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Abstract: 

We consider a generic stochastic model of ion transport through a single channel with arbitrary 

internal structure and kinetic rates of transitions between internal states. This model is also 

applicable to describe kinetics of a class of enzymes in which turnover events correspond to 

conversion of substrate into product by a single enzyme molecule.  We show that measurement 

of statistics of single molecule transition time through the channel contains only restricted 

information about internal structure of the channel. In particular, the most accessible flux 

fluctuation characteristics, such as the Poisson Indicator (P) and the Fano Factor (F) as function 

of solute concentration, depend only on three parameters in addition to the parameters of the 

Michaelis-Menten curve that characterizes average current through the channel. Nevertheless, 

measurement of Poisson indicator or Fano factor for such renewal processes can discriminate 

reactions with multiple intermediate steps as well as provide valuable information about the 

internal kinetic rates.  

 

Keywords: Single molecule events, counting statistics, waiting time distribution, Michaelis-

Menten kinetics, renewal theory, shot noise.  

 

Introduction 

 

Quantitative biology is aimed to develop mathematical/theoretical tools for quantitative 

predictions of biochemical system dynamics. This field has always been influenced by the 

problem of a large diversity of biochemical processes.  Even if one develops a very precise 

description of some kinetic biochemical processes in one organism, it is usually unlikely to find 

exactly the same biochemical process in another organism. Hence, the unifying laws that 
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encounter in wide range of biochemical systems are of particular importance for this field.  One 

widely known example is called the Michaelis-Menten (MM) law1. According to it, the average 

rate of product creation  and the substrate concentration [S], in enzymatic reaction, are related 

by 

 

 
[ ]

[ ] ,
MM

k SJ
S K

=
+

 (1) 

where and k are constant parameters. The MM-law was initially derived for a simple 

reaction, , in which the substrate S is converted into product P via 

an intermediate complex ES that the substrate creates with enzyme molecule E. Interestingly, the 

MM law was found in a much wider class of enzymatic reactions, with possibly many internal 

substeps. Recently, this observation was explained by showing that a large class of passive (i.e. 

driven only by difference of substrate and product concentrations) enzymatic reactions, with 

multiple states of enzyme-substrate complex, follows the Michaelis-Menten law4,5.  

Eq. (1) is also encountered in biochemistry beyond the context of enzyme kinetics. For 

example, traditionally, the key measurable quantity in ion channel transport has been the steady 

state flux in a single channel through a membrane that separates two compartments with different 

solute concentrations2,3. MM law was found to describe the transport of solute molecules through 

a class of ion channels, in which  represents the ion flux through the channel and [S] is the 

solute concentration on one side of the channel, assuming that [S]= 0 on the other side.  Recent 

theoretical studies shed light on the origin of observed wide applicability of the MM-formula 

(Eq. 1) in ion channels. Bezrukov et al3 showed that a general model of transport through a chain 

of N neighboring sites with 2(N-1) rate constants, as well as its continuous 1D diffusion limit, 

produce the same dependence of average flux on solute concentrations as in an effective MM-

model with appropriately chosen transition rate constants. To avoid a mixture of ion channel and 

enzyme terminology, in this article, we will use the ion channel interpretation of our models 

throughout the text, and return to enzyme applications only in the discussion.  
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The simplicity of eq. (1) implies that information provided by measurements of average 

flux is intrinsically limited. Only two constants can be obtained experimentally by measuring 

MM-curve for a renewal process. Additional terms will contribute to the substrate-dependence of 

turnover rate if a multiple-channel reaction is driven away from equilibrium4,5. The advance of 

single molecule techniques allowed researchers to alleviate this restriction by studying not only 

average currents but also the statistics of single molecule transitions in the channel-facilitated 

transport through biological membranes2,3,6-8. For example, single-channel ion current 

measurements have been used to study the translocation dynamics of single-stranded RNA and 

