This difference shows that architectural specializa-
tion increases the energy-delay of the FPGA-based solution by three orders of magnitude
- from much worse than traditional solutions to much better.

6.8 Summary

This chapter provides results to demonstrate my thesis. It shows that C programs can be
efficiently compiled to gates. The absolute benefits of specializing architectural mechanisms
were demonstrated by comparing Mode 0 to Mode II. The benefits are large in metrics
including area, delay, and power. This chapter measured the contributions of individual
specialization techniques to this overall gain. Bitwidth reduction was the best specialization
with no adverse side effects.

This chapter has demonstrated the relative performance of Mode I when compared to
Mode II - FPGAs versus processors. For the benchmarks chosen, Mode I beat Mode II
in area, delay and power metrics, although the thesis goal is to show that the two modes
are comparable in contrast to the much better Mode 0 and the much worse Mode III.
An exception to the comparability claim is an impressive energy-delay boost for Mode I
of one to two orders of magnitude. Finally, the advanced architectural mechanisms of
Chapter 4 were successfully specialized, although unrolling presented some difficulties. A
3x slowdown for every 10x increase in state size was measured. This problem is exasperated
when routers are synthesized, with low-order interleaving creating a long message problem.
This chapter offered several solutions to overcome memory and communication bottlenecks:
better scalability, blocking transforms, better network bandwidth with multiple ports, and
better network speed with overclocking.

150

Intmatmul-v2
100-

10 - ------- - -- - --- ------

. (

1 - -- - -- -- ------------

-U-ASIC
-&- Crossbar
-4-Router
-0-RAW

* Softcore (est.)

0.1
1 10 100 1000 10000 100000

Energy (uJ)

Jacobi
100

A
10 - - --- --- -- -- -------

1 - ---- ---- - - -- -- - ---- ... -- --- - - ---

--m-ASIC
-- Crossbar
+Router

-- RAW
0 Softeore (est.)

0.1
1 10 100 1000 10000

Energy (WJ)

Mpegcorr
100-

1 0 - -- -- ------

-- -- -- -- --- - -- - -- -- -- -

-- ASIC
-a- Crossbar

-0- Router
-- RAW
0 Softore (est.

0.1
0.01 0.1 1 10 100 10000

Energy (uJ)

Pmatch-v2

100

10

C.

1

0.1

1000

100

a.

* 10

0.1

100

a.

I

10 100 1000

Energy (uJ)

1 10 100
Energy (uJ)

104

0.1

10000 100000

1000 10000

0.1 1 10 100 1000 10000

Energy (uJ)

Figure 6-25: Grand comparison of performance as a function of non-memory energy

151

---- ------ --- -_ ------....

------ -.. -- ---
-0-ASIC
-A- Crossbar
-4-Router
-0-RAW

0 Softcore (est.)

Life-v2

- -------- ----

--M-ASIC
-A- Crossbar
-+- Router 6
-0-RAW
a Softcore

Sor

-U-ASIC

- crossbar

-4-Router

--*-RAW

-0Srtor test)

152

Chapter 7

Conclusions

Here I summarize the dissertation, restate my thesis, and make several extrapolations for
future work. To close, I comment on how DeepC can advance the open hardware movement
and I challenge the compiler community to compile to gates, if they dare.

7.1 Wrap Up

This dissertation has shown that specialization of traditional architectural mechanisms with
respect to an input program is the key to efficient compilation of high-level programs to
gate-reconfigurable architectures. Chapter 2, with an analysis of evaluation modes, has
demonstrated that such specialization enables interpretation at the logic level to compete
with instruction-level interpretation. Chapter 3 and Chapter 4 have shown how to specialize
individual mechanisms. These chapters cover specialization of basic gates and wires through
specialization of mechanisms found in advanced distributed architectures. With this under-
standing of how to specialize, Chapter 5 has described a working implementation of DeepC,
a compilation system that embodies these concepts. Chapter 6 uses DeepC to map a new
suite of benchmarks to modern FPGAs. For comparison, the same benchmarks are targeted
to an uninterpreted substrate (a custom ASIC), to traditional processors, and to the Raw
processor, an architecture that more traditionally embodies the advanced mechanisms of
Chapter 4. This comparison demonstrates that compiling high-level programs to GRAs can
improve all aspects of performance - area, latency, power, energy, and energy-delay -
when compared to traditional approaches. These findings support my thesis that special-
ization of architectural mechanisms is the key to efficient compilation to gate-reconfigurable
architectures. In addition, selectively turning off compiler features that specialize particular
mechanisms demonstrates the benefits of each specialization technique. Finally, DeepC's
current strategy for specializing parallel structures suffers from several limitations. I have
shown these limitations and proposed solutions, including alternative parallelization strate-
gies and techniques for overclocking the network.

7.2 Future Prospects

Having achieved efficient compilation to GRAs, I now make several extrapolations. First,
because GRAs are fine grained, having smaller structures than traditional architectures,
they are more fault-tolerant and reliable. Specialization strategies can work around tiny
faults in the GRA with little sacrifice in area or performance. Second, their simplicity

153

enables GRAs to migrate to future fabrication technologies sooner than coarse-grain ap-
proaches. In many future technologies, such as cellular quantum dots, the physical nature
of the machine requires a fine layer of interpretation. Programming this layer directly is
more efficient that attempting to construct and program a von Neumann processor in the
new substrate. Third, by eliminating complex state machines that are not programmable,
GRAs will be less susceptible to hard-coded errors. In addition to problems like the year
2000 crisis and the shortsightedness of hard-wiring encryption algorithms that may become
obsolete, constraints as basic as processor word length become legacies over time. As com-
puters are embedded into the environment, long-term use will require extended serviceability
without having to rip out silicon and replace old parts.

Beyond the unequivocal need for new compiler analyses, new reconfigurable architec-
tures, and new high-level languages, the future of two other important areas is intertwined
with gate reconfigurable technology. The first important area is verification. Elimination of
the instruction set architecture (ISA) may seem to be a hindrance to verification, but going
ISA-less is an advantage. Logic-level constructs are a better match for reasoning about
programs. For example, Darko Marinov, in his excellent work on Credible Compilation,
under advisor Martin Rinard, suggests:

The presented framework can also support "compiling to logic" as done, for
instance, in the DeepC compiler developed by Babb et al. [11]. This compiler
targets FPGA-based systems and has a much cleaner code generation than a
compiler that targets some specific instruction set. We believe that this makes
it even easier to develop a credible code generation for DeepC.

Furthermore, anyone who has seen the errata list for a recent X86 architecture [78] will
realize that modern processor implementations have grown so complex that companies can
no longer guarantee that they are free from defects1 .

The second important area is embedded operating systems. For application to take full
advantage of specialization and gate reconfigurability, operating systems must be capable of
exposing this flexibility to the application level while retaining the ability to multiplex and
protect hardware resources. Operating system reconfiguration has been studied at the soft-
ware level and these studies may serve as the starting point for extending reconfigurability
down to hardware architecture layers. This research space is otherwise largely unexplored;
however, industry is not waiting - leading embedded operating system companies such as
Wind River Systems (www.windriver.com) have announced partnerships with configurable
device vendors to develop platform FPGAs.

'According to Intel, errata are design defects or errors. Errata may cause the processor's behavior to
deviate from published specifications. Hardware and software designed to be used with any given stepping
must assume that all errata documented for that stepping are present on all devices. For example consider
errata 16 - IA-32: Code with FP instruction followed by integer instruction with interrupt pending may
not execute correctly!

154

7.3 A New Philosophy for Architecture Design

Without the freedom to adapt software for your own needs, to help you neighbor by
redistributing software, and build the community by adding new features, you get caught
in a horrible proprietary tyranny and lose your morale and enthusiasm.

- Richard Stallman opening Singapore Linux conference, March 10, 1999.

Being able to adapt hardware to your own needs is just as important as being able
to adapt software. With this perspective, my dissertation contributes to one of the most
powerful visions of the computing community. The open hardware movement is underway

(see fpgacpu.org, opencores.org, open-hardware.org, openhardware.net, openip.net, and the
list goes on). However, these designs are specified at a low-level (usually RTL) and thus
not accessible to the everyday software developer. DeepC's specialization techniques can
be used to raise the abstraction to enable more would-be hardware modifiers to realize
their collective dream. Second, DeepC moves the mechanisms of architecture from the
hardware to the software domain. In the hardware domain, design of new architectural
mechanisms has been restricted to an elite few. Even an engineer working for a leading
processor manufacturer is unlikely to have any say in the design of that processor (unless
that engineer happens to be the lead architect). But by moving these mechanisms to
the software domain, many will be able to contribute to the advancement of computing
machinery.

7.4 Parting Words to the Compiler Community

In parting, this dissertation has demonstrated techniques to automate the programmatic
use of gate-reconfigurable architectures and has made the case for their advantages. Still,
there remain enormous opportunities for further innovation in this area. Specialization
techniques offer a method for codifying decades of knowledge about computer mechanisms
into an automatic compilation system; this work only codifies a small subset of the known
mechanisms. Moreover, new mechanisms appear every year. In many ways this is the
ultimate compiler challenge, one that to date has been too formidable for much of the
compiler community, who either prefer to stop at the instruction level or do not know that
there is something beyond. I hope this work will inspire some of you to step outside this
boundary, take the more encompassing view, and compile to gates!

155

156

Appendix A

Complete Evaluation Modes

In total, eight evaluation modes result from the permutation of compilation and interpre-
tation at the high-level, machine-level, and logic-level. This chapter restates the first four
modes, introduced in Chapter 2, and continues with the remaining high-level interpreta-
tion modes. These last four modes complete the range of possibilities and should stimulate
further research.

Table A.1 lists all eight modes. The "level" column lists the number of interpretation
levels followed by the letters H, M, or L to denote which levels are interpreted. Figure A-
1 contains the evaluation dominos for the eight modes. Modes are grouped by level of
interpretation.

Figures A-2 shows an alternative arrangement of the eight modes on the corners of
a cube. In this cube, modes connected by an edge differ by a single interpret/compiler
interchange. Each cube face corresponds to a common evaluation mode at one level. For
example, the shaded face corresponds to the high level compilation modes, Modes 0-III.
This figure can also be viewed as a lattice with Mode 0 as top
The number of levels of interpretation in a given mode equals
from the top to that mode.

and Mode VII as bottom.
the distance in the lattice

Mode Example level high machine logic
(H - M) (M - L) (L - P)

0 Custom ASIC 0 compile compile compile
I FPGA Computing 1.L compile compile interpret
II RISC Processor 1.M compile interpret compile
III Softcore processor-on-FPGA 2.ML compile interpret interpret
IV PicoJava Chip, Scheme Chip 1.H interpret compile compile
V JavaVM-on-Processor 2.H1M interpret interpret compile
VI JavaVM-specialized-to-FPGA 2.HL interpret compile interpret
VII JavaVM-Processor-FPGA 3.HML interpret interpret interpret

Table A.1: Complete evaluation modes with examples

A.1 High-Level Compilation Modes

The following paragraphs restate the high-level compilation modes from Chapter 2, along
with their denotational semantics. See Figure 2-8 for a review of denotational semantics.

157

InterpreterH = high level (unspecialized)M = machine level
L = logic level 0
P = physical level Compiler

KEY (specialized)

compHM compML

High-level Compilation
to Reconfigurable Logic
(e.g. DeepC, this work)

One level of interpretation

compHM

int ML

int LP

Processor-on-FPGA

Two levels of interpretation

comPHM comPML comPLP

Application-Specific Integrated Circuit
(Custom Chip)

comPHM int ML

t LcM M OMPLP

P

Compilation to
custom RISC processor
(e.g. MIPS)

intHM

H
M M L 'compML

intLP

High-level Intepreter
specialized to an FPGA

Zero levels of interpretation

intHM

H compML comPLP

M MML L P

Interpreter specialized
to custom hardware
(e.g. Scheme Chip)

intHM

M n ML

jitL P coMPLP

High-level Interpreter
on custom RISC Processor

Three levels of interpretation

Mint HM

M nt ML

L intLP

High-level Interpreter on Processor on FPGA

Figure A-1: Complete evaluation dominos

158

Machine Level Compilation
(top face)

0
4%

o4~
C,

0-V

4*/

4
0
4*'.

0,C'
0

4A.

