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Abstract
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on moduli spaces M of rank 2 stable vector bundles with odd determinant on curves
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Jacobian. We show that moduli spaces of rational curves on M are in one-to-one
correspondence with moduli of rank 2 vector bundles on the surface P! x C.
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Introduction

Our main goal is to give a complete description of the space of rational curves
on moduli spaces of rank 2 vector bundles on curves of genus ¢ > 2 over C with
fixed determinant of odd degree.

Let C be a projective curve of genus g > 2 and z; a fixed point on C. Let M
be the moduli space of rank 2 stable bundles with fixed determinant O¢(zo). Then
M is a fine moduli space and it is a smooth projective scheme of dimension 3g — 3.
There are some concrete descriptions for M. If C is a hyperelliptic curve of genus
g > 2, then M is isomorphic to the Grassmanian of (g — 2)-planes contained in the
intersection of two quadrics in P?*!. In particular, if ¢ = 2, M is the intersection
of two quadrics in P°.

The Picard group of M is Z and if we let © be the ample generator, then
we say that a morphism f : P! — M has degree k if f*© = O(k). We find
the irreducible components of the space of morphisms Mor, (P!, M) parametrizing
rational curves P! — M of degree k¥ > 1 and give a complete description of this
space. In particular, we find that there are components of dimension bigger than
expected. We also find the maximally rationally connected (MRC) fibrations of
the irreducible components. The MRC quotient is given either by the Jacobian
J(C) or by a direct sum of two copies of the Jacobian J(C).

We have two approaches to this problem.

The first approach

We use the classical idea of looking at spaces of extensions of line bundles:
0= L—E— L zg) =0 (*)

If we fix an integer e > 0, for every line bundle £ € Pic™¢(C), we have the (2e + g)
dimensional vector space parametrizing extensions of type (*):

Ve = Ext! (L7 (mo), £).
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We have a rational map
ke :P(Vg) -+ M

which associates to an extension (k) the isomorphism class of the bundle £. It is
defined outside the unstable locus, which has codimension at least 2. If we take
lines in the projective spaces P(V;) we obtain rational curves of degree (2¢ +1) on
M. Moreover, if we let £ vary in Pic™¢(C), we obtain an irreducible component
in the space of rational curves of degree k, which we call the nice irreducible
component in the case when £ is odd.

In this approach it is useful to mod out by the automorphisms of P! and use
rather the Kontsevich space My(M, k) to parametrize rational curves of degree k
on M. For our purposes it does not really matter which space we are working with,
since there is a one-to-one correspondence between the irreducible components of
M (M, k) which are not contained in the boundary and irreducible components of
the space of morphisms Mory (P!, M). Moreover, corresponding irreducible com-
ponents have the same MRC fibration.

Theorem 0.1. For any odd positive integer k = 2e + 1 there is an irreducible
component 9 of the Kontsevich space Mo(M, k), of dimension 2k + 39 — 6 such
that Mo(M, k) is unobstructed at the general point of M, i.e., H (P!, f*Ty) = 0.

A general element [f] of 9 is obtained from a line in the projective space P(V;),
for some L € Pic”¢(C). Moreover, the MRC fibration of the component 9 is given
by a rational map:

M --» Pic™*(C)
which sends [f] to the line bundle L.

A key point that appears in the proof of Theorem 0.1 is that there is a unique
line bundle £ and a unique line in P(V;) = P¥+9-2 corresponding to a general
rational curve of degree k = 2e + 1.

To obtain rational curves of even degree, we generalize the classical idea of
looking at extensions
0E—-E —=0,—0

where y € C is a point and £ is a rank 2 stable bundle on C, with determinant
Oc(zo —y). We take D € Sym®(C) and consider extensions:

0€&E-2E —>0p—0 (**)

If we fix an integer e > 1, for every D € Sym®(C) and £ a rank 2 stable
bundle with determinant O¢(zo — D), we consider the 2e dimensional vector space

of extensions
VD,g = Extl(OD, 5)

We have a rational map
T)D7g . P(VD,g) ~-— M

12



which associates to the extension (**) the isomorphism class of the bundle £'. It is
defined outside the unstable locus, which has codimension 2. If we take lines in the
projective spaces P(Vp ¢) we obtain rational curves of degree 2e on M. Moreover, if
we let D vary in Sym®(C) and also let £ vary in the moduli space of stable bundles
of the appropriate determinant, we obtain an irreducible component in the space
of rational curves of degree k, which we call the nice irreducible component in the
case when k is even.

Theorem 0.2. For any even positive integer k = 2e there is an iwrreducible com-
ponent M of the Kontsevich space Mo(M, k), of dimension 2k + 3g — 6 such that
Mo(M, k) is unobstructed at the general point of M, i.e., H' (P!, f*Tu) = 0.

A general element [f] of M is obtained from a line in the projective space
P(Vpe), for some D € Sym?®(C) and some stable rank 2 bundle £ with determinant
Oc(zo — D). Moreover, the MRC fibration of the component M is given by a
rational map:

M —-» Pic?(C)

which sends [f] to the image of (€, D) via the canonical morphism
Sym®(C) X pigr-ecy M (2,1 — €) = Pic'*(C)

where M (2,1 — e) is the moduli space of stable rank 2 vector bundles with determi-
nant of degree (1—e) and M(2,1—e) — Pic'~¢(C) is the determinant map, while
Sym®(C) — Pic'~¢(C) is given by D +— O¢(zq — D).

Note that there is a unique D and &, but an (e — 1) dimensional family of lines
in P(Vp ¢) = P¥~1, corresponding to a general rational curve of degree k = 2e. The
(e — 1) dimensional family comes from the automorphisms of the sheaf Op acting
on the space of extensions Vp¢.

We expect that the arguments in this first approach extend to the case when M
is a moduli space of stable vector bundles of rank 2 and fixed determinant of even
degree. In fact, in Section 2.5 we make some generalizations in this sense, specifi-
cally for the case when k is odd. Interestingly, we need to use these generalizations
to prove the result in Theorem 0.2 about rational curves of even degree.

The second approach

The second approach relies on a very basic fact: there is a one-to-one corre-
spondence between morphisms f : P! — M of some fixed degree k and rank 2
vector bundles F on P! x C satisfying the stability condition on the fibers over P!
and having fixed Chern classes:
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e1(F) = k{pt} x P + P! x {zo} € A (P* x C)
62(]:) =keZl

This is because on M we are fortunate enough to have a rigidified Poincaré bundle.
Note that the main difficulty — though probably avoidable — of extending the argu-
ments in the second approach to the case of moduli spaces with fixed determinant
of even degree is the fact that there is no Poincaré bundle, not even on an open
set.

Work of Brosius proves in [BR1], [BR2] that there exist moduli spaces for vector
bundles F on P! x C' with numerical Chern classes c¢; and ¢, and with the numerical
first Chern class of the canonical subbundle fixed (note that there is no stability
condition!). Using Brosius’ work, one has moduli spaces 9B for vector bundles F
with the extra condition that the Chern class ¢; is fixed as an element in A (P! xC).

In order to prove that one has moduli of vector bundles F on P! x C corre-
sponding to morphisms f, the main technical point is to prove that once some
clear necessary numerical conditions for stability on the fibers are satisfied, one
has a dense open B° C B corresponding to such bundles. To prove this we use
results from the first approach, namely, the estimates about the codimension of
the unstable locus.

Brosius’ idea for constructing moduli of rank 2 vector bundles F on P! x C
is the following: every bundle F, say with fiber degree k, determines an integer
a> % such that F has generic fiber type (a,k — a) — meaning that for a general
point ¢ € C, the bundle F, = Fipi,( on P! splits as O(a) ® O(k — a). Moreover,
F determines a canonical sequence

0= (poupa F(~a))(a) = F = T =0

where p, : P! x C — C is the projection and J is by definition the cokernel of the
canonical morphism

(p2.p2" F(—a))(a) = F
The bundle F' = (ps,p2*F(—a))(a) is called the canonical subbundle of F.

The main idea about the canonical sequence is that such an extension deter-
mines and is determined by F, so one could get moduli for F by looking at such
extensions. The key point is that the canonical subbundle has the maximum pos-
sible fiber degree, which is a; hence, the quotient is forced to have fiber degree
k — a < a. Therefore, if one fixes the bundles 7' and 7, any two such extensions
having the same middle term F will be in the same orbit of the action of the
group of automorphisms of the sheaf ', and J respectively, on the space of such
extensions. Conversely, any extension in such an orbit determines F as its middle
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term and the canonical sequence of F is contained in that orbit.

N

One has to distinguish between the case when a > % and the case when a =

In the case when a > %, we have that £ = py, F(—a) is a line bundle and the

canonical sequence has the form:

0—-pi0@)®pP;L>F =2I;,0M—0 (0.1)

whith Z is a 0-cycle on P! x C with ideal sheaf Z; and M a line bundle on P! x C.

If we fix deg £ = —e, the length § of the 0-cycle Z is given by:
d=(k—a)—e(2a—k).
Let Hilb’(P! x C) be the Hilbert scheme of 0-cycles of length 6 on P! x C.

Theorem 0.3. For any pair of integers (a, e) in the range (%)

k—a

> k/2
{(a,e) | k>a>k/2, 5.k

>e>0}U{(k,0)} (%)

there is an integral subscheme M(a,e) C Mory(P', M) and there is a morphism:
7 : M(a,e) = Pic™¢(C) x Hilb’ (P* x C)

which sends an element [f] to (L, Z), where L and Z are associated as in (0.1) to
the bundle F (corresponding to f).
The MRC fibration of the scheme 9M(a, e) is given by the morphism:

p: M(a,e) = Pic ®(C) x Pic’ (P! x C)
which is the composition of m with the canonical morphism given by
Hilb’ (P! x C) — Sym®(P* x C) — Sym’C — Pic’(C)
The scheme 9(a, e) has dimension:
dim M(a,e) = 2a —k+2)g+ (3k—3a—1) —e(2a — k — 2) (0.2)

Theorem 0.4. For a pair of integers (a,e) in the range (x), the closure of the
scheme M(a, e) is an irreducible component of Mory(P', M) if and only if its di-
mension s bigger or equal to the expected dimension 2k + 3g — 3.

If k is an odd integer, say k = 2a + 1, then the scheme 9t(a + 1, a) corresponds
to the nice irreducible component of Theorem 0.1. The line bundle £ associated
to the bundle F from (0.1) is the same as the line bundle £ corresponding to [f]
by Theorem 0.1.

15



In the case when k = 2a we have that p,, F(—a) is a rank 2 bundle £ and we are
interested in vector bundles F such that the canonical sequence has the simplest
form, which is:

0= pjO(a) ®@ps€ - F - p;0O(a—1) @ psOp — 0 (0.3)
whith D € Sym?(C) and £ is a stable rank 2 bundle with determinant O¢(zo — D).
Theorem 0.5. If k = 2a is an even integer, there is an integral subscheme
Meven C Mory, (P!, M)

whose closure is an irreducible component of the space Mory(P', M) and its MRC
fibration is given by a morphism

p: Meyen — Pic'™%(C)
which sends an element [f] to the image of (D, &) via the canonical map
Sym®(C) X pii-a(cy M(2,1 — a) = Pic'"*(C),

where D and & are associated as in (0.3) to the bundle F (corresponding to f).

The component 9M,,., corresponds to the nice component of Theorem 0.2. The
rank 2 bundle £ and the element D € Sym®(C) corresponding to F by (0.3) are
the same as £ and D corresponding to [f] from Theorem 0.2.

We prove that the subschemes 9t(a, €), that do not correspond to irreducible
components, are in fact contained in the nice component (if ¥ = 2a + 1, it is
M(a+ 1,a) and if k = 2a, it is Meyen).

If [f] is an element of the scheme M(a,e) and £ € Pic™%(C) is the associated
line bundle, then let V. be the space of extensions from the first approach

VL = EXtIC(,C_l(.’IIo), ,C)
One could describe f as being given by a composition of rational maps:
P' - P(V;) ——» M

where the first map is sending a point p € P! to the class of the extension in V,
obtained by restriction to {p} x C. The second map is the map . from the first
approach. If § = 0 then the rational map P! --» P(V;) is defined everywhere and it
has degree (2a — k); hence, an element in M(a, €) is obtained from rational curves
in spaces of extensions, therefore generalizing the first approach.

16



The material is organized as follows: in Chapter 1 we give background about our
basic tools: the space of rational curves, maximally rationally connected fibrations
and moduli spaces of stable vector bundles. In Chapter 2 we describe the first
approach and in Chapters 3 and 4 we describe the second approach: in Chapter 3
we give the details of Brosius’ construction of moduli of rank 2 vector bundles F
on P! x C and we find the locus of those vector bundles F which induce morphisms
P! — M. In Chapter 4 we find and give descriptions of the irreducible components
of the space Mory (P!, M).

Conventions and Notations

All schemes are considered over C and all products are over C, unless we specify
otherwise. All schemes are Noetherian and of finite type over C.

Following the tradition, we use the word “vector bundle” for a locally free sheaf.
Whenever £ is a vector bundle on a scheme, by P(£) we mean the projective bundle

Proj(Sym(&*)).
If 7 is a sheaf on X x Y and x € X, by F, we denote the sheaf F;)xy on

{z} x Y, unless we specify otherwise. In Chapter 3 and 4, if F is a sheaf on X and
G is a sheaf on Y, we use the notation 7 X G for the sheaf pjF @ p5G on X x Y.

17
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Chapter 1

Basic Tools

1.1 Parametrizing rational curves

Let X be a projective integral scheme over C. By a rational curve on X we
mean a non-constant morphism f : P! — X. Let’s fix a closed immersion X C PV.
We say that the rational curve has degree k£ > 1 if

F0x(1) = Opi ().

We have two possibilities for a parameter space for rational curves of degree k
on X:

1. The Kontsevich space My(X, k)

2. The space of morphisms Mor (P!, X)

For our purposes, we could work with either of the two spaces. Especially in
Chapter 2, each space can be used as parameter space. In Chapter 3 and 4 however,
the space of morphisms simplifies the arguments.

1.1.1 The Kontsevich space

We recall a few facts about Kontsevich moduli spaces of stable maps M, (X, ),
where v € Hy(X;Z).

A stable map representing the class v and having 7 marked points is a pair
(C, f,p1,-..,pr) such that:

i. C is a projective curve of arithmetic genus 0 and with only nodes as singu-
larities

i. p,...,p, are smooth points of C

19



ili. there are finitely many automorphisms of C' which commute with f
iv. A[C]=7

The Kontsevich space M, (X,7) is the coarse moduli scheme representing the
functor which associates to every scheme S over C families of stable maps repre-
senting the class v with r marked points. It is a projective integral scheme over
C. We write My(X, ) for the space MO,O(X ,7) of stable maps with no marked
points.

The ezpected dimension of MO,T(X ,7) is defined as:
/ A (Ty) + dim (X) + 7 — 3.
Y

It is a lower bound for the dimension of any irreducible component of M. (X, 7).

A point [f] € My, (X,7) given by f : P! — X is called unobstructed if
H'(P!, f*Tx) = 0. If [f] is an unobstructed point, then My, (X,v) is smooth
at [f] and it has the expected dimension.

An observation

Consider the space My3(X,v) and let 7 be the morphism that forgets the
marked points: o .
m: Mo,g(X,’)’) — Mo(X,")’)

Let A C My(X, ) be the boundary, i.e., the locus of stable maps with reducible
domain. Then A is a closed subscheme of My(X,v). Let U be the complement of
A. A closed point of U corresponds to a rational curve f : P! — X of degree k.
Then the fibers of the morphism

N U) = U

are isomorphic to PGL(2). Note that 7=*(U) C My 3(X,7) is the complement of
the boundary of Mg 3(X,7). The consequence is:

Observation 1.1. The morphism m gives a one-to-one correspondence between
the irreducible components of Mg3(X,~) which don’t lie in the boundary and the
irreducible components of Mo(X,~y) whith the same property. If M is such an
irreducible component of Mo 3(X,~) then the morphism  : 9 — w(9MN) has fibers
isomorphic to PGL(2) over U N9IMN.

(Irreducible components are taken with the induced reduced structure. )

20



The space My(X, k)

Assume that the singular cohomology group HZ(X ;Z) is Z and the topological
Chern class ¢;®(Ox(1)) is a generator in H*(X;Z). Equivalently, using Poincaré
duality,

Han 2(X;Z) 2 Z
and the fundamental class of a hyperplane section h € Hy,_2(X;Z) is a generator.

Assume that H,(X;Z) has no torsion. By Poincaré duality, there exists a
class 3 generating Hy(X;Z) and such that the intersection of cycles 8.h is 1, or
equivalently,

< B,cP(0x(1)) >=1.

For example, if X contains a line [ C PV, then the class of I in Hy(X;Z) is 3.
More generally, if f : P! — X is a rational curve of degree k¥ > 1 and we denote
by [P!] the fundamental class of P!, then we have:

f[P] = kB € Hy(X; Z).
We will work only with schemes X satisfying the condition:

Ho(X;Z2)=Z and c®(0x(1))Z = H*(X;Z) (1.1)

For such X, one way to parametrize rational curves of degree k on X is to consider
the Kontsevich space of stable maps M, ,(X,kp). For simplicity, we denote this
by Mo, (X, k).

1.1.2 The space of morphisms
The space of morphisms Mor(Y, X)

We recall a few facts about the scheme Mor(Y, X), when X and Y are projective
schemes over C. Consider the functor defined by:

Mor(Y, X) : Schy — Sets
Mor(Y, X)(S) = {S — morphisms: X x S - Y x S}

The graph of a morphism identifies the functor Mor(Y, X) with a subfunctor of the
Hilbert functor of subschemes of Y x X. The functor Hilb(Y x X) is representable
by a projective scheme Hilb(Y x X'). It is proved in [K] that the functor Mor(Y, X)
is represented by an open subscheme

Mor(Y, X) C Hilb(Y x X).
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If we fix an ample line bundle O(1) on Y x X, say given by p;Oy (1) ® p;Ox (1),
where Ox (1) and Oy (1) are ample line bundles on X, respectively on Y, and p,, p,
are the projections from Y x X onto Y, respectively X. If P is a polynomial, the
Hilbert functor Hilbp(Y x X), of subschemes of of ¥ x X with Hilbert polynomial
P, is represented by a projective scheme Hilbp(Y x X). Then we have that

Hilb(Y x X) = UpHilb(Y x X)

where the union is a disjoint union over all polynomials P.
Let Morp(Y, X) be the corresponding open subscheme

Morp(Y, X) C Hilbp(Y x X).

parametrizing morphisms f : Y — X with Hilbert polynomial P. Here, by the
Hilbert polynomial of f we mean the Hilbert polynomial of the closed subscheme
[ of Y x X given by the graph of f:

P(m) = x(T', Or(m)) = x(¥, Oy(m) ® f*Ox(m)).
There is a universal morphism:
Y x Morp(Y, X) - X x Morp(Y, X)

which sends the point (y, f), given by [f] € Morp(Y, X) and y € Y, to (f(y), f).
If we compose this universal morphism with the projection onto X, we obtain the
sometimes called evaluation morphism:

ev:Y x Morp(Y, X) — X.

The scheme of morphisms Mor,(P!, X)

If we take p}Op1(1) ® p5Ox (1) as ample line bundle on P* x X, a morphism
f : P! — X will have Hilbert polynomial:

P(m) = x(P',0(m) ® f*O(m)) = x(P*, O(km +m)) = m(k + 1) + L.
For the polynomial P(t) = (k + 1)t + 1, we denote:
MOI‘k(]Pl,X) = MOIP(IPI,X).

A morphism f : P! — X with Hilbert polynomial P has degree k.

The universality property of the evaluation map:
ev: P! x Mor, (P!, X) = X
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says that if S is a scheme and we have a family of morphisms of degree &:
g:PxS—X
then there is a unique morphism u : S — Morg (P!, X) such that g = evo (idp: X u).

If f:P' — X is a morphism of degree k, then the ezpected dimension of
Mory (P!, X) at the point [f] is defined as the Euler characteristic of the pull-back
of the tangent bundle of X :

X(BL, f*Tx) = h°(PY, f*Tx) — h'(P', f*Tx) = deg f*Tx + dim (X).

If X is smooth, the expected dimension is a lower bound for any irreducible com-
ponent of the scheme Mor (P!, X) containing the point [f].

Assume that X is smooth. The Zariski tangent space to Morg (P!, X) at the
point f is isomorphic to H°(P!, f*T).

A point [f] € Mor (P!, X) is called unobstructed if H' (P!, f*Tx) = 0. If [f] is
an unobstructed point, then Mor, (P!, X) is smooth at [f] and it has the expected
dimension.

Relation between Mor, (P!, X) and My(X, k)

Let X be such that H?(X;Z) is generated by ¢;"(Ox(1)) and that Ha(X;Z)
has no torsion and consider the spaces My (X, k) defined in 1.1.1.

Lemma 1.2. The scheme Mory(P', X) is isomorphic to the open in Mg3(X,k)
which is the complement of the boundary. In particular, any irreducible com-
ponent of Mory(P!, X) is isomorphic to an open of an irreductble component of
Mo,g,(X , k). This gives a one-to-one correspondence between the irreducible compo-
nents of Mor,(P', X) and the irreducible components of Mo 3(X, k) which are not
contained in the boundary.

Proof. Consider the evaluation map
ev: P' x Mor,(P', X) — X.
Let m be the second projection:
7 : P! x Mor, (P!, X) — Mor (P, X).

The points 0, 1 and oo on P! give sections of 7. We have family of stable maps
over Mory (P!, X) with three marked points. By the definition of M 3(X, k) as a
coarse moduli scheme, it follows that there exist a morphism:

¢ : Mory (P*, X) — Mg 3(X, k)
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which sends a point [f] corresponding to a rational curve f : P! — X of degree k,
to the point in M 3(X, k) corresponding to the stable map f, with 0, 1 and oo as
marked points on P!.

Let A C My3(X, k) be the boundary. Let V be the open in Mg3(X, k) given
by the complement of A. The morphism ¢ maps to V:

¢ : Mor(P!, X) — V.

This gives a bijection between the closed points of Mor,(P!, X) and the closed
points of V.

Note that V is in the automorphism-free locus of My 3(X,k). Since on the
automorphism-free locus there is a universal family of stable maps [FP], it follows
that there exist

m:C—V; f:C— X; 01,09,03:V = C

where 01,0,,03 : V — C are sections of 7. As the fibers of 7 are all isomorphic to
P!, the existence of the three sections of 7 implies that C is in fact a trivial bundle
over V. Then by the universal property of the evaluation morphism, it follows that

there is a morphism
¥ : V — Morg (P, X)

sending the stable map f : P! — X to the point [f] € Mork(P*, X). Then ¢ is the
inverse morphism of ¢. Hence, we have an isomorphism:

Mory(P!, X) = V.

The next Corollary follows from Observation 1.1 and Lemma 1.2.

Corollary 1.3. There is a one-to-one correspondence between the irreducible com-
ponents of Mor,(P', X) and those irreducible components of M(X, k) which are
not contained in the boundary of Mo(X, k).

1.2 Maximally rationally connected fibrations

Recall that all schemes that we are considering are over C.

Definition 1.4. A projective scheme X (not necessarily smooth) is rationally con-
nected if there is a dense open X° C X such that for every z,,z, € X°, there is a
rational curve through ©,; and x,.

24



Rational connectedness is a birational property. Note that a projective scheme
X is rationally connected if and only if some desingularization is rationally con-
nected.

We can extend the definition to quasi-projective schemes and say ﬂlat a quasi-
projective scheme X is rationally connected if some projective scheme X containing
X as a dense open set is rationally connected.

Note that if X is a quasi-projective scheme which is rational, then it is also
rationally connected. More generally, if X is unirational, i.e., dominated by a
rational scheme, then it is rationally connected.

A rationally connected fibration is a rational map ¢ : X --» Y which restricts
on a dense open X° C X to a proper morphism ¢° : X° — Y with rationally
connected fibers.

Definition 1.5. A maximally rationally connected fibration (MRC) of a projective
smooth integral scheme X 1is a rationally connected fibration

o: X --+7

whith Z a quasi-projective integral scheme and with the universal property that
if ¥ : X - Y is another rationally connected fibration, then there s a unique
rational map p:Y — Z such that poy = ¢.

Usually, the definition requires that a general fiber is rationally chain connected,
i.e., a two general points can be connected by a chain of rational curves. Since for
smooth schemes over C rational chain connectedness is the same as rational con-
nectedness and since the general fiber is smooth, it follows that the two definitions
are the same.

We call the scheme Z in the definition the MRC quotient of X and it is uniquely
determined up to birational equivalence. Clearly, birational smooth projective
schemes have the same MRC quotient. For example, the MRC quotient of a ratio-
nally connected scheme is just a point.

It is knwon that the maximally rationally connected fibration of a projective
smooth integral scheme exists, see [K], p. 222. If X is a projective integral scheme
which is not smooth, we define its MRC fibration to be the MRC fibration of its
desingularization.

The “universality” property in Definition 1.5 is equivalent to the fact that
almost all the rational curves in X lie in fibers of ¢. To be precise, for a very general
point z € Z any rational curves in X meeting the fiber of ¢ at z is contained in the
fiber. For example, if Z is an abelian variety, this condition is satisfied, as there
are no rational curves on an abelian variety.
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One can characterize MRC fibrations using the following recent result:

Fact 1.6. [GHS] If X — Y is a morphism of smooth projective schemes, with
the general fiber rationally connected and with Y rationally connected, then X is
rationally connected.

The consequence is that MRC fibrations can be defined as follows.

Definition 1.7. A maximally rationally connected fibration (MRC) of a projective
smooth integral scheme X 1is a rationally connected fibration

o X -7

whith Z a quasi-projective integral scheme which is not uniruled, i.e., there is no
rational curve through a general point.

We are going to use the following set-up: X and Z will be integral projective
schemes and with Z not uniruled (Z will be an abelian variety or embedded in
an abelian variety). We will have a rational map ¢ : X --+ Z which defined on
a dense open X° C X and such that the restriction ¢° : X° — Z has the general
fiber a quasi-projective scheme which is rationally connected. Then ¢ gives the
MRC fibration of X.

We will also use Fact 1.6, in the slightly more general version, when the schemes
are not smooth, and not necessarily projective, but rather open subschemes in some
projective rationally connected schemes.

MRC quotients of spaces of rational curves

If X C PV is a smooth projective intgeral scheme over C, which satisfies (1.1),
consider the Kontsevich moduli space My(X, k) for k some positive integer. By
Observation 1.1 and Lemma 1.2, we have:

Observation 1.8. There is a one-to-one correspondence between those irreducible
components of Mo(X, k) which don’t lie in the boundary and the irreducible compo-
nents of Mory(P!, X). Corresponding irreducible components have the same MRC
fibration.
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1.3 Moduli spaces of stable vector bundles on a
curve

1.3.1 Vector bundles of rank r and degree d

Let C be a genus g smooth projective curve over C. A vector bundle £ on C is
called stable if for any proper subbundle £’ C £, we have:

deg(£') _ deg(€)

Tk(E") rk(€)

€ is called semistable if in the previous inequality we allow also equality.

Let M(r,d) be the moduli scheme of isomorphism classes of semistable vector
bundles £ of rank 7 on C and degree d. More precisely, M(r, d) is the coarse moduli
scheme for the contravariant functor

F : Sch¢ — Sets

which associates to the scheme S the set F'(S) of isomorphism classes of vector
bundles F of rank 7 on S x C such that for all points s € S the bundle F; is
semistable and of degree d.

Recall that if F' is a contravariant functor:
F : Sch¢ — Sets
then M is a coarse moduli scheme for F', if there exists a transformation of functors
T : F — Hom(—, M)
such that:
i. T(Spec(C)) : F(Spec(C)) — Hom(SpecC), M) is a bijection of sets

ii. The pair (M, T) is unique in the sense that if there is a scheme N over C and
a transformation 7" : F' — Hom(—, N) then there is a unique morphism
f: M — N over C such that if we denote F' : Hom(—, M) — Hom(—, N)
given by composition with f, then 7" = F o T.

The scheme M(r,d) is an integral projective scheme over C of and there is
an open set M*(r,d) whose closed points correspond to stable bundles over C.
Moreover, M*(r, d) is smooth over C. When (r, d) = 1 semistability is equivalent to
stability; hence, in this case, M (r, d) is smooth. When (7, d) # 1 the open M*(r, d)
is precisely the smooth locus of M(r,d), except in the case when g = 2,7 = 2,
when the moduli space is isomorphic to P3.
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Let Pic*(C) be the moduli scheme M (1, d) of line bundles of degree d. There
is a canonical morphism given by taking the determinant:

det : M(r,d) — Pic*(C).

We have the following description of M (r,d) according to the genus of C:

i. If g > 2 then M(r,d) has dimension r%(g — 1) + 1.

ii. If g =1 and if (r,d) = 1 then the determinant map is an isomorphism. If
(r,d) = v then M(r,d) = Sym”(C).

iii. If ¢ = 0, then the moduli space is just a point, since any vector bundle of
rank 7 on P! is direct sum of line bundles and such a vector bundle is not
stable unless 7 = 1, when it is just O(d).

When d = d'(mod r) one gets isomorphic moduli schemes:
M(r,d) = M(r,d').

Denote M(r,&) the moduli space of stable vector bundles on C of rank r and
determinant £. If £, &' are line bundles of the same degree, then

M(r,§) = M(r,¢').

A Poincaré vector bundle on M(r,d) x C is a vector bundle with the property
that for any closed point ( € M(r,d) the bundle U := Uji¢yxc is in the isomor-
phism class corresponding to the point ¢ in M(r,d). Equivalently, the functorial
morphism

F(S) — Mor (S, M(r,d))

surjects for any S. Note that U is not unique: Y ® 77 (M) is also a Poincaré bundle
for any M € Pic(M(r,d)). Any two Poincaré bundles differ by such a twist.

If (r,d) = 1 then there exists a Poincaré vector bundle on M(r,d) x C. If
(r,d) # 1 then there is no Poincaré vector bundle on M(r,d) x C. In fact there is
no Poincaré vector bundle on an open U x C, where U is any open in M(r,d) (see

[R])-

We mention the following very useful classical result in the theory of stable
vector bundles. For a reference, see [P] p.115.

Fact 1.9. If T is an integral scheme and F is a rank 2 vector bundle on C x T,
the locus of t € T' for which F; is stable is open in T (possibly empty).
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1.3.2 Vector bundles of rank 2 and fixed determinant of
odd degree

Assume g > 2 and r = 2. Then if d is an odd integer we noticed that
M(2,d) = M(2,1).

We pick a point zo € C and let M = M(2,0¢(xp)). Note again that if £ is any
line bundle on C of degree 1, we have:

M = M(2,¢).

