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Quantum–mechanical methods that are both computationally fast and accurate are not yet avail-
able for electronic excitations having charge transfer character. In this work, we present a signif-
icant step forward towards this goal for those charge transfer excitations that take place between
non-covalently bound molecules. In particular, we present a method that scales linearly with the
number of non-covalently bound molecules in the system and is based on a two-pronged approach:
The molecular electronic structure of broken-symmetry charge-localized states is obtained with the
frozen density embedding formulation of subsystem density-functional theory; subsequently, in a
post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-
localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT
density partitioning technique. The method is benchmarked against coupled-cluster calculations and
achieves chemical accuracy for the systems considered for intermolecular separations ranging from
hydrogen-bond distances to tens of Ångstroms. Numerical examples are provided for molecular clus-
ters comprised of up to 56 non-covalently bound molecules. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789418]

I. INTRODUCTION

Charge transfer (CT) reactions are ubiquitous in all
branches of chemistry, and huge efforts have been spent in
the past to analyze these processes in terms of theoretical
models.1–3 They can be categorized into processes in which
a charge separation in a donor–acceptor system takes place,

D + A → D+ + A−, (1)

and processes where the charge has been externally created
(either by injecting or removing an electron),

D− + A → D + A−, (2)

D+ + A → D + A+, (3)

where we define D as the donor and A as the acceptor. For
the reactions in (1) and (2), donor and acceptor are defined in
terms of donating and receiving electrons, while in (3) the
definitions are in terms of the location of the excess posi-
tive charge. The three kinds of CT reactions in (1)–(3) are
involved in a plethora of important processes. For example,
(1) may resemble a charge splitting event either at a semicon-
ductor interface, between an organic dye and a semiconductor,
or the charge separation event in the reaction centers of photo-
synthetic systems. Generally, all the charge separation events

a)E-mail: m.pavanello@rutgers.edu.
b)E-mail: j.neugebauer@uni-muenster.de.

can be thought of in terms of a two-state model comprised
of a neutral state and a charge separated state. Throughout
this work, we call the reactions involving only the motion of
an excess of charge, as in (2) and (3), migration CT (MCT,
hereafter) reactions. MCT reactions are the simplest type of
reactions involving CT states, and take place in many fun-
damental processes related to charge mobility, transport, and
enzyme functionality. In these processes, the charge separa-
tion event has happened in the past, and the problem shifts to
the prediction of the kinetics of the excess charge, may that
be across a polymer4–6 (organic electronics), a protein (en-
zyme functionality7, 8 and photosynthesis9, 10), or DNA11–13

(oxidative damage).
Very often, the ground and MCT states are close in en-

ergy and one easily finds the first MCT state as being the first
excited state of the system. This is an important advantage in
theoretical studies of this type of states as opposed to other
types of excited states for which the excited state search can
be a daunting task. Another important quality of MCT states
is the simple physical depiction of ground and excited states:
the former has an excess charge on the, say, “left,” and the
latter features an excess charge on the “right.” Obviously, this
simple depiction becomes more complicated as soon as the
system under study contains more than two chemical moi-
eties capable of accepting/donating an excess charge. These
unique qualities make MCT states a perfect testbed for new
computational methods aiming at the accurate prediction of
generally all kinds of CT excitations.

0021-9606/2013/138(5)/054101/12/$30.00 © 2013 American Institute of Physics138, 054101-1
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There are two fundamentally different schemes for cal-
culating CT excitations. The first one involves the construc-
tion of Hamiltonian and overlap matrices in a basis of charge-
localized broken-symmetry states. This basis set is often
called a diabatic basis set, and the basis functions termed di-
abatic states. The chosen broken-symmetry states in the set
should resemble the true ground and the CT excited states
of the system. Depending on the size of the basis set (or
equivalently the number of broken-symmetry states included
in the calculation) the simultaneous diagonalization of over-
lap and Hamiltonian matrices (i.e., solving the generalized
eigenvalue problem) yields the sought ground and CT excited
states. The latter diagonalization step is similar to the diag-
onalization step in the configuration interaction (CI) method
carried out with valence bond configuration state functions.
Even though this is a general method, it is particularly suited
for the calculation of CT excited states. This is because con-
trary to valence excitations, the broken-symmetry basis func-
tions assume a simple charge-localized character and rela-
tively uncomplicated computational criteria can be devised
for their generation.14–20 This is the method that we use in
this work and is described in detail in Sec. II for a basis
set comprised of two broken-symmetry states. Contrary to
the first scheme mentioned above, the alternative is not tai-
lored specifically to CT excitations and it involves obtaining
directly the adiabatic ground and excited states of the sys-
tem. As such it is more general than the first scheme and is
most often adopted in the literature. Due to the high computa-
tional throughput of modern computers, calculations based on
the latter scheme are now commonplace. A plethora of quan-
tum chemistry methods are devoted to the prediction of ex-
cited states’ energies, transition moments, densities, and wave
functions. Despite this, CT excited states have always been
more challenging than others, because for this kind of excita-
tions the electron density changes dramatically compared to
the ground state one. Density-functional theory (DFT), and
specifically its time-dependent extension (TD-DFT) through
the linear-response formalism for the calculation of electronic
excitations and transition moments21 has struggled to cor-
rectly deal with CT excitations when employing approxi-
mate density functionals.22 Pragmatic corrections exist, such
as the one originally developed by Gritzenko et al.,23, 24 or
the one involving the Peach factor.25 Range separated26–28

density functionals have also offered an effective solution
to the problem by enforcing the correct long-range behavior
at the price of including yet another parameter to the den-
sity functional (the range separation parameter, often denoted
by γ ). Methodologies to obtain γ parameters which satisfy
certain system-dependent and process-dependent conditions
have been proposed.29, 30 Novel computational approaches to
obtain charge-transfer excited states within a DFT formalism
are being explored. Specifically, a variational formulation of
TD-DFT31 has shown to alleviate or to completely cure the
CT excitation failures of linear-response TD-DFT when the
fourth-order relaxed constrained-variational TD-DFT method
is employed, however, at the expense of higher computational
complexity than standard linear-response TD-DFT.

