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This note examines a two-dimensional symmetric random walk model of

mobility for terminals in a communication network. A stochastic process

associated with the location of a terminal is defined. For a certain

location finding scheme, the mean time between terminal transmissions is

derived. We also give a first-order analysis of the trade-off between

the amount of location related data to be transmitted per unit time and

the accuracy about the terminals' positions.
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1. Introduction

This paper examines some aspects of a stochastic process which might

be used to model the mobility of users in a mobile communication network.

Specifically, we model the motion of a user as a two-dimensional sym-

metric random walk. This might be an appropriate model for a patrol car

in a city. We assume that there is a controller who needs to be kept in-

formed of the locations of the various users to within some tolerance. Here

we will require that each user notify the controller of its exact location

whenever it hits a square boundary of a certain size centered on the point

it occupied (Point C in figure 1) the last time it communicated its location

to the controller.

User informs controller
_- _ of its location as soon

IC ' _ as it hits this square
boundary

Figure 1

Since the controller knows point C, the user need only transmit an

index which indicates the point at which it hits the square boundary. In

the following sections, we will derive expression for (1) the expected

number of steps or time a user takes to reach the boundary starting from

the center C and (2) the probabilities with which the user hits the dif-

ferent point on the boundary and the corresponding entropy. It is clear
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that the smaller the size of the square boundary, the better informed

is the controller of the location of the user. On the other hand, one

would surmise that the user will have to transmit more data back. This

trade-off is discussed in section IV.

II. Expected time between user transmissions.

In this section, we derive an expression for the expected time for a

two-dimensional symmetric random walk starting from the center of a square

boundary to reach some point on the boundary. For convenience, we consider

the square to have length r and subdivide it into n2 small squares as shown

in figure 2 for the case n=4. We assume n to be an even integer.
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Figure 2

Let us denote the expected time to hit the boundary starting from the point

' IT 2__T (n-l) 'i(x,y) by tx .y Of course x and y take on values in the set {0, n ' n 'TI '

We are primarily interested in t1/2, 71 /2 even though it will be fairly easy to

write expressions for t for arbitrary x and y.
x,y

Starting from (x,y), the user can move to (x+h,y), (x-h,y), (x,y+h) or

(x,y-h) where h = f/n and each motion occurs with equal probability 1/4. The

conditional expected time to hit the boundary assuming the first step takes the
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user to (x',y') is t, ,+l. This argument shows that t satisfies the

difference equation

1 1 1 1
t - t + -t + 1 t(la)
txy 4 tx-h,y 4 x+h,y 4 tx,y-h 4 x,y+h (la)

where 0 < x < IT, 0 <y < 'T with the boundary conditions

t = t = t = 0. (lb)
O,y r,y x,O x,Tr

In order to solve this system of equations, we first consider the

eigenvalue problem

4Xt t +t + t + t (3)
x,y x-h,y x+h,y x,y-h x,y+h

associated with the homogeneous part of (1). It should be observed that as

x and y range over the set {, 2 (n ) }(3) represents an (n-1)2 (n-1)n n n
matrix eigenvalue problem. The eigenvalues and eigenvectors of this system

are given in [1, p.289]. The eigenvalues are

X, = (cos ph + cos qh), p,q = 1,2,...,n-1 (4)pq 2

and the corresponding eigenvectors are

U,1

p,q Ul,n-l

u2,1

u2,n-1

_ n-l,n-1
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where u = sin prh sin qsh, p,q = 1,2,...,n-1. This can be verified by
rtS

setting t y=sin px sin qy and noting that

2 sin px cos ph = sin p(x+h) + sin p(x-h). (6)

We now show that the eigenvectors defined by (5) are mutually orthogonal,

that is,

n-1
D sin prh sin qsh sin p'rh sin q'sh = 0 (7)

r,s=l

if p' y p or q' # q.