The moduli scheme M is a projective smooth scheme of dimension 3g—3. If C'is
a hyperelliptic curve, Desale and Ramanan proved in [DR] that M can be realized
as the space of (g — 2) planes contained in @; N Q; C P?*! for some quadrics
Q1, Q2 in P%*!  In particular, when g = 2, M is isomorphic to the intersection of
two quadrics in P®.

It is a result of Drezet and Narasimhan in [DN] that the Picard group Pic(M)
is Z. Let © be the ample generator. In fact, © is very ample.

It is also known that H?*(M;Z) = Z (see [N2]) and that one has in fact an
isomorphism given by taking the topological Chern class:

P : Pic(M) = H*(M; Z) (1.2)
Let o € H*(M;Z) be the image of © through the above map.

It is also known (see [N1]) that M is simply connected as a complex manifold;
hence, H'(M;Z) = 0. It is also helpful to know that H*(M;Z) is torsion-free (see
[N1]). It follows that:

Ho(M;Z) = HX(M;Z)* = Z (1.3)

In particular, Hy(M;Z) is torsion-free.

The tangent bundle of M

Let U be a Poincaré bundle on M x C. Let £nd®(U) be the kernel subbundle
of the trace morphism End(U) — O. We have a split exact sequence:

0 — End®(U) — End(U) — O — 0.

If p; is the projection of M x C into M and T, is the tangent bundle of M,
we have from [N2]
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Ty 2 R'py, (End®(U)) and Ripy,(End®(U)) =0 for i#1 (1.4)
From [N2], the canonical bundle of M is:

Ky =-206.

It follows from the constructions used in Chapter 2, that M is rational.

Rigidified Poincaré bundle

Based on the results mentioned above, one can prove that there is a unique
Poincaré bundle Uy such that for z € C:

cr(Uojprxizy) = ©

This is called the rigidified Poincaré bundle.

We give a topological proof which follows the construction in [N2] of the class
a, that generates H*(M; Z).

Note that because of the (1.2), it is enough to prove that there is a Poincaré
bundle Uy such that for z € C:

c”1°P(L{0|MX{I}) = .

Let 4 on M x C be a Poincaré bundle. Since M is simply-connected, the

Kunneth components of the Chern classes ¢;°® (i) and cy® () can be expressed in

the form:

ArU) =+ f GPUY =x+Y+wdf, (1.5)
where f is the positive generator of H*(C;Z) = Z and

¢,w € H¥(M;Z), x € H'(M;Z), o € H M;Z)®H'(C;Z).

Define
oa=2w—¢ and B =¢* —4x (1.6)

One can easily check that if ¢’ is another Poincaré bundle, say given by U ® ;L
(where L is a line bundle over M), the classes «, 8 remain unchanged, as the classes
#, X, ¥, w change according to the following rule (denote by o = c;°*(L)):

¢ =¢+20 X =x+¢0+0"
V=9 w=w+to
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One should notice that the class v is invariant as well.
In [N2] it is proven that o generates H*(M;Z).

If £ is a line bundle on M such that ¢;°°(£) = w — ¢, then if we let:
U =US L

we have that ¢ = a = w for this sheaf. (Here 7, is the projection M x C onto M.)
We have:

i P(Uo) =+ f and P Uopmxizy) = @

This is the rigidified Poincaré bundle U. It is unique, as any two Poincaré bundles
differ by a twist with 77 L. The topological Chern classes of U, are:

PU) =a+ f PU) =x+y+a®f,

The degree of a morphism f: P! —» M

Definition 1.10. If f : P! — M we define the degree deg (f) of f as the degree of
the line bundle deg (f*©).

If f:P' — M is such that deg (f) = 1, we say that f gives a line on M. Note
that since © is very ample, if we consider the embedding given by O:

it M < PN,
then the morphism i o f : P! — PV gives a line on PV.

Let Fo = (f x id)*Up and let k = deg (f). Then it follows from (1.5) and the
fact that (Fp), = Oc(zo), for any p € P*, that we have

a1 (Fo) =P x {zo} + k{pt} x C € A'(P' x C) (1.7)
It follows from (1.5) and (1.7) that, for any z € C, the degree of f is:

deg (f) = deg (c1(Fopixisy)) = deg (c2(Fo)) (1.8)

It is easy to see now that if F is an arbitrary bundle that gives f we have the
following formula for the degree of f:

deg(f) = deg(2c2(F) — c1(Fipix(ay)) (1.9)

This is because F has to be of the form Fy ® p;O(m), where m is some integer.
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Note that it follows from the observations in 1.1.1 and from (1.3) that it makes
sense to talk about the Kontsevich moduli space My(M, k) as a parameter space
for rational curves of degree k.

The pull-backs of the classes a and 8 via a morphism S — M

In this section we’ll give a way of computing the pull backs of the topological
classes o and S via a morphism S — M, in terms of the topological Chern classes
of any rank 2 bundle F on S x C' that gives the morphism S — M.

Let x : S — M be a morphism. If i is a Poincaré vector bundle, not necessarily
the rigidified one, we let F := (k x id)*U. From (1.5) we get:

GPF) =Rk @) +f  GPF) =K+ W) +E W f

where
K*(¢),K"(w) € HY(S;Z), w*(x) € HY(S;Z), «'(¥)€ H(S;Z)® H'(C;Z).
Then k*(a) = 2k*(w) — k*(¢) and £*(B) = k*(¢?) — &*(X).
Denote u and v the following maps, coming from the Kunneth decomposition:
u: HY(S x C;Z) — H3(S) ® H(C) = H*(9)

v:HY(S x C;Z)) = H*(S) ® H*(C) = H*(S)
w: HY(S x C;Z) — H*(S) ® H*(C) = H*(S)

Then we have:
k*(a) = 20(ca(F)) —u(ci(F)) and  &*(8) = w(ci(F)? — 4ea(F)) (1.10)
Note that these expressions are invariant when twisting with a line bundle from

S. Hence, if ' is another vector bundle on S x C that gives the morphism «, then
the same relations hold for the pull-backs of the classes a and f via k.

Note that we get as a special case the formula (1.9).

1.3.3 A useful result about rational curves on moduli of
vector bundles

Consider the scheme Mor (P', M) introduced in Section 1.1.2. Since the canon-
ical bundle K, is —20 and dim M = 3g — 3, it follows that if f : P! — M is a
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morphism of degree k, then
x (P!, f*Tys) = deg f*Tyr +dim M = —deg f*Kp +dim M =2k +3g — 3
The expected dimension is:

exp. dim. Morg(P', M) = 2k +3g — 3 (1.11)

Consider the Kontsevich space My(M,k). Note that by (1.3) and (1.2), M
satisfies 1.1, hence, it makes sense to consider the class k € Ha(X,;Z).

The expected dimension of My(M, k) is:

exp. dim. Mo(M,k) =2k +3g — 6 (1.12)

We say that a rank 2 vector bundle on P! is balanced if it splits as O(a) ® O(b),
for some integers a and b with |b —a| > 1.

Lemma 1.11. If f : P — M is a morphism of degree k given by the vector bundle
F on P! x C and for general z € C, the bundle F, is balanced, then

H' (P!, f*Ty) = 0.
The point [f] is an unobstructed point of the Kontsevich space Mo(M, k), as well
as of the space of morphisms Mor, (P!, M).
Proof. From (1.4), the tangent bundle of M is given by:
Ty = Rlpy, (End®(U))

where End®(U) is the sheaf of traceless endomorphisms of some Poincaré bundle U/
on M x C. Moreover, we have that for any i # 1:

Rp,, (End®(U)) = 0.
If we let ' = (f x id¢)*U we have
Ty = Ripy, (End®(F)).

Since both F and F' give the same morphism f, it follows that F and F' differ by
a twist with a line bundle from P!. Therefore, we can assume that F' = F.

We have for any 7 # 1:
Rp,, (End’(F)) = 0.
There are two Leray spectral sequences:
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H'(P',Rip,,(End’(F)) = H™(P' x C,End’(F))
HY(C,Rip,, (End’(F)) = H™H (P! x C, End®(F))

Then, as for i > 2 we have R'p,, (£nd°(F)) = 0, it follows that
H' (P!, Rlpy, (End’(F)) = HE(P' x C,End(F)) = HY(Rpy, (End’(F)).

The sheaf R'p,,(End®(F)) is supported at a finite number of points of C, as for
general z € C we have that the rank 2 vector bundle F, on P! is balanced. This
is because at the generic point £ of C' we have:

R'p, (End®(F))e = H' (P!, End®(F¢)) = 0.

This is because if £ = O(a) ® O(b) is a vector bundle on P!, then

End(€) =200 0®0(a—b)®O(b—a)
End’ () =200 0(a—-b)®O0(b-a)

An observation about the Kodaira-Spencer map

Consider the scheme Mor (P!, M) and the evaluation morphism
ev : P! x Morg(P', M) — M.
Define on P! x C' x Mor, (P!, M) the bundle:
H = (ev x idc) Up.
If [f] € Mor (P!, M) is a closed point, then if we let H; = Hpixcxys}, we have:
Hy = (f x id) Up.

The bundle H gives a family of vector bundles on P! x C' and induces a Kodaira-
Spencer map at the point [f]:

w : Ty Morg (P*, M) — Def (Hy)
where Def (Hy) is the space of infinitesimal deformations of the bundle #:

Def (H)) & Exthi, o (Hs, Hy) = H (P x C,End(H;)) = H'(P' x C, End’(H;))
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Since M is smooth, there is a canonical isomophism:
TiMori (P', M) — H°(P', f*Ty)
By (1.4) we have:
HY(P', f*Tw) = HY(P', R'py, End®(Hy))

From the Leray spectral sequence associated to p;, we have an exact sequence:

0 — H' (P!, p1,End®(Hy)) — H' (P' xC, End®(H)) — H°(P',R'p,,End’(H;)) — 0
Since the bundle #;, on C is stable for any p € P!, it follows that
p1,End’(Hy)) = 0.
So there is a canonical isomorphism:
H'(P! x C,End®(Hy)) = H(P', R'p1,End’(Hy))
There is a commutative diagram:
TiMor (P, M) —— H'(P! x C,End’(H;))

H lc_« (1.13)
TisMor, (P!, M) —— H°(P!,R!p;,End(H,))

It follows that the Kodaira-Spencer map w is an isomorphism.
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Chapter 2

Constructing Rational Curves on
moduli of vector bundles

Let C be a genus g > 2 smooth projective curve. Fix a point zo € C and let
M = M(2,0¢(z0)) be the moduli space of rank 2 stable vector bundles on C with
determinant O¢(xo).

We effectively construct rational curves of odd and even degree on M and find
that there is a nice component of the space of rational curves of degree k: it
has the expected dimension and the general point is unobstructed. The idea for
constructing the odd degree curves is a classical one: look at spaces of extensions
of line bundles on C. As these spaces map to M, we obtain rational curves on M
by constructing rational curves in the spaces of extensions. Similarly, for the even
degree curves, we look at extensions of skyscraper sheaves by rank 2 sheaves on
C and construct rational curves in them. We also find the MRC fibration for the
nice component to be the Jacobian of the curve C.

2.1 Spaces of extensions of line bundles

2.1.1 Local construction

Let e > 0 be an integer and let £ to be a line bundle over C of degree —e. Consider
extensions:

0> L—E— L z) = 0. (*)

Such extensions are classified by the vector space

Ve = Exti (L7 (o), £) = HY(C, L2(—1x0)) (2.1)

By Riemann-Roch, V. is a vector space of dimension
dim (Vz) = (2e+1)—14+g=2e+g (2.2)
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Clearly, any two nonzero elements v, v’ of V; which differ by a scalar define isomor-
phic vector bundles £. Therefore the isomorphism classes of non-trivial extensions
as above are parametrized by the projective space P(V}).

The locus of unstable extensions

We have the following result about the extensions (*) for which £ is unstable.
Such an extension will be called an unstable eztension.

Proposition 2.1. For each L € Pic™%(C), there is a closed integral subscheme
Zr C P(V;) corresponding to the unstable extensions. The codimension of Z, is
at least g. In the particular case when e = 0, we have Z; = (.

Proof. The idea is as follows.
The bundle £ in the extension (*) is unstable if and only if there exists a line
bundle £’ on C of degree 1 and a non-zero morphism

L —E.

Then £' — L7!(x¢) is non-zero as well, since there are no non-zero morphisms
L' — L, as deg (L£') > deg (L£). It follows that there is an effective divisor D on C

of degree e such that:
L' = LYz — D).

Let &' be the kernel of the composition & — L71(z¢) — L£7!(zo);p. Then there is
a commutative diagram with the two horizontal sequences exact:

— g — £ — LYz — O

il | >

—— LY zp— D) —— L7Y(zy) —— L7 (zo)p —— 0
Using the snake lemma, we get an exact sequence
0L & — LY (zg—D)—0. (2.3)
Consider the composition morphism
L =LY zg—- D)= E— E‘l(:vo)w

By the commutativity of the previous diagram, this is zero. Hence, the map from
L' = L7Yxzo — D) to £ factors through £'. By chasing diagrams, it follows that
the exact sequence (2.3) is split.

Consider the vector space

V = BExth (L (z0), £) = HY(C, L2(—0)).
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By the previous discussion, the vector v € V corresponding to an unstable vector
bundle £ is in the kernel of the surjective map

HY(C, £*(—x,)) — HY(C, L*(—z¢ + D)).
From the long exact sequence coming from
0= L7 (zo) = L7 (zo + D) — L™ zo + D)jp — 0,
by applying Extl (-, £), we get that
0 — HY(C, L2 (- + D)p) — H'(C, L3 (—z¢)) — HY(C, £L*(—zq + D)) = 0.

Therefore the unstable extensions in V form an e-dimensional linear subspace for
each D effective divisor of degree e. If we let D vary in Sym®(C), we get that
the unstable extensions in V form a family of dimension at most 2e. Hence, the
codimension of this locus is at (2e + g9)—2e=g>2

Note that for e = 0, there are no unstable extensions.

To make this precise, on C® x C' consider the divisors Ay .4, ... Q¢ et1, where
Aiet1 is the diagonal given by the 4-th and (e + 1)-th components in Ce*!, Let

A == Al,e+1 + PP + Ae,e+1.

If“:{(Pla---,Pe)} € C* we let D:p1+___+pe_
We have an exact sequence on C*¢ x (-

0— 0 - O(A) = O(A)s — 0 (2.4)

Let 7,75 be the two projections from C¢ x C. After tensoring the exact
sequence (2.4) with 73(£2(~x,)) and applying the 7, (—) functor, we get an exact
sequence:

0— Wl*(O(A)IA ® 7r§£2(—-a:0)) — R17r1*7r§£2(—:r0) —
- Rlm, (0(A) ® T3 L%(—20)) = 0

This is because H'(C, £2(—z, + D)ip) = 0 and H(C, £3(~zy + D)) = 0, as
deg L?(—zy + D) = —(e + 1) and therefore:

m.0(8) @ m3(L¥(=20)) = 0 R'm1,(O(A)a ® 75(L2(~20))) = 0

We define the following sheaves on Ce:

£ = le*?r;(ﬁz(—xo))
&' =m.(Dja ® 5 (L% (~x4)), E" = lel*(O(A) ® 13 L% (— 1))

39



We have an exact sequence:
058 —2E-2E" -0
Note that £ is a trivial vector bundle with fiber at u € C*:
E. 2 HYC, L (—mp)) 2 V.
In a similar way, £’ and £” are locally free and the fibers at u are:

&L 2 H(C,L*(—z0 + D)p), € =2 HY(C,L*(—xz0+ D))

We have that tk (£) =2e+g,1k (') =eand 1k (£")=e+g.
The injective morphism £ — £ induces a closed immersion

P(E') — P(E).

Since £ is a trivial vector bundle on C*¢ with fiber V, it follows that we have a
canonical isomorphism:

P(£) = C° x P(V) (2.5)

Let Z be the image of P(£’) in P(V') via the isomorphism 2.5, followed by the
projection of C¢xP(V') onto P(V'). This is the locus of unstable extensions in P(V').
As dim P(£’) = 2e — 1 and dim P(V) = 2e + g — 1, it follows that the codimension
of Z is at most (2¢ + g — 1) — (2e — 1) = g. This proves proposition. a

The morphism «x.: P(V;)\ Z, > M

We would like to define a morphism . : P(V;)\ Z; — M on the locus in P(V)
which corresponds to associating to every extension (*) the isomorphism class of
the vector bundle €.

We find a bundle G on (P(V;) \ Z) x C, such that for any p € P(V;) \ Z the
bundle G, is stable. This will detremine the morphism s, : P(V;) \ Zp — M.

Lemma 2.2. For each L € Pic”¢(C), there is a vector bundle G on P(V;) x C and
a universal ezact sequence

0— ¢O1)® gL — G — g3(L7(z)) = 0 (2.6)

where qi,qo are the projections onto P(V;) and C respectively. It has the property
that its restriction to {p} x C is an eztension

0= L—G,— L (z) =0

which gives an element in V; whose class in P(Vy) is p.
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Proof. This is a particular case of the Lemma A.1, in which we take S = Spec(C),
T =L,V =L"(x). We have that Hom(L*(zo), £) = 0 so conditions in Lemma
A.1 are satisfied. It follows that there is an extension:

0> q¢O01)®¢GL—G— q;‘([,‘l(:ro)) -0

Corollary 2.3. For each L € Pic *(C) there is a morphism
Ke - P(Vg) \ Z[_ — M (27)

such that for any p € P(V:) \ Zc, we have that kc(p) € M 1s the 1somorphism
class of the stable bundle on C which is the middle term of an eztension in Ve
corresponding to p € P(V;).

Proof. Consider the vector bundle G of the universal extension (2.6). From Lemma
2.1, if p € P(Vz)\ Z,, the vector bundle G, is stable. By the definition of the moduli
scheme M, there is an associated morphism k. corresponding to the restriction of
g to P(V[;) \ Z L O

When is the morphism «. : P(V;) \ Z; = M dominant?

Note that we have dim M = 3g — 3 and if £ € Pic™*(C) then by (2.2) we have

dim P(V;) =2e+g—1
For £ € Pic™¢(C) we have:

i. Ife < (g—1), the morphism « is not dominant
ii. Ife>(g—1) then k is dominant

Note that part i. is clear by dimension considerations. Part ii. follows from the
fact that if e > (g — 1) then for any &£ vector bundle of rank 2 and degree 1, the
bundle £ ® £ ! has sections, hence, there is a non-zero morphism £ — £. If £ is
general, then the line subbundle £ of £ is saturated in £, i.e. there is no non-zero
effective divisor D such that £ — £ is obtained as a composition £ — L(D) — £.
Hence, if £ € M then £ comes from an exact sequence (*).

In particular, this proves that M is unirational. If e = g —1 the two dimensions
are the same and the morphism x. is birational.

Computation of k*O

Let o € H*(M;Z) and 8 € H*(M;Z) be the classes defined in (1.6). We have
the following lemma.
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Lemma 2.4. Let L € Pic *(C). The morphism
Kg . ]P(V[;) \ ZL: - M

has the property that k;(a) = (2e + 1)h and k5(8) = h?, where h is the Poincaré
dual to the fundamental class of a hyperplane in P(V;).

Proof. Let’s denote V =V and k = k.. Let {H} € A*(P(V)) be the class of a
hyperplane in P(V'). The Chern classes ¢,(G), c2(G) € A*(P(V) x C) of G can be
computed from the exact sequence (2.6) as:

c(§) ={H} x C+P(V) x {zo}, c2(9) ={H} x ({zo} —cr(£)). (28

It follows that if f € H*(C) is the positive generator, then

&P(G) = h+ f € WP(B(V) x C), &P(G) = (1+e)h® f € HP(V) x C).
Consider the morphisms coming from the Kunneth decomposition of the coho-

mology of P(V) x C:

u: HX(P(V) x C) —» HA(P(V)), v:HYP(V) x C) = HY(P(V))
w : HH(P(V) x C) —» HY(P(V))

It follows that
u(d®(9)) =h, v(czP(9) = (L+e)h, w(d™(G)) =h, w(GP(G)) =0

Then from the formulas in (1.10), we have:

K (@) = 20(&7(G)) - u(E(G)) = (2 + 1)
K (B) = w(eP(G) — 4 (G)) = P

This proves the lemma. O
Corollary 2.5. The morphism ¢ : P(V:)\ Zr — M has the property that
k- (0) = 0(2e + 1)

Note 2.6. If we let Gy = (ko X id)*Uy, where Uy is the rigidified Poincaré bundle
and G 1s the universal bundle on P(V;) x C of (2.6), then

Go =G ® ¢;O(e).
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Proof. Let V = V; and k = k.. Since both G and Gy correspond to the same
morphism &, it follows that there is an integer m such that

G=Go®q"O(m)

Since c1(Uoprx(z}) = O(O), by Corollary 2.5, we have

c1(Gop(vyxiz)) = (2 + 1){H}
where {H} € A'(P(V)) is the class of a hyperplane. Since by (2.8) we have

Cl(g]P(V)x{x}) = {H}
it follows that m = —e. O

The bundle Gy sits in an exact sequence:

0—-qO(1l+e)®¢L— G —q¢i0(e)® q;(ﬁ_l(:co)) — 0. (2.9)

2.1.2 Global construction

The space of extensions of line bundles

We would like to let £ vary in Pic™(C) and consider the spaces of extensions
Ve = Extg (L7 (x0), £) as fibers of some vector bundle on Pic™¢(C).

Lemma 2.7. There is a projective bundle p : X — Pic ®(C) such that for any
L € Pic™*(C) the fiber p~'({L}) is canonically 1somorphic to P(V) = P2e+9-1,

Proof. Let A be a Poincaré bundle on Pic™*(C) x C:
Ajieyxc = L.

Let 1, 7y the two projections from Pic™¢(C) x C. Define on Pic™*(C) the relative
extension sheaf

S:= gxtllvic-=(0)xC|Pic-E(C) (m7 A7 ® m30c(20), 77 A)
Note that § is locally free and
S = Rlmy, (A% ® m300(—10)).
Consider the projective bundle
p: P(S) — Pic™¢(C).
Then we have that for any £ € Pic™¢(C)
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Sigey 2 Ve 2 H'({L} x C,L%(—m)) and p~'({L}) =P(Vr)
We let X = P(S). We have

dim X =2e+2¢-1 (2.10)
O

The projective bundle X from depends on the Poincaré bundle A on Pic™¢(C) x
C. f A = A® M, where M is a line bundle on Pic™*(C), and we consider
the projective bundle X’ constructed as in the proof of Lemma 2.7, using the
Poincaré bundle A’, it follows that we have an isomorphism of projective bundles
over Pic™¢(C):

¢: X — X', suchthat ¢*Ox:/(—1) = Ox(-1) ® M? (2.11)
This is clear, since we have S’ &2 S ® M2, where
§'= gmtll)ic‘e(c)xC|Pic‘e(C)(A,_l ® m30¢(z0), A').

Let v;, 5 be the two projections from X x C. In the following Lemma, A is the

Poincaré bundle on Pic™*(C) x C from the proof of Lemma 2.7, used to construct
X.

Lemma 2.8. There is a universal extension on X x C:

0—10x(1)®@p'A =G — p'(A)~ @ 130(x) — 0. (2.12)

It has the property that, when we restrict to {z} x C, where z € X is a point and
we let L = p(z) € Pic *(C), we get an ezact sequence:

0= L— Gy — L7Hzg) =0
which corresponds to an element in V., whose class in P(Vy) = p~'({L}) is z.

Proof. This is another application of Lemma A.1 in Appendix, in which we take

S =Pic™®(C), T = Aand V = p*(A)~! @ v30(xy). O

The locus of unstable extensions
Let A be a Poincaré bundle on Pic™®(C) x C and let X be the projective bundle
over Pic™¢(C) from Lemma 2.7.

Lemma 2.9. The locus of unstable extensions in X is a closed integral subscheme
Z C X of codimension at least g. If e =0, then Z = 0.

Proof. Consider the universal extension on X x C:
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0— 10x(1)®p"A— G —p(A)®v;0(z) — 0.

Let Z C X be the locus of unstable extensions in X. This is precisely the locus of
z € X for which G, is unstable. By Fact 1.9, this is a closed subset of X.

Let p : X — Pic™¢(C) be the projection. If £ € Pic™*(C) then Z Np~1({L})
is precisely the locus of points in P(V.) corresponding to unstable extensions,
Z: C P(V;). By Proposition 2.1, Z; has codimension in P(V;) at least g and if
e = 0, then Z, = (). Since this is true for any £ € Pic™¢(C), it follows that Z c X
has codimension at least g and if e = 0, then Z = (). O

Note that one can make a construction of the locus of unstable extensions
Z C X by globalizing the constructions in the proof of Proposition 2.1.

Corollary 2.10. There is a morphism k : X \ Z — M which restricted to the fiber
of p: X — Pic ¢(C) at L gives ezactly the morphism (2.7):

Kr - ]P’(VL;)\Z[_ — M.

If A= A® M is another Poincaré bundle, consider the isomorphism (2.11) of
projective bundles on Pic™¢(C):

¢ X = X'

Let Z C X and Z' € X' be the loci in Lemma 2.9 and consider the morphisms
defined by Corollary 2.10:

k:X\Z—> M, K:X\Z2 - M

Then there is a commutative diagram:

x\z 25 x'\ 7

l l (2.13)

M — M

2.2 Rational curves coming from extensions of
line bundles

Let £ € Pic™*(C). Consider the morphism (2.7) k. : P(V:)\ Z; — M. The
main observation is that for any integer n > 0 and any morphism:

g:P' 5> P(V)\ Z such that ¢*O(1) = O(n)

we get a rational curve f = ko g : P! — M of degree n(2e + 1).
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2.2.1 The loci M(e,n) in Mo(M,n(2e + 1))

For k > 1 let My(M, k) be the Kontsevich space 1.1.1. Note that we could use
the space of morphisms Mor (P!, M) as well.

Proposition 2.11. Let e and n be integers such that e > 0 and n > 1. There
erist integral closed subschemes M(e,n) C Mo(M,n(2e + 1)) such that a general
element of M(e,n) is a morphism f : P! — M obtained by a composition:

Pt 2 P(V)\Z; =5 M (2.14)
where L € Pic™¢(C) and g*O(1) = O(n).

Proof. Let A be a fixed Poincaré bundle on Pic™®(C) x C and consider the projec-

tive bundle of Lemma 2.7:
p: X — Pic™¥(C).

Let [[] € Hy(X;Z) be the class of a line contained in a fiber. Note that a
morphism f : P! — X representing the class n[l] lies in a fiber of p. Consider the
Kontsevich space Mo(X,n[l]). By Fact 2.13, there is a morphism:

7 : Mo(X,n[l]) = Pic™¢(C)

such that for £ € Pic™(C) the fiber 7~'({L}) is isomorphic to My(P(Vz),n). The
scheme M (X, n[l]) is integral and it has the expected dimension.
Since the locus of unstable extensions Z C X has codimension at least g > 2,

it follows that the morphism
k:X\Z->M

induces a rational map between the corresponding Kontsevich spaces:

U Mo(X,nll]) —» Mo(M,n(2e + 1)) (2.15)

Note that, since x depends on a Poincaré bundle A on Pic™*(C) x C, ¥ depends
on A.
Define the closure of the image of the morphism ¥ to be:

M(e,n) C Mo(M,n(2e +1)).

By taking M(e,n) with the induced reduced structure, we have that M(e,n) is
an irreducible closed subscheme of Mo(M,n(2e + 1)). Note that M (e,n) does not
depend on the Poincaré bundle A (see (2.13)). O

Fact 2.12. [FP] The projective scheme My(P",n) is irreducible, reduced and it
has the ezpected dimension, which is (r +1)(n + 1) — 4. Moreover, Mo(P",n) is a
rational variety.

The following Fact is straightforward to prove using Fact 2.12.
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Fact 2.13. Letp: X — S be a projective bundle over an integral projective scheme
S, given by X = P(E), where £ is a vector bundle of rank (r +1) on S. Let [I] be
the class of a line in a fiber of p and n a positive integer. The Kontsevich space
My(X,n[l]) is an integral projective scheme of the ezpected dimension. There is a
morphism

T Mo(X,n[l]) = S

with fiber at s € S canonically isomorphic to My(P(&;),n). The dimension of
My(X,n[l]) is:
dim Mo(X,n[l]) = dim S+ (r+1)(n+1) — 4.

Theorem 2.14. The closed subschemes M (e,n) C My(M,n(2e+1)) have dimen-
sion
dim M(e,n) =g+ (2e +g)(n+1) — 4.

Their MRC fibration is given by a rational map:
p: M(e,n) --» Pic ¢(C)

The map p associates to a rational curve f which is a composition as in (2.14),
the line bundle L € Pic *(C).

Proof. Consider the projective bundle p : X — Pic™%(C) of Lemma 2.7 and con-
sider the morphism (2.15) induced from the morphism (2.10) k: X \ Z - M

U : Mo(X,n[l]) —» Mo(M,n(2e + 1))

Since X is a P?**9~-bundle over Pic™%(C), by Fact 2.13, we have that there is a
morphism: L

7 Mo(X,n[l]) = Pic™¢(C)
and that dim Mo(X, n[l]) = g+ (2e + g)(n + 1) — 4. By Fact 2.12, the fibers of 7

are rational. Since Pic™*(C) is an abelian variety, it follows that 7 gives the MRC
fibration of dim My(X, n[l]).

_We will prove that W is birational onto its image, hence, M(e,n) is birational
to Mo(X,n[l]), and then our theorem follows. We will prove that the morphism ¥
is injective on the dense open consisting of morphisms P! — X \ Z.

Let g and ¢’ be morphisms P! — X \ Z such that ko g and x o ¢’ represent the
same stable map in My(M,n(2e + 1)), i.e., there is an isomorphism p : P! — P!
such that

kogou=kog.

Let h = g’ o u. Then we have
koh=kog.

We prove that g = h, hence g and ¢’ represent the same stable map in My (X, nl[l]),
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so W is injective on a dense open.