Wave function based methods also have encountered dif-
ficulties when approaching CT excitations. The low end of

wave function methods, configuration interaction with singles
(CIS), and time-dependent Hartree–Fock (TD-HF) are known
to grossly overestimate CT excitation energies.32–36 More bal-
anced methods, such as multi-configuration self-consistent
field (MCSCF), multi-reference CI (MR-CI), or perturbative
corrections to CIS, such as CIS(D), as well as ADC(2)37 are
able to deliver good CT excitation energies32, 38 and are of-
ten taken as benchmark.39 MCSCF, however, is known to
fail near avoided crossings (a feature always present in sys-
tems featuring MCT excitations) unless state averaging is
employed.40 The equation-of-motion coupled cluster (EOM-
CC) theory40, 41 is also known to fail in reproducing CT exci-
tations with a similar accuracy than ionization potentials and
electron affinities42, 43 due to its non size-extensivity stem-
ming from the non-exponential form of the EOM-CC ansatz
for the excited states. Linear-response CC, and specifically an
approximation to it including only single and double excita-
tions known as CC2 has been very successful in predicting
CT excitations.44–47 A particularly powerful implementation
of CC2 utilizing the resolution of the identity (RI-CC2)48 is
routinely applied to systems with up to 100 atoms. It is now
understood that to obtain an accurate description of CT exci-
tations the employed method must describe the dynamic cor-
relation of the CT excited states similarly to the one of the
ground state.49 In addition, the computational costs associated
with all the wave function methods mentioned above (with the
exception of TD-HF and CIS) are prohibitive for most sys-
tems in condensed-phase and biosystems of interest.

In Sec. II, we will describe in detail how ground and
CT excited state energies and wave functions can be obtained
starting from a basis set comprised of two broken-symmetry
states. In Sec. III we will introduce the frozen density em-
bedding formulation of subsystem DFT (a linear-scaling,
full-electron electronic structure method) which we use to
determine the electronic structure of the broken-symmetry,
charge-localized states. Then in Sec. IV we will present the
theory behind the calculation of the full-electron Hamiltonian
and overlap matrix elements among the broken-symmetry
states (generated with subsystem DFT) which we have imple-
mented in the Amsterdam density functional (ADF) computer
software.50, 51 Section V is devoted to benchmarking of the
method for three selected cases of MCT, e.g., hole transfer in
water and ethylene dimers at several inter-monomer separa-
tions and geometries, and DNA nucleobase dimers. Section
VI features two pilot calculations of the hole transfer in water
and ethylene clusters containing up to 56 and 20 molecules,
respectively.

II. EXCITATION ENERGIES FROM A MODEL OF TWO
BROKEN-SYMMETRY STATES

Consider a system comprised of a charge donor and a
charge acceptor moiety in the absence of low-lying interme-
diate bridge states (DA system hereafter). Such a system can
be well characterized by a two-state formalism. That is, it is
enough to consider either the adiabatic ground and first ex-
cited state or a set of two broken-symmetry charge-localized
states to capture most of the underlying physics. There is a
large literature15, 16, 52–54 supporting the idea that the states
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with localized excess charges, i.e., one where the charge is
localized on the donor and, conversely, one where the charge
is localized on the acceptor, are an appropriate basis for mod-
eling the process of charge migration between donor and
acceptor.

A state with localized charges generally is not the ground
state of the system Hamiltonian. Therefore, in the basis
of charge-localized states, the Hamiltonian matrix is non-
diagonal. In addition, as these states are of broken-symmetry
character, they are generally non-orthogonal to each other.
Throughout this work, we will refer to the full-electron wave
functions of the two charge-localized states as �1 and �2. For
DA systems, the Hamiltonian (H) and overlap matrices (S) in
this basis are of dimension 2 × 2, namely,

H =
(

H11 H12

H21 H22

)
(4)

and

S =
(

1 S12

S12 1

)
. (5)

The definitions in Eqs. (4) and (5) allow us to obtain the CT
excitation energy as the energy difference of the orthonormal
adiabatic states, which can be obtained by solving the gener-
alized eigenvalue problem,∣∣∣∣∣ H11 − E H12 − ES12

H21 − ES12 H22 − E

∣∣∣∣∣ = 0. (6)

The above equation yields two energy eigenvalues (say E1 and
E2) and their difference (�E) is the sought CT excitation. In
a closed form, we obtain52, 53, 55

�E =
√

(H11 − H22)2

1 − S2
12

+ 4V 2
12, (7)

where V12 = 1
1−S2

12
[H12 − S12

H11+H22
2 ].

The problem is then shifted to calculating four matrix el-
ements, i.e., the two diagonal Hamiltonian elements (H11 and
H22, e.g., the total energies of the charge-localized states or
diabatic energies), the H12 off-diagonal matrix element, and
the S12 overlap element. The V12 element introduced above is
commonly referred to as electronic coupling.

Several methods and algorithms have been proposed
to generate ad hoc charge-localized states and to calculate
the above matrix elements both for purely wave function
methods16, 18, 19, 56–58 as well as DFT methods.14, 15, 17, 53, 59–62

Regular wave function and DFT methods tend to scale non-
linearly with the system size. Therefore, important systems
of biological interest, large organics and hybrid organic–
inorganic systems (such as dye-sensitized solar cells) are
largely out of reach of these methods unless truncated model
systems or substantial approximations are introduced at the
electronic structure theory level.

In this work, we build upon ideas presented in a
previous paper62 and we construct the broken-symmetry
charge-localized states using a linear-scaling technique called
frozen density embedding.63 The construction of the charge-
localized, diabatic states is a prerequisite in this formalism for

the calculation of the CT excitation energies. A brief descrip-
tion of this technique follows this section.

III. THE FROZEN DENSITY EMBEDDING
FORMULATION OF SUBSYSTEM DFT

Subsystem DFT is a successful alternative to regular
Kohn–Sham (KS) DFT methods due to its ability to over-
come the computational difficulties arising when tackling
large molecular systems.64 One particular variant of subsys-
tem DFT is the Frozen Density Embedding (FDE) approach
developed by Wesolowski and Warshel.63 FDE splits a sys-
tem into interacting subsystems and yields subsystem elec-
tron densities separately. Hence, it defines the total electron
density, ρ(r), as a sum of subsystem densities,63

ρ(r) =
# of subsystems∑

I

ρI (r), (8)

where the sum runs over all subsystems. The subsystem den-
sities are found by solving subsystem-specific KS equations,
known as KS equations with constrained electron density or
KSCED.65 In these equations, the KS potential vKS(r) is aug-
mented by an embedding potential vemb(r) which includes the
electrostatic interactions taking place between electrons and
nuclei of the subsystems as well as a potential term deriving
from the non-additive kinetic energy (T nadd

s ) and non-additive
exchange-correlation (Enadd

xc ) functional derivatives. We refer
to Refs. 63, 65, and 66 for more details on the FDE theoreti-
cal framework, however, for sake of clarity we report here the
spin KSCED equations which lead to the subsystem orbitals[−∇2

2
+ vIσ

KS(r) + vIσ
emb(r)

]
φσ

(i)I (r) = εσ
(i)I φ

σ
(i)I (r), (9)

where φσ
(i)I

are the molecular orbitals of subsystem I and of
spin σ .

