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Abstract: We present a technique for large-scale optimization of optical
microcavities based on the frequency-averaged local density of states
(LDOS), which circumvents computational difficulties posed by previous
eigenproblem-based formulations and allows us to perform full topology
optimization of three-dimensional (3d) leaky cavity modes. We present
theoreticalresults for both 2d and fully 3d computations in whichevery
pixelof the design pattern is a degree of freedom (“topology optimization”),
e.g. for lithographic patterning of dielectric slabs in 3d. More importantly,
we argue that such optimization techniques can be applied to design
cavities for which (unlike silicon-slab single-mode cavities) hand designs
are difficult or unavailable, and in particular we design minimal-volume
multi-modecavities (e.g. for nonlinear frequency-conversion applications).

© 2013 Optical Society of America

OCIS codes: (120.4570) Optical design of instruments; (140.3945) Microcavities; (230.5750)
Resonators.
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1. Introduction

In this paper, we present a new technique for large-scale optimization of optical microcavi-
ties based on the frequency-averaged local density of states (LDOS), which circumvents com-
putational difficulties posed by previous eigenproblem-based formulations and allows us to
perform full topology optimization of three-dimensional (3d) leaky cavity modes. Essentially,
this technique allows us to minimize modal volumeV for a given cavity quality factorQ, or
equivalently a given bandwidth, by solving a singlecomplex-frequencyscattering problem at
each optimization step, which is both computationally easier than solving an eigenproblem and
avoids the difficulty of selecting which eigenvalue to optimize. We presentproof-of-concept
results in both 2d and 3d computations in whichevery pixelof the design pattern is a degree
of freedom (“topology optimization”), e.g. for lithographic patterning of dielectric slabs in 3d.
For a designQ of ≈ 104 in 3d for silicon slabs (indexn = 3.52), we obtain a modal vol-
umeV = 0.06(λ/n)3 (relative to the vacuum wavelengthλ ), which is 4× smaller than the best
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comparable-Qvolume found in the literature [1].Here, the focus is on illustrating the technique
rather than on designing practical cavities (for which many good designs are already available
in the single-mode silicon case), so we do not incorporate regularizations [2–8] to force the
optimization to find easily fabricated structures. However, our results are still useful in estab-
lishing theoretical bounds, showing that significant room for improvement remains even for
silicon cavities.More importantly, we show that such optimization techniques can be applied
to design cavities for which (unlike silicon-slab single-mode cavities) hand designs are difficult
or unavailable, and in particular we designproof-of-conceptminimal-volumemulti-modecav-
ities (e.g. for nonlinear frequency-conversion applications [9, 10]) in Secs. 8.2.3 and 8.3. We
find that the optimum doubly degenerate cavity appears to be three-fold symmetric, while two-
frequency cavities have more complex shapes depending on the polarization,although further
work is needed to obtain manufacturable structures. Theoretical optimization is also useful to
investigatethe tradeoff between the size of the design region and the maximum attainableQ
in slab-like situations (Sec. 8.4), and find it to be roughly exponential. All of these results are
enabled by a sequence of mathematical transformations of the original cavity-design problem,
depicted in Fig. 1: from the Purcell factorQ/V to the more well-posed problem of minimizing
V for a givenQ (Sec. 2), from the eigenproblem to a scattering problem via the LDOS (Sec. 3),
from a frequency-averaged LDOS to a singlecomplex-frequency scattering problem [11] via
contour integration (Secs. 4–5), and finally from maximizing LDOS to minimizing 1/LDOS
in order to circumvent optimization problems that arise for sharply peaked objectives (Sec. 7).
Even though the optimization problem is nonlinear and probably non-convex [12], we obtain
similar optima for many initial structures (including vacuum or random pixels), suggesting that
the result may be close to a global optimum.

Fig. 1. Starting with the naive objective of maximizing a microcavity’s Purcell factorQ/V,
we perform a sequence of transformations of the problem in order to make it well posed
and tractable. Here, we give a schematic diagram of each transformation, along with the
corresponding section of the paper in which they are discussed.

Microcavity design, which seeks to confine a cavity “mode” for a long time (dimensionless
lifetime Q) in a small “modal volume”V, has a long history [13, 14], and until recently has
been dominated by hand designs, from ring resonators [15, 16] to photonic-crystal slab cavi-
ties [17, 18], in which the parameters are manually tweaked to obtain the desired results (or in
some cases computer optimization is performed over a handful of parameters [19–21]). These
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manual designs have been tremendously successful, attaining experimentally verifiedQ of 106

or more in modal volumes only a few wavelengths in diameter [19–21]. However, fundamental
questions remain: how close are the existing designs to the theoretical optima (e.g. the minimal
V for any givenQ), and do the optimal designs resemble the hand designs or are they entirely
different? (As discussed in Sec. 2, the question isnotwhat is the maximumQ or Q/V, because
those questions have a trivial theoretical answer:∞.) Furthermore, while design of single-mode
cavities in silicon slabs has been heavily studied and many design heuristics are known, very
different designs and grueling effort may be required in radically different circumstances, from
new materials to new design goals such as multi-mode cavities for nonlinear optics [10]. Large-
scale “topology” optimization, in which the design pattern is completely determined by compu-
tational search (often with thousands of free parameters) with little or noa priori information,
offers a different route to addressing these questions. Although several authors have developed
topology-optimization techniques for microcavity design [22–25], most of that previous work
was limited to 2d calculations [22, 23] and none of the previous work fully addressed the de-
sign tradeoff betweenQ andV. Some topology optimization dealt with lossless systems and
avoidedQ entirely [22], or maximized a 2dQ without controllingV [23] (which we argue in
Sec. 2 leads to an ill-posed optimization problem). Other work used a “2.5d” heuristic for the
cavity radiation loss [25], which permitted 2d calculations and led to intriguing designs, but
limits the attainableQ (to < 104) because there appears to be no systematic way to improve
this heuristic loss estimate. One group did perform fully 3d calculations with absorbing bound-
aries to capture radiation loss [24], but limited their degrees of freedom to a small region inside
a photonic crystal and included an unphysical absorbing material within the cavity itself, lead-
ing to a heuristic objective whose calculation does not appear to have a rigorous quantitative
relationship to key cavity properties.As we review in Sec. 3, maximizing LDOS corresponds
mathematically to maximizing the power radiated by a dipole current source inside the cavity.
Naively, this may seem backwards: isn’t the purpose of a cavity tominimizeradiated power?
However, that intuition stems from the situation in which the energy densityinsidethe cavity
is held constant: there is an equationQ = ωU/P relating the cavityQ and frequencyω with
the radiated powerP and the confined energyU [14], so thatP∼ 1/Q for fixedU . In our case,
however, we are holding thecurrent amplitudein the cavity fixed, in which case the radiated
powerP∼ Q (as reviewed in Sec. 3) while one can show from a coupled-mode framework [14]
thatU ∼ Q2. Conversely, minimizing radiated power for a fixed current would correspond to
minimizingLDOS, which would result in theabsenceof resonances. (Interestingly, Frei et
al. [24] actuallyminimizedradiated power from a fixed-current dipole, but their introduction
of a heuristic absorbing region inside the cavity apparently compensated for this inverted ob-
jective and resulted in a resonant mode, albeit a mode optimizing an unclear objective.)On the
other hand, our work adapts two crucial ideas from [24]: solving a scattering problem rather
than an eigenproblem, and optimizing over a finite bandwidth. Nor did any previous work, to
our knowledge, address topology optimization of multi-mode cavities.