Assume that g, respectively g', bave image in the fiber of p over some L, re-
spectively £, with £, L' € Pic™® (C). We have that the following two morphisms
are equal:

P2 BV\Ze — M
P! —h’> P(VLI)\ZQ —fﬁl—) M
By Proposition 9.15 we have £L = L' and g = h. O

Proposition 2.15. Let f: Pt —» M bea morphism given by a vector bundle F.
Assume that F is an extension of line bundles on P! x C. Then there is @ unique
line bundle L of degree —¢€ on C (with e < 0), an wnteger n >0 and a morphism
g P o P(Ve)\ Zc such that g*O(1) = O(n) and f is the composition Kz © g

P P(Ve)\Ze — M
Proof. First, note that if there is an extension
0— M1 - F = M2 -0

with My, My line bundles on P! x C then there exist £, L' € Pic(C), n,m € Z
such that

M, =pon)@pL M= p;0(m) ® p3(L)

Since f does not change if we twist F by a line bundle from P!, we can assume
that F sits in an extension:

0 — piO(n) @ P3£ — F = pil — 0.
Restriction to {p} % C gives an exact sequence
0 L— Fp— L' =0

Since det (Fp) = Oc(mo), it follows that £' = L7 (z0)-

Let e = —deg (£). Since F, is stable, € > 0. Hence, we can assume that F sits
in an extension:

0 — p;O(n) ® pyL—F = p;(ﬁ_l(ﬂig)) —0 (2.16)

Note that there 1s a unique twist of our initial F that sits in such an extension.

Note that n has to be a non-negative integer. This is because we can compute
the degree of f to be n(2e + 1), as we have from the exact sequence (2.16)

61(7:|1P1><{z}) =n deg c(F) = n(l + e)
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By formula (1.9) it follows that deg (f) = n(1 + 2e).

We claim that £ and n are uniquely determined by F. Assume that there is
another extension:

0= piO(m)@pyL' — F — psL ™ (zp) — 0

where £’ is a line bundle on C. Note that since there are no non-zero morphisms
O(n) — O, it follows that there are no non-zero morphisms

piO(n) ® psL — psL' (o)

and therefore, there is an induced diagram:

0 —— piO(n) @piL sy F > paL7 (zg) —— 0

| | l |

0 — p{O(m)@pSEl » Fo > pgﬁfl(:no) — 0

It follows from Lemma A.3 in the Appendix that the vertical morphisms are iso-
morphisms. Hence £ = £' and m = n.

Note also that F determines uniquely, up to a scalar multiple, the class of the
extension (2.16) in the space of extensions

Extpa o (p3 (L7 (20), 21O (n) ® p3L).
Consider the universal extension (2.6) and denote it with (v):

0—g;0(1)® gL = G = g5(L7(z0)) = 0 (v)

By Lemma A.2 in Appendix (for V = £7!(z¢) and T = L) we get that there
there is a morphism

g:P' = P(V;) suchthat ¢*O(1) = O(n)

and the extension (2.16) is a multiple scalar of the extension g*v:

0 — p;O(n) @ pyL — F — ph(L7(z0)) — 0 (g*v)

The morphism g sends a point p € P! to the class in P(V.) of the element in
V¢ given by the extension obtained by restricting (2.16) to {p} x C:

0— L — F, = L x) = 0.
Since F, is stable, it follows that ¢g has image in P(V;) \ Z..
Note that we have F = (g x id)*G. Since F determines the morphism f and
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(9 x id)*G determines the morphism & o g, it follows that f = ko g.

Since (2.16) is equal, modulo multiplication by a scalar, to ¢g*(v) and F de-
termines uniquely, up to a scalar multiple, the class of the extension (2.16) in the
space of extensions

Extpi o (p5(L£7 (z0), p;O(n) ® p3L),

it follows from Lemma A.2 in Appendix, that g satisfying the properties in our
Theorem is unique. O

Note 2.16. The ezpected dimension of Mo(M,n(2e + 1)) is
2n(2e +1) + 39 — 6.
The dimensions of the subschemes M(e,n) are as follows:

i. dim M(e,n) = ezpected dimension if and only if n = 1 or g is even and
e=2-1
2

i. dim M(e,n) > expected dimension if and only if n > 1 ande < § -1
2.2.2 The nice component of My(M, k) for k odd

In this section k£ will be an odd integer. We let £ = 2e + 1, with e > 0. For
L € Pic™®(C), we have the morphism (2.7):

K P(VL)\ZE — M and EZ@:O(IC)
Recall from 1.12 that the expected dimension of M (M, k) is 2k + 3g — 6.

Theorem 2.17. There is a nice irreducible component MM of the moduli space
My(M, k). By nice component, we mean:

1. 9 has the expected dimension
i. A general point [f] € 9 is obtained as a composition:
Pt 2 PV )\ Z, =5 M
where L € Pic ¢(C) and ¢g*O(1) = O(1)
ii. A general point [f] € M is an unobstructed point of Mo(M, k)
iv. The MRC fibration of MM s given by a map
M --» Pic¢(C)
which sends the point [f] € M to L € Pic *(C)
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Proof. Consider the closed subscheme M(1,e) C My(M, k). We claim this is
an irreducible component that satisfies all the conditions in the Theorem. By
Proposition 2.11, a general point [f] € M(e, 1) is obtained as a composition:

P! 2 P(V)\Z: =5 M

where £ € Pic™*(C) and ¢*O(1) = O(1).
By the proof of Proposition 2.15 the morphism f is given by a vector bundle
F on P! x C, which sits in an exact sequence:

0 — piO(1) @ psL — F — p3 L7 (z0) — 0.
It follows that for any z € C, we have that the bundle F, has balanced splitting
F.=20(1)® 0.

It follows from Lemma 1.11, that f is an unobstructed point in My(M, k). Hence,
[f] is contained in a unique irreducible component of My(M, k), which also has
the expected dimension. Since M (e, 1) is an irreducible scheme of the expected
dimension (see Note 2.16), it must be the unique irreducible component containing
[f]- Part iv. follows from Theorem 2.14. O

2.3 Spaces of extensions of skyscraper sheaves by
rank 2 vector bundles

2.3.1 Local construction

Let e > 1 be an integer. Let yy,...,y. be points on C' (not necessarily distinct)
and let D = y; +... + y.. Fix £ a rank 2 vector bundle on C with det (£) =
Oc¢(zo — D). Consider extensions:

0>E&—-E —0p—0. (*)

Then
c1(&) =€)+ D, det (&) = O¢(z)

Such extensions are classified by the 2e-dimensional vector space:
Vpe = Ext5(0p, £) =2 HO(C,E(D)w) (2.17)

Clearly, any two nonzero elements v,v’" of Vp ¢ which differ by a scalar define
isomorphic vector bundles £. Therefore the isomorphism classes of non-trivial
extensions as above are parametrized by the projective space P(Vp ).
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The locus of not locally free extensions

We have the following result about the locus of extensions (*), where £’ is not
locally free. We call these not locally free eztensions.

Lemma 2.18. For D € Sym°C and £ a rank 2 vector bundle on C' with
det (5) = Oc(.'L'o — D)

there erist a closed subscheme I'pg in P(Vp ) corresponding to not locally free
extensions (*). This locus is a union of e codimension 2 linear subspaces if e > 2
and it is empty if e = 1.

Proof. Let D = y; + ...+ ye, With y1,...,y. points on C. For simplicity, denote
V = Vpe. Consider the 2-dimensional vector spaces

V; = EthC(Oyi’g)'

Then there is an isomorphism V = @¢_,V;. A vector v € V corresponds (vy, . . ., Ve),
with v; € V;, in the following way: if v corresponds to the extension

0+E—E —->0p—0 (%)

then v; will correspond to the exact sequence

0E->F—-0,—0 (2.18)

obtained by applying the snake lemma to the short exact sequences in the following
commutative diagram:

0 — £ y & —- Op — 0
I [ (219)
0 s F » & » Op, — 0

where D; := D — y; and the morphism £ — Op, is the morphism obtained by
composing &' — Op with the projection Op — Op,.

We claim that the locus of the extensions (*) inside the space V = @V;, for
which &£’ is not locally free, is given by v = (v1,...,v,) such that v; = 0 for some
1€{l,...,e}.

By Lemma A.11 in the Appendix, we have that £ is not locally free if and only
if there is y € {y1,..., ¥} such that the sequence (*) on stalks at {y} splits. If
in the commutative diagram (2.19) we look at the stalks at the point y = y;, we
get that the exact sequence (*) on stalks at y splits if and only if the short exact
sequence (2.18) on stalks at y splits. Since at all the other points of C the short
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exact sequence (2.18) on stalks splits, it follows, by Lemma A.12 in Appendix, that
the sequence (2.18) is split. Hence, v; = 0.

Denote by I'; the codimension 2 linear subspace
[ =P(&,%V;) CP(V).

Note that if D; = D — y; then T; 2 P(Ext;(Op,, €)).
Then the union
I':= Uf:lri

is precisely the locus of extensions (*) in P(V') for which £’ is not locally free.
Cleraly, if e = 1, then " = {). a

The locus of unstable extensions

We have the following result about the locus of extensions (*), where £’ is not
a stable vector bundle. Such an extension will be called an unstable eztension.

Proposition 2.19. For D € Sym*C and £ a rank 2 general stable vector bundle
on C with
det (£) = O¢(zo — D),

there etists a closed integral subscheme Ypg in P(Vpe) \ I'pg corresponding to
estensions (*), with £ is an unstable vector bundle. The codimension of Yp ¢ is at
least 2. If e =1 then Ype = 0.

Proof. The idea is as follows.

The bundle £’ in the extension (*) is not stable if and only if there is a line
bundle £ on C of degree at least 1 and a non-zero morphism

h:L—E&.

Since we can take the saturation of £ in €', we can assume that the quotient is
torsion-free. Hence,we can assume that there is an extension:

0= L—E — L7 (zy) — 0.

Consider the commutative diagram:

0 > 0 - L —— L — 0
[ e
0 > £ y & » Op —— 0

where f : £L — Op is the morphism induced by composing & with £ — Op.
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Let K = ker (f). By the snake lemma, it follows that there is an exact sequence:
0= K — & — L (z¢) — coker (f) — 0.

If f =0 then K = L is a subbundle of £. Since £ is a stable bundle of degree
1 —e <0, we get a contradiction. Hence, f # 0.

Ifie{1,...,e}, we denote
Di=y1+...4%, Di=vyis1+...+ Yeq1-

Assume, without loss of generality, that there is ¢ € {1, ..., e} such that im (f) =
Op,. Then coker (f) = Op,. From the exact sequence

0—-K—=L—=0p, —0, (**)
it follows that K = L(—D;).
The injective morphism C — £ gives rise to an exact sequence:
0—=K—E— K (zg— D) —0.
We denote with u the induced morphism X' — £. There is a commutative diagram:

0 » K > L f>OD,.—>O

I

0 sy £ > &' y Op —— 0

The first exact sequence corresponds to the element (**) in Ext'(Op., K).
From 0 — Op, = Op — Op; — 0 we get:

0 — Ext!(Op,, K) = Ext'(Op, K) — Ext!(Op;, K) — 0.

The extension (**) can be regarded therefore as an element in Ext'(Op, K).
On the other hand, there is a canonical map coming from the injective map

K—E&:
Ext!'(Op, K) — Ext'(Op, €).

The key observation is that, by chasing diagrams, the extension (**) maps to
the extension (*) by the composition:

EXtI(ODi, ’C) — EXtI(OD,’C) — EXtI(OD,g)
Let f be some integer such that deg (K) = —f. We have
—f=deg (K) =deg (L) —i>(1—¢)
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Since £ is stable, we have

—f =deg (K) < degz(g) = 1;e < 0.

It follows that the line subbundle K of £ has degree — f, with f an integer satisfying:

-1
e—1§f>eTZO

We proved that £’ is unstable if and only if there are
i. an integer f such thate—1> f > &1
ii. an integer 7 such thate >1:>1
iii. a cycle D; C D of length
iv. a saturated line subundle K of £ with deg (K) = —f
v. an element (**) in Ext'(Op,, K)
such that (**) is sent to (*) via the morphisms:

Ext'(Op,, K) = Ext!(Op, K) — Ext'(Op,£.) (2.20)

Note that to give an injective morphism K — £ with torsion free cokernel is
the same as giving an extension:

0+K—>&— K zg—D)—0 (2.21)

The extension is unique up to multiplication with a scalar. Note that the middle
term of the extension in (2.21) is our fixed vector bundle £.

The idea is to use Lemma 2.39 from Section 2.5 to parametrize the data
(K, (%)), when we fix f, 7 in the given range and we also fix D; C D. We will use
Corollary 2.42 from the Section 2.5 to estimate that the dimension of this family
1s at most

g+@2f—-e+g—-1)—B9g-3)+i=2f—e+i—g+2.
Hence, the codimension in the 2e-dimensional space of extensions Vp ¢ is at least

(2e—1)—(2f—e—g+i+1)=3e—-2f —i+g—2=
2e—fl+(e—-i)+(g—2)>2+(9-2)>g>2

To make this precise, we fix an f in the rangee —1 > f > % and ¢ in the
range € > 1 > 1 . We fix one of the finitely many choices D; C D of a cycle of
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length 7 in our fixed cycle D. We effectively construct a parameter space for the
space of pairs (K, (¥*)) and count dimensions.

We fix an f in the rangee—12> f > % We let £ = O¢(zo — D) and consider
the projective bundle X constructed in Lemma 2.39 from the Section 2.5 and the
map « constructed in Corollary 2.42 from the same Section:

p: X =5 Pic/(C) and k:X\Z— M.

The space X parametrizes extensions (2.21), up to scalar multiplication.

Moreover, if A is a Poincaré bundle on Pic™/(C) x C, then there is a universal
sequence on X x C:

0= mO0x(1)®A—=G - A @me—0

where 7 and 7, are the projections from X x C onto X and C respectively.

The morphism « sends the extension (2.21) to the isomorphism class of £ in
Me. Let X¢ C X be the fiber of X at £ € M,. If for the given integer f the
morphism « is not dominant (it can happen! see comments after Corollary 2.42
from the Section 2.5), then Xz = ) and we are done. If « is dominant, then since
£ is general in Mg, it follows that

dim X¢ = dim X —dim M, =
g+ @2f—-e+g—-1)—Bg—-3)=2f—-e—g+2

Let D} = D — D;. Consider the following relative extensions sheaves on Xg:

F = €$t§(gx0|xg (m30p;, A), F = 573t§(,;x0|x5 (m3Op, Q)
f" = gxt%(EXC|Xg (W;OD“ A_l ® 7[';6) @ gmt%(g XC|X5 (W;OD:7 g)

Here A and G are restricted to Xg x C. We have an exact sequence:
0->F - F—F"—0.

The sheaves F', F and F" are locally free and if we restrict to {u} x C, where u
is a point in X given by an extension (2.21), we have:

‘7:1,1 = EthC(ODiaIC)a ‘,F’u = EXté}(OD’g)
_'F:LI = Extlc(ODi, IC_I(.’E())) D EXtIC(ODQ,g)

The injective morphism 7’ — F induces a closed immersion of projective bun-
dles P(F') — P(F) over X¢. Since G, = & for any u € X¢, we have that there is
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some line bundle M on X¢ such that
;> mE® M.

Then, if we let V = Vp ¢, we have:

F = Exty,  ox, (730D, G) T MV
There is a canonical isomorphism:
P(F) =2 Xe x P(V).

Let I' € P(V') be the closed subscheme from Lemma 2.18, of extensions (*) for
which £’ is not locally free.

The extensions in P(V) \ I' that have £ unstable are given by intersecting
P(V)\ T with the image of P(F') in P(V) via

P(F) CP(F) = Xe x P(V) — B(V).
Hence, the dimension of the locus of unstable extensions in P(V) \ I" is at most:
dim P(F') = dim (X¢) + dim Ext'(Op,,K) — 1 =
=02f-e—-g+2)+i—-1=2f—-e—g+i+1
As f < e and 7 < e we have that the unstable locus has codimension at least:
2—1)-(2f—e—g+i+1)=3e—2f —i+g—2=
=2(e-fl+(e—9)+(9-2)>22+(9-2)>g>2

Note that|if e < (¢ — 1) then dim X < dim Mg, hence k : X \ Z — M cannot
be dominant.| If £ is general in M, it follows that if in the extension (*) &' is
-locally free, then £ is stable. We have Yp ¢ = (0. In particular, if e = 1 (D is equal
to a point), then we have I'p ¢ =0 and Yp ¢ = 0. O

Note about|{what £ “general” means in Proposition 2.19

Note 2.20. For each integer f in the rangee — 1> f > %1, we denote by X (f)
the projective| bundle X defined in Lemma 2.89 in Section 2.5. Hence, we have a
projective bundle:

X(f) = Pic™(C)
For each f, ¢t k(f) be the morphism k from Corollary 2.42:

£(f) : X(H\NZ(f) = M

In Proposition 2.19), if we let £ = O(zo — D), then by &£ general in Mg, we
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mean

i. & 1is not in the image of the map k(f) for those f for which k(f) is not
dominant

i. the fiber of the map k(f) at the point £ € M has dimension dim X(f) —
dim M, for those f for which (f) is dominant

The morphism D€ : ]P’(VD,g) \ ZD’g — M

Let D and &€ be as in Proposition 2.19. We denote by Zp ¢ the union I’ D,gUm,
where Yp ¢ is the closure of Yp ¢ in P(Vp ).

We would like to define a morphism np ¢ : P(Vpe) \ Zpe — M on the locus in
P(Vp ¢) which corresponds to associating to every extension (*) the isomorphism
class of the vector bundle £.

In order to define a morphism P(Vp¢) \ Zpeg — M we need to give a bundle
J on (P(Vpe) \ Zpe) x C, such that for any p € P(Vpg) \ Zp,¢ the bundle J, is
stable.

Lemma 2.21. For D and £ as in Proposition 2.19, there is a vector bundle J on
P(Vpe) x C and a universal ezact sequence

0—-¢O01)®¢pE—JT —¢0p—0 (2.22)

where q1, qz are the projections onto P(Vp ¢) and C respectively. It has the property
that its restriction to {p} x C is an extension

0=2+&—-J,—>0p—0
which gives an element in Vp ¢ whose class in (P(Vpe) is p.
Proof. This is a particular case of the Lemma A.1 in the Appendix. We take

S = Spec(C), T = &, V = Op. We have that Hom(Op,&) = 0, so all the
conditions in Lemma A.1 are satisfied. It follows that there is an extension:

0—-¢O01)®qeE—JT —q¢0p—0

Corollary 2.22. For D and £ as in Proposition 2.19, there is a morphism:

mpe :P(Vpe)\ Zpe -+ M (2.23)

such that for anyp € (P(Vpe)\ Zp,e, we have that npg(p) € M is the isomorphism
class of the stable bundle on C which is the middle term of an extension in Vpe
corresponding to p € P(Vpg).
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Proof. From Proposition 2.19,ifp e P(Vpe)\ Z D&, the vector bundle Jp is stable.
By the definition of the moduli scheme 3/ , there is an associated morphism Np.e
corresponding to the restriction of 7 to P(Vpe)\ Z DE- O

Let o € H?(M; Z) and 8 ¢ H'(M;Z) be the classes defined in 1.6. We have
the following lemma.

Lemma 2.23. fyr p and & as in Proposition 2.19, the morphism
D¢ : P(VD,‘:;) \ ZD,g - M

has the property that "pe(@) = (2e)h and Mp.e(B) = 4h2?, where b, 45 the Poincaré
dual to the Jundamental clgss of a hyperplane in P(Vpe).

Proof. Let’s denote 1 = Vb and 5 = Mpe. Let {H} e AYP(V)) be the class of a
hyperplane in P(V). The Chern classes c1(J) and ¢y(J ) in A*(P(V) x C) can be
computed from the exact sequence (2.21) as:

a(J) =2{H} x C+P(V) x {zo}, (7)== {H} x ({zo} + D). (2.24)

It follows that if f e HZ(C) is the positive generator, then

AP(T) = 2h + f e B3 (P(V) x ), &P(T) = (I+ehrefe HY(P(V) x C).

uw:HAP(V) x C) — HYP(V)), - HY(P(V) x ) H(P(V))
w:H(P(V) x C) - HY(P(V))

It follows that

u(@™(7)) = 25, U (T)) = (14 e)h, w(e™®(T)?) = 4n?, w(e;™(J)) =0

Then from the formulas 1.10, we have:

(@) = 20 () — u(cr () = (2e)h
) = w(e™(7)? - 4do® () = 42

This proves the lemma. O



Note 2.25. If we let Jo = (np ¢ xd)* Uy, where Uy is the rigidified Poincaré bundle
and J 1is the universal bundle on P(Vp¢) x C of (2.21), then

Jo=J ® ;O(e).

Proof. Let V.= Vp¢ and n = np ¢. Since both J and Jy correspond to the same

morphism 7, it follows that there is an integer m such that
J = JO ® ql*O(m)
Since c1(Uonrxz}) = O(O), by Corollary 2.24, we have

ci(Jop(vyx{z}) = (2e){H}
where {H} € A'(P(V) is the class of a hyperplane. Since by (2.24)

cai(Tpvyxiay) = {H}
1t follows that m = —e.

Note that the bundle Jj sits in an exact sequence:

0—q;O(1+e€)®qE — Jo— ¢iO(e) ® ¢;(Op) — 0. (2.25)

A group action on P(Vp ;)

For any D € Sym®C we have a torus group Tp, acting on Vp ¢, given by

Aut (Op) = HY(D, 0%).

If A\ € H(D,0%), we have a commutative diagram:

0 y £ y £ » Op — 0
oo =L =]
0 y £ y £ sy Op —— 0

If D is made of distinct points, then Tp = (Gy,)
The automorphism group of £ also acts on Vp¢. Let Hg be this group. If £ is

stable, then Hg = G,,,. Note that since in both actions scalar multiplication gives

the same action, we define:
Gpe =Tp Xg,, He
The group Gp ¢ acts on Vp ¢ and P(Vp ¢), without changing the isomorphism
class of the middle term £’. Hence, the action preserves the locus Zp ¢ C P(Vp ).
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2.3.2 Global construction

Let e > 1. We would like to let D vary in Sym®C and & vary among the rank
9 stable vector bundles on C such that det (£) = O(zo — D) and construct a space
that parametrizes pairs (D, €, (x)), where (*) is an extension in Vpg.

Consider the morphism

w: Sym*(C) — Picl¢(C), given by D+ Oc¢(zo — D)

Let M(2,1 — e) be the moduli scheme of rank 2 vector bundles on C with
determinant of degree 1 — €. We have the determinant map

det : M(2,1—¢€) — Pict~¢(C).

The moduli scheme M(2,1— e) is the geometric quotient of a projective integral
scheme M (2,1 — e) by the action of an algebraic group PGL(r), for some integer
r. Let the quotient map be:

rM(@2,1—¢ — MQ2,1- e) (2.26)
Denote by det the composition (det ) o 7
Tt : M(2,1 —€) = Pic'*(C).
Define P to be the fibered product in the following diagram
P —— Sym°(C)

| B (2.27)

M(2,—e) — Pic’*(C)
det

Then P parametrizes pairs ¢ = (D,&,1), where D € Sym°C, £ is a rank 2
stable vector bundles on C such that det (&) = O(zo — D) and g is an element in

T ({€})-

Lemma 2.26. There is a projective pundle p : X = P such that for any ¢ =
(D,&,t) € P, the fiber p~L({¢}) is canonically isomorphic to P(Vpg) = p2e-1,

Proof. Let W be a Poincaré bundle on M(2,1—e) x C. Note that such a Poincaré
bundle exists, regardless of the parity of e. Define the divisor A € Sym®(C) x C
to be the universal scheme coming from D € Sym®(C).

Let Wp be the vector bundle on P x C coming from W and let Ap be the
universal subscheme Ap C P x C coming from A.

Define on P the relative extension sheaf

S = git}’xClP(OAP’ WP)
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Note that if we let m, : P x C' — P to be the first projection, we have:
S = WI*(WP(AP)AP)-

Consider the projective bundle p : P(S) — P. Let X = P(S). Then for any
¢=(D,é&,g) € P, we have:

Sigy = Vpe 2 H({C} x C,E(D)p) and p'({¢}) X P(Vpy)
O

In a similar way as in 2.1.2, we have that the projective bundle X from Lemma
2.26 depends on the Poincaré bundle W on M (2,1 —e) x C. f W = W Q M,
where M is a line bundle on M(2,1 — e), and we consider a projective bundle
X', constructed as in the proof of Lemma 2.26, using the Poincaré bundle W', it
follows that we have an isomorphism of projective bundles over P:

¢:X — X', such that ¢*O(-1) = O(-1) ® p*(M)>. (2.28)

Let vy, v, be the two projections from X x C. In the following Lemma, W is
the Poincaré bundle on M(2,1 — €) x C from the proof of Lemma 2.26, used to
construct the scheme X.

Lemma 2.27. There is a universal extension on X x C:

0 vj0x(1) @ p"Wp = J — p*Os, — 0. (2.29)

It has the property that, when we restrict to {z} x C, where x € X 1is a point and
we let ( = p(z) € P, with { = (D, &, g), we get an ezact sequence:

02— Jp— Op—0
which corresponds to an element in Vp ¢ = Ert;,(Op, £), whose class is T in
P(Vp,e) = p~ ' ({¢}):

Proof. This is another application of Lemma A.l in Appendix. We take S = P,
T:Wp andeOAP. O

The locus of not locally free/unstable extensions

Let W be a Poincaré bundle on Sym®(C) x C and let p : X — P be the
projective bundle over P constructed in Lemma 2.26.

Lemma 2.28. The locus of not locally free extensions in X is a closed subscheme
I' € X of codimension 2 if e > 2 and empty if e = 1. The locus of unstable
ectensions in X \ ' is a closed integral subscheme Y C X \ T of codimension at
least g. Ife =1, then Y = 0.
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Proof. Consider the universal extension 2.29 on X° x C:

0— }Ox(1) @ p"Wp = J — p*Oap, — 0. (2.30)

Let I' C X be the locus of not locally free extensions in X. This is precisely the
locus of £ € X for which J; is not locally free. This is a closed subset of X.

If ¢ = (D,€&,g) € Pthen I'Np~!({(}) is the locus in Lemma 2.18 corresponding
to not locally free extensions:

Tpe CP(Vpe) = p~ ({C}-

By Lemma 2.18, I'p ¢ has codimension 2 in P(Vp¢) ife > 2and I'pe =0ife = 1.
Since this is true for any ¢ = (D, €, g) € P?, it follows that I' C X has codimension
at least g and if e = 0, then Z = (). O

Note that one can make a construction of the locus of not-locally free extensions
by globalizing to X the constructions in the proof of Lemma 2.18.

Proposition 2.29. The locus of unstable extensions in X \ ' is a closed integral
subscheme Y C X \ T of codimension at least g. If e =1, then Y = 0.

Proof. In a similar way as in Lemma 2.28, we let Y € X \ T be the locus of
unstable extensions in X \ I'. This is precisely the locus of z € X \ T for which 7,
is unstable, where J is as in (2.30). By Fact 1.9, this is a closed subset of X \ I.

If ( =(D,&,g) € Pthen Y Np~'({C}) is the locus corresponding to unstable
extensions:

Ype CP(Vpe) \Tpe CP(Vpe) = p~ ' ({¢}.

By Lemma 2.19, for points ¢ = (D, &,t) in a dense open P° C P (for each D, £ is
general in the sense of Note 2.20), Yp ¢ has codimension at least g in P(Vp £)\T'p ¢
ife>2and I'pg = 0 if e = 1. However, this is not enough to prove that Y has
codimension at least g. We have to explicitly identify Y. We will use the proof of
Proposition 2.29.

Let f be in the rangee —1 > f > e—;l and ¢ in the range e > ¢ > 1. Note

that it is enough to make the construction for i = e — when we obtain the maximal
possible dimension for the unstable locus, see (2.20). So we assume that i = e and
D; = D in (2.20). Consider the fiber product (see (2.27)):

P —  Sym°®C

! !

M(2,1—¢) —2 Picl—(C)
Consider the morphism (2.45):
RiX\Z— M21—e),
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where X is a projective bundle over Pic™/(C) x Pic!~¢(C). Consider the fiber

product:
S — P

l l
X\Z —25 M(2,1—¢)
Then S parametrizes pairs (D, £,t, K) such that
i. D€ Sym*C
ii. £ is an element in M(2,O¢(zo — D))
iii. ¢ isin the fiber of 7 at £ (see (2.26))
iv. K is a saturated line subbundle of £, of degree — f

Let A; and A, be Poincaré bundles on S x C coming from Pic™/ (C) x C and
from Pic'™¢(C) x C. Consider the universal extension (2.43) pulled back to S x C:
0—>A1®Ox(1)—)H—)A1_1®A2—>O

Let A C 8 x C the universal subscheme coming from D € Sym®(C). Consider
the following relative extension sheaves on S:

F zxgxté'de(OA’Al)’ F= ‘c"zt}&'xClS(OA7H)
f” = gl‘t‘lng'S(OA, Al_l ® .A2)

If s=(D,€&,t,K) € S then we have:

.7:; = Extlc(OD,IC), .7:3 = EXtIC(OD,g)
F!' = Ext(Op, K™ (wo)

The data (2.20) (which makes £ unstable) is parametrized by P(S’). Note that
F',F and F" are locally free, sitting in an exact sequence:

0>F 5 F->F">0

The injective morphism F' — F induces a closed immersion P(F’) — P(F) of
projective bundles over S. Since if s = (D,&,t,K) € S, then H; = £, it follows
that

HEWRM

where W is a Poincaré bundle on S x C coming from M (2,1 —e) x C, and M is
a line bundle on S. It follows that

P(F) = S xp X
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The unstable locus is given by taking the image (for every integer f) of P(F') in
X via
P(F)—=>P(F)=SxpX — X.

Computing dimensions as in the proof of Proposition 2.19, it follows that the
unstable locus has codimension at least g. O

We let Y to be the closure of Y in X and define:
Z=TuYCX (2.31)

Corollary 2.30. There is a morphismn : X \ Z — M which restricted to the fiber
of p: X — P gives ezactly the morphism npe : P(Vpg) \ Zpe — M defined in
Corollary 2.23.

If W' = W ® M is another Poincaré bundle on M(2,1—e) x C, where M is a
line bundle on M (2,1 — e), consider the isomorphism (2.28) of projective bundles
over P :

6: X = X',

Let Z C X and Z' C X' the loci (2.31), coming from Lemma 2.28 and Proposition
2.29. Consider the morphisms defined by Corollary 2.30:

n:X\Z-M 17:X'\Z ->M

Then there is a commutative diagram:

X\z 25 x'\ 7
nl ln’ (2.32)
M — M

Group actions on X

Let P be the scheme defined in (2.27). There is a group scheme T' — P such
that at ( = (D, £,t) € P the group T is canonically isomorphic to Tp and it acts
as in (2.3.1). We have that T acts on X.

Let G’ be the group acting on M(2,1 — e) giving M (2,1 — €) as a geometric
quotient. Then G’ acts on P, and therefore on X.