The FDE scheme greatly reduces the computational cost
compared to KS-DFT, as there is no need to calculate or-
bitals for the total (“super”) system, and the total computa-
tional complexity is then linear over the number of subsys-
tems composing the total supersystem. However, the reduced
cost in FDE compared to KS-DFT is achieved at the expense
of approximating the non-additive functionals with semilocal
density-functional approximants. This approximation, for the
kinetic energy especially, is the single source of certain short-
comings of FDE, for example, when applied to covalently
bound subsystems.67

IV. CHARGE TRANSFER EXCITATIONS WITH FDE

Recently, two of the present authors have shown in
Ref. 62 that FDE can be successfully used to calculate mi-
gration CT couplings and excitation energies. In this work,
we present a different algorithm for obtaining the elements
of the full-electron Hamiltonian and overlap matrices defined
in Eqs. (4) and (5) which has significant advantages over the
previous method. Specifically, the new formalism can be ap-
plied to symmetric systems (out of reach before due to a
singularity in the working equations20, 62) and, as it will be
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clear in Sec. V, yields very accurate excitation energies with
mainstream GGA-type functionals, while before it was nec-
essary to include HF non-local exchange to the functional to
counteract the self-interaction error. In addition, two new
algorithms have been implemented here. We call them
subsystem-joint transition density (JTD) and subsystem-
disjoint transition density (DTD) formalisms. While the for-
mer is computationally straightforward, it formally does not
scale linearly with the number of subsystems. Instead, the lat-
ter scales linearly with the number of subsystems and, thus, it
is theoretically consistent with the FDE formalism.

A. Approximate couplings and total energies
in subsystem DFT

Suppose we have two broken-symmetry Slater determi-
nants describing two charge-localized states �1 and �2. The
wave functions in terms of the two set of molecular orbitals
take the form:

�i = Â
[
φ

(i)
1 φ

(i)
2 . . . φ

(i)
N

]
, (10)

where the antisymmetrizer Â also contains appropriate nor-
malization constants. Generally, the two sets of molecular
orbitals {φ(1)

k } and {φ(2)
k } may not be orthonormal to each

other and within the sets. This usually happens for broken-
symmetry HF and KS-DFT solutions as well as for KS-
determinants derived from constrained DFT14 and subsystem
DFT calculations.62 We define the transition orbital overlap
matrix as follows:

(S(12))kl = 〈
φ

(1)
k

∣∣φ(2)
l

〉
. (11)

In what follows, we only consider the case of a subsystem
DFT calculation, i.e., we only deal with Slater determinants of
the system constructed form subsystem molecular orbitals as
done in a previous work.62 To avoid redundance with the the-
ory of Ref. 62, let us briefly state that, similarly to the valence
bond theory,57 the subsystem DFT version of the Slater deter-
minant in Eq. (10) features products of occupied subsystem
orbitals regardless of the fact that the orbitals between sub-
systems might not be orthogonal to each other. In the case of
a two-subsystem partitioning, the S(12) transition orbital over-
lap matrix can be formally written as

S(12) =
⎛
⎝ S(12)

I S(12)
I,II

S(12)
II,I S(12)

II

⎞
⎠ , (12)

where S(12)
I and S(12)

II are transition orbital overlap matrices
calculated with the orbitals belonging to subsystem I or II,
respectively (subsystem transition orbital overlap matrices,
hereafter), while S(12)

I,II and S(12)
II,I include the overlaps of the

orbitals belonging to subsystem I with the ones belonging to
subsystem II. Let us clarify that there are two sources of non-
orthogonality in this formalism. The first one stems from the
overlap between the full-electron charge-localized states, i.e.,
Eq. (5), and the second one arises at the (subsystem) molec-
ular orbital level in Eqs. (10) and (11). The orbital overlap
matrix is generally non-diagonal, also when it is computed

from orbitals belonging to a single state, namely,

(S(ii))kl = 〈
φ

(i)
k

∣∣φ(i)
l

〉
. (13)

It can be seen that the above matrix also is non-diagonal as
the orbitals {φ(i)

k }k=1,N are borrowed from an FDE calculation
which does not impose orthogonality to orbitals belonging to
different subsystems.63, 68

Going back to the elements of the S(12)
I,II and S(12)

II,I subma-
trices, it is clear that they are small in magnitude compared
to the subsystem transition overlap matrices provided that the
subsystems are not covalently bound to each other. The ma-
trix form in Eq. (12) partially loses its block form in the case
of electronic transitions that change the number of electrons
in the subsystems, such as the ones considered in this work.
Specifically, if the CT transition involves one electron, then
the transition overlap matrix will have one column (row) with
sizable non-zero elements across the subsystems involved in
the CT event.

In this work, we use the following formulas for the cal-
culation of the Hamiltonian coupling between the two charge-
localized states:14, 69

H12 = 〈�1|Ĥ |�2〉 = E[ρ(12)(r)]S12, (14)

where S12 = det(S(12)), and

ρ(12)(r) =
∑
kl

φ
(1)
k (r)(S(12))−1

kl φ
(2)
l (r) (15)

is a scaled transition density derived from the orbitals of the
two states, and the functional E is an appropriate density func-
tional. The transition density in Eq. (15) is obtained from the
integration of the one-particle Dirac delta function, namely,70

〈�1|Nδ(r1 − r)|�2〉 = N

∫
dr1 · · · drN�1(r1 · · · rN )

× δ(r1 − r)�2(r1 · · · rN )

=
∑
kl

D(12)(k|l)φ(1)
k (r)φ(2)

l (r)

= det(S(12))
∑
kl

φ
(1)
k (r)(S(12))−1

kl φ
(2)
l (r),

(16)

where D(12)(k|l) is the signed minor (or cofactor) of the tran-
sition orbital overlap matrix of Eq. (11). Then Eq. (15) is ob-
tained by simply dividing Eq. (16) by det(S(12)), so that the
scaled transition density integrates to the total number of elec-
trons (N) rather than to N det(S(12)).

