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The application of the numerically stable QZ algorithm is

discussed to provide a reliable method for the computation

of the transmission zeros of a linear system. Robust nu-

merical software and implementation details are suggested.
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Summary-The computation of various "system zeros" is investigated

through application of QZ-type algorithms for the nonsymmetric gen-

eralized eigenvalue problem. Such algorithms use unitary simila-

rities to efficiently reduce the problem to one where the zeros may

be determined in a useful, accurate, and dependable manner. Recent

reliable and sophisticated analysis and software (specifically,

EISPACK) developed by numerical linear algebra specialists is used.

EISPACK, moreover, is widely available and can be applied directly

to the transmission zero problem. Examples and timing estimates are

given and the associated generalized eigenvector problem is noted with

its application to the computation of supremal (A,B)-invariant and

controllability subspaces.

1. INTRODUCTION

Consider the following linear time-invariant system:

x(t) = Ax(t) + Bu(t)

(1)

y(t) = Cx(t) + Du(t)

Here x(t)Rn is the state, u(t) Rm is the (control) input, and y(t) Rr
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is the output. The matrices A, B, C, and D are of appropriate dimensions

and no assumptions are made concerning controllability, observability, or

rank. We shall investigate in this paper the application of QZ-type algo-

rithms to the computation of various "system zeros", particularly the so-

called transmission zeros as defined by Davison [1] (as an amendment to

[2]) or the invariant zeros as defined by MacFarlane and Karcanias [3].

Very roughly speaking these zeros are certain complex frequencies at

which "transmission" through the system (1) is blocked (cf. [3]).

The role of transmission zeros in the investigation of, for example,

regulation, structural stability, decoupling, and servomechanism design

is by now well-established. We refer the reader to papers such as [2],

[3], [4], [5], and [6] for more details and references.

We shall concentrate instead on numerical aspects. Specifically,

we apply the QZ-algorithm [7] to the determination of transmission zeros.

This algorithm has the advantages of being efficient, numerically stable,

reliable, and, most important, widely available. No assumptions are

needed on A, B, C, and D and the application (in a programming sense) to

the problem at hand is absolutely trivial. More details are given in

Section 3.

This is, to varying degrees, in definite contrast to various other

proposed algorithms such as [2], [5] and [8] which rely heavily on cer-

tain factorizations or rank conditions or introduce additional sources of po-

tentially destructive numerical errors by some preprocessing of the system

data (see e.g. Example 4 of this paper). The numerical determination of rank

for example, is a notoriously difficult problem but such a question is never

addressed in these papers. Basically, the algorithms are presented devoid of

any analysis of a specific numerical nature: perturbation bounds, condition

numbers, etc.--analysis which attempts to account for the presence of roundoff

errors in the calculations. We feel it is important to at least acknowledge

the potential impact of numerical errors. While we do not present detailed

analysis here directly,
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the QZ-algorithm does rest on very firm theoretical and practical foundations

as found, for example, in [7], (9], or [10].

We must point out though, that other algorithms may be computationally

efficient and may well be for well-conditioned problems, quite accurate.

However, in the presence of roundoff error, from the point of view of general-

purpose, reliable mathematical software, we would still argue strongly for

the QZ approach, at least on numerical grounds.

That the computation of transmission zeros can be cast as a genera-

lized eigenvalue problem (see Section 4) was recognized by Patel [11] in

an article based on a fine paper by Kaufman [12]. The latter paper [12]

is consistent with our general philosophy of using "expertly-written" soft-

ware but is unfortunately "pre-QZ". The former paper [11], though, besides

proposing no useful software, suffers from many of the symptoms mentioned

in the previous paragraph.

Our other main motivation for using the QZ algorithm is that the

associated eigenvectors (see details below) provide a basis for V* or

V*/R* (see Wonham [13] for notation).

2. SOME DEFINITIONS

Let L = , M = . We shall define transmission

LC D l 0 o

zeros in terms of the pencil of matrices P(X) = L - AM.