Since scalar multiplication of extensions appears in both the action of T' and
G', we define:

G=T xg, G (2.33)

We have that G acts on X and, as we remarked in (2.3.1), it preserves the not
locally free/unstable locus Z.
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2.4 Rational curves coming from extensions of
rank 2 bundles by skyscraper sheaves

Let D € Sym®(C) and £ a general rank 2 stable vector bundle on C such that

deg (£) =2 O¢(zo — D) (2.34)
Consider the morphism (2.23):
noe :P(Vpe)\ Zpe =+ M
The main observation is that for any integer n > 0 and any morphism:

g:P' 5 P(Vpe)\ Zpe such that g*0(1) =2 O(n)

we get a rational curve f = nog: P! — M of degree 2en.
2.4.1 The loci N(e,n) in My(M, 2en)

For k > 1 let My(M, k) be the Kontsevich space 1.1.1.
Proposition 2.31. Let e and n be integers such thate > 1 andn > 1. There exist
integral closed subschemes N(e,n) C Mo(M,2en) such that a general element of
N(e,n) is a morphism f : P! — M obtained by a composition:
P! —2 P(Vpe)\ Zpe — M (235)
where (D, ) are as in (2.84) and ¢g*O(1) = O(n).

Proof. Let W be a fixed Poincaré bundle on M(2,1 — e) x C and consider the
projective bundle X of Lemma 2.26:

p: X — P.

Let [I] € Hy(X; Z) be the class of a line contained in a fiber. Note that a morphism
f:P — X, representing the class n[l], lies in a fiber of p. Consider the Kontsevich
space Mo(X,n[l]). By Fact 2.13, there is a morphism:

m: Mo(X,n[l]) > P

such that for ¢ = (D, £,t) € P the fiber 7~1({(¢}) is isomorphic to Mo(P(Vp¢),n)
The scheme M (X, n[l]) is integral and it has the expected dimension by Fact 2.13.

Since the locus of not-locally free or unstable extensions Z C X has codimension
at least g > 2, it follows that we have that the morphism

n:X\Z->M

66



induces a rational map between the corresponding Kontsevich spaces:

U : Mo(X,n[l]) -+ Mo(M, 2en) (2.36)
Note that, since 7 depends on a Poincaré bundle W on M (2,1 — e) x C, it follows
that ¥ depends on W.

Define the closure of the image of the morphism ¥ to be:
N(e,n) C My(M, 2en).

By taking N (e, n) with the induced reduced structure, we have that N(e,n) is an
irreducible closed subscheme of My(M,2en). Note that N(e,n) does not depend
on the Poincaré bundle W (see (2.32)). O

Theorem 2.32. The closed subschemes N(e,n) C My(M,n(2e+ 1)) have dimen-
sion
dim N(e,n) = 2en + 2e + 3g — 6.

Their MRC fibration is given by a rational map:
p: N(e,n) --» Pic'¢(C)
The map p associates to a rational curve f which is a composition as in 2.35, the

line bundle O(zo — D) € Pic'"¢(C). The map p is surjective if and only if e > g.

Proof. Consider the projective bundle p : X — P of Lemma 2.26 and consider the
morphism 2.36, induced from the morphism (2.30) n: X \ Z —» M:

U Mo(X, n[l]) --+ My(M,2en)

We find first the dimension and the MRC fibration of M (X, n[l]). Recall that
P is defined as the fiber product:

P — Sym*(C)

| K (2.37)

M(2,1—e) 2 Pict=(C)

where 7: M(2,1—¢e) = M(2,1 — e) is a geometric quotient by the action of some
group G' = PGL(r). Let N = dim G'. Then the fiber of 7 at a point in M (2,1 —e)
is the orbit of that point by the action of G'. If the point is corresponding to stable
bundles £, then the dimension of the orbit is the dimension of G'. We have:

dim P = dim M(2,1 — e) + dim Sym°C — dim Pic'~¢(C) =
=dim M(2,1-e)+dim G =(49-3)+N+e—g=3¢g—3+N+e
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Since X is a P?*~!-bundle over P, by Fact 2.13, we have
dim Mo(X,n[l]) = dim P+ (2e)(n+1) —4=2en+3e+39g+N -7
By the same Fact 2.13, there is a morphism:
m: Mo(X,n[l]) = P

with fibers isomorphic to Mo(P?¢~!,n). By Fact 2.12, the fibers are rational pro-
jective integral schemes. Let 6 : P — Pic'~(C) be the morphism from (2.37) and
let o be the composition:

o Mo(X,n[l)) —— P —— Pic!™¢(C)
Let & € Pic'~¢(C) be a point which is in the image of the morphism
u : Sym®C — Pic'~¢(C).
The fiber of € at the point £ is isomorphic to:
M(2,€) x P(H’(C, L))

where M(2,£) is the preimage M(2,£) via 7 (see (2.26); in particular, M (2,§)
is a geometric quotient of M(2,£) by the action of G'. The scheme M(2,¢) is
unirational, for any &. Therefore, M(2,€£) is unirational. Since all the fibers of 7
are rational, it follows by Fact 1.6 that the fibers of ¢ are rationally connected and,
therefore, o gives the MRC fibration of M (X, n[l]).

We will analyze now the general fiber of . Let f be a general element in
N(e, n), given by a composition as in (2.35):

P! —2 P(Vpe)\ Zpe —59 M

where D € Sym®C, £ is a general element in M(2,£) and g is has the property
that ¢g*O(1) =2 O(n).
Recall that we defined a group scheme over P:

G= Tp XGm G

Note that the action of G on X (see (2.33)) induces an action on the automorphism
free locus in My(X,n[l]). We prove that the fiber of ¥ at f is given by the orbit
containing g. Note that for f general (hence, for general D and £) the orbit is

(Gn)® %g,, G-
It follows that the general fiber of ¥ is (N + e — 1)-dimensional and we have:
dim N(e,n) = dim Mo(X,n[l]) = (N +e—1) =2en+2e+ 39 —6
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Moreover, since G' = PGL(r), it follows that the general fiber of ¥ is rational. By
the universal property of MRC fibrations, it follows that the morphism o factors
through N(e,n), i.e., there is a morphism

p: N(e,n) --» Pic'*(C) such that po¥ =0

Since the general fiber of p is dominated by a fiber of o (rationally connected), it
follows that p gives the MRC fibration of N(e,n).

Let’s prove that if ¢’ is another element in the fiber ¥ at f, then ¢’ is in the
same orbit as g for the action of G on My(X,n[l]). We have ¢ : P! — X\ Z. If
nog' and f represent the same stable map in My(M, 2en), there is an isomorphism
i : P! — P! such that

nogop=nog.
Let h = ¢’ o u. Then we have
noh=mnog.

We prove that h is in the orbit of g by the action of G. Assume ¢’ lies in the
fiber of p at the point ¢’ = (D', €',t') € P. By Proposition 2.33, it is enough to
prove that D = D' and £ = £’. Then t' is in the orbit of ¢ by the action of G,
and if £ is stable, then this orbit has dimension dim G’ = N. Then the orbit of
g in My(X,n[l]) is given by the union (over the elements in the orbit of ¢ by the
action of G’ on P) of the orbits of g by the action of G on M(P(Vp¢),n[l]) and
the theorem follows.

We prove now that D = D’ and £ = £’ We have that the following two
morphisms are equal:

P — P(Vpe)\Zpe —25 M
P! — s P(Vpg)\ Zpr e 255 M

Let deg (¢') = m and deg D' = d. Since no g = 7' o ¢’, we have that
deg (f) = 2ne = 2md.

If Uy is the rigidified Poincaré bundle on M x C, we let Fy = (f x id)*U,. Since
nog=n'og, we have:

Fo = (g x1id)*(n x id)"Uy = (¢’ x id)*(n' x id)*Up.

From (2.25) we get that there are exact sequences:

0 — piO(n + ne) @ py€ — Fo — p;O(ne) ® psOp — 0
0 — piO(m + md) ® p3€' — Fo — p;O(md) ® p5Op — 0.
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Note that since ne = md, there are no non-zero maps O(n + ne) — O(md); hence,
by Lemma A.5 in the Appendix there is a commutative diagram with all the vertical
morphisms isomorphisms.

0 —— piO(n+ne) @ p3€ > Fo > piO(ne)®psOp —— 0

0 —— piO(m+ md) @ p3&’ y Fo » p;O(md) @ piOp —— 0
(2.38)
It follows that n = m,e=d, £ £ & and D = D'. |

Proposition 2.33. Let f : P! — M be a morphism given by a vector bundle F
which sits in an ezact sequence

0 — piO(n) ®py€ - F = p30p — 0. (2.39)
with D € Sym®(C) and € a rank 2 vector bundle with

det (£) = O¢(zo — D).
Then there is an integer n > 0 and a morphism
g:P' s P(Vpe)\ Zpe, suchthat ¢*O(1) = O(n)

and f =7pg 0 g:
P! —2 P(Vpe)\ Zpe —=55 M

The morphisms g with this property form an orbit for the action of G on

MO (]P(VD,g), n)
Proof. Let (v) be the universal extension (2.21):

0—-q01)®q€é —JT —q¢0p—0. (v)
Let V.=Vpe, Z = Zpe. We apply Lemma A.2 in Appendix for V = Op and
T = &€ to get that there there is a unique morphism
g:P' - P(V) suchthat g¢*O(1) 2 O(n)
such that the extension (2.39) is a multiple scalar of the extension (g*v), where
(g*v) is the pull back of (v) by g:
0 — pjO(n) @ ps€ - F — p30p — 0. (g*v)

We note that g has image in P(V') \ Z (see Lemma A.2).
It follows from the fact that (2.39) and (g*v) are scalar multiples of each other
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that there is an isomorphism
F = (g xid)J.

Since F determines the morphism f and (g x ¢d)*J determines the morphism nog,
it follows that f =nog.

The action of the group scheme G on X restricts to the action of the group T
on P(V). For example, if D is made of distinct points, then T = (G,,)¢ acts on
P(V) as follows:

(/\1, ey /\e).(l'l, R ,$2e) = ()\1..’1,'1, )\1..’1}2, )\2.1'3, /\2..’1,'4, ey /\e..’rze_l, )\e..'L'ge).

This action induces an action on the auomorphism free locus My(P(V),n) of
Mo(B(V),n) by :

T x My(P(V),n) — My(B(V),n)
(A, 9) = gx, where gx(p) = A\.g(p)

We prove that g, has the properties in the proposition. It is clear that g;O(1) &
O(n), since the action of A € T on P(V') gives an isomorphism of P(V). We prove
that g) has the property that f = 5o g,. Consider the pull-back of the universal
sequence (v) by gy:

0 = piO(n) @ ps€ — (gr x id)*T — p;0p — 0. (g3v)
Note that T acts as well on the space of extensions
W = Extp1, c(p;0p, p10(n) ® p3€) = &7, Exty, o(p30y,, p;O(n) ® p3€)

where D = y; +... 4+ y.. If the points are distinct, then the action is by compo-
nentwise multiplication.

By the definition of gy, it follows that the extensions g{v and \.(g*v) are scalar
multiples, when restricted to {p} x C. It follows that there is a line bundle M on
P! such that

(gr xid)*"T 2 F M.

Since (gx x id)*J induces 7o g5 and F induces f, we have f = o g\. In fact, one
could prove that M = O just by analizing the two extensions giv and \.(g*v) and
using arguments as in (2.38). It follows that giv and \.(g*v) are scalar multiples
of each other.

We prove now that any morphism ¢’ : P! — P(V), such that ¢"*O(1) = O(n)
and no g’ =nog = fis a morphism gy for some A\ € T. Consider the extension
(9""v) obtained by pulling back by g’ the universal extension (v):
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0 — p;O(n) @ p3€ = F' — p30p — 0. (g""v)
where F' = (¢’ x id)*J. Asnog =mnog, we have

(g x id)*(n x id)*Up = (¢' x id)*(n x id) Up.
Recall from (2.25) that if Jp = (7 x id)*Up then Jp = J ® qfO(e). Hence,
F'=(¢ xid)*J = (g x1d)*T = F.
From Lemma A.5 in Appendix it follows that there is A € T such that
(9"v) = A(g"v)
Since (giv) = A.(g*v), it follows by Lemma A.2 that g’ = g». d
Note 2.34. The ezpected dimension of Mo(M,2en) is:
2n(2e + 1) + 3g — 6.

The dimensions of the subschemes M(e,n) are as follows:

i. dim N(e,n) = expected dimension if and only if n =1

. dim N(e,n) < ezpected dimension if n > 1
2.4.2 The nice component of My(M, k) for k even

In this subection k will be an even integer, k¥ = 2e, with e > 1. For each
D € Sym®(C) and £ stable rank 2 vector bundle with det (£) = O(zo — D), we
have the morphism (2.23)

npe : P(Vbe) \ Zpe such that 7y © = O(k)

Theorem 2.35. There is a nice irreducible component M of the moduli space
My(M, k). By nice component, we mean:

i. 9N has the expected dimension
ii. A general point [f] € 9 is obtained as a composition:
P! —2 P(Vpe)\ Zpe —5 M

where D € Sym™¢(C) and £ is a rank 2 stable vector bundle on C with
det (£) =2 Oc(zo — D) and g*O(1) = O(1)

ii. A general point [f] € 9 is an unobstructed point of My(M, k)
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w. The MRC fibration of 9 is given by a map
M --» Pic'~¢(C)
which sends the point [f] € M to Oc(zo — D) € Pic™¢(C)

Proof. Consider the closed subscheme N(1,e) C My(M,k). We claim N(1,e) is
an irreducible component that satisfies all the conditions in the Theorem. By
Proposition 2.31, a general point [f] € M (e, 1) is obtained as a composition:

P! 5 P(V)\Z: —> M

where £ € Pic™*(C) and ¢*O(1) =2 O(1).
By pulling back the universal sequence (2.21) by f, it follows that the morphism
f is given by a vector bundle F on P! x C, which sits in an exact sequence:

0 — piO(l) ® p3€ — F = p;0p — 0.
It follows that for any x € C, we have that the bundle F, has balanced splitting
F.20(1)®O0.

It follows from Lemma 1.11, that f is an unobstructed point in My(M, k). Hence,
[f] is contained in a unique irreducible component of My(M, k) which also has
the expected dimension. Since N(e, 1) is an irreducible scheme of the expected
dimension (see Note 2.34), it must be the unique irreducible component containing
[f]- Part iv. follows from Theorem 2.32. O

2.5 Some generalizations for the case of M;

In this section we make constructions similar to the ones in Section 2.1 for the
case of moduli spaces of semistable, rank 2 vector bundles with fixed determinant
of arbitrary degree d.

2.5.1 Extensions of line bundles

We are using the same ideas as in Section 2.1. There are minor modifications
due to the fact that the moduli space is not fine in the case when d is even.

Let & be a line bundle on C of degree d, where d is a fixed integer. Denote by
M¢ the coarse moduli scheme of isomorphism classes of semistable vector bundles
of rank 2 and determinant isomorphic to . Recall that M, is a projective integral
scheme of dimension 3¢ — 3.

73



Let e be an integer such that e > —% and let £ € Pic™¢(C). Consider extensions:

0 Lo>ESLIR®E—D. (*)

Then £ is a vector bundle of rank 2 and such extensions are classified by the

vector space
V. =ExtL(L'®¢&, L) 2 HY(C, L2 0 &Y.

By Riemann-Roch, V is a vector space of dimension
i (2e+d)—1+g=2¢e+d+g—1,ife>—-%orife=—%and L2®&! # O¢
iit. 2e+d+g,ife= —g and L2 ® £ 2 O¢

Clearly, any two nonzero elements v,v' of V; which differ by a scalar define
isomorphic vector bundles £. Therefore the isomorphism classes of non-trivial
extensions as above are parametrized by the projective space P(V}).

The locus of unstable extensions

Let e > —%. An unstable extension is an extension (*) for which £ is unstable
(neither stable, nor semi-stable). A non-stable extension is an extensions (*) for
which £ is not stable.

Proposition 2.36. For each L € Pic *(C) there are closed integral suschemes Z
and Z} such that
Zr C Zy CP(Vg)

corresponding to the unstable, respectively non-stable extensions.

i. Ifdis odd then Z; = Z} has codimension at least g.

. Ifd is even, then Z has codimension at least (g+1) and Z. has codimension
at least (g — 1).

In both cases, when e = [92] —d, we have Z; = 0. If d is even and e = ~4, then
the non-stable locus Z, is the whole P(Vy).

Proof. The idea is the same as in the proof of Proposition 2.1. We analyze first
the non-stable locus Z,. If e = —%, it follows immediately that Z is the whole
P(V).

Assume e > —%. The bundle £ is not stable if and only if there exists a line
bundle £’ on C of degree [4] and a non-zero morphism

L = E.

Then the morphism £’ — £7! ® £ is non-zero as well. This is because there is no
non-zero morphism £ — L as

deg (L) > = > —e =deg (L).

N Q.
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Therefore, it follows that there is some effective divisor D on X of degree e+d— [%]
such that
L'~ L7 QE(-D).

Let &£’ be the kernel of the composition
ESLT®ES LT
Then there is a commutative diagram with the two horizontal sequences exact:

0 — & — £ — L7'®{p — 0

! l ! | l

0 — L7'®&(-D) — L7'Q®¢ —— L7'@&p —— 0
Using the snake lemma, we get an exact sequence
0> L—>E = LT'®E-D) 0. (2.40)
From the commutativity of the previous diagram the following composition is zero:
LT'QE-D) > E->LT®Ep.

We get that £7! ® £(—D) maps to the subbundle £’ of £. By chasing diagrams, it
follows that the exact sequence (2.40) is split.

Denote V' = V.. We conclude that the vector v € V corresponding to an
unstable vector bundle £ is in the kernel of the surjective map

VHY(C,L2® €Y = HYC, L2 ¢7Y(D)).
From the long exact sequence coming from
02 LT'@ELTTR®ED) = L' ®ED)p — 0,
by applying Extg(—, £), we get that
0—HYC,L2® &1 (D))p) = HY(C, L2@¢7!) = HYC, L2 @ £71(D)) — 0.
Therefore the non-stable extensions in V form a
limetd— [%1

dimensional linear subspace for each D effective divisor of degree I. If we let D
vary in Syml(C’) we get that the locus of non-stable extensions in V is at most
2l-dimensional. Hence, the codimension of the non-stable locus is at least:

d
(26+d+g—1)—2l:2[§]—d+g—1.
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If d is odd, then the codimension of the nonstable locus (which is the same as the
unstable locus) is at least g > 2. Note that in this case, when [ = 0, so

d 1-d
e=[51-d=-—°

the locus Z; is empty. If d is even and e > —% then the codimension of the
non-stable extensions Z; is at least g — 1 > 1.

Analyze now the unstable locus Z, for d even. Let e > —g. By a similar
argument, the bundle £ is not semistable if and only if there exists a line bundle
L' on C of degree g + 1 and a non-zero morphism £ — £. Then the morphism
L' — L7 ® £ is non-zero as well. This is because

d
deg (£') = 3+ 1> deg (L) = —e.
We see that £' = L7 @ £(—D) for some effective divisor D on X of degree

d
l:= ——1
e+2

Following the same arguments, we have that the locus of unstable extensions is at
most 2/-dimensional. Hence, the codimension is at least:

(2e+d+g—1)—20=g+12>3.

Note that when [ =0,s0e=1— g, Z is empty. O
The morphism «,: P(V;)\ Z; > M

We would like to define a morphism . : P(V:)\ Z; — M on the locus in P(V;)
which corresponds to associating to every extension (*) the isomorphism class of
the vector bundle £. We use the same ideas as in Section 2.1.

We have the following lemma.

Lemma 2.37. For each L € Pic *(C), with e > —%, there is a vector bundle G
on P(V;) x C and a universal ezact sequence

00O GLG = ¢G(LT®E =0 (2.41)

where qi1, gy are the projections onto P(V;) and C respectively. It has the property
that its restriction to {p} x C is an extension

0 LG, —>L1'®E—0

which gives an element in V; whose class in P(V;) is p.
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Proof. This is a particular case of the Lemma A.1 in the Appendix. We take
S =Spec(C), T=L,V=L"'®E). We have that Hom(L™' ® £),£) =0 as

deg (L7'®&)) =e+d> —e=deg (L).

So all the conditions in Lemma A.1 are satisfied. It follows that there is an exten-
sion with the required properties:

0= qilO()RGL -G - ¢3 (LT ®E)) =0

Corollary 2.38. For each L € Pic”¢(C), with e > —g, there is a morphism

K @ ]P(V[,) \ ZL - M{
such that for any p € P(V;), we have that k(p) € M is the isomorphism class of
the stable bundle on C which is the middle term of an extension in V corresponding
top € ]P’(V[;)
Proof. From Proposition 2.36, if p € P(V;) \ Z, the vector bundle G, is stable.

By the definition of the moduli scheme M, there is an associated morphism &,
corresponding to the restriction of G to P(V;) \ Z. O

When is the morphism «, : P(V;) \ Z; — M, dominant?

We have dim M; = 3g — 3. If e > —4 then dim P(V;) =2e+d+g — 1.

i. Ife<(g—(d+1)/2), then k is not dominant by dimension considerations.

ii. Ife> (g —(d+1)/2), then k is dominant, by the same ideas as in Section
2.1.

Note that this proves that M, is unirational.
2.5.2 Global Construction

This will be identical to Section 2.1.2. We will just give the statements and
point out some of the differences that appear.

The space of extensions of line bundles

For a fixed integer d, let £ € Pic?(C) be a fixed line bundle.
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Lemma 2.39. For e > —% there is a projective bundle p : X — Pic®(C) such
that for any L € Pic (C), the fiber p~*({L}) is canonically isomorphic to P(V;).
The space X is a P?¢t4+9-2_pundle.

Proof. Let A be a Poincaré bundle on Pic™*(C) x C. Let 7, 75 the two projections
from Pic™*(C) x C. Define on Pic™¢(C) the relative extension sheaf

S = gxtll:'ic_e(C)XCIPic_e(C) (A_l &® W;OC ® f? A)

Then S is locally free (we use here that e > —£) and we let X = P(S). O

We have
dim X =2e+d+2g—-2

Note that if e = —%, by defining S as in the previous proof, we get a sheaf
whose fiber jumps at special points in Pic™*(C) x C.

The projective bundle X depeds on he Poincaré bundle .A. Everything in Note
2.11 applies in this case.

Let vq, v5 be the two projections from X x C. We have the following lemma.
Lemma 2.40. Fore > —g, there is a universal extension on X x C:

0 }0x(1)®p"A—=G—=p (A Qe —0.

It has the property that, when we restrict to {z} x C, where z € X and we let
L = p(z) € Pic ¢(C), we get an eract sequence:

0L—-G =2 L1ITRESD
which corresponds to an element in V., whose class in P(V;) = p~1({L}) is .
Proof. This is another application of Lemma A.l in Appendix. We take § =
Pic™¢(C), T = Aand V = p*(A)"! @ v3¢. 0O

The locus of unstable extensions

Let X be the projective bundle over Pic™¢(C) constructed in Lemma 2.39. We
use the same arguments as in 2.9 to prove the following lemma.

Lemma 2.41. For e > —%, the locus of unstable extensions in X is a closed

integral subscheme Z C X of codimension at least g. If d is even, the locus of
non-stable extensions has codimension at least g — 1. If e = [g] —d, then Z = 0.

Corollary 2.42. Fore > —g, there is a morphism k : X \Z — M which restricted
to the fiber of p: X — Pic™¢(C) gives ezactly the morphism 2.38

Kr . IP(V[,) \ Z[, — Mg.
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When is the morphism «: X \ Z - M; dominant?

We have dim X =2e+2g+d— 2 and dim M = 3¢9 — 3.

i. Ife<ig- d;—l then « is not dominant, by dimension considerations.

ii. Ife>%— % then « is dominant (see arguments in Section 2.1).

2.5.3 When the determinant ¢ varies
Putting together the spaces X when ¢ varies

Let e and d be integers such that e > —-‘21. We would like to construct a space
X for extensions:

0 LoE-LIRE—D, (*)

where £ varies in Pic™¢(C) and ¢ varies in Pic(C). The space X will be the union
of the spaces X constructed in Lemma 2.39, while we let £ vary in Pic?(C).

We denote V. ¢ = Ext (L' ®E, L).

Proposition 2.43. If e an d are integers such that e > —i;, there is a projective
bundle
p: X — Pic ®(C) x Pic*(C)

such that for every point (L, €) in the base, there is a canonical isomorphism
p—1({£,&}) =2 P(V;e)-

Proof. Denote S = Pic™¢(C) x Pic*(C). Let A; be the pull-back to S x C of a
Poincaré line bundle on Pic™*(C) x C and let A, be the the pull-back to S x C of
a Poincaré line bundle on Pic?(C) x C.

Define T to be the relative extension sheaf:

T = Extgos(ATT ® Az, Ar) (2.42)

Let X = P(7) and let ¢ : X — S be the corresponding projection. If ( =
(L£,€) € S, we have:

Te 2 Exti(L7 ® €, L) X HYC, L2@67Y).

Note that the space X depends on 4; and As,.
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Putting together the morphisms « when ¢ varies

Let p;, p2 the two projections from X x C.
We have the following lemma about the locus of unstable (and non-stable)
extensions. The method of proof is as in Proposition 2.36.

Lemma 2.44. For e > —g, the locus of unstable extensions in X is a closed

integral subscheme Z C X of codimension at least g. If d is even, the locus of
non-stable extensions has codimension at least g — 1. If e = [g] —d, then Z = .

Let M(2,d) be the coarse moduli scheme of rank 2 semistable vector bundles
of degree d.

Corollary 2.45. For e > —%, there is a morphism k : X \ £ — M(2,d) which

restricted to the fiber of p : X — Pic™¢(C) x Pic*(C) at the point (L,£) gives the
morphism defined in Corollary 2.38:

K,[,S]P(VL)\Z[,—)ME

Proof. Using Lemma A.1 In Appendix, we have that there is a universal extension
on X x C:

0= ¢ A ®p0x(1) > H = ¢ (A'®A4A) =0 (2.43)
The bundle H gives the morphism:

B X\ 2 M(2,4d).
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Chapter 3

Moduli Spaces of Rank 2 Vector
Bundles on P! x ¢

Let C be a genus ¢ > 2 smooth projective curve. Fix a point z, € C and let
M = M(2,0¢(z0)) be the moduli space of rank 2 stable vector bundles on C with
determinant O¢(zy). We are interested in morphisms f : P! — M.

To give a morphism f is to give a rank 2 vector bundle on P! x C. Such a
bundle is unique up to tensoring with a line bundle from P!. Since there is a
rigidified Poincaré vector bundle ¢, on M x C, it follows that there is a unique
way of associating a rank 2 vector bundle on P! x C to [, by taking (f x id¢)*U,.
This gives a one-to one correspondence between rational curves of degree k on M
and rank 2 vector bundles on P! x C' with fixed Chern classes and satisfying a
stability condition. We will show that the irreducible components of the space of
rational curves Mor, (P!, M) are birational to moduli spaces of vector bundles on

P! x C.
To make precise this correspondence, we have the following lemma:

Lemma 3.1. Let k > 1 be an integer. There is a one-to-one correspondence
between morphisms f : P! — M of degree k and rank 2 vector bundles F on P! x C
with the following properties:

i. The Chern classes c;(F) € A (P! x C) and cy(F) € A*(P' x C) satisfy:
a1(F) = k{pt} x C+P' x {zo} and deg (co(F)) =k eZ (3.1)
u.  The bundle F, = Fiyxc on C is stable for any p € P.

Proof. Given f : P! — M of degree k we associate to it the vector bundle
F = (f X idc)*uO.
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This bundle determines f (from the definition of the moduli scheme M )- The
Chern classes of F satisfy the relations (3.1), as they were computed in (1.7) and
(1.8). Conversely, given a bundle F with such properties, it induces a morphism
f:P' - M. Formula (1.9) proves that the degree of f is k. Moreover, since
(f xid¢)*Up and F both determine the same morphism f and they have the same
first Chern class, it follows that F = (f x id¢)*Up. |

We construct moduli spaces for rank 2 vector bundles F on P! x C satisfying
the relations (3.1). This was done by Brosius in [BR1] and [BR2] in the more
general case of rank 2 vector bundles on a ruled surface. We reproduce some of his
constructions in our particular case of vector bundles on P! x C and in addition
we identify the locus of those rank 2 vector bundles F on P! x C satisfying the
additional stability property in Lemma 3.1.

3.1 The canonical extension of a rank 2 vector
bundle

This section contains definitions and results stated in [BR1]. We give proofs
for some of the facts in [BR1]. We will define the canonical extension of a rank 2
vector bundle on P* x T, where T is an arbitrary integral Noetherian scheme. We
need this level of generality, since we want a canonical way to obtain the canonical
extension when we have a family of vector bundles on P! x C, in order to construct
a moduli scheme of such bundles.

Let T be an integral Noetherian scheme. Let F be a rank 2 vector bundle on
P! x T and let k be the fiber degree of F with respect to the second projection
po:PLxT =T
k= ci(F).({P'} x {pt}).

If F'is a fiber of p,, then the restriction of F to F has the form O(a) ® O(k — a),
for some integer a > k/2. The pair (a,k — a) is called the fiber type of F on F.
The function h : T — Z, which associates to a point ¢ € T the integer a from
the fiber type of F on the fiber F; above t, is upper semicontinuos. Let a be the
value of h on the generic point of 7. We say that F has generic fiber type (a,k—a).
We say F is of type U (unequal) if a > k/2 and of type E (equal) if a = k/2.
The statement of the following lemma is mentioned in [BR1].

Lemma 3.2. Let F be a rank 2 vector bundle on P' x T of generic fiber type
(a,k—a) and let F' = (p;*p2, (F(—a)))(a). Then F' is a torsion free sheaf of rank
1 in case U and rank 2 in case E. Moreover, the map

g:F —-F

coming from the canonical map pyps, (F(—a)) — F(—a), is injective.
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Proof. Note that the sheaf p,, F(—a) is torsion free because F is torsion free. By
restricting to the generic point £ of T', one can see easily that the sheaf p,, F(—a)
has rank 1 in case U (a > k/2) and rank 2 in case F (a = k/2) as we have:

(P2, F(~0))e = H'(Py, Fe(—a))
and the restriction of morphism g to P! x {£} is:

H°(P;, Fe(—a)) ® O — F¢(—a), givenby s®t+— s.t

The morphism g is injective when restricted to P' x {¢}; hence, it is injective at the
generic point of P! x T. Tt follows that g is injective, since F' is torsion free. [

Let J = coker (g). The canonical extension of F is the exact sequence:

0->F - F—>TJ—0.
The bundle F’ is called the canonical subbundle of F.

3.1.1 The canonical extension in Case U

The following lemma is mentioned without proof in [BR1].

