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INFERENCE FOR EXTREMAL CONDITIONAL QUANTILE MODELS,

WITH AN APPLICATION TO MARKET AND BIRTHWEIGHT RISKS

VICTOR CHERNOZHUKOV† IVÁN FERNÁNDEZ-VAL§

Abstract. Quantile regression is an increasingly important empirical tool in economics

and other sciences for analyzing the impact of a set of regressors on the conditional dis-

tribution of an outcome. Extremal quantile regression, or quantile regression applied to

the tails, is of interest in many economic and financial applications, such as conditional

value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper

we provide feasible inference tools for extremal conditional quantile models that rely upon

extreme value approximations to the distribution of self-normalized quantile regression

statistics. The methods are simple to implement and can be of independent interest even

in the non-regression case. We illustrate the results with two empirical examples analyz-

ing extreme fluctuations of a stock return and extremely low percentiles of live infants’

birthweights in the range between 250 and 1500 grams.
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1. Introduction and Motivation

Quantile regression (QR) is an increasingly important empirical tool in economics and

other sciences for analyzing the impact of a set of regressors X on features of the conditional

distribution of an outcome Y (see Koenker, 2005). In many applications the features of

interest are the extremal or tail quantiles of the conditional distribution. This paper provides

practical tools for performing inference on these features using extremal QR and extreme

value theory. The key problem we address is that conventional inference methods for QR,

based on the normal distribution, are not valid for extremal QR. By using extreme value

theory, which specifically accounts for the extreme nature of the tail data, we are able to

provide inference methods that are valid for extremal QR.

Before describing the contributions of this paper in more detail, we first motivate the use

of extremal quantile regression in specific economic applications. Extremal quantile regres-

sion provides a useful description of important features of the data in these applications,

generating both reduced-form facts as well as inputs into estimation of structural models.

In what follows, QY (τ |X) denotes the conditional τ -quantile of Y given X; extremal condi-

tional quantile refers to the conditional quantile function QY (τ |X) with the quantile index

τ = ǫ or 1−ǫ, where ǫ is close to zero; and extremal quantile regression refers to the quantile

regression estimator of an extremal conditional quantile.

A principal area of economic applications of extremal quantile regression is risk manage-

ment. One example in this area is conditional value-at-risk analysis from financial economics

(Chernozhukov and Umantsev 2001, Engle and Manganelli 2004). Here, we are interested

in the extremal quantile QY (ǫ|X) of a return Y to a bank’s portfolio, conditional on various

predictive variables X, such as the return to the market portfolio and the returns to portfo-

lios of other related banks and mortgage providers. Unlike unconditional extremal quantiles,

conditional extremal quantiles are useful for stress testing and analyzing the impact of ad-

verse systemic events on the bank’s performance. For example, we can analyze the impact

of a large drop in the value of the market portfolio or of an associated company on the

performance of the bank’s portfolio. The results of this analysis are useful for determining

the level of capital that the bank needs to hold to prevent bankruptcy in unfavorable states

of the world. Another example comes from health economics, where we are interested in

the analysis of socio-economic determinants X of extreme quantiles of a child’s birthweight

Y or other health outcomes. In this example, very low birthweights are connected with

substantial health problems for the child, and thus extremal quantile regression is useful to

identifying which factors can improve these negative health outcomes. We shall return to

these examples later in the empirical part of the paper.
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Another primary area of economic applications of extremal quantile regression deals with

describing approximate or probabilistic boundaries of economic outcomes conditional on

pertinent factors. A first example in this area comes from efficiency analysis in the economics

of regulation, where we are interested in the probabilistic production frontier QY (1− ǫ|X).

This frontier describes the level of production Y attained by the most productive (1− ǫ)×
100 percent of firms, conditional on input factors X (Timmer 1971). A second example

comes from the analysis of job search in labor economics, where we are interested in the

approximate reservation wage QY (ǫ|X). This function describes the wage level, below

which the worker accepts a job only with a small probability ǫ, conditional on worker

characteristics and other factors X (Flinn and Heckman 1982). A third example deals

with estimating (S, s) rules in industrial organization and macroeconomics (Caballero and

Engel 1999). Recall that the (S, s) rule is an optimal policy for capital adjustment, in

which a firm allows its capital stock to gradually depreciate to a lower barrier, and once the

barrier is reached, the firm adjusts its capital stock sharply to an upper barrier. Therefore,

in a given cross-section of firms, the extremal conditional quantile functions QY (ǫ|X) and

QY (1 − ǫ|X) characterize the approximate adjustment barriers for observed capital stock

Y , conditional on a set of observed factors X.1,2

The two areas of applications described above are either non-structural or semi-structural.

A third principal area of economic applications of extremal quantile regressions is structural

estimation of economic models. For instance, in procurement auction models, the key infor-

mation about structural parameters is contained in the extreme or near-extreme conditional

quantiles of bids given bidder and auction characteristics (see e.g. Chernozhukov and Hong

(2004) and Hirano and Porter (2003)). We then can estimate and test a structural model

based on its ability to accurately reproduce a collection of extremal conditional quantiles

observed in the data. This indirect inference approach is called the method-of-quantiles

(Koenker 2005). We refer the reader to Donald and Paarsch (2002) for a detailed example

of this approach in the context of using k-sample extreme quantiles.3

1Caballero and Engel (1999) study approximate adjustment barriers using distribution models; obviously

quantile models can also be used.
2In the previous examples, we can set ǫ to 0 to recover the exact, non-probabilistic, boundaries in the

case with no unobserved heterogeneity and no (even small) outliers in the data. Our inference methods cover

this exact extreme case, but we recommend avoiding it because it requires very stringent assumptions.
3The method-of-quantiles allows us to estimate structural models both with and without parametric

unobserved heterogeneity. Moreover, the use of near-extreme quantiles instead of exact-extreme quantiles

makes the method more robust to a small fraction of outliers or neglected unobserved heterogeneity.
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We now describe the contributions of this paper more specifically. This paper develops

feasible and practical inferential methods based on extreme value (EV) theory for QR,

namely, on the limit law theory for QR developed in Chernozhukov (2005) for cases where

the quantile index τ ∈ (0, 1) is either low, close to zero, or high, close to 1. Without

loss of generality we assume the former. By close to 0, we mean that the order of the

τ -quantile, τT , defined as the product of quantile index τ with the sample size T , obeys

τT → k < ∞ as T → ∞. Under this condition, the conventional normal laws, which

are based on the assumption that τT diverges to infinity, fail to hold, and different EV

laws apply instead. These laws approximate the exact finite sample law of extremal QR

better than the conventional normal laws. In particular, we find that when the dimension-

adjusted order of the τ -quantile, τT/d, defined as the ratio of the order of the τ -quantile

to the number of regressors d, is not large, less than about 20 or 40, the EV laws may be

preferable to the normal law, whereas the normal laws may become preferable otherwise.

We suggest this simple rule of thumb for choosing between the EV laws and normal laws,

and refer the reader to Section 5 for more refined suggestions and recommendations.

Figure 1 illustrates the difference between the EV and normal approximations to the

finite sample distribution of the extremal QR estimators. We plot the quantiles of these

approximations against the quantiles of the exact finite sample distribution of the QR

estimator. We consider different dimension-adjusted orders in a simple model with only

one regressor, d = 1, and T = 200. If either the EV law or the normal law were to coincide

with the true law, then their quantiles would fall exactly on the 45 degree line shown by

the solid line. We see from the plot that when the dimension-adjusted order τT/d is 20 or

40, the quantiles of the EV law are indeed very close to the 45 degree line, and in fact are

much closer to this line than the quantiles of the normal law. Only for the case when the

effective order τT/d becomes 60, do the quantiles of the EV law and normal laws become

comparably close to the 45 degree line.

A major problem with implementing the EV approach, at least in its pure form, is its

infeasibility for inference purposes. Indeed, EV approximations rely on canonical normal-

izing constants to achieve non-degenerate asymptotic laws. Consistent estimation of these

constants is generally not possible, at least without making additional strong assumptions.

This difficulty is also encountered in the classical non-regression case; see, for instance,

Bertail, Haefke, Politis, and White (2004) for discussion. Furthermore, universal infer-

ence methods such as the bootstrap fail due to the nonstandard behavior of extremal QR

statistics; see Bickel and Freedman (1981) for a proof in the classical non-regression case.
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Figure 1. Quantiles of the true law of QR vs. quantiles of EV and

normal laws. The figure is based on a simple design with Y = X + U ,

where U follows a Cauchy distribution and X = 1. The solid line “——

” shows the actual quantiles of the true distribution of QR with quantile

index τ ∈ {.025, .2, .3}. The dashed line “- - -” shows the quantiles of

the conventional normal law for QR, and the dotted line “......” shows the

quantiles of EV law for QR. The figure is based on 10,000 Monte Carlo

replications and plots quantiles over the 99% range.

Conventional subsampling methods with and without replacement are also inconsistent be-

cause the QR statistic diverges in the unbounded support case. Moreover, they require

consistent estimation of normalizing constants, which is not feasible in general.

In this paper we develop two types of inference approaches that overcome all of the diffi-

culties mentioned above: a resampling approach and an analytical approach. We favor the

first approach due to its ease of implementation in practice. At the heart of both approaches

is the use of self-normalized QR (SN-QR) statistics that employ random normalization fac-

tors, instead of generally infeasible normalization by canonical constants. The use of SN-QR

statistics allows us to derive feasible limit distributions, which underlie either of our infer-

ence approaches. Moreover, our resampling approach is a suitably modified subsampling

method applied to SN-QR statistics. This approach entirely avoids estimating not only

the canonical normalizing constants, but also all other nuisance tail parameters, which in

practice may be difficult to estimate reliably. Our construction fruitfully exploits the special
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relationship between the rates of convergence/divergence of extremal and intermediate QR

statistics, which allows for a valid estimation of the centering constants in subsamples. For

completeness we also provide inferential methods for canonically-normalized QR (CN-QR)

statistics, but we also show that their feasibility requires much stronger assumptions.

The remainder of the paper is organized as follows. Section 2 describes the model and

regularity conditions, and gives an intuitive overview of the main results. Section 3 estab-

lishes the results that underlie the inferential procedures. Section 4 describes methods for

estimating critical values. Section 5 compares inference methods based on EV and normal

approximations through a Monte Carlo experiment. Section 6 presents empirical examples,

and the Appendix collects proofs and all other figures.

2. The Set Up and Overview of Results

2.1. Some Basics. Let a real random variable Y have a continuous distribution function

FY (y) = Pr[Y ≤ y]. A τ -quantile of Y is QY (τ) = inf{y : FY (y) > τ} for some τ ∈ (0, 1).

Let X be a vector of covariates related to Y , and FY (y|x) = Pr[Y ≤ y|X = x] denote

the conditional distribution function of Y given X = x. The conditional τ -quantile of Y

given X = x is QY (τ |x) = inf{y : FY (y|x) > τ} for some τ ∈ (0, 1). We refer to QY (τ |x),
viewed as a function of x, as the τ -quantile regression function. This function measures the

effect of covariates on outcomes, both at the center and at the upper and lower tails of the

outcome distribution. A conditional τ -quantile is extremal whenever the probability index

τ is either low or high in a sense that we will make more precise below. Without loss of

generality, we focus the discussion on low quantiles.