Definition 1 [14]: The rank of the pencil L - XM is the order of the

largest minor that does not vanish identically.

We shall henceforth assume that m > r. The case r > m can be handled

either in the obvious analogous way to the case m-> r or by consideration

of the appropriate transpose matrices (see [2]). We shall not need, for

the purposes of our algorithm, any a priori assumption on the rank of

P(X). However, the set T of all transmission zeros (multiplicities in-

cluded) of (1) is normally most conveniently defined in the full rank case

and we shall make this assumption here. It will be seen later, however,
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that the QZ algorithm detects degeneracy (see 12]) and, equally importantly,

near - degeneracy in a numerically stable fashion.

We first discuss our definition of transmission zeros in terms of

equivalent definitions in the literature.

Definition 2: T is the set of zeros (multiplicities included) of ¢(X)

where ¢(X) is the greatest common divisor of all (nonidentically zero)

(n+r) x(n+r) minors of P(X).

This definition is equivalent to Davison's [1]. It is also equiva-

lent,under our nondegeneracy assumption, to MacFarlane's "invariant

zeros" [3]. In the degenerate case we will simply adopt the convention,

consonant with Davison, that T = M. A fairly extensive comparison of

various other definitions of system zeros is given in [4]. We find Defi-

nition 2 useful because of the ease and reliability of computation afforded

by the QZ algorithm. Moreover, it will be noted how other definitions can

be recovered by appropriate additional calculations.

Definition 2, our working definition of transmission zeros, will

subsequently be shown to be equivalent to a constructive definition of

transmission zeros derived from the QZ algorithm. The relevant aspects

of this algorithm are now presented in Section 3.

3. THE QZ ALGORITHM

The QZ algorithm is concerned with solving the so-called generalized

eigenvalue problem: find all finite X for which there exist nontrivial

solutions of the equation

Lz = XMz (2)

where L and M are general square matrices. The theoretical aspects of

this and the analogous "rectangular" problem have been studied extensively
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and may be consulted in Gantmacher [143 or Thompson and Weil [15], [16].

Gantmacher gives thorough historical references. Lancaster (17] gives

not only comprehensive theoretical treatment of the subject but also

physical applications such as to problems of vibrating systems.

The first definitive numerical treatment which squarely addressed

the problem of singular M was published by Moler and Stewart (7] in

1973. Their algorithm is based on the following theorem [9] which helps

explain its pleasant numerical properties.

THEOREM 1: There exist unitary matrices Q and Z such that QLZ and QMZ

are both upper triangular.

The QZ algorithm has been coded in FORTRAN and is now widely available

in the EISPACK [18] package. We now briefly outline the four main steps

in the algorithm (along with the names of the corresponding EISPACK sub-

routines). The reader is referred to [7] for details.

1. QZHES : L and M are simultaneously reduced to upper Hessenberg and

upper triangular form respectively.

2. QZIT : L is reduced to quasi-upper triangular form while the upper

triangular form of M is maintained.

3. QZVAL : L is effectively reduced to upper triangular form while the

upper triangular form of M is maintained; the generalized

eigenvalues can then be extracted from the triangular forms.

4. QZVEC : the generalized eigenvectors of the reduced problem are

found by a "back-substitution" process; the original eigen-

vectors are found by applying the accumulated Z's.

Two remarks are crucial for our application so they will be

emphasized here.
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Remark 1: Since unitary transformations are used the computed generalized

eigenvalues are the exact generalized eigenvalues of the "slightly perturbed"

problem (L+G)z = X(M+H)z where G and H are perturbation matrices whose norms

can usually be bounded by a modest multiple of the machine precision (machine

precision is defined to be the smallest number C for which 1+£>1 using

floating point addition). Moreover, all well-conditioned generalized eigen-

values are computed accurately independently of the singularity of M

(i.e., the "infinite" generalized eigenvalues).