Lemma 3.3. In case U, the sheaf J is isomorphic to T ® M, for some line
bundle M on P* x T and I, is the ideal sheaf of a local complete intersection
(lci) subscheme Z of P! x T, given by the zeros of the morphism g, which has
codimension at least 2.

The lemma is a consequence of the following Lemma. The method of proof
for the Lemma will appear again in the proof of Proposition 3.19 and other future
results.

Lemma 3.4. In case U, the sheaf F' is a line bundle and the sheaf J is a torsion-
free sheaf.

Proof. We are in Case U, so F' and J have both rank 1. If 7 is torsion free, then
since F' is torsion free, it follows by Lemma A.10 in the Appendix that F' is a
reflexive sheaf. But a reflexive sheaf of rank 1 is a line bundle, and so it follows
that F' is a line bundle.

We prove now that 7 is torsion-free. Let ¢(.7) be the torsion subsheaf of 7 and
let J1 = J/t(J). Then J; is a torsion free sheaf of rank 1. Let F; be the kernel
of the composition morphism ¥ — J — J;. There is a comutative diagram:

0 —— F > F > J > 0
A
F 0

0 > F1 > - i —
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By Lemma A.10 in the Appendix applied to the lower exact sequence, it follows
that F; is a reflexive sheaf. But F; has rank 1, and any reflexive sheaf of rank 1
is a line bundle; hence, F; is a line-bundle. Then F; = O(b) XN for some integer
b and some line bundle A/ on T. By the snake lemma, we have an exact sequence:

0> F = F —t(J)—0.

Let’s look at the injective morphism F' — F;. We would like to prove that it is in
fact an isomorphism. It is enough to prove that b = a and N & p,, F(—a). Since
F' — F, is injective, it follows that b > a.

Assume b > a. From the lower exact sequence of the diagram, we have:

0 — po, F1(—b) = p2, F(=b) = p2, J1(—b).

As po, Fi(—b) = N and p,, F(—b) = 0, we arrived at a contradiction. So b = a and
F1 2 0O(a) K N. We look again at the sequence:

0 — p2.(Fi(—a)) = p2,F(—a) = p2, Ji(—a).
Note that p,,F1(—a) = N. The sequence becomes:
0= N = py, F(—a) = p2,J1(—a)

Since N and p,,F(—a) have both rank 1, the cokernel is a torsion subsheaf of
p2,J1(—a), so it must be zero, as J; torsion-free implies p,, J1(—a) is torsion-free.
Therefore, N 2 p,, F(—a) and F' = F;. Hence, ¢t(J) = 0. O

Consider now the case T'= C in the previous construction. Let us summarize
the results in this particular case:

Lemma 3.5. Let F be a rank 2 vector bundle on P! x C with generic fiber type
(a, k — a), where a > g Then F belongs to an ezact sequence:

0F 2 F->TJ -0
where F' and J are as follows:

F20@RBL MZ0k-a)RL, TEI;@M

whith £ and L' line bundles on C and Z C P! x C an lci 0-cycle.
Note that L = ps,F(—a).

3.1.2 The canonical extension in Case E

The following Fact is proved in [BR1].

Fact 3.6. [BR1] Let F be a rank 2 vector bundle on P! x T with generic fiber type
(a,a). Let J be the sheaf from the canonical sequence of F. Then there is a unique
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line bundle M on P! x T, and a closed subscheme Z C P! x T such that, if D is
the scheme theoretic image pa(Z) C T, then:

JT=I®M

where I is the ideal sheaf of Z in P! x D.
The subscheme Z 1is clearly not unique.

Consider the case T = C in the previous construction. Let us summarize the
results:

Fact 3.7. [BR1] Let F be a rank 2 vector bundle on P* x C with generic fiber type
(a,a). Then F belongs to an ezact sequence:

0F 5> F->T -0
where F' and J are as follows:
F'20@®E and J =I(a)

where £ is a rank 2 vector bundle on C and T is the ideal sheaf of the 0-cycle Z
in P' x D, where Z is a O-cycle in P' x C and D = py(Z) C T (scheme theoretic
image). Note that € = py, F(—a).

If D =mp; + ...+ n.p, for some distinct points pq,...,p, on C and some
positive integers ny, ..., n,, then we have that the ideal sheaf Z is of the form

T = &:i(0(—m;) K Onyp;)

where my, ..., m, are positive integers.
Let ¢ € C and consider the restriction F, to P! x {c}. We have:

i. If cisnotin D, then F, = O(a) ® O(a)
ii. If ¢ = p;, then F. 2 O(a+ m;) ® O(a — m;)

We will work mainly with the case when the morphism p, : Z — D is an
isomorphism. In this case we have:

IEO(—1)®0D, and j%O(a—l)XIOD
We say that F has type (1) if it has canonical sequence:
0->0@X®RE-SF—-0(a—-1)K0p—0 (1)
where £ is a stable vector bundle on C.

Note 3.8. A vector bundle F with equal generic fiber type (a, a) has the bundle T in
the canonical quotient of the form O(—1)®Op for some divisor D on C if and only
if for any c € C, the bundle F, splits either as O(a)®O(a) or O(a+1)®O(a—1).
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3.1.3 Classification of canonical extensions in Case U

This section continues to follow the results stated in [BR1]. All of them are
easy consequences of the results of the previous section.

Invertible extensions

Remark 3.9. Let F be a rank 2 indecomposable vector bundle of type U on P! x C
with generic fiber type (a,k —a) (a > £). The bundle F determines uniquely the
sheaves F', M and the lci 0-cycle Z C P* x C and a point

£ € P(Esty, (T ® M,F")).
Clearly, the line bundles L and L' from Lemma 3.5 are uniquely determined.
The point £ can also be thought of as an orbit for the action of G,, on
Ethn’GC(IZ M, F").
It will be convenient to refer to it in this way.

We would like to know when we can recover from such data the vector bundle
F. For given F', M and Z it turns out that only invertible orbits £ will correspond
to an extension whose middle term is a vector bundle. We will define this notion
a few paragraphs later. The result we are aiming for is the following:

Lemma 3.10. In Case U, an indecomposable vector bundle F determines line
bundles F' and M on C together with an lci zero-cycle Z and an invertible orbit £
in ]P(Ea:t})wxc(l'z ® M, F'). These data are uniquely determined and they in turn

determine F uniquely (up to isomorphism) as the middle term of an ezact sequence
0>F 2 F->I,M—0
corresponding to any extension = in the orbit £.
In order to define invertibe orbits, we need the following lemma.
Lemma 3.11. There is a short ezxact sequence:
0— E'a:tlowxc(M,}") — ExtlorGC(IZ QM,F)— Ext%rlxc(Mw, F') = 0.
Proof. Consider the exact sequence:

0=-Iz0M —=> M — Mz — 0.

By applying Hom(—, F'), we get an exact sequence of vector spaces:
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Exty,, (Miz, F') = Extp, (M, F')=Exto, (Iz®M,F')—
— Bxty, (Mz,F') = Extg (M, F)

Note that
Exth, (M, F)ZH (P! x C,M*® F') 2 H'(P' x C,M ® F"" ® Kpixc).
Let £ and £’ be the line bundles from Lemma 3.5:

M=Z0Ok-a)®L, and F 2O0@@RL
We have

Kpiye 2 0(-2)X K¢
MRSF*" @ Kpiye 20k —-2a-2)R(L7'® L ® K¢)
Since k — 2a — 2 < 0, we have H*(P! x C, M ® F"* ® Kpi,¢) = 0 and therefore
2 AN
Extp,, M, F) =0.
Let’s look at the space
Exty,, (Miz, F') 2Exty, (07, F & M").
Using duality, we get:

Extp,, (O, F @M ) =2H(P' xC,F"@M®K®O0z) =0.

We define now the notion of an invertible orbit. Let
Se Extbplxc(l'z M, F"
and let = be its image in EXt20]p1xc(M| z,F'). Note that the vector space
Ext%)Plxc(Mw, F') = ExtépGC(Oz, F' @ M)
is isomorphic, using duality, to
HP'x C,F"@M® K ®0z) 2 H(Z,0;,).

The extension = is called invertible if Z as an element of H°(Z,Oz) does not
have zeros over Z. The property of being invertible is invariant under the action of
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G, and so the notion of an invertible orbit £ is well-defined. It is straightforward
to see that if Z is an lci O-cycle, then an orbit £ gives rise to a vector bundle F if
and only if £ is invertible. Moreover, note that invertible orbits form a dense open
set in P(Exto, (Zz @ M, F')).

Correspondence between F and orbits in the space of extensions

The natural question is when an invertible extension
o 1 !
E € Exto,,  (ITz0 M, F)

determines F such that the canonical extension of F determines the same element
in ]P’(ExtIOP o (Zz ® M, F")). The answer is given by the following lemma. We will

consider the more general case of vector bundles F on P! x T (this generality will
be useful later).

Lemma 3.12. Let T be an integral Noetherian scheme and F is a rank 2 vector
bundle on P* x T of fiber degree k. Assume there is a line bundle £ on T, a torsion
free sheaf J on P! x T, an integer a > g and a short exact sequence:

0>0(RL>F—-T—0. (3.2)

Then F has generic fiber type (a,k — a) and py,F(—a) = L. Moreover, this
extension 1s, up to scalar multiplication, the canonical extension of F.

Proof. Assume F has generic fiber type (b, k —b). Let n be the generic point of 7T'.
If we restrict (3.2) to P' x {n} we get an exact sequence:

0—0(a) > 00b)®O(k—-0b) - J, — 0.

Since a > %, it follows that a < b. Therefore, J, = O(k — a). Tensor (3.2) by
O(—a) and take push-forward to T

0— L — p, F(—a) = p2,J(—a) = 0.

We have:

p2. F(—a), 2 H(P' x {n},0(b—a) ® O(k — a — b))
p2.J(—a), 2 H'(P' x {n},O(k — 2a) = 0
Hence, p,,J(—a) is a torsion sheaf. But J was torsion-free, hence p,,J(—a) is
torsion-free. It follows that p,, J(—a) is zero and £ = p,, F(—a).

The sheaf p,,F(—a) has rank b — a + 1, so we must have b = a. Hence,
L = py, F(—a).
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Consider the canonical extension of F:
0->F 2 F—>TJ—=0

where F' = O(a) X L.
First note that there are no non-zero morphisms 7' — 7, as there are no
non-zero morphisms O(a) — O(k — a) on P'. There is a commutative diagram:

0 — F >y F » J > 0
I
0 — F » F > J » 0

where one row is the canonical extension and the other is the exact sequence in
our lemma. As % is a non-zero morphism and F' is a line bundle, it follows that
it is an isomorphism given by multiplication with a non-zero scalar. Then ¢ is
also an isomorphism. Using the fact that an automorphism of a rank 1 torsion
free sheaf is given by multiplication by a non-zero scalar, we get that ¢ is given by
multiplication with a non-zero scalar. It follows that the two extensions are scalar
multiples of each other in Extpi, (T, F"). )

Corollary 3.13. Any isomorphism Fi = F, of vector bundles of type U on P! x C
induces an isomorphism on their canonical sequences. The two ezact sequences
determine the same element in P(Eztp., (T, F')).

3.1.4 Classification of canonical extensions in Case E

Remark 3.14. Let F be a rank 2 indecomposable vector bundle of type E on P! xC
with generic fiber type (a,a). Consider the canonical sequence of F:

0-F =-F—>J—0.
Assume that we are in the case when F has type (1):

F=20@KE and J20(a-1)ROp

where the vector bundle £ on C is stable and D 1is a 0-cycle on C.
Then the bundle F determines uniquely the sheaves F', J and an orbit £ for
the action of Aut (Op) = H°(D,0%) on

1
Extoplxc(j, ).
Clearly, £ and D are uniquely determined.

We would like to know when we can recover from such data the vector bundle
F. For given F', D and &, it turns out again that only invertible orbits ¢ will
correspond to an extension whose middle term is a vector bundle. The invertible
extensions form a dense open in the space of extensions.
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Lemma 3.15. In Case E, an indecomposable vector bundle F of type (f), deter-
mines the sheaves F' and J, together with an invertible orbit € for the action of
Aut (Op) on EztbrGC(J, F"). These data are uniquely determined and they in

turn determine F uniquely (up to isomorphism) as the middle term of an ezact

sequence
0-F 5 F->T -0

corresponding to any extension = in the orbit &.

Correspondence between F and orbits in the space of extensions

We ask if an invertible extension
= € Ext!(J, F))

determines F such that the canonical extension of F determines the same element
orbit in Ext'(J, F'). The answer is given by the following lemma.

Lemma 3.16. Let F on P! x C a rank 2 vector bundle of fiber degree k = 2a.
Assume there is a stable vector bundle £ of rank 2 on C, an effective divisor D on
C and a short exact sequence:

05 0W@XRE—->F—->0(ea—-1)KOp —0. (3.3)

Then F has generic fiber type (a,a) and € = p,,(F(—a)). Moreover, this extension
is in the same orbit of the action of Aut (Op) on the space of eztensions

Ezt'(O(a—1)® O0p,0(a) K E)
as the canonical extension of F.

Proof. Let 1 be the generic point of C. If we restrict (3.3) to P! x {n} we get an

exact sequence:
0— O(a)®O(a) = F, — 0.

Hence, F has generic fiber type (a,a). Tensor (3.3) by O(—a) and take push-
forward to C:
0— & — p.F(—a) = p2, I (—a) = 0.

We have:
p?*J(_a’) = OD ®p2*p){0(—1) =0.

Hence, £ = p,, F(—a).
Consider the canonical extension of F:

0O-F > F->T—>0
where F' = O(a) K E.
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The fact that F sits in an exact sequence as (3.3) implies that for any c € C
the bundle F, splits either as O @ O or O(1) & O(—1). Hence, the sheaf J has
the form O(a — 1) ® Op for some effective divisor D’ on C. Note that since the
splitting of F, jumps exactly at the points ¢ € D', it follows that D and D’ are
supported at the same points. Since by restriction to {p} x C, where p € P! is any
point, we get an exact sequence:

0=2+&—=F,—-0p—0

It follows that D = D', hence, J = O(a — 1) X Op.
First note that there are no non-zero morphisms F' — J, as there are no
non-zero morphisms O(a) — O(a — 1) on P'. There is a commutative diagram:

0 — F > F » J - 0
I

b |

0O —F —0F — J — 0
where one row is the canonical extension and the other is the exact sequence in
our lemma. As 9 induces a non-zero morphism £ — £, it follows that it is an
isomorphism. Since £ is stable, 1 is given by multiplication with a non-zero scalar.
Then ¢ is also an isomorphism. Since an automorphism of 7 is given by an element
in H(D, O3), it follows that the two extensions are in the same orbit for the action
of Aut (Op) on Extpi, (T, F"). O

Corollary 3.17. Any isomorphism Fy = F, of vector bundles of type E on P! x C
induces an isomorphism on their canonical sequences. The two ezact sequences
determine the same orbit for the action of Aut (Op) on Eztp, (T, F').

3.2 Families of rank 2 vector bundles on P! x C

We analyze the behaviour of the canonical sequence in families of vector bundles
on P! x C. In this section S will be an integral scheme and we will consider
vector bundles F on P! x C x S. As usual, if s € S and ¢ € C, we denote
Fs = Fpixcexisy and Fes = Fi(c}x{s}- Moreover, we denote by p§ the projection
P' x C x {s} = C x {s}.

3.2.1 A general fact

Lemma 3.18. Let F be a rank 2 vector bundle on P! x C x S with fiber degree k
and generic fiber type (a,k — a), with a > k/2. Then there is a dense open S° C S
such that, for any s € S°, the bundle F; on P! x C x {s} has generic fiber type
(a, k — a) and the degree of the vector bundle p3,F,(—a) on C x {s} is constant.
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Proof. Since F has generic fiber type (a,k — a), there is a dense open S° C S on
which F, on P! x C x {s} has generic fiber type (a, k — a).

Let’s first note that the numerical Chern classes ¢;(F;) and cy(F;) do not
depend on S. This fact has as a consequence, ussing the Grothendieck Riemann-
Roch formula for p§ and the bundle F,(—a), that the Chern character of the
following element in the Grothedieck group of P! x C x {s} does not depend on s:

(p3)1Fs(=a) = p3, Fs(~a) — R'pj, Fi(~a)
In particular, the first Chern class does not depend on s:
c1(p3.Fs(=a)) — er(R'p3, Fi(—a)).

Note that since F is a vector bundle, in particular F;(—a) is a torsion-free sheaf
and therefore p5, F,(—a) is a torsion free sheaf on C x {s}. Since we are on a curve,
it follows that pj, F;(—a) is a vector bundle.

We prove that for any s € S, the degree of the first Chern class of the
sheaf R'p3, F,(—a) does not depend on s € S. It follows that the vector bun-
dle p§,Fs(—a) has constant degree on S.

Let py3 be the projection onto the the second and third factor. For any s € S
consider the canonical morphism of sheaves on C x {s}:

¢ : (R'pas, F(—a))s = R'pj, Fo(—a).

For any c € C and s € S there are canonical isomorphisms 1), and ;. such that:

ws,c' (R1p2 3% (—a))cs — Hl(Pl Fe (—a))
¢ (R'p3, Fo(—a)). = H'(P!, Fpi(—a))

with Xe,s © ¢c - "pc,s ([M])

(R1p2,3*-7:(_a))cs (Rlpz* s(—a))e

N

H' (P, Fes(—a))
It follows that ¢, is an isomorphism for any point ¢ € C, hence, ¢ is an isomorphism.
On C x S consider the sheaf:
H = Rlpg,g*g(—a).

By generic flatness, the degree of the first Chern class of the sheaf #, on C x {s} is
constant on a dense open S° C S; hence, our assertion follows, since for any s € S,
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we have:
Hs = Rlp;*]:s(—a).

3.2.2 Families of vector bundles in Case U

Proposition 3.19. Let Fs be a rank 2 vector bundle on P! x C x S. Assume that
the bundle Fs has generic fiber type (a,k — a) with a > % Then there is a dense
open S° C S such that:

i. For any s € S, the restriction of the canonical sequence of Fg to P xC x {s}
15 the canonical sequence of F,. In particular, there is an integer d such that
for s € S° the canonical line subbundle of F, has type (a,d).

. If sy € S\ S° then F, has canonical line subbundle of type (ag,dy) with
ag > a and dy > d.

(We denote by F, be the restriction of Fs to P! x C x {s}.)

Proof. Let 1 be the generic point of S. The generic fiber type of F, is (a, k — a).
Consider the canonical sequence of F:

0> F,—>F,—=T,—0 (3.4)

where F', and 7, are sheaves on P! x C x {n}. Since we are in Case U, it follows
that F', is a line bundle and 7, is torsion-free. Moreover, 7', = O(a) X N,,, where
N, line bundle on C x {n}.

We prove that when we restrict the canonical sequence of Fs to P! x C x {n}
we get exactly the exact sequence (3.4).

Let 71 — Fs be an injective morphism such that when restricted to P! x C x {n}
we get the injective morphism F; — F,. Let J; be the cokernel:

0—=F = Fs—=> T —0.

As restriction to P! x C x {n} is exact, we get an exact sequence:

0—>(f1)n-+.7'—n—)j1n—)0

which is isomorphic to (3.4).
Note that since F'; & (F1), and F', is a line bundle, it follows that rk F;, = 1.
Let Fg be the saturation of F, in Fg. The cokernel Js is isomorphic to the
quotient sheaf 7,/t(71), where t(J;) is the torsion subsheaf of J;. There is a
commutative diagram:
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0 — F, — Fs > J1 > 0
0 » Fg » Fs > Js > 0
We prove that the sequence
0>Fs—>Fs—Ts—0 (3.5)

is the canonical sequence of Fgs.

We notice first that the restriction to P! x C x {n} gives the canonical extension
of F,. This follows from the fact that 7, is torsion free. We have a commutative
diagram of exact sequences:

— (F)y — Fy — (Dh)y — 0

221 e

? (‘7:;’5')77 ? 'Fn > (\73)17 — 0

Note rk F~ = rk F; = 1. Moreover, since Js is torsion-free and Fg is a vector
bundle, it follows by Lemma A.10 in the Appendix that Fg is a reflexive sheaf.
Since a reflexive sheaf of rank 1 is a line bundle, it follows that

Fs =2 O(a) W Ns
for some line bundle A5 on C' x S and some integer . From
(F$)n = (F1)g = F = Oa) RN,

we have a = a and (Ns), = N,. As Js is a torsion free sheaf, by Lemma 3.12 , the
sequence (3.5) is the canonical sequence of Fg, up to multiplication by a scalar.
Since restriction to P' x C' x {n} gives the canonical sequence of F, it follows that
(3.5) is the canonical sequence of Fs.

Let s € S. Consider the canonical sequence of the bundle F;:

0>F, - F; =T, —0

where F! 2 O(a,) ® L, for some integer a, and L, is the vector bundle ps, F;(—a).
There is a canonical morphism of line bundles:

(Fs)s = F;

This is a non-zero map of line bundles, hence, it is injective. It follows that by
restriction to P! x C' x {s} we get an exact sequence:

0— (Fg)s = Fs = (Ts)s = 0 (3.6)

There is a commutative diagram:
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0 —— (F%)s y F, > (Js)s —— 0

Lo Lo 7

0 — F, > Fs » Js —— 0

As F] is the canonical subbundle of F;, we have that there is £,, a bundle on
P! x C x {s}, such that:
F, 2 O(as) ¥ L,

We have:
"g = O(a) ENS

It follows that a; > a > % (which also follows from upper-semicontinuity — note
that it follows that L, is a line bundle) and that there is an injective morphism

(Ns)s = L, (3.8)

This is an isomorphism if s =7 € S.

Note that since Ny is a line bundle on C x S, there is an integer d such that
deg (Ns)s; = d for any s € S. In particular, d = deg (Ns), = deg L.

By previous Lemma, there is a dense open S° C S on which the degree of the
line bundle £, = p3,F,(—a) is constant. In particular, since the degree of the
line bundle pJ, F,(—a) = L, is d, it follows that deg L, = d for s € S°. Since
deg (Ns)s = d, it follows that (3.8) is an isomorphism.

The commutative diagram (3.7) is an isomorphism of exact sequences and the
exact sequence (3.6) is, up to multiplication by a scalar, the canonical sequence of
F,. By the construction of F’, we see that, in fact, this is the canonical sequence
of F,. This proves 1.

Part ii. is imediate: if s € S\ S°, then it follows from the injective morphism
(3.8) that

do = deg (Lo) > deg (Ns); = d.

Side Note

Since Js is torsion free of rank 1, there is a lci closed subscheme D of P! xC' x S,
of codimension at least 2 and a line bundle Mg, such that if Zp is the ideal sheaf
of D, then:

J =2Ip® Ms.

Let D; be the scheme theoretic intersection D N P! x C x {s}. There are exact
sequences:

0— TOT'?PIXCXS(OD, Opixexysy) = (Ip)s > O — Op, = 0

0— TOT?PIXCXS(OD, O]Plxcx{s}) — (ID)s — Ips —0
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The sheaf o
T. = Tor, PGCxS(O,D, O]pGCx{s})

is supported on the set D;.

Note from (3.6) that for any s € S the sheaf (Js), has rank 1. Hence, (Zp),
has rank 1. Since for any s € S the sheaf Zp, is a torsion-free sheaf of rank 1,
it follows that the sheaf 7; is a torsion sheaf; in fact, it is the torsion subsheaf of
(I’D)s-

Moreover, it is straightforward to prove that for any s € S the sheaf 7; is 0 if
and only if D is flat at the points in D;.

For s € S° we have (Js); & Js; hence, (Zp)s & Iz, where Z; C P! x C x {s}
is such that:

Ts 21z, @ M.

It follows that the sheaf (Zp), is torsion free of rank 1 for any s € S°. By previous
comments, it follows that 7, = 0 and (Zp), = Ip,. In particular, D, = Z,.

It also follows that D is flat over S°. It might be that D does not dominate S
and in that case D, = 0 for s € S°. Otherwise, over S°, D is a codminension 2 lci
cycle and it maps finitely onto S°.

Let so € S\ S°. The restriction of the canonical sequence of Fg to P! x C' x {so}
does not give the canonical sequence of F,,. This is equivalent to any of the
following:

i. The injective morphism Fg, — Fj, is not an isomorphism.
ii. The sheaf(Js)s, is not torsion-free (see (3.7)
iii. The sheaf (Zp),, is not torsion-free
iv. The torsion sheaf 7, is not zero

v. D is not flat over the point sg.

We can assume that S is a curve, as for sy € S\ S° we can replace S with
an irreducible curve in S which passes through s, while intersecting S°. Then
D C P! x C x S has dimension < 1.

Consider the commutative diagram:

0 — (f.’S')So B— }-So — (*75)30 —

N 1

0 — F, — Fsg — Tsy —

It follows that the lower sequence in the diagram (the canonical sequence of Fy,)
is the saturation of the upper sequence. Hence,

Fro = (Fs)so(E)
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where E is an effective divisor on P! x C' x {so} and we have the exact sequence:
0— (Fs)so = F4y = Op — 0.

By the snake lemma, it follows that
0— Og — (Js)sy = Tso — 0.

Hence, the torsion part of (Zp)s, is isomorphic to Og. But the torsion part of
(ZIp)se is Tso; hence Ty, = Op. In particular, E has support in Ds,.
We already know that since F is an effective divisor of numerical class

n({pt} x C) + m(P' x {pt}) € NS(P* x C)

with n,m > 0, it follows that F;, has canonical line subbundle of type (ay, dy),
where ag =a+n>aand dy=d+m > d.

3.2.3 Families of vector bundles in Case E

In this section we will work with families of vector bundles on P! x C with equal
generic splitting (a,a). Since we can tensor F with O(—a), we can assume a = 0.

As before, S will be an integral scheme. We can adapt the proof of Proposition
3.19 to prove the following lemma.

Lemma 3.20. Let Fs be a rank 2 vector bundle on P! x C x S. Assume that the
bundle Fs has generic fiber type (0,0). Then there is a dense open S° C S such
that:

i. Foranys € S°, the restriction of the canonical sequence of Fs to P! x C x {s}
is the canonical sequence of F;. In particular, there is an integer d such that
for s € S° the canonical subbundle of F, has type (a,d).

. If so € S\ SO, then F,, has canonical line subbundle of fiber type a > 0.

Stability

Lemma 3.21. Let F be a rank 2 vector bundle on P! x C x S. Assume that for any
s in S and for any c € C the bundle F, . splits either as O & O or O(1) & O(-1).
Then there is an open S° C S (possibly empty) such that for any s € S°, p,, F, is
a rank 2 stable bundle.

Proof. We claim that for any s € S the canonical morphism
¢ 3, Fs = (p23,F)s
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is in fact an isomorphism.
This is because for any s € S and ¢ € C we have

HY(F,.) = 0.

By an argument similar to the proof of Lemma 3.18, it follows that the morphism
¢ is an isomorphism on fibers over C, hence, an isomorphism.

By Fact 1.9, the locus of those s € S such that (p,3,F), is stable is open
(possibly empty) and our lemma follows. a

Complete families of vector bundles

We will adopt some terminology from [P]. If T and X are integral smooth
schemes and F is a vector bundle on X x T', then we say that F gives a complete
family of vector bundles on X if the Kodaira-Spencer map

w: T,T — Exty (F, F)

is surjective for any t € T
We will use the following fact from [P], p.206.

Fact 3.22. Let T be an integral smooth scheme and let F be a rank 2 vector bundle
on P! x T. Assume F is a complete family of vector bundles on P* x T'. Then the
points t € T such that F; splits as O(a) ® O(B) with |a — B > 3 form a closed set
of codimension at least 2.

Lemma 3.23. Assume that S is smooth and let F be a rank 2 vector bundle on
P! x C x S with generic fiber type (0,0). Assume that F is a complete family of
vector bundles on P'. Then there is a dense open S° C S such that for s € S° and
for any ¢ € C we have that F;. splits either as O @ O or O(1) @ O(-1).

Proof. Let Z C S x C the locus of those (s,c) € S x C such that

H(Foe(=2)) # 0.

By upper semicontinuity, the locus Z is closed in S x C. By Fact 3.22, the codi-
mension of Z in S x C is at least 2. Let S’ be the image of Z in S. The codimension
of $"in S is at least 1. Take S° = S\ S’. This is our required dense open set. [

Note that if S is a smooth integral scheme and F is a rank 2 vector bundle
on P! x C x 9, then if we fix any point (c,s) € C x S, we have a commutative
diagram:

98



TsS EXt[%"GC(fs’fS)

N

EXt]}ﬂ (fs,c; ]:s,c)

whith two Kodaira-Spencer maps appearing, one given by the family F, of vector
bundles on P!, and another given by the family F of vector bundles on P! x C:

TS — Extpi(Fy e, Fs ) (3.9)

T,S — Extpi, o(Fe, Fs) (3.10)

The following map is given by restriction to P! x {c}:
EXt]}"GC(fs’fS) — EXt]}I’l(]:s,c; }-s,c) (3.11)

Lemma 3.24. Let G be a rank 2 vector bundle on P! x C with generic fiber type
(0,0). Then the following restriction map is surjective for any closed point c € C:

Ext]}”lxc(g7 g) - Ext}}“(gm gc)

Proof. It is enough to prove that the following map given by restriction is surjective:

H' (P! x C,End(G)) — HY (P! x {c},End(G.))

Equivalently, if we let Z. to be the ideal sheaf of P! x {c}, it is enough to prove
that
H*(P' x C,End(G)®T,) =0

We have
H*(P' x C,End(G) ® I.) = H'(C, R'p, (End(G) ® T.)).

Let £ € C be the generic point. We have:
R'ps, (End(G) ® I,) = HI(IP’E, End(Ge).
Since the generic splitting of G is (0,0), we have G = O & O and £nd(Ge) = O*.

It follows that R'ps,(End(G) ® I.)¢ = 0, hence, the sheaf R'p,,(End(G) ® I.) is a
torsion sheaf on C. It is supported on a finite set of points of C; it follows that

H'(C, R'p,,(End(G) ® I,)) = 0.

We apply Lemma 3.24 to G = F,.
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Corollary 3.25. Assume that S is smooth and let F be a rank 2 vector bundle on
P! x C x S with generic fiber type (0,0). Then F, is a complete family of vector
bundles on P! for any ¢ € C if and only if the family F of vector bundles on P! x C
is complete.