Consider the classical linear functional form for the conditional quantile function of Y

given X = x:

QY (τ |x) = x′β(τ), for all τ ∈ I = (0, η], for some η ∈ (0, 1], (2.1)

and for every x ∈ X, the support of X. This linear functional form is flexible in the sense

that it has good approximation properties. Indeed, given an original regressor X∗, the final

set of regressors X can be formed as a vector of approximating functions. For example, X

may include power functions, splines, and other transformations of X∗.

Given a sample of T observations {Yt,Xt, t = 1, ..., T}, the τ -quantile QR estimator β̂(τ)

solves:

β̂(τ) ∈ arg min
β∈Rd

T∑

t=1

ρτ

(
Yt −X ′

tβ
)
, (2.2)



6 INFERENCE FOR EXTREMAL QUANTILE REGRESSION

where ρτ (u) = (τ − 1(u < 0))u is the asymmetric absolute deviation function. The median

τ = 1/2 case of (2.2) was introduced by Laplace (1818) and the general quantile formulation

(2.2) by Koenker and Bassett (1978).

QR coefficients β̂(τ) can be seen as order statistics in the regression setting. Accordingly,

we will refer to τT as the order of the τ -quantile. A sequence of quantile index-sample size

pairs {τT , T}∞T=1 is said to be an extreme order sequence if τT ց 0 and τTT → k ∈ (0,∞) as

T → ∞; an intermediate order sequence if τT ց 0 and τTT → ∞ as T → ∞; and a central

order sequence if τT is fixed as T → ∞. Each type of sequence leads to different asymptotic

approximations to the finite-sample distribution of the QR estimator. The extreme order

sequence leads to an extreme value (EV) law in large samples, whereas the intermediate

and central sequences lead to normal laws. As we saw in Figure 1, the EV law provides a

better approximation to the finite sample law of the QR estimator than the normal law.

2.2. Pareto-type or Regularly Varying Tails. In order to develop inference theory for

extremal QR, we assume the tails of the conditional distribution of the outcome variable

have Pareto-type behavior, as we formally state in the next subsection. In this subsection,

we recall and discuss the concept of Pareto-type tails. The (lower) tail of a distribution

function has Pareto-type behavior if it decays approximately as a power function, or more

formally, a regularly varying function. The tails of the said form are prevalent in economic

data, as discovered by V. Pareto in 1895.4 Pareto-type tails encompass or approximate

a rich variety of tail behavior, including that of thick-tailed and thin-tailed distributions,

having either bounded or unbounded support.

More formally, consider a random variable Y and define a random variable U as U ≡ Y ,

if the lower end-point of the support of Y is −∞, or U ≡ Y −QY (0), if the lower end-point

of the support of Y is QY (0) > −∞. The quantile function of U , denoted by QU , then has

lower end-point QU (0) = −∞ or QU (0) = 0. The assumption that the quantile function QU

and its distribution function FU exhibit Pareto-type behavior in the tails can be formally

stated as the following two equivalent conditions:5

QU (τ) ∼ L(τ) · τ−ξ as τ ց 0, (2.3)

FU (u) ∼ L̄(u) · u−1/ξ as uց QU(0), (2.4)

4 Pareto called the tails of this form “A Distribution Curve for Wealth and Incomes.” Further empirical

substantiation has been given by Sen (1973), Zipf (1949), Mandelbrot (1963), and Fama (1965), among

others. The mathematical theory of regular variation in connection to extreme value theory has been

developed by Karamata, Gnedenko, and de Haan.
5 The notation a ∼ b means that a/b → 1 as appropriate limits are taken.
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for some real number ξ 6= 0, where L(τ) is a nonparametric slowly-varying function at

0, and L̄(u) is a nonparametric slowly-varying function at QU (0).6 The leading examples

of slowly-varying functions are the constant function and the logarithmic function. The

number ξ defined in (2.3) and (2.3) is called the EV index.

The absolute value of ξ measures the heavy-tailedness of the distribution. A distribution

FY with Pareto-type tails necessarily has a finite lower support point if ξ < 0 and a infinite

lower support point if ξ > 0. Distributions with ξ > 0 include stable, Pareto, Student’s t,

and many other distributions. For example, the t distribution with ν degrees of freedom

has ξ = 1/ν and exhibits a wide range of tail behavior. In particular, setting ν = 1 yields

the Cauchy distribution which has heavy tails with ξ = 1, while setting ν = 30 gives a

distribution which has light tails with ξ = 1/30, and which is very close to the normal

distribution. On the other hand, distributions with ξ < 0 include the uniform, exponential,

Weibull, and many other distributions.

It should be mentioned that the case of ξ = 0 corresponds to the class of rapidly varying

distribution functions. These distribution functions have exponentially light tails, with the

normal and exponential distributions being the chief examples. To simplify the exposition,

we do not discuss this case explicitly. However, since the limit distributions of the main

statistics are continuous in ξ, including at ξ = 0, inference theory for the case of ξ = 0 is

also included by taking ξ → 0.

2.3. The Extremal Conditional Quantile Model and Sampling Conditions. With

these notions in mind, our main assumption is that the response variable Y , transformed

by some auxiliary regression line, X ′βe, has Pareto-type tails with EV index ξ.

C1. The conditional quantile function of Y given X = x satisfies equation (2.1) a.s. More-

over, there exists an auxiliary extremal regression parameter βe ∈ R
d, such that the dis-

turbance V ≡ Y −X ′βe has end-point s = 0 or s = −∞ a.s., and its conditional quantile

function QV (τ |x) satisfies the following tail-equivalence relationship:

QV (τ |x) ∼ x′γ ·QU (τ), as τ ց 0, uniformly in x ∈ X ⊆ R
d,

for some quantile function QU(τ) that exhibits Pareto-type tails with EV index ξ (i.e., it

satisfies (2.3)), and some vector parameter γ such that E[X]′γ = 1.

Since this assumption only affects the tails, it allows covariates to affect the extremal

quantile and the central quantiles very differently. Moreover, the local effect of covariates

6A function u 7→ L(u) is said to be slowly-varying at s if limlցs[L(l)/L(ml)] = 1 for any m > 0.
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in the tail is approximately given by β(τ) ≈ βe + γQU (τ), which allows for a differential

impact of covariates across various extremal quantiles.

C2. The conditional quantile density function ∂QV (τ |x)/∂τ exists and satisfies the tail

equivalence relationship ∂QV (τ |x)/∂τ ∼ x′γ · ∂QU (τ)/∂τ as τ ց 0, uniformly in x ∈ X,

where ∂QU (τ)/∂τ exhibits Pareto-type tails as τ ց 0 with EV index ξ + 1.

Assumption C2 strengthens C1 by imposing the existence and Pareto-type behavior of

the conditional quantile density function. We impose C2 to facilitate the derivation of the

main inferential results.

The following sampling conditions will be imposed.

C3. The regressor vector X = (1, Z ′)′ is such that it has a compact support X, the matrix

E[XX ′] is positive definite, and its distribution function FX satisfies a non-lattice condition

stated in the mathematical appendix (this condition is satisfied, for instance, when Z is

absolutely continuous).

Compactness is needed to ensure the continuity and robustness of the mapping from

extreme events in Y to the extremal QR statistics. Even if X is not compact, we can

select the data for which X belongs to a compact region. The non-degeneracy condition of

E[XX ′] is standard and guarantees invertibility. The non-lattice condition is required for

the existence of the finite-sample density of QR coefficients. It is needed even asymptotically

because the asymptotic distribution theory of extremal QR closely resembles the finite-

sample theory for QR, which is not a surprise given the rare nature of events that have a

probability of order 1/T .

We assume the data are either i.i.d. or weakly dependent.

C4. The sequence {Wt} with Wt = (Vt,Xt) and Vt defined in C1, forms a stationary,

strongly mixing process with a geometric mixing rate, that is, for some C > 0

sup
t

sup
A∈At,B∈Bt+m

|P (A ∩B) − P (A)P (B)| exp(Cm) → 0 as m → ∞,

where At = σ(Wt,Wt−1, ...) and Bt = σ(Wt,Wt+1, ...). Moreover, the sequence satisfies a

condition that curbs clustering of extreme events in the following sense: P (Vt ≤ K,Vt+j ≤
K|At) ≤ CP (Vt ≤ K|At)

2 for all K ∈ [s, K̄], uniformly for all j ≥ 1 and uniformly for all

t ≥ 1; here C > 0 and K̄ > s are some constants.

A special case of this condition is when the sequence of variables {(Vt,Xt), t ≥ 1}, or

equivalently {(Yt,Xt), t ≥ 1}, is independent and identically distributed. The assumption
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of mixing for {(Vt,Xt), t ≥ 1} is standard in econometric analysis (White 1990), and it is

equivalent to the assumption of mixing of {(Yt,Xt), t ≥ 1}. The non-clustering condition is

of the Meyer (1973)-type and states that the probability of two extreme events co-occurring

at nearby dates is much lower than the probability of just one extreme event. For example,

it assumes that a large market crash is not likely to be immediately followed by another large

crash. This assumption leads to limit distributions of QRs as if independent sampling had

taken place. The plausibility of the non-clustering assumption is an empirical matter. We

conjecture that our primary inference method based on subsampling is valid more generally,

under conditions that preserve the rates of convergence of QR statistics and ensure existence

of their asymptotic distributions. Finally we note that the assumptions made here could be

relaxed in certain directions for some of the results stated below, but we decided to state a

single set of sufficient assumptions for all the results.

2.4. Overview and Discussion of Inferential Results. We begin by briefly revisiting

the classical non-regression case to describe some intuition and the key obstacles to per-

forming feasible inference in our more general regression case. Then we will describe our

main inferential results for the regression case. It is worth noting that our main inferential

methods, based on self-normalized statistics, are new and of independent interest even in

the classical non-regression case.

Recall the following classical result on the limit distribution of the extremal sample

quantiles Q̂Y (τ) (Gnedenko 1943): for any integer k ≥ 1 and τ = k/T , as T → ∞,

ẐT (k) = AT (Q̂Y (τ) −QY (τ)) →d Ẑ∞(k) = Γ−ξ
k − k−ξ, (2.5)

where

AT = 1/QU (1/T ), Γk = E1 + ...+ Ek, (2.6)

and (E1, E2, ...) is an independent and identically distributed sequence of standard exponen-

tial variables. We refer to ẐT (k) as the canonically normalized (CN) statistic because it

depends on the scaling constant AT . The variables Γk, entering the definition of the EV dis-

tribution, are gamma random variables. The limit distribution of the k-th order statistic is

therefore a transformation of a gamma variable. The EV distribution is not symmetric and

may have significant (median) bias; it has finite moments if ξ < 0 and has finite moments

of up to order 1/ξ if ξ > 0. The presence of median bias motivates the use of median-bias

correction techniques, which we discuss in the regression case below.
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Although very powerful, this classical result is not feasible for purposes of inference

on QY (τ), since the scaling constant AT is generally not possible to estimate consis-

tently (Bertail, Haefke, Politis, and White 2004). One way to deal with this problem

is to add strong parametric assumptions on the non-parametric, slowly-varying function

L(·) in equation (2.3) in order to estimate AT consistently. For instance, suppose that

QU (τ) ∼ Lτ−ξ. Then one can estimate ξ by the classical Hill or Pickands estimators, and L

by L̂ = (Q̂Y (2τ)− Q̂Y (τ)))/(2−
bξ − 1)τ−

bξ). We develop the necessary theoretical results for

the regression analog of this approach, although we will not recommend it as our preferred

method.