2. Eigenproblem formulation

There are two key figures of merit for a resonant modeEn(x) of a cavity: quality factorQ and
modal volumeV. The quality factorQ is a dimensionless lifetime, and 1/Q is a dimensionless
decay rate [14]. Mathematically,Q is related to the frequency-domain Maxwell eigenvalue
problem:

∇× 1
µ(x)

∇×En(x) = ω2
nε(x)En(x) (1)

with radiation boundary conditions. Because of the lossy boundary conditions, the eigenprob-
lem is non-Hermitian and the eigenvalues are complex. TheQ for the modeEn(x) with eigen-
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frequencyωn [14] is

Q=
Re[ωn]

−2Im[ωn]
. (2)

Technically, if one considers an infinite open system (as opposed to a finite system with
some absorbing boundary layer), a number of mathematical subtleties arise because the leaky
“modes” are not true normalizable eigenfunctions, but are rather related to the residues of poles
in the Green’s function [26]; however, we will circumvent all of these difficulties in this paper
by transition to a Green’s-function LDOS approach in Sec. 3 that does not deal explicitly with
eigenvalue problems. The modal volumeV [27], defined as

V =

∫

ε(x)|En(x)|2dx
max{ε(x)|En(x)|2} , (3)

is a measure of the volume within which the mode is confined. (Although Eq. (3) is a standard
expression, it should really be viewed as the modal volume in the limit of a lossless cavity. For
a lossy cavity,

∫

ε(x)|En(x)|2dx does not converge in an infinite open system; a more rigorous
treatment is to define the LDOS in terms of the Green’s function as in Sec. 3 and obtain the
Purcell factor from the ratio with the LDOS of the homogeneous medium.) The Purcell factor
[28], which describes the enhancement of spontaneous emission rate, can be written as [29,30]

3Q
4π2V

(

λ
n

)3

. (4)

Hereλ is the vacuum wavelength andn is the index of refraction.
For applications with light-matter interactions (such as lasers, sensors, and nonlinear fre-

quency converters), maximal lifetimeQ and minimal modal volumeV are desirable [31]. It is
therefore tempting to use the Purcell factor in Eq. (4) orQ/V as the figure of merit for cavity
optimization. Unfortunately, maximizingQ/V leads to an ill-posed problem, because the maxi-
mum ofQ/V is ∞; for example,Q/V grows exponentially with radius for a ring resonator [32].
In practice, any optimization in a finite computation cell will obtain a finiteQ andV [23], but
the values are then just an artifact of the finite computational domain; in this sense, maximizing
Q/V is not well-posed because the solution does not converge as one increases the size of the
computational domain.

In practice, however, there is an upper bound on the usefulQ for two reasons. First, besides
the intrinsic radiation loss (Qrad) in a cavity, there are also radiation losses due to surface rough-
ness (Qroughness) and material absorption (Qabsorption). The total loss rate 1/Qtotal is the sum of
these three effects [14]:

1
Qtotal

=
1

Qrad
+

1
Qroughness

+
1

Qabsorption
. (5)

In real applications, therefore, theQtotal cannot be arbitrarily large. For example, in integrated
optics it is difficult to getQtotal more than a few million due to surface roughness [33], although
microdisk and microsphere resonators can achieve higherQ by delocalizing the mode away
from the surface [34,35]. Second, there is another quality factor in the system. For any cavity-
based device, the cavity is always intentionally coupled to some channels (e.g., waveguides)
to get light in and out. That coupling process will be described by its own lifetimeQcoupling. It
turns out that the losses in such a coupled device are proportional toQcoupling/Qtotal [14]. Once
these losses are decreased below the desired loss budget, it often does not matter in practice if
one decreases them further.
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A better optimization problem might be, instead, to maximizeQ/V subject toQ = Q̃, or
alternatively:

minV

s.t.Q≥ Q̃,
(6)

whereQ̃ is determined by the bandwidth and loss tolerance of applications. By solving the
non-Hermitian Maxwell eigenproblem Eq. (1), one could obtainQ andV from eigenvectors
En(x) and eigenvaluesωn through Eq. (2) and Eq. (3). Then a natural question to ask is which
eigenvalue one should optimize. In practice, one has some design frequencyω̃ given by the
application, so one could optimize the eigenvalue closest toω̃ . (Equivalently, thanks to the
scale-invariance of Maxwell’s equations [14], we choose units so thatω̃ = 2π , in which case
the main computational choice is the resolution, i.e. the number of pixels per wavelengthλ ,
and in some cases a slab thickness/λ .) However, asking for the mode closest toω̃ leads to
discontinuities: as the structure changes during optimization, the mode closest toω̃ will tend to
hop discontinuously. Although there are some ways to deal with this [22], the problem becomes
worse when one simulates the radiation loss in a patterned dielectric slab, because in this case
the finite cell is approximating a continuum of radiation modes above and below the slab. As
a result, there are more and more closely spaced modes as the cell size increases. Hence, we
want to circumvent this difficulty by adopting a new approach: turning the eigenproblem into
a linear scattering problem. This also reduces the computational expense, because we will now
require only a single linear solve per structure, whereas finding eigenvalues in the interior of a
spectrum (e.g. by the shift-and-invert algorithm) requires many linear solves [36].

3. LDOS formulation

The well-known Purcell factor (Q/V and variations thereof) is, in fact, only anapproximationof
a more fundamental quantity, the local density of states (LDOS), which is defined in terms of the
Green’s function of the system (and can be related to a “density of modes” per unit frequency
per unit volume) [37]. Paradoxically, theexactLDOS iseasierto compute thanQ/V, because
the former involves only a scattering problem (a linear system of equations) whereas the latter
involves a non-Hermitian eigenproblem (for a leaky mode in the interior of the spectrum). In
this section, we briefly review the definition of the LDOS and how it relates toQ/V, and in the
next section we describe how the LDOS can be used as the objective for a well-posed cavity
optimization problem.

In particular, we begin with the per-polarization LDOS (partial LDOS), denoted by
LDOSj(ω ,x′) for a polarization in directionj, which is proportional to the power radiated
by a dipole in direction (unit vector)̂e j at positionx′ with a frequencyω , i.e. a current
J ∼ ê je−iωtδ (x− x′). (The total LDOS is simply∑ j LDOSj , proportional to power radiated
by a randomly oriented dipole.) This is a key physical quantity because quantum fluctuations,
e.g. spontaneous emission or thermal fluctuations, can be viewed semiclassically as dipole cur-
rents, and the LDOS yields the enhancement of these fluctuations by any given geometry. For
example, the spontaneous emission rate is proportional to the LDOS [29, 38], and therefore
the ratio of LDOS between two systems indicates enhancement or suppression of spontaneous
emission. The Purcell factorQ/V is an approximation to this LDOS enhancement for a high-Q
microcavity, assuming that the emitter (e.g. atom or quantum dot) is positioned and oriented at
the location of peak LDOSj in the cavity [29,30,38,39].

These quantities can be defined more precisely as follows [29, 37, 38, 40, 41]. Poynting’s
theorem [42] implies that the power radiated by a dipoleJ(x) is

Pj(ω ,x′) =−1
2

∫

Re[J∗(x) ·E(x)]dx, (7)
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whereE(x) is the total electric field solving the frequency-domain scattering problem

M (ε,ω)E(x) = iωJ(x)

M (ε,ω) = ∇× 1
µ(x)

∇×− ε(x)ω2

J(x) = δ (x− x′)ê j .

(8)

This yields the followingwell known [29,37,38,40,41]definition of LDOSj :

LDOSj(ω ,x′) =
12
π

Pj(ω ,x′) =− 6
π

Re

[

∫

J∗(x) ·E(x)dx
]

, (9)

where the 12/π factor is a conventional normalization that arises from the dual interpretation
of the LDOS as a local “density” of eigenstates [29, 38]. (The normalization is irrelevant for
optimization or for evaluating LDOS ratios in different systems to obtain enhancement factors.)

In the limit of a low-loss cavity, in which the LDOS is dominated by the contribution of a
single pole in Maxwell’s equations (a single “resonant mode”), one can derive the approxima-
tion [38]

LDOSj(ω ,x′) =
6

πωε(x′)
Q
V
, (10)

and by taking the ratio of this quantity with the LDOS of a homogeneous medium with index
n =

√
ε one [29] obtains the traditional Purcell factor Eq. (4). In particular, the LDOS in a

microcavity resonating a frequencỹω(1+ i/2Q̃) is approximately in the form of a Lorentzian
peak centered at̃ω with a bandwidthω̃/2Q̃ [38], and the Purcell factor is the enhancement at
the peak. This relationship betweenQ and LDOS bandwidth is the key to obtaining a tractable
well-posed optimization problem in the next section.

We propose that LDOSj or its variants can be used as figure of merit for the characterization
and optimization of a microcavity. Note that the precise figure of merit should really depend
on the application. For example, if we are interested in the spontaneous emission rate for the
dipole at a specific positionx′ with a specific polarization̂e j , then LDOSj(ω ,x′) is the most
relevant figure of merit. On the other hand, if we have a dipole at a specific pointx′ with
a randomly distributed polarization, then the figure of merit would be∑ j LDOSj(ω ,x′) (for
the average case) or minj LDOSj(ω ,x′) (for the worst case). In nonlinear devices for frequency
conversion (in particular, second harmonic generation), a more relevant figure of merit might be
minn LDOSj(ωn,x′), whereωn are different frequencies of interest. Instead of at a single point
x′, if the dipoles of interest are distributed [with probability density functions(x)] in a region
V with polarizationê j , the most relevant figure of merit in this case is

∫

V LDOSj(ω ,x)s(x)dx.
Depending on the applications for enhancement or inhibition, we should maximize or minimize
the figure of merit correspondingly. Many other variations could be devised.