Remark 2: QZVAL does not actually compute the Xi but rather returns ai

and 3i, the diagonal elements of QLZ and QMZ respectively. All the impor-

tant information in the problem is contained in the ai and the Si and

it is our responsibility as users to judiciously compute the Xi from them.

For example, if the elements of L are determined experimentally and are

known exactly only to within, say 10-3, then, since we are using unitary

transformations, we may wish to call any Xi corresponding to a Bi < 10-3

and ai > 10-3 an infinite generalized eigenvalue. Details are discussed

in the next section.

It is also appropriate at this point to acquaint the reader with

certain other developments and extensions related to the QZ algorithm.

Ward [19] has developed the combination shift QZ algorithm and, in fact,

this extension is implemented in the EISPACK version. L. Kaufman [20]

uses stabilized elementary transformations instead of orthogonal (unitary)

transformations. The resulting LZ algorithm is better for complex

matrices and is about four times as fast as QZ. She also claims to have

a better way to compute the eigenvectors. Van Loan [21] has the most



general algorithm yet of those in the unitary similarity family. His

VZ algorithm includes the QR, QZ, and singular value decomposition

algorithms as special cases.

4. APPLICATION OF THE QZ ALGORITHM TO THE TRANSMISSION ZERO PROBLEM

4.1 Case 1: m = r

In this case we have an alternate definition of the transmission

zeros of (1):

Definition 3: T is the set of generalized eigenvalues (multiplicities

A B

included) of the problem (2) where L = , M = .
C D 0

This definition is clearly equivalent to our previous one for by Theorem

1 there exist unitary Q and Z such that

Q(L - XM)Z = U1 - XU2

where U1, U2 are upper triangular with diagonal elements al,.. , aq and

1,'... 'q respectively (q = n+m). Obviously L - XM and U1 - XU2 have

the same Smith-McMillan form. Moreover, U1 - XU2 is upper triangular so

¢(X) is the product of the (nonzero) diagonal terms.

Clearly the application of the QZ algorithm is straightforward. There is

also one unexpected bonus for this particular application of QZ and that is

that balancing may be applied (e.g. subroutine BALANC in EISPACK) to the first

n rows and columns of L because of the special form of M. This can occasionally

enhance the accuracy of the computed solution. The problem of balancing for the

general generalized eigenvalue problem is still an open area of research.

We would emphasize the fact that no preprocessing (rank tests, matrix

multiplication, inversions, etc.) of the system matrices is required.

The data are input directly and one call to one subroutine (EISPAC or RGG)

is made. The transmission zeros are then determined once one decides

what to numerically use as "zero" for the ai's and 8i's. Typically one

would call zero anything less than some £ related to the precision to
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which the system data are known (or, from purely numerical considerations,

one would use an £ on the order of the square root of the machine preci-

sion). The point is - and this is standard for orthogonal similarity al-

gorithms - that "a quantity may be set to zero if a perturbation of the

same size can be tolerated in the original matrix" [7]. There are then

three cases to consider:

CASE (a): >i > E*

Cai
i = --- is a transmission zero.

CASE (b): i < ' ai > £ .

This corresponds to a generalized eigenvalue at infinity.

There will be r+s(s>O) of these: r of them arise

because the rank deficiency of M is r (and they usually

appear with "hard zeros" for ~i), while the other s cor-

respond to transmission zeros at infinity.

CASE (c): S. < £, a. < £-
1 1

This is the degenerate case where L - XM is already

of less than full rank; T = c. Note that in the near-

degenerate case (ai and Si simultaneously small, i.e.,

near £, but, for example, Si somewhat greater than s)

the computed Xi = 1 is "ill-conditioned, however

reasonable it may appear" [7]. Of course, a decision

has still been made concerning s but, again, the point

is that since the .i's and Si's are derived via ortho-

gonal similarities, an intelligent decision - related

to the original data - can be made.

