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In many economic models, objects of inter-
est are functions that satisfy conditional moment 
restrictions. These models may come from first-
order conditions for choices by individuals 
or firms. They are also natural generalizations 
of linear instrumental variable (IV) models, 
where there is an unknown function rather than 
unknown parameters, and disturbances have 
conditional mean zero rather than just being 
uncorrelated with instruments. In many eco-
nomic models these unknown functions have 
structural interpretations, making it essential to 
estimate them in order to test economic theory 
or predict policy effects. Economics does not 
restrict functional forms, motivating nonpara-
metric models where objects of interest are 
unknown functions.

In this paper we describe a simple approach 
to estimating these models. It is based on series 
approximation to the unknown structural func-
tion and reduced forms, similar to Newey and 
Powell (1989, 2003); Blundell, Chen, and 
Kristensen (2007); and Horowitz (2011). This 
approach leads to nonparametric IV (NPIV) 
estimation. We also describe a way to modify the 
objective function for this estimator that allows 
for more approximating terms at the expense of 
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introducing additional bias. We also suggest a 
method of inference based on these estimators.

It can be challenging to recover nonlineari-
ties from conditional moment restrictions. The 
difficulty comes because the data identifies only 
reduced form conditional expectations, and con-
ditional expectations “smooth out” nonlineari-
ties, leading to what is known as the “ill-posed 
inverse problem.” In this paper we quantify this 
problem in a Gaussian example. We find a link 
between the reduced form  R 2 , that quantifies the 
strength of the instrument, and the variance of 
the coefficients of nonlinear terms. When the 
reduced form  R 2  is very low, and a linear IV 
slope estimate is quite variable, say as in Angrist 
and Krueger (1991), the variance of coefficients 
of any nonlinear terms will be very high. It will 
be difficult to find any nonlinearity in such set-
tings. On the other hand, when the reduced form 
 R 

2

  is larger, say as in the Engel curve estimation in 
Blundell, Chen, and Kristensen (2007), one can 
estimate nonlinear terms with some precision.

We also discuss a simple approach to inference, 
namely treating the series estimator as if it were 
parametric and using corresponding standard 
errors and the usual Gaussian approximation. 
In other nonparametric settings, it is known that 
this approach is asymptotically valid for either 
kernel or series estimators (Newey 1994, 1997). 
The intuition here is that the parametric calcu-
lation accounts correctly for the variance of the 
estimator and that the bias shrinks faster than the 
standard deviation in the asymptotic approxima-
tion. Recent work has shown that this approach 
works for some nonparametric IV series estima-
tors, Chernozhukov and Chetverikov (2013). We 
give a small Monte Carlo example showing that 
it is promising in a Gaussian example.

The nonparametric IV problem and its iden-
tification, series estimation, and consistency 
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was treated in Newey and Powell (1989, 2003).  
Blundell, Chen, and Kristensen (2007); Darrolles 
et al. (2011); and Hall and Horowitz (2005) 
derived nonparametric convergence rates. 
Horowitz (2006) gave some results on inference, 
as did Ai and Chen (2003) for root-n consistent 
estimators of parameters of semiparametric 
models. Santos (2012) developed identification 
robust inference. Chen et al. (2012) have ana-
lyzed local identification of nonlinear models. 
Many other papers have made interesting con-
tributions to this literature. This paper pursues 
the modest goal of briefly discussing the model 
and its identification and offering some thoughts 
on series estimation, instrument strength, non-
linearities, and inference.

I. The Model

The model we consider is

  y =  g 0 (x) + ε, E[ε|z] = 0,

where y is the left-hand-side endogenous vari-
able, x is a vector of right-hand-side possibly 
endogenous variables, z is a vector of instru-
ments,  g 0  is an unknown structural function, and 
ε is a disturbance. This model includes as a spe-
cial case nonparametric regression, where x = z 
and  g 0 (x) = E[ y|x]. It generalizes nonparametric 
regression to allow some of the regressors x to 
be correlated with the disturbance ε. Exogenous 
covariates can be allowed for by including a sub-
vector  z 1  of z in x.