Our preferred and main proposal to deal with the aforementioned infeasibility problem

is to consider the asymptotics of the self-normalized (SN) sample quantiles

ZT (k) = AT (Q̂Y (τ) −QY (τ)) →d Z∞(k) =

√
k(Γ−ξ

k − k−ξ)

Γ−ξ
mk − Γ−ξ

k

, (2.7)

where for m > 1 such that mk is an integer,

AT =

√
τT

Q̂Y (mτ) − Q̂Y (τ)
. (2.8)

Here, the scaling factor AT is completely a function of data and therefore feasible. Moreover,

we completely avoid the need for consistent estimation of AT . This is convenient because

we are not interested in this normalization constant per se. The limit distribution in (2.7)

only depends on the EV index ξ, and its quantiles can be easily obtained by simulation. In

the regression setting, where the limit law is a bit more complicated, we develop a form of

subsampling to perform both practical and feasible inference.

Let us now turn to the regression case. Here, we can also consider a canonically-

normalized QR statistic (CN-QR):

ẐT (k) := AT

(
β̂(τ) − β(τ)

)
for AT := 1/QU (1/T ); (2.9)

and a self-normalized QR (SN-QR) statistic:

ZT (k) := AT

(
β̂(τ) − β(τ)

)
for AT :=

√
τT

X̄ ′
T (β̂(mτ) − β̂(τ))

, (2.10)

where X̄T =
∑T

t=1Xt/T and m is a real number such that τT (m−1) > d. The first statistic

uses an infeasible canonical normalization AT , whereas the second statistic uses a feasible

random normalization. First, we show that

ẐT (k) →d Ẑ∞(k) (2.11)
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where for χ = 1 if ξ < 0 and χ = −1 if ξ > 0,

Ẑ∞(k) := χ · arg min
z∈Rd

[
− kE[X]′(z + k−ξγ) +

∞∑

t=1

{X ′
t (z + k−ξγ) − χ · Γ−ξ

t · X ′
tγ}+

]

(2.12)

where {Γ1,Γ2, ...} := {E1, E1 +E2, ...}; {E1, E2, ...} is an iid sequence of exponential variables

that is independent of {X1,X2, ...}, an iid sequence with distribution FX ; and {y}+ :=

max(0, y). Furthermore, we show that

ZT (k) →d Z∞(k) :=

√
kẐ∞(k)

E[X]′(Ẑ∞(mk) − Ẑ∞(k)) + χ · (m−ξ − 1)k−ξ
. (2.13)

The limit laws here are more complicated than in the non-regression case, but they share

some common features. Indeed, the limit laws depend on the variables Γi in a crucial

way, and are not necessarily centered at zero and can have significant first order median

biases. Motivated by the presence of the first order bias, we develop bias corrections for

the QR statistics in the next section. Moreover, just as in the non-regression case, the limit

distribution of the CN-QR statistic in (2.12) is generally infeasible for inference purposes.

We need to know or estimate the scaling constant AT , which is the reciprocal of the extremal

quantile of the variable U defined in C1. That is, we require an estimator ÂT such that

ÂT /AT →p 1, which is not feasible unless the tail of U satisfies additional strong parametric

restrictions. We provide additional restrictions below that facilitate estimation of AT and

hence inference based on CN-QR, although this is not our preferred inferential method.

Our main and preferred proposal for inference is based on the SN-QR statistic, which does

not depend on AT . We estimate the distribution of this statistic using either a variation

of subsampling or an analytical method. A key ingredient here is the feasible normalizing

variable AT , which is randomly proportional to the canonical normalization AT , in the sense

that AT/AT is a random variable in the limit.7 An advantage of the subsampling method

over the analytical methods is that it does not require estimation of the nuisance parameters

ξ and γ. Our subsampling approach is different from conventional subsampling in the

use of recentering terms and random normalization. Conventional subsampling that uses

recentering by the full sample estimate β̂(τ) is not consistent when that estimate is diverging;

and here we indeed have AT → 0 when ξ > 0. Instead, we recenter by intermediate order

7The idea of feasible random normalization has been used in other contexts (e.g. t-statistics). In extreme

value theory, Dekkers and de Haan (1989) applied a similar random normalization idea to extrapolated

quantile estimators of intermediate order in the non-regression setting, precisely to produce limit distributions

that can be easily used for inference. In time series, Kiefer, Vogelsang, and Bunzel (2000) have used feasible

inconsistent estimates of the variance of asymptotically normal estimators.
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QR estimates in subsamples, which will diverge at a slow enough speed to estimate the limit

distribution of SN-QR consistently. Thus, our subsampling approach explores the special

relationship between the rates of convergence/divergence of extremal and intermediate QR

statistics and should be of independent interest even in a non-regression setting.

This paper contributes to the existing literature by introducing general feasible inference

methods for extremal quantile regression. Our inferential methods rely in part on the limit

results in Chernozhukov (2005), who derived EV limit laws for CN-QR under the extreme

order condition τT → k > 0. This theory, however, did not lead directly to any feasible,

practical inference procedure. Feigin and Resnick (1994), Chernozhukov (1998), Portnoy

and Jurec̆ková (1999), and Knight (2001) provide related limit results for canonically nor-

malized linear programming estimators where τT ց 0, all in different contexts and at

various levels of generality. These limit results likewise did not provide feasible inference

theory. The linear programming estimator is well suited to the problem of estimating finite

deterministic boundaries of data, as in image processing and other technometric applica-

tions. In contrast, the current approach of taking τT → k > 0 is more suited to econometric

applications, where interest focuses on the “usual” quantiles located near the minimum or

maximum and where the boundaries may be unlimited. However, some of our theoretical

developments are motivated by and build upon this previous literature. Some of our proofs

rely on the elegant epi-convergence framework of Geyer (1996) and Knight (1999).

3. Inference and Median-Unbiased Estimation Based on Extreme Value Laws

This section establishes the main results that underlie our inferential procedures.

3.1. Extreme Value Laws for CN-QR and SN-QR Statistics. Here we verify that

that the CN-QR statistic ẐT (k) and SN-QR statistic ZT (k) converge to the limit variables

Ẑ∞(k) and Z∞(k), under the condition that τT → k > 0 as T → ∞.

Theorem 1 (Limit Laws for Extremal SN-QR and CN-QR). Suppose conditions C1, C3

and C4 hold. Then as τT → k > 0 and T → ∞, (1) the SN-QR statistic of order k obeys

ZT (k) →d Z∞(k),

for any m such that k(m− 1) > d, and (2) the CN-QR statistic of order k obeys

ẐT (k) →d Ẑ∞(k).

Comment 3.1. The condition that k(m− 1) > d in the definition of SN-QR ensures that

β(mτ) 6= β(τ) and therefore the normalization by AT is well defined. This is a consequence

of Theorem 3.2 in Bassett and Koenker (1982) and existence of the conditional density of
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Y imposed in assumption C2. Result 1 on SN-QR statistics is the main new result that we

will exploit for inference. Result 2 on CN-QR statistics is needed primarily for auxiliary

purposes. Chernozhukov (2005) presents some extensions of result 2.

Comment 3.2. WhenQY (0|x) > −∞, by C1QY (0|x) is equal to x′βe and is the conditional

lower boundary of Y . The proof of Theorem 1 shows that

AT (β̂(τ)−βe) →d Z̃∞(k) := Ẑ∞(k)−k−ξ and AT (β̂(τ)−βe) →d Z̃∞(k)/(Z̃∞(mk)−Z̃∞(k)).

We can use these results and analytical and subsampling methods presented below to per-

form median unbiased estimation and inference on the boundary parameter βe.
8

3.2. Generic Inference and Median-Unbiased Estimation. We outline two proce-

dures for conducting inference and constructing asymptotically median unbiased estimates

of linear functions ψ′β(τ) of the coefficient vector β(τ), for some non-zero vector ψ.

1. Median-Unbiased Estimation and Inference Using SN-QR. By Theorem 1,

ψ′AT (β̂(τ) − β(τ)) →d ψ
′Z∞(k). Let cα denote the α-quantile of ψ′Z∞(k) for 0 < α ≤ .5.

Given ĉα, a consistent estimate of cα, we can construct an asymptotically median-unbiased

estimator and a (1 − α)%-confidence interval for ψ′β(τ) as

ψ′β̂(τ) − ĉ1/2/AT and [ψ′β̂(τ) − ĉ1−α/2/AT , ψ
′β̂(τ) − ĉα/2/AT ],

respectively. The bias-correction term and the limits of the confidence interval depend on

the random scaling AT . We provide consistent estimates of cα in the next section.

Theorem 2 (Inference and median-unbiased estimation using SN-QR). Under the condi-

tions of Theorem 1, suppose we have ĉα such that ĉα →p cα. Then,

lim
T→∞

P{ψ′β̂(τ) − ĉ1/2/AT ≤ ψ′β(τ)} = 1/2

and

lim
T→∞

P{ψ′β̂(τ) − ĉ1−α/2/AT ≤ ψ′β(τ) ≤ ψ′β̂(τ) − ĉα/2/AT } = 1 − α.

2. Median Unbiased Estimation and Inference Using CN-QR. By Theorem 1,

ψ′AT (β̂(τ) − β(τ)) →d ψ
′Ẑ∞(k). Let c′α denote the α-quantile of ψ′Ẑ∞(k) for 0 < α ≤ .5.

Given ÂT , a consistent estimate of AT , and ĉ′α, a consistent estimate of c′α, we can construct

8 To estimate the critical values, we can use either analytical or subsampling methods presented below,

with the difference that in subsampling we need to recenter by the full sample estimate bβe = bβ(1/T ).
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an asymptotically median-unbiased estimator and a (1−α)%-confidence interval for ψ′β(τ)

as

ψ′β̂(τ) − ĉ′1/2/ÂT and [ψ′β̂(τ) − ĉ′1−α/2/ÂT , ψ
′β̂(τ) − ĉ′α/2/ÂT ],

respectively.