For all the above mentioned applications, LDOSj is the basic building block. We therefore
focus on this case: we maximize the spontaneous emission rate for a dipole at a pointx′ with
given polarization̂e j . For simplicity, from now on, we shall omit the explicitj andx′ depen-
dence from LDOSj(ω ,x′), and simply write LDOS(ω) to denote the figure of merit given in
Eq. (9). In Sec. 8.2, however, we will also consider a case where the dipole polarization is
randomly distributed, and in Secs. 8.2.3 and 8.3 we consider multi-mode cavities.

4. Frequency-averaged LDOS

In previous section, we proposed that one way of attacking the problem of microcavity design
is to maximize the LDOS. However, simply maximizing LDOS(ω) in Eq. (9) is still ill-posed

#197718 - $15.00 USD Received 16 Sep 2013; revised 17 Nov 2013; accepted 19 Nov 2013; published 6 Dec 2013
(C) 2013 OSA 16 December 2013 | Vol. 21,  No. 25 | DOI:10.1364/OE.21.030812 | OPTICS EXPRESS  30820



as in Sec 2, being equivalent toQ/V. As explained in Sec. 2, a well-posed formulation could
be obtained by specifying a desired cavity lifetimeQ̃. In terms of LDOS, this is equivalent
to specifying an upper bound̃ω/2Q̃ on the bandwidth̃Γ. For computational convenience, we
instead maximize theaverageLDOS over this finite bandwidth̃Γ:

L =

∫ ∞

−∞
LDOS(ω)W(ω)dω . (11)

Here,W(ω) is some weight function or window function we choose, which is peaked around
the design frequencỹω and decays rapidly (with a finite integral) outside of a bandwidthΓ̃
aroundω̃ . As we will explain in Sec. 4.3, it will turn out thatperforming this average is math-
ematically equivalent to computing the LDOS at a single frequency with an absorption loss
added into the system, which effectively limitsQ to the desired bandwidth (more precisely, for
Q≫ Q̃ the figure of merit is dominated by the modal volume). Equivalently, asQ increases the
LDOS of a resonance approaches a delta function with amplitude∼ 1/V [38], so that the inte-
gral Eq. (11) is determined mainly by the 1/V factor as soon as the resonance is narrower than
Γ̃ (Q ≫ Q̃). The key point is that maximizing the bandwidth-averaged LDOS regularizes the
optimization problem to eliminate the possibility of diverging-Qsolutions as the computational
cell size increases.

The main remaining question is how to efficiently compute the average LDOS of Eq. (11).
The most straightforward approach would be to apply a standard numerical-integration pro-
cedure [43], which would involve evaluating the LDOS (i.e., solving a scattering problem) for
many separate frequencies over the bandwidthΓ̃. (This is similar in spirit to the multi-frequency
optimization approach of [24].) However, as described in the next two sections, we can exploit
techniques from complex analysis to evaluate theexactLDOS integral by solving only asin-
gle scattering problem at acomplexfrequencyω̃ + iΓ̃. The key to this technique is that the
LDOS derives from a causal Green’s function, as reviewed in Sec. 4.1. This allows us to per-
form a contour integration, with an appropriate choice ofW(ω), in order to obtain the integral
as described in Sec. 4.2. As explained in Sec. 4.3, we can reinterpret any complex-frequency
scattering problem as a real-frequency scattering problem with complex materials (i.e., absorp-
tion). Finally, in Sec 5 we discuss convenient choices of the window functionW(ω) that reduce
the contour integral to asinglecomplex-ω scattering problem. (We previously applied a very
similar application of causality and complex analysis to analysis of electromagnetic cloaking
bandwidth [11], and related ideas can be found in quantum field theory [44,45].)

4.1. Causality and analyticity

Before we proceed, we first define a functionf (ω), which is a complex version of LDOS(ω):

f (ω ,x′) =− 6
π

∫

J∗(x) ·E(x,ω)dx. (12)

Comparing with Eq. (9), it is clear that LDOS(ω) = Re[ f (ω)]. [From now on, we will omit the
x′ dependency off (ω ,x′).] Note that the operatorM (ε,ω) given in Eq. (8) is a linear operator
relating the electric fieldE(x,ω) to the (time-harmonic) input electric currentJ(x) at a given
frequencyω . Causality [the electric fieldE comes after (not before) the currentJ] implies that
E(x,ω) is analytic in the upper-half complex-ω plane [46]. Therefore,f (ω) is also analytic in
the upper-half complex-ω plane.
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Im (ω)

A1 A1 

A2 

A3 A3 

Re (ω)

ωk

∞

Fig. 2. Contour integration path. The frequency-averaged LDOS is the path integral along
arc A1 in the limit of an infinite-radius arc. By choosing the proper window/weight function
W(ω) for optimizing LDOS in a desired bandwidth, the contribution along arcs A2 and A3
can be made negligible compared to A1. Therefore, the residues at poles̄ωk enclosed by
this contour can be used to approximate the averaged LDOS.

4.2. Contour integration

In this section, we are going to compute the mean LDOS by exploiting the analyticity off (ω),
via:

L =

∫ ∞

−∞
LDOS(ω)W(ω)dω =

∫ ∞

−∞
Re[ f (ω)]W(ω)dω = Re

[

p.v.
∫ ∞

−∞
f (ω)W(ω)dω

]

. (13)

Here, p.v. denotes the Cauchy principal value, which we use because the imaginary part of
f (ω) may have a singularity atω = 0, as in the case off (ω) in free space [40,42,47,48]. Now
we want to complete our integration contour (Fig. 2) in the upper-half plane and evaluateL by
residue theorem [49]

∫

A1

+
∫

A2

+
∫

A3

f (ω)W(ω)dω = 2π i ∑
k

Res[ f (ω)W(ω), ω̄k] . (14)

Here,ω̄k denotes a pole ofW(ω) in the upper-half plane and Res is its residue [49]. In Sec. 5,
we will chooseW(ω) so that these poles and residues are easy to evaluate. Furthermore, we
can choose the weight functionW(ω) so that it decays faster than 1/|ω |3 for largeω , in which
case the contribution from arc A3 will be zero since LDOS(ω) is proportional toω2 in 3d (or
ω in 2d) free space andf (ω)W(ω) will decay faster than 1/|ω | on arc A3. We can obtain the
contribution from arc A2 by evaluating the residue due to the simple pole off (ω) atω = 0

∫

A2

f (ω)W(ω)dω =−1
2

2π iW(0) lim
ω→0

ω f (ω). (15)

The factor−1/2 comes from the fact that the integration is along a clockwise semicircle. Since
the weight function is peaked around design frequencyω̃ with some narrow bandwidth̃Γ, we
can require thatW(0) is small, and therefore the contribution from A2 is negligible comparing
to the residues at̄ωk. From Eq. (13),L is just the path integral along the path A1 [46]. Therefore,
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we have

L = Re

[

2π i ∑
k

Res[ f (ω)W(ω), ω̄k]−
(

∫

A2

+
∫

A3

f (ω)W(ω)dω
)

]

≈ Re

[

2π i ∑
k

Res[ f (ω)W(ω), ω̄k]

]

.

(16)

4.3. From complex frequency to material absorption

To compute the residue at the complex poles, we need to solve the scattering problem at com-
plex frequencies. More precisely, the scattering problem Eq. (8) at complex frequencyω + iΓ
can be written as

(

∇× 1
µ(x)

∇×−ε(x)(ω + iΓ)2
)

E(x,ω + iΓ) = i(ω + iΓ)J(x)

⇐⇒
(

∇× 1

µ(x)(1+ i Γ
ω )

∇×−ε(x)ω2
(

1+ i
Γ
ω

)

)

E(x,ω + iΓ) = iωJ(x)

⇐⇒
(

∇× 1

µ(x)(1+ i
2Q)

∇×−ε(x)
(

1+
i

2Q

)

ω2

)

E(x,ω + iΓ) = iωJ(x).

(17)

We denote this complex scattering operator bỹM (ε,ω), namely

M̃ (ε,ω) = ∇× 1

µ(x)(1+ i
2Q)

∇×−ε(x)
(

1+
i

2Q

)

ω2 = ∇× 1
µ̃(x)

∇×−ε̃(x)ω2. (18)

Clearly, this is equivalent to solving a scattering problem at real frequencyω̃ with materials
ε̃(x) = ε(x)(1+ i/2Q) andµ̃(x) = µ(x)(1+ i/2Q). (In fact, any change to the frequency can
be converted into a change of materials [50].) In particular, adding a positive imaginary part
to ω (for ω̄k in the upper-half plane [11]) corresponds to a positive imaginary part inε̃(x) and
µ̃(x), which corresponds (with oure−iωt convention) to an absorption loss.