The test for degeneracy in Case (c) is thus also a very reliable and

stable way of determining left or right invertibility of a system (see

Section 4.2 of this paper and Remark 7 of [2]).

It will be noted that our M has a particularly simple structure

which obviates the need for part of the reduction performed in QZHES.

Advantage is taken of this feature and is reflected in our timing esti-

mates in Section 7.
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4.2 Case 2: m # r

Without loss of generality we will consider only the case m > r.

The case r > m can either be recast in this form (by considering the

appropriate transpose matrices) or can be handled in the appropriate

analogous way to that discussed below.

The procedure is as follows: Augment L and M with (m-r) rows as

shown:

A B I O

L = C D , M1 = 0 O

E1 F1 O 0

Here E1 and F1 are conformably-sized pseudo-random matrices whose elements

are, say, uniformly distributed in [-I ILl, 11 IL| 11]. The QZ algorithm

can then be applied to the square matrices L1, M1 to give a set of general-

ized eigenvalues T1. Repeat with different random E2 and F2 to get a set

T2. Then almost surely T = T 1 n T2 .

That this random augmentation method gives T is clear from row rank

considerations. The idea is due to Davison and [2] may be consulted for

details. It would, of course, be nice to have a more direct way of handling

this case while working only with unitary transformations. At this time

we know of no appropriate algorithm. There is some measure of consolation

in the knowledge that generically this case is rather less interesting

than the case m=r (see Section 4.3 below).

4.3 Number of Transmission Zeroes

It is sometimes useful to know how many transmission zeroes a linear

system has. This can be particularly important a priori information (if

reliably computable) in the fuzzy case of some large transmission zeros

(Bi s near E).
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A complete treatment is given by Thompson and Weil in [15] and [16]

for the general problem. In our system-theoretic context analytical

results are determined by Karcanias [22) and Kouvaritakis and Shaked [23].

However, all these results are quite complicated in general and require

the solution of problems which are numerically as difficult as the origi-

nal problem. Thus it is probably generally not worth the effort.

What are often as useful and very easy to obtain (see [2], [3], [22],

[23] for details) are upper bounds or generic numbers. Some upper bounds

are reproduced below for reference:

n if D 0

n - max(r,m) if D - 0; B,C full rank

n - m - d if D 0- ; B,C full rank; m=r; CB of rank

deficiency d.

Assuming rank B = m and rank C = r the generic results [2] are:

n if D 0 ; m = r

n - m if D 0- ; m = r

0 if m # r.

4.4 Advantages of the QZ Approach

The major advantage of the QZ approach is reliability. The QZ

algorithm computes the transmission zeros of (1) about as accurately as

the numerical conditioning of the problem will allow. The most signifi-

cant benefits derive from the determination of the ai and «i (by unitary

similarities), the ratios of which determine the finite transmission

zeros, if any. There are no controllability or observability assumptions;



there are no initial rank assumptions which need to be checked; degeneracy

(or, just as important, near-degeneracy) is detected "automatically"

(i.e., without a separate test) in a stable way. In short, no preliminary

analysis of the system matrices is needed at all. The algorithm proceeds

directly on the raw system data. All the difficult (if done properly)

programming and analysis has been done by the specialists.

We might also mention that while a superficial examination of the

problem might indicate that the QZ approach would be slightly more CPU-

time consuming, in some cases, than other theoretical approaches, in

practice it is usually faster because of its reliability and direct appli-

cability.

5. DECOUPLING ZEROS

Definition 4: The set I of input decoupling zeros of (1) is the set of

zeros (multiplicities included) of Win(X) where in (X) is the greatest

common divisor of all nxn minors of [(A, B) - (I, 0)].

Definition 5: The set 0 of output decoupling zeros of (1) is the set

of zeros (multiplicities included) of 4out () where out( X) is the

greatest common divisor of all nxn minors of [(I) C-X()]

Making no assumptions on controllability or the rank of B we suggest

the following algorithm for determining 1. Determine sets 11,12 from the

two generalized eigenvalue problems

[, z = z i = 1,2
E. F i 0 0
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with pseudo-random Ei, Fi. Then almost surely I = I1 n 12. The analogous

remarks apply for the determination of 0.