As mentioned in Section 2, construction of consistent estimates of AT requires additional

strong restrictions on the underlying model as well as additional steps in estimation. For

example, suppose the nonparametric slowly varying component L(τ) of AT is replaced by

a constant L, i.e. suppose that as τ ց 0

1/QU (τ) = L · τ ξ · (1 + δ(τ)) for some L ∈ R, where δ(τ) → 0. (3.14)

We can estimate the constants L and ξ via Pickands-type procedures:

ξ̂ =
−1

ln 2
ln
X̄ ′

T (β̂(4τT ) − β̂(τT ))

X̄ ′
T (β̂(2τT ) − β̂(τT ))

and L̂ =
X̄ ′

T (β̂(2τT ) − β̂(τT ))

(2−bξ − 1) · τ−bξ
, (3.15)

where τT is chosen to be of an intermediate order, τTT → ∞ and τT → 0. Theorem 4 in

Chernozhukov (2005) shows that under C1-C4, condition (3.14), and additional conditions

on the sequence (δ(τT ), τT ),9 ξ̂ = ξ + o(1/ ln T ) and L̂ →p L, which produces the required

consistent estimate ÂT = L̂(1/T )−
bξ such that ÂT /AT →p 1. These additional conditions

on the tails of Y and on the sequence (δ(τT ), τT ) highlight the drawbacks of this inference

approach relative to the previous one.

We provide consistent estimates of c′α in the next section.

Theorem 3 (Inference and Median-Unbiased Estimation using CN-QR). Assume the con-

ditions of Theorem 1 hold. Suppose that we have ÂT such that ÂT /AT →p 1 and ĉ′α such

that ĉα →p c
′
α. Then,

lim
T→∞

P{ψ′β̂(τ) − ĉ′1/2/ÂT ≤ ψ′β(τ)} = 1/2

and

lim
T→∞

P{ψ′β̂(τ) − ĉ′1−α/2/ÂT ≤ ψ′β(τ) ≤ ψ′β̂(τ) − ĉα/2/ÂT } = 1 − α.

9 The rate convergence of bξ is max[ 1√
τT T

, ln δ(τT )], which gives the following condition on the sequence

(δ(τT ), τT ) : max[ 1√
τT T

, ln δ(τT )] = o(1/ ln T ).
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4. Estimation of Critical Values

4.1. Subsampling-Based Estimation of Critical Values. Our resampling method for

inference uses subsamples to estimate the distribution of SN-QR, as in standard subsam-

pling. However, in contrast to the subsampling, our method bypasses estimation of the

unknown convergence rate AT by using self-normalized statistics. Our method also employs

a special recentering that allows us to avoid the inconsistency of standard subsampling due

to diverging QR statistics when ξ > 0.

The method has the following steps. First, consider all subsets of the data {Wt = (Yt,Xt),

t = 1, ..., T} of size b; if {Wt} is a time series, consider BT = T −b+1 subsets of size b of the

form {Wi, ...,Wi+b−1}. Then compute the analogs of the SN-QR statistic, denoted V̂i,b and

defined below in equation (4.17), for each i-th subsample for i = 1, ..., BT . Second, obtain

ĉα as the sample α-quantile of {V̂i,b,T , i = 1, ..., BT }. In practice, a smaller number BT of

randomly chosen subsets can be used, provided that BT → ∞ as T → ∞. (See Section

2.5 in Politis, Romano, and Wolf (1999).) Politis, Romano, and Wolf (1999) and Bertail,

Haefke, Politis, and White (2004) provide rules for the choice of subsample size b.

The SN-QR statistic for the full sample of size T is:

VT := ATψ
′(β̂T (τT ) − β(τT )) for AT =

√
τTT

X̄ ′
T

(
β̂(mτT ) − β̂(τT )

) , (4.16)

where we can set m = (d+ p)/(τTT ) + 1 = (d+ p)/k + 1 + o(1), where p ≥ 1 is the spacing

parameter, which we set to 5.10 In this section we write τT to emphasize the theoretical

dependence of the quantile of interest τ on the sample size. In each i-th subsample of size

b, we compute the following analog of VT :

V̂i,b,T := Ai,b,Tψ
′(β̂i,b,T (τb) − β̂(τb)) for Ai,b,T :=

√
τbb

X̄ ′
i,b,T

(
β̂i,b,T (mτb) − β̂i,b,T (τb)

) , (4.17)

where β̂(τ) is the τ -quantile regression coefficient computed using the full sample, β̂i,b,T (τ) is

the τ -quantile regression coefficient computed using the i-th subsample, X̄i,b,T is the sample

mean of the regressors in the ith subsample, and τb := (τTT ) /b.11 The determination of

τb is a critical decision that sets apart the extremal order approximation from the central

order approximation. In the latter case, one sets τb = τT in subsamples. In the extreme

10Variation of this parameter from p = 2 to p = 20 yielded similar results in our Monte-Carlo experiments.
11 In practice, it is reasonable to use the following finite-sample adjustment to τb: τb = min[(τT T ) /b, .2] if

τT < .2, and τb = τT if τT ≥ .2. The idea is that τT is judged to be non-extremal if τT > .2, and the subsam-

pling procedure reverts to central order inference. The truncation of τb by .2 is a finite-sample adjustment

that restricts the key statistics bVi,b,T to be extremal in subsamples. These finite-sample adjustments do not

affect the asymptotic arguments.
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order approximation, our choice of τb gives the same extreme order of τbb in the subsample

as the order of τTT in the full sample.

Under the additional parametric assumptions on the tail behavior stated earlier, we can

estimate the quantiles of the limit distribution of CN-QR using the following procedure:

First, create subsamples i = 1, ..., BT as before and compute in each subsample: Ṽi,b,T :=

Âbψ
′(β̂i,b,T (τb) − β̂(τb)), where Âb is any consistent estimate of Ab. For example, under the

parametric restrictions specified in (3.14), set Âb = L̂b−
bξ for L̂ and ξ̂ specified in (3.15).

Second, obtain ĉ′α as the α-quantile of {Ṽi,b,T , i = 1, ..., BT }.
The following theorems establish the consistency of ĉα and ĉ′α:

Theorem 4 (Critical Values for SN-QR by Resampling). Suppose the assumptions of The-

orems 1 and 2 hold, b/T → 0, b→ ∞, T → ∞ and BT → ∞. Then ĉα →p cα.

Theorem 5 (Critical Values for CN-QR by Resampling). Suppose the assumptions of The-

orems 1 and 2 hold, b/T → 0, b → ∞, T → ∞, BT → ∞, and Âb is such that Âb/Ab → 1.

Then ĉ′α →p c
′
α.

Comment 4.1. Our subsampling method based on CN-QR or SN-QR produces consistent

critical values in the regression case, and may also be of independent interest in the non-

regression case. Our method differs from conventional subsampling in several respects.

First, conventional subsampling uses fixed normalizations AT or their consistent estimates.

In contrast, in the case of SN-QR we use the random normalization AT , thus avoiding

estimation of AT . Second, conventional subsampling recenters by the full sample estimate

β̂(τT ). Recentering in this way requires Ab/AT → 0 for obtaining consistency (see Theorem

2.2.1 in Politis, Romano, and Wolf (1999)), but here we have Ab/AT → ∞ when ξ > 0.

Thus, when ξ > 0 the extreme order QR statistics β̂(τT ) diverge when ξ > 0, and the

conventional subsampling is inconsistent. In contrast, to overcome the inconsistency, our

approach instead uses β̂(τb) for recentering. This statistic itself may diverge, but because it

is an intermediate order QR statistic, the speed of its divergence is strictly slower than that

of AT . Hence our method of recentering exploits the special structure of order statistics in

both the regression and non-regression cases.

4.2. Analytical Estimation of Critical Values. Analytical inference uses the quantiles

of the limit distributions found in Theorem 1. This approach is much more demanding in

practice than the previous subsampling method.12

12The method developed below is also of independent interest in situations where the limit distributions

involve Poissson processes with unknown nuisance parameters, as, for example, in Chernozhukov and Hong

(2004).
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Define the following random vector:

Ẑ∗
∞(k) = χ̂ · arg min

z∈Rd

[
− kX̄ ′

T (z + k−
bξγ̂) +

∞∑

t=1

{X ′
t (z + k−

bξγ̂) − χ̂ · Γ−bξ
t · X ′

t γ̂}+

]
, (4.18)

for some consistent estimates ξ̂ and γ̂, e.g., those given in equation (4.19); where χ̂ = 1 if

ξ̂ < 0 and χ̂ = −1 if ξ̂ > 0, {Γ1,Γ2, ...} = {E1, E1 + E2, ...}; {E1, E2, ...} is an i.i.d. sequence

of standard exponential variables; {X1,X2, ...} is an i.i.d. sequence with distribution func-

tion F̂X , where F̂X is any smooth consistent estimate of FX , e.g., a smoothed empirical

distribution function of the sample {Xi, i = 1, ..., T}.13 Moreover, the sequence {X1,X2, ...}
is independent from {E1, E2, ...}. Also, let Z∗

∞(k) =
√
kẐ∗

∞(k)/[X̄ ′
T (Ẑ∗

∞(mk) − Ẑ∗
∞(k)) +

χ̂(m−bξ − 1)k−
bξ ]. The estimates ĉ′α and ĉα are obtained by taking α-quantiles of the vari-

ables ψ′Ẑ∗
∞(k) and ψ′Z∗

∞(k), respectively. In practice, these quantiles can only be evaluated

numerically as described below.

The analytical inference procedure requires consistent estimators of ξ and γ. Theorem

4.5 of Chernozhukov (2005) provides the following estimators based on Pickands-type pro-

cedures:

ξ̂ =
−1

ln 2
ln
X̄ ′

T (β̂(4τT ) − β̂(τT ))

X̄ ′
T (β̂(2τT ) − β̂(τT ))

and γ̂ =
β̂(2τT ) − β̂(τT )

X̄ ′
T (β̂(2τT ) − β̂(τT ))

, (4.19)

which is consistent if τTT → ∞ and τT → 0.

Theorem 6 (Critical Values for SN-QR by Analytical Method). Assume the conditions of

Theorem 1 hold. Then for any estimators of the nuisance parameters such that ξ̂ →p ξ and

γ̂ →p γ, we have that ĉα →p cα.

Theorem 7 (Critical Values for CN-QR by Analytical Method). Assume the conditions of

Theorem 1 hold. Then, for any estimators of the nuisance parameters such that ξ̂ →p ξ and

γ̂ →p γ, we have that ĉ′α →p c
′
α.

Comment 4.2. Since the distributions of Ẑ∞(k) and Z∞(k) do not have closed form,

except in very special cases, ĉ′α and ĉα can be obtained numerically via the following Monte

Carlo procedure. First, for each i = 1, ..., B compute Ẑ∗
i,∞(k) and Z∗

i,∞(k) using formula

(4.18) by simulation, where the infinite summation is truncated at some finite value M .