M [Lr LP

IV

TVM
Vi

P L -L P,

*~0>

4*

M'VII

Mahn ee Itrrtto 0

Machine Level Interpretation
(bottom face)

Figure A-2: Dominos arranged on the corners of a cube

Mode 0 A custom chip can be designed to evaluate a particular high-level behavior.
The high-level behavior is customized into a machine-level behavior, usually represented in
Register Transfer Language (RTL), which is then further customized to logic. This logic
is in turn used to generate a physical layout. Specialization may be performed automat-
ically, manually, or in some combination. This mode is the most efficient because there
are zero levels of interpretation. However, a custom chip designed in this manner is not
reprogrammable - it can only evaluate one high-level behavior.

The semantics for Mode 0 are: f[[CL*PJ ([CM-LJ ([CH-MJ p))]ip d,
meaning first compile program p from language H to M, and then from language M to L,
and then from language L to P. The result is a physical realization of p in hardware that
is capable of processing data d.

Mode I The gate reconfigurable approach is the primary focus of this dissertation. A high-

level language is compiled into machine-level mechanisms that are further specialized to the

logic-level. This logic, unlike it Mode 0, is not further specialized, but instead evaluates on

programmable logic. Thus, this mode has one level of interpretation and is less efficient than

Mode 0. Yet, with this level of interpretation the system is fully programmable and thus
universal - different high-level behaviors can be evaluated on the same physical hardware.

The semantics for Mode I are: [LdPgp < [CM-L] ([CHMM p),d >,
meaning compile the program p from language H to M and from language M to L. Then,
interpret language L, along with data d, on a pre-fabricated IL-P machine.

159

Mode II Traditional processors offer the most conventional form of computing. Lan-

guages are compiled to the instruction set architecture of a processor. The processor is in

effect an interpreter for machine-level programs. The processor is implemented in logic that
is further specialized, manually or automatically, to the physical-level. Like Mode I, Mode
II is also universal because of the machine level interpretation layer.

The semantics for Mode II are: [[CL*P I IML p < (V HMm I p), d >,
meaning compile program p from language H to M and interpret it on a machine-level

interpreter IML- This machine-level interpreter is written in language L and pre-fabricated
by compiling language L to P. Note that this last compilation step can be done manually.

Mode III Softcore processors consist of a combination of the interpreter in Mode I with
the interpreter in Mode II. Although the high-level language is compiled to machine instruc-
tions, neither is the machine further specialized to logic nor is the logic further specialized
to the P. Thus these systems have two levels of interpretation. FPGA vendors have re-
leased softcore processors into the marketplace. With softcore processors, new high-level
programs can be evaluated without re-specializing to FPGA logic. However, with double
the interpretation one can expect roughly double the overhead in comparison to Mode I or
Mode II.

The semantics for Mode III are: [IL-P p < IML, < (WCHMM p), d >>, meaning
compile program p from language H to M and interpret the compiled program, along with

its data d, on a machine-level interpreter IML. This interpreter is written in language L
and is itself interpreted by a logic-level interpreter IL-+p

A.2 High-Level Interpretation Modes

High-level interpretation modes, exhibited by architectures such as Sun's PicoJava chip [101]
or the Scheme-79 chip [741, should not be discounted. These direct-execution modes relieve
compiler burdens while allowing devices to adapt quickly to new software configurations -
software that recently arrived over a slow network link, for example. In modern computer
architecture teachings, direct-execution machines are considered "dead", and usually only
mentioned historically or as an example of what not to do. This design space should not
be discarded so lightly. The following paragraphs discuss each high-level interpreted mode
in further detail.

Mode IV This mode is popular for evaluating interpreted languages. An early example
of this mode is a Scheme Chip designed at MIT in 1978-79. A modern example is Sun's
PicoJava chip, a hardware implementation of the Java Virtual Machine. Another example
is the Basic Stamp [106], a popular Basic platform for robotics. The success of Mode IV lies
in the ability to overcome the interpretation overheads at the highest level by specializing
the machine level with respect to this high-level interpreter. This machine specialization
results in only one interpretative layer and thus competitive performance with Mode I and
Mode Ill. There are many advantages to this mode when the high-level language is dynamic.

The semantics for Mode IV are: [[CLP ([CMLJ IH-M)Jp < p,d >, meaning

interpret program p, in a high-level language H, with an IH-fM interpreter written in

'Whether or not there is only one interpreter if the machine is specialized into microcode is open for

debate.

160

language M. This interpret is compile from language M to language L, and furthermore to

the physical level (language P).

Mode V This mode consists of a high-level interpreter executing on a traditional processor
- for example, a Scheme or Java interpreter running on a workstation. This mode is known
to be slow. Advantages are portability - the same high-level interpret can execute on
different machine-level processors - and minimal compile time. A new language may be
interpreted until compiler support is available.

The semantics for Mode V are: [[CL-P IM*L I < IHM, < p, d >>, meaning inter-
pret program p, in a high-level language H, with an IH~M interpreter, written in language
M. This interpret is interpreted in language L with an IM-L machine, itself compiled to
P.

Mode VI This mode consists of a high-level interpreter that is specialized to an FPGA.
This is an uncommon mode, sort of the antithesis of the traditional Mode II approach. You
may need to think for a few minutes to appreciate what it means to execute in this mode.
I am not aware of commercial examples of this mode, although synthesis of the publicly
available PicoJava architecture to an FPGA has likely been tried. This mode may be a
promising area for future research, but it does carry a double interpretation penalty.

The semantics for Mode VI are: [IL-+P p < (VlML IH-+M), < p, d >>, meaning
interpret program p, in a high-level language H, with an IHM interpreter, written in
language M, and compiled to language L. This compiled interpreter is further interpreted
by an IL-p machine (such as an FPGA).

Mode VII This mode is fully interpreted. Like Mode V, this Mode is interesting when
compilation tools are immature for a new language or architectural technique. The three
levels of interpretation overhead will multiplicatively inhibit performance, making this un-
likely to be a desirable mode except for pedagogical purposes. However, a Mode VII system
can be built without compilation technology.

The semantics for Mode VII are: [IIL-+PID p < IM- L, < IH+M, < p, d >>>, meaning
interpret program p, in a high-level language H, with an IH-+M interpreter, written in
language M. This interpret is interpreted in language L with an IML machine, itself
interpreted by an IL-+P machine. Thus this mode needs no compilation.

A.3 Hybrid Modes

Hybrid systems are formed when two or more evaluation modes are combined in the same
system. For example, embedding hardcore processors in FPGA devices forms a Hybrid I-II
system. Both Xilinx and Altera have introduced Hybrid I-II systems at the time of this
writing. Hybrid systems have already been explored in research by many systems cited in
the related work (Section 1.4), including NapaC, GARP, PRISC, and the originally proposed
Raw machine. Mode I-II hybrids are also being combined with softcore processors, resulting
in Mode I-II-III hybrids. Furthermore, other companies (such as adaptivesilicon.com) are
selling FPGA cores to ASIC customers and FPGA manufacturers are customizing standard
interfaces into their Mode I devices. With the ever increasing transistor densities expected
in future devices, design engineers should be prepared to encounter all permutations of
modes.

161

162

Appendix B

Emulation Hardware

Section 5.3 and Section 5.4.5 discussed use of the VirtuaLogic Emulation System as a DeepC
target and for functional verification of designs compiled from a high level. Section 1.4.1 also
discussed previous work where an emulation system was used as a reconfigurable computing
platform. This appendix extends the previous discussions by describing further results using
DeepC to compile to an emulator. It also includes descriptions of several prototype host
interfaces used to turn an emulator into a reconfigurable computer.

In support of my thesis, I use DeepC to generate results similar to those presented
in the Raw Benchmark Suite. In the Raw Benchmark Suite, results were generated with
a combination of manual and automatic techniques. Here, besides being automatically
generated, the results are improved and more scalable. Like in the Raw Benchmark Suite,
the emulator and its host interfaces are working hardware systems, further proving the
approaches of DeepC in the context of a real system.

B.1 DeepC Compilation Results and Functional Verification

Compilation to the VirtuaLogic system enables comparison with earlier Raw Benchmark
Suite results, in which specialization of architectural mechanisms was performed manually.
Table B.1 and Figure B-1 contain the gate counts reported by Synopsys when targeting the
VMW technology library. Readers interested in studying these results further can compare
to the gate counts reported in the Raw Benchmark Suite [10]. The gate counts here are
larger; however, in contrast to the previous results, these tiles have been generated from
a high-level language. Also, gate area does not grow (except logarithmically, as bitwidths
increase) with increasing problem size. Only memory area grows proportional to problem
size.

Jacobi has been downloaded to the emulator and verified to work. Figure B-2 shows
the tool flow used. The left flow is the standard DeepC compiler flow. Following RTL
generation, an RTL logic synthesizer and then FPGA vendor synthesis tools are run. The
result is a gate-level configuration, an FPGA bitstream. The flow on the right shows
verification with emulation. The target of logic synthesis is a special technology library for
emulation. Following synthesis are the steps of Virtual Wires: Multi-FPGA partitioning,
Virtual Wires Scheduling, and Virtual Wires Synthesis. This path synthesizes multiple
FPGAs. The resulting bitstreams are downloaded to the emulator and targetless emulation
is performed. Targetless emulation, also called simulation acceleration, uses one of the host
interfaces described in section B.2.

163

Benchmark Combinatonal Sequential Total Area

I (VMW Gates) (VMW Gates) (VMW Gates)
adpcm 8626 3192 11818
bubblesort 2668 1640 4308
convolve 13303 3584 16887
histogram 4116 2680 6976
intfir 3169 1712 4881
intmatmul-vl 4073 2088 6161
intmatmul-v2 3940 2956 5996
jacobi 3844 2120 5964
life-vI 12822 3504 16326
life-v2 4355 2120 6475
median 7316 5768 13084
mpegcorr 4027 2416 6443
parity-vl 1223 1176 2399
parity-v2 1337 1152 2489
pmatch-vl 2266 2440 4706
pmatch-v2 2972 3096 6068
sor 3672 2040 5712

Table B.1: VMW gate count

18000 -

16000-

14000 -

12000 -

0 10000 -

8000

6000 -

4000

2000

0

0
:E CIC. '0 0-0 0 >

w E c

Figure B-1: Gatecount after synthesis to VirtuaLogic Emulator

Benchmarks are sorted by size to compare requirements across benchmark types.
This metric is comparable with the VMW gates reported in [10] and [11].

164

* Sequential
O Combinational

0

0 0

E E- E
CL

.S

C/FORTRAN Program

eepC Compiler
Through RTL Generation

Verilog Behavioral RTL

RTL Logic Synthesis

Verilog Structural RTL

Vendor Specific Synthesis

I

Gate-Level Configuration

RLLogic Synthesis
to Emulation Target

Multi-FPGA Partitioning

rtual Wires Scheduling

Virtual Wires Syntheis

Vendor Specific FPGA

Syn----'

Download to Logic
Emulation Hardware

Targetless Execution Typical Input Data
on Logic Emulator

Result
Cycle Count

Does program execute
as expected?

Figure B-2: Verification with a logic emulator

B.2 Host Interfaces

In this prototype system (Figure B-3), the emulator is extended with a host interface. A
VirtuaLogic Emulator (VLE) from IKOS Systems is coupled with a host computer via an
interface card. Not shown is a SCSI interface to the emulator for downloading configurations
and controlling clock speed. This production VLE system consists of five arrays of 64
Xilinx 4013 FPGAs each. The FPGAs on each board are connected in nearest-neighbor
meshes augmented by longer connections to more distant FPGAs. Boards are coupled with
multiplexed I/Os. Each board has several hundred external I/Os, resulting in total external
I/O connections of a few thousand.

When used as a logic emulator, the external I/O interface of the VLE is connected to
the target system of the design under emulation. For reconfigurable computing, we have
instead connected a portion of the external I/O to an interface card. This card serves as
a transportation layer for communicating with device drivers in the host. The following
section describes several generations of host interfaces.

165

Logic Emulation
Tool Flow

Sbus
Interface External 1/O

Card Interface

32 data
Host Workstation 24 addr Logic Emulator

(SparcStation 10/51) (IKOS VirtuaLogic)

Figure B-3: Host interface to emulator

B.2.1 WILD-ONE Host Interface

The latest host interface is the WILD-ONE host interface, built with an Annapolis Micro
Systems WILD-ONE programmable PCI card. (I helped Alex Kupperman implement this
interface for his B.S. Thesis [83].) This card has a synchronous bus with 20 bits of address
and 64 bits of data that may be read and written directly. Both DMA and memory-mapped
I/O are supported. We have clocked this interface at emulation speeds of 1-2 MHz.