5. Possible window functions

In this section, we discuss two convenient window functions: a simple Lorentzian and the
square of a Lorentzian. (A third possibility, the difference of two Lorentzians is discussed
in [51].)

5.1. A simple Lorentzian

The simplest window function, with only a simple pole in the upper-half plane, is a Lorentzian
centered at̃ω with half-width Γ̃. The frequency-average LDOS against this weight is

L1 =

∫

LDOS(ω)
Γ̃/π

(ω − ω̃)2+ Γ̃2
= Re[ f (ω̃ + iΓ̃)], (19)

which only requires solving the scattering problem Eq. (17) at a single complex-frequency
ω̃ + iΓ̃. L1 is a perfectly finite, well-defined quantity in a discretized simulation with a finite
spatial resolution (finite grid).

In combination with Sec. 4.3, the objective Eq. (19) has a simple interpretation that coin-
cides with the discussion in Sec. 2. Our frequency-averaged LDOS objective is equivalent to
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maximizing the LDOS at a single frequency, i.e. the Purcell factorQ/V of a cavity, but a cav-
ity in which an absorption loss has been added to otherwise lossless materials. In particular,
the absorption loss that arises from multiplyingε(x) andµ(x) by 1+ i/2Q̃ can be seen from
perturbation theory [14] (for̃Q≫ 1) to yield an absorption lifetime of exactlyQabsorption= Q̃.
From Eq. (5), this means thatQtotal ≤ Q̃, and that increasingQrad ≫ Q̃ will have little effect
on the Purcell factorQtot/V. Hence, optimizing the frequency-averaged objective will tend to
increaseQrad until it is > Q̃, and after that will mainly try to decreaseV, similar in spirit to
Eq. (6).

However, a careful examination reveals that this simple average does not converge as the
resolution increases. There are two equivalent ways to understand this. First, in a continuous
medium, the integral does not converge because the window function decays like 1/|ω |2 while
LDOS(ω) behaves like|ω | (in 2d free space) or|ω |2 (in 3d free space) for large|ω |. (For finite
spatial resolution, there is an upper frequency cutoff that eliminates this divergence.) Second,
from the relationship between the complex-frequency scattering and lossy material discussed
in the previous section, we know that the residue Re[ f (ω̃ + iΓ̃)] is actually the power emitted
by a dipole inlossymaterial, which is the sum of the power radiating to the outside of the
cavity and the power absorbed by the lossy material in the cavity [41]. It is known that this
absorbed power is infinite becauseE(x) diverges as 1/r3 in the neighborhood of the dipole
(in 3d free space) [40, 47, 52, 53]. (In a lossless medium, only Im[E(x)] diverges as 1/r3, so
LDOS∼ Re[E(x)] is finite.) In discretized space, the Green’s function is finite and diverges as
(resolution)3 in 3d. To avoid this singularity, we need to choose window functions which decay
faster than|ω |3 at large|ω |. Two natural candidates are the difference of two Lorentzians [51]
and the square of a Lorentzian.

5.2. Square of a Lorentzian

To ensure that theW(ω) decays faster than 1/|ω |3, we propose the window function,

W(ω) =
2Γ̃3/π

(

(ω − ω̃)2+ Γ̃2
)2 , (20)

which is a normalized square of a Lorentzian function. This window function has a double pole
at ω = ω̃ + iΓ̃ in the upper-half plane. Applying the residue theorem, we have from Eq. (16)
and Eq. (20)

L =

∫ ∞

−∞
LDOS(ω)W(ω)dω ≈ Re

[

f (ω̃ + iΓ̃)− iΓ̃ f ′(ω̃ + iΓ̃)
]

, (21)

where f ′(·) denotes differentiation with respect toω . In appendix 10, we show that

f ′(ω ,x′) =
f (ω ,x′)

ω
+ i

12
π

∫

ε(x)ET(x,ω)E(x,ω)dx. (22)

From Eq. (12) and Eq. (22), it is clear that bothf (ω̃ + iΓ̃) and f ′(ω̃ + iΓ̃) can be obtained from
a single scattering solutionE(x, ω̃ + iΓ̃) (see appendix 10) and

f (ω̃ + iΓ̃)− iΓ̃ f ′(ω̃ + iΓ̃)

=
ω̃

ω̃ + iΓ̃
(− 6

π
)ê∗j ·E(x, ω̃ + iΓ̃)+

12
π

Γ̃
∫

ε(x)ET(x, ω̃ + iΓ̃)E(x, ω̃ + iΓ̃)dx. (23)

In summary, we can still obtain the entire frequency-averaged LDOS by solving a single scat-
tering problem Eq. (17) at a complex frequencyω̃ + iΓ̃.
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We know that Eq. (20) gives a finite average LDOS because it decays fast enough withω ,
but it is interesting to also consider how it fixes the divergence from the second viewpoint in
Sec. 5.1 (that of the infinite power absorption from a dipole in a lossy medium). The explanation
is essentially that the second term in Eq. (23) is roughly a subtraction of the divergent absorbed
power from the first term:̃Γε is ω Im(ε̃) from Sec. 5.1, andω Im(ε̃)|E|2 is absorbed power [41].
(A subtlety arises from having+ETE, rather than−|E|2, but the 1/r3 divergence atr → 0
should be dominant in Im(E) for smallΓ̃ so one should haveET E ≈− Im(ET) Im(E)≈−|E|2
asr → 0.)

Since the role of the second term in Eq. (23) is essentially to subtract off the divergent ab-
sorbed power in lossỹε medium, and this divergence comes from the 1/r3 field divergence
that is independent of geometry (the scattered field from the surrounding geometry is finite at
r = 0), one might expect that the second term in Eq. (23) plays little role in geometry optimiza-
tion at a fixed resolution. Indeed, we find in numerical experiments that the optimizationswith
andwithout the second terms in Eq. (23) for the 2d TE case (discussed in Sec. 8.2) discover
similar structures. Therefore, in Sec. 8 we optimize the simpler single-Lorentzian objective of
section 5.1, although Eq. (23) is computationally feasible if it becomes necessary.

6. A preliminary formulation

Now we have a preliminary formulation for our cavity optimization in terms of the frequency-
averaged local density of states:

max
{designs}

L =

∫ ∞

−∞
LDOS(ω)W(ω)dω . (24)

We can evaluate the objectiveL by contour integration, which only requires us to solve the com-
plex scattering problem Eq. (17) once. If we choose the window functionW(ω) from Eq. (20),
then the problem can be reformulated as

max
{designs}

L = Re
[

L = f (ω̃ + iΓ̃)− iΓ̃ f ′(ω̃ + iΓ̃)
]

. (25)

Mathematically, to compute the objective in Eq. (25), we need

1. For givenε(x), ω̃ , and Γ̃, solve the complex scattering problem Eq. (17) to obtain
E(x, ω̃ + iΓ̃).

2. ObtainL from the solutionE(x, ω̃ + iΓ̃) through the formula Eq. (23).

3. Take the real part ofL to getL.

To speed up the optimization, we must also have the gradient of the objective with respect
to the design parameterεk (the dielectric constant at each “pixel”k). Applying the standard
adjoint technique [54], only one more linear system with the same operatorM̃ (ε, ω̃) but a
different source term need be solved to obtain the gradient. We provide the detailed calculation
in appendix 10 and summarize the procedure here:

1. Solve the complex scattering problem

M̃ (ε, ω̃)A(x, ω̃ + iΓ̃) = ε(x)E(x, ω̃ + iΓ̃) (26)

to obtainA(x, ω̃ + iΓ̃).
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2. The gradient∂L /∂εk is a combination ofE(x, ω̃ + iΓ̃) andA(x, ω̃ + iΓ̃) (see appendix
10):

∂L

∂εk
=

(

i +
1

Q̃

)

2
π

ω̃ET(xk, ω̃ + iΓ̃)E(xk, ω̃ + iΓ̃)

+
12
π

ω̃3

Q̃

(

1+
i

2Q̃

)

AT(xk, ω̃ + iΓ̃)E(xk, ω̃ + iΓ̃). (27)

3. Take the real part of∂L /∂εk to obtain∂L/∂εk.

Note that the scattering operator Eq. (26) in the sensitivity analysis is the same as the operator
in the objective evaluation. We can take advantage of this by reusing the information (e.g., the
preconditioner or LU factorization) from the solution of Eq. (17). We will discuss this in detail
in Sec. 7.1.