13We need smoothness of the distribution regressors Xi to guarantee uniqueness of the solution of the

optimization problem (4.18); a similar device is used by De Angelis, Hall, and Young (1993) in the context

of Edgeworth expansion for median regression. The empirical distribution function (edf) of Xi is not suited

for this purpose, since it assigns point masses to sample points. However, making random draws from the

edf and adding small noise with variance that is inversely proportional to the sample size produces draws

from a smoothed empirical distribution function which is uniformly consistent with respect to FX .
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Second, take ĉ′α and ĉα as the sample α-quantiles of the samples {ψ′Ẑ∗
i,∞(k), i = 1, ..., B}

and {ψ′Z∗
i,∞(k), i = 1, ..., B}, respectively. We have found in numerical experiments that

choosing M ≥ 200 and B ≥ 100 provides accurate estimates.

5. Extreme Value vs. Normal Inference: Comparisons

5.1. Properties of Confidence Intervals with Unknown Nuisance Parameters. In

this section we compare the inferential performance of normal and extremal confidence

intervals (CI) using the model: Yt = X ′
tβ + Ut, t = 1, ..., 500, d = 7, βj = 1 for j ∈

{1, ..., 7}, where the disturbances {Ut} are i.i.d. and follow either (1) a t distribution with

ν ∈ {1, 3, 30} degrees of freedom, or (2) a Weibull distribution with the shape parameter

α ∈ {1, 3, 30}. These distributions have EV indexes ξ = 1/ν ∈ {1, 1/3, 1/30} and ξ =

−1/α ∈ {−1,−1/3,−1/30}, respectively. Regressors are drawn with replacement from the

empirical application in Section 6.1 in order to match a real situation as closely as possible.14

The design of the first type corresponds to tail properties of financial data, including returns

and trade volumes; and the design of the second type corresponds to tail properties of

microeconomic data, including birthweights, wages, and bids. Figures 2 and 3 plot coverage

properties of CIs for the intercept and one of the slope coefficients based on subsampling

the SN-QR statistic with BT = 200 and b = 100, and on the normal inference method

suggested by Powell (1986) with a Hall-Sheather type rule for the bandwidth suggested in

Koenker (2005).15 The figures are based on QR estimates for τ ∈ {.01, .05, .10, .25, .50}, i.e.

τT ∈ {5, 25, 50, 125, 250}.
When the disturbances follow t distributions, the extremal CIs have good coverage prop-

erties, whereas the normal CIs typically undercover their performance deteriorates in the

degree of heavy-tailedness and improves in the index τT . In heavy-tailed cases (ξ ∈ {1, 1/3})
the normal CIs substantially undercover for extreme quantiles, as might be expected from

the fact that the normal distribution fails to capture the heavy tails of the actual distribution

of the QR statistic. In the thin-tailed case (ξ = 1/30), the normal CIs still undercover for

extreme quantiles. The extremal CIs perform consistently better than normal CIs, giving

coverages close to the nominal level of 90%.

When the disturbances follow Weibull distributions, extremal CIs continue to have good

coverage properties, whereas normal CIs either undercover or overcover, and their perfor-

mance deteriorates in the degree of heavy-tailedness and improves in the index τT . In

14These data as well as the Monte-Carlo programs are deposited at www.mit.edu/vchern.
15 The alternative options implemented in the statistical package R to obtain standard errors for the

normal method give similar results. These results are available from the authors upon request.
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heavy-tailed cases (ξ = −1) the normal CIs strongly overcover, which results from the

overdispersion of the normal distribution relative to the actual distribution of QR statis-

tics. In the thin-tailed cases (ξ = −1/30) the normal CIs undercover and their performance

improves in the index τT . In all cases, extremal CIs perform better than normal CIs, giving

coverage rates close to the nominal level of 90% even for central quantiles.

We also compare forecasting properties of ordinary QR estimators and median-bias-

corrected QR estimators of the intercept and slope coefficients, using the median absolute

deviation and median bias as measures of performance (other measures may not be well-

defined). We find that the gains to bias-correcting appear to be very small, except in the

finite-support case with disturbances that are heavy-tailed near the boundary. We do not

report these results for the sake of brevity.

5.2. Practicalities and Rules of Thumb. Equipped with both simulation experiments

and practical experience, we provide a simple rule-of-thumb for the application of extremal

inference. Recall that the order of a sample τ -quantile in the sample of size T is the

number τT (rounded to the next integer). This order plays a crucial role in determining

whether extremal inference or central inference should be applied. Indeed, the former

requires τT → k whereas the latter requires τT → ∞. In the regression case, in addition

to the number τT , we need to take into account the number of regressors. As an example,

let us consider the case where all d regressors are indicators that equally divide the sample

of size T into subsamples of size T/d. Then the QR statistic will be determined by sample

quantiles of order τT/d in each of these d subsamples. We may therefore think of the

number τT/d as being a dimension-adjusted order for QR. A common simple rule for the

application of the normal law is that the sample size is greater than 30. This suggests we

should use extremal inference whenever τT/d . 30. This simple rule may or may not be

conservative. For example, when regressors are continuous, our computational experiments

indicate that normal inference performs as well as extremal inference as soon as τT/d &

15 − 20, which suggests using extremal inference when τT/d . 15 − 20 for this case. On

the other hand, if we have an indicator variable that picks out 2% of the entire sample, as

in the birthweight application presented below, then the number of observations below the

fitted quantile for this subsample will be τT/50, which motivates using extremal inference

when τT/50 . 15 − 20 for this case. This rule is far more conservative than the original

simple rule. Overall, it seems prudent to use both extremal and normal inference methods

in most cases, with the idea that the discrepancies between the two can indicate extreme

situations. Indeed, note that our methods based on subsampling perform very well even in

the non-extreme cases (see Figures 2 and 3).
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6. Empirical Examples

6.1. Extremal Risk of a Stock. We consider the problem of finding factors that affect the

value-at-risk of the Occidental Petroleum daily stock return, a problem that is interesting

for both economic analysis and real-world risk management.16 Our data set consists of

1,000 daily observations covering the period 1996-1998. The dependent variable Yt is the

daily return of the Occidental Petroleum stock and the regressors X1t, X2t, and X3t are

the lagged return on the spot price of oil, the lagged one-day return of the Dow Jones

Industrials index (market return), and the lagged own return Yt−1, respectively. We use

a flexible asymmetric linear specification where Xt = (1,X+
1t,X

−
1t,X

+
2t,X

−
2t,X

+
3t,X

−
3t) with

X+
jt = max(Xjt, 0), X

−
jt = −min(Xjt, 0) and j ∈ {1, 2, 3}.

We begin by stating overall estimation results for the basic predictive linear model. A

detailed specification and goodness-of-fit analysis of this model has been given in Cher-

nozhukov and Umantsev (2001), whereas here we focus on the extremal analysis in order to

illustrate the new inferential tools. Figure 4 plots QR estimates β̂(τ) = (β̂j(τ), j = 0, ..., 7)

along with 90% pointwise confidence intervals. We use both extremal CIs (solid lines) and

normal CIs (dashed lines). Figures 5 and 6 plot bias-corrected QR estimates along with

pointwise CIs for the lower and upper tails, respectively.

We focus the discussion on the impact of downward movements of the explanatory

variables, namely X−
1t, X

−
2t, and X−

3t, on the extreme risk, that is, on the low condi-

tional/predicted quantiles of the stock return. The estimate of the coefficient on the negative

spot price of oil, X−
1t, is positive in the lower tail of the distribution and negative in the

center, but it is not statistically significant at the 90% level. However, the extremal CIs

indicate that the distribution of the QR statistic is asymmetric in the far left tail, hence the

economic effect of the spot price of oil may potentially be quite strong. Thus, past drops

in the spot price of oil potentially strongly decrease the extreme risk. The estimate of the

coefficient on the negative market return, X−
2t, is significantly negative in the far left tail

but not in the center of the conditional distribution. From this we may conclude that the

past market drops appear to significantly increase the extreme risk. The estimates of the

coefficient on the negative lagged own return, X−
3t are significantly negative in the lower half

of the conditional distribution. We may conclude that past drops in own return significantly

increase extreme and intermediate risks.

Finally, we compare the CIs produced by extremal inference and normal inference. This

empirical example closely matches the Monte-Carlo experiment in the previous section

16 See Christoffersen, Hahn, and Inoue (1999), Diebold, Schuermann, and Stroughair (2000), Cher-

nozhukov and Umantsev (2001), and Engle and Manganelli (2004).
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with heavy-tailed t(3) disturbances. From this experiment, we expect that in the empirical

example normal CIs would understate the estimation uncertainty and would be considerably

more narrow than extremal CIs in the tails. As shown in Figures 5 and 6, normal CIs are

indeed much more narrow than extremal CIs at τ < .15 and τ > .85.

6.2. Extremal Birthweights. We investigate the impact of various demographic charac-

teristics and maternal behavior on extremely low quantiles of birthweights of live infants

born in the United States to black mothers of ages between 18 and 45. We use the June 1997

Detailed Natality Data published by the National Center for Health Statistics. Previous

studies by Abreveya (2001) and Koenker and Hallock (2001) used the same data set, but

they focused the analysis on typical birthweights, in a range between 2000 and 4500 grams.

In contrast, equipped with extremal inference, we now venture far into the tails and study

extremely low birthweight quantiles, in the range between 250 and 1500 grams. Some of

our findings differ sharply from previous results for typical non-extremal quantiles.

Our decision to focus the analysis on black mothers is motivated by Figure 7 which

shows a troubling heavy tail of low birthweigts for black mothers. We choose a linear

specification similar to Koenker and Hallock (2001). The response variable is the birthweight

recorded in grams. The set of covariates include: ‘Boy,’ an indicator of infant gender;

‘Married,’ an indicator of whether the mother was married or not; ‘No Prenatal,’ ‘Prenatal

Second,’ and ‘Prenatal Third,’ indicator variables that divide the sample into 4 categories:

mothers with no prenatal visit (less than 1% of the sample), mothers whose first prenatal

visit was in the second trimester, and mothers whose first prenatal visit was in the third

trimester (The baseline category is mothers with a first visit in the first trimester, which

constitute 83% of the sample); ‘Smoker,’ an indicator of whether the mother smoked during

pregnancy; ‘Cigarettes/Day,’ the mother’s reported average number of cigarettes smoked

per day; ‘Education,’ a categorical variable taking a value of 0 if the mother had less than

a high-school education, 1 if she completed high school education, 2 if she obtained some

college education, and 3 if she graduated from college; ‘Age’ and ‘Age2,’ the mother’s age

and the mother’s age squared, both in deviations from their sample means.17 Thus the

control group consists of mothers of average age who had their first prenatal visit during

the first trimester, that have not completed high school, and who did not smoke. The

intercept in the estimated quantile regression model will measure quantiles for this group,

and will therefore be referred to as the centercept.

17We exclude variables related to mother’s weight gain during pregnancy because they might be simul-

taneously determined with the birth-weights.



22 INFERENCE FOR EXTREMAL QUANTILE REGRESSION

Figures 8 and 9 report estimation results for extremal low quantiles and typical quantiles,

respectively. These figures show point estimates, extremal 90% CIs, and normal 90% CIs.