DNA through α- haemolysin channel in lipid bilayer membrane9. During the translocation, the 

single stranded polymer partially blocks the channel. This leads to transient blockades in α- 

haemolysin single channel current and the current is restored to its original value when the DNA 

exits from the other side of the membrane. By detecting time moments of such events of DNA 

exit, one can study not only mean DNA transition times but also characterize fluctuations of 

those time intervals. Such high-resolution transition events recording from single ion channels 

were shown to provide information that is hidden in ensemble-averaged experiments. The most 

accessible characteristics of fluctuations in molecular transport are related to second moment of 

turnover time statistics and current distribution. Those include the Poisson indicator (P), defined 

by 

 
22

2

2
,

t t
P

t

−
=  (2) 

which is also known as the Mandel parameter in the context of photon counting statistics10-12,  

and the Fano factor (F), defined by 

  (3) 

where t is the time between successive molecular transitions through the channel and averaging 

is over a large number of such observed transitions; J is the total number of molecules 

transferred through the ion channel during a specified measurement time interval. In the context 

of photon statistics, the Fano parameter and the Poisson indicator are related to the Mandel’s 

parameter which describes the bunching and antibunching of emitted photons.  
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If ion channels were just “windows” without internal structure for instantaneous 

molecular transitions through a membrane, the statistics of turnover times would be exponential 

and statistics of currents would be Poissonian. This corresponds, respectively, to 

 

P = 0 and 

 

F =1. Functional dependences of  and  on the solute concentration, [S], on one 

side of a membrane provide valuable information about structure of an ion channel.  In our 

present paper we will consider the model of ion channel kinetics with the possibility of multiple 

closed loops in kinetic network, as shown in Figure 1. We will show that, similarly to the 

universality of average flux characteristics, the complexity of P and F for transport through ion 

channels reduces to the universal functions that depend on, maximum, three additional constant 

parameters. We will also show that one can derive a connection between the Fano factor and 

Poisson indicator for such renewal kinetic processes. While the universality of P and F will be 

the main focus of our work, we will perform calculations on the level of the full statistics of 

turnover events, so that our method can be used to explore similar properties of higher order 

correlators, if needed.  

This paper is organized as follows. In Section II, we introduce our general kinetic model 

for transport through an ion channel and derive expressions for the first passage time distribution 

and related observables in fluctuation statistics such as the second moment of the distribution and 

the Poisson indicator. We also concentrate on simple kinetic models with only two internal states 

and use the self consistent pathway formalism proposed by Cao and Silbey15 to derive 

expressions for the waiting time distribution in terms of the elementary kinetic rates and show 

how these models influence parameters in the general expression for the Poisson indicator. In 

Section III, we calculate the Fano factor by exploring a connection between the turnover 

probability distribution and the cumulant generating function, which is directly related to the 

Fano factor. We derive expressions for the parameters that influence Fano factor in terms of the 

kinetic rates for two state models. We summarize our results in Section IV. 

 

II. First passage time distribution 

 

In our model of ion channel, shown in Figure 1, we consider transport through a singly occupied 

channel with arbitrary number of internal states. The channel is assumed to be capable of having 
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maximum one molecule inside, i.e. even if the molecule is smaller than the length of the ion 

channel, we assume that it creates a potential that blocks other molecules from entering the 

channel. The left side compartment contains solute particles at concentrations [S] while the right 

compartment has negligible solute concentration. E represents the single empty channel state, 

and P1, P2, … PN are possible solute occupied states at the entrance to the channel. We assume 

that after the solute molecule leaves the channel, the internal degrees of freedom of the channel 

relax quickly so that the empty state E of the channel can be represented in our model by a single 

state. We also assume that the solute concentration on the left of the channel is set to a constant 

value. Hence, evolution repeats, in the statistical sense, each time the channel becomes empty. If 

we understand the dynamics between only two successive moments at which the channel 

becomes empty, we can reconstruct all other statistical characteristics of the process. This type of 

reaction scheme is referred to as a renewal process16. 