This card installs in a personal computer (PC). The reconfigurability of the WILD-
ONE card permits a flexible host interface design. The PCI card contains two Xilinx 4036
FPGAs that implement the host interface. Three 32-bit busses connect the FPGA pins to
an extra connector on the card. We hired a consultant (Eric Bovell) to design a custom
daughtercard to interface between this connector and the VirtuaLogic cable. The Annapolis
system includes API drivers for the PC to talk to the card from a C program. Figure B-4
shows the WILD-ONE card with the daughtercard installed. Figure B-5 show the other
side of the WILD-ONE card.

In contrast to previous interfaces, this design implements a synchronous interface with
a common clock. Both the WILD-ONE FPGAs and the emulator sample a clock generated
by the WILD-ONE card. Internal to the Annapolis card, a datapath is implemented to
interconnect the PCI bus to a read/write interface. Although a fast clock runs inside both
the emulator and the WILD-ONE (about 25MHZ), they are only synchronized at emulation
speed.

Figure B-6 shows the components inside the host interface. This figure is from Alex's
Thesis [83]. In this model, applications in the emulator access the host as if it were memory.
On the PC side, writes to particular addresses are used as specific commands to read, write,
reset, and otherwise control the emulator. In the figure, the memory-mapped module in
the emulator, written in Verilog, is like a device driver. Upon compilation, this module
is linked with the output from DeepC. The components inside the PC include the WILD-
ONE FPGA bitstream and other software. This software includes the Annapolis driver,
an interface library written by Alex, and a user C program (labeled "Emulated Device").
The emulated device is a shell for the portion of the user program that evaluates on the
emulator.

166

Figure B-4: Annapolis Micro Systems WILD-ONE with custom connector card

Figure B-5: Back of WILD-ONE

167

PC Emulator

WILD-ONE
Emulated Device board Application

Interface Library -
FPGA Circuit - Memory-Mapped

Module
WILD-ONE API

-- I

Figure B-6: Components of host interface

The interface is enclosed in dashed boxes and works across hardware and software.

B.2.2 SLIC Host Interface

Before development of the Wildfire host interface, I designed an interface with the Sun SLIC
EB-1 SBus card [47] development card. The introduction from the SLIC documentation
described the card as follows:

Dawn VME Products SLIC EB-1 is a kit for prototyping hardware and software
that offers a total solution for developing new SBus applications or porting

existing applications from a different bus architecture. The kit centers around

the Motorola MC92005 (a.k.a. SLIC), a complete SBus slave interface in a

single chip. The MC92005's PBus is an asynchronous programmable private bus,
whose signals and timing can be redefined dynamically, allowing it to interface
to many commercially-available peripheral chips.

In this setup (Figure B-7), the external I/Os of an IKOS Hermes VirtuaLogic Emulation
System are connected to the PBus interface of a SLIC card. This SLIC card is then installed
in a host SPARC workstation. The SLIC card plus its device driver function as a transport
layer. In the figure, the central board of connectors is the breakout board used to match
of emulator I/Os with a target system. In this case, the target system is the connector
on the interface card. A separate SCSI interface cable is connected to the emulator for
downloading configurations and controlling clock speed.

When used as a logic emulator, the external I/O interface of the VLE is connected
to the target system of the design under emulation. Just as in the Annapolis interface,
some external I/Os are instead connected to an interface card. The SLIC card has an
asynchronous bus with 24 bits of address and 32 bits of data. This bus can be read and
written by memory-mapped I/O to the Sparc Sbus. I operated this interface at conservative
rates of 0.25MHz for reads and 0.5MHz for write operations given a 1MHz emulation clock.
This provided 1-2 Mbytes/sec rates for communication between the host CPU and the
FPGAs of the emulator. This limited I/O rate allows one 32 bit read/write every 100/50
cycles of the 50MHZ host CPU.

Verilog code in files named interface.v and system.v implement the VLE side of the
interface. Synopsys scripts interface.syn and system.syn control synthesis of this code into

an IKOS-supplied target library. The IKOS files vmw.clk and vmw.pod describe the con-

168

Figure B-7: SLIC interface

figuration at MIT. All of these files can be found in the include directory for the SLIC
interface, both in the Raw Benchmark Suite release and in the DeepC release.

This interface operated successfully to verify the Raw Benchmark Suite results [10] as
reviewed in Section 1.4.1.

B.2.3 Transit Host Interfaces

The oldest SBus interface to the emulator, described in this paragraph for archival purposes,
was base on the MIT's Transit SBus Interface. Transit documentation describes the interface
as follows:

This note describes an SBus interface designed for providing interfacing from an
SBus based machine to various custom hardware. This interface was designed
primarily for communication with boundary-scan controllers and Transit nodes
Nevertheless, it uses a minimal asynchronous interface making it suitable for
providing interfacing to many devices. The interface is an SBus slave card that
supports only single-word read and write operations. The interface card itself
includes a boundary-scan controller that supports two independent boundary
scan paths.

This interface connected an early Argus version of the IKOS VirtuaLogic Emulator to a host
SPARC 10 Workstation. This interface had a 24 bit address, 32 bit data connection that was
read and written with memory-mapped I/O. It operated in the 100KHz to 1MHz, making
it usable for both simulation acceleration and reconfigurable computing applications.

169

170

Appendix C

Data For Basic Results

C.1 Mode 0 Basic Results

Section 6.3.1 refers to the data in Tables C.1 and C.2.

Benchmark DeepC Rawsim, 1 tile UltraSparc IIi Speedup Cross-technology
Cycles Cycles (instr) gcc -00/-05 (Rawcc/DeepC) (Sparc/DeepC)

adpcm 392K 3.07M(3.02M) 9.7M/1.5M 7.8X 3.8X
bubblesort 265K 3.16M(2.90M) 6.61M/1.6M 11.9X 6.0X
convolve 5.38K 72.4K(60.7K) 92.8K/61K 13.5X 11.3X
histogram 34.7K 247K(235K) 550K/81K 7.1X 2.3X
intfir 103K 714K(681K) 1.8M/540K 6.9X 5.2X
intmatmul-vl 111K 789K(788K) 2.5M/429K 7.1X 3.9X
intmatmul-v2 112K 819K(817K) 2.5M/429K 7.3X 3.9X
jacobi 94.4K 847K(842K) 1.5M/317K 9.0X 3.4X
life-vl 219K 1.90M(1.90M) 2.9M/567K 8.7X 2.6X
life-v2 115K 885K(885K) 1.3M/269K 7.7X 2.3X
median 203K 1.07M(1.02M) 4.2M/723K 5.3X 3.6X
mpegcorr 4.85K 35.7K(35.7K) 90.0K/14K 7.4X 2.9X
parity-vl 70.7K 516K(885K) 921K/112K 7.3X 1.6X
parity-v2 103K 686K(686K) 1.24M/240K 6.7X 2.3X
pmatch-vl 236K 2.57M(2.45M) 3.5M/1.0M 10.9X 4.2X
pmatch-v2 398K 2.93M(2.93M) 5.86M/807K 7.4X 2.0X
sor 35.6K 264K(2.63K) 482K/62K 7.4X 1.7X

Table C.1: Cycle counts

For each benchmark, I measured the number of clock cycles to execute with DeepC
compiling to RTL Verilog, on the Raw Simulation (compiled by Rawcc), and on
an UltraSparc IIi (compiled by gcc). The most relevant speedup is between DeepC
and Rawsim. Comparing to UltraSparc is only used as a known reference point for
a production system.

171

Benchmark Non-memory Cell Area Silicon area Area Fraction latency power @300MHZ
I_ total (comb, seq) (mm

2
, lambda2) of a Mips Core total

adpcm 29421 (21024, 8397) 0.22 / 27M 5.8 % 3.26 ns 7.10 mW

bubblesort 10401(5968, 4433) 0.08 / 10M 2.0 % 3.02 ns 3.45 mW
histogram 15260 (8263, 6997) 0.11 / 14M 3.0 % 2.67 ns 3.59 mW
intfir 11885 (7388, 4497) 0.09 / 11M 2.3 % 2.77 ns 3.16 mW
intmatmul-vl 15083(9558, 5525) 0.11 / 14M 3.0 % 3.04 ns 4.36 mW
intmatmul-v2 13931(8774,5157) 0.10 / 13M 2.7 % 2.90 ns 3.97 mW
jacobi 12750(7437, 5313) 0.10 / 12M 2.5 % 2.93 ns 3.57 mW
life-vi 43728 (34699, 9029) 0.33 / 41M 8.6 % 3.04 ns 18.8 mW
life-v2 14797 (9456, 5341) 0.11 / 14M 2.9 % 2.89 ns 4.38 mW
median 29280 (14852, 14428) 0.22 / 27M 5.7 % 3.18 ns 8.57 mW
mpegcorr 14107 (8067, 6040) 0.11 / 13M 2.8 % 2.94 ns 5.26 mW
parity-vl 5266 (2312, 2954) 0.04 / 5M 1.0 % 2.63 ns 1.80 mW
parity-v2 6930 (3632,3298) 0.05 / 6M 1.4 % 2.60 ns 2.10 mW
pmatch-vl 11243 (5126, 6117) 0.08 / IOM 2.2 % 2.96 ns 3.44 mW
pmatch-v2 13896 (6139,7757) 0.10 / 13M 2.7 % 2.75 ns 4.77 mW
sor 13790 (8496, 5294) 0.10 / 13M 2.7 % 3.13 ns 6.12 mW

Table C.2: Power and area estimates

Data is reported after Synopsys synthesis to IBM SA27E ASIC technology. Area
numbers shown assume a cell size of 3.762 um 2 with 50 percent routability. For this
process, lambda = 0.09 u. Area and Power estimates do not include RAM cost
or overhead for pads and periphery circuitry. A clock rate of 300 MHz or more is
achieved in each case. Power is estimated at a 300 MHz clock speed. The MIPS
area is estimated as 25 percent of a RAW Tile and does not include RAM area.

172

C.2 Mode I Basic Results

Section 6.3.2 refers to the data in Tables C.3, CA, C.5 and C.6.

Table C.3: Synthesis to Xilinx Virtex-E-7 process

The timing file for Virtex-E-8 was not available at the time of this experiment, so
delays are for Virtex-7. Virtex-E-8 data is used during place and route, so these
numbers are pessimistic for timing.

C.3 Basic Sensitivity Results

Section 6.4 refers to the data in Tables C.7 and C.8.

173

Benchmark Number of latency

I core cells (luts, flops) I_ I
adpcm 2562 (414, 680) 20.47 ns

bubblesort 931 (201, 221) 24.25 ns
convolve 15864 (14041, 707) 37.59 ns
histogram 1223 (320, 349) 17.64 ns
intfir 1046 (521, 239) 17.64 ns
intmatmul-vl 1398 (776, 285) 32.93 ns
intmatmul-v2 1414 (733, 263) 32.63 ns
jacobi 1171 (458, 265) 17.91 ns
life-vI 3586 (1346, 440) 23.22 ns
life-v2 1829 (745, 366) 20.23 ns
median 2157 (827, 721) 20.38 ns
mpegcorr 1166 (278, 305) 17.21 ns
parity-vI 493 (118, 157) 13.28 ns
parity-v2 555 (174, 135) 14.35 ns
pmatch-vl 824 (191, 322) 15.05 ns
pmatch-v2 971 (249, 414) 14.55 ns
sor 1181 (276, 275) 18.91 ns

Benchmark Resources required Equiv. Gate Count Clock Frequency Clock Total
Luts/Flops/Rams/States gates / gates+ram (% routing) Cycles Latency

adpcm 1544 / 669 / 27 / 23 12K / 310K 100 MHz (65%) 390K 3900 us
bubblesort 336 / 201 / 4 / 17 5K / 70K 80 MHz (60%) 260K 3300 us
convolve 1571 /426 / 2 / 30 44K / 50K 100 MHz (65%) 5400 54 us
histogram 464 / 294 / 14 / 29 7K / 240K 100 MHz (50%) 35K 350 us
intfir 466 / 202 / 10 / 16 5K / 170K 50 MHz (60%) lOOK 2000 us
intmatmul-vl 723 / 250 / 14 / 25 7K / 240K 50 MHz (60%) 110K 2200 us
intmatmul-v2 725 / 230 / 14 / 34 7K / 240K 50 MHz (60%) 110K 2200 us
jacobi 573 / 248 / 28 / 35 7K / 470K 100 MHz (60%) 94K 940 us
life 1731 / 370 / 4 / 58 17K / 80K 80 MHz (60%) 220K 2750 us
life-v2 769 / 245 / 2 / 54 9K / 40K 100 MHz (50%) 120K 1200 us
median 1117 / 696 / 60 / 31 13K / IM 100 MHz (50%) 200K 2000 us
mpegcorr 481 / 296 / 14 / 30 7K / 240K 100 MHz (60%) 4900 49 us
parity-vI 179 / 137 / 8 / 11 3K / 130K 100 MHz (60%) 70K 700 us
parity-v2 189 / 143 / 8 / 15 3K / 130K 100 MHz (60%) 100K 1000 us
pmatch-vl 293 / 276 / 15 / 17 5K / 80K 100 MHz (60%) 350K 3500 us
pmatch-v2 304 / 373 / 15 / 19 5K / 80K 100 MHz (60%) 400K 4000 us
sor 339 / 215 / 14 / 22 6K / 230K 100 MHz (50%) 36K 360 us

Table C.4: Synthesis results after place and route to Xilinx Virtex-E-8

Beside the clock frequency is the percent of the clock cycle devoted to routing.
Apparently, the synthesizer is smart enough to add drivers for larger fanouts such
that wire delay and logic delay is approximately balanced.