3.3 The moduli scheme in Case U

We construct moduli spaces for rank 2 vector bundles F on P! x C with the
properties in Lemma 3.1 and with F of type U.
A bit of terminology: we say that a line bundle M on P! x C has type (a,d) if

M=0()RL,

where £ is a line bundle on C of degree d.
Let

a=k{pt} xC+P' x {z,} e A'(P' xC) and cy=keZ

We will consider vector bundles F on P* x C with ¢, (F) = ¢; and deg (ca(F)) = co.
Let a and e be integers such that a > %, e > 0. Our goal is to construct moduli
schemes for the following contravariant functors:

F : Sch¢ — Sets (3.12)

F(S) = {Isomorphism classes [F] of vector bundles F on P! x C' x S, such that
Vs € S, F, has Chern classes ¢; and ¢, and canonical subbundle of type (a,—e)}

F° : Sch¢ — Sets (3.13)

F°(S) = {Isomorphism classes [F] of vector bundles F, such that [F] € F(S)
and V(p, s) € P! x S the vector bundle F,, is stable}

Note that the functor F° is an open subfunctor of F'. The functor F' has a fine
moduli scheme B(a, e), which is constructed in [BR2]. We prove that the functor
F° has a fine moduli scheme a dense open subscheme B°(a, €) of B(a,e).

3.3.1 Some computations with Chern classes
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Lemma 3.26. Consider the ezact sequence of sheaves on P! x C:
0> F 5> F—->I;,9M —0.

where F' and M are line bundles and Z a 0-cycle. Then we have:

Cl(}-) = Cl(]:’) + Cl(M), and Cg(}-) =7 + Cl(]:I)Cl(M)

Lemma 3.27. Let F be a vector bundle on P' x C with generic fiber type (a, k —a)
(where a > %) and Chern classes ¢, and cy. Assume there is an ezact sequence

0->F 5 F->I;, M —0

with F' a line subbundle of type (a, —e) (where e € Z), M a line bundle and I,
the ideal sheaf of a 0-cycle Z. We have:

F'20(a)RL, deg(L)=-e and M=Ok—a)R L (z0)
Let § = length (Z). Then

6= (k—a)—e(2a—k)

Lemma 3.28. Assume we are under the same assumption as in Lemma 3.27. In
addition, assume that the bundle F is such that F, is stable for any p € P'. Then
e > 0. Moreover, if § > 0 then e > 0.

Proof. We have that £ is a line subbundle of F, for any closed p € P'. As Fp is
stable with determinant O¢(zo) it follows that —e = deg (£) < 0.

If § > 0 then let p € P! be a point such that ({p} x C)N Z # 0. Let D be the
0-cycle on C' such that ({p} x C)NZ = {p} x D. By restriction to {p} x C we get
an exact sequence:

0—=L—F, = L (zo— D)@ L (z0)p = 0
If we take the saturation of the line subbundle £ of F,, we get an exact sequence:
0— L(D)—>F,— L zy—D) =0
It follows that F, has a line subbundle of degree —e + deg (D). If e = 0 then since

deg D > 0 we have a contradiction of the stability of F,. Hence, e > 0. O

Remark 3.29. If for integers a and e such that a > g and e > 0 there exists

a vector bundle F on P' x C with Chern classes ¢; and ¢y and canonical line
subbundle of type (a,—e), then we must have § > 0. Equivalently:

k—a
>e > 0.
e =20

In particular, we must have a < k.
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3.3.2 The moduli schemes B(a,e)

Fact 3.30. [BR2] For each pair of integers a and e such that k > a > £,e > 0,
there ezists a quasi-projective integral scheme B and a universal rank 2 bundle Fop
on P! x C x B which makes B into a fine moduli scheme for the functor F' of
(8.12). More precisely, if S is a scheme and Fs is a family of rank 2 bundles on
P! x C x S with Chern classes ci, co and with canonical line subbundle of type
(a, —€), then there is a unique morphism '

v:S—'B

such that Fs = v*Fg Q N, for some line bundle N on S.

We denote by B(a, e) the moduli scheme B for the given integers a and e.

The previous fact is a consequence of the construction in [BR2]. We fixed the
Chern class ¢; as an element of A'(P' x C). If we fix ¢; only up to numerical
equivalence, hence, as an element of NS(P* x C), then we get the moduli scheme
B of [BR2]. More precisely, the scheme 9B of [BR2] has a canonical map:

7:8B > G, where & =Pic™¢(C) x Pic**}(C) x Hilb’(P! x O).

and Hilb’ (P! x C) is the Hilbert scheme parametrizing lci 0-cycles on P! x C of
degree §. The map 7 sends the point F to the point (£, M, Z).

The scheme B that we construct is the preimage under 7 of the subscheme of
& given by the closed immersion:

Pic*(C) x Hilb’(P! x C) < Pic™¢(C) x Pic®*!(C) x Hilb’(P* x C)
(L, Z) = (L, L7(zo), Z)

Outline of the construction of ‘B

This follows closely [BR2]. Let (a,¢) be a pair of integers such that a > £ and
e > 0.

We want to construct a scheme B(a,e) whose points correspond to vector
bundles F sitting in an extension:

0> F 5 F-oI,M—=0

as in Lemma 3.27. By Remark 3.29, we need to restrict our attention to pairs of
integers a and e in the range:



where ¢ is the length of the 0-cycle Z:
6= (k—a)—e(2a—k).

Note that we allow the case a =
useful when analyzing Case E.
We start by constructing a space B’ parametrizing extensions:

g. Even if not part of Case U, this will be

0F > F>IM—0 (3.14)

where £ € Pic™¢(C), Z is an element in the Hilbert scheme Hilb’(P! x C),
parametrizing lci O-cycles on P! x C of degree §, and F' and M are given by:

F2O0@RL, M=O(k—a)RL ()

Let G = Pic™¢(C) x Hilb’(P! x C). Let Lg be the pull back to P! x C x & of
a Poincaré bundle from C x Pic™*(C). On P! x C x G let:

F&s=pj0(a) ® L&, Me=pjO(k —a)® Lg' ® p5O(zo)

Let Zg C P! x C x G be the universal subscheme coming from Hilb’(P! x C).
Define S to be the relative extension sheaf:

S = gwt]%’GCxG/(S(IZG ® Me, ({5)

The sheaf S is a locally free sheaf on P! x C x &. If u = (£, Z) € &, then we have
that S, & Ext!(Z; @ M, F').

Define B’ = P(S) and let p’ : B’ — & be the canonical map.

We construct now the subscheme B C B’ parametrizing extensions (3.14), such
that F is locally free.

Consider the sheaves F,, Tz, and Mg on P' x C' x B', which are the pull-
backs of the corresponding sheaves on P! x C' x &. There is a universal extension:

0— f’m:(l) — Fg — IZEB' ® Mg&' —0

where the sheaf O(1) stands for the sheaf Op(s)(1).

There is a dense open subscheme B of ®8’, such that Fy restricts to a locally
free sheaf Fo on B. The scheme B C B’ is dense in every fiber of p' : B — G.
This completes the construction of the scheme ‘B.

In the case a > g, a vector bundle F, with Chern classes c¢;, ¢; and canonical
line subbundle of type (a, —e), determines and is uniquely determined by a point
in 8. It follows that B is a fine moduli scheme for the functor F' (see [BR2]).

Note that in the case a = %, the scheme B still exists and it has a universal
bundle Fg. Note that in this case we have § = a.

Note 3.31. If § =0 then B =B
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Proof. If § = 0 then Z = . For any extension of line bundles
0F 2 F->M-0

the sheaf F is locally free, it follows that B = B’. d
Dimension of B(a,e)

We compute the dimension of the scheme B = B(a,e). We have:
dmB=dm B =dimS+N-1=g+2+N -1

where N = dim Ext'(Z; ® M, F').
We compute N from the exact sequence in Lemma 3.10:

N = dim Ext'(M, F') + dim H°(Z, O;z) = dim Ext’(M, F') + 6.
We have:
Ext!(M, F) 2 HY (P! x C, F' ® M*).

This vector space has dimension —x(F' ® M*), since for i = 0,2 we have
H'(P' x C, F @ M*) =0.
This is because

F @ M*=0(2a— k)X L*(—z0) and
HO(O(2a — k) ® L£3(—1z,)) = HY(P!, 0(2a — k)) ® HY(C, L3(—20)) = 0
H?(O(2a — k) B L2(~1z¢)) 2 H°(O(-2 — 2a + k) ¥ (K¢ ® L7%(z0)))
~ HY(P!, O(-2 — 2a + k)) @ H*(C, K¢ ® L7%(x0)) = 0

since deg L2(—1p) = —2¢e —1<0and 2a —k >0

We compute x(F' ® M*). Let NS(P* x C) = Z[F] & Z[X] be the Neron-Severi
group of P! x C, where [F] and [X] are the classes of a fiber F, respectively a
section 3, of po : P! x C — C.

Let D = (2a — k)[X] — (2¢e + 1)[F]. By Riemann-Roch, we have

D? - D.K
x(D) = ————+1-g.

Then as K = —2[X] + (2¢g — 2)[F], we have:

D? = —2(2a — k)(2e + 1)
DK =(2a-k)(29—2)+2(2e+1)
x(D)=—Q2a—-k+1)(2e+g)N=2a—k+1)(2e +g)+¢
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Hence, the dimension N of Ext(Z; ® M, F') is:
N=Q2a—-k+1)(2e+g)+6=(2a—k+1)g+ (2a —k+2)e+ (k—a) (3.15)
Therefore, the dimension of B(q, €) is
dim B(a,e) =20+9g+N—-1=(2a—k+2)g+ (3k—3a—1)—e(2a—k—2). (3.16)

Note that if we take £ = 2a and e > 0 then § = a and we have:

k k
dim %(5,6) =3-2—+2g+2e— 1. (3.17)

Note that since we are working in the range &k > a > %, e>0and é > 0, we
have N > g > 2 and dim B(a,e) > (2g — 1). In particular, the schemes B(a, )
that we constructed are non-empty.

3.3.3 The good locus B%a,e) in B(a,e)

We constructed a non-empty integral quasiprojective scheme B = B(a, e) and
a universal bundle 7 = Fg for pairs of integers a and e in the following range:

We say that a closed point b € 9B is good if the vector bundle F;, on P! x C has
the property that for any p € P! the bundle .7:',,,;, is stable (equivalently, F, induces
a morphism f : P! — M). We let B° C B be the set of good points.

Consider the locus:

Y = {(p,b) € P' x B| the bundle F,; is not stable }

By Fact 1.9, Y is closed in P! x 9B. Note that B is the complement of the image
of Y via the projection 7 : P! x B — 9. Therefore, the set of good points B° is
open in ‘B, but possibly empty.

Note that if a > g then the open subscheme B° of B is a fine moduli scheme for
the open subfunctor (3.13) F° of F. (This is not the case anymore when a = £)
Theorem 3.32. Let a > g The open B%(a,€) is a non-empty, hence, dense, in
B(a, ) in either of the following cases:

i. e>0anddé>0
i. e=0 and § = 0; equivalently, (a,e) = (k,0)

Moreover, B%(a,0) =0 ife =0 and § > 0.
Note that if k =1 and a = 1, we have B°(1,0) = B(1,0) = B'(1,0).
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Proof. Recall that the open B C B’ is dense in every fiber of the projective bundle
p B — &, where
S = Pic™*(C) x Hilb’ (P! x C).

Let p: B — & be the restriction of p' to B.
Let u = (£,Z) € G be a closed point and let Z; be the ideal sheaf of the
scheme Z in P! x C. Consider the following line bundles on P! x C:

F'=0(@RL and M=0(k—-a)X L (z0)
Then the fiber p'*(u) is isomorphic to P(W), where W denotes the vector space:
W = Extpi, (M ® Iz, F).

Let U = p~}(u) C P(W) be the open in P(W) corresponding to extensions of
M ® I, by F', which have the middle term locally free. By Note 3.31, if 6 = 0
then U = P(W).

Let F be the universal bundle on P! x C x U. It has the property that if
¢ € P(W) corresponds to some extension = € W:

0>F 52 F-+MQ®Iz;—0 (2)
then we have that .7:'5 ~ F.

Let U° C U be the good locus in U. This is the locus of points £ € U such that
for any p € P!, the bundle F, . is stable. Then U = B° N p~!(u).

We prove the following:
i. for any u € &, the open U° is not empty if § =0
ii. for any u € &, the open U° is empty if § >0 and e =0
iii. for u € & general, the open U° is not empty if § > 0 and e > 0

In Case iii by u = (£, Z) € & general, we mean that the O-cycle Z is reduced and
if (p,q) € Z C P! x C then {p} xCNZ = {(p,9)}-

Plan of Proof

Consider the following closed set of P! x U:

Y = {(p,€) € P! x U| the bundle F, ¢ on C is not stable }.

Let 7 : P! x U — U be the projection. We have:
U =U\n(Y)
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Let I' C P! be the set of points p € P! with the property that there is a point
g € C such that (p,q) isin Z. If Z = 0, we let I' = 0. Consider the following
subschemes of P! x U:

Y=YN(P'\I)xU), and Y=Y N xD)
We prove:

1. Y’ has codimension at least 2 in P! x U
2. V'=TxUifd>0ande=0

3. Y" has codimension at least 2in P! x U if § > 0, e > 0 and u € & general

These assertions prove our theorem, as follows:

i, If6 =0then Z =0 and Y =Y. By 1, the closed set Y in P! x U has
codimension 2, therefore 7(Y) is a proper closed subset of U; hence, U° # 0.

ii. Ifé>0ande=0,by 2. it follows that 7(Y) = U, U° = 0.

iii. Ifd>0,e>0andué€ & general, by 1. and 3., since Y = Y'UY" =Y'uYy”
(Y is the closure of Y’ in P! x U), we have that

oY) =aY)un(Y")

is a proper closed subset of U; hence, U° # 0.

For a point p € P!, denote Y, = Y N ({p} x U). Then Y, can be identified with
the closed subscheme of U corresponding to classes of extensions ¢ in U C P(W),
such that F, ¢ is not stable.

Equivalently to 1, 2 and 3, we prove:

1’. Y, has codimension at least 2in U if pe P*'\T
2. V,=Uifpel',whend=0ande=0

3. Y, has codimension at least 1 in U if p e I', when 6 > 0,e>0andue &
general

Proof of 1°.

Consider the vector spaces:

W = Extpi,c(M®Zz, F) and V = Ext}p}xc((M ® Iz){pyxc» Flipyxc)-
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Let r : W — V be the restriction morphism of Lemma 3.33. An extension given
by an element = € W:

0=F 2 Fo-M®Iz;—0 (2)

is sent by 7 to the element in V' given by restriction of (Z) to {p} x C (restriction
is exact in this case):

0= Flpyxe = Fipixc = (M & Iz)jppxc — 0.

By Lemma 3.33, we have that r is surjective.
Since p € P! \ T, we have:
Izipixc 20, (M®Iz)jppxc = L7H(x0),  Flipyxe =L
We have an isomorphism:

V 2 Ext' (L7 (x0), £).

Recall from 2.2, that V is a vector space of dimension 2e + g.
Consider the locus of unstable extensions in P(V') (see Proposition 2.1):

Z CP(V).

Since e > 0, we have seen that Z is a closed subscheme of P(V') of codimension at
least g > 2. If e = 0 then Z = ().
Let C(Z) C V be the affine cone over Z C P(V). If Z = ( then let C(Z) =
0 € V. Let Z C P(W) be the projectivisation of the preimage via r of C(Z)inW.
Note that
Y,=ZnNU.

Since codim w (r~'(C(Z))) = codim yC(Z) = codim p(1,Z, it follows that

codim P(W)Z >g>2 and codimyY, > 2.

Side Note

We see that P(ker (r)) U C Y,. This is the locus of extensions = with the middle
term F a locally free sheaf and for which the restriction to {p} x C gives a split
exact sequence. One should expect that we always have ker (r) U # @, i.e. there
is a vector bundle F sitting in an exact sequence (Z) with

:FP =L &) E—l(i‘o).

This would show that Y, # 0. It follows that U® # U; hence, B° C B is a strict

inclusion. Moreover, we have a lower bound for the codimension:

codim yY, < dim V = 2e + g.
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We have a better understanding of Y}, in the following particular cases:
i. If6=0thenU=P(W)and, =2 #0.
ii. Ife=0then Z=0,C(Z)=0andY,="Pker (r))NU.
iii. fe=0and § =0then U =P(W), Z=0,C(Z) =0 and Y, = ker (r) # 0.

Proof of 2’

Assume § > 0 and e = 0. Let p be a point in I". We prove that Y, = U, i.e., the
bundle F, is unstable for all extensions

05 F 3 Fo>M®Tz >0 (3.18)
Let D be the 0-cycle on C such that ({p} x C)N Z = {p} x D. We have:

Flyxe 2L and (M ®Iz)ppxc = L (zo — D) ® L™ (z0)p
If we restrict (3.18) to {p} x C, we get an exact sequence:
0L — F,— L (zg— D)® L (z0);p — 0.
If we take the saturation of £ in F,, we get an exact sequence:
0— L(D) = F, — L Y(zo— D) = 0.

Since e = 0, the degree of the line bundle £(D) is deg (D) > 1. Hence, F, is not
a stable bundle.

Proof of 3’

Assume 6 > 0 and e > 0. We assume that u € & is general, in the sense that Z is
reduced and if (p,q) € Z then ({p} x C)NZ = {p} x {q}.
Consider the vector spaces:

W = Ext]%,GC(M ®Iz, f,) and V = EXt}p}xC((M ® IZ)|{;D}>(C’ ﬂ’{p}XC)
We have:

Fippxe 2L and (M@ Iz)|pyxc = L7 (0 — q) & L™ (x0))q

Then
V= Extb([,_l(xo - Q) ©® ﬁ_l(xo)lq: E)

We prove that for a general extension in W:
0F 2 F->MQI;—~0

the bundle F has the property that F, is stable.
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By Lemma 3.33, we have that the restriction morphism r : W — V is surjective.
Therefore, it is enough to prove that in the vector space

V 2 Exto(L£7 (20 — q) © L7 (20) g, £)
there is an open set of extensions:

0= L—>E— L (z0—q)® L (T0)g > 0 (*)

with the bundle £ a stable vector bundle.

From Lemma 3.34, we have that there is a surjective morphism s : V' — V’,
where

V' = Bxto (L7 (%0 — 9), L(9))
sending the extension (*) to the extension (**):
0—L(qg) = E— L zg—¢q) =0 (**)

given by taking the saturation of £ in £.

Since e > 0, we have that deg £(gq) < 0 and we can apply again Proposition
2.1, to get that a general extension (**) in V'’ has the middle term £ a stable
vector bundle. Since s is surjective, the result follows. This completes the proof of
Theorem. O

Lemma 3.33. For any p € P! the following morphism of vector spaces, given by
restriction, is surjective:

r: Bt o(M ® Iz, F') = Extiyy, o((M ® Iz) (pyx0» Flipyxc)

Proof. Let’s fix p € P! and let Z(,)<c be the ideal sheaf of {p} x C in P' x C.
There is a short exact sequence:

0= F ®@Ipixc = F = Flpyxc = 0 (3.19)
This induces a morphism:
w . EXtI%plxc(M ®IZ, f’) — EXtI}mlxc(M ®IZ, ‘7:|,{p}XC)

From the restriction
MLz - (M®OIz)|pyxc

we get a morphism:

v Ext%p}xc((M ® IZ)[{p}xCa -ﬁ'{p}xC) - EXt%p}XC(M ®IZ’ f.({P}XC)'

It is straightforward to see that actually v or = w.
We claim that w is actually surjective. From the long exact sequence coming
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from (3.19) we have:
coker (w) = Extgi, (M ® Iz, F' ® Tipyxc)
Recall that

M=2Ok-a)RL Y (zy), F =20(RL
Ipyxc & O(-1)XO, Kpivc=O0O(-2)K K¢

Using duality, we have:

Exthi,o(M® Iz, F' ® Ipyxe) S B x CMOI; @ F ' @I} @ Keinc)
= H(B', O(k — 2a — 1)) ® H(C, £3(z0) ® Ko) = 0

This is because k —2a —1 < 0. It follows that u is surjective; hence, r is surjective.
a

Lemma 3.34. The morphism of vector spaces
s : Bxtg (L7 (zo — ) ® L7 (20)1q, £) = Exts (L7 (0 — q), L(q))
1S surjective and it sends an extension
0=L—>E—L (20— q) L (x0))g = 0
to the extension given by its saturation:
0> L(q) &=L zg—q) =0
It is obtained from the projection

LN zo—q) @ E_l(xo)m — L7 (zo — q).

Proof. Consider the exact sequence
0— L — L(q) = L(q)q = 0.
Applying Hom(L™'(zq — q) & L7}(z¢))q, —), one gets a morphism
w s Bxth (£ (20 — ) © £74(@0)jq, £) > Bxth (L™ (v — g) @ £ (z0) > L(3)).
Consider the split exact sequence:
0— L™z —q) ® L7 (z0))g = L7 (z0))q = 0.
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Applying Hom(—, £(q)), one gets a morphism
t : Exto (L7 (2o — q) @ L7 (20)jg, £(g)) — Exte (L7 (20 — ), L£(q))-
Let s = tou. We prove s is surjective. Note that there is a split exact sequence:

0 —= Ext& (L7 (o — q) ® L7 (z0)}g, £(q)) — Extlc([:_l(xo —q) ® L7(z0))q, £) —
— Exte (L7 (o) g, £(g)) —

Then t is a retract for this sequence.

In a similar way, there is a split exact sequence:
0 — ExtL (L™ (zo — q), L) = Ext& (L7 (zo — q) & L7 (z0))q, £) —
— Exte(L£7Y(2o) g, £) — 0.
There is a canonical retract:
" Exts (L7 (zo — q) ® L7H(T0)jg, £) = Ext(L7Hzo — ), £).

There is a commutative diagram:

Exts (L7 zo — q) ® L7 (zo)jg, £) — s ExtL (L (20 — q) ® L7 (z0) 10, £(q))

.| I

ExtL (L (20 — ), £) SN Ext& (L7 (zo — g), £(q))

The morphism t' is surjective, because
Extg (L7 (20 — ), £(q)j) = H'(L%(2g — z0)jg) =
As v' is also surjective, it follows that s = v’ ot/ = v o t is surjective.

We would like to describe the morphism s. Start with an extension

0> L—=E— L zo—q)® L (0))g = 0 (*)

Consider the morphism g : £ — L™ !(zo — q) obtained by composing the mor-
phism & — L7} (zo — q) ® L7(20)|q with the projection

LN zo — q) & L7 (z0)jg = L7 (20 — 9)-
Then ker (g) = £(g) and let the induced exact sequence be:

0= L(g) —=E— L (zog—q) >0 (**)

We claim that s sends () into (xx). To prove this, note first that there is a
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commutative diagram:

0 — L » £ —— L7 zo—q) ® L7 (z0))y — O
I I I
0 —— L(q) » £ —— L Hzo—q) — 0

Apply Hom(L ™Y (zo — q) ® L7!(z0)jq, —) to both exact sequences to get the fol-
lowing commutative diagram. (Since £7!(z,)|, = O,, for convenience, we replace
L7 (zo)|q with O, everywhere in the diagram).

Hom (L (2o — q) ® Oy, L™ (zo — q) ® O,) SN Ext(L™Y(zo — q) ® Oy, L)

! I

Hom(L (2o — q) ® Og, L7 (w0 —q)) — Ext(L™Y(z0 — q) ® Oy, L(q))
* I
Hom (L (zo — q), L~} (20 — g)) —25  Ext(L7(z0 - g), £(q))
We denoted by d; and §, the connecting morphisms; hence,
61(Id) = (%), d2(Id) = (*x).
Note that the vertical map on the left of the diagram maps the identity element
Id € Hom(L ™ (20 — q) ® O,, L™} (z0 — ¢) ® O,)

to the identity element
Id € Hom(L ™ (z¢ — q), L™ (z0 — q)).

So s =wvot maps (x) to (*x).

Note that there is a clear retract for s given by the injection £ — L(q). O

3.4 The moduli scheme in Case E

In this section we let & = 2a. We construct moduli spaces for rank 2 vector
bundles F on P! x C' with the properties in Lemma 3.1 and such that F has equal
generic fiber type (a, a).

As in Case U, let ¢; and ¢, be:

a1 =k{pt} x C+P" x {zy} and c; =k
We say that F has type (1) if it has canonical sequence:
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02 0@RE—SF—-0(@@—1)80p—0 (1)

where £ is a stable vector bundle on C and D is a 0-cycle on C.

Our goal is to construct coarse moduli schemes for the following contravariant
functors:
F : Sche — Sets

F(S) = {Isomorphism classes [F] of vector bundles F on P! x C x S, such that
Vs € S, F, has Chern classes c; and ¢, and it has type ()

F?: Sch¢ —> Sets

F°(S) = {Isomorphism classes [F]| of vector bundles F, such that [F] € F(S)
and Y(p, s) € P! x S the vector bundle F, , is stable}

As in Case U, the functor F? is an open subfunctor of F. The functor F' has
a coarse moduli scheme By, which is constructed in [BR2]. We prove that the

functor F° has as coarse moduli scheme a dense open subscheme B2, of Beyen.

3.4.1 Some computations with Chern classes

Lemma 3.35. Consider the ezact sequence of sheaves on P! x C':
02300@)RE—>>F—>0(@—-1)KOp =0 (1)

where £ is a rank 2 vector bundle, and D a 0-cycle on C. Then we have:

ci(F) =P x (c1(€) + D) + k{pt} x C
deg co(F) = (a + 1)deg (D) + a.deg (£)

Corollary 3.36. If F as in the Lemma 3.35 has Chern classes ¢; and cy then:




3.4.2 The moduli scheme ‘B,.,.,

Fact 3.37. [BR2] There ezists a quasi-projective integral scheme Beyen which is a
coarse moduli scheme for the functor F, i.e., for rank 2 vector bundles on P! xC x S
with equal generic fibre type (a,a), with Chern classes (c1,c2) and for which the
canonical quotient sheaf J is of the form Oy(—1), where Y is a union of fibres.

The previous fact is a consequence of the construction in [BR2]. As in the Case
U, we fixed the Chern class c; as an element of A'(P! x C). If we fix ¢; only up to
numerical equivalence, hence, as an element of NS(P! x C), then we get the moduli
scheme B of [BR2]. More precisely, the scheme B of [BR2| has a canonical map:

m:B =6, where & =Sym?C)x M(2,1-a)

and M(2,1 — a) is the coarse moduli scheme of rank 2 semistable vector bundles
on C of degree (1 — a). The map 7 sends the point F to the point (D, ).

The scheme B = B,,., that we construct is the preimage under 7 of the
subscheme of & given by the closed immersion:

Sym*(C) Xpice(cy M(2,1 = a) < Sym*(C) x M (2,1 — a)

where M (2,1—a) — Pic' *(C) is the determinant map and Sym®(C) — Pic'~%(C)
is given by

Outline of the construction of ‘B

This follows closely [BR2]. We want to construct a scheme ‘B for vector bundles
F that sit in an extension as in Lemma 3.35:

0= 0@BE—F—0@—1)R0p =0 (1)

We start by constructing a space B parametrizing extensions f.

Let M (2,1 — a) be the coarse moduli scheme of semi-stable rank 2 and degree
(1 — @) vector bundles on C and let M (2,1 — a) be the scheme whose geometric
quotient by the action of a general linear group G’ is the scheme M (2,1 — a).

On C x M(2,1 — a) there is a rank 2 vector bundle W, which is a locally
universal family of stable rank 2 bundles of degree 1 —a. Moreover, M(2,1 — a) is
smooth. If a is even, then W is in fact a universal bundle. In this case, W descends
to a universal bundle on C' x M (2,1 — a) and the scheme M(2,1 — a) is smooth.

Let & be the product

5] —— M(2,1—-a)
! l
Sym*(C) —— Pic'™*(C).
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where the morphism u is given by D — O(z — D).

Let £z be the vector bundle on P! x C' x G induced from the bundle W on
C x M(2,1— a). Let Dg C C x G be the subscheme induced from the universal
divisor in C' x Sym®(C). Define S to be the relative extension sheaf

S = Extpy, ,5/5(0(a— 1) B Opg, O(a) B &g).

The sheaf S is a locally free sheaf on P! x C x &. If u = (D, &) € &, then we have
that G, = Extpio(O(a — 1) R O0p, O(a) R E).

Define B’ = V(S) and let 7 : B — © be the canonical map.

In a similar way to the U case, we construct now the subscheme B C B
parametrizing extensions (1), such that F is locally free.

Consider the sheaves &5 and Opﬁ, on P! x C x %l, which are the pull-backs

of the corresponding sheaves on P! x C' x &. There is a universal extension:

0— (O(a)R&Ez)®L— Fg = O(a—1)XNOp. — 0
where £ is some line bundle on B.

Asin Case U, there is a dense open subscheme B of B, such that F Testricts
to a locally free sheaf FF on %B. The scheme B C B is dense in every fiber of
" B - 6.

Let now T be the group scheme on S which has as fiber over the point u =
(D,€) € S the group given by Aut (Op). As Aut (Op) acts on the fiber of
p: B - S at u:

3|

Extp1,,o(O(a—1)®Op,0(a) R E)

it follows that the group scheme T acts on B.

Let G’ be the group which acts on M(2,1 — a) giving as geometric quotient
the coarse moduli scheme M (2,1 — a). The group G’ acts on the locally universal
bundle W, and therefore on B.

Since scalar multiplication of extensions appears in both the action of 7' and

G’', we define the group scheme:
G=T XGm G’

The following fact is stated in [BR2]; it follows easily from Lemma A.5

Fact 3.38. Let v and w be points of B. Then the bundles F, and F,, induced from
the locally universal bundle Fg are isomorphic if and only if v and w lie in the
same orbit for the action of G on *B.

The following fact is a result from [BR2].

Fact 3.39. There is a universal geometric quotient B for the action of G on
B.The scheme B is integral quasiprojective and it is a coarse moduli scheme for
the functor F of (3.4), i.e., for rank 2 vector bundles on P* x C' with Chern classes
c1 and ¢y and with F of type (}).
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We call this scheme with ®B. The following fact is a result from [BR2].

Fact 3.40. There is a geometric quotient & of & by G, which is isomorphic to
Sym®(C) X pipr-a(c) M(2,1 — a). The projection map p: B — & descends to give
a map

p: iBeven — 6.

Moreover, away from the ramification locus of the map C* — Sym?(C), p is a
(PGL(1))*-bundle in the fpgf-topology (“finite flat surjective” topology).

Dimension of ‘B,,.,

Since dim M (2,1 — a) = 4g — 3 and dim Sym®(C) = a, we have:
dim (&) =a+ 39— 3.
It follows by Fact 3.40 that

dim (Beyen) = 40+ 3g — 3 = 2k + 39 — 3. (3.20)

3.4.3 The good locus B, in B,

We constructed a scheme EB_: Beyen Which is the geometric quotient of an
integral quasiprojective scheme B by the action of the group G. The scheme B
has a locally universal bundle F = Fg.