 

 Waiting time distribution functions 

 

We assume that experimentally only some specific events, called monitored transitions, 

are observable. For example, in ion channels, monitored transitions can be events when a 

transported molecule leaves the ion channel. We will assume that the evolutions of the system 

are statistically identical after each monitored event. The central object of the renewal theory is 

the first passage time distribution  between two successive monitored events. More 

precisely, given the moment of one monitored transition,  is the probability of observing 

the next monitored transition between time t and t+dt after this time moment. In this article, we 

will assume that monitored transitions correspond to events when solute molecules are leaving 

ion channel to the right compartment. Such events were shown to be detectable in ion channel 

experiments2,3.  

It is generally assumed that the kinetic rate for entering the “empty” ion channel is 

proportional to the solute concentration [S]. Hence let kEj[S] be the rate for making a transition 

from empty state E into the state with a solute molecule inside the ion channel at site j, with 

constant parameter kEj independent of [S]. In correspondence to this process, we introduce the 
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probability per unit time, of the event that at time t, after the channel becomes empty, the 

new solute molecule enters the channel for the first time at site j. Explicitly, is 

exponentially distributed:  

  (4) 

This type of probability is known as the waiting time distribution function, which accounts not 

only for fundamental rate processes or their combinations but also non-exponential decay 

processes. The waiting time distribution formulation allows us to condense a large class of 

complex reactions into a generic scheme which is the irreducible representation of 

measurements15,17.  In the current setting, the accessible measurements are substrate binding and 

enzymtic turnover, which define the basic elements of the waiting time analysis presented below.    

Let then be the probability per unit time of the event that the molecule that just 

entered the site j will leave the channel at time t to the right, i.e. by making a monitored 

transition. We assume that all elementary reactions, except the monitored ones are, in principle, 

reversible, so there is also a finite probability per unit time, , that the solute molecule, 

being initially at site j will leave the channel to the left at time t without making the monitored 

transition. In both cases, after leaving to the left or to the right, the channel becomes open again 

and process renews. Probability ( )tφ  then satisfies a formal convolution law: 

 

  (5) 

This equation can be transformed into algebraic equation, which is satisfied by the Laplace 

transform of ( )tφ , i.e. by ( ) ( )
0

sts e t dtφ φ
∞

−= ∫ . The result is 

  (6) 
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Here and in what follows, we distinguish probability distributions and their Laplace transforms 

by writing in their arguments, respectively, t or s.
 

Eq 6 can be formally solved as
 

  (7) 

This compact expression generalizes the distribution function derived for chain reactions and 

exemplifies the self-consistent pathway method formulated for  the first passage time distribution 

of generic enzymatic networks15,17. The introduction of QR and QL simplifies such analysis and 

can generate hierarchical distribution functions for chain reactions.   

 

 Substrate Dependence of Poisson Indicator 

We note that eq 7 is still a formal solution because only the functional form of , at this 

stage, is known:  

  (8) 

while  and  remain unknown yet. However, to achieve our goals, their explicit form 

is not needed. Importantly, we know that neither  nor  depends on the external solute 

concentration [S]. Substituting ( )EjQ s from eq 8 into eq 7 and taking the derivative of eq 7, 

( ) ( )
0

1 lim
s

t s sφ
→

= − ∂ ∂ , we obtain the average first passage time 

  (9) 

where  
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  (10)  

where ( ) ( )0 ,1 0j j
R L

j j
a Q a Q= − =∑ ∑ , b and c are constants that are the first derivatives of, 

respectively, ( )j
RQ s and ( )j

LQ s  at s= 0.  

Thus, we obtained a linear relation between the mean first passage time t  and the inverse of 

solute concentration [S]-1. This is equivalent to the relation in eq 1 obtained for  . 

For example, parameters of MM-curve, and k, can be expressed via A and B as 

/MMK A B=  and 1/k B= . As we mentioned, this universality, i.e. independence of functional 

form of  on the detail of the internal kinetic model of the channel, was previously 

discussed in a series of previous work3,15 . Next, by analogy with average turnover rate we 

consider higher moments of the turnover time distribution. Substituting eqs 7 and 8 into 

( ) ( ) ( )
0

0

1 limnn n n n

s
t dtt t s sφ φ

∞

→
= = − ∂ ∂∫ , we find that the Poisson indicator P defined in eq 2 

reads: 

  (11) 

where the q,η ,δ  are all constants that are different combinations of the different rate constants 

Ejk  and the first and second derivatives of ( )j
LQ s  and ( )j

RQ s  at s = 0, which do not depend on 

solute concentration [S]. Explicitly, we obtained:  

 

 d and f are the second derivatives of, respectively, ( )j
RQ s and ( )j

LQ s  at s= 0.  