7. Numerical scheme for cavity optimization

In this section, we discuss the numerical implementation for our frequency-averaged LDOS
formulation given in Sec. 6. In order to solve this PDE-constrained optimization problem com-
putationally, we need fast and efficient implementations for objective evaluation, gradient eval-
uation, and optimization.

7.1. Objective and gradient evaluation

As we discussed in Sec. 6, evaluating the objective LDOS involves solving the scattering prob-
lem Eq. (17). We can apply any standard frequency-domain solver technique to this problem
(e.g., finite-difference, finite-element, or boundary-element methods). Here, we simply adopt
the finite-difference approach [55–57]. If we impose mirror symmetry planes in the system, we
can obtain an 8-fold reduction in the number of unknowns (see Sec 8.5.1).

For the finite-difference frequency-domain (FDFD) method, the most robust solution tech-
nique is a sparse-direct solver, which is excellent in 2d, but expensive (in both memory and
time) in 3d [58]. In contrast to direct solvers, iterative solvers (e.g., GMRES or BiCGStab) work
quite well if one has a good preconditioner [36]. Here, we combine both of these techniques.
During the optimization, we re-solve many times for slightly different structures. Therefore,
we can use sparse-direct factorization from one step as a preconditioner for iterative solvers in
many subsequent steps [51]. We implemented the FDFD solver with the parallel sparse-matrix
library PETSc [59–61] and the parallel sparse-direct solver PaStiX [62].

7.2. Optimization scheme

We use a free-software implementation [63] of standard gradient-based optimization algo-
rithms, and we find that low-storage BFGS [64] and conservative convex separable approxi-
mations (CCSA) [65] work equally well. However, we find that one additional mathematical
transformation is required in order to optimize high-Q cavities: instead of maximizingL, we
minimize 1/L.

If we attempt to maximizeL directly as in Eq. (24), we typically find that the convergence
of any standard optimization algorithm slows to a halt forQ & 1000. The reason for this is
that, for high-Q cavities, the objective function becomes a “narrow ridge” (a sharply-peaked
function along some low-dimensional manifold in the parameter space), with a large second
derivative (∼ Q3, as shown in [51]) in the direction perpendicular to the ridge, and it is well
known that optimization along narrow ridges is problematic [66]. Most algorithms tend to “zig-
zag” slowly along the ridge, and even quasi-Newton methods like BFGS break down when the
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second derivative is so large that the Hessian matrix becomes ill-conditioned. However, because
the LDOS is strictly positive, there is a simple solution: maximizingL is equivalent to minimiz-
ing 1/L, and the reciprocal of a sharp peak is a shallow valley, so we find that the 1/L objective
avoids most of the problems of slow convergence. (For example, in the 2d TM optimization to
be discussed in Sec. 8.1, maximization ofL makes no progress if the initial structure is a high-
Q photonic-crystal cavity, whereas minimization of 1/L converges to a significantly improved
structure as described below.)

In practice, there is another useful technique: a successive-refinement strategy (somewhat
analogous to [67,68]). We found that gradually increasing the specifiedQ̃ (decreasing the band-
width 1/Q̃) tends to reduce the likelihood that the optimization becomes trapped in a poor local
optimum close to the starting structure, and usually produces a much better result at the highest
Q̃. That is, we optimize forQ̃= 10, then use that result as a starting point for optimization at
Q̃= 100, and so on.

8. Results for cavity optimization

In this section, we present some 2d and 3d cavity-optimization results, summarized as fol-
lows. We start with high-resolution 2d cases, and run simulations with different initial guesses
(vacuum, photonic crystal with a defect, and random structures) and different dipole polariza-
tions (TM, TE, and random). In the region to be optimized, we allow the dielectric constant
ε ∈ [1,12.4] at each pixel to be one degree of freedom [Fig. 3(a)]. For the 2d TE case, the
optimization discovers similar structures for maximizing the spontaneous emission rate of a
specificdipole polarization and arandomlypolarized dipole. However, optimizing theworst
case of a randomly polarized dipole finds a three-fold symmetric structure (Sec. 8.2.3), while
two-frequency cavity optimizations yield more complex patterns depending on the polarization
(Sec. 8.3). In another 2d scenario, to obtain theQ versusV tradeoff analogous to 3d slabs,
we limit the degrees of freedom in one direction and choose a thin strip, instead of a square,
as the region for optimization [Fig. 3(b)]. As the degrees of freedom increase, the radiationQ
first increases and then becomes saturated, limited by the numerical precision in the computa-
tion. Finally, we ran a full 3d optimization on a supercomputer and obtained a structure with
extremely small mode volumeV = 0.06(λ/n)3, (n =

√
12.4). In the following, we are mini-

mizing 1/L (the inverse of the frequency-averaged LDOS) and variations thereof, as described
in the previous sections, but for simplicity we describe this below as “maximizing LDOS.”

Here, the focus is on illustrating the formulation and on establishing theoretical bounds. Fur-
ther regularization techniques are generally required to obtain easily manufacturable structures,
as discussed in Sec. 9.

8.1. 2D TM case

In this section, we maximize the LDOS for a dipole with TM polarization (Eout of plane)
in a 2d setting [Fig. 3(a)]. One possible starting point is a photonic crystal with a defect [14],
like the one shown in Fig. 4(a). This is a periodic arrangement (periodicitya) of dielectric
silicon rods (radius 0.2a and permittivityε = 12.4) with one defect rod at the center (radius
0.1a). The defect TM mode is at frequency 0.32(2π/a), with quality factorQ= 1.41×108 and
mode volumeV = 0.097(λ/n)2. With this structure as an initial guess, we run the optimization
and obtain an entirely different nested-ring structure [Fig. 4(b)] with quality factorQ= 1.01×
1010 and mode volumeV = 0.075(λ/n)2. Clearly, the optimization itself discovers a “radially
periodic” structure, reminiscent of a Bragg onion [69] . We also run the optimization with
vacuum as initial guess and obtain similar structure (Fig. 5) withQ = 1.30× 109 andV =
0.075(λ/n)2.

In these two optimizations, we gradually increase the specifiedQ̃ (we decrease the bandwidth
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(a). A square region for degrees of freedom. (b). A thin strip region for degrees of freedom.

Fig. 3. For 2d cavity optimization, we start in Secs. 8.1–8.3 by optimizing over every pixel
in the interior of the computational domain as indicated in (a). This leads to cavities that
utilize bandgap structures to confine light with arbitraryQ, regardless ofV, limited only
by the size of the domain. In order to investigateQ vs.V tradeoffs analogous to those in
3d slabs, in Sec. 8.4 we limit the degrees of freedom to a thin strip (b), which imposes
intrinsic radiation losses (perpendicular to the strip) and forces the optimization to sacrifice
V in order to increaseQ. A full 3d optimization is considered in Sec. 8.5.

1/Q̃) from 10 to 105. The optimization at̃Q= 10 actually gives a highQcavity (almost the same
radiationQ) with the resonance at about 1.003ω̃. The optimizations at higher̃Q simply tune
this structure so that the resonant frequency becomes much closer toω̃ . In a two-dimensional
situation such as this, there is no intrinsicQ versusV tradeoff, unlike in 3d slabs [14], because
Q → ∞ for a finite modal volumeV as the number of layers in a Bragg onion increases [69].
So, the optimization in such a 2d case is mainly minimizingV, while theQ is bounded only by
the computational-cell size.

Note that we allow the dielectric permittivity of each pixel to vary continuously from
εmin = 1.0 to εmax= 12.4, but almost all the pixels (except a few at the interfaces) are at either
εmin orεmax in the optimized structure. This phenomenon (reminiscent of “bang-bang” solutions
in control theory [70]) had also been observed empirically in other cavity-related optimization
work [3,71,72]. There has been some recent progress in proving theoretically that this is the ex-
pected solution: Osting and Weinstein [73] recently analyzed optimization problems for scalar
waves, and showed that maximizing an energy confinement time over the permittivity at every
point in space generally leads to a solution in which the permittivity is either the maximum or
the minimum allowed value at every point, excepting a set of measure zero (e.g., at the inter-
faces between regions) in the limit as the resolution goes to infinity.However, we also obtain
counterexamples for other types of cavity optimization, e.g. in the doubly-degenerate cavity
design of Sec. 8.2.3, where substantial regions converge to intermediate values. Fortunately, in
cases where this occurs, there are a variety of techniques to obtain binary solutions as discussed
in Sec. 9.