We say that a closed point b € B is good if the vector bundle F, on ]Pl1 x C has
the property that for any p € P! the bundle %, is stable (equivalently, F, induces

a morphism f : P! — M). We let B’ C B be the set of good points.
Consider the locus:

Y = {(p,b) € P' x B the bundle F,; is not stable }

By Fact 1.9, ) is closed in P! x *B. Note that B’ is the complement of the image
g

of Y via the projection 7 : P! x B — B. Therefore, the set of good points B is
open in ‘B, but possibly empty.

Lemma 3.41. The action of the group scheme G on B induces an action on B,
There is a geometric quotient B for the action of G on %0, which is also a coarse
moduli scheme for the functor F° of (3.4). If the geomtric quotient of B is given
by:

qg: BB

then the scheme B is the open subscheme of B given by q(@o)
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Proof. Note that by Lemma 3.38, the orbit of a point in B’ by the action of G on
B is contained in B". It follows that if we let B0 = q(ﬁo) then B° C B is open
and B = q'(%B°) has B° as a geometric quotient for the action of (. O

Theorem 3.42. The open B is non-empty, hence, dense, in B.

Proo_f., Recall that the open B C B is dense in every fiber of the vector bundle
P:B — 6. Let p: B — & be the restriction of 7' to 8.
We prove that for a general closed point u in & we have:

B Np~tu) #0
Let u = (£, D) € & be a closed point. Consider the following sheaves on P! x C':
F'=0()RE, and J=0(a)RO,
Then the fiber 7'~ (u) is isomorphic to the affine space W given by
W = Extpi,o(J, F').

Let U = p~'(u) C W be the open in W corresponding to extensions of 7 by
F', which have the middle term locally free.

Let F be the universal bundle on P! X C xU. It has the property that if EeWw
corresponds to some extension

0>F - F - 0()XR0p —0 (&)

then we have that .7:} = F.
Let U° C U be the good locus in U/. This is the locus of points ¢ € U such that

for any p € P!, the bundle %, is stable. Then U = B° Np~(u).
Consider the following closed set of P! x U:

Y = {(p,€) € P! x U| the bundle Fpe on C is not stable }.
Let 7 : P! x U — U be the projection. We have:
Ul =U\=(Y)

For a point p € P!, denote ¥, = ¥ N ({p} x U). Then Y, can be identified with
the closed subscheme of U corresponding to classes of extensions £inU C W, such
that %, ¢ is not stable.

Ifu=(D,£) € G is such that D consists of distinct points then we prove that
7(Y') is a proper closed subset of I/ by proving that for any p € P! the closed
subscheme Y, of U has codimension at least 2.

Consider the vector spaces:

W = Extpi,o(J,F') and V = Ext%p}xc(ﬂ{p}xc,-7'_|'{p}xc)-
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Let 7 : W — V be the restriction morphism of Lemma 3.43. An extension given
by an element £ € W:

0-F >F->T =0 (é)

is sent by r to the element in V' given by the restriction of (£) to {p} x C (restriction
is exact in this case):

0— fll{p}xC = Flpyxc = Tjpyxc — 0.

By Lemma 3.43, we have that r is surjective.
We have:

‘7:|,{p}XC ~ £ and t7i{p}XC = OD

Then
V= EXtI(OD,E).

So V is the vector space (2.17). It has dimension k = 2a.
Consider the locus of unstable extensions in P(V') (Proposition 2.19):

Z CP(V).

We have seen that Z is a closed subscheme of P(V') of codimension at least 2. If
a=1then Z = (. Let C(Z) C V be the affine cone over Z C P(V). If Z = 0 then
we let C(Z) =0€ V. Let Z C W be the preimage via r of C(Z) in W. Note that

Y,=2ZnU.

Since
codim w (r~(C(Z))) = codim vC(Z) = codim p/Z > 2

it follows that codim Y, > 2. O

Lemma 3.43. For any p € P! there is a morphism of vector spaces:

T E.’L'tﬂiqxc(j, }-’) — Ext%p}xC(‘ﬂ{P}xc"r{{P}XC)

gtven by restriction and r is surjective.

Proof. Let’s fix p € P' and let Zy,)«c be the ideal sheaf of {p} x C in P! x C.
There is a short exact sequence:

0= F ®@Lypixc > F — ]:|I{p}xC -0 (3.21)

This induces a morphism:
w: Eth%’GC(ja -7:’) - EXtI}“xC(j’ '¢|’{p}xC)
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From
J = Jipyxc

we get a morphism:

v : Extiyy e (Tipixe Fippxe) = Extipyxe (T Fipyxo)-

We have vor = w.
We claim that w is actually surjective. From the long exact sequence coming
from (3.21), we have:

coker (w) = Ext3,o(T, F' ® Iipyxc)-

Using duality, we have:
EXtIzpGC(j, .F, ®I{p}xC) = Ethmxc(O(a — 1) X OD, O(a — 1) X 8)

=~ Ext2:, o (p3(Op ® £7),0) 2 HY(P! x C,p3(0Op ® £*) ® Kpixc)
~ HY(P!,0(-2)) ® H*(C,0p ® £* ® K¢)
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Chapter 4

Irreducible Components of the
Space of Rational Curves on M

We find all the irreducible components of Mor (P!, M). They all correspond to
moduli of rank 2 vector bundles on P! x C. We also find their maximally rationally
connected fibrations.

Consider the evaluation morphism ev : P! x Mory(P!, M) — M and the uni-
versal bundle on P! x C x Mor,(P!, M):

H = (ev X id¢c) Uy.
If [f] € Morg (P!, M), then if H; = Hjpixox{s), We have:
%f = (f X ’Ld)*uO

Recall that if [f] is a closed point of Mor(P*, M), we have from (1.7) and (1.8)
that the bundle #; has Chern classes ¢; and c,:

cr=k{pt} x C+P' x {0} € AY(P' x C), deg(c;)=ke€Z (4.1)

4.1 The subschemes 9(a,e) of Mor; (P!, M)

In this section we define the subschemes 9(a,e) C Mor, (P!, M) such that
[f] € M(a,e) corresponds to a bundle [H;] € B%(a,e). We prove that M(a,e) =
B°(a, €) such that M(a,e) = BO(a,e). We prove that any irreduchbile component
of Mor, (P!, M) for which the general point [f] has the property that the bundle
H s has unequal generic splitting is one of the closure of one of the schemes M(a, ).
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The moduli schemes B°(a,e) map to Mor, (P!, M)

Let a be an integer such that a > g Consider the range for the pairs (a,e) for
which the good locus 8B°(a, €) of Theorem 3.32 is non-empty:
0>0, e>0 or 6=0, e=0

This is precisely the range that we will call the range (x) :

k—a

{(,e) k2a>k/2 —>e>0}U{(k0)} (%)

Proposition 4.1. Let a and e be integers in the range (x). Let B(a,e) be the
moduli scheme in 3.30 and let Feg(q,¢) be the universal bundle on P' x C x B(a, ).
Let 8°(a, e) C B(a, e) be the dense open in Theorem 3.32 corresponding to vector
bundles F on P! x C inducing morphisms f : P — M. Then there is a unique
morphism:

©:B%(a,e) = Mory(P', M) (4.2)

such that for some line bundle N' coming from B%(a, e) we have
Fepo(a,e) = (tdpr X ide X p)*H QN (4.3)

The map p sends the point [F] € B(a,e) to the point [f] € Mory(P', M),
corresponding to the morphism f induced by F.

Proof. Let B = B(a,e). The non-empty open B® C B has the property that for
any closed point b € B° and any closed point p € P!, the bundle F8|{p}xCx{b} 18
stable. Then, by the definition of the moduli scheme M, the restriction Fgo of Fig
to P! x C x B° induces a morphism:

g:P' xB% 5 M, suchthat Fgo (g xide) U QN (4.4)

for some line bundle A/ coming from P! x B°. (It is straightforward to see from a
computation with Chern classes, that the line bundle A is in fact the pull back of
a line bundle from B°. )

It follows from the universal property of the Hilbert scheme Mory (P!, M) that
there is a unique morphism p : 8% — Mor, (P!, M), such that g is the composition
ev o (idp1 x p):

(idp1xp)
-5

P! x B° P! x Morg(P', M) —=— M (4.5)

It follows from (4.4) and (4.5) that

Fipo =2 (g x ide) U @ N = (idpr X ide X p)"H O N

Corollary 4.2. The morphism p 1s injective.
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Proof. The morphism p is sending the point [F] € B° to the point [f] correspond-
ing to the morphism f : P! — M induced by F. Moreover, from (4.3), we have
F = H;. Hence, F is uniquely determined by f. O

Remark 4.3. It will be very useful later to notice that in Theorem 4.2 we can allow

a = g and e > 0. In this case, there erists a scheme B = %(%,e) parametrizing

extensions (up to scalar multiplication):

0 0(2) RL— F - (O(S) R £ (20)) ® Iy — 0. (4.6)

where L is a line bundle on C of degree —e and Z C P' x C is a 0-cycle.

There erists a universal vector bundle Fg on P! x C x B. It parametrizes
the middle term of the extensions (4.6). In this case the vector bundle F does not
determine the ezact sequence (4.6). Therefore, B is not a moduli scheme for vector
bundles F anymore.

However, the same proof as for the case a > % shows that there is a morphism:

k
e %0(5,6) — Mor,(P', M).

This morphism sends the extension (4.6) to the morphism induced by F. This
morphism does not need to be injective.

Components of Mor (P!, M) map to B%(a,e)

Lemma 4.4. For each irreducible component M of the scheme Mory (P!, M) let
Hon be the restriction of the universal vector bundle H to P x C x M. Then there
exist integers a and d such that with a > % and a dense open

om° C M

such that for any closed point [f] € 9O, the vector bundle H; has generic fiber
type (a,k — a) and the vector bundle p,,(H;(—a)) has degree d.

Proof. This is an application of the Lemma 3.18. O

Lemma 4.5. If in the Lemma 4.4 we have a > %, then d < 0. If we let e = —d
we have that a and e are in the range (%).

Proof. Let [f] € 9° to be a closed point and let £ = p,,(H#(—a)). By Lemma
3.28, deg (£) < 0.

Since the bundle H; has Chern classes ¢; and c; as in (4.1) and canonical line
subbundle of type (a,—e), by Remark 3.29, it follows that a and e satisfy the
required inequalities. O
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Proposition 4.6. For each irreducible component 9 of the scheme Mor (P, M)
let a > £ be the integer such that for a general [f] € 9N the bundle H; has generic
fiber type (a,k — a). Assume that a > % Then there is an integer e > 0 (e > 0 if
a < k), a dense open M® C I and a unique morphism

v: M — B%a,e) (4.7)
such that there is a line bundle N from 9M° with the property that

H = (’id]pl X tdo X V)*]:%O(a,e) QN (48)
The map v sends a point [f] € My to [Hs] € B (a,e).

Proof. Consider the open 9° from Lemma 4.4 and let Hgpo be the restriction of
the universal bundle H to P* x C' x 9M°. Then for any point [f] € 9M° the vector
bundle H; has Chern classes ¢y, ¢z as in (4.1. By Lemma 4.4 and Lemma 4.5, there
is an integer e > 0 such that H; has subcanonical line bundle of type (a,—e).
Since B = B(a, e) is a fine moduli space for such vector bundles, there is a unique
morphism:

v:9M® — B, such that Hope = (idpr X ide X V)* Fg QN

for some line bundle N from 9t°.
Note that since all closed points of 9° are mapped to B°, the morphism v

factors through B°. 0
Corollary 4.7. The morphism v of (4.7) is injective.

Proof. The morphism v is induced by Hgpo. Since H; determines the morphism
f, v is injective. O

Irreducible components with unequal generic splitting

Proposition 4.8. For each irreducible component 9 of the scheme Mor, (P!, M),
for which there is an integer a > % such that the general [f] € 90T has the property
that the bundle Hy has generic fiber type (a,k — a), and there is an integer e such
that 9N is the closure of the image of the morphism

p:B%(a,e) — Mor, (P, M)
Proof. Consider the morphisms (4.7) and (4.2):
v: M — B%a,e) and p:B(a,e) - M
Let B8 = B(a, e). Consider the composition:
mo —— B £ Mork (P!, M)
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We prove that this composition is the inclusion morphism
i : M® — Mor, (P*, M).

Using the universal property of the evaluation morphism, it is enough to prove
that the following morphisms are the same:

(idp1x1)

P! x 90 P! x Morg (P!, M) —=—= M
P! x o0 S et Mor (B, M) —2s M

By the definition of the moduli scheme M, the two morphisms are the same if
and only if there is a line bundle £ from P! x 901° such that:

Hgno = (id]pl X ldc X Z)*H = (id]pl X ldc X ,U,l/)*'H ®L.

From formulas (4.3) and (4.8) we have that there are line bundles Ngo from B°
and Nypo from 901° such that:

(idpr x ide X p)*H = Fogo ® Nigo
(idpr x ide X v)* Fego = Hopo ®N9;I<1’

It follows that i = pow.

The scheme ‘B is reduced and irreducible, therefore the morphism p factors
through an irreducible component 9’ of Mor, (P!, M). Asi = pov, it follows that
9 contains IM°. Hence, M’ = M and u factors through M°. The two morphisms

p:B° - m® and v - BO

satisfy pov = idgpo. It follows that p and v are isomorphisms.
Note that by the same formulas, (4.3) and (4.8), we have that there is a line
bundle £ from B° such that:

(id]pl X ldC X V,u)*]:%o = .7:%0 ® L.

This proves that v o u = idgo. O

Using the same methods as in the proofs of Proposition 4.6 and Proposition 4.8
one can prove the following Proposition.

Proposition 4.9. The morphism p is an isomorphism onto its image.
Definition 4.10. We define the subscheme M(a,e) C Mory (P!, M) to be the quasi-
projective scheme given by the image of the morphism p (taken with the induced
reduced structure).

Note that Mi(a,e) = B%(a, €) is an integral scheme.
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4.2 The nice component

We prove that there is a special subscheme 9 C Mor,(P!, M): the general
element [f] € 9 has the property that the bundle #; has generic splitting type
balanced. We prove that this subscheme is an irreducible component of the ex-
pected dimension with the general point unobstructed. We call this component
the nice component.

4.2.1 The nice component for £ odd

We prove that for £ odd the nice component is given by one of the subschemes

9M(a, €), namely, M(ELL, k1),

Theorem 4.11. For any odd integer k = 2a + 1, the scheme 9 = M(a + 1, a)
is the unique irreducible component of Mory(P', M) for which the general [f] € M
has the property that the bundle Hy has generic fiber type (a +1,a). In addition,
M has the following properties:

i. It has the expected dimension 2k + 39 — 3
1. It is unobstructed at the general point

Proof. For a point [f] € M(a + 1,a) the bundle H; has fiber type (a + 1,a). In
fact, for any ¢ € C we have:

Hfﬂl’lx{c} = O(a + 1) D O(a)
By Lemma 1.11, for such an f we have
HY (P!, f*Ty) = 0.

Therefore, there is a unique irreducible component 90t containing f and moreover,
M has the expected dimension 2k + 3g — 3 and is smooth at the point f. Since
M(a + 1,a) has the expected dimension, it follows that

M =M(a+1,a).

We call this component the nice component and we denote it by M.

4.2.2 The nice component for k£ even
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In this section we assume k is even. We let £ = 2a. We define a subscheme
Meyen C Mor (P, M) such that if [f] € Meyen corresponds to a bundle [#H] in the
good locus BY . of Theorem 3.42.

even

We prove that Meyen =2 BY,.,,. We prove that M.y, is the unique irreducbile

component of Mor, (P!, M) such that for a general point [f] the bundle #; has
generic splitting type (a, a).

The subscheme 9M,,., of Mor; (P!, M)

Recall that B,,., is the moduli scheme for rank 2 vector bundles F on P! x C
with canonical sequence of the form:

0>0(@RE—-F—->0(a)BOp—0 (1)

where £ is a stable vector bundle on C and D is a zero cycle on C.
Let B%  C B.uen be the dense open in Theorem 3.42, corresponding to vector

bundles F inducing morphisms f : P! — M. Recall that B% _ is the coarse moduli

even
scheme for the functor F°:

FY : Sch¢ — Sets
F°(S) = {Isomorphism classes of rank 2 vector bundles G on P! x C x S
such that Vs € S, closed point, the bundle G, has canonical sequence of type (})}

Define a transformation of functors:

T : F° — Hom(—, Mor,(P*, M))
T(S) : F°(S) — Hom(S, Mor, (P!, M))
G~ lg]

where if G is a vector bundle on P! x C' x S then g : S — Mor (P!, M) comes from
the morphism P! x S — M induced G.

Theorem 4.12. There is a morphism

p: B, — Mor,(P', M)

even

such that p([F]) = [f], where f is the morphism induced by F. Moreover, there is
a comutative diagram:

F° Hom(—, Mor(P*, M)

N

Mor(—, B2

ven )
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where F° — Hom(—,BY,.,.) is the morphism coming from the fact that BL,,, is
a coarse moduli scheme for the functor FO of (8.4).

Irreducible components with equal generic splitting

Theorem 4.13. Each irreducible component M of the scheme Mor, (P!, M), for
which the general [f] € 9N has the property that the bundle H; has generic fiber
type (a,a) (where k = 2a), has the following properties:

i. It has the expected dimension 2k + 3g — 3
. Mory(P', M) is unobstructed at the general point of M

ii. There is a dense open IM® C M such that for [f] € M°, the vector bundle H;
has canonical sequence of the form:

0+00@)XRE—-Hf > 0(-1)ROp =0

with D some divisor on C of degree a and £ some stable rank 2 vector bundle
with det (£) = O(zo — D).

Proof. Parts i. and ii. are consequences of Lemma 1.11.
For Part iii, we have from Lemma 4.4 that there is an integer d and a dense

open M® C M with the property that for [f] € 9M°, the vector bundle H; has
canonical sequence of the form:

02 0(@)RE - Hy = pi0(a) ®T — 0 (4.10)

where £ is some rank 2 vector bundle of degree d, Z C P! x C is a 0-cycle, D is
the scheme theoretic image py(Z) and Z is the ideal sheaf of Z in P! x D.

Note that by ii. we have that 9° is a smooth scheme. Consider the Kodaira-
Spencer map at a point f € 9, for the family over 9° of vector bundles on P! x C
given by the universal bundle H:

w :Tfﬂﬁo — HY(P* x C, End(Hy))

By Observation (1.13) and since Mory(P', M) is smooth at [f], it follows that w
is an isomorphism for any f € 9M°. Hence, by Corollary 3.25 and Lemma 3.23
and eventually shrinking 9%, we get that Z & Opiyp(—1) = O(—1) K Op. By
Corollary 3.35, it follows that

det ()= O(zg— D) and d=1-a

From Lemma 1.9, it follows that there is an open in 9°, possibly empty, such
that the bundle £ is stable. We prove that this open is dense.
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We claim that if [f] € Mork(P*, M) is an element such that the bundle #; has
canonical sequence (}) with the bundle £ not stable, then f is in the image of the

morphism f4 from Remark 4.3, for some 0 < d < 251

k
Md - %O(E’d) — MOI‘k(Pl, M)
Then Part iii. of our Theorem follows, since we have, for any 0 < d < “—;l:

dim %(g,d)=2g+3a+2d—1529+4a—2<
<4a+39—3=2k+3g—3=dim M.

We prove now the claim. Assume that the bundle #; has canonical sequence
as in (4.10), with the bundle £ not stable. Then there is a line subbundle £’ of &,
with deg (£ )

deg (E,) Z egz( ) — ;a‘

Consider the injective morphism:
0— O(a) XL — 'Hf.

Let F' be the saturation of O(a) X L' in #H; and let J be the torsion free quotient:

0->F >H; > T -0 (4.11)

The sheaves 7' and J have rank 1. Since #; is locally free, it is in particular
a reflexive sheaf. It follows from Lemma A.10 in Appendix that the sheaf F’ is
reflexive. Since a reflexive sheaf of rank 1 is a line bundle, it follows that there is
a line bundle £ on C such that

F'~0(b) R L.

Let d = —deg (£). Since O(a) X L' is a subsheaf of F', we have:

l1—a

b>a and —d>deg (L) >

If we push forward to C the short exact sequence (4.11) twisted by O(—b), we get
another short exact sequence:

0= L = py, F(=b) = p2, T (—b) — 0.

If b > a then p,;, F(—b) is a torsion sheaf, since the stalk at the generic point is 0.
But then p,, F(—b) = 0, since by pushing forward a torsion free sheaf we still get
a torsion free sheaf. Therefore, we deduce that if b > a then £ = 0, contradiction.
We have b = a.
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So if we assume that £ is not stable, H; sits in an exact sequence:
02 0@RL—H; =T —0

where J is a torsion free sheaf of rank 1 and £ a line bundle of degree

1—a

2

—d >

As J is torsion free, it follows that J=2I;, @M, for Z C P! x C a zero-cycle
and M is a line bundle on P! x C. From a computation with Chern classes it
follows that M = O(a) ® L71(zo). We have an exact sequence:

0— O@)RL—H;— (0@ LY z0)) ®Zz — 0.

By Lemma 3.28, it follows that d > 0.

We conclude that if f corresponds to a bundle H; with £ unstable, then f is
in the image of the map pq, for some 0 <d < e,

Note that if kK = 2 then & is always semistable. O

Proposition 4.14. Let 9 be an irreducible component of Morg(P*, M) for which
the general [f] € 9N has the property that the bundle H; has generic fiber type
(a,a). Let O be the open of Theorem 4.13. Then there is a morphism

. 0 0
7: MM = Beyen-

even”

The morphism T sends a point [f] to the point [H/) € B2

Proof. Let Hapo be the restriction of the universal bundle H to P! x C x M°.
Since Hopo is a family of vector bundles with the properties in Theorem 4.13 and
since BY,,,, is a coarse moduli scheme for such vector bundles, it follows that Haye
corresponds to a morphism 7 : me — B O

even'

Theorem 4.15. For any even integer k = 2a, there is a unique irreducible com-
ponent M of Mor(P', M) for which the general [f] € 9N has the property that the
bundle Hs has generic fiber type (a,a) and there is a dense open Mme C M such
that M0 = BY In addition 9 has the following properties:

even”
i. It has the ezpected dimension 2k + 39 — 3
i, It is unobstructed at the general point

We call this component the nice component and sometimes denote it with e

Definition 4.16. We define the subscheme Meoyen C Mory (P, M) to be given by
the image of p in Mor(P', M) (taken with the induced reduced structure).

Note that Meyen = B

0 .n is an integral scheme.
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Proof. Consider the morphism 7 : 9M° — B, It is the image of the element
Hoyo under the map:

T(M") : F'(m°) — Hom (90°,82,...)-
The element Hopo € FO(OMO) is sent by T to the inclusion morphsim
i 0 < More(BL, M).

From 4.12, there is a commutative diagram:

Hom (9°, Mor, (P!, M)

\/

Mor(9°, B

even

It follows that the following composition is the inclusion morphism ¢

me —— B0 2 Mor (P, M)

even

Since B.yen is reduced and irreducible, we have

mON%O

even-

Hence, there is a unique irreducible component with the given properties and it
has a dense open isomorphic to BY,.,,. O

Note that we could have used the fact that the scheme B is a coarse moduli

scheme for some functor F to give another proof of Theorem 4.8.

Conclusion about the relations between the schemes M(a,e) and M.yen

Lemma 4.17. Let M(a, €) and Meyen be the subschemes corresponding to B°(a, €)
and B° The following relations hold:

even "

i. The schemes M(a,e) for all a and e in the range (x) are mutually disjoint.

. In the case when k is even, Meyen is disjoint from any of the M(a, ). In par-
ticular, the nice component Meye, cannot be contained in any of the M(a, e)

ii. If [f] € DM(a,e) \ M(a,e) then [f] € M(a',€'), witha' > a and €' <e
w. If[f] € Meven \ Meven then [f] € M(a,e), with a > g

v. The scheme Mory(P*, M) is a disjoint union of the locally closed sets M(a, e)
(add Meyen, if k even).
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Proof. This Lemma is a straightforward consequence of the previous results. The
schemes 9M(a, €) and M., correspond to the moduli of vector bundles on P! x C.
An element [f] € Mori(P', M) corresponds to the bundle #;. Since the bundle
H; is uniquely determined by its canonical sequence, it follows that the schemes
M(a,e) (for all a and e in the range (x)) and M.y, are mutually disjoint. Since
any element [f] € Mor,(IP*, M) corresponds to a bundle H; in some B°(a, ) or in
B0 . it follows that Mor, (P!, M) is covered by these sets. By Proposition 3.19,

even’

it follows that if we specialize, then a goes up, while e goes down. O
4.3 Irreducible components M(a,e)

We prove that all the subschemes 9t(a,e) which have at least the expected
dimension are dense opens in some irreducible components.
Let ¥ > 1 a fixed integer and consider the range (x) for the pairs of integers

(a,e):

(@)l k2a>k/2, 2% >e>00U{(k0) (*)

Let A be the branch of the hyperbola in the plane with axis a and e given by:

k—a 1 k k
3720k *72 (4)

e:Za—k‘_

Basic Lemma 4.18. For each (a,e) in the range (%), there is a closed integral
subscheme M(a,e) of Mory (P!, M) satisfying the following properties:

i. The dimension of M(a,e) is:

dim M(a,e) = 2a —k+2)g+ 3k —3a—1) —e(2a— k —2) (4.12)

. If M(a,e) is an irreducible component, then it has dimension at least the
expected one:

dim M(a,e) > 2k + 39 — 3= exp. dim. Mor,(P', M)

. If M(a,e) C M(a',¢’), thena' > a and e’ < e.
w. Ifk is odd, then sm(ﬁg—l, "2;1) is the nice component Myic.

v. If 9N is an irreducible component which is different from the nice component,
then there are uniquely determined a and e in the range (%), such that

M = M(a,e)
Proof. These are easy consequences or restatements of previous results.
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G-Dr2 Lo

0 @12 K

Figure 4-1: This shows the range (%) of the pairs of integers (a,e).

: _ k—a
The curve A has equation e = 5=%.

i. It follows from Proposition 4.9 and formula (3.16).
ii. This is the statement of Theorem 4.11
iv. It follows from Proposition 3.19.
v. It is a consequence of Theorem 4.8, Theorem 4.15 and Corollary 4.17.
O

Basic Lemma 4.19. For integers a and e in the range (x), the dimensions of the
subschemes M(a, e) grow as follows:

i. Ifa=%1ande > e then

dim M(a,e’) > dim M(a, €)
. Ifa= g + 1 then for any e

dim9ﬂ(a,e)=4g+%—4
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111. Ifk2a>§+1ande’>ethen
dim M(a,e') < dim M(a, €)
w. Ifa>a ande> (g —1), then
dim M(a,e) < dim M(a',e)
v. Ifa>a ande < (g—2), then

dim M(a,e) > dim M(d', e)

=12 [l

(k-2)/4

0 (el)2 (21 ka2 X

Figure 4-2: The arrows show the direction in which dimensions grow
when a is constant. If k is even and a = 52- + 1, then the dimension
is constant for any e in the given range.

Proof. This is clear since

dim 9M(a,€') — dim M(a,e) = (2a — k — 2)(e — €)
dim M(a', e) — dim M(a,e) = (29 — 2e — 3)(a’ — a).
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=12 |

[C-o ) R U,

(g-2)

1

1

| a
[

0 k+1)2 k

Figure 4-3: The arrows show the direction in which dimensions grow
when e is constant. In this picture we assumed % >(g—-1).

Basic Lemma 4.20. The locus of pairs (a, e) in the range (%) where the dimension
of M(a,e) is the expected dimension 2k + 3g — 3 can be described as follows:

i. On the line a = 551, at the point (a,e) = (&1, 551); note that for all the

other e (e < ¥21) the dimension is strictly less than ezpected
2 y

1. On the line a = % + 1 (we assume k even) if and only if k = 2g — 2; note
that on this line the dimension is constant and we have
a. Ifk > (29 —2), the dimension is less than the erpected dimension
b. Ifk=2g— 2, the dimension is equal to the expected dimension

c. Ifk < (29— 2), the dimension is bigger than the ezxpected dimension

1. Ifa> k%‘?, on the hyperbola B, given by equation:

_29-3 20—-2—-k
T T T 3Ra-k—2) (B)

inside the range () for a > &2,

Note that if k = 2g—2 then B is the linee = 2%3 union with the linea = g = %—%—1.
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Definition 4.21. Define the region R to be the region inside the region (x) where
the dimension is at least the ezpected one.

The region R consists of the following:
i. The point (&1, 551), if k odd
ii. The part of the line a = £+1 inside the region (%), if k is even and k < (29—2)

iii. The region between the graphs of the curves A and B for a > kZﬁ inside the

range (%), where the dimension is at least the expected one (see Figures 4-4
to 4-12)

k=12 |ooo ..

(2g-3)12

0 k+1)12

(kg)(2g-2)

—_— ]
~

(k/2)+1

Figure 4-4: The dark shaded part is the region R when g > 3 and
k is an odd integer with k > 29 — 2

Basic Lemma 4.22. The hyperbola B intersects the curve A at the points:

k+1 k—1
kg e=2 -1 and a:—+—, e=——

T oy -1) 2 2 2
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G-1)/2 [ ______

Qg2

(077> S

i
(k+1)72 E / | k

W21 (keg)/(2g~2)

Figure 4-5: The dark shaded part is the region R when g > 3 and
k is an even integer with k > 2g — 2

The curve B intersects the a-azis at the point

(k+1)(g—1)—1
2g — 3

Theorem 4.23. For a pair of integers (a,e) in the range (%) the scheme M(a, €)
is an irreducible component of Mory(P!, M) if and only if (a,e) is in the region R,
or, equivalently, if the dimension of M(a,e) is at least the ezepected dimension.
We have:

i. Ifk is odd, these are all the irreducible components; note that the nice com-
ponent is among them: M. = gm(’%l’ %)

w. Ifk is even, then the schemes M (a, €) together with the nice component Moice,
are all the irreducible components.