Eq 11, as well as the similar expression for the Fano factor that we will derive in the 

following section, are the central results of our work. Eq 11 shows that the Poisson indicator P 
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has a universal functional dependence on the solute concentration. It is parameterized only by 

three constant parameters irrespective of the number of internal states and kinetic rates inside the 

ion channel. 

The parameter P is, generally, a non-monotonous function of [S], and at high solute 

concentrations, 
[ ]
lim
S

P q
→∞

= , i.e. generally at high concentration the statistics of turnover time 

distribution is non-Poisson. Note that eq 11 is derived under the assumption that substrate 

binding as described by eq 8 is a rate step. A general functional form of [S]-dependence can be 

obtained by incorporating the non-Poissonian distribution of the substrate binding. 

 

C. Kinetics with two-internal states 

 

Recently Cao and Silbey15,17 proposed a self consistent  approach, which is based on the 

theory of renewal processes, for studies of turnover time statistics in single molecule kinetics. 

This theory is equally well suited for applications to ion channels. It provides a straightforward 

way to express waiting time distributions Q(t)  via the elementary kinetic rates of a kinetic 

model. While generally explicit expressions would be complex, such expressions can be easily 

written for simplest models with only one and two internal states.  

As an example, consider the model with only two internal states, shown in Figure 2a. E 

represents the empty state, ES and EP are the two interconvertible internal states, which 

correspond e.g. to two internal states of a molecule inside an ion channel.  By applying the 

theory15,17, the self consistent equation for the first passage time distribution in the Laplace space 

is  

  (12) 

where Q23(s) describes the monitored transition, QE1(s) and Q12(s) describe the transitions from 

the state E to ES and the state ES to EP, respectively. Q1E(s), and Q21(s) are the backward 

transition rates from the intermediate state ES to the empty state E and the transition from the 

state EP to ES, respectively. In analogy to eq 7, Q23(s) and Q12(s) represents ( )j
RQ s  and the 
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backward transitions Q32(s) and Q21(s) represents ( )j
LQ s . Eq. 12 for this two state kinetics is thus 

a special case for eq 7. 

Following eq 8, the waiting time distributions in terms of the kinetic rate constants are given by 

  (13) 

Taking the derivative of eq 12 and using eq 13 we found that parameters q, η and  δ  in eq 12 in 

terms of kinetic rates of Figure 2a can be expressed as: 

 

  (14) 

The negative value of the parameter q means that fluctuations of turnover times for this two state 

model are always sub-Poisson, i.e. they are suppressed in comparison to the ones in the Poisson 

process. In contrast, for the reaction process shown in Figure 2b, in which the second internal 

state is an idle state, using the self consistent approach as before, we find that 
( )

2
2

2k kq
k k

+

+ −

=
+

. 

This positive value corresponds to super-Poissonian statistics. 

We note that kinetic models with more than two internal states may still be 

distinguishable from 2-state models if variances of fluxes are measured. For example, for the 

reaction scheme given in Figure 2a, the minimum of the Poisson indicator is achieved at  
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  (15) 

Minimizing this expression further over the choice of kinetic rates, we find the minimum 

possible value of the Poisson indicator is -2/3 and it is achieved for reaction in Figure 2a when 

all elementary reactions are irreversible and have the same kinetic rates 

. Hence the value of  lower than -2/3, if observed, would 

indicate that the reaction mechanism involves more than two intermediate states.  