Note that the centercept in Figure 8 varies from 250 to about 1500 grams, indicating the

approximate range of birthweights that our extremal analysis applies to. In what follows,

we focus the discussion only on key covariates and on differences between extremal and

central inference.

While the density of birthweights, shown in Figure 7, has a finite lower support point,

it has little probability mass near the boundary. This points towards a situation similar to

the Monte Carlo design with Weibull disturbances, where differences between central and

extremal inference occur only sufficiently far in the tails. This is what we observe in this

empirical example as well. For the most part, normal CIs tend to be at most 15 percent

narrower than extremal CIs, with the exception of the coefficient on ‘No Prenatal’, for

which normal CIs are twice as narrow as extremal CIs. Since only 1.9 percent of mothers

had no prenatal care, the sample size used to estimate this coefficient is only 635, which

suggests that the discrepancies between extremal CIs and central CIs for the coefficient on

‘No prenatal’ should occur only when τ . 30/635 = 5%. As Figure 9 shows, differences

between extremal CIs and normal CIs arise mostly when τ . 10%.

The analysis of extremal birthweights, shown in Figure 8, reveals several departures from

findings for typical birthweights in Figure 9. Most surprisingly, smoking appears to have

no negative impact on extremal quantiles, whereas it has a strong negative effect on the

typical quantiles. The lack of statistical significance in the tails could be due to selection,

where only mothers confident of good outcomes smoke, or to smoking having little or no

causal effect on very extreme outcomes. This finding motivates further analysis, possibly

using data sets that enable instrumental variables strategies.

Prenatal medical care has a strong impact on extremal quantiles and relatively little

impact on typical quantiles, especially in the middle of the distribution. In particular, the

impacts of ‘Prenatal Second’ and ‘Prenatal Third’ in the tails are very strongly positive.

These effects could be due to mothers confident of good outcomes choosing to have a

late first prenatal visit. Alternatively, these effects could be due to a late first prenatal

visit providing better means for improving birthweight outcomes. The extremal CIs for

‘No-prenatal’ includes values between 0 and −800 grams, suggesting that the effect of ‘No-

prenatal’ in the tails is definitely non-positive and may be strongly negative.

Appendix A. Proof of Theorem 1

The proof will be given for the case when ξ < 0. The case with ξ > 0 follows very similarly.
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Step 1. Recall that Vt = Yt − X ′
tβe and consider the point process N̂ defined by N̂(F ) :=

∑T
t=1 1{(ATVt, Xt) ∈ F} for Borel subsets F of E := [0,+∞) × X. The point process N̂ converges

in law in the metric space of point measure Mp(E), that is equipped with the metric induced by

the topology of vague convergence. The limit process is a Poisson point process N characterized

by the mean intensity measure mN(F ) :=
∫

F (x′γ)1/ξu−1/ξdudFX(x). Given this form of the mean

intensity measure we can represent

N(F ) :=

∞∑

t=1

1{(Jt,Xt) ∈ F} (A.20)

for all Borel subsets F of E := [0,+∞) × X, where Jt = (X ′
tγ) · Γ−ξ

t , Γt = E1 + ... + Et, for t ≥ 1,

{Et, t ≥ 1} is an i.i.d. sequence of standard exponential variables, {Xt, t ≥ 1} is an i.i.d. sequence

from the distribution FX . Note that when ξ > 0 the same result and representation holds, except

that we define Ji = −(X ′
iγ) · Γ−ξ

i (with a change of sign).

The convergence in law N̂ ⇒ N follows from the following steps. First, for any set F defined as

intersection of a bounded rectangle with E, we have (a) limT→∞EN̂(F ) = mN(F ), which follows

from the regular variation property of FU and C1, and (b) limT→∞ P [N̂(F ) = 0] = e−mN(F ),

which follows by Meyer’s (1973) theorem by the geometric strong mixing and by observing that

T
∑⌊T/k⌋

j=2 P ((ATV1, X1) ∈ F, (ATVj , Xj) ∈ F ) ≤ O(T ⌊T/k⌋P ((ATV1, X1) ∈ F )2) = O(1/k) by C1

and C5. Consequently, (a) and (b) imply by Kallenberg’s theorem (Resnick 1987) that N̂ ⇒ N,

where N is a Poisson point process N with intensity measure mN.

Step 2. Observe that Z̃T (k) := AT (β̂(τ)− βe) = argminz∈Rd

∑T
t=1 ρτ

(
ATVt −X ′

tz
)
. To see this

define z := AT (β−βe). Rearranging terms gives
∑T

t=1 ρτ

(
ATVt−X ′

tz
)
≡ −τT X̄ ′

T z−
∑T

t=1 1(ATVt ≤
Xtz)

(
ATVt −X ′

tz
)

+
∑T

t=1 τATVt. Subtract
∑T

t=1 τATVt that does not depend on z and does not

affect optimization, and define

Q̃T (z, k) := −τT X̄ ′
T z +

T∑

t=1

ℓ(ATVt, X
′
tz) = −τT X̄ ′

T z +

∫

E

ℓ(u, x′z)dN̂(u, x),

where ℓ(u, v) := 1(u ≤ v)(v − u). We have that Z̃T (k)= arg minz∈Rd Q̃T (z, k).

Since ℓ is continuous and vanishes outside a compact subset of E, the mappingN 7→
∫

E ℓ(u, x
′z)dN(u, x),

which sends elements N of the metric space Mp(E), to the real line, is continuous. Since τT X̄T →p

kE[X ] and N̂ ⇒ N, by the Continuous Mapping Theorem we conclude that the finite-dimensional

limit of z 7→ Q̃T (z, k) is given by

z 7→ Q̃∞(z, k) := −kE[X ]′z +

∫

E

ℓ(j, x′z)dN(j, x) := −kE[X ]′z +

∞∑

t=1

ℓ(Jt,X ′
tz).

Next we recall the Convexity Lemma of Geyer (1996) and Knight (1999), which states that if

(i) a sequence of convex lower-semicontinous function Q̃T : R
d → R̄ converges in distribution in

the finite-dimensional sense to Q̃∞ : R
d → R̄ over a dense subset of R

d, (ii) Q̃∞ is finite over a
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non-empty open set Z0 ⊂ R
d, and (iii) Q̃∞ is uniquely minimized at a random vector Z̃∞, then any

argmin of Q̃T , denoted Z̃T , converges in distribution to Z̃∞.

By the Convexity lemma we conclude that Z̃T (k) ∈ arg minz∈Rd Q̃T (z, k) converges in distribution

to Z̃∞(k) = arg minz∈Rd Q̃∞(z, k), where the random vector Z̃∞(k) is uniquely defined by Lemma

1 in Appendix E.

Step 3. By C1, AT (β(τ) − βe) → k−ξγ as τT → k and T → ∞. Thus AT (β̂(τ) − β(τ)) →d

Ẑ∞(k) := Z̃∞(k) + k−ξγ. Then

Ẑ∞(k) = Z̃∞(k) + k−ξγ = arg min
z∈Rd

[−kE[X ]′(z + k−ξγ) +
∞∑

t=1

ℓ(Jt,X ′
t (z + k−ξγ))].

Step 4. Similarly to step 2 it follows that

(
Z̃T (mk), Z̃T (k)

)
∈ argmin (z′

1,z′

2)
′∈R2d Q̃T (z1,mk) + Q̃T (z2, k)

weakly converges to

(
Z̃∞(mk), Z̃∞(k)) = argmin (z′

1,z′

2)
′∈R2d Q̃∞(z1,mk) + Q̃∞(z2, k),

where the random vectors Z̃∞(k) and Z̃∞(mk) are uniquely defined by Lemma 1 in Appendix E.

Therefore it follows that
(
ẐT (k),

AT

AT

)
=

(
ẐT (k),

X̄ ′
T (Z̃T (km) − Z̃T (k))√

τT

)
→d

(
Ẑ∞(k),

E[X ]′(Z̃∞(km) − Z̃∞(k)√
k

)
.

By Lemma 1 in Appendix E, E[X ]′(Z̃∞(mk)− Z̃∞(k)) 6= 0 a.s., provided that mk−k > d. It follows

by the Extended Continuous Mapping Theorem that

ZT (k) =
AT

AT
ẐT (k) =

√
τT ẐT (k)

X̄ ′
T (Z̃T (mk) − Z̃T (k))

→d Z∞(k) =

√
kẐ∞(k)

E[X ]′(Z̃∞(mk) − Z̃∞(k))
.

Using the relations Ẑ∞(k) = Z̃∞(k) + k−ξγ and Ẑ∞(mk) = Z̃∞(mk) + (mk)−ξγ and E[X ]′γ = 1

holding by C1, we can represent

Z∞(k) =

√
kẐ∞(k)

E[X ]′(Ẑ∞(mk) − Ẑ∞(k)) + (m−ξ − 1)k−ξ
. �

Appendix B. Proof of Theorem 2 and 3

The results follows by Theorem 1 and the definition of convergence in distribution. �

Appendix C. Proof of Theorem 4 and 5

We will prove Theorem 4. The proof of Theorem 5 follows similarly. The main step of the

proof, step 1, is specific to our problem. Let GT (x) := Pr{VT ≤ x} and G(x) := Pr{V
∞

≤ x} =
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lim sup
T→∞

GT (x).

Step 1. Letting Vi,b,T := Ai,b,Tψ
′
(
β̂i,b,T (τb) − β(τb)

)
, define

Ĝb,T (x) := B−1
T

BT∑

i=1

1{V̂i,b,T ≤ x} = B−1
T

BT∑

i=1

1
{
Vi,b,T + Ai,b,Tψ

′
(
β(τb) − β̂(τb)

)
≤ x

}
,

Ġb,T (x; ∆) := B−1
T

BT∑

i=1

1{Vi,b,T + (Ai,b,T /Ab) × ∆ ≤ x},

where Ab = 1/QU (1/b) is the canonical normalizing constant. Then

1[Vi,b,T ≤ x−Ai,b,TwT /Ab] ≤ 1[V̂i,b,T ≤ x] ≤ 1[Vi,b,T ≤ x+ Ai,b,TwT /Ab]

for all i = 1, ..., BT , where wT = |Abψ
′(β(τb) − β̂(τb))|.

The principal claim is that, under conditions of Theorem 3, wT = op(1). The claim follows by

noting that for kT = τTT → k > 0 as b/T → 0 and T → ∞,

Ab ×
(
β(τb) − β̂(τb)

)
∼ 2−ξ − 1

QU (2kT/b) −QU (kT /b)
×Op

(
QU (2kT/b) −QU (kT /b)√

τb · T

)

= Op

(
1√
τb · T

)
= Op

(√
b

kTT

)
= Op

(√
b

kT

)
= op(1)

(C.21)

The first relation in (C.21) follows from two facts: First, by definition Ab := 1/QU (1/b) and by the

regular variation of QU at 0 with exponent −ξ, for any l ց 0, QU (l)(2−ξ − 1) ∼ QU (2l) − QU (l).