An economic model may imply E[ε|z] = 0. In 
various consumption capital asset pricing models 
we have such restrictions. For example, y could 
be the rate of return on an asset, x consumption in 
successive time periods,  g 0 (x) the intertemporal 
marginal rate of substitution, and z information 
available when consumption is decided, such as 
lagged returns and consumption, e.g., Hansen 
and Singleton (1982). The conditional moment 
restriction E[ε|z] = 0 can also be viewed as a 
generalization to nonlinear models of the fun-
damental condition of orthogonality between 
instruments and disturbances. For example, 
Berry and Haile (2009) use it for nonparametric 
demand models for imperfect competition.

Other nonparametric models that allow cor-
relation between regressors and disturbances 
have also been developed. These include non-
separable models where y =  m 0 (x, ε), and z 

and ε are  independent. See Chernozhukov 
and Hansen (2005); Chernozhukov, Imbens, 
and Newey (2007); and Matzkin (2008). Also 
nonparametric models with control functions 
have been considered, in Newey, Powell, and 
Vella (1999); Blundell and Powell (2003); 
Chesher (2003); and Imbens and Newey (2009). 
In these models the control function is an 
observable or estimable variable v (often a 
reduced form residual) such that ε and x are 
independent, or mean independent, conditional 
on v. Nonseparable and control function models 
are neither more or less general than the con-
ditional moment restrictions model. They may 
allow for ε to enter nonlinearly but impose dif-
ferent restrictions on ε, x, and z.

It should be well understood that structural 
models are needed to test economic hypotheses 
and evaluate policies. For example consider a 
supply and demand model where q is quantity 
and p is price, satisfying

  q =  g 0 (p,  z 1 ) + ε,

  p =  h 0 (q,  z 2 ) + η, 

  E[ε| z 1 ,  z 2 ] = E[η| z 1 ,  z 2 ] = 0.

Here  g 0 ( p,  z 1 ) + ε is the demand function 
and the inverse supply is  h 0 (q,  z 2 ) + η. Let τ be 
a percentage tax that is paid by the purchaser. 
The equilibrium quantity that would result is the 
solution q( z 1 ,  z 2 , ε, η) to

   ̃ q   =  g 0 ((1 + τ)[ h 0 ( ̃ q  ,  z 2 ) + η],  z 1 ) + ε.

The effect of the tax on average quantity, 
where the average is taken across observed 
markets would be E[ ̃ q   − q]. Knowledge of the 
structural functions  g 0  and  h 0  are essential to 
identifying this policy effect.

II. Identification

Taking conditional expectations of both sides 
of y =  g 0 (x) + ε with respect to z gives

  E[ y|z] = E[ g 0 (x)|z] =  ∫  
 
  
 
  g 0 (x) f (x|z)dx,

where f (x|z) is the conditional pdf of x given z. 
We can think of E[ y|z] and f (x|z) as identified 
nonparametric reduced forms. The identification 
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question is whether there is a unique solution 
to E[ y|z] =  ∫     

  g(x) f (x|z)dx. Note that  g 0 (x) and 
g(x) both solve this equation if and only if

   E[ g 0 (x) − g(x)|z] 

  = E[ g 0 (x)|z] − E[g(x)|z]

 = E[y|z] − E[y|z]

 = 0.

Thus,  g 0 (x) is identified if and only if δ(x) = 0 
is the only function satisfying E[δ(x)|z] = 0. 
This is completeness of the conditional expecta-
tion of functions of x conditional on z.

In a linear model completeness is equiva-
lent to the usual rank conditions. When the data 
is discrete with finite support, completeness is 
also equivalent to a rank condition. Suppose x 
and z only take on a finite number of values, say  
x ∈ { x 1 , … ,  x J } and z ∈ { z 1 , … ,  z K }. Let  
π jk  = Pr (X =  x j |Z =  z k ). Then completeness 
holds if and only if rank (π) = J. Here a neces-
sary order condition for identification is that the 
number of support points K for z is no smaller 
than the number of support points J for x. These 
identification results were given in Newey and 
Powell (1989, 2003).