Scaling the transition density is a matter of algebraic con-
venience. Equation (14) is particularly simple in terms of a
scaled transition density, and is rigorous if the wave func-
tions are single Slater determinants and the Hamiltonian is
the molecular electronic Hamiltonian69, 71–73 (i.e., as in the HF
method). In our work, we consider two charge-localized states
per calculation. These are generally non-orthogonal. How-
ever, for some systems, it is possible that the two states could
accidentally be orthogonal. In this scenario, the scaled transi-
tion density is recovered by employing the Penrose inverse
of the transition overlap matrix in Eq. (15). The matrix is
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inverted in the N − x dimensional subspace (usually x = 1)
where it is not singular.

It is important to point out that the coupling formula in
Eq. (14) was derived assuming that �1/2 are broken-symmetry
HF wave functions. Even though the HF and KS wave func-
tions are both single Slater determinants, the formula is not
formally transferable from the HF method to a DFT method
(as we do in this work). Applying Eq. (14) in the context of
DFT is an approximation. It can be shown that in the con-
text of linear-response TD-DFT Eqs. (14) and (15) are equiv-
alent to the Tamm-Dancoff approximation to TD-DFT. In ad-
dition, let us clarify that formally the HF exchange and HF
and KS kinetic energy terms are computed with the transi-
tion density matrix, and thus the density in Eq. (15) should be
replaced by a quantity that depends on one electronic coordi-
nate r as well as another electronic coordinate, r′, namely,
ρ(12)(r, r′) = ∑

kl φ
(1)
k (r)(S(12))−1

kl φ
(2)
l (r′). However, for sake

of clarity, here we will limit ourselves to reporting the (transi-
tion) density without introducing the density matrix notation.
As an example of how we apply Eq. (14) in practical calcu-
lations, consider a calculation in which we employ the LDA
exchange density functional, then the exchange contribution
to the off-diagonal Hamiltonian matrix element becomes

Ex[ρ(12)(r)]S12 = −S12
3

4

(
3

π

) 1
3
∫

(ρ(12)(r))
4
3 dr. (17)

The diagonal elements of the Hamiltonian are computed
in a similar fashion as the off-diagonal ones, namely,

Hii = 〈�i |Ĥ |�i〉 = E[ρ(i)(r)], (18)

where

ρ(i)(r) =
∑
kl

φ
(i)
k (r)(S(ii))−1

kl φ
(i)
l (r). (19)

Note that the overlap element has disappeared in Eq. (18).
While this is a trivial consequence of the normalization con-
dition on the Slater determinant in a regular KS-DFT cal-
culation, the KS Slater determinant of the supersystem built
with subsystem orbitals is not normalized. However, the cor-
responding FDE density theoretically is the correctly normal-
ized correlated density of the full system, integrating to the
total number of electrons.62 This is an important point as the
number of electrons in a calculation is set by the trace of
the (transition or diagonal) orbital overlap matrix, while the
norm of a Slater determinant depends upon the determinant
of the corresponding orbital overlap matrix.

To summarize, the approximations we employ are equiv-
alent to (1) replacing the HF Slater determinants needed to
define the charge-localized states �1/2 with Slater determi-
nants made up of subsystem KS molecular orbitals, and (2)
replacing the HF expression of E[ρ(12)(r)] by an approximate
density functional.

Approximation (1) is often invoked in DFT calculations
of electronic couplings,14, 15, 53, 59, 62 while (2) was used before
by Kaduk et al.,14 and it is introduced here for the first time in
the context of subsystem DFT. Contrary to the density, the
scaled transition density introduced in Eq. (15) might fea-
ture regions of space where it carries a negative sign. Gener-

ally, exchange-correlation and kinetic-energy functionals may
feature arbitrary fractional powers of the density that would
render the exchange-correlation energy complex. By work-
ing with a scaled transition density that is quasi-positive al-
most everywhere in space (see below), the simplest pragmatic
workaround is to set the scaled transition density to zero ev-
erywhere in space where it actually has negative values. While
this may seem to be a somewhat drastic approximation, we
note that in practice only a small part of the scaled transi-
tion density needs to be changed, and the very good results
observed in our test cases below empirically justify this pro-
cedure (see Sec. V). In all the cases considered here, the ne-
glect of the negative parts of the scaled transition density af-
fected its total integral by less than a tenth of a percentile
point.

The quasi positivity of the scaled transition density can
be explained with two arguments. In a frozen core approxi-
mation, if the only orbital product term left in the scaled tran-
sition density is negative almost everywhere in space, then
that product will give rise to a negative element of the inverse
of the transition overlap matrix (being just the inverse of that
orbital overlap in this approximation). Thus, the scaled transi-
tion density will be positive almost everywhere, as the above
mentioned orbital product is multiplied by the inverse overlap
in the equation for the scaled transition density. The second
argument uses the fact that the scaled transition density in-
tegrates to N, it can be decomposed into two contributions,
one corresponding to the N − 1 electron system undergoing
little changes in the transition, and the other corresponding
to the single transferring electron. Only the latter component
has possibly negative contributions to the scaled transition
density, and is unlikely to overpower the much larger N − 1
component.

Generally, in those cases where the S12 overlap is zero
because x orbital overlaps (x rows/columns of the transition
overlap matrix) are identically zero, we employ the Penrose
inversion of the transition overlap matrix and ρ(12) is indeed
a N − x “positive” electron system “plus” an x electron sys-
tem that overall integrates to zero (and thus half positive and
half negative). In this case the scaled transition density inte-
grates to N − x and because x � N, the negative parts of the
x electron system will unlikely overpower the positive N − x
electron system. In any even, this orthogonal case will yield
a zero H12 matrix element as calculated by Eq. (14). Thus,
even in those cases where the scaled transition density has
large negative parts (which we never encountered in our cal-
culations), its contribution to the Hamiltonian matrix element
will be negligible due to either a negligible or a zero overlap
element.