n-1 n-1

D = sin pr - sin pr - . I sin qs - sin q's - (8)
n n n n

r=-l s=l

Thus to show that the eigenvectors are orthogonal it suffices to show that

if p' $ p,

n-1

sin pr - sin p'r -= 0. (9)
n n

r=l

n-1 n-1

I sinpr- sin p'r- ff= I [cos(p-p ')r - cos(p+p')r - (10)
n n rl2 n n

From [2, p.78, Eq. (418)],

n-1

n cos r(p-p') - = cos (p-p') sin cosec (p-p) 2n
n 2 2n 2n

r=l

(11)

=cos (p-p') [ sin (p-p') cos (p-p') - cos (p-p') sin (p-p') 2

(12)
cosec (p-p') T.

2 V2'

=-cos (p-p') -.
2
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In (13) we have used the fact that p' $ p. Similarly,

n-1

cos r(p+p') - - cos2 (p+p) (14)

r=l

Finally, substituting (13) and (14) in (10) yields

n-1
sin pr sin in p'- = [ -cos (p-p') + cos (p+p') ] (15)

n n 2 2 2
r=l

[ {-1- cos(p-p')T} + {1 + cos(p+p')7} ] (16)

= [ - 2 sin pf sin p'7] = 0 (17)

It is now fairly easy to obtain the solution of (1) in terms of the

eigenvectors U . Let T denote the (n-l)2 dimensional vector
P,q

th,h

th,2h

T = th,(n-l)h

t2h,h

t2h,(n-l)h

t(nl)h(n-l)h

Since the U are linearly independent, we can write
p,q

n-i U (18)

p,q=l pq pq
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for some constants ~ to be determined. Similarly we can write the (n-l)2
P,q

vector 1, all of whose components are ones, as

n-l

*= EC ap U . (19)
pq=l pq p,q

Taking the dot product of both sides of (19) with U. . and recalling the

fact that the eigenvectors U are orthogonal, we obtain
p,q

(20)i j = i,jUi,j2 (20)

n-1
where IUi,jl2 i sin irh sin jsh. (21)

r,s=l

It can be verified [2, p.82] that Ui jl2 = n2 /4. Also,

n-1

1. U. .= I sin irh sin jsh (22)

r,s=l

1 i j co j ~
= 1 [1-(-1) i ][1-(-l) i] cot it cot 2f (23)

In (23) we have used the fact [2, p.78 ] that

n-i

Y sin irh = [1-(-1) i cot (24)
2 2n

r=l

Thus from (20) we can write

[--i j ictr2 o j725
[1-(-1) J[1-(-1)J] cot - cot2n 2n

aij= _2 (25)
n



-8-

Now, if we denote the matrix associated with the homogeneous part of

(1) by A, then solving (1) is equivalent to solving AT = IT - 1, i.e.

BT = -1 (26)

2 2
where B = A - I and I is the (n-l) X(n-l) identity matrix. Since

BU = AU - U = ( -1)U (27)
p,q P,q P,q P,q P,q

the eigenvalues of B are (X. -1) and its eigenvectors are U . From (26)
pq p,q

and (18) we obtain

n-l > n-l

BT = I p (X -1)U = -1 = -_ a U . (28)
p,q=l ,q ,q p,q=l

Therefore

_Pq (29)
pq h -1

P,q

-2[1-(-1)P ] [1-(-l)q] cot pr cot q r
2n 2n (30)

n (cos p + cos q 7 - n)
n n

Finally, substituting (30) into (18) yields

sin pT sin qgr
n n

sin pI sin q27
n n

sin sin q(n-l)7
n-l ~-2 1-(-1)

P ] [1-)-1 )q
] cot pi cot q nT n n

n nn n
p,q=l n2 (cos + cos -2) 2 q2

n n sin p2n sin 
n n

sin p(n 1)T q (n-1) sr

-31)
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Equation (31) gives us an expression for the expected number of steps a

symmetric two-dimensional random walk takes to hit a square boundary of

size n starting from some point inside the boundary. Let us denote by t

the expected time t/2,/2 to hit the boundary starting from the center.