Benchmark Switching Memory Quiescent [Luts Regs [Rams Total Total
I Activity Activity Power Power Power Power Power] Energy

adpcm 11.95 % 8 % 29 66 33 27 155 mW 607 uJ
bubblesort 13.07 % 96 % 9 23 9 84 125 mW 414 uJ
convolve 13.01 % 52 % 29 417 28 41 515 mW 28 uJ
histogram 8.86 % 27 % 58 29 24 99 210 mW 73 uJ
intfir 10.46% 21 % 14 18 4 32 68 mW 141 uJ
intmatmul-vl 9.68% 30 % 29 18 12 34 93 mW 206 uJ
intmatmul-v2 10.83% 30 % 9 24 8 62 103 mW 231 uJ
jacobi 10.2 % 46 % 14 37 20 151 222 mW 210 uJ
life-vI 12.74 % 43 % 14 86 38 23 161 mW 442 uJ
life-v2 9.94 % 41 % 9 48 23 15 95 mW 109 uJ
median 12.98 % 11 % 81 92 57 48 278 mW 564 uJ
mpegcorr 9.78 % 14 % 9 33 21 42 105 mW 5 uJ
parity-vI 16.7 % 47 % 9 22 8 72 111 mW 78 uJ
parity-v2 7.88 % 48 % 9 12 9 18 48 mW 49 uJ
pmatch-vl 9.3 % 32 % 14 25 14 69 122 mW 289 uJ
pmatch-v2 13.0 % 33 % 14 19 18 118 169 mW 674 uJ
sor 11.7 % 76 % 36 32 16 414 498 mW 177 uJ

Table C.5: More synthesis results after place and route to Xilinx Virtex-E-8

Synthesis is to the smallest Virtex part that fits each design. Memory activity is
averaged across all RAMs.

174

Benchmark MIPS core VirtexE-8 (deepc) J Deep versus MIPS Deep versus MIPS

(1WL300MHZ) (from Table C.5) Energy Reduction Energy-Delay Reduction

adpcm 10 mJ 607 uJ 17X 44X
bubblesort 11 mJ 414 uJ 25X 81X
convolve 241 uJ 28 uJ 9X 39X
histogram 823 mJ 73 uJ lix 27X
intfir 2.4 mJ 141 uJ 17X 20X
intmatmul-vl 2.6 mJ 206 uJ 13X 15X
intmatmul-v2 2.7 mJ 231 uJ 12X 14X
jacobi 2.8 mJ 210 uJ 13X 40X
life-vi 6.3 mJ 442 uJ 14X 33X
life-v2 3.0 mJ 109 uJ 27X 69X
median 3.6 mJ 564 uJ 6X lix
mpegcorr 0.1 mJ 5 uJ 23X 57X
parity-vl 1.7 mJ 78 uJ 22X 53X
parity-v2 2.3 mJ 49 uJ 46X 103X
pmatch-vl 8.6 mJ 289 uJ 30X 108X
pmatch-v2 9.8 mJ 674 uJ 14X 36X
sor 0.9 mJ 177 uJ 5X 12X
sor-mem4 0.9 mJ 44 uJ 20X 25X

Table C.6: Energy and energy-delay comparison

Energy is computer from power and runtime. Power for the VirtexE-8 is reported
from the Xilinx Power Estimator.

175

Table C.7: Cumulative contribution of specializations to cycle count reduction

The base speedup measures speedup versus a MIPS core. Disambiguation speedup
is obtained when ECU is activated, while predication speedup is obtained with
macro formation. Speedup from extra unrolling was not assumed in the previous
basic results, although a significant additional gain is achievable in several instances.

Benchmark Cell Area latency timing met? power @300MHZ
I total (comb, seq) I total

bubblesort 25381 (17891, 7490) 3.80 ns no 6.89 mW
histogram 23764 (15144, 8194) 3.24 ns yes 7.59 mW
intfir 18038 (11857, 6181) 3.09 ns no 4.32 mW
intmatmul-vl 38471 (29397, 9074) 3.28 ns yes 7.04 mW
intmatmul-v2 44483 (35125,9358) 3.28 ns yes 6.73 mW
jacobi 29291 (19703, 9588) 3.07 ns no 8.46 mW
life-vl 122795 (105739, 17056) 3.34 ns no 39.4 mW
life-v2 48841 (14140, 34701) 3.29 ns yes 10.3 mW
median 36329 (20515, 15814) 3.14 ns yes 8.63 mW
mpegcorr 29090 (18716, 10374) 3.11 ns yes 6.92 mW
parity-vl 11795 (6581, 5214) 3.10 ns yes 2.73 mW
parity-v2 13947 (7642, 6305) 3.01 ns yes 3.44 mW
pmatch-vl 15917 (8672, 7245) 3.14 ns yes 3.70 mW
pmatch-v2 20790 (12603, 8187) 3.27 ns yes 6.27 mW
sor 29520 (21233, 8287) 3.42 ns no 14.5 mW

Table C.8: Synthesis to IBM SA27E process without bitwidth analysis

These results match the results in Table C.2, with the exception that bitwidth
analysis is not used.

176

Benchmark Base Disambiguation Predication Unroll 4

1 Speedup Speedup _Speedup Speedup
adpcm 3.7X 3.9M 7.8X 9.OX
bubblesort 3.1X 4.1X 11.9X 15.7X
histogram 7.1X 7.1X 7.1X 1LOX
intfir 6.9X 6.9X 6.9X 13.6X
intmatmul-vl 7.1X 7.1X 7.1X 9.7X
intmatmul-v2 7.3X 7.3X 7.3X 10.6X
jacobi 9.OX 9.OX 9.OX 11.3X
life-vi 6.3X 6.3X 8.7X 9.9X
life-v2 7.7X 7.7X 7.7X 10.X
median 3.9X 4.OX 5.3X 9.2X
mpegcorr 7.1X 7.4X 7.4X 12.OX
parity-vi 7.3X 7.3X 7.3X 11.7X
parity-v2 6.7X 6.7X 6.7X 10.1X
pmatch-vl 3.7X 4.4X 10.9X 13.2X
pmatch-v2 3.7X 4.5X 7.4X LOX
sor 7.4X 7.4X 7.4X 9.3X

Appendix D

Data For Advanced Results

D.1 Mode 0 Advanced Results

Section 6.5.1 refers to the data in Tables D.1, D.2 and D.3.

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles
I _ _ router / crossbar router / crossbar router / crossbar router / crossbar

intmatmul-v2 112K 276K / 113K 133K / 47K 70K / 23K 37K /18K
jacobi 94K 126K / 82K 81K / 42K 83K / 26K 40K / 15K
mpegcorr 4.9K 12K / 5.8K 7.3K / 3.5K 5.9K / 2.7K 3.9K / 2.1K
life-v2 115K 152K / 76K 86K / 40K 51K / 22K 19K / 8.2K
parity-v2 103K 122K / 70K 71K / 35K 50K / 22K 28K / 10K
pmatch-v2 398K 829K / 333K 499K / 191K 597K / 356K 304K / 162K
sor 36K 66K / 32K 35K / 16K 27K / 9.0K 16K / 4.7K

Table D.1: Multi-tile cycle counts with and without router specialization

For the benchmarks compared, cycle counts are reported for one through sixteen tile

systems. The router cases take more cycles because of intermediate hops through

the routing network. The crossbar cases allow direct communication between tiles.

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles

(cells) router / crossbar router / crossbar router / crossbar router / crossbar

intmatmul-vl 15K 74K / 56K 271K / 292K 1014K / 885K 3803K/ 2331K
intmatmul-v2 15K 116K / 126K 286K / 268K 584K / 843K 2172K/ 2754K
jacobi 13K 44K / 44K 97K / 91K 226K / 256K 537K/ 665K
mpegcorr 14K 44K / 41K 101K / 104K 227K / 265K 624K/ 790K
life-v2 15K 59K / 49K 127K / 113K 271K / 313K 512K/ 694K
parity-v2 7K 21K / 21K 40K / 43K 109K / 127K 287K/ 400K
pmatch-vl 11K 63K / 55K 143K / 143K 352K / 424K 1053K/ 1296K
pmatch-v2 14K 55K / 49K 151K / 161K 352K / 410K 1103K/ 1364K
sor 14K 56K / 49K 69K / 118K 292K / 302K 702K/ 775K

Table D.2: Estimated total cell area for IBM SA-27E

The reported IBM cell area for one through sixteen tiles, with and without router
synthesis range from 7K to 3.8M. For up to eight tiles the router cases consumed

more area; at sixteen tiles the crossbars cases consumed more area. This cell area

does not include the area of the router, only the area of the main tile.

177

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles

I I router! crossbar router /crossbar router / crossbar I router/ crossbar
intmatmul-vl 4.4 mW 15.0 / 21.1 mW 51.2 / 78.4 mW 129.7 / 202.8 mW 351.3 / 634.3 mW
intmatmul-v2 4.0 mW 16.0 / 16.0 mW 47.1 / 66.4 mW 89.5 / 155.3 mW 247.6 / 470.4 mW
jacobi 3.6 mW 13.0 / 15.7 mW 28.7 / 34.1 mW 58.5 / 93.8 mW 106.8 / 223.2 mW
mpegcorr 5.3 mW 11.4 / 16.3 mW 24.9 / 37.5 mW 45.2 / 94.3 mW 116.2 / 255.5 mW
life-v2 4.4 mW 18.1 / 18.8 mW 35.6 / 43.8 mW 71.9 / 108.2 mW 132.0 / 241.8 mW
parity-v2 2.1 mW 6.7 / 7.5 mW 11.2 / 14.8 mW 30.8 / 48.1 mW 49.2 / 134.6 mW
pmatch-vl 3.4 mW 16.8 / 18.0 mW 38.1 / 55.9 mW 73.2 / 170.4 mW 247.7 / 472.2 mW
parity-v2 4.8 mW 15.8 / 18.8 mW 40.5 / 61.6 mW 87.6 / 158.7 mW 256.0 / 549.1 mW
sor 6.1 mW 18.3 / 16.3 mW 39.5 / 47.3 mW 63.7 / 134.5 mW 140.3 / 397.2 mW

Table D.3: Estimated total power for IBM SA-27E

Total power includes power for all tiles. Estimates do not include RAM power or

power for routing logic.

178

D.2 Mode I Advanced Results

Section 6.5.2 refers to the data in Tables D.4, D.5, D.6, D.7 and D.8.