We should warn the reader that the sign of the scaled
transition density is independent of wave function phase fac-
tors. In fact, wave function phase factors do not affect the
scaled transition density as the overlap element between the
N-electron wave functions (Slater determinants in the context
of our work) will carry with it the same phase factor as the
conventional transition density. Thus, following the definition
of the scaled transition density in Eq. (15), dividing the con-
ventional transition density by the overlap has the effect of
removing the phase factor altogether.
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For sake of brevity, hereafter we will drop “scaled” when
referring to the above scaled transition density. In calculating
the transition density from FDE subsystem orbitals coming
from the KSCED equation in Eq. (9) by applying Eq. (15),
one must consider all of its subsystem contributions as well
as its overlap-mediated inter-subsystem couplings. The tran-
sition density for a system partitioned in NS subsystems be-
comes

ρ(12)(r) =
NS∑
I,J

∑
k∈I

∑
l∈J

φ
(1)
(k)I

(r)(S(12))−1
kl φ

(2)
(l)J

(r). (20)

It is interesting to notice that the above transition density
“joins” orbital transitions of one subsystem with the ones
of another subsystem through the terms in the sum over the
subsystem’s labels where I 	= J. The coupling of these inter-
subsystem transitions are weighted by the matrix elements of
the inverse of the transition orbital overlap matrix, (S(12))−1.
The diagonal density, i.e., the density of the broken-symmetry
charge-localized states, can be formulated similarly applying
Eq. (19), namely,

ρ(i)(r) =
NS∑
I,J

∑
k∈I

∑
l∈J

φ
(i)
(k)I

(r)(S(ii))−1
kl φ

(i)
(l)J

(r). (21)

As pointed out previously62 this density is not exactly the
sum of subsystem densities obtained with the FDE calcula-
tion from Eq. (8), as the intersubsystem overlap elements do
not appear in the FDE formalism. Such a density mismatch
constitutes a second-order effect62 and is not a concern here
as we are going to apply the method only to non-covalently
bound subsystems, that is, super-systems with small inter-
subsystems orbital overlap. As we will see in Sec. IV B, this
density issue is completely by-passed by an FDE-compatible
theory we call “disjoint transition density formulation.”

B. Subsystem-joint and subsystem-disjoint
transition density formulations

The transition density in Eq. (20) can be approximated
by a density composed only of intra-subsystem orbital tran-
sitions. By recognizing that the off-diagonal blocks S

(12)
I,II in

Eq. (12) are always very small in magnitude when the subsys-
tems are not covalently bound and if there is no electron trans-
fer between subsystems the disjoint transition density can be
written as

ρ̃
(12)
DTD(r) =

∑
I

ρ
(12)
I (r), (22)

ρ
(12)
I (r) =

∑
k,l∈I

φ
(1)
(k)I

(r)
(
S(12)

I

)−1
kl

φ
(2)
(l)I

(r), (23)

where the tilde has been included to distinguish the above def-
inition of disjoint transition density with the one we use for
charge-transfer transition, see below. The off-diagonal Hamil-
tonian matrix element (H12) can therefore be calculated with
either the JTD in Eq. (20), giving rise to the JTD Hamilto-
nian couplings; or with the DTD of Eq. (22), giving rise to
the DTD Hamiltonian couplings.

The above definition of disjoint transition density can be
cast in terms of a pure subsystem DFT formulation. Because
in the FDE formalism both the ground and excited state den-
sities can be written as a sum of subsystem densities, as in
Eq. (8), namely,

ρ
(1)
DTD(r) =

∑
I

ρ
(1)
I (r), (24)

ρ
(2)
DTD(r) =

∑
I

ρ
(2)
I (r), (25)

and given that the subsystem densities are derived from Slater
determinants of subsystem orbitals, then it is enough to in-
voke approximation (1) (i.e., replace the HF Slater determi-
nants needed to define the charge-localized states �1/2 with
Slater determinants made up of subsystem KS molecular or-
bitals) to see that the transition density relating states 1 and 2
is of the DTD type [as in Eq. (22)]. However, if the electronic
transition involves electron transfer between subsystem K and
L, then the transition density cannot be completely disjoint,
and it can be approximated by (note, compared to Eq. (22)
the tilde is removed)

ρ
(12)
DTD(r) = ρ

(12)
KL (r) +

NF∑
I=1,I 	=K,L

ρ
(12)
I (r), (26)

ρ
(12)
KL (r) =

∑
k,l∈K,L

φ
(1)
(k)K,L

(r)
(
S(12)

K,L

)−1
kl

φ
(2)
(l)K,L

(r), (27)

where S(12)
I are the subsystem transition orbital overlap matri-

ces and S(12)
KL is the full transition orbital overlap matrix of the

combined K and L subsystems and ρ
(12)
I (r) is the same as in

Eq. (23).
The diagonal elements of the Hamiltonian over the

broken-symmetry states in the DTD calculations become

Hii = 〈�i |Ĥ |�i〉 = E
[
ρ

(i)
DTD(r)

]
=

∑
I

E
[
ρ

(i)
I (r)

] + T nadd
s

[
ρ

(i)
I , ρ

(i)
II , . . .

]

+ Enadd
xc

[
ρ

(i)
I , ρ

(i)
II , . . .

]
. (28)

For the above expressions, we use the FDE total energy parti-
tioning in subsystem energies and non-additive functionals.74

Similarly, the off-diagonal elements become

H12 = 〈�1|Ĥ |�2〉 = E
[
ρ

(12)
DTD(r)

]
S12

= S12

(∑
I

E
[
ρ

(12)
I (r)

] + T nadd
s

[
ρ

(12)
I , ρ

(12)
II , . . .

]

+Enadd
xc

[
ρ

(12)
I , ρ

(12)
II , . . .

])
, (29)

where the sums run over the number of disjoint subsystems in
the calculation and the non-additive functionals have the same
meaning as in the regular FDE formalism.51, 63, 65, 66 Note that
for charge-transfer transitions, the above sum over the dis-
joint subsystems is carried out in a similar way to the one in
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Eq. (26), i.e., the subsystems undergoing variation of the num-
ber of electrons [K and L in Eq. (27)] are grouped together in
one supersystem that maintains an overall constant number of
electrons during the transfer of charge.