Then

n-l -8 cot P cot q- sin P sin (-

t I 2n 2n 2 2 (32)

n pq=l1 n (cos P! + cos - 2)
n n

Figure 3 shows t for values of n ranging from 2 to 20.
n

III. Probabilities of boundary points

Let p denote the probability that the random walk will first hit
xy

* *

the square boundary at point (x ,Y ) given that it starts from the point

(x,y). In this section we will derive an expression for P/2, /2 Using

an argument similar to that leading to (1), we see that Px,y satisfies the

difference equation

* 1 * 1 * 1 * 1 *
= - + + + (33a)Px,y 4 Px-h,y 4 Px+h,y 4 Px,y-h 4 Px,y+h

where 0 < x < 7, 0 < y < 7

with the boundary conditions

* * * * *

P0 ,y P P, Px = 0 except that Px*,y* = (33b)T~ r~y x,0 x,TI
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For notational convenience, let us denote the point inside the boundary

immediately adjacent to (x*, y*) by {x', y'). Also let P denote the (n-l)2

dimensional vector

h,h

Ph,2h

P = Ph, (n-l)h

P2h,h

(n-l)h,(n-l)h

Then we can write (33) as

AP = IP - - e (34)

where A is the same matrix as in the previous section and e is the

(n-l) dimensional vector with 1 in the position corresponding to x',y'

and O's elsewhere. Because of the symmetry, there is no loss of generality

in assuming that x = X and < y* < T In this case, x' = (n-l) , y' = y*2 - h n

and the non-zero entry in ex, , is the [(n-2)(n-l) + Z]-th entry where

= n y

Proceeding in a manner completely analogous to the method of the

previous section, and setting



n-l

4 -x', Y1 ap U (35)
ex ,,y ' q pq P,q

we find that

sin [i(n-l)h] sin jkh (36)
i, j n 2

Also letting

n-l
P = I U (37)

p,q=l pq p,q

we find that B = p,q = _ 2 sin[p(n-l)h] sin qgh (38)

p -1 n (cos ph + cos qh -2)
P,q

sin pT sin q
'n n

Thus,n q
sin p sin q2n

n n

n-l 2 sin p(n-l) - sin qQ .

P =n n sin sin q(n-l) 
2 7r T n n

p,q=l n [2 - (cos -n + cos qn 
sn n sin P21T sin

n n

sin P in (n-l)sin q(n-
n n

(39)

From (39) we can deduce that

n-l 2 sin p(n-l) T sin q sin sin 

P/2,ir/2 pCq~l n2E2 (cos +n n 2 2
p,q=l 2 p

n [2 -(cos + cos -) I
n n
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Using (40), the entropy H(n) in bits associated with the random variable

indicating the boundary point the random walk first hits was plotted as a

function of n in figure 4. For a square boundary of size n, there are

4(n-1) boundary points which could first be hit. If we assume that all these

points are equi-probable, the resulting entropy H (n) = 2 + log 2 (n-1)

is clearly an upperbound on H(n). It was found numerically that for even

positive integers n less than or equal to 20, the difference between H (n)
max

and H(n) was monotomically increasing but did not exceed 0.18. The maximum

percentage error was below 3%.

IV. Discussion

In order to give a rough indication of the trade-off between the

size, n, of the square and the amount of information to be transmitted

back to the controller every time unit, a plot of H(n)/t* is shown in
n

figure 5. From a practical viewpoint, the trade-off between [2 + log2(n-l)]/t*

and n should be examined.

Finally, we note that the symmetric model assumed here may be refined

in many ways. For example, a more appropriate model of a patrol car might

exclude the possibility of the car making a U-turn. Unfortunately, such models

seem to be hard to analyze.

t Note that we are neglecting the fact that there is dependence between

the time of hitting the boundary and the boundary point which is first
hit. A more accurate analysis should take this into account.
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Figure 3. Expected time to hit boundary against size
of boundary.
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Figure 4. H(n) against boundary size.
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