Once I and 0 have been determined, various other definitions of trans-

mission zeros (particularly those in terms of the transfer function of

(1)) can be recovered by the appropriate additions to or removals from T.

Of course one should note that all reasonable definitions of transmission

zeros coincide anyway in the common special case of m = r, (A, B) con-

trollable, and (C, A) observable. We again refer to [2], [3], [4] for

details.

6. EXAMPLES

All our computing was done on the IBM 370/165 system at the University

of Toronto with the FORTRAN H Extended, OPTIMIZE (2) compiler. We used

the EISPAC control program to call the Generalized Real Non-Symmetric

Matrix System Package available on Release 2 of EISPACK. All computations

were done in double precision (REAL*8) arithmetic.

Example 1: Our first example concerns a linearized model of the F100-PW-100

jet engine at zero altitude and power lever angle of 83 degrees. This is

the Basic Operating Point Number 5 in [24]. As the data are well-known,

being the canonical model used for the International Forum on Alternatives

for Linear Multivariable Control (Chicago, October 1977) sponsored by the

National Engineering Consortium, Inc., we will not reproduce here the 441

16x16 16x5 5x16 5x5
parametersiof Aia R , B ER1 , C s R , and D E R . Rounded

to 12 significant figures the transmission zeros are:
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+789.898582816
+141.229455020
- 0.665956161639
- 2.00340315558

- 6.71065103680

- 13.7653073045 ± 9.11021474755 j
- 18.9585018941

- 20.5560274938 ± 1.41735335001 j
- 23.1336651689

- 49.6376010324

- 50.4675747639 ± 1.03191416032 j
-829.249095565

Since D f 0 and D has rank deficiency 1 we expect to find 16-1 = 15

transmission zeros. This computation required approximately 1/6 second

of CPU time. We also used the method of Section 4.2 with the same data

as above but with only the first three inputs. As expected there are no

transmission zeros.

Example 2: This low-order example is chosen from Davison and Wang [25]:

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

A = 0 0 0 0 0 0 B 1 0
A- , B=

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

1 1 0 0 0 ° \ /1
C= , D .

0 0 0 1 -1 0 1 0

It can be verified analytically that det ( = (X - 1)(3 + X + 1)
\ C D

so this system has the four transmission zeros 1.0, -0.6823278038280192,

0.3411639019140096 ± 1.161541399997252 j. (The analytic solutions are
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3' 3
1, p+q-(P+q) + (P-q ) +r where p =+ 1 1 1 

1,p~q, ~2 2 4 27 - 2 4 27

The maximum relative error in any transmission zero by our method is

0(10 ). However, relative errors are 0(10 ) by Davison's method.

Example 3: This high-order example is also chosen from Davison and Wang [25]:

n = 100, r = m = 1 and

0 1 0 0 . . 0 0

0 0 1 0 ... 0 0

A = .. . , B =.... 1 

0 . . . . . . . . . 0 1

0 .... 0 O 1

C = (1, c, 0 ..... , 0), D = d.

It can be verified analytically that det / = d + X + 1.

C D/

Three cases are considered and the analytical solutions are summarized

below:

CASE 1: c = 0, d = 0; T =

CASE 2: c = 1, d = 0; T = {-1}

100
CASE 3: c = 0, d = -1; T = {:X = 1}.

We now summarize errors and CPU times for these three cases for our method

and the Davison and Wang method:
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Avg. Rel. Error CPU Time

L&M 0 7.5 sec.
Case 1

D&W 0 >19.7 sec.

L&M 0 7.5 sec.
Case 2 -15

D&W 0(10 ) >16.1 sec.

L&M 0(10 1 20.0 sec.

Case 3
D&W 0(10 -) >17.0 sec.