Let us remark that the computational cost needed to cal-
culate the matrix elements in the DTD formalism is linear-
scaling with the number of subsystems, while the JTD for-
malism is not—it scales as N3 with N being the number
of electrons in the supersystem even though with a much
smaller scaling coefficient than regular KS calculations (as in
the JTD formalism the KS equations do not need to be self-
consistently solved for the supermolecular system. Instead the
transition orbital overlap matrix is inverted only once).

V. VALIDATION OF THE METHODOLOGY

After implementation of the above described JTD and
DTD algorithms in ADF, in what follows, we aim at pro-
viding a thorough benchmark of the method. We compare
our calculated migration CT excitation energies against two
dimer systems: a water dimer radical cation, (H2O)+2 , and
an ethylene dimer radical cation, (C2H4)+2 , at varying inter-
monomer separations for which we carried out several differ-
ent high-level wave function method calculations of the ex-
citation energies. We also calculate hole transfer excitation
energies for several DNA nucleobase dimers, and compare
them to CASPT2 calculations. The idea behind this bench-
mark is to seek a validation of the ability of our FDE method
(note JTD and DTD are equivalent for only two subsystems)
to reproduce quantitatively (with at least chemical accuracy,
1 kcal/mol or 0.04 eV deviation) the CT excitation energies
calculated with the wave function methods considered. Unless
otherwise noted, all DFT calculations have been carried out
with the PW91 density functional and a TZP (triple-zeta with
polarization) basis set with ADF, all EOM-CCSD(T) calcula-
tions have been carried out with the NWChem 5.2 software,75

and all Fock–Space CCSD calculations have been carried out
with the DIRAC 11 software.76

A. Water dimer

The nuclear positions of a neutral water dimer were first
optimized with a DFT method employing the BP86 func-
tional and a TZP basis set. Figure S1 of the supplemen-
tary material77 depicts the obtained structure. The subsequent
calculations were carried out on the same system by trans-
lating one water molecule away from the other along the
hydrogen-bond axis. The results are summarized in Figure 1.
We calculated the excitation energy in two ways. In the first
one (FDE/FDE label in the figure) the diabatic energies [or
the diagonal elements of the diabatic Hamiltonian in Eq. (4)]
were computed using Eq. (28) with the FDE density calcu-
lated as in Eq. (8). In the second calculation (FDE/ET) the
diabatic energies were calculated by integrating the energy
functional as in Eq. (18) with the density computed from the
FDE subsystem orbitals as in Eq. (19).

We compare our values with excitation energies from
four coupled cluster calculations. Three of these calculations
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FIG. 1. Migration charge-transfer excitations (in eV) for water dimer radical
cation in the Cs symmetric configuration with an intermonomer displacement
from the equilibrium distance of 0 < R < 15 Å.

were carried out with the EOM-CC method (with different
basis sets and reference determinant). In the fourth calcu-
lation the excitation energy is obtained by subtracting from
each other the ionization potentials obtained with Fock-Space
coupled-cluster78 [FS-CCSD] calculated from two different
guesses of the initial ionized state: one being the HOMO,
almost entirely localized onto one monomer, and the other
one the HOMO-1, almost entirely localized onto the other
monomer.

The comparison of the CC methods with our values is
very good for the FS-CCSD values while the EOM-CCSD(T)
values are consistently larger in magnitude. This behav-
ior of EOM-CC methods has been noted before for MCT
excitations49 and, as mentioned in the Introduction, it is due
to the fact that the EOM-CC excited-state ansatz cannot be
written in the regular exponential form, thus making EOM-
CC non-size extensive.43 One can rationalize this with an ar-
gument based on orbital relaxation. In the excited state, the
charge has migrated to another location and the orbital of the
donor must relax back to the neutral state. Similarly, the or-
bitals of the acceptor must relax to the charged state. In both
cases single excitations are the main contribution, however
they must be computed on top of the single excitation needed
to describe the CT itself. Therefore, one needs at least double
excitations to describe these relaxation effects.32 Adding per-
turbatively the triple excitations usually further improves this
situation allowing the EOM-CCSD(T) to reach typical devia-
tions of 0.1–0.3 eV on excitation energies.49

We therefore consider the EOM-CCSD(T) energy over-
estimation a good sign that our method yields accurate exci-
tation energies. Convincing evidence is provided by the FS-
CCSD energies, as they compare with our values to within
chemical accuracy at every inter-monomer separation. An is-
sue of orthogonality arises, as the ionization potentials cal-
culated by the FS-CCSD method are deduced from cationic
wave function which are not strictly orthogonal to each other.
This however, plays a very minor role here, as the overlap
and the electronic coupling between the two diabatic states is
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almost zero as proved by our calculations of S12 in Tables S1
and S2 of the supplementary material.77

For sake of completeness, in the supplementary
material77 we report the numerical values used to obtain the
plot in Figure 1 as well as additional FDE calculations carried
out with the BLYP functional showing a similar behavior to
the PW91 calculations.

B. Ethylene dimer

The nuclear positions of a neutral ethylene molecule were
first optimized with a DFT method employing the BP86 func-
tional and a TZP basis set. Then a copy of the same molecule
is pasted so as to obtain a π -stacked ethylene dimer with in-
termolecular separation of R. Figure S2 of the supplementary
material77 depicts the obtained structure. The calculated exci-
tation energies are plotted in Figure 2. Due to the symmetric
arrangement of the ethylene dimer, this system behaves in a
very different way from the water dimer considered above.
Here, the orbital relaxation issues faced before are less im-
portant as the hole is completely delocalized between the two
monomers—the inner orbitals are not dramatically affected
by the excitation. The hole sits in orbitals with different sym-
metry in the ground and in the CT excited state. The ground
state has a symmetric HOMO having ag symmetry, while the
first excited state has the HOMO of b2u symmetry. Because of
these reasons, we expect the EOM-CC calculations to be of
much higher accuracy than for the water dimer case. And in
fact this is what we notice. Our calculations are in very good
agreement with both the EOM-CCSD(T) and the FS-CCSD
calculations. Our values slightly underestimate the CC calcu-
lation at shorter separations, even if only of 0.1 eV. At larger
separations (R > 6), due to the lowering magnitude of the ex-
citation energy, and to a much reduced extent compared to the
water dimer case, the overestimation of the excitation energy
by EOM-CCSD(T) becomes noticeable again. Instead, FS-
CCSD and our calculations are still in very good agreement.
The EOM-CC calculations carried out with the 6-311G(d,p)
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FIG. 2. Migration charge-transfer excitations (in eV) for ethylene dimer rad-
ical cation in the D2h symmetric configuration with an intermonomer dis-
placement from the equilibrium distance of 6 < R < 15 Å. Full 3 < R
< 15 Å range is available in Table S3 of the supplementary material.77

basis set show a slight off-trend behavior. We attribute this to
the absence of augmented functions in the basis set.