 

III Current distribution function and Fano factor 

A different type of single molecule measurement is the probability distribution for the number of 

events observed within a time bin.18,19 In this measurement approach, the number of molecules 

transferred through the channel is measured during time intervals t and the probability 

 

Pn (t)  of 

the number n of transitions is obtained after many repetitions of the measurement. A convenient 

way to study current distribution theoretically is by introducing the probability generating 

function (pgf) 20-22 

  (16) 

where χ  is called the counting parameter, ( )ω χ  is the cumulant generating function. Its 

derivatives with respect to χ give the cumulants of the distribution Pn, such as the mean n and 

the variance 2σ : 

  (17) 

The Fano factor is defined to be the ratio of the variance to the mean, i.e. 
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  (18) 

Recently, the Fano factor in most general enzymatic models with two internal states, which also 

correspond to our models of ion channels with two internal nonempty states, was studied by 

Mugler et al.13 It was shown that measuring both the average current and the Fano factor as 

function of solute concentration is sufficient to distinguish among all possible 2-state enzymatic 

kinetics models and, moreover, to determine values of all kinetic rates quantitatively.   

The natural next question is whether measurements of the Fano factor can be used to 

extract information about more complex enzymatic mechanisms. To resolve this question, we 

will first demonstrate the connection between the turnover probability functions and the 

cumulant generating function, from which the Fano factor can be readily obtained for renewal 

processes. 

Let ( )tφ be the probability that a turnover event takes place in time t and ( )tψ  is the 

probability that no monitored transitions happen during time t after the last monitored event. 

Then the event averaged probability distribution function Pn(t), after the Laplace transform over 

time, is given by 

 

  (19) 

Using eq 19, the generating function in the Laplace space becomes  

  (20) 

which is the discrete Fourier Transform of Pn(s) over n-index and its Laplace transform over 

time. Returning to real time, 
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  (21) 

 At large measurement time, we look for the dominating exponential part in eq 21.  This happens 

at s= s* where s* is the pole in the denominator in eq 21 which is provided by the solution of the 

equation  

  (22) 

As a function of counting parameter, the solution of eq 22 also coincides with the cumulant 

generating function, defined in eq 16, because at large measurement times t, according to eqs 21-

22, the generating function behaves as . This form corresponds to linearly 

growing  current cumulants, and hence a constant value of the Fano factor. For illustration, in 

Appendix A, we perform calculation of all functions for a simple Michaelis-Menten model 

explicitly using this approach.   

The relation between the turnover time probability distribution ( )tφ  and the cumulant 

generating function15 suggests that one can express the Fano factor in terms of derivatives of 

( )tφ  and obtain a similar universality to the Poisson indicator. Indeed, from eq 22 we have 

  (23) 

The inverse of this function can be written as 

  (24) 

Using the properties of inverse functions and its derivatives as shown in Appendix B, the Fano 

factor F is given by 

  (25) 
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Applying eq 6 to eq 25 we obtain 

  (26) 

Constant parameters in eq 26 are not independent. Additional constraint on them follows from 

the fact, which was established in the previous section, that the flux must be Poisson distributed 

 when  This leads to 

  (27) 

where  

 

                            (28)
 

Parameters a, b ,c, d, f  in eq 28 were introduced in the previous section. Considering eq 27, we 

conclude that, similarly to the Poisson indicator, the Fano factor is parameterized only by three 

independent constants. Eq 27 shows that the Fano factor F has the same functional dependence 

on the solute concentration irrespective of the number of internal states inside the ion channel. 

For the two state model in Figure 2a, parameters Bα , KB and µ can be explicitly written in terms 

of elementary kinetic rates: 
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  (29) 

Figure 4 shows the dependence of F on solute concentration [ ]S  for the reaction scheme shown 

in Figure 2a, 2b and for the ion channel model with only one internal state (MM reaction). As in 

the case with Poisson Indicator, competing reaction schemes can be distinguished based on the 

value of the Fano factor. For example, the values of F lower than 1/3 is an indication of a 

reaction scheme involving more than two intermediate steps. 