8.2. 2D TE case

In this section, we consider the 2d TE polarization, for which (unlike the TM polarization
of Sec. 8.1) the objective function breaks rotational symmetry and we do not expect similar
Bragg-onion solutions. We will start with maximizing LDOS for a fixedêx polarization in
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(a). PhC cavity initial guess for 2d TM optimization. It has quality factor
Q=1.41×108 and mode volumeV = 0.097(λ/n)2.

(b). 2d TM optimized structure withQ=1.01×1010 andV = 0.075(λ/n)2 obtained from PhC initial
guess.

Fig. 4. 2d TM optimization from PhC cavity initial guess (Sec. 8.1).
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Fig. 5. 2d TM optimization from vacuum initial guess (Sec. 8.1).Q=1.30×109 andV =
0.075(λ/n)2.

8.2.1. For a randomly polarized dipole, we consider two cases: maximizing the average over all
polarizations in 8.2.2 and maximizing the minimum (worst case) over all polarizations in 8.2.3.

8.2.1. Fixed dipole polarization: maxLDOS(ω̃; êx)

For the 2d TE polarization, let us first look at the case where the dipole is polarized in theêx

direction. In other words, we want to maximize LDOS(ω̃ ; êx). From a vacuum initial guess,
the optimization discovers the structure shown in Fig. 6. This structure has quality factor
Q=5.16×108 and mode volumeV = 0.092(λ/n)2. [Again, theQ̃= 10 gives an equally high-Q
cavity with resonant frequency at 1.0007ω̃. The optimizations at higher̃Q= 102 to 105 simply
tune the resonant frequency toω̃ .] For a random initial guess (uniform random pixels), we also
obtain the same structure as the one from a vacuum initial guess, which suggests that the result
may be close to a global optimum.

8.2.2. Randomly polarized dipole: maxmeanjLDOS(ω̃; ê j )

Now we want to study the case in which the dipole is randomly polarized in the plane and the
objective is the mean LDOS. One might hope that the optimization will find a structure that
resonates for both polarizations at the same frequency, and hence by linearity will resonate for
all in-plane polarizations—this corresponds to the requirement that the microcavity be doubly
degenerate, and many symmetry groups besides circular symmetry can support double degen-
eracies (such as three-fold, four-fold, or six-fold symmetrical structures [74]). However, we find
that this is not the case: the optimization finds a singly resonant cavity that enhances LDOS for
one polarization (chosen “randomly” depending on the initial structure) at the expense of the
other polarization. As explained below, this suggests that the LDOS of the best single-mode TE
cavity is more than twice the LDOS of the best doubly degenerate TE cavity. We performed
the mean-LDOS optimization as follows. It is easy to show [29, problem 8.6] that maximizing
the LDOS for a random polarization by averagingall polarizations is equivalent to maximizing
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Fig. 6. 2d TE optimization forêx polarization from Sec. 8.2.1. The structure has
Q=5.16×108 andV = 0.092(λ/n)2 obtained from vacuum initial guess.

the mean from thêex and êy polarizations, namely[LDOS(ω ; êx)+LDOS(ω ; êy)]/2. For this
new objective, we ran many different simulations with different pseudo random initial guesses
(each pixel is randomly chosen betweenεmin andεmax). About half gave the structure optimiz-
ing the êx polarization (Fig. 6), while the other half gave the 90◦-rotated structure optimizing
the êy polarization. From these results, it seems that the optimization, instead of favoring both
êx and êy polarization simultaneously, simply randomly picks one direction and optimizes it.
That is, there is aspontaneous symmetry breaking: it is better to optimize one polarization at
the expense of the other than to try to obtain a doubly degenerate cavity that resonates for both
polarizations. By selecting only one polarization to enhance, these structures sacrifice a factor
of 2 in the mean LDOS, which is why we conclude that the best single-mode LDOS is at least
twice as big as the best two-mode LDOS.

8.2.3. Optimization for a randomly polarized dipole: maxminj LDOS(ω̃; ê j )

In the previous section, we showed that maximizing themeanLDOS over all in-plane polariza-
tions was equivalent to maximizing the LDOS for a single polarization at the expense of the or-
thogonal polarization. In order to obtain a structure that enhances all polarizations equally (via
a doubly degenerate resonance), we consider a different objective: we maximize theminimum
LDOS over all in-plane polarizations (rather than the mean). The result of this optimization is
a three-fold symmetric microcavity shown in Fig. 7(a), which is the smallest symmetry group
that supports a (non-accidental) doubly degenerate mode [74] shown in Fig. 7(b-c). (The rectan-
gular FDFD grid breaks the three-fold symmetry, but the structure converges to true three-fold
symmetry with an exact degeneracy as the resolution is increased.) Intuitively, larger symmetry
groups have fewer degrees of freedom for optimization (theCmv symmetry group [74] with
m-fold rotational symmetry plus reflections leaves only a wedge of angleπ/m in the degrees
of freedom), so the optimization is picking the smallest possible symmetry group in order to
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maximize the number of degrees of freedom available for maximizing LDOS.
As predicted in Sec. 8.2.2, the effective modal volumeV of this doubly degenerate cavity is

0.34(λ/n)2 > 2 times the volume of the single-mode cavity from Sec. 8.2.1.
Technically, maximizing the minimum LDOS over all polarizations is significantly harder

than maximizing the mean LDOS. Unlike the mean LDOS, it is not sufficient to consider only
the êx and êy polarizations, and in principle we must solve for the LDOS at all angles. The
simplest approach is to merely sample the set of polarizations to compute the LDOS at many
discrete angles, and then to maximize the minimum LDOS) over this set. Although we tried
sampling up to 20 discrete angles, we found that it was sufficient (obtaining thesamestructure)
to sample only three angles (0, 60, and 120). Furthermore, the minimum LDOS over several
angles is no longer a differentiable function, but we circumvent that problem by the standard
transformation [75] of introducing a “dummy” variablet and solving maxt subject to the non-
linear constraintst ≤ LDOSj at each anglej. (The resulting nonlinear-programming problem
was solved via the CCSA algorithm [65].)

8.3. 2D optimization for different frequencies:maxminnLDOS(ω̃n; ê j)

In nonlinear devices, e.g. for nonlinear frequency conversion, it is often desirable to design a
cavity which resonates at multipledistinct frequencies [9, 10, 76–79], leading to a challeng-
ing multi-frequency cavity-design problem if one desires a small-volume cavity [80, 81]. The
simplest approach to designing such a multi-frequency cavity with our optimization techniques
is to maximize theminimumLDOS for sources at two (or more) frequencies,ω̃1 andω̃2. For
example, we begin by considering̃ω2 = 2ω̃1 (coupling TM to TM or TE to TE), the desired
relationship for intra-cavity second-harmonic generation (SHG) [79, 81], with results shown
in Figs. 8(a) and 8(c). These results exhibit Bragg-onion-like structures similar to the single-
frequency optimization in the previous sections, which is not surprising considering that Bragg
mirrors tend to have gaps at integer frequency multiples [14] and so the same mirror can con-
fine both a fundamental and harmonic frequency. A more challenging case for optimization,
therefore, is to design frequencies that are not integer multiples, and for illustration purposes
we considered̃ω2 = 1.5ω̃1, which results in the more complicated structure shown in Figs. 8(b)
and 8(d).

8.4. 2D TE thin strip case

In previous 2d TM and TE polarization cases, we expect and obtain almost noQ versusV trade
off since the cavity can be surrounded by complete photonic bandgap or a Bragg onion, with
Q only limited by the computational-cell size. In a 2d setting, to get aQ versusV trade off
analogous to 3d slabs, we need to limit the degrees of freedom in one direction in order to force
the possibility of radiation loss. In this section, we choose the region for degrees of freedom to
be a thin strip [Fig. 3(b)].

Although we expect cavities in a finite-thickness strip to have intrinsic radiation loss in the
direction transverse to the strip, we also expect that it should be possible to make this radiation
loss arbitrarily small at the expense of modal volume. For example, if one starts with a periodic
waveguide structure [14] and introduces a defect in the periodicity, a resonant mode can be
trapped, and theQ can be made arbitrarily large by gradually tapering from the defect to the pe-
riodic structure [14,82–84]. To explore this tradeoff, we limit the modal volume by considering
a finite-lengthd×1λ strip of degrees of freedom. For each value ofd (d = 1,2,3,5λ ), we plot
the obtained radiation lifetimeQrad as a function of the requested bandwidthQ̃, and the result is
shown in Fig. 9(a). For any givend, asQ̃ is increased thenQrad is increased as well (as explained
in Sec. 4), until it saturates at a maximum determined by two factors. First, the maximumQrad

is limited byd: a longerd gives more degrees of freedom and increases the maximum possible
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(a). Optimized structure for randomly polarized dipole.