The times given for Davison's method are fairly generous lower bounds

inasmuch as the time required for an initial test for degeneracy is not

included -and we are assuming only two values of p were used. Moreover,

for a prescribed accuracy it is still not completely certain what p

to choose. The next example illustrates a potentially more severe

problem with the "high-gain" approach.

Example 4: Consider the following controllable, observable system with

l B = ()

C= (1 1) , D = 0

where t f 0 is a parameter to be specified later. It is immediately verified

that
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A-XI B \
det B) = 2(X - T)

C 0

so there is one transmission zero at T.

Let us now compute the transmission zeros for this system using the

Davison and Wang algorithm. This involves determining the "finite" eigen-

values of A + pBKC. Without any loss of generality, we may set K = 1.

Suppose we are computing in double precision on an IBM machine with machine

-16
precision on the order of 10 . Then according to the algorithm ([2] or

[25]) we choose 15 15
p =10 0(10 )I I[T I ° cz

Now, suppose T is such that f(Tr + x) = x where fk(-) denotes floating point

evaluation and rounding to the above-mentioned precision. In this case,

T = 0.01 will do,for example. Then

/ l+T+p 1-U+p \

A + pBC =

P P

but

fZ(A + pBC) = l+P l+p

P P

Any reliable eigenvalue routine will now give an "infinite" eigenvalue at

1 + 2p and a finite eigenvalue at 0 for the transmission zero--obviously

an extremely bad approximation to the true transmission zero at 0.01. The

QZ approach, on the other hand, determines the zero at 0..01 to approximately
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14 decimal places which is consistent with its condition number of

approximately 150.0 as the following analysis shows.

Following [10] we can explicitly compute by hand the condition

number of the zero at X = T for this particular example. For the

generalized eigenvalue problem Lz = XMz, compute the normalized

(Euclidean norm = 1) right and left generalized eigenvectors x and y,

respectively. From (L - XM)x = 0 we find

1
T 2

x = (2+T2 ) (1 -1 -T)T

while from yT (L - AM) = 0 we find

y =3 (1 -1 -1) .

Then the condition number of X = T is given by (a2 + b2 ) 2where

a = yLx, b = y Mx. We thus have cond (X) 3(2+T 2 ) which is approxi-
4T

mately 150 when T = 0.01. Thus one might expect to lose approximately

2 decimal digits of accuracy with a stable algorithm such as QZ.

However, there is a significant degradation of accuracy in using

the high-gain approach for any value of p. Clearly, increasing p

will not help matters, whereas if p is decreased, one has but to

decrease T (noting, however, that cond (X) = 0(T -)) for the same

qualitative results to obtain. Even for T = 0.01 though, decreasing p

(to 107 ) still gives, at best, only 7 decimal places of accuracy -- a

very disappointing result in view of the relatively well-conditioned

nature of the problem.

Moreover, it would be easy to expand this example to include

another transmission zero which needs a different value of p (say, the
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more usual 10 ) to be accurately determined. Then even using many

values of p we are still in a quandary as to the accuracy of any parti-

cular zero, and, as we have seen, a particular zero may still be

determined much less accurately than its condition would indicate.

Clearly, if one wants to have a reliable algorithm, the choice

of p cannot depend on the particular values of the transmission zeros.

Of course, the above remarks derive entirely from the effect of

finite word length (i.e., the statement above that f9(T+x) = x).

Given that constraint, the p parameter of the high-gain approach has

the potential for destroying critical information in the A matrix.

That is precisely how this numerical counterexample was constructed.

Because of the potential, in well-conditioned problems, for

unwarranted inaccuracy and because of the difficulty in satisfactorily

determining p a priori (aside from the inefficiency in using more than

2 values) we must categorize the high-gain approach as somewhat unsatis-

factory.