In fully nonparametric models (that are infi-
nite dimensional), completeness is not test-
able, as pointed out by Canay, Santos, and 
Shaikh (2012). In these models the reduced 
form is like an infinite dimensional matrix 
with eigenvalues that have a limit point at zero. 
Nonidentification occurs when at least one of the 
eigenvalues equals zero. The problem with test-
ing this hypothesis is that one cannot distinguish 
empirically a model with a zero eigenvalue from 
one where the eigenvalues have a limit point of 
zero. However, completeness is generic, in the 
sense that it holds for “most” f (x|z), if it holds 
for one, Andrews (2011), Chen et al. (2012). 
This is like the discrete, finite support case 
where most π matrices have full column rank if 
the order condition is satisfied.

III. Series Estimation

The unknown function  g 0  solves E[ y|z] =  
 ∫     

  g(x) f (x|z)dx. This type of equation is known 
in the mathematics literature as an integral 
 equation of the first kind; e.g., see Kress (1999). 

It is well known that this equation is ill-posed, 
meaning that the solution is not continuous in 
the functions E[ y|z] and f (x|z). This creates 
potential problems in estimation since the dis-
continuity means that a consistent estimator of  
g 0  need not result from plugging in consistent 
estimators of E[ y|x] and f (x|z), and approxi-
mately solving this equation.

A solution to this problem is to form the estima-
tor in such a way that the ill-posed inverse prob-
lem does not affect consistency. This approach is 
known as “regularization” in the mathematics lit-
erature. There are various ways to regularize. One 
way is to use series estimation, that specifies the 
number of terms in a linear approximation e.g., 
see Kress (1999). There are also other ways. For 
simplicity we focus first on series estimation and 
then mention other regularization approaches.

A series estimator is based on approximating 
the unknown function by a linear combination 
of known functions. Let  p 1J  (x), … ,  p JJ  (x) be 
approximating functions, such as power series or 
regression splines. We assume that we can approx-
imate any g(x) by a linear combination, as in

  g(x) ≈  ∑  
j=1

   
J

    γ j   p jJ  (x),

where  γ 1 , … ,  γ J  are linear combination coef-
ficients. To estimate using this approxima-
tion we can plug the approximation for g into  
E[ y|z] =  ∫     

  g(x) f (x|z) dx to obtain E[ y|z] ≈  
 ∑  j=1  

J
   γ j  E[  p jJ (x)|z]. We can replace E[  p jJ  (x)|z] 

by nonparametric estimators  ˆ E[  p jJ |z]  and do 
least squares, estimating  γ 1 , … ,  γ J  by choos-
ing    γ  = (    γ  1 , … ,     γ  J  )′  to minimize

     S  (γ) =  ∑  
i
   
 

     {  y i  −  ∑  
j=1

   
J

    γ j   
ˆ

 E[  p jJ | z i ]  }  2 ,
where the data are ( y i ,  x i ,  z i ), (i = 1, … , n). An 
estimator of  g 0 (x) is then

     g  (x) =  ∑  
j=1

   
J

       γ  j    p jJ  (x).

We can also use a series estimator for  ˆ E[  p jJ |z] .  
For another vector of approximating functions  q  K 
(z) =   (  q 1K  (z),…,  q KK  (z) ) ′  and  q  i  K  =  q  K ( z i ), let

  ˆ E[  p jJ |z]  =  q  K (z )′    (  ∑  
i=1

   
n

    q  i  K  q  i   K  ′   )  −1

    ∑  
i=1

   
n

     q  i  K  p jJ  ( x i ).
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With this choice of first stage  ˆ E[  p jJ |z] , the 
estimator    γ  is the same as two-stage least 
squares (2SLS) with right-hand-side variables  
 p 1J  ( x i ), ‥‥ ,  p JJ  ( x i ) and instrumental variable 
vector  q  i  K .