(b). Hz field of first degenerate mode. (c). Hz field of second degenerate mode.

Fig. 7. Optimized doubly-degenerate cavity from Sec. 8.2.3, generated by maximiz-
ing the minimumLDOS over all in-plane polarizations. Starting from a vacuum initial
guess, the optimization discovers a structure withC3v (3-fold) rotational symmetry (top),
which supports doubly-degenerate [74] TE modes whoseHz fields are plotted at bottom
(blue/white/red = negative/zero/positive). (The rectangular FDFD grid slightly breaks the
three-fold symmetry and the degeneracy, but the results converge to exactC3v symmetry
and degeneracy as resolution increases.)
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(a). Optimization for TM withω̃2 = 2ω̃1. (b). Optimization for TM withω̃2 = 1.5ω̃1.

(c). Optimization for TE withω̃2 = 2ω̃1. (d). Optimization for TE withω̃2 = 1.5ω̃1.

Fig. 8. Two-frequency cavity optimization from Sec. 8.3, for either TM (top) or TE (bottom)
polarizations. Left: microcavities which maximize the minimum LDOS at two frequencies
ω̃1 andω̃2 = 2ω̃1, e.g. for intra-cavity second-harmonic generation applications [79, 81].
Confinement of such integer-multiple frequencies is physically enabled by the fact the con-
centric Bragg-onion “1d” bandgaps tend to occur at integer-multiple frequencies [14]. A
more challenging case is a two-frequency cavity forω̃2 = 1.5ω̃1, resulting in the more
complicated structures shown at right. (All structures were optimized from vacuum initial
guesses.)
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Qrad, as expected. Second, aroundQrad≈ 107 the improvement becomes limited by the numer-
ical precision, which prevents the optimization from making progress even though higherQrad

should theoretically be possible. Ford = 5λ , the resulting structure is shown in Fig. 9(b). [Note
that the data in Fig. 9(a) are from the optimization result for the objectiveε(x′)LDOS(ω ,x′).]
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(a).Qrad vs Q̃ for 2d thin strip with different length (different DOF).

(b). An optimized structure for 2d thin strip from vacuum initial guess.

Fig. 9. 2D TE optimization for thin strips with fixed width (geometry sketched in Fig. 3b).
Fig. (a): Qrad vs. Q̃ for 2d thin stirps with same width (λ ) but different length (d =
λ ,2λ ,3λ ,5λ ). As Q̃ is increased in the optimization, higherQrad are obtained untilQrad is
limited by the degrees of freedom. As the degrees of freedom increase,Qrad first gets big-
ger, but becomes saturated at some level around 107 due to numerical precision. Fig. (b):
An optimized 2d thin-strip structure with widthλ and lengthd = 5λ .

8.5. 3D case

In this section, we present the optimization results for the TE-like polarization in the 3d slab
setting (Fig. 10). We also briefly discuss some variations on the optimized structure and its
comparison with an air-slot cavity.

8.5.1. 3D slab optimization

With the optimization tools developed in the previous sections, we run large-scale simulations
on 3d slab case (with an in-plane dipole source, coupling to even-symmetry “TE-like” [14] res-
onances). Here we choose the dimensions of the slab to be 3λ -3λ -0.19λ , where the thickness is
0.19λ = 0.67(λ/n). A sketch of the physical model is shown in Fig. 10(a), and the real compu-
tation domain (with mirror-symmetry reductions) is illustrated in Fig. 10(b). The optimization
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(a). Sketch of the region for degrees of freedom in 3d slab. (b). Sketch for 3d slab computational do-
main (with mirror-symmetry imposed).

Fig. 10. We wish to optimize a microcavity in an air-membrane Si slab in Sec. 8.5, with
the effective computational domain depicted in (a), where the degrees of freedom are every
pixel in the 2d pattern of the slab cross-section for a fixed thickness. Since all 2d single-
polarization optimizations found structures with two mirror symmetry planes, we can re-
duce the computational domain to 1/8 the volume (b) by imposing these mirror symmetries
along with the vertical mirror symmetry.

discovers a structure (Fig. 11) with quality factorQ = 30000 and extremely small mode vol-
umeV = 0.06(λ/n)3. [This result is obtained from optimizations with absorptionQ̃ gradually
increasing from 10 to 104. The optimization discovers structures with radiationQ= 1.18×104

at Q̃= 100, with radiationQ= 2.55×104 at Q̃= 1000, and with radiationQ= 2.98×104 at
Q̃= 104.]

A comparison with other large- or small-scale optimization work, such as 2.5d optimiza-
tion [72], L3-type cavity [20] and H0-type cavity [1] optimization are given in table 1. Clearly,
the optimization was able to achieve four times smaller mode volume than the smallest mode
volume (forQ within one order of magnitude of ours) we found in the literature [1].(Note that
L3-type [20] and H0-type [1] cavities are designed from small-scale optimization and can be
fabricated; while both 2.5d optimization [72] and our results are purely theoretical and compu-
tational investigation from a large-scale optimization perspective.)

Table 1. Comparison ofQ and V for structures from our result and the literature.

Optimization Quality FactorQ Mode VolumeV (λ/n)3

2.5d optimization [72] 8000 0.32
L3-type cavity optimization [20] 100000 0.70
H0-type cavity optimization [1] 280000 0.23
LDOS optimization 30000 0.06

8.5.2. Sensitivity to small features

In the optimized structure, there are some filament-like structures which would be difficult to
fabricate at infrared scales. As a first assessment of the importance of these tiny features, we
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Fig. 11. Optimized pattern for a 3d slab from vacuum initial guess (Sec. 8.5.1) with dimen-
sions 3λ -3λ -0.19λ : Q=30000 andV = 0.06(λ/n)3.

Fig. 12. 3d slab structure after manually removing tiny features in Fig. 11 (Sec. 8.5.2):
Q= 10000 andV = 0.06(λ/n)3.
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manually remove the filaments and obtain a structure (Fig. 12) withQ = 10000 and roughly
sameV. Instead of post-processing the structure in this way, which has the disadvantage of
no longer being a local optimum, future work should consider suppress these tiny features by
imposing some explicit constraints during optimization or by some regularization and projec-
tion [3] as further discussed in Sec. 9.

8.5.3. Comparison with air-slot cavity

All these cavities listed in table 1 are dielectric cavities. In other words, the centers of these cavi-
ties are high-dielectric materials (Si and GaAs) and these cavities are useful for dipoles/emitters
lying in these materials. It is also reflected in our unit of mode volume. For example, the mode
volume of the cavity we obtain isV = 0.06(λ/n)3 = 0.06(λ/nSi)

3.
It is known that air-slot cavities [85–88] can have extremely small volumes. For example,

Nomura [86] reported an air-slot cavity withQ= 4.8×106 andV = 0.015(λ/nair)
3. Although

0.015 is smaller than 0.06, these two kinds of cavities are not comparable in two ways. First,
the two mode volumes are in different units(λ/nair)

3 versus(λ/nSi)
3. In our units, their modal

volume is 0.65(λ/nSi)
3. Second, these two types of cavities are for different applications: air-

slot cavities are useful for emitters lying in air, while the semiconductor-based cavities are
designed for emitters lying in Si and GaAs.

If the application is for emitters lying in air, in theory, we can also introduce an infinitesimal
air-slot at the center, oriented perpendicular to the electric field, into our structure. As discussed
in [85], after the introduction of an air-slot, the mode volume decreases by a factor of(nSi/nair)

2

without changingQ. In our case, this factor is about 12.4, and the new mode volume is 4.8×
10−3(λ/nSi)

3 = 1.1×10−4(λ/nair)
3. Because the resolution we used (46-pixel per wavelength

in air) is not that high, the optimization discovers a dielectric cavity, instead of one with air-
slot type. In future work, one could run the optimizations with high resolutions (at least in 2d
cases) to investigate whether air-slot structures can be discovered; at such high resolution, the
regularized figure of merit of Eq. (21) discussed in Sec. 5.2 becomes essential.

9. Manufacturability: Projection and Regularization

The primary purpose of this paper is to improve the mathematical formulation of the mi-
crocavity problem to make it amenable to large-scale topology optimization. It is well known,
however, that such topology optimization can sometimes lead to non-manufacturable designs,
due to three problems: regions of intermediateε values, fine features (such as the “hairs” in
Fig. 11), and extreme sensitivity to variations in the design parameters. Fortunately, there are
a variety of techniques to correct these difficulties, which could easily be combined with our
LDOS formulation, and we briefly review these projection, regularization and robustification
techniques here for the benefit of future work.