 

V  Conclusion 

In this work, we showed that the Poisson indicator and the Fano factor have simple generic 

functional dependences on solute concentration irrespective of the number of internal states in 

the ion channel kinetic model. This observation can be used in practice by analogy with 

applications of the MM-formula. For example, many biochemical processes favor enzymes with 

specific values of constants and k 23,24. In addition, by looking at k/KMM values, one can 

compare enzyme's preferences for different substrates. We anticipate that measurements of 

parameters of P([S]) and F([S]) curves can have similar applications. Noise has been shown to 

lead to important consequences in biological systems. While some biological processes need to 

suppress noise, others may need noise as an important part of the reaction mechanism25-29.  It 

should be interesting to explore parameters that characterize the Poisson indicator and the Fano 

factor curves in a wide class of ion channels and enzymatic reactions. One can expect that 

evolutionary selection has led to separation of enzymes and ion channels in classes with 

parameters that either suppress or enhance noise for specific biological reasons. The universality 

of flux fluctuations imposes restrictions on the information about the structure of a studied ion 

channel that can be obtained by measuring variance of transport characteristics. On the other 
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hand, P([S]) and F([S]) curves allow us to distinguish reaction schemes and extract some 

combinations of kinetic rates from experimental data. 

In this work we limited our discussion to renewal processes in which empty state of the 

channel is represented by a single state. Extension of our formalism to other kinetic schemes, 

such as non-renewal processes with multiple interconvertible empty states, can be a subject of 

the future research. 
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Appendix A 

Example: Michaelis-Menten kinetics 

Let us consider a MM enzyme catalytic reaction For this simple 

reaction, following the self consistent approach, the waiting time distributions can be written as  

   

  (1) 
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Substituting eq A1 in eq 6 we obtain 

 ( ) [ ]
( ) [ ]( )

2 1

1 2 1

,E

E E

k k S
s

sk k s k S s
φ =

+ + +
 (2) 

and the Poisson indicator is given by 

  (3) 

Substituting eq A2 in eq 22, we find 

  

  (4) 

This result coincides with the cgf obtained previously by solving the master equation for the 

generating function21 . 

 

Appendix B 

 Let ( ) iy s e χφ −= = , then The first and second derivatives of the inverse 

function are given by 

 

  (1) 

Using eq B1 in the expressions for mean n  and variance 2σ  in Eq. (17), we find 
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  (2) 

  (3) 

The ratio of this variance and mean gives the Fano factor defined in eq 25. For the MM scheme, 

using eq A2 and eq 25, the Fano factor is given by 

   (4) 

where This is identical to F obtained previously by solving the 

master equation for the generating function13,21 . 
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 Figure captions 

Figure 1: The ion channel model. E is the empty state with N internal states for the entry to the 

ion channel. 

Figure 2 Two-state ion channel models: a) E is the empty state, ES and EP are the two internal 

states. The forward and backward rate constants for transition between E and ES are, 

respectively, kE1 and k1E; k+ and k- are rate constants for intra-channel  transitions between ES 

and EP, and k2 is the escape rate from the channel. b) ES1 and ES2 are the internal states. The 

escape through the channel takes place from ES1.   
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Figure 3: Poisson Indicator P as a function of the solute concentration [S] for the two-state ion 

channel model in Figure 2a. Numerical parameter values are kE1 = 1, k1E = 1, k+ = 0.1, k_ = 0.01, 

k2 = 1 and q= -0.16 (blue), kE1 = 1, k1E = 1, k+ = 0.1, k_ = 0.01, k2 = 2 and q= -0.089 (green). For 

ion channel model in Figure 2b:  kE1 = 1, k1E = 1, k+ =1, k_ = 0.7, k2 = 0.5 and q= 0.35 (black), and 

ion channel model with one internal state (MM model):  kE1 = 1, k1E = 1, k2 = 1 and q =  0 (red). 

Figure4: Fano Factor F against solute concentration [S]. Parameters for Figure 2a are kE1 =1, 

k1E= 1, k+= 0.1, k_ = 0.01, k2= 1 (blue). For Figure 2b: kE1 =1, k1E=1, k+= 1, k_ = 0.7, k2=0.5 

(green) and MM reaction (red): kE1 = 1, k1E= 1, k2=1. 

 

 

 