Once again, for sake of completeness, in the supplemen-
tary material77 we report the numerical values used to obtain
the plot in Figure 2 as well as additional FDE calculations car-
ried out with the BLYP functional showing a similar behavior
to the PW91 calculations.

C. Hole transfer in DNA π-stacked nucleobases

In a recent paper62 we have applied FDE to constrain
charges on DNA nucleobases and subsequently we calculated
electronic couplings and CT excitation energies. In the previ-
ous work we employed the formalism of Migliore et al.20, 53, 79

for the calculation of the coupling which retained all the de-
ficiencies of the approximate density functionals, particularly
self interaction. The self interaction error caused a gross over-
estimation of the coupling and excitation energies which was
ameliorated by mixing in non-local Hartree-Fock exchange in
the functional.

Here we recalculated the same systems, i.e., guanine
dimer, (GG)+, and the guanine-thymine complex, (GT)+. In
addition, here we report calculations on the adenine dimer,
(AA)+, thymine dimer, (TT)+, thymine-guanine, (TG)+,
adenine-guanine, (AG)+, and the guanine-adenine, (GA)+.
The results are summarized in Table I. Comparing the CT
excitation energies calculated with the method of Migliore
with the ones calculated in this work, it is clear that the
self interaction error does not affect the new calculations.
This can be understood by considering that the formalism of
Migliore requires the KS wave function of the supermolec-
ular system (i.e., composed of the donor and acceptor). The
self interaction error, even though it is present in all cal-
culations, does not affect the FDE calculations because the
hole there is localized by construction and is not allowed to
overdelocalize.62, 66

The excitation energy values are generally in good agree-
ment with the CASPT2 benchmark values. For the (TT)+

system no high-level benchmark calculations are available,
while for the (AA)+ and (TG)+ systems our excitation
energies deviate by about 0.1 eV against the CASPT2 values.
After inspecting the excitation energies calculated with the

TABLE I. Hole transfer excitations and couplings in π -stacked DNA nucle-
obase radical cation complexes. All energy values in eV. The . . . stands for
“not available.”

Composition S12 V12 �Eex
a �Eex

b �Eex
c �Eex

d

(AA)+ 0.004 0.092 0.198 . . . . . . 0.097
(AG)+ 0.002 0.177 0.421 . . . . . . 0.340
(GA)+ 0.012 0.058 0.530 . . . . . . 0.560
(GG)+ 0.009 0.051 0.405 1.653 0.418 0.392
(GT)+ 0.020 0.104 1.082 1.944 1.159 1.175
(TG)+ 0.009 0.056 0.657 . . . . . . 0.797
(TT)+ 0.018 0.099 0.208 . . . . . . . . .

aThis work.
bPW91/TZP from Ref. 62.
cBHandH/TZP from Ref. 62.
dCASPT2 values form Ref. 80.
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progression CASSCF(7,8), CASSCF(11,12), and
CASPT2(11,12) in Ref. 80 for the (AA)+ and (TG)+

systems we notice that while for all the other nucleobase
stacks the excitation energies calculated with the three
methods are similar to each other, the cases of (AA)+ and
(TG)+ stand out. For example, the CASSCF(7,8) excitation
energies are 0.144 eV and 1.235 eV for the (AA)+ and (TG)+

systems, respectively. Then these values drop to 0.047 eV
and 1.097 eV for the CASSCF(11,12) and then back up to
0.097 eV for the (AA)+ system but go down to 0.797 eV for
(TG)+ in the CASPT2 calculation.

According to Blancafort and Voityuk,80 these large fluc-
tuations in the excitation energy are to be expected especially
when going from CASSCF to CASPT2. However, they also
notice that for the (AA)+ system a larger active space than
they employed should be considered to confirm the couplings
and excitation energies for this nucleobase dimer complex.
Therefore, it is difficult to compare the excitation energies for
all the nucleobase stacks we compute here with the CASSCF
and CASPT2 calculations of Blancafort and Voityuk.80 Fur-
ther analysis of these calculations (i.e., study the effect of the
size of the active space in the CASSCF/CASPT2) lie beyond
the scope of this work.

VI. PILOT CALCULATIONS: EMBEDDING EFFECTS
IN WATER AND ETHYLENE CLUSTERS

In this section we present calculations carried out for sys-
tems composed of more than 2 subsystems. As pilot studies
we choose the same small dimer systems considered above
and embed them in clusters of the same molecule. First we
consider the hole transfer in ethylene dimer embedded in an
ethylene matrix, then we consider a water dimer in a cluster
extracted from liquid water.

A. Ethylene clusters

In Figure 3 we depict a selected number of ethylene clus-
ters used in the calculation, and in Table II we report the val-
ues of excitation energy and electronic coupling correspond-
ing to the hole transfer in the selected dimer. The dimer has
the same geometry of the dimer considered in Sec. V B with
inter-monomer separation of R = 4.0 Å. For the DTD calcula-
tion the non-additive exchange-correlation functional used is
PW91, while PW91k81, 82 was employed for the evaluation of
the non-additive kinetic-energy functional. The excitation en-
ergy and coupling values reported in Table II are essentially
independent of the size of the cluster, showing that for this
dimer system we should expect a minor environmental effect
of the CT excitation and the hole transfer electronic coupling.
This is indeed what was found for this conformation and inter-
monomer orientation in a study by Lipparini and Mennucci83

where the environment was modelled as a polarizable
dielectric.