Moreover, the schemes M(a,e), for pairs of integers (a,e) in the region (x), but

not in the region R, are contained in the nice component Myc..
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k=112

i
I

0 (k+1)/2 k
D)+

Figure 4-6: The dark shaded part is the region R when g > 3 and
k=2g-2

Proof. Let 9 be an irreducible component of Morg (P!, M), which is not the nice
component. Since M is not the nice component, by Basic Lemma 4.18, it follows
that there are integers a and e such that 9t = 9t(a,e). Since I has at least the
expected dimension, the pair (a,e) is in the range R. By Theorem 4.11 and since
M is not the nice component, we have

k+1 k-1

(a,€) # (—2—,—2—)-

We prove now that for any (a,e) in the range R, the subscheme 9(a, e) is an
irreducible component. We can assume that

kE+1 k-1

(a,e) # (—2—,7)-

If there is an irreducible component 9 = 9M(a’, €') such that M(a,e) C M(a',e'),
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(2g-3)2

k-2 Lo D>

(g/2)-1

|
1
|
'
'
'
I
1
-+
1
1
'
1
1
[
[
l
1
|
1
|
|
1
|
|
U
|
'
'
1
1
1
[
'
1
1

k=36 |-

0 (k+1);2 T (k2)+1
(kg)/(2g-2)

(k+3)/2 k

Figure 4-7: The dark shaded part is the region R when g > 3 and
k is an odd integer in the interval g — 1 < k < 29 — 2

then, by Basic Lemma 4.18:
a>a ande<¢

Note that in the range R we have e < § — 1 < (g — 2). By Basic Lemma 4.19, it
follows that:

dim M(a, e) > dim M(a’, e) > dim NM(d’, €' (4.13)
If one of the inequalities (4.13) is strict, then

dim M(a,e) > dim N(d’, e').

But since M(a,e) C M(a’,€’), we have dim M(a,e) < dim MN(a',€'). It follows
that (a,e) = (a',€') and M(a, e) is an irreducible component.
Let 90t(a, e) be the scheme corresponding to a pair in the range (%), but not in

the region R. Then 9M(a, e) does not have the expected dimension and there is an
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Qg-3)12

=1)/2 [
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Figure 4-8: The dark shaded part is the region R when g > 3 and
k is an even integer in the interval g — 1 < kK < 2g — 2

irreducible component 9 of Mory (P!, M) such that 9(a,e) C M. If M is not the
even mnice component, then 9t = M(a’, ¢’) for some a’ and €’ in the region R (the
scheme 9t has at least the expected dimension). Then, again by Basic Lemma
4.18:

a>ad ande<e¢€

The only pair of integers in the range R with this property is (%, %) which

1
corresponds to the nice component. It follows that 9t must be the nice component.
O

4.4 Description of the irreducible components

4.4.1 Description of the schemes M(a,e) and My
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(k+3)/2 k

Figure 4-9: The dark shaded part is the region R when g > 3 and
k is an odd integer in the interval 0 < k < g —1

MRC fibration of 9(a,e)

Consider the schemes 9(a, e) for pairs of integers in the range (x). We let
d=(k—a)—e(2a—k).
Since M(a, €) is isomorphic to B°(a, e), there is a morphism:
7 : M(a, e) — Pic™*(C) x Hilb’ (P! x C) (4.14)
An element [f] € M(a, e) is sent by 7 to the point {(L, Z)}, where
L € Pic™®(C) and Z € Hilb’(P! x C)
are from the canonical sequence of the vector bundle #;:
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Figure 4-10: The dark shaded part is the region R when g > 3 and
k is an even integer in the interval 0 < k < g—1

0— O(a)RL—H;— (Ok —a) R L (z0)) ® Tz — 0. (4.15)
Proposition 4.24. If § = 0, the MRC fibration of the scheme 9M(a,€) is given
by the morphism © of (4.14):

7 : M(a,e) = Pic *(C)
If 6 > 0, the MRC fibration of the scheme 9M(a,e) is given by the morphism:
p: M(a,e) = Pic¢(C) x Pic’(C)

obtained by composing the morphism w of (4.14) with the canonical morphism com-
ing from:

Hilk* (P* x C) — Sym®(P* x C) = Sym®(C) = Pic’(C).

142



G-1y2 | .-

1
1
'
'
'
'
1
'
'
'
A\

0 (k+1);2

RS

(k/2)+1
Figure 4-11: The region R when g = 2 and k is even is just the
point {(k,0)}

The morphism p is dominant if and only if 6 > g.

Proof. The scheme 9M(a, e) is isomorphic to a dense open in the scheme B'(a, e)
which is a projective bundle over Pic™¢(C) x Hilb’(P! x C):
P’ : B'(a,e) — Pic™¢(C) x Hilb’ (P! x C)

The morphism p' induces the morphism p. Hence, it is enough to find the MRC fi-
bration of Pic™*(C) x Hilb? (P! xC), or equivalently, the MRC fibration of Hilb® (P! x
C).

If § = 0, then we are done. If § > 0 we consider the birational morphism
Hilb’ (P! x C) — Sym’ (P! x C).

We note that
Sym®(P! x C) = Sym®(P') x Sym®(C)
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(k-1)72

0 k+1)2

=

(k/2)+1

Figure 4-12: The region R when g =2 and & is odd consists of two
points: {(&41, 551), (k,0)}

Since Sym’(P!) is a rational variety, we are left with finding the MRC fibration of
Sym?’(C). This is given by the canonical morphism
u: Sym®(C) — Pic®(C).

The general fiber of the morphism p’ at a point in the image of u is therefore a
rational scheme and since Pic’(C) is an abelian variety, it follows that the map p’
gives the MRC fibration of B'(a, €). O

General description of 9M(a,e)

Lemma 4.25. An element [f] in 9M(a,€) is the extension of a rational map ob-
tained as a composition:

P! s P(V,)\ Zp — M
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(k=1)12

0 (k+|)/:2 a o k
Figure 4-13: The locus M(a’, ') is contained in M(a, €), thena’ > a

and ¢’ <e

where L € Pic *(C) is the line bundle in Proposition 4.24 and
]P’(V[,) \ Ze— M

is the morphism (2.7).
If § = 0 then there is a morphism P* — P(V.) (defined everywhere) of degree
2a — k such that f is the composition

P' > P(V.)\Z; = M

Proof. Let £ and Z be as in 4.15. Let I' C P! be the set of points p € P! in the
image of Z (as a set). Consider the restriction of the morphism f to P! \ T'. By
the same methods as in Lemma A.2, it follows that f factors as

PI\NT 2= P(V)\Z; =5 M

where Z; C P(V;) is the locus of unstable extensions of Proposition 2.1. Recall
that P(V;) = P?+9-1 and we have

Kr @ P(VC) \ Zy— M with k'O = 0(26 + 1)
If § =0 then Z =0 and I = (. Hence, the morphism g is defined everywhere.
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We have:

k—a
e_2a_k€Z, 2e+1—2a_k€Z
It follows that g*O(1) = O(2a — k). O

Note that in the case when 6 = 0, the scheme 9t(a,e) corresponds to the
subscheme M(e,n) (for n = 2a — k) of the Kontsevich space My(M,k). The
canonical sequence of the bundle #; has the form:

0— O(a) B L — Hy — Ok — a) B L (zo) — 0. (4.16)

Note that if we twist by O(a — k), we get that the sequence 4.16 is the pull
back by (g x id¢) of the universal sequence (2.6).

Description of 9(k, 0)

The scheme 9(k, 0) is an irreducible component of Mory (P!, M) (see Theorem
4.23). It is the irreducible component with the largest dimension (see Figures 4-2
and 4-3):

dim 9M(k,0) = (k+2)g — 1

Lemma 4.26. We have M(k,0) = M(k, 0).

Proof. Let 9 = 9M(k,0). We prove that the open 9M° C 9 of Lemma 4.4 is in
fact the whole 901. For a general closed point [f] € 9, the vector bundle #; has
generic fiber type (k,0). At a special point [f], by upper semicontinuity, #; has
generic fiber type (a,k — a), with @ > k . But by Remark 3.29, we must have
a < k. It follows that for any [f] € 9%, H; has generic fiber type (k,0).

In a similar way, for a general [f] € 90, the line bundle ps, (Hs(—a)) has degree
0. At a special point [f], the line bundle p,,(Hs(—a)) has degree bigger or equal
than 0. By Lemma 3.28, we have that p,,(#H(—a)) has non-positive degree. It
follows that for any [f] € 901, the line bundle p,, (H;(—a)) has degree 0. Hence, in
the proof of Theorem 4.6 we have 901° = 0. O

Corollary 4.27. The irreducible component of the largest dimension M(k,0) of
Mor (P, M) is isomorphic to B°(k,0). In particular, it is a dense open in a
projective bundle over Pic’(C):

7 : M(k,0) = Pic’(C)

Proof. We have that 9t(k, 0) maps isomorphically to B°(k,0). Since when (a,e) =
(k,0) we have § = 0, by Note 3.31, we have

B(k,0) = B'(k,0)
and 9B'(k, 0) is a projective bundle over Pic’(C). O
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Note 4.28. Any element in the component 9MM(k,0) of the largest dimension is a
rational curve obtained as a composition

Pt 2 P(V;) =5 M

where L € Pic’(C) is the line bundle L = n([f]) and g and k. have the following
properties:

- The morphism g embeds P! as a rational curve of degree k in the projective
space
P(V;) 2 Pot

- The morphism k. embeds P(V;) as a linear subspace contained in M

Proof. Recall that dim (V) = g and

ke :P(Ve) > M, and k3.0 =0(1)

The morphism k. is a linear embedding. By Proposition 2.15, it follows that there
is a unique morphism g with the required properties. O

Description of the nice component when k£ odd

Note 4.29. If k = 2a + 1 is an odd integer, the general element of the mnice
component M(a + 1, a) is given by a rational curve obtained as a composition

Pt 2 P(Ve)\ Z, =25 M

where L € Pic’(C) is the line bundle L = 7([f]) and g and k. have the following
properties:

- The morphism g embeds P! as a line in the projective space

IP(VL) o Pk+g—2

- The morphism k. has the property that k*© = O(k)

The proof is similar to the proof of Note 4.28.

Description of the nice component when &k even

Assume that £ = 2a is an even integer and consider the scheme 9M,,.,. Since
Meyen is isomorphic to Beyen, from Fact 3.40 it follows that there is a morphism:

T Meven — Sym*(C) Xpjei—e(cy M(2,1 —€)
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An element [f] € Meyer is sent by 7 to the point (D, E), where
D e Sym*(C) and €€ M(2,1—e)
are from the canonical sequence of the vector bundle H;:
050W@KRE—>H; > 0(—-1)KOp —0. (4.17)

Proposition 4.30. The MRC fibration of the nice irreducible component Meyen 15
given by the morphism
0 Meven — Picl_“(C’)

obtained by composing the morphism m with the canonical morphism:
Sym?(C) X pigi-a(cy M(2,1 — a) = Pic'=*(C)
where Sym®(C) — Pic*~*(C) is given by D — O(zo — D) and
M(2,1 —e) — Pic'™*(C)
is the determinant map. The morphism p is dominant if and only if kK > 2g.

Proof. The scheme M., is isomorphic to the scheme B.,e, and by Fact 3.40 there
is a morphism

P : Beven — Sym*(C) Xpigi-a(cy M(2,1 - a)
whose general fiber is isomorphic to PGL(1)®. Consider the canonical morphism
Sym?(C) Xpici-e(cy M(2,1 — a) — Pic'~%(C).
The fiber at a point £ € Pic!~?(C) in the image of p is isomorphic to
P(H’(C,€)) x M(2,¢)

It is unirational, since M (2, ) is unirational. It follows by Fact 1.6 that the general
fiber of p is rationally connected. It follows that p gives the MRC fibration of B. [J

Note 4.31. If k = 2a is an even integer, an element [f] of Meyen s given by a
rational curve obtained as a composition

P! — P(Vpe)\ Zps — M
where (D, ) = w([f]) (see Proposition 4.80) and we have the morphism (2.23):
D P(VD,E) \ ZD,g — M.

and the morphisms g and np ¢ have the following properties:
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- The morphism g embeds P! as a line in the projective space

P(Vpe) = P!

- The morphism np ¢ has the property that n*© = O(k)

Note that the scheme 9M,yen corresponds to the subscheme N (a,1) of the Kont-
sevich space Mo(M, k). The canonical sequence of the bundle H; is the pull back
by (g x id¢) of the universal sequence (2.21).

4.4.2 Low degree rational curves

Lines on M

Proposition 4.32. The scheme Mor(P', M) is isomorphic to a projective bundle
over Pic®(C). It has the ezpected dimension 3g — 1.

o \ &

Figure 4-14: The case of lines k = 1

Proof. Let k = 1. Then the range (x) for a and e is just the point (1,0). Let
2 = M(1,0); this is the nice component. It is the unique irreducible component
of Mor; (P!, M). It has dimension 3g — 1.

By Lemma 4.26 and as B°(1,0) = B(1,0) = B(1,0) (see Theorem 3.32), it
follows that 90 is a projective bundle over Pic®(C).

For any [f] € 9t the bundle H; has generic fiber type (1,0). By Lemma 1.11,
[f] is a smooth point of Mor, (P!, M). O

Conics on M
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Note 4.33. The scheme Mory(P', M) has two irreducible components: the nice
component Meyer, of the ezpected dimension 39 + 1 and the component IM(2,0) of
dimension 4g — 1. An element in the component M(2,0) is obtained by taking
conics in some (g — 1)-planes contained in M.

Proof. There is only one subscheme of the form 90(a, €), namely 9(2, 0). It follows
from Theorem 4.23 that 2(2,0) and M., are the only irreducible components.
O

Cubics on M

Note 4.34. The scheme Mors(P', M) has two irreducible components: the nice
component My, of the ezpected dimension 3g + 3 and the component M(3,0) of
dimension 59 — 1. An element in the component 9M(3,0) is obtained by taking
cubics in some (g — 1)-planes contained in M.

Figure 4-15: The case of cubics k =3

Proof. There are only two subschemes of type 9M(a,e): 9M(2,1) and M(3,0). It
follows from Theorem 4.23 that they are irreducible components. O

4.4.3 Examples for ¢ =2,3

Proposition 4.35. If g = 2 and k > 2 is any integer, there are two irreducible
components in Mor (P!, M), both of the ezpected dimension 2k + 3: the nice com-
ponent and the component 9M(k,0), which has as a general element a morphism
f : P* — M which maps k-to-1 onto a line in M.

Proof. The region R contains only the point (k,0). By Theorem 4.23, it follows
that the only other irreducible component than the nice component is 9t(k,0). O
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Proposition 4.36. If g = 3 and k > 2 is any nteger, there are two irreducible
components in Mory (P!, M), the nice component which has the ezpected dimension
2k + 6 and the component M(k,0), of dimension 3k + 7, which has as a general
element a morphism f : P — M obtained by taking rational curves of degree k in
some 2-dimensional planes contained in M.

Nice Component

(k-1)/2

Loci contained in the closure of the nice component

0 (k+1 )/Iz \.

(2K)/3 K

Figure 4-16: Case g = 2 or g = 3 when k is odd

Note that all the other loci 9(a, e) with (a,e) in the range (*), but different

than (k,0), are contained in the nice component. This is because of Basic Lemma,
4.18.
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Nice Component is not of type M(a,e)

G=D2 |-

Loci contained in the closure of the Nice Component

(k+1)/2 (2k)/3 k

Figure 4-17: Case g = 2 or g = 3 when k is even
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Appendix A

A.1 Extensions

Lemma A.1. Let S be a projective integral scheme and V and T be coherent
sheaves on S x C with the property that Hom(V;,T;) = 0 for any s € S. Let
1, Mo be the projections from S x C onto S and C respectively. Define S to be the
following relative extension sheaf on S:

S = Eathyys(V, 7).

Assume that S is a vector bundle on S x C and let Y = P(S) withp:)Y — S the
canonical projection. Let Vy and Ty be the pull-backs of V and T to Y x C. We
have that on Y x C there is a universal extension:

0->0,(1)®Ty > G —Vy—0. (8)

It 1is universal in the sense that for anyy € Y, if we let s = p(y), then the extension
(0y) obtained by restricting (6) to {y} x C

0T, =G, =V, =0 (6y)
gives an element in Bzt (Vs, T;) = S, which has class in P(S,) the element y.

Proof. The vector space S; 2 Ext(V;, 7;) parametrizes extensions
0—=T, =& =V, —0.
To construct (&) consider the space:
W = Exty, c(Ty, Oy(1) ® Vy).
There is an exact sequence:

0 = H'(Y, Homyxciy(Vy, Oy(1) ® Ty)) = Extyc(Vy, 0y(1) ® Ty) —
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Since we have Hom(V;,, 7;) = 0 for any s € S, it follows that

Homsxcis(V, T) =0
Homyxcpy(Vy, Ox(1) ® Ty) = Homyxcpy(Vy, Ty) ® Oy(1) =
= p*HomeCIS(v, T)® 0y(1) =0

Moreover we have:
Exthoy(Vy, 0y(1) © Ty)) = p*Extgyo1s(V, T) ® Oy(1) = (p x ide)*S ® Oy(1)
It follows that we have an isomorphism:
W = H(Y,05(1) ®p*S).
We also have canonical isomorphisms:
H°(Y,05(1) ® p*S) =2 H*(S, 8* ® S) = Homy (S, S).
Take the element id € Homy (S, S) and take the corresponding extension in W:

0—-0y1)®Ty =G —Vy —0. (6)

We claim that this extension has the required properties. To prove this, fix
y € Y and let s = p(y). We look first at how the extension (&) restricts to the fiber
of p at s. For simplicity, make the notation:

V == Extis}xc(v_g, 7-_;)

Then we have:
V=S8, and P(V)=p '({s})

Let g1, g2 be the projections from P(V) x C onto P(V) and C respectively. There
are commutative diagrams:

Extyyc(Ty, Oy(1) ® Vy) —— Extpyxc(a3Vs, ¢10(1) @ ¢375)

«| E

H(),00)®p'S) —»  H(B(V),001)&V) (A1)
Homg(S, S) I Hom(V,V)

', are given by restrictions.

Let (d5) be the restriction of the extension (8) to P(V') x C:

where 75,7

0—=q;0(1)®aTs = Gpxc — @Vs = 0 (65)
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Using (A.1), the extension (8) maps to (d,), while id € Homg(S,S) maps to
id € Hom(V, V).

Let V, be the one dimensional linear subspace of V' corresponding to the point
y € P(V). If from P(V) x C we restrict () further to {y} x C, then we have
another sequence of commutative diagrams:

Exthy)xc (63 Vs, BTs ® G;O(1)) —— Extiyc(Ve, Vy ® To)

«| E

HO(P(V),0(1) @ V) Ty BV eV)
Hom(V, V) %, Hom(V,,V)

where r,, 7, 7, are given by restrictions and we used the fact that Op(y) (1)) = V-

Note that r; sends a morphism h : V' — V to the restriction of h to V, C V,
while 7, sends an extension in W to its restriction to {y} x C. Therefore, the
extension (d;) goes by r, to the extension:

0T, =G, =V, =0 (y)

At the level of 7 this corresponds to sending id € Hom(V,V) to the inclusion
morphism V,, = V in Hom(V,, V).

Let’s fix an isomorphism Hom(V,,V) = V by taking an element v € V, and
letting e : Hom(V,,, V) — V to be the evaluation map e(f) = f(v). This fixes an
isomorphism:

Extic(Ve, Vy ® T;) 2 V.

The extension (é,) will correspond to the element v € V (by evaluating the in-
clusion morphism at v € V,). Hence, the extension (4,) € V gives the element
y € P(V) (note that it does not depend on which v we choose). O

Lemma A.2. Let V and T be coherent sheaves on the curve C such that
Home(V,T) =0.
Let V = Ext5(V, T). Let n > 0 and define
W = Extpi,c(03V, p10(n) ® p3T).
If (¢) is an element in W given by:
0— piO(n) ®@psT — F = p3V — 0. ()
such that for any p € P, its restriction to {p} x C

07T — Fiipyxc =V — 0. (Ep)
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15 a non-split extension, then there is a unique morphism
g:P' 5 P(V), suchthat gO(1) = O(n)

such that (¢) is a scalar multiple in W of the extension g*(8). The morphism g is
sending a point p € P! to the class of the extension (¢,) in P(V).

Note that this gives a one-to one correspondence between rational curves of
degree n on the space of extensions P(V') and certain classes of extensions in P(W).

Proof. By the arguments in Lemma A.1, there is an isomorphism:
W = Extpi o (p3V, p1O(n) ® p3T) = H (P! x C, Extpac(p3V,p10(n) @ p5T))
Note that we have

Extpr, o (P3V, P1O(n) @ p3T) = Extpr o (P5V, p3T) ® PiO(n)
> pi€ate(V, T) ® piO(n)

It follows that
PLEtpr o (P3V, P1O(n) @ p3T)) = O(n) ® H'(C, Ete(V, T)) 2 O(n) ® V
where V = Extj(V, T). It follows that there is a canonical isomorphism
W = HY(P',0(n) ® V)).

Let P! = P(U) for U some 2-dimensional vector space over C. Note that if
u : P! — Spec(C), we have:

u.(0On)® V)= (Sym"U)*®V
H°(P',0(n) ® V) = (Sym"U)* ® V = Hom(Sym"U, V).

If u,v is a basis for U, then as u®, u" !v,...,v™ form a basis for Sym™U, to
give such a morphism of vector spaces Sym"U — V is to give polynomials in u
and v, linear in u", u" v, ...,v", hence, some homogenous polynomials of degree
n. Hence, a non-zero linear morphism of vector spaces Sym"U — V induces a
morphism g : P! — P(V).

We need to prove that for an extension (¢) € W with the property that the re-
striction to {p} x C gives a non-split extension (c,), for any p € P', the correspond-
ing the map Sym™U — V is non-zero and it induces a morphism g : P! — P(V) of
degree n. '

Note that (¢) € W is not zero. Otherwise, the exact sequence (g) is split. In
particular, the restriction to {p} x C is a split exact sequence. This contradicts our
assumption about (¢). It follows that the induced linear morphism Sym"U — V
is not zero, hence (&) induces a morphism g : P! — P(V).
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We denote by U, the 1-dimensional linear subspace of U corresponding to the
point p. Note that we have

Op1(n)|(p} = (Sym™Up)*.
We have commutative diagrams:

Extd, o(p3V, pi0(n) @ p5T) —2— Ext{)c(V,0(n) 15 ® T)

HO(P!,0(n) ® V) —5  H'({p},0(n)» ®V)
= 4,5
(Sym™U)* ® V SLEN (Sym"U,)* ® V
Hom(Sym™U, V) —* 5 Hom(Sym"U,,V)

The morphisms ry, 7, 75, €, are given by restriction. The map e, is the evaluation
map, given by restricting a morphism Sym"U — V to Sym"U, C Sym"U.

If () is an extension in W then its image via the restriction morphism r,, is the
extension (g,). If (¢) corresponds, via the vertical maps on the left, to a morphism
h: Sym™U — V which induces g : P* — P(V') then g(p) will be the point in P(V)
given by the morphism Sym"U, — V induced, via the vertical maps on the right,
by the extension (g,).

We need to prove that g has degree n. Since (g,) is non-zero for any p € P!,
it follows that the corresponding morphism Sym"U, — V is non-zero. Hence, the
homogenous polynomials of degree n giving the morphism A : Sym™U — V do not
have a common zero at p. Since this is true for any p € P!, the morphism ¢ has
degree n.

Clearly, if two extension in W are multiple scalars of each other, then they
induce the same morphism g.

On the other hand, to each g : P! — P(V) of degree n we can associate in a
canonical way an extension in W, by pulling back the universal extension (§) via
(g9 x id). If g has degree m, we have an extension:

0 — piO(n) @ p; T — F — py(V) — 0. (97(6))
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There are commutative diagrams:

(gxid)*

Extpyxc (@Y, 0(1) ® 3T) ——— Exthio(p3V, pi0(n) @ p3T)

HY(P(V),0(1) ® V) <, HY(P',0(n) ® V)
Hom(V,V) N Hom(Sym"U, V)

Here we denoted by h, the linear morphism
hg : Sym"U — V

which is the image of the extension (g*(6)) via the vertical maps on the right —
recall that the universal extension () induces via the vertical maps on the right,
the identity id € Hom(V, V).

Since a morphism g : P(U) — P(V) is induced by a linear morphism A :
Sym"U — V| unique up to multiplication by a scalar, it follows that since both
(¢) and g*(6) induce the same morphism g, they must be scalar multiples of each
other. g

Lemma A.3. Let My, M3, N1, N; line bundles on X such that H*(No@M71) = 0.
Assume F is a fized rank 2 vector bundle on Y such that there are two ezact

sequences
0> M > F—>M,—0

0 >N, - F >N, >0.

Then there are induced isomorphisms M; — N; for i = 1,2 such that the following
diagram is commutative:

0 >y M, y F —— My —— 0

Lk =

H
0 — M > F » Ny — 0

Proof. There is an induced map M; — AN, coming from the two exact sequences.
But H°(M; ® M[!) = 0 implies that there is no non-zero morphism M; — Nj.
Hence there is an induced morphism M; — N; and consequently a morphism
My — N, such that the diagram is commutative. Clearly, from the snake lemma
M — N is injective, My — N, is surjective and

coker (M — N;) = ker (M, — N7).

But coker (M; — N;) is either zero or a torsion sheaf and as we have that
ker (My — Nj) is torsion-free, it must be that they are both zero. Hence, they
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are both isomorphisms. O

Corollary A.4. If My, My are line bundles on X such that HM;@M) =0
and F is a fized rank 2 vector bundle on X, then any two ertensions

0->M, - F->My3—0

differ by a scalar in the space of extensions Ext' (M, M,).

Proof. From the previous lemma, there are induced isomorphisms M; — M; for
i = 1,2. As M,;, M, are line bundles, any non-zero morphism M; — M; is
multiplication by a non-zero scalar, say A;. There is a commutative diagram:

0 — My — F — M, » 0

| e b

II
0 y M, y F y My —— 0

Hence, the two exact sequences differ by a scalar in the space of extensions
EXtI(MQ, Ml)
[

Lemma A.5. If C is a curve and D € Sym®C and £ is a rank 2 vector bundle on
C, then for any two ezact sequences on P! x C with the same middle term and of
the form

0—-pi0(n)®@py€ - F = p30p =0

with n > 0, there is an induced commutative diagram with the vertical arrows
tsomorphisms:

0 —— piO(n) @ i€ — F » p3Op —— 0
R N N S e
0 —— piO(n) ®p; y F » p3Op —— 0

Proof. Since n > 0, there are no non-zero isomorphisms
p10(n) ® p3€ — p30p

It follows that there is an induced diagram as in (A.2). By the snake lemma, it
follows that the following morphism is surjective.

ps0p — p30p

Since any such morphism is coming from a morphism Op — Op, and such a
morphism is surjective if and only if it is an isomorphism, we have that all the
vertical arrows are in fact isomorphisms. O
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A.2 Torsion-free sheaves

Recall that for any sheaf F on X there is a canonical morphism
F—F*

The sheaf F is torsion free if and only if the canonical morphism is injective and
is reflezive if and only if the canonical morphism is an isomorphism.

Fact A.6. A torsion free coherent sheaf on X is locally free in codimension 2.

Fact A.7. A torsion free coherent sheaf on X is isomorphic to T; @ M for some
line bundle M on X and Iy the ideal sheaf of a closed subscheme Z C X of
codimension at least 2.

Fact A.8. A reflerive coherent sheaf on X is locally free in codimension 3.
Fact A.9. A reflezive coherent sheaf on X of rank 1 is a line bundle.

Lemma A.10. Consider an ezact sequence of sheaves on X :

0 » F' —— F — F" > 0

If F is reflexive and F" s torsion free, then F' is reflexive.
J

Proof. Consider the commutative diagram:

Fots Fots

T

f’** ; ]_-** 3 J_‘II**
u#t ,u)hk

The morphism « is an isomorphism because F is reflexive and the morphism 7 is
injective because F" is torsion-free. Note that since F' is a subsheaf of F, which
is reflexive, in particular torsion-free, F’ is torsion-free. Hence, « is injective.

Let ¢ : F'** — F be the composition a~! o u**. Note that v o ¢ = 0. Hence ¢
factors as u o ¢', where ¢’ : F'** — F'. It is easy to check that ¢’ is an inverse for
B. First, one proves easily that ¢’ o § = Id. Then one gets that the short exact
sequence:

0= F — F™ = coker 8 — 0

is split. Since coker § is a torsion sheaf and F'** is torsion free, it follows that J3
is an isomorphism, i.e., F' is reflexive. O

Lemma A.11. Let yi,...,y. be points on a curve C, not necessarily distinct and
let D=1y, +...+ye. Let & be a rank 2 vector bundle on C and assume there is a

short exact sequence:
02E&—=E = 0p—0. (A.3)
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Then £' is not a locally free Oc-module if and only if there isy € {y1,...,Ye} such
that the sequence (*) on stalks at {y} splits.

Proof. We denote by £, and £ the stalks of £ and £’ at y. Clearly, if y €
{y1,..., v} and the sequence (A.3) splits at {y}, then & is not a free Oy-module.

Let’s assume now that that £’ is not locally free. If y € C \ {y1,...,y} then
clearly, £ = &,, so it is a free Oy-module. If y € {y1,...,y.} appears with
multiplicity 7 > 1, then consider the exact sequence on stalks

0& =& —T1—0.

Here, 7 is isomorphic to a direct sum of r copies of the residue field k(y) at the
point y.

Assume that the multiplicity 7 is 1. The general case works the same. Then
&, is not a free Oy-module if and only if it is not torsion-free. Assume that there
is e € £,,s € Oy such that s.e = 0 and e # 0,5 # 0. Denote with u the morphism
&, — 7. If u(e) = 0 then e € £, but as s.e = 0 this is a contradiction with E,
being a free Oy-module. So u(e) = A # 0. Let m, C O, be the maximal ideal
and let 7 be a generator; hence, m, = (7). As s.e =0, 0 = u(s.e) = 3.\, where 3
is the class of s modulo m,. Hence, s € m, and we can write s = p.7w? for some
non-zero p € k(y) and some positive integer p. We have nP.e = 0. We claim that
m.e =0. If p=1 we are done. Assume p > 2. We’ll prove that 7?~l.e = 0. But
u(mP~l.e) = 71X = 0.\ = 0; hence, 7""l.e € £,. But as m.(77"'.e) = 0 and &,
is torsion-free, it follows that m?~!.e = 0. We continue by induction and get that
m.e = 0. Then we can define a morphism v : k(y) — &, by 1 = A~'.e. Because
m.e = 0, this is a well-defined morphism of O,-modules and u o v = id. O

Lemma A.12. Let £,F be coherent sheaves on X, projective integral scheme,
with the property that Homoy (F,E) = 0. Then an element v € Extp, (F,E) is 0
if and only if the ezact sequence corresponding to the extension v splits on stalks
everywhere on X.

Proof. Consider the morphism
Ext} (F,€) — T(C, Ext' (F, E)) (A.4)
coming from the spectral sequence relating the local and global Ext. Since
Homo, (F,E) =0,

it follows that (A.4) is an isomorphism.
The lemma follows from the following commutative diagram for any z € X:

Exty(F,) —— Extb (%, &)

(X, Ext!(F, &) —— Ext!(F,E),
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The assertion follows.
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