On the basis of Examples 2, 3, and 4 and many others, we would recommend

our algorithm over that of Davison and Wang as it is generally faster,

more accurate (in the sense of minimizing the smallest singular value of

(A -XI B), and certainly more reliable in the sense of computing the

C D

zeros as accurately as their condition warrants. The QZ approach does,

however, require at least twice as much storage as the high-gain approach.

In most situations, though, with only a hundred or so states, neither

storage nor CPU time is usually too critical. For larger systems sparse

matrix techniques will probably be necessary. Finally, while the QZ ap-

proach is good mathematical software, we would definitely recommend Davison's

development for the purposes of system-theoretic insight as the QZ

algorithm has moderately little to offer, so far, in that respect.
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Example 5: This example simply illustrates the dangers of having to rely

on computation of quantities such as the rank of CB. Consider the controll-

able, observable system with

-1 0 0 1

A 0 - 4 1-D 1

C= , D=
2 1 1 0O

where 1 is some number less than the square root of the particular machine

precision of the digital computer on which it is assumed we are doing our

floating point arithmetic (e.g., P = 10- 4 in single precision computations

on an IBM 360/370). In other words (1+p)2 will be computed (rounded) as

/4 4
1+2p. Then CB will be computed as ( ) which, by any reliable rank
algorithm, will be determined to have rank 1. One might then be forced

to conclude - erroneously, of course - that the system has at most 3-2-1=0

transmission zeros (see Section 4.3). In reality, as is easily verified,

the system does have one transmission zero at -2. A similar fate awaits

floating point computations with C(sI-A)- B. The QZ approach, however,

does not suffer from these difficulties, and the transmission zero at -2

is computed with ease. The point is that the QZ approach avoids unnecessary

computations (multiplications) which introduce additional roundoff problems

needlessly. Moreover, this example exhibits a phenomenon which is not

merely pathological but rather is of sometimes critical concern in the

context of noisy or uncertain data.

Example 6: Example 5 is obviously near-degenerate. In fact, one can

check that det A-I = -81 (2+X) so that the degeneracy becomes
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more acute as P decreases. To illustrate the consistent behavior of

the QZ approach in the face of near-degeneracy we computed the trans-

mission zero at -2 for various values of p with the following results:

10-4 10-8 1 -121pI 1 10 10 10

Rel. error in tr. zero 0(10 6 ) 0(10 1 3 ) (10 ) 0(10 )

-8
Note that V = 10 is approximately the square root of machine precision £

while p = 10- 1 2 is considerably less than /i. Yet the transmission zero

is still computed with reasonable accuracy. What is most important, more-

over, is that fact that while -2 is being determined by a ratio of two

numbers both 0(1), near-degeneracy is being automatically detected by

another (ai' .i) pair with a. - O(p), i 0(10 16 ). Finally, setting

p=0 results in no transmission zero being computed but degeneracy being

signaled by an (ai' 5i) pair with ai - 0(10- 1 6 ) and Si ~ 0(10 16 )

Example 7:

1 0 01 0

A = 0 2 , B = 0 1 , C = (1 0 0), D = (0 0).

0 0 31 0

E1 = (5 -20 8), F1 = (-3 8): T1 = {4.5, 3.0}

E2 = (4 -50 -3), F2 = (9 -5): T = {3.0, -8.0).212 2

(All computations were accurate to 16 significant figures.)

Thus this system has one transmission zero at 3. Note that 3 is an unob-

servable mode. Since (C,A) is not observable, 3 may or may not be con-

sidered a transmission zero by other definitions. In any case, it is the

only number which reduces the rank of ( ). We also checked that
\ c D
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I = 0 and 0 = {2.0, 3.0}. Taking C = (1 1 1) instead and different

Ei, Fi we computed T1 = {0.224, 0.962}, T2 = {0.298, 0.460} (rounded) so

this system has no transmission zeros.

Example 8: We recomputed the transmission zeros of Example 1 of [2],

noting the typographical error that a8 5 of A should be +0.001 and not

-0.001 as published. This 9th order system with m=r=2 describes a boiler

system. We computed 6 finite transmission zeros (CB has rank deficiency 1).