This is a NPIV estimator by virtue of first and 
second stage series approximations. Note that 
this is not just a parametric estimator with some 
flexible functional form (e.g., translog), because 
any function can be approximated arbitrarily 
well as J grows. One way to think about this 
in practice is that the number of terms can vary 
across applications, with more terms included 
to account for more nonlinearity. The point of 
series estimators is not just that the number of 
terms can grow with the sample size to approxi-
mate any function. It is also that the number of 
terms can be chosen larger or smaller based on 
the conditions in different datasets.

This view of nonparametric series estima-
tors highlights the importance of choosing the 
number of terms to adjust to conditions in the 
data, i.e., the need for good data based meth-
ods of selecting the approximating model. One 
approach that seems to work well for inference 
in practice is to increase the number of terms 
until estimated standard errors (which will tend 
to grow as number of terms increase) are large 
relative to how objects of interest change as 
more approximating terms are added. Blomquist 
and Newey (2002) adopted this approach in an 
application. A good topic for future research 
is its theoretical properties. Of course this 
approach depends on having estimated standard 
errors. We discuss below how these can be con-
structed for NPIV.

Another way to regularize the estimator is to 
add a penalty term to the second stage sum of 
squared residuals. Let Λ be some positive defi-
nite J × J matrix and α a nonnegative constant. 
Consider an estimator   ̃  γ  minimizing

     S  (γ) + α ·  γ′ Λγ,

where    S  (γ) is the 2SLS objective function from 
above. Here α ·  γ′ Λγ is a penalty term that 
will tend to lower the variance of the estimator, 
because Λ is not random. The bigger is α the 
more weight the penalty has and so the less the 
variance and the larger the bias, with α shrink-
ing to zero as sample size grows to ensure con-
sistency. Various forms of these estimators were 
considered by Newey and Powell (1989, 2003) 

and Blundell, Chen, and Kristensen (2007), to 
which we refer the interested reader. An advan-
tage of such methods is that J can be allowed to 
be much larger than for series estimates and still 
get consistency. A larger value of J will allow esti-
mation of some higher-order nonlinearities, while 
the penalty term helps control the variance of    g  .

IV. Nonlinearity and Instrument Strength

The ability to uncover nonlinearities with 
NPIV is linked to the strength of the instru-
ments. Here we explain this in a Gaussian exam-
ple where  x i  and  z i  are joint standard normal with 
correlation coefficient ρ. This simple setting 
allows us to relatively easily see the link. This 
example also seems important, given the long 
interest in Gaussian models.

Let (  p 1 (x),  p 2 (x), …) denote the Hermite 
polynomials, where  p 1 (x) = 1,  p j  (x) is a poly-
nomial of order j − 1,

  E[  p j ( x i  ) 2 ] = 1, E[  p j  ( x i ) p k ( x i )] = 0, j ≠ k.

The formula for  p j (x) can be found in 
Abramowitz and Stegun (1965). It is known that

  E[  p j ( x i )| z i ] =  ρ   j  p j  ( z i ).

This formula exemplifies the way conditional 
expectations generally “smooth out” nonlineari-
ties. Here the conditional expectation shrinks 
the Hermite polynomial toward zero, with more 
shrinkage for higher order terms where j is larger, 
and more shrinkage when ρ is smaller. Also, 
this example shows the ill-posed inverse prob-
lem. Here  g 0 (x) +  p 1 (x),  g 0 (x) +  p 2 (x), … is a 
sequence of “structures” that do not converge to 
the truth  g 0 (x) while the corresponding “reduced 
forms” E[ g 0 (x) +  p j  ( x i )| z i ] = E[ y|z] +  ρ   j  p j  (z) 
do converge to the true reduced form E[ y|z].