Second, since τb = kT/b and since τb ×T = (kT /b)×T ∼ (k/b)×T → ∞ at a polynomial speed in T

by T/b → ∞ at a polynomial speed in T by assumption, β̂(τb) is the intermediate order regression

quantile computed using the full sample of size T , so that by Theorem 3 in Chernozhukov (2005)

β(τb) − β̂(τb) = Op

(
QU (2kT/b) −QU (kT/b)√

τb · T

)
. (C.22)

Given that wT = op(1), for some sequence of constants ∆T ց 0 as T → ∞ the following event

occurs wp → 1 :

MT =






1[Vi,b,T < x−Ai,b,T ∆T/Ab] ≤ 1[Vi,b,T < x−Ai,b,TwT /Ab]

≤ 1[V̂i,b,T < x]

≤ 1[Vi,b,T < x+ Ai,b,TwT /Ab]

≤ 1[Vi,b,T < x+ Ai,b,T ∆T/Ab],

for all i = 1, ..., BT .






.

Event MT implies

Ġb,T (x; ∆T) ≤ Ĝb,T (x) ≤ Ġb,T (x;−∆T). (C.23)

Step 2. In this part we show that at the continuity points of G(x), Ġb,T (x;±∆T) →p G(x).

First, by non-replacement sampling

E[Ġb,T (x; ∆T)] = P [Vb −Ab∆T/Ab ≤ x]. (C.24)
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Second, at the continuity points of G(x)

lim
T→∞

E[Ġb,T (x; ∆T)] = lim
b→∞

P [Vb −Ab∆T/Ab ≤ x] = P [ψ′Z∞(k) ≤ x] = G(x). (C.25)

The statement (C.25) follows because Vb − Ab∆T

Ab
= Vb + op(1) →d ψ

′Z∞(k), since by Theorem 1

Vb →d ψ
′Z∞(k) and by the proof of Theorem 1 and by ∆T ց 0

Ab∆T

Ab
= Op(1) · ∆T = Op(1) · o(1) = op(1).

Third, because Ġb,T (x,∆T) is a U-statistic of degree b, by the LLN for U-statistics in Politis,

Romano, and Wolf (1999), V ar(Ġb,T (x,∆T)) = o(1). This shows that Ġb,T (x; ∆T) →p G(x). By the

same argument Ġb,T (x;−∆T) →p G(x).

Step 3. Finally, since event MT occurs wp → 1 and so does (C.23), by Step 2 it follows that

Ĝb,T (x) →p G(x) for each x ∈ R. Finally, convergence of distribution functions at continuity

points, implies convergence of quantile functions at continuity points. Therefore, by the Extended

Continuous Mapping Theorem, ĉα = Ĝ−1
b,T (α) →p cα = G−1(α), provided G−1(α) is a continuity

point of G(x). �

Appendix D. Proof of Theorems 6 and 7

We will prove Theorem 7; the proof of Theorem 6 follows similarly.

We prove the theorem by showing that the law of the limit variables is continuous in the underlying

parameters, which implies the validity of the proposed procedure. This proof structure is similar to

the one used in the parametric bootstrap proofs, with the complication that the limit distributions

here are non-standard. The demonstration of continuity poses some difficulties, which we deal with

by invoking epi-convergence arguments and exploiting the properties of the Poisson process (A.20).

We also carry out the proof for the case with ξ < 0; the proof for the case with ξ > 0 is identical

apart from a change in sign in the definition of the points of the Poisson process, as indicated in the

proof of Theorem 1.

Let us first list the basic objects with which we will work:

1. The parameters are ξ ∈ (−∞, 0), γ ∈ R
d, and FX ∈ FX , a distribution function on R

d with

the compact support X. We have the set of estimates such that:

sup
x∈X

|FX(x) − F̂X(x)| →p 0, ξ̂ →p ξ, γ̂ →p γ as T → ∞, (D.26)

where F̂X ∈ FX . The set FX is the set of non-lattice distributions defined in Appendix E. The

underlying probability space (Ω,F , P ) is the original probability space induced by the data.

2. N is a Poisson random measure (PRM), with mean intensity measure mN, and points repre-

sentable as: (Γ−ξ
j · X ′

jγ, Xj), j = 1, 2, 3, .... N is a random element of a complete and separable

metric space of point measures (Mp(E), ρv) with metric ρv generated by the topology of vague con-

vergence. The underlying probability space (Ω′,F ′, P ′) is the one induced by Monte-Carlo draws of
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points of N. This law of N in (Mp(E), ρp) will be denoted as L(N|ξ, γ, FX). The law depends only

on the parameters (ξ, γ, FX) of the intensity measure mN.

3. The random objective function (ROF) takes the form

z 7→ Q̂∞(z; k) = −kE[X ]′(z + k−ξγ) +

∫

E

{x′(z + k−ξγ) − u−ξ · x′γ}+dN(u, x)

= −kE[X ]′(z + k−ξγ) +

∞∑

t=1

{X ′
t (z + k−ξγ) − Γ−ξ

t · X ′
tγ}+,

(D.27)

and is a random element of the metric space of proper lower-semi-continuous functions (LC(Rd), ρe),

equipped with the metric ρe induced by the topology of epi-convergence. Geyer (1996) and Knight

(1999) provide a detailed introduction to epi-convergence, with connections to convexity and stochas-

tic equi-semicontinuity. Moreover, this function is convex in z, which is a very important property

to what follows. The law of z 7→ Q̂∞(z; k) in (LC(Rd), ρe) will be denoted as L(Q̂∞(·; k)|ξ, γ, FX).

This law depends only on the parameters (ξ, γ, FX).

4. The extremum statistic Ẑ∞(k) = arg minz∈Rd Q̂∞(z; k) is a random element in the metric

space R
d, equipped with the usual Euclidian metric. The law of Ẑ∞(k) in R

d will be denoted as

L(Ẑ∞(k)|ξ, γ, FX). This law depends only on the parameters (ξ, γ, FX).

Next we collect together several weak convergence properties of the key random elements, which

are most pertinent to establishing the final result.

A. A sequence of PRM (Nm,m = 1, 2, ...) in (Mp(E), ρp) defined by the sequence of intensity

measures mNm with parameters (ξm, γm, Fm
X ) converges weakly to a PRM N with intensity measure

mN with parameters (ξ, γ, FX) if the law of the former converges to the law of the latter with respect

to the Bounded-Lipschitz metric ρw (or any other metric that metrizes weak convergence):

lim
m→∞

ρw(L(Nm|ξm, γm, Fm
X ),L(N|ξ, γ, FX)) = 0. (D.28)

The weak convergence of PRMs is equivalent to pointwise convergence of their Laplace functionals:

lim
m→∞

ϕ(f ;Nm) = ϕ(f ;N), ∀f ∈ C+
K(E), (D.29)

where C+
K(E) is the set of continuous positive functions f defined on the domain E and vanishing

outside a compact subset of E. The Laplace functional is defined as and equal to:

ϕ(f ;N) := E
[
e

R

E
f(u,x) dN(u,x)

]
= e(−

R

E[1−e−f(u,x)]dmN(u,x)). (D.30)

B. A sequence of ROFs {Q̂m
∞(·; k),m = 1, 2, 3, ...} defined by the sequence of parameters {(ξm, γm, Fm

X ),m =

1, 2, 3, ...} converges weakly to the ROF Q̂∞(·; k) defined by parameters (ξ, γ, FX) in the metric space

(LC(Rd), ρe), if the law of the former converges to the law of the latter with respect to the Bounded

Lipschitz metric ρw(or any other metric that metrizes weak convergence):

lim
m→∞

ρw(L(Q̂m
∞(·; k)|ξm, γm, Fm

X ),L(Q̂∞(·; k)|ξ, γ, FX)) = 0. (D.31)



28 INFERENCE FOR EXTREMAL QUANTILE REGRESSION

Moreover, since the objective functions are convex in z, the above weak convergence is equivalent to

the finite-dimensional weak convergence:

(Q̂m
∞(zj ; k), j = 1, ..., J) →d (Q̂∞(zj ; k), j = 1, ...J) in R

J (D.32)

for any finite collection of points (zj , j = 1, ..., J). The result, that finite-dimensional convergence in

distribution of convex functions implies epi-convergence in distribution, is due to Geyer (1996) and

Knight (1999). Thus, in order to check (D.31) we only need to check (D.32).

C. In turn, the weak convergence of objective functions {Q̂m
∞(·; k),m = 1, 2, 3, ...} to {Q̂∞(z·; k) in

(LC(Rd), ρe) implies that asm→ ∞ the weak convergence of the corresponding argmins: Ẑm
∞(k) →d

Ẑ∞(k) in R
d, that is,

lim
m→∞

ρw(L(Ẑ∞(k)|ξm, γm, Fm
X ),L(Ẑ∞(k)|ξ, γ, FX)) = 0. (D.33)

The proof is now done in two steps:

I. We would like to show that the law L(Ẑ∞(k)|ξ′, γ′, F ′
X) is continuous at (ξ′, γ′, F ′

X) = (ξ, γ, FX)

for each (ξ, γ, FX) in the parameter space, that is, for any sequence (ξm, γm, Fm
X ,m = 1, 2, ...) such

that

|ξm − ξ| → 0, |γm − γ| → 0, sup
x∈X

|Fm
X (x) − FX(x)| → 0 (D.34)

with Fm
X ∈ FX , we have

ρw(L(Ẑ∞(k)|ξm, γm, Fm
X ),L(Ẑ∞(k)|ξ, γ, FX)) → 0. (D.35)

II. Given this continuity property, as |ξ̂ − ξ| →p 0, |γ̂ − γ| →p 0, supx∈X
|F̂X(x) − FX(x)| →p 0,

we have by the Continuous Mapping Theorem

ρw(L(Ẑ∞(k)|ξ̂, γ̂, F̂X),L(Ẑ∞(k)|ξ, γ, FX)) →p 0. (D.36)

That is, the law L(Ẑ∞(k)|ξ̂, γ̂, F̂X) generated by the Monte Carlo procedure consistently estimates

the limit law L(Ẑ∞(k)|ξ, γ, FX), which is what we needed to prove, since this result implies that the

convergence of respective distribution functions at the continuity points of the limit distribution.

Convergence of the distribution functions at the continuity points of the limit distribution implies

convergence of the respective quantiles to the quantiles of the limit distribution provided the latter

are positioned at the continuity points of the limit distribution function.

Thus it only remains to show the key continuity step I. We have that

(D.34)
(1)
=⇒ (D.29)

(2)
=⇒ (D.28)

(3)
=⇒ (D.32)

(4)
=⇒ (D.31)

(5)
=⇒ (D.33) ⇔ (D.35)

where (1) follows by direct calculations: for g(u, x) = 1 − e−f(u,x) and any f ∈ CK(E)

|ϕ(f ;Nm) − ϕ(f ;N)| ≤ ϕ(f ;N)

∣∣∣∣exp

{∫

E

g(u, x)[dmN − dmNm ]

}
− 1

∣∣∣∣→ 0,
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as
∫

E (g(u, x) [dmN − dmNm ]) → 0, which follows from the definition of the measure mN stated

earlier; (2) follows by the preceding discussion in Step A; (3) follows by the continuity of the mapping

N 7→
∫

E

(x′(z + k−ξ) − u−ξ · x′γ)+dN(u, x)

from (Mp(E), ρv) to R, as noted in the proof of Theorem 1; and (4) and (5) follow by the preceding

discussion in Step C. �

Appendix E. Uniqueness and Continuity

Define k := limT→∞ τT and fix an m such that k(m− 1) > d where d = dim(X).