It is important to notice how the JTD and DTD calcu-
lations yield very similar excitation energies and couplings.
The DTD values always lie a few meV lower than the JTD
ones. The RMS deviation of the excitation energies calculated
with the JTD versus DTD method is 1.5 meV, while the av-

FIG. 3. Depiction of the ethylene clusters used in the calculations contain-
ing: inset (a) 4, (b) 6, (c) 8, and (d) 10 ethylene molecules. The depicted
clusters were obtained from the 20-molecule cluster cutting the furthest away
molecules from the center of mass of the two molecules experiencing the hole
transfer. Figure obtained with MOLDEN.91

erage deviation is 1.2 meV. While it is difficult to pinpoint
the origin of this small discrepancy, we note that the contri-
bution to the excitation energy and electronic coupling from
the non-additive kinetic energy functional ranged from only a
few meV in most cases to 23 meV in the four-member cluster
system. In all cases, this contribution brought the excitation
energy value closer to the JTD one.

Lipparini and Mennucci,83 also considered dimers
with different orientation by rotating one of the ethylene
molecules around the carbon-carbon axis. In the supplemen-
tary material,77 we report calculations carried out for the
dimer systems with a rotated monomer in the presence of a
minimal environment. Our calculations largely reproduce the
findings of Lipparini and Mennucci.83 However, our FDE cal-
culations allow for the recovering of effects of the discrete
molecular environment.

TABLE II. Ethylene cluster electronic couplings and charge transfer excita-
tions. The hole transfer occurs between two ethylene molecules separated by
R = 4.0 Å. All values in eV. N is the number of molecules in the cluster.

JTD DTD

N V12 �Eex V12 �Eex

2 0.260 0.521 . . . . . .
4 0.261 0.539 0.261 0.540
6 0.262 0.524 0.260 0.521
8 0.262 0.535 0.261 0.534
10 0.262 0.538 0.260 0.538
20 0.262 0.535 0.260 0.534
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FIG. 4. Depiction of the water clusters used in the calculations containing:
inset (a) 2, (b) 4, (c) 6, (d) 8, and (e) 10 water molecules. The depicted clus-
ters were obtained from the 56-molecule cluster cutting the furthest away
molecules from the center of mass of the two molecules experiencing the
hole transfer. Figure obtained with VMD92 and MOLDEN.91

B. Water clusters

The clusters were generated by choosing a water dimer
complex from bulk water and then carving the desired water
molecules around it. The coordinates of a large cluster of bulk
water were given to us by Daniel Spångberg.84 More details
on the generation of the bulk water is available in the supple-
mentary material.77

Figure 4 depicts a selected set of clusters considered with
the highlighted water dimer chosen for the hole transfer. All
the other molecules belong to the environment and polarize
according to where the hole is located. However, they do not
undergo variation of electron number during the hole transfer
process. In Table III we collect the values of electronic cou-
plings and excitation energies calculated with the JTD and
DTD formalisms. As noted in the ethylene dimer calcula-
tions, also here the DTD values always underestimate the JTD
ones. In this case by 1–60 meV for excitation energies and
1–15 meV for the electronic couplings. The RMS deviation

TABLE III. Water cluster electronic couplings and charge transfer excita-
tions. All values in eV. N is the number of molecules in the cluster.

JTD DTD

N V12 �Eex V12 �Eex

2 0.259 1.431 . . . . . .
3 0.242 1.138 0.253 1.098
4 0.250 1.447 0.249 1.422
5 0.226 1.254 0.241 1.189
6 0.251 0.951 0.250 0.913
7 0.227 0.771 0.242 0.716
8 0.257 1.527 0.252 1.498
9 0.236 1.344 0.244 1.275
10 0.261 1.416 0.256 1.383
11 0.248 1.252 0.254 1.187
13 0.249 1.227 0.255 1.154
17 0.245 1.094 0.251 1.013
21 0.211 1.002 0.219 0.929
27 0.160 0.610 0.170 0.544
31 0.177 0.743 0.186 0.680
36 0.196 0.843 0.203 0.777
41 0.199 0.733 0.205 0.700
46 0.155 0.563 0.165 0.518
51 0.147 0.607 0.160 0.558
56 0.128 0.468 0.143 0.422

of the excitation energies calculated with the JTD versus DTD
method is 0.06 eV, while the average deviation is 0.05 eV.

In our water cluster calculation we see a very different
behavior from the ethylene cluster. The electronic couplings
are as effected by the environment as the excitation energies.
This is likely the effect of water having a permanent dipole,
thus adding large contributions to the electric field interacting
with the hole. Contrary, in the ethylene clusters case the envi-
ronmental electric field acting on the hole is of much weaker
magnitude as it is due only to polarization of the ethylene
molecules. What we notice in our calculations is that the more
water molecules are included in the cluster, the more the elec-
tronic coupling decreases. This was also a feature of the effect
of embedding by water on excitonic couplings in π -stacked
chromophore diads.85 For the configuration considered, the
excitation energy decreases by about 1 eV as the cluster size
increases. Such large variations of the excitation energy in
condensed phases with polar solvents is well known.86 Wit-
nesses of this are also the much larger reorganization energies
of electron transfer processes in polar solvent than in non-
polar ones.3, 87–90

VII. CONCLUSIONS

In this work, we have developed a new and linear-scaling
DFT method aimed at accurately predicting charge-transfer
excitation energies and diabatic couplings among charge-
localized states, and validated it against high-level wave func-
tion calculations.

The success of the disjoint transition density method (or
DTD, see Sec. IV B) resides in two important properties.
First, it computationally scales linearly with the number of
non-covalently bound molecules in the system. Second, the
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hole transfer excitation energies calculated with mainstream
GGA-type functionals reproduce within chemical accuracy
calculations carried out with several types of coupled clus-
ter methods. For the benchmark cases considered, our method
outperforms the biased EOM-CCSD(T), while it is in excel-
lent agreement with vertical ionization potential differences
calculated with Fock-Space CCSD calculations. We also car-
ried out calculations of the hole transfer excitations in seven
DNA base pair combinations reproducing CASPT2(11,12)
calculations within a 0.1 eV deviation or better. Pilot calcu-
lations on molecular clusters of water and ethylene have also
been carried out with cluster sizes up to 56 molecules. We
show how the method is able to recover solvation effects on
diabatic couplings and site energies (needed in electron trans-
fer calculations) as well as the excitation energies at the dis-
crete molecular level and fully quantum-mechanically. This
constitutes an important step forward in the development of
linear scaling electronic structure methods tailored to electron
transfer phenomena.

Future improvements of the method are underway and
will include the implementation of hybrid functionals in the
post-SCF calculation of the full-electron Hamiltonian ma-
trix elements and the extension of the method to both ex-
citations involving charge separation and covalently bound
subsystems.
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