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles
router/ crossbar router/ crossbar router/ crossbar router/ crossbar

intmatmul-vl 46MHZ 38 / 37 MHZ 34 / 31 MHZ 29 / 27 MHZ 23 / 24 MHZ
intmatmul-v2 47MHZ 34 / 34 MHZ 32 / 33 MHZ 26 / 29 MHZ 24 / 30 MHZ
jacobi 100MHZ 66 / 53 MHZ 63 / 58 MHZ 53 / 62 MHZ 51 / 67 MHZ
mpegcorr 95MHZ 77 / 89 MHZ 67 / 63 MHZ 53 / 55 MHZ 44 / 54 MHZ
life-v2 97MHZ 56 / 55 MHZ 52 / 48 MHZ 47 / 55 MHZ 43 / 53 MHZ
parity-v2 108MHZ 81 / 83 MHZ 93 / 96 MHZ 82 / 68 MHZ 65 / 63 MHZ
pmatch-vl 93MHZ 59 / 63 MHZ 59 / 56 MHZ 42 / 49 MHZ 38 / 68 MHZ
pmatch-v2 101MHZ 63 / 69 MHZ 52 / 47 MHZ 50 / 57 MHZ 44 / 51 MHZ
sor 100MHZ 79 / 60 MHZ 63 / 59 MHZ 43 / 58 MHZ 50 / 55 MHZ

Table D.4: Clock frequency after parallelization

Comparison of clock speed with (router) and without (crossbar) router specializa-
tion.

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles

I router / crossbar router / crossbar router / crossbar router / crossbar

intmatmul-vl 711 2302 / 2827 5071 / 4891 7908 / 6547 14677 / 15047
intmatmul-v2 725 4422 / 3993 4521 / 4181 5488 / 6462 15905 / 14220
jacobi 601 1205 / 1145 1326 / 1106 1345 / 1299 1374 / 1507
mpegcorr 416 878 / 854 1115 / 1038 1115 / 1189 1256 / 1237
life-v2 784 1695 / 1323 1903 / 1582 1977 / 2088 1808 / 1761
parity-v2 189 363 / 373 353 / 292 553 / 481 502 / 546
pmatch-vl 254 1447 / 1156 2036 / 3906 2517 / 4478 2896 / 2896
pmatch-v2 304 1180 / 922 1967 / 2235 2530 / 1929 3839 / 5117
sor 405 1141 / 760 1457 / 1345 1167 / 1891 1491 / 1316

Table D.5: Number of LUTs

The reported area results are for tile zero only. To approximate total area, multiply

by the number of tiles in each case. Area does not include small switch area for

router case.

D.3 Advanced Sensitivity Results

Section 6.6.1 refers to the data in Tables D.9.

179

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles
router! crossbar router/ crossbar] router / crossbar router / crossbar

intmatmul-vl 252 415 / 470 627/ 581 627 / 617 546/ 809
intmatmul-v2 230 419 / 388 534/ 524 481 / 671 537/ 1061
jacobi 239 374 / 386 357 / 406 303 / 530 302 / 538
mpegcorr 281 384 / 380 417 / 461 384 / 552 440 / 837
life-v2 245 497 / 404 437 / 404 443 / 576 440 / 768
parity-v2 153 207 / 229 196 / 183 280 / 276 205 / 416
pmatch-vl 300 625 / 585 598 / 642 598 / 775 590 / 1918
pmatch-v2 373 589 / 486 649 / 649 598 / 1416 590 / 1118
sor 257 423 / 302 432 / 483 270 / 746 283 / 274

Table D.6: Number of registers

The reported register usage results are for tile zero only. To approximate total

register usage, multiply by the number of tiles in each case. Register count does

not include small switch area for router case.

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles
IIrouter / crossbar router / crossbar router / crossbar |router / crosa

intmatmul-v2 10.8% 10.9 / 15.2% 12.5 / 12.7% 10.8 / 11.4% 13.2 / 14.0%
intmatmul-v2 9.7% 11.1 / 11.3% 12.5 / 12.8% 14.5 / 13.0% 12.0 / 15.0%
jacobi 10.2% 11.0 / 13.7% 11.6 / 12.3% 11.2 / 14.3% 10.9 / 14.2%
mpegcorr 9.8% 9.2 / 9.7% 10.0 / 11.4% 9.6 / 15.8% 11.2 / 10.9%
life-v2 9.9% 11.4 / 12.6% 11.7 / 15.0% 11.1 / 13.7% 10.68/ 12.5%
parity-v2 7.9% 9.6 / 10.5% 6.9 / 8.5% 8.7 / 12.6% 7.8 / 11.2%
pmatch-vl 9.3% 7.6 / 14.4% 11.3 / 18.1% 12.8 / 14.4% 12.8 / 12.7%
pmatch-v2 13.0% 10.0 / 14.3% 10.2 / 12.4% 11.6 / 12.0% 12.7 / 14.1%
sor 11.7% 12.8 / 11.7% 10.4 / 11.3% 11.9 / 13.1% 11.9 / 11.8%

Table D.7: Estimated switching activity

Switching activity is generated with the dynamic power estimation technique in

Section 5.4.4.

Benchmark One Tile Two Tiles Four Tiles Eight Tiles Sixteen Tiles
router/ crossbar router/ crossbar router / crossbar router / crossbar

intmatmul-v2 59 mW 206 / 334 mW 881 / 791 mW 2007 / 1633 mW 7142 / 8155 mW
intmatmul-v2 41 mW 349 / 320 mW 741 / 722 mW 1668 / 1967 mW 7317 / 10270 mW
jacobi 71 mW 200 / 187 mW 410 / 339 mW 675 / 956 mW 1240 / 2332 mW
mpegcorr 63 mW 154 / 181 mW 326 / 329 mW 475 / 856 mW 1011 / 1213 mW
life-v2 80 mW 244 / 205 mW 484 / 476 mW 852 / 1288 mW 1347 / 1904 mW
parity-v2 30 mW 73 / 84 mW 109 / 113 mW 337 / 348 mW 421 / 641 mW
pmatch-vl 53 mW 166 / 246 mW 577 / 809 mW 1103 / 1950 mW 2268 / 4119 mW
pmatch-v2 51 mW 186 / 216 mW 453 / 552 mW 1209 / 1139 mW 3455 / 5953 mW
sor 84 mW 264 / 125 mW 407 / 387 mW 490 / 1188 mW 1435 / 1386 mW

Table D.8: Estimated power for Xilinx Virtex-8

For one tile, an accurate estimate of non-RAM power is determined with the Xilinx

Virtex Power Estimator, Version 1.5, and the switching activity in Table D.7. For

multiple tiles, a very rough estimate of the total power (for all tiles) is determined

using the following formula: Power = (lpJ * TotalRegisters + 10pJ * TotalLuts *
SwitchingActivity) * ClockSpeed/1000, where ClockSpeed is in MHz and Power is

in mW. I obtained these conservative parameters experimentally by playing with

the Virtex Power Estimator.

180

Benchmark One Tile Two Tiles Four Tiles Eight Tiles J Sixteen Tiles
router / crossbar route / crossbar route / crossbar [route / crossbar

intmatmul-vl 25 116 / 73 180 /72 341 / 115 667 / 207
jacobi 35 115 / 54 160 /71 238 /80 254 /87
mpegcorr 30 108 / 53 125 / 57 168 / 69 141 / 75
life-v2 54 169 / 84 256 / 106 346 / 124 254 / 106
pmatch-vl 18 115 / 56 204 / 81 455 / 171 1023 / 455
sor 22 87 /41 113 /48 158 /55 179 / 63

Table D.9: Number of states used in scatter plot

This data is used in Figure 6-17 to show the correlation between the number of

states and clock speed.

181

182

Appendix E

VPR Data and FPGA Layouts

E.1 Input Data and Results

This appendix contains data for the results reported in Section 6.3.2. To generate this
data with VPR (the FPGA place and route tool introduced Section 5.3), I have used the
architecture file and the commands in Figures E-1, E-2 and E-3.

Table E.1 contains three related tables. The first table includes the CLB count, minimum
routing channel requirements, and the critical path timing. A CLB is a cluster of four 4-
LUTs. The routing requirements, ranging from 25 to 66, were earlier graphed in Figure 6-8.
The CLB count ranged from 75 for parity-v1, to 1147 for convolve. Note that parity-vi
is small because of the simplicity of the function computed, while convolve is large because
the source code is unrolled; the median for the other benchmarks is 261 CLBs. Even though
the timing sensitive packer was used, the critical paths are much longer than when placing
and routing with Xilinx's tool (see the clock speeds in Table C.4) because they do not use
carry chains. The second table contains detailed data for blocks, CLBs, and total tracks, as
well as the total nets, inputs and outputs. The routing area, measured in minimum-width
transistors, is also in the second table. Low routing area assumes buffer sharing while high
routing area does not. In the third table are even more statistics. These statistics include
the inputs per CLB, the average and maximum bends in a wire, and the total, average,
and maximum wire and segment lengths. Wire and segment length are in CLB units. VPR
reports this data upon the completion of each place and route. See the VPR manual for a
longer explanation of each item. This data is included here, without further discussion, for
the benefit of FPGA architects and backend CAD tool developers.

E.2 Wire Length Distribution and Layouts

Figure E.2 lists the expected value of two-pin net lengths. The actual distribution for each
benchmark is in Figure E-4 through E-16. These distributions provide information about
the final layouts - longer nets correspond to more global routing. These final layouts are
in Figures E-17 to E-29, culminating the evidence for my thesis. Real layouts are visual
proof of my thesis - specialization of architectural mechanisms is effective in compiling
high-level programs to gate-reconfigurable architectures.

183

f7SJ

S3Ps8i3'Is }LdA TH~ @jqivj

6ZT/O-9/097 og,/L-9T/9gZLI f79/9TZ 90-LJO
8oT/R8E/6ZZZ 961/EYOT/9ZO9 99/99T 61-9 ZA-t49euid

L9/6fEf/E96 ZTT/6zL/9oZ 6?/LV71 LE-9 1A-X1jjxd

96/L9-9/O998 8W/'RT/919EZ 9v 1/08- T 8L w PaLu-

W/-9/6Uzv 86If71/TATW1 U1/9ZZ M69 ZA-InleuWLUjui

LL1/99K7 9VT/v'ZT/zzo6 6:V/661T ZL9 J~ujI
1761/178f7/1ZTf7 9917/f/86UI1 06/007 91-9 tue.a2Qsiq

99t/1Z6/6Q7, 6,L6/6-6Z/1L996 681/Z17C LEY2 @AIOAUO3

V9tA/999/9U;ZlI LO9/R-6/9:VtW9 9ZZ/I97 Z99udi
X'e/V /71 e/2AV/1oI XW/A U1 jad

6Lf-66HK / WOIIIJ-IIOI LO1/61/E9L 1769/L9?/M JOS

I1CR-LT9E /)18f9-Mf76g 1oZ/86/889 9017/991/T791 ZA-IY~eu-id
17T117LLLE /)109-12917 ZLT/69/997 W8I/oT/9C TA-tPWTeiId
ZTR /V MTRE-M7 1768/fLZ 9Lz//t1 ZA-X41l~d

8E-9SmE M0L7,M917z 66/f7/NZ O1Z/9L/807, TA-Xj1Ifld
L9L-1914 / VMIZZ VI7,- 90TO/Sf:86 917/fU0/699 jwad

11917v-17911 / 1AJ08-1A1L91T 1717/tT6/17Z £06/66C/LH uuIptul
099-v-9LJ' / 1N6T14A1601T 16/8/CUf L69/99%/89fE ZA-OjiI
917917-89g17 / JAI901-MR 96 9TI/ZZ/Z09 17z/Eoz/11 !qoz)4e
60LE-7V17 / IALOVM0N66 O91/C 9/L8 9L9/18Z/L61 ZA-jnur-iui~u!