Each of our numbers agrees exactly with the corresponding 7 significant

figures published. For reference purposes, we reproduce below the transmission

zeros computed by the QZ algorithm:

-26.39513729221503

- 2.957771983411796 + 0.3352672040386323 .j
0.7486064352926953

0.09403261463223497

- 0.009546070736281448

Based on extended precision results, the relative error in these values is on the

-12 -13
order of 10 or 10 . This is precisely all one can reasonably expect from a

stable algorithm since IAII for this example is on the order of 104 (and |I AI|

appears in the backward error bound). Note that substitution of these various

values of X into A - XI B) yields a smallest singular value of the order

C 0

of the machine precision used in the original calculations.

7. TIMING ESTIMATES

We ran tests on randomly generated system matrices with m=r=10 and

n=30, 50, 70. The CPU times were 1.6, 4.2, and 10.2 seconds respectively.

We summarize this data by saying that CPU time is approximately 20 q3 1 sec

where q = n+m (m=r). If QZVEC is also used to compute the eigenvectors the

time is approximately 33 q3 p sec. Because of the special diagonal form

of M these times are somewhat less than the EISPACK
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times of approximately 30 q3 sec (without eigenvectors) and 54 q p sec

(with eigenvectors).

We emphasize that these estimates are very approximate but 20 q ii sec

is a good ballpark figure to keep in mind when using this algorithm to

compute transmission zeros. It should also be noted that for moderate-

sized systems (say n < 50) peripheral costs (such as a card reader or line

printer) are usually more than CPU costs.

One additional consideration that bears emphasis is that because

the QZ approach does no "preprocessing" of the system data A, B, C, D

any sparsity initially present will be retained. Good QZ code can some-

times take advantage of this sparsity (cf., Example 3). This certainly

will be a fruitful area for future research.

8. GENERALIZED EIGENVECTORS AND PRINCIPAL VECTORS

For X£T the corresponding generalized eigenvector is a vector z

satisfying (2). MacFarlane and Karcanias give these eigenvectors (which

they call invariant-zero directions) a nice system-theoretic interpreta-

tion in a series of theorems in [3]. The typical sort of result is that

C ) = e yields state trajectory x(t) =

if and only if the input u(t) = eXt n yields state trajectory x(t) = eXt

and output y(t) - 0, t > 0. In other words, transmission is blocked at

the frequency X.

The i's can also be used to construct a basis for V* or V*/R* (in the

notation of [131). We would argue that this fact will become one of the
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main motivations for using the QZ approach since computation of these

subspaces is of fundamental importance in questions of synthesis and

design for linear multivariable control systems. We refer the interested

reader to [261 for details.

In case XET is of multiplicity p with fewer than p corresponding

eigenvectors we must, in theory, resort to generalized principal vectors

to get a spanning set for V*, say. A generalized principal vector of

grade k will be defined by an equation of the form

(L - XM)zk = MZk-l

where, of course, the generalized principal vectors of grade 1 are simply

the generalized eigenvectors.

It is known (see, for example [27]) that the complete solution of

the eigenvalue-eigenvector problem for non-normal matrices poses severe

numerical and practical problems for defective or near-defective matrices.

In fact, in the presence of rounding error, it cannot even be determined

if a matrix is defective. Rather than compute principal vectors satis-

fying the "chain conditions" one must instead be content to compute other

well-defined bases of the appropriate invariant subspaces. By analogy

then, other numerical algorithms will have to be brought to bear on the

computation of bases for V* or V*/R* in the defective case.

9. CONCLUSIONS

We have presented, in a moderately tutorial style, application of

QZ techniques to the problem of computing transmission zeros for a linear

time-invariant control system. We strongly advocate such techniques because
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of their basis in sound numerical analysis, their direct applicability,

their wide availability, and their consequent overall reliability.
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