We can also see the impact of the ill-posed 
inverse problem in the relationship between 
structural and reduced form coefficients. To 
explain let   

_
 γ   j  = E[ g 0 ( x i ) p j ( x i )] denote the popu-

lation regression coefficient from regressing  
 g 0 ( x i ) on  p 1 ( x i ), … ,  p J  ( x i ), where we assume 
E[ g 0 ( x i  ) 2  ] exists. Here   

_
 γ   j  has this simple form 

because E[  p j  ( x i  ) 2  ] = 1 and the  p j  ( x i ) are uncor-
related across j. It is known that  g 0 (x) will be 
a linear combination of all the approximation 
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functions,  g 0 ( x i ) =  ∑  j=1  
∞
    _ γ   j   p j  ( x i ). Similarly, for  

  
_
 π   j  = E[E[  y i | z i  ] p j  ( z i )] the reduced form will be 

a linear combination of all the  p j  (z) functions,  
E[ y| z i  ] =  ∑  j=1  

∞
     _ π   j   p j  ( z i ). Here   

_
 γ   j  and   

_
 π   j  are the struc-

tural and reduced form coefficients respectively.
There is a simple relationship between   

_
 π   j  

and   
_
 γ   j . Switching the roles of  x i  and  z i , we have 

E[  p j  ( z i )| x i ] =  ρ   j  p j  ( x i ). Multiplying through by  
ρ −j  we have  p j  ( x i ) =  ρ −j E[  p j ( z i )| x i ] so that

    _ γ   j  =  ρ −j E[ g 0 ( x i )E[  p j ( z i )| x i ]]

  =  ρ −j E[ g 0 ( x i ) p j ( z i )] 

  =  ρ −j    
_
 π   j .

Thus, the reduced form coefficient   
_
 π   j  must be 

inflated by  ρ −j  to get the corresponding struc-
tural coefficient   

_
 γ   j .

There is also a corresponding relationship 
between coefficient estimators, that helps explain 
the difficulty of estimating nonlinearities. Note that 
in this example a simple, unbiased estimator of the 
reduced form coefficient   

_
 π   j  is     π  j  =  ∑  i=1  

n
    y i   p j  ( z i )/n.  

A corresponding estimator of the associated struc-
tural coefficient is     γ   j  =  ρ −j     π  j . Thus, the structural 
estimator is also inflated by  ρ −j . Consequently, 
while the variance of the reduced form estimator 
can be quite stable across different values of j, the 
variance of the structural estimator will grow with 
j, making it more difficult to estimate the coeffi-
cients of higher-order terms.

For a concrete example, suppose the structural 
function is constant, the disturbance is homo-
skedastic, and the data are i.i.d. with  g 0 (x) = c 
and Var(ε|z) =  σ  2 . Then it is easy to see that  
Var(    π  j ) = ( σ 2  +  c 2 )/n. Therefore, it follows that

  Var(    γ  j ) =  ρ −2 Var (    γ  j−1 ), j ≥ 3.

When  g 0 (x) is not constant and ε is hetero-
skedastic this relationship will not hold, but  
Var(    γ  j ) will still increase rapidly with j.

This example shows how the strength of the 
instrument is related to the ability to estimate 
nonlinearities in the Gaussian x and z case. Note 
that  ρ 2  is the  R 2  from the population reduced form 
regression of x on z. This quantifies the strength 

of the instrument. As j increases the variance of     γ   j  
goes up by a factor of  ρ −2 . Thus, the stronger the 
instrument the lower the variance of estimators of 
coefficients of higher-order terms relative to coef-
ficients of lower order terms.

For instance, in the Angrist and Krueger 
(1991) returns to schooling application, the 
reduced form  R 2  for the 1930–1939 cohort, 
partialling out covariates, is 0.00133. The 
above example would predict that the variance 
of the coefficient of the quadratic coefficient     γ  3  
is about 750 times the variance of the linear 
coefficient     γ  2 , or that the confidence interval 
for the quadratic term is about 25 times as 
large as the linear term. Given that the linear 
IV already produces a wide confidence interval 
in this application, this calculation suggests 
that it would be very difficult indeed to find 
any nonlinearities when using quarter of birth 
as an instrument for schooling. Of course, the 
quarter of birth and years of schooling applica-
tion does not have Gaussian z and x, but with 
such a low reduced form  R 2  it may still be dif-
ficult to uncover nonlinearities.