O29C-96U / ' O-M-i96 09T/Eg/gLS 8/32l/9817 IA-juIfteu-ijui_

609E-vZ / XZT8-MXi'z 09T/T9/LZL 191/1Z/ZZ __________

99Z/Iiof / IVI6-MOLR 691/Zg/ZgR 179/9RZ/LO9 tu2o~stq
0089-80T79 / JNL'9JA19?9 MI/8/96T OTU/T/z1711/o aAJOAUOC)

8fL-81fK ME78-)I9LL m17/994~89 9617/00Z/111 ljosolqqnq
6911-998S / IN18-INTI9' ZMA/JI/MT8 I9T1/U9/6N uizdpe

r al0iad / le1ol (Jolsisueu]1 Tf~pim nirn) vax 2nino-d J no/ui/slau I pi/qpsoq J jvstuq

su W80 'TO) 811T (21xz1) L9Z U£ JOS

sn (TTZ '91) 97Z (£ixT) 91 6Z ZA-tpl'end
Sn (L-LZ '99 YU (u~xT) OZT 6Z 1AP1Z)'eud
Sn (LvZ V6) 19£ (oixoi) Z8 A-jm
sn UL8 '99) Z~s3 (6x6) 9L 9zT-X1p
su WTI, '39zl) L-cq (R1xS1) WEO K miocodw
sn (Z 9V '9T) L-67 (O~xO) 66C c£IV UeIpaTU1

su (v8 1I7-9) 6 -L (9Tx9T) 99 Z T1 V A-OjtI

su (9c~ '9-8) vt's (S1x9T) ZOZ 6R !qoZ~
su (T 172 '99) 9.08 (L~xLT) f78Z U A-InfleulW1u!
su (2L17 'T9) 1-67 (LIxLT) WLZ 1£ TA-IflTiieiuI4ui_
Sn (Z1£ Z.ET) 17171 (g1xgT) 1Z 6Z Irnul-

su (v-9TZ 'E-L) 17£Z (VMU17) 21711 99 @AIOAUOD

Ssu (-f 'T8) 6-19 (9xgT) OOZ 1£ 4josalqqnq
su (O-OZ '9-U) 9'9LZ (9Zx9Z) Mf~ u____ Luzdpv

(Jau 'Zn)101 d (sjn-7 17) sgID~ 1luuq
Iua1!'D) Iq1OI fUillO3 2u 3T41urp J

* NB: The timing numbers in this architecture file have been modified
* to comply with our NDA with the foundry providing us with process
* information. The critical path delay output by VPR WILL NOT be accurate,
as we have intentionally altered the delays to introduce inaccuracy.
The numbers are reasonable enough to allow CAD experimentation,
though. If you want real timing numbers, you'll have to insert your own
* process data for the various, R, C, and Tdel entries.

Architecture with two types of routing segment. The routing is
fully-populated. One length of segment is buffered, the other uses pass
transistors.

Uniform channels. Each pin appears on only one side.

io-rat 20
chan-widthio 1
chan-width-x uniform 1
chan-widthy uniform 1

Cluster of size 4, with 10 logic inputs.
inpin class: 0 bottom
inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

inpin class: 0 bottom

inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

inpin class: 0 bottom

inpin class: 0 left

outpin class: 1 top

outpin class: 1 right

outpin class: 1 bottom

outpin class: 1 left

inpin class: 2 global top # Clock, global -> routed on a special resource.

* Class 0 -> logic cluster inputs, Class 1 -> Outputs, Class 2 -> clock.

subblocks.persclb 4

subblockjlut-size 4

#parameters needed only for detailed routing.
switch-block-type subset
Fc-type fractional

Fcsoutput 0.5

Fcjinput 0.5

Fc-pad 1

Figure E-1: VPR architecture file, virtex.arch

185

All comments about metal spacing, etc. assumed have been deleted

to protect our foundry. Again, the R, C and Tdel values have been

altered from their real values.

segment frequency: 0.3 length: 1 wire-switch: 0 opin-switch: 1 Frac-cb: 1. \
Frac-sb: 1. Rmetal: 1.35 Cmetal: 0.4e-15

segment frequency: 0.6 length: 6 wire-switch: 0 opin-switch: 1 Frac-cb: 0.5 \
Frac-sb: 0.5714 Rmetal: 1.35 Cmetal: 0.4e-15

segment frequency: 0.1 length: longline wire-switch: 0 opin.switch: 1 Frac-cb: 1. \
Frac-sb: 1. Rmetal: 1.35 Cmetal: 0.4e-15

Pass transistor switch.

switch 0 buffered: no R: 1600 Cin: 9e-15 Cout: 9e-15 Tdel: 20e-12
switch 1 buffered: yes R: 0 Cin: 4e-15 Cout: 9e-15 Tdel: 102e-12

Logic block output buffer used to drive pass transistor switched wires.

Used only by the area model.

R-minW-nmos 8229

R-minW-pmos 24800

Timing info below. See VPR manual for details.

CGipin-cblock 4e-15

T.ipin.cblock 200e-12

T-ipad 0

T-opad 0
v-sblk-opin-to-sblk-ipin 0

T.clb-ipin.to.sblk-ipin 0

T-sblk-opin-to-clb-opin 0

Delays for each of the four sequential and combinational elements

in our logic block. In this case they're all the same.

T-subblock T-comb:

T-subblock T-comb:

T-subblock T-comb:

T-subblock T-comb:

le-9 T-seq-in: .25e-9 Tseq-out: 1.2e-9

le-9 T-seq-in: .25e-9 Tseq-out: 1.2e-9

le-9 T-seq-in: .25e-9 Tseq-out: 1.2e-9

le-9 T.seqin: .25e-9 T.seq.out: 1.2e-9

Figure E-2: Continuation of VPR architecture file

CLUSTERSIZE

INPUTSPERGCLUSTER

LUTSIZE

WIDTH

F-s

INNERNUM

NUMROWS

NUMCOLS

F-c

ARCHFILE

ASTARFAC

INITT

=4

= 10

=4

= 46

=3
=1

= 11

= 11
=1

= virtex.arch
= 1.2
= 10

4 inputs per LUT.

max width routing channel for device.

Ordinary planar switchbox

F-c value for N=1

use this for N=1

Figure E-3: Settings for VPR

186

Benchmark 9-in net 1
length (avg)

adpcm 8.38
bubblesort 6.18
convolve 11.13
histogram 5.85
intfir 5.55
intmatmul-vl 6.13
jacobi 6.49
life-vI out of memory
life-v2 6.47
median 6.73
mpegcorr 6.68
parity-vl 3.82
pmatch-vl 4.91
sor 6.37

Table E.2: Expected value of 2-pin net lengths

C
-)
0
L.

CL

15

10

A00 10 20 30 40 50

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-4: adpcm wire length distribution

187

C
-0

0La

CL

15 15

16 24 32

101-

5

C

0)

-0
0
aL 101-

5

00 8 16 24 32

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-5: bubblesort wire length

0

1.0

5

0
0 10 20 30 40 50 60 70

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-6: convolve wire length

0 10 20 30

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-7: histogram wire length
0

0
0)

-0
0

0

0 0 0 0
Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-8: intfir wire length

188

15 15

0

10t-

Figure

C

15

01

I5

5

0

0a)
0L

10 20 30
10 20 30

Distance (CLBs)

Probability Distribution of 2-pin Nets

E-9: intmatmul-vl wire length

C
a)
C.)
a)

(a-o
0

0~

A
0 10 20 30

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-10: jacobi wire length

15 E

10-

5

A

Probabili

Figure E-11
20 r

15

10

5

A

10203

10 20 30

Distance (CLBs)

ty Distribution of 2-pin Nets

: life-v2 wire length

0- 0 2 0 4

0 10 20 30 40

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-12: median wire length

189

15

C.)

-0
0

5

0
0

CD

ca

-0
0

15

CD
0-

-0

-0

0
L-

10F

5

20 U

15

10

5

n0
0 10 20 30

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-13: mpegcorr wire length
25

CL 20

15
0

10

5

0

0 -- 10 20

0 10 20

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-15: pmatch-vl wire length

C

.0 10
0
L-

/5

0 10 20

0 10 20

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-14: parity-vI wire length

0h0 10 20 30

Distance (CLBs)

Probability Distribution of 2-pin Nets

Figure E-16: sor wire length

190

111 ,11 U I T

U * U ~ 7

Routing succeeded with a channel width factor of 43.

Figure E-17: adpcm layout

191

a1 a1 ita1i -111 0111GM h 1M 116% 11111, l Uile UNItMi L "! C111 12I 1: li 11"2",! 111T!1 lul liE 11.1.1 1,11.1 HIMil Bl A Mlli

-- &--

E
I?

-

mEL j~tia" a"

Routing succeeded with a channel width factor of 31.

Figure E-18: bubblesort layout

192

5*

- III
WOI I

4

I.

LI

S i Ili 1111,1

,

K EVE

Sol- '7

I il IM ITua a
c r .

Jil - -- - - -
kl

- - Z
- 01HIS

son

. Woops
tn

-T- 4 -7 7! 7 1 MERU"
'Jl

Rm 7;
',',H- - - - , . : J 1- I . , - . - 1

I Hill, t" I--.-
41 -V

7
F Frj

C
Mill

0

-

M

I

Routing succeeded with a channel width factor of 66.

Figure E-19: convolve layout

193

111111k _.l_ 111111 0 10i . _iii 1 OEM Doli _

I loo lVM 010I i !

111 E k" Eiii L 11 t mi =
Routing succeeded with a channel width factor of 28.

Figure E-20: histogram layout

194

Routing succeeded with a channel width factor of 29.

Figure E-21: intfir layout

195

.1 il-7 iX 7

t: ~ ~ ~ -2111 '

Routing succeeded with a channel width factor of 31.

Figure E-22: intmatmul-vl layout

196

man IM iMM M mml

inin

im ji

4i
I

tv

ULa

144

Routing succeeded with a channel width factor of 39.

Figure E-23: jacobi layout

197

Routing succeeded with a channel width factor of 41.

Figure E-24: life-v2 layout

198

Routing succeeded with a channel width factor of 43.

Figure E-25: median layout

199

Ii - -
LN

U

Routing succeeded with a channel width factor of 34.

Figure E-26: mpegcorr layout

200

HI Ifl l iillill I II

l l l i l I H ill ll ll l l ll l li | | ll l l l ll l

Routing succeeded with a channel width factor of 21.

Figure E-27: parity-vi layout

201

1 I V| I - I

T | | || I I I I l I I I- I I I I I 1 - | |1 1 1 1 1 1 M - \ l l l

I--- - tt it H

III ~ ~ ill hi l

F 9 -- -

il- I ----!

- - h-- -

71 --

- ---- '; ;;l *iiiiii

-igure E-28 -mt v -l-y-u-

202

71 In aml M

- -J - -

®R T

I~~~~8 -T -. f te..1 1

00

ji -

-ik 1 15 11 , IF V Y

Routing succeeded with a channel width factor of 33.

Figure E-29: sor layout

203

204

Bibliography

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock Rate versus IPC:
The End of the Road for Conventional Microarchitectures. In Proceedings of the 27th
International Symposium on Computer Architecture, pages 248-259, 2000.

[2] Altera Corporation, 2610 Orchard Parkway, Jose, CA 95124. Implementing Logic with
the Embedded Array in FLEX 10K Devices, 1996.

[3] S. P. Amarasinghe and M. S. Lam. Communication Optimization and Code Genera-
tion for Distributed Memory Machines. In Proceedings of SIGPLAN '93, Conference
on Programming Languages Design and Implementation, June 1993.

[4] R. Amerson, R. Carter, B. Culbertson, P. Kuekes, and G. Snider. Teramac - Config-
urable Custom Computing. In IEEE Symposium on FPGAs for Custom Computing
Machines, pages 32-38, Los Alamitos, CA, 1995.

[5] C. S. Ananian. The Static Single Information Form. Technical Report MIT-LCS-TR-
801, Massachusetts Institute of Technology, 1999.

[6] M. Annaratone, E. Arnould, T. Gross, H. T. Kung, M. Lam, 0. Menzilcioglu, and
J. A. Webb. The Warp Computer: Architecture, Implementation, and Performance.
IEEE Transactions on Computers, C-36:1523-1538, 1987.

[7] K. Asanovic. Vector Microprocessors. PhD thesis, University of California, Berkeley,
May 1998.

[8] K. Asanovic. Energy-Exposed Instruction Set Architectures. In Work In Progress
Session, Sixth International Symposium on High Performance Computer Architecture,
January 2000.

[9] J. Babb, M. Frank, and A. Agarwal. Solving Graph Problems with Dynamic Com-
putation Structures. In SPIE Photonics East: Reconfigurable Technology for Rapid
Product Development & Computing, Boston, MA, Nov. 1996.

[10] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim, S. Devab-
haktuni, and A. Agarwal. The RAW Benchmark Suite: Computation Structures for
General Purpose Computing. In IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa Valley, CA, April 1997.

[11] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amarasinghe.
Parallelizing Applications Into Silicon. In Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines (FCCM), Napa Valley, CA, April 1999.

205

[12] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal. Logic Emulation

with Virtual Wires. IEEE Transactions on Computer Aided Design, 16(6):609-626,
June 1997.