Let {Xt, t ≥ 1} be an i.i.d. sequence from a distribution function FX such that E[XX ′] is pos-

itive definite. Define Gj := (kE[X ] −∑t≤j Xt)
′{[Xj+1...Xj+d]′}−1 if the matrix [Xj+1...Xj+d]′ is

invertible, and G := (∞, ...,∞) otherwise. Denote by FX(k) the class of distributions FX for which

PFX
{Gj ∈ ∂(0, 1)d} = 0 for all integer j ≥ 0.

Definition (Non-Lattice Condition Given k and m). FX ∈ FX(k′) for both k′ = k and k′ = mk.

Denote the class of all non-lattice distributions as FX = FX(k) ∩ FX(mk).

Lemma 1. If FX ∈ FX , then Ẑ∞(k) and Z∞(k) are uniquely defined random vectors. Moreover,

for any ψ 6= 0, ψ′Ẑ∞(k) and ψ′Z∞(k) have continuous distribution functions.

Comment E.1. The non-lattice condition is an analog of Koenker and Bassett’s (1978) condition for

uniqueness of quantile regression in finite samples. This condition trivially holds if the nonconstant

covariates X−1t are absolutely continuous. Uniqueness therefore holds generically in the sense that

for a fixed k adding arbitrarily small absolutely continuous perturbations to {X−1t} ensures it.

Proof: Step 1. We have from Theorem 1 that Ẑ∞(k) = Z̃∞(k) + c for some constant c, where

Z̃∞ is defined in Step 2 of the proof of Theorem 1. Chernozhukov (2005) shows that a sufficient

condition for tightness of possibly set-valued Z̃∞(k) is E[XX ′] > 0. Taking tightness as given,

conditions for uniqueness and continuity of Z̃∞(k) can be established. Define H as the set of all

d-element subsets of N = {1, 2, 3, ...}. For h ∈ H, let X (h) and J(h) be the matrix with rows

{Xt, t ∈ h}, and vector with elements {Jt, t ∈ h}, respectively, where Jt are defined in the proof of

Theorem 1. Let H∗ = {h ∈ H : |X (h)| 6= 0}. Nota that H∗ is non-empty a.s. by E[XX ′] positive

definite and is countable. By the same argument as in the proof of Theorem 3.1. of Koenker and

Bassett (1978) at least one element of Z̃∞(k) takes the form zh = X (h)−1J(h) for some h ∈ H∗,

and must satisfy a sub-gradient condition:

ζk(zh) := (kE[X ] −
∞∑

t=1

1(Jt < X ′
tzh)Xt)

′X (h)−1 ∈ [0, 1]d,
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and the argmin is unique if and only if ζk(zh) ∈ D = (0, 1)d. By the same argument as in the proof

of Theorem 3.4 in Koenker and Bassett (1978), zh must obey

k − d ≤
∞∑

t=1

1(Jt < X ′
tzh) ≤ k.

Then, uniqueness holds for a fixed k > 0 if P (∃h ∈ H∗ : ζk(zh) ∈ ∂D) = 0. To show this is the

case, define M(j) as the set of all j-element subsets of N, and define for µ ∈ M(j), G(µ, h) :=

(kE[X ] −∑t∈µ Xt)
′X (h)−1 if X (h) is invertible, and G(µ, h) := (∞, ...,∞) otherwise. Now note

that if PFX
{G(µ, h) ∈ ∂D} = 0 for any h ∈ H and µ ∈ M(j) such that h ∩ µ = ∅ and any integer

j ≥ 0, then

P (∃h ∈ H∗ : ζk(zh) ∈ ∂D)

≤ P{G(µ, h) ∈ ∂D, ∃h ∈ H, ∃µ ∈ M(j), ∃j ≥ 0 : h ∩ µ = ∅, k − d ≤ j ≤ k}

≤
∑

(k−d)∨0≤j≤k

∑

h∈H

∑

µ∈M(j):h∩µ=∅

PFX
{G(µ, h) ∈ ∂D} = 0,

since the summation is taken over the countable set. Finally, by the i.i.d. assumption and h∩µ = ∅,
PFX

{G(µ, h) ∈ ∂D} = PFX
{Gj ∈ ∂D}, where Gj is defined above. Therefore, PFX

{Gj ∈ ∂D} = 0

for all integer j ≥ 0 is the condition that suffices for uniqueness.

Step 2. Next want to show that the distribution function of ψ′Z̃∞(k) has no point masses,

that is P{ψ′Z̃∞(k) = x} = 0 for each x ∈ R and each vector ψ 6= 0, which is the equivalent

to showing continuity of x 7→ P{ψ′Z̃∞(k) ≤ x} at each x. Indeed, from above we have that

{Z̃∞(k) = X (h)−1J(h)} for some h ∈ H∗ a.s., and P{ψ′X (h)−1J(h) = x|{Xt, t ≥ 1}} = 0 for

each h ∈ H∗ a.s., since J(h) is absolute continuous conditional on {Xt, t ≥ 1} and ψ′X (h)−1 6= 0.

Therefore,

P{Z̃∞(k) = z} ≤ E

[
∑

h∈H∗

P{ψ′X (h)−1J(h) = z|{Xt, t ≥ 1}}
]

= 0,

by countability of H and the law of iterated expectations.

Step 3. Next we want to show that the distribution function of ψ′Z∞(k) has no point masses,

that is P{ψ′Z∞(k) = x} = 0 for each x ∈ R and each vector ψ 6= 0. We have that

Z∞(k) =
√
k(Z̃∞(k) + c)/(E[X ]′(Z̃∞(mk) − Z̃∞(k)))

for some c 6= 0. From Steps 1 and 2 we have that solutions Z̃∞(mk) and Z̃∞(k) are a.s. unique

and a.s. take the form Z̃∞(k) = zh1 = X (h1)
−1J(h1) and Z̃∞(mk) = zh2 = X (h2)

−1J(h2) for some

(h1, h2) ∈ H∗ ×H∗. Furthermore, mk − k > d implies h1 6= h2 and hence a.s. zh1 6= zh2 . Indeed, to

see this by Step 2 we must have the inequality

k − d ≤
∞∑

t=1

1(Jt < X ′
tzh1) ≤ k and mk − d ≤

∞∑

t=1

1(Jt < X ′
tzh2) ≤ mk,
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so that h1 = h2 implies mk−k ≤ d. Furthermore, arguing similarly to (Bassett and Koenker 1982)’s

Theorem 2.2., we observe that for h1 and h2 defined above

−kE[X ]′zh1 +

∫

E

ℓ(u, x′zh1)dN(u, x) − (mk − k)E[X ]′zh2

< −kE[X ]′zh2 +

∫

E

ℓ(u, x′zh2)dN(u, x) − (mk − k)E[X ]′zh2

= −mkE[X ]′zh2 +

∫

E

ℓ(u, x′zh2)dN(u, x)

< −mkE[X ]′zh1 +

∫

E

ℓ(u, x′zh1)dN(u, x)

< −kE[X ]′zh1 +

∫

E

ℓ(u, x′zh1)dN(u, x) − (mk − k)E[X ]′zh1 .

Solving this inequality we obtain (mk − k)E[X ]′(zh2 − zh1) > 0. We conclude therefore that a.s.

E[X ]′(Z̃∞(mk) − Z̃∞(k)) = E[X ]′X (h2)
−1J(h2) − E[X ]′X (h1)

−1J(h1) > 0. Moreover, condi-

tional on {Xt t ≥ 1} we can show by a perturbation argument that h1 6= h2 must be such that

E[X ]′(Z̃∞(mk) − Z̃∞(k)) = c′1J(h2) + c′2J(h1 \ h2) for some constant c2 6= 0. Let us denote by G
the set of all pairs h1 6= h2 in H∗ ×H∗ that obey these two conditions.

From step 1 and from E[X ]′(Z̃∞(mk)−Z̃∞(k)) > 0 a.s., it follows that Z∞(k) is a proper random

variable. Furthermore, for any x ∈ R a.s. for any (h1, h2) ∈ G and S(h1, h2) = E[X ]′X (h2)
−1J(h2)−

E[X ]′X (h1)
−1J(h1), P{ψ′(X (h1)

−1J(h1) + c)/S(h1, h2) = x ∩ (h1 × h2) ∈ G|{Xt, t ≥ 1}} = 0. The

claim follows because, for any (h1, h2) ∈ G, ψ′(X (h1)
−1J(h1)+ c)/S(h1, h2) is absolutely continuous

conditional on {Xt, t ≥ 1} by ψ′X (h1)
−1J(h1) and S(h1, h2) being jointly absolutely continuous

conditional on {Xt, t ≥ 1} and by the non-singularity of transformation (w, v) 7→ [w + c]/v over

region v > 0. Therefore, for any x ∈ R, P{ψ′Z∞(k) = x} is bounded above by

E




∑

h1 6=h2∈H∗×H∗

P{ψ′X (h1)
−1J(h1)/S(h1, h2) = z ∩ (h1 × h2) ∈ G|{Xt, t ≥ 1}}


 = 0,

by countability of H and the law of iterated expectations.
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Figure 2. Coverage of extremal confidence intervals and normal confidence
intervals when Disturbances are t(ν), ν ∈ {1, 3, 30}. Based on 1,000 repeti-
tions.
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Figure 3. Coverage of extremal confidence intervals and normal confidence
intervals when disturbances are Weibull (α), α ∈ {1, 3, 30}. Based on 1,000
repetitions.
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Figure 4. QR coefficient estimates and 90% pointwise confidence intervals.
The solid lines depict extremal confidence intervals. The dashed lines depict
normal confidence intervals.
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Figure 5. Bias-corrected QR coefficient estimates and 90% pointwise con-
fidence intervals for τ ≤ .15. The solid lines depict extremal confidence
intervals. The dashed lines depict normal confidence intervals.
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Figure 6. Bias-corrected QR coefficient estimates and 90% pointwise inter-
vals for τ ≥ .85 . The solid lines depict extremal confidence intervals. The
dashed lines depict normal confidence intervals.
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Figure 8. Bias-corrected QR coefficient estimates and 90% pointwise con-
fidence intervals for τ ≤ .025 . The solid lines depict extremal confidence
intervals. The dashed lines depict normal confidence intervals.
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Figure 9. QR coefficient estimates and 90% pointwise confidence intervals
for τ ∈ [.025, .975] . The solid lines depict extremal confidence intervals.
The dashed lines depict normal confidence intervals.
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