In cases where the optimization does not lead to “bang-bang” solutions, i.e. where there are
large regions of intermediate values that do not correspond to available materials, one can use a
variety of penalization techniques that add a penalty (increased as needed) to the objective for
intermediateε values [3,89]. Another possibility is to use a level-set method [4,90,91], which
guarantee binary solutions (except possibly on a set of measure zero, since intermediate values
are typically used at the level set boundary in order to ensure continuity). A third possibility is
the SIMP (Solid Isotropic Material with Penalization) [3], a re-parameterization of the problem
that is used in conjunction with the filtering techniques described below in order to project the
solution towards a bang-bang result.

To eliminate small features, a common solution is to apply a smoothing filter to the degrees
of freedom (combined with a smoothed Heaviside projection to transform back towards
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bang-bang designs) [2, 5–8, 92–95]. This is often viewed as a regularization to ensure that the
problem is well-posed in the sense that the optimum should converge with resolution (rather
than yielding finer and finer features) [3]. Another approach that can eliminate small features
as well as designs with extreme parameter sensitivity is “robust” optimization, in which one
typically optimizes a worst-case design over a set of parameter uncertainties (e.g. a small
“noise” added to each pixel) [67,96,97], which has been shown in some cases to also eliminate
small features in topology optimization for photonics [68,98,99].

10. Conclusion

In this paper, we presented a novel formulation for large-scale optimization of optical cavities
via frequency-averaged LDOS. With this formulation, we obtained various 2d and 3d cavity-
optimization results for different applications. Our results show that several times smaller modal
volume is theoretically possible for silicon cavities compared to previous work, without sacri-
ficing Q. Many other possibilities present themselves for future work. First, the slab thickness
in the 3d optimization (Sec. 8.5) is fixed, but one can further extend our approach by allowing
the slab thickness to be one additional degree of freedom to improve the figure of merit. Second,
although we focused here on silicon-based cavities, one can easily apply our approach to other
materials (such as lower-index diamond for visible frequencies [100,101]). Since silicon cavity
design has been so heavily studied and many adequate designs are already known, it is espe-
cially in the context of new materials systems that optimization can be valuable. Third, instead
of maximizing LDOS, one can maximize the frequency-averagedtotal DOS over the whole
computational cell, which is known to be related to the bounds of the light trapping in photo-
voltaic problems [102,103]. Fourth, one can extend our work on multi-frequency optimization
(Sec. 8.3) by defining a more specialized figure of merit for nonlinear frequency conversion
that includes an overlap factor [79,81] for the two modes.

Appendix A: Computation of f ′(ω ,x′)

In this section, we computef ′(ω ,x′), the differentiation∂/∂ω of f (ω ,x′) from Eq. (12), to
show that the residue of Eq. (21) can be evaluated without any additional matrix solves. Differ-
entiating on both sides of Eq. (8), we have

M (ε,ω)
∂E(x,ω)

∂ω
+

∂M (ε,ω)

∂ω
E(x,ω) = iJ(x)

=⇒∂E(x,ω)

∂ω
= M

−1
(

iJ(x)− ∂M (ε,ω)

∂ω
E(x,ω)

)

= M
−1 (iJ(x)+2ωε(x)E(x,ω)) .

(28)

Now differentiating on Eq. (12), we have

f ′(ω ,x′) =− 6
π

∫

J∗(x)
∂E(x,ω)

∂ω
dx

=− 6
π

[

∫

1
ω

J∗(x)M−1(iωJ(x))dx+2ω
∫

J∗(x)M−1ε(x)E(x,ω)dx
]

=− 6
π

∫

1
ω

J∗(x)E(x,ω)dx+ i
12
π

∫

(

M
−1(iωJ(x))

)T ε(x)E(x,ω)dx

=
f (ω ,x′)

ω
+ i

12
π

∫

ε(x)ET(x,ω)E(x,ω)dx.

(29)

Note that we use the properties thatM (ε,ω) is complex symmetric (M = M T ) for both real
and complexω andJ(x) is real [J∗(x) = JT(x)].
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Appendix B: Computation of the objective and its gradient

In this section, we derive an efficient expression for the objectiveL =
Re
[

f (ω̃ + iΓ̃)− iΓ̃ f ′(ω̃ + iΓ̃)
]

defined in Sec. 5.2 as well as its gradient. The gradient
of the objective with respect to the design parameters is calculated with standard adjoint
methods [54] in order to minimize the number of required matrix solves.

Let us denote its complex version byL = f (ω̃ + iΓ̃)− iΓ̃ f ′(ω̃ + iΓ̃). From Eq. (12) and
Eq. (22), we can simplify it as

L = f (ω̃ + iΓ̃)− iΓ̃ f ′(ω̃ + iΓ̃)

= f (ω̃ + iΓ̃)− iΓ̃
(

f (ω̃ + iΓ̃,x′)
ω̃ + iΓ̃

+ i
12
π

∫

ε(x)ET(x, ω̃ + iΓ̃)E(x, ω̃ + iΓ̃)dx
)

=
ω̃

ω̃ + iΓ̃
f (ω̃ + iΓ̃)+

12
π

Γ̃
∫

ε(x)ET(x, ω̃ + iΓ̃)E(x, ω̃ + iΓ̃)dx.

=
ω̃

ω̃ + iΓ̃
(− 6

π
)ê∗j ·E(x, ω̃ + iΓ̃)+

12
π

Γ̃
∫

ε(x)ET(x, ω̃ + iΓ̃)E(x, ω̃ + iΓ̃)dx.

(30)

In the rest of this section, we compute the gradient ofL with respect to the design parameter
εk, which is the dielectric constant atx = xk. To obtain the sensitivity ofE(x, ω̃ + iΓ̃) to εk, we
differentiate Eq. (17) with respect toεk

M̃ (ε, ω̃)
∂E(x, ω̃ + iΓ̃)

∂εk
+

∂M̃ (ε, ω̃)

∂εk
E(x, ω̃ + iΓ̃) = 0

=⇒∂E(x, ω̃ + iΓ̃)
∂εk

= M̃
−1
[

ω̃2
(

1+
i

2Q̃

)

δ (x− xk)E(x, ω̃ + iΓ̃)
]

.

(31)

Therefore, from Eq. (12), Eq. (22) and Eq. (31), we have

∂
∫

J∗(x)E(x, ω̃ + iΓ̃)dx
∂εk

=

∫

J∗(x)
∂E(x, ω̃ + iΓ̃)

∂εk
dx

= ω̃2
(

1+
i

2Q̃

)

∫

(M̃−1J(x))Tδ (x− xk)E(x, ω̃ + iΓ̃)dx

=−iω̃
(

1+
i

2Q̃

)

∫

ET(x, ω̃ + iΓ̃)δ (x− xk)E(x, ω̃ + iΓ̃)dx

=−iω̃
(

1+
i

2Q̃

)

ET(xk, ω̃ + iΓ̃)E(xk, ω̃ + iΓ̃),

(32)

and

∂
∫

ε(x)ETEdx
∂εk

= 2
∫

ε(x)ET ∂E(x, ω̃ + iΓ̃)
∂εk

dx+
∫

δ (x−xk)E
T(x, ω̃ + iΓ̃)E(x, ω̃ + iΓ̃)dx

= 2
∫

ε(x)ET
M̃

−1
[

ω̃2
(

1+
i

2Q̃

)

δ (x−xk)E(x, ω̃ + iΓ̃)
]

+ET(xk, ω̃ + iΓ̃)E(xk, ω̃ + iΓ̃)

= 2ω̃2
(

1+
i

2Q̃

)

∫

(

M̃
−1[ε(x)E(x, ω̃ + iΓ̃)

]

)T
δ (x−xk)E(x, ω̃ + iΓ̃)dx

+ET(xk, ω̃ + iΓ̃)E(xk, ω̃ + iΓ̃).

(33)
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Combining Eq. (30), Eq. (32) and Eq. (33), we have

∂L

∂εk
=

(

i +
1

Q̃

)

6
π

ω̃ET(xk, ω̃ + iΓ̃)E(xk, ω̃ + iΓ̃)

+
12
π

ω̃3

Q̃

(

1+
i

2Q̃

)

AT(xk, ω̃ + iΓ̃)E(xk, ω̃ + iΓ̃), (34)

whereA(x, ω̃ + iΓ̃) satisfies the scattering equation

M̃ (ε, ω̃)A(x, ω̃ + iΓ̃) = ε(x)E(x, ω̃ + iΓ̃). (35)

Therefore, as usual for adjoint-methods [54], the gradient ofL with respect to design parame-
tersε can be evaluated with only a single additional matrix solve Eq. (35).
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