[13] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P. Joisha,

A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden, and D. Zareksky. A

MATLAB Compiler for Distributed, Reconfigurable, Heterogeneous Computing Sys-

tems. In IEEE Symposium on FPGAs for Custom Computing Machines, 2000.

[14] R. Barua. Maps: A Compiler-Managed Memory System for Software-Exposed Archi-

tectures. PhD thesis, M.I.T., Department of Electrical Engineering and Computer

Science, January 2000.

[15] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Memory Bank Disambiguation

using Modulo Unrolling for Raw Machines. In Proceedings of the ACM/IEEE Fifth

International Conference on High Performance Computing(HIPC), Dec 1998.

[16] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps: A Compiler-Managed

Memory System for Raw Machines. In Proceedings of the 26th International Sympo-

sium on Computer Architecture, Atlanta, GA, May 1999.

[17] P. Bellows and B. Hutchings. JHDL - an HDL for Reconfigurable Systems. In IEEE

Symposium on FPGAs for Custom Computing Machines, pages 175-184, 1998.

[18] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways. Academic, London,
1982.

[19] A. A. Berlin and R. J. Surati. Partial Evaluation for Scientific Computing: The Super-

computer Toolkit Experience. In Partial Evaluation and Semantics-Based Program

Manipulation, Orlando, Florida, June 1994 (Technical Report 94/9, Department of

Computer Science, University of Melbourne), pages 133-141, 1994.

[20] V. Betz and J. Rose. VPR: A New Packing, Placement and Routing Tool for FPGA

Research. In W. Luk, P. Y. Cheung, and M. Glesner, editors, Field-Programmable

Logic and Applications, pages 213-222. Springer-Verlag, Berlin, 1997.

[21] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware Design in Haskell.

In International Conference on Functional Programming, pages 174-184, 1998.

[22] K. Bondalapati and V. K. Prasanna. Dynamic Precision Management for Loop Com-

putations on Reconfigurable Architectures. In IEEE Symposium on FPGAs for Cus-

tom Computing Machines, pages 249-258, Los Alamitos, CA, 1999.

[23] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine, B. Moore,
W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting

Systolic and Memory Communication in iWarp. In Proceedings of the 17th Annual

International Symposium on Computer Architecture, pages 70-81, June 1990.

[24] H. Bratman. An Alternate Form of the UNCOL Diagram. Communication of the

ACM, 4(3), March 1961.

206

[25] R. Brayton, G. Hachtel, L. Hemachandra, A. Newton, and A. S-Vincentelli. A Com-
parison of Logic Minimization Strategies Using ESPRESSO - An APL Program Pack-
age for Partitioned Logic Minimization. In Proc. Int. Symp. Circuits and Systems,
pages 43-49, Rome, May 1982.

[26] P. Briggs, November 2000. Private Communication.

[27] D. Brooks and M. Martonosi. Dynamically Exploiting Narrow Width Operands to
Improve Processor Power and Performance. In 5th International Symposium of High
Performance Computer Architecture, January 1999.

[28] M. Budiu and S. C. Goldstein. Fast Compilation for Pipelined Reconfigurable Fabrics.
In ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages
195-205, Monterey, CA, 1999.

[29] M. Budiu, M. Sakr, K. Walker, and S. C. Goldstein. BitValue Inference: Detecting
and Exploiting Narrow Bitwidth Computations. In European Conference on Parallel
Processing, pages 969-979, 2000.

[30] Burks, Goldstine, and von Neumann. Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument (1946). In Perspectives on the Computer
Revolution, Second Edition, Edited with commentaries by Zenon W. Pylyshyn and
Liam J. Bannon. Ablex Publishing Corporation, Norwood, New Jersey, 1989.

[31] W. Burleson, M. Ciesielski, F. Klass, and W. Lu. Wave-Pipelining: A Tutorial and
Research Survey. IEEE Transaction on VLSI Systems, 6:464-473, 1998.

[32] T. Callahan, P. Chong, A. DeHon, and J. Wawrzynek. Fast Module Mapping and
Placement for Datapaths in FPGAs. In ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pages 123-132, Monterey, CA, 1998.

[33] T. Callahan and J. Wawrzynek. Adapting Software Pipelining for Reconfigurable
Computing. In International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), 2000.

[34] T. J. Callahan and J. Wawrzynek. Instruction-Level Parallelism for Reconfigurable
Computing. In R. W. Hartenstein and A. Keevallik, editors, Field-Programmable
Logic: From FPGAs to Computing Paradigm, pages 248-257. Springer-Verlag, Berlin,
1998.

[35] J. M. Cardoso and H. C. Neto. Fast Hardware Compilation of Behaviors into an
FPGA-Based Dynamic Reconfigurable Computing System. In Proc. of the XII Sym-
posium on Integrated Circuits and Systems Design, 1999.

[36] J. Carter, W. Hseih, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C. Kuo, R. Ku-
ramkote, M. Parker, L. Schaelicke, L. Stoller, and T. Tateyama. Impulse: An Adapt-
able Memory System. In Architectural Support for Programming Languages and Op-
erating Systems, October 1998.

[37] E. Caspi. Empirical Study of Opportunities for Bit-Level Specialization in Word-
Based Programs. Master's thesis, University of California, Berkeley, Department
of Electrical Engineering and Computer Science, Fall 2000. Also available as
UCB//CSD-00-1126.

207

[38] E. Caspi, M. Chu, R. Huang, J. Yeh, Y. Markovskiy, A. Dehon, and J. Wawrzynek.

Stream Computations Organized for Reconfigurable Execution (SCORE): Extended

Abstract. In 10th Internation Conference on Field-Programmable Logic and Applica-

tions, april 2000.

[39] Celoxica, Inc. http://www.celoxixa.com.

[40] J. Cong and Y. Ding. FlowMap: An Optimal Technology Mapping Algorithm for

Delay Optimization in Lookup-Table Based FPGA Designs. IEEE Trans. Computer-

aided Design, 13(1):1-13, 1994.

[41] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E.-N. Volanschi. Tempo:
Specializing Systems Applications and Beyond. ACM Computing Surveys, 30(3es),

1998.

[42] H. Corporaal. Transport Triggered Architectures; Design and Evaluation. PhD thesis,
Delft Univ. of Technology, September 1995.

[43] H. Corporaal and R. Lamberts. TTA Processor Synthesis. In First Annual Conf. of

ASCI, May 1995.

[44] CynApps, Inc. Santa Clara, CA. Cynlib: A C++ Library for Hardware Description

Reference Manual, 1999.

[45] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently

Computing Static Single Assignment Form and the Control Dependence Graph. A CM

Transactions on Programming Languages and Systems, 13(4):451-490, October 1991.

[46] W. J. Dally. Micro-Optimization of Floating-Point Operations. In Proceedings of the

Third International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 283-289, Boston, Massachusetts, April 1989.

[47] DAWN VME Products. SLIC Evaluation Board User's Guide for DAWN VME
PRODUCTS SLIC EB-1 Version 1.0, June 1993.

[48] A. Dehon. Reconfigurable Architectures for General-Purpose Computing. PhD the-

sis, Massachusetts Institute of Technology, Department of Electrical Engineering and

Computer Science, September 1996. Also available as MIT Al Lab Technical Report

1586.

[49] R. P. Dick and N. K. Jha. CORDS: Hardware-Software Co-Synthesis of Reconfigurable
Real-Time Distributed Embedded Systems. In Proceedings of ICCAD98, pages 62-68,
San Jose, CA, 1998.

[50] M. F. Dossis, J. M. Noras, and G. J. Porter. Custom Co-Processor Compilation.

In W. Moore and W. Luk, editors, More FPGAs, pages 202-212. Abingdon EE&CS
Books, Abingdon, England, 1993.

[51] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis, Yale University,
1985.

[52] P. Embree and B. Kimble. C Language Algorithms for Digital Signal Processing.

Prentice Hall, Englewood Cliffs, 1991.

208

[53] B. Fagin and C. Renard. Field Programmable Gate Arrays and Floating Point Arith-
metic. IEEE-rr ransactions on VL~SIS ysrems, 2(3):365-367, September 1994.

[54] D. Filo, D. Ku, C. Coelho, and G. DeMicheli. Interface Optimization for Concur-
rent Systems Under Timing Constraints. IEEE Transactions on Very Large Scale
Integration Systems, pages 268-281, September 1993.

[55] J. A. Fisher, P. Faraboschi, and G. Desoli. Custom-Fit Processors: Letting Applica-
tions Define Architectures. In International Symposium on Microarchitecture, pages
324-335, 1996.

[56] R. French, M. Lam, J. Levitt, and K. Olukotun. A General Method for Compiling
Event-Driven Simulations. 32nd ACM/IEEE Design Automation Conference, June
1995.

[57] D. Galloway. The Transmogrifier C Hardware Description Language and Compiler
for FPGAs, 1995.

[58] M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond Induction Variables: Detecting and
Classifying Sequences Using a Demand-Driven SSA Form. ACM Transactions on
Programming Languages and Systems, 17(1):85-122, January 1995.

[59] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweeney, and D. Lo-
presti. Building and Using a Highly Parallel Programmable Logic Array. Computer,
24(1), Jan. 1991.

[60] M. Gokhale and J. Stone. Automatic Allocation of Arrays to Memories in FPGA
Processors with Multiple Memory Banks. In IEEE Symposium on FPGAs for Custom
Computing Machines, pages 63-69, Los Alamitos, CA, 1999.

[61] M. Gokhale, J. Stone, and M. Frank. NAPA C: Compiling for a Hybrid RISC/FPGA
Architecture. In Proceedings of the IEEE Workshop on FPGAs for Custom Computing
Machines (FCCM), Napa Valley, CA, Napa Valley, California, April 1998.

[62] S. C. Goldstein and M. Budiu. NanoFabrics: Spatial Computing Using Molecular
Electronics. In 28th International Symposium of High Performance Computer Archi-
tecture, 2001.

[63] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and
R. Laufer. PipeRench: A Coprocessor for Streaming Multimedia Acceleration. In
26th International Symposium of High Performance Computer Architecture, pages
28-39, 1999.

[64] C. E. D. C. Green and P. Franklin. RaPiD - Reconfigurable Pipelined Datapath.
Springer-Verlag, Darmstadt, Germany, 1996.

[65] B. Greenwald. A Technique for Compilation to Exposed Memory Hierarchy. Master's
thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, September 1999.

[66] S. Guo and W. Luk. Compiling Ruby into FPGAs. In Field Programmable Logic and
Applications, Aug. 1995.

209

[67] R. K. Gupta and S. Y. Liao. Using a Programming Language for Digital System

Design. IEEE Design and Test of Computers, 1997.

[68] R. K. Gupta and G. D. Michelli. Hardware-Software Cosynthesis for Digital Systems.

IEEE Design and Test of Computers, 1993.

[69] Harel. On Folk Theorems. SIGACTN: SIGACT News (A CM Special Interest Group
on Automata and Computability Theory), 12, 1980.

[70] J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable

Coprocessor. In IEEE Symposium on FPGAs for Custom Computing Machines, pages

12-21, Los Alamitos, CA, 1997.

[71] R. Helaihel and K. Olukotun. Java as a Specification Language for Hardware-Software

Systems. In Proceedings of the International Conference on Computer-Aided Design,
pages 690-699, 1997.

[72] J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufmann, Palo Alto, CA, second edition, 1996.

[73] J. Hoe. Operation-Centric Hardware Description and Synthesis. PhD thesis, Mas-

sachusetts Institute of Technology, June 2000.

[74] J. Holloway, G. L. Steele, Jr., G. J. Sussman, and A. Bell. SCHEME-79 - LISP on a
Chip. Computer, 14(7):10-21, 1981.

[75] J. Howell and M. Montague. Hey, You Got Your Compiler in My Operating System!

In Proceedings of the Seventh Workshop on Hot Topics in Operating Systems, March

1997.

[76] IBM Microelectronics. ASIC SA-27E Data Book, Part I, March 2001.

[77] A. IEEE. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Stan-

dard, New York, 1985.

[78] Intel, Santa Clara, California. Intel Itanium Processor Specification Update, June

2001.

[79] J. Janssen and H. Corporaal. Partitioned Register Files for TTAs. In Proceedings of

the 28th Annual International Symposium on Microarchitecture, pages 303-312, Ann

Arbor, Michigan, Nov. 1995.