With stronger instruments it is possible to 
uncover important nonlinearities in applica-
tions. Blundell, Chen, and Kristensen (2007) 
consider an application where x is the log of 
total expenditure and z is the log of income. In 
that application the reduced form  R 2  is about 
0.25. This  R 2  would lead to the variance of 
the quadratic coefficient estimator being only 
about four times bigger than the variance of 
the linear coefficient estimator. Since the lin-
ear IV estimate is quite precise in those data 
one would expect to be able to uncover non-
linearities with NPIV. They do.

The severity of the ill-posed inverse prob-
lem in the Gaussian case is not extreme. It is 
known that if x and z are each uniformly dis-
tributed and f (x|z) is analytic, one gets approx-
imations similar to the Gaussian case, where 
structural coefficients are obtained by scaling 
up reduced form coefficients by something that 
is at least as large as  ρ −j  for some 0 < ρ < 1, 
see Theorem 5.20 of Kress (1999). Since any 
continuously distributed x and z can be normal-
ized to be uniform, it takes some sort of nons-
moothness in f (x|z) to ameliorate the ill-posed 
inverse problem. Such things as nonexistence 
of higher order derivatives or thick tails of dis-
tributions can do this, e.g., see Blundell, Chen, 
and Kristensen (2007).
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V. Inference

A simple approach to inference with NPIV is to 
treat the series estimator as if it were  parametric 
and use corresponding standard errors and 
the usual Gaussian approximation. Here this 
would correspond to using the Hansen (1982)  
and White (1982) estimator of the variance of    γ   
as if it was 2SLS. This approach is asymptoti-
cally valid for nonparametric series regression, as 
shown in Newey (1997). It works there because 
the parametric calculation accounts correctly for 
the variance and the bias shrinks faster than the 
standard deviation in the asymptotic approxima-
tion. One might expect it to work for NPIV for 
the same reasons. Recent work has shown that 
it does work for some nonparametric IV series 
estimators, Chernozhukov and Chetverikov 
(2013).

Here we give a small Monte Carlo exam-
ple with encouraging results for NPIV infer-
ence in the Gaussian example. We let x 
and z be bivariate Gaussian,  g 0 (x) be con-
stant, and  ρ 2  be either 0.25 or 0.1. We take 
for approximating functions simple power 
series, where  p jJ  (x) =  x   j−1  and  q kK  (z) =  z  k−1 .  
We use the Hansen (1982) and White (1982) esti-
mator of the asymptotic variance of    γ   as a 2SLS 
estimator. We consider the coverage probability 
for an asymptotic 90 percent confidence interval 
for the value  g 0 (E[ x i ]) of the structural function at 
the mean of  x i . We do 5,000 Monte Carlo replica-
tions. We choose various combinations of (n, J, K) 
so that the sample size should be big enough to 
lower the variance of    g  (E[ x i ]) as J grows.

For  ρ  2  = 0.25 we find that for (n, J, K) triplets 
of (100, 1, 2), (500, 2, 6), and (2,500, 3, 12), the 
coverage probabilities are 0.896, 0.899, and 0.905, 
respectively. For  ρ 2  = 0.1 we find that for (n, J, K) 
triplets of (100, 1, 2) and (1,200, 2, 6), the cover-
age probabilities are 0.914 and 0.908, respectively. 
These results are consistent with the 2SLS standard 
errors giving a correct asymptotic approximation. 
We did find that, with larger sample sizes, nominal 
coverage was closer to 0.90 for larger K values.

These findings are consistent with the para-
metric standard errors giving a correct asymp-
totic approximation. We do note the large sample 
sizes required for this result as J increases. It 
could be that Santos’ (2012) inference method, 
that is robust to nonidentification, gives better 
approximaions for smaller sample sizes. We 
leave this topic to future research.
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