[80] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Prentice Hall, 1993.

[81] Y. Kang, M. Huang, S. Yoo, Z. Ge, D. Keen, V. Lam, P. Pattnaik, and J. Torrel-

las. FlexRAM: Toward an Advanced Intelligent Memory System. In International

Conference on Computer Design (ICCD), October 1999.

[82] D. Kozen. Kleene Algebra with Tests. A CM Transactions on Programming Languages

and Systems, 19(3):427-443, May 1997.

210

[83] A. Kuperman. An External I/O Interface for a Reconfigurable Computing System.
Master's thesis, Massachusetts Institute of Technology, Department of Electrical En-
gineering and Computer Science, May 1999.

[84] S. Larsen and S. P. Amarasinghe. Exploiting Superword Level Parallelism with Mul-
timedia Instruction Sets. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 145-156, 2000.

[85] K. Leary and S. Level. DSP/C: A Standard High Level Language for DSP and
Numeric Processing. In Proceedings of the ICASSP, pages 1065-1068, 1990.

[86] C. Lee. An Algorithm for Path Connections and its Applications. IRE Transactions
on Electronic Computers, Sept. 1961.

[87] C. G. Lee. Code Optimizers and Register Organizations for Vector Architectures. PhD
thesis, University of California, Berkeley, May 1992.

[88] R. Lee. Subword Parallelism with MAX. IEEE Micro, pages 51-59. 145, August 1996.

[89] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amaras-
inghe. Space-Time Scheduling of Instruction-Level Parallelism on a Raw Machine. In
Architectural Support for Programming Languages and Operating Systems, San Jose,
California, October 1998.

[90] C. Lent and P. Tougaw. A Device Architecture for Computing with Quantum Dots.
In Proceedings of the IEEE, volume 85(4), pages 541-557, April 1997.

[91] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood. Hardware-
Software Co-Design of Embedded Reconfigurable Architectures. In Proc. 37th ACM
IEEE Design Automation Conference, pages 507-512, Los Angeles, CA, 2000.

[92] Z. Li, K. Compton, and S. Hauck. Configuration Caching Management Techniques
for Reconfigurable Computing. In Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines (FCCM), Napa Valley, CA, April 2000.

[93] J. Liang, S. Swaminathan, and R. Tessier. aSOC: A Scalable, Single-Chip Communi-
cations Architecture. In Proceedings of the IEEE International Conference on Parallel
Architectures and Compilation Techniques, Philadelphia, PA, 2000.

[94] W. B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, and K. D. Under-
wood. A Re-Evaluation of the Practicality of Floating Point Operations on FPGAs.
In IEEE Symposium on FPGAs for Custom Computing Machines, pages 206-215,
Los Alamitos, CA, 1998.

[95] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O'Donnell, and
J. Ruttenberg. The Multiflow Trace Scheduling Compiler. In Journal of Supercom-
puting, pages 51-142, Jan. 1993.

[96] K. Mai, T. Paaske, N. Jayasena, R. Ho, and M. Horowitz. Smart Memories: A
Modular Recongurable Architecture. In International Symposium on Computer Ar-
chitecture, June 2000.

211

[97] M.-C. Marinescu and M. Rinard. High-Level Specification and Efficient Implementa-

tion of Pipelined Circuits. In Proceedings of ASP-DA C Asia and South Pacific Design

Automation Conference, February 2001.

[98] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings. A Recon-

figurable Arithmetic Array for Multimedia Applications. In International Symposium

on Field Programmable Gate Arrays, Monterey, Ca., Feb. 1999.

[99] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Operating Sys-

tem Services. PhD thesis, Columbia University, 1992.

[100] Maya Gokhale and Brian Schott. Data-Parallel C on a Reconfigurable Logic Array.

Journal of Supercomputing, September 1995.

[101] H. McGhan and M. O'Connor. PicoJava: A Direct Execution Engine For Java Byte-

code. IEEE Computer, 31(10):22-30, 1998.

[102] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[103] E. Mirsky and A. DeHon. MATRIX: A Reconfigurable Computing Architecture with

Configurable Instruction Distribution and Deployable Resources. In IEEE Symposium

on FPGAs for Custom Computing Machines, pages 157-166, Los Alamitos, CA, 1996.

[104] C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hot Pages: Software Caching

for Raw Microprocessors. Technical Memo LCS-TM-599, Laboratory for Computer

Science, Massachusetts Institute of Technology, Sept 1999.

[105] M. Oskin, F. Chong, and T. Sherwood. Active Pages: A Computation Model for

Intelligent Memory. In Proceedings of the 25th Annual International Symposium on

Computer Architecture, pages 192-203, June 1998.

[106] Parallax Inc. BASIC Stamp Programming Manual, 2001.

[107] S. Park and K. Choi. Performance-Driven Scheduling with Bit-Level Chaining. In

Design Automation Conference, pages 286-291, 1999.

[108] J. Patterson. Accurate Static Branch Prediction by Value Range Propagation. In

Proceedings of the SIGPLAN Conference on Programming Language Design and Im-

plementation, volume 37, pages 67-78, June 1995.

[109] S. Perissakis. Balancing Computation and Memory in High Capacity Reconfigurable

Arrays. PhD thesis, University of California, Berkeley, 2000.

[110] J. Peterson, R. O'Connor, and P. Athanas. Scheduling and Partitioning ANSI-C

Programs onto Multi-FPGA CCM Architectures. In Proceedings, IEEE Workshop on

FPGA-based Custom Computing Machines, Napa, CA, Apr. 1996.

[111] D. Petkov. Efficient Pipelining of Nested Loops: Unroll-and-Squash. Master's the-

sis, Massachusetts Institute of Technology, Department of Electrical Engineering and

Computer Science, 2000.

[112] B. Pottier and J. L. Llopis. Revisiting Smalltalk-80 Blocks: A Logic Generator for

FPGAs. In IEEE Symposium on FPGAs for Custom Computing Machines, pages

48-57, Los Alamitos, CA, 1996.

212

[113] R. Razdan. PRISC: Programmable Reduced Instruction Set Computers. PhD thesis,
Djivision o1 Applied Science, Harvard University, Harvard University Technical Report
14-94, Center for Research in Computing Technologies, May 1994.

[114] R. Rugina and M. Rinard. Pointer Analysis for Multithreaded Programs. In Proceed-
ings of the SIGPLAN Conference on Program Language Design and Implementation,
pages 77-90, Atlanta, GA, May 1999.

[115] R. Rugina and M. Rinard. Automatic Parallelization of Divide and Conquer Algo-
rithms. In Proceedings of the SIGPLAN Conference on Program Language Design
and Implementation, Vancouver, BC, June 2000.

[116] M. Saghir, P. Chow, and C. Lee. Exploiting Dual Data-Memory Banks in Digital
Signal Processors. In Proceedings of the Seventh International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 234-243,
Cambridge, MA, October 1-5, 1996.

[117] H. Schmit and D. Thomas. Address Generation for Memories Containing Multiple
Arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 17, 1998.

[118] R. Schreiber, S. Aditya, B. R. Rau, V. Kathail, S. Mahlke, S. Abraham, and G. Snider.
High-Level Synthesis of Nonprogrammable Hardware Accelerators. Technical Report
HPL-2000-31, Hewlett Packard, 2000.

[119] L. Semeria. Resolution of Dynamic Memory Allocation and Pointers for the Behavioral
Synthesis from C. In Design, Automation, and Test in Europe (DATE), pages 313-
319, 2000.

[120] L. Semeria and G. D. Micheli. Encoding of Pointers for Hardware Synthesis. In
Proceedings of the International Workshop on IP-based Synthesis and System Design
IWLAS'98, pages 57-63, 1998.

[121] L. Semeria and G. D. Micheli. SpC: Synthesis of Pointers in C. Application of Pointer
Analysis to the Behavioral Synthesis from C. In Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD'98), pages 321-326, San Jose, November
1998.

[122] N. Shirazi, A. Walters, and P. Athanas. Quantitative Analysis of Floating Point
Arithmetic on FPGA-based Custom Computing Machines. In IEEE Symposium on
FPGAs for Custom Computing Machines, pages 155-162, Los Alamitos, CA, 1995.

[123] A. Singh, L. Macchiarulo, A. Mukherjee, and M. Marek-Sadowska. A Novel High
Throughput Reconfigurable FPGA Architecture. In International Symposium on
Field Programmable Gate Arrays, pages 22-29, Monterey, CA, 2000.

[124] A. Smith, M. Wazlowski, L. Agarwal, T. Lee, E. Lam, P. Athans, H. Silverman, and
S. Ghosh. PRISM II Compiler and Architecture. In Proceedings IEEE Workshop on
FPGA-based Custom Computing Machines, pages 9-16, Napa, CA, April 1993.

[125] M. Smith. Extending SUIF for Machine-Dependent Optimizations. In Proceedings of
the First SUIF Compiler Workshop, pages 14-25, Stanford, CA, Jan. 1996.

213

[126] D. Soderman and Y. Panchul. Implementing C Algorithms in Reconfigurable Hard-

ware using C2Verilog. In IEEE Symposium on FPGAs for Custom Computing Ma-

chines, 1998.

[127] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth Analysis with Application

to Silicon Compilation. In Proceedings of the SIGPLAN Conference on Program

Language Design and Implementation, pages 108-120, 2000.

[128] SUN Microsystems, Mountain View, California. SPARC Architecture Manual, 1988.

[129] Synopsys, Inc. Behavioral Compiler User Guide, V 1997.08, August 1997.

[130] systemc.org. System C Version 1.1 User's Guide, 2000.

[131] Tensila, Inc. Application Specific Microprocessor Solutions - Overview Handbook, 1998.

[132] R. G. Tessier. Fast Place and Route Approaches for FPGAs. PhD thesis, MIT,
November 1998. Also available as MIT-LCS TR-768.

[133] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, 0. Rowhani, V. George,
J. Wawrzynek, and A. Dehon. HSRA: High-Speed, Hierarchical Synchronous Re-

configurable Array. In ACM International Workshop on Field-Programmable Gate

Arrays, Monterey, CA, February 1999.

[134] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting Cache Line

Size to Application Behavior. In International Conference on Supercomputing, pages

145-154, 1999.

[135] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H. Touati, and P. Boucard. Pro-

grammable Active Memories: Reconfigurable Systems Come of Age. IEEE Transac-

tions on VLSI Systems, 4(1), March 1996.

[136] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring It All to

Software: Raw Machines. IEEE Computer, 30(9):86-93, Sept. 1997. Also available as

MIT-LCS-TR-709.

[137] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu, and J. Rabaey.

Design Methodology of a Low-Energy Reconfigurable Single-Chip DSP System. IEEE

Computer, Feb. 1998.

[138] M. Weinhardt. Compilation and Pipeline Synthesis for Reconfigurable Architectures

- High Performance by Configware. In Reconfigurable Architecture Workshop, April

1997.

[139] R. Weiss, G. Homsy, and T. Knight. Toward in Vivo Digital Circuits. In Proceedings

of DIMACS Workshop on Evolution as Computation, 1999.

[140] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S.-W.

Liao, C.-W. Tseng, M. Hall, M. Lam, and J. Hennessy. SUIF: An Infrastructure

for Research on Parallelizing and Optimizing Compilers. ACM SIGPLAN Notices,

29(12), Dec. 1996.

214

[141] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C
Programs. A C1v SIGPLAN Notices, 30(6):1-12, 1995.

[142] S. Wilton, J. Rose, and Z. Vranesic. The Memory/Logic Interface in FPGAs with
Large Embedded Memory Arrays. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 7(1), March 1999.

[143] XILINX, Inc., 2100 Logic Drive, San Jose, California, 95214. The Programmable Gate
Array Data Book and The XC4000 Data Book, Aug. 1992.

[144] XILINX, Inc., 2100 Logic Drive, San Jose, California, 95214. Virtex-E 1.8V Field
Programmable Gate Arrays Datasheet, Version 1.7, September 2000, 2000.

[145] T. Yang and A. Gerasoulis. List Scheduling with and without Communication. Par-
allel Computing Journal, 19:1321-1344, 1993.

[146] H. Zhang, M. Wan, V. George, and J. Rabaey. Interconnect Architecture Exploration
for Low-Energy Reconfigurable Single-Chip DSP. In Proceedings, Workshop on VLSI
(WVLSI), Orlando, Florida, Apr. 1999.

215

