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Abstract.  The Constructive Systems Engineering Cost Model (COSYSMO) represents a 
collaborative effort between industry, government, and academia to develop a general model to 
estimate systems engineering effort.  The model development process has benefited from a 
diverse group of stakeholders that have contributed their domain expertise and historical project 
data for the purpose of developing an industry calibration.  But the use of multiple stakeholders 
having diverse perspectives has introduced challenges for the developers of COSYSMO.

Among these challenges is ensuring that people have a consistent interpretation of the model’s 
inputs.  A consistent understanding of the inputs enables maximum benefits for its users and 
contributes to the model’s predictive accuracy.  The main premise of this paper is that the 
reliability of these inputs can be significantly improved with the aide of a sizing framework 
similar to one developed for writing software use cases.  The focus of this paper is the first of 
four COSYSMO size drivers, # of Systems Requirements, for which counting rules are provided.  
In addition, two different experiments that used requirements as metrics are compared to 
illustrate the benefits introduced by counting rules.

Introduction

COSYSMO is part of a trend to improve cost estimating accuracy and increase domain 
understanding in systems engineering that can potentially lead to increased productivity [Boehm, 
et al 2000]. The model estimates the effort associated with systems engineering of projects in the 
aerospace domain based on a variety of parametric drivers that have been shown to have an 
influence on cost.  Based on stakeholder inputs, it uses EIA/ANSI 632 Processes for Engineering 
a System1 as a basis for defining the activities being estimated by the model and ISO/IEC 15288 
Standard for System Life Cycle Processes2 as a basis for defining the Systems Engineering life 
cycle phases.

Throughout the development of the model a significant amount of feedback has been 
received from industrial partners such as Raytheon, Lockheed Martin, SAIC, BAE Systems, and 
General Dynamics; government partners such as the US Army and the Aerospace Corporation; 
and professional societies such as INCOSE, Practical Software and Systems Measurement, 
Space Systems Cost Analysis Group, and the International Society of Parametric Analysts.  The 
crucial step in reaching consensus among these organizations has been defining consistent 
counting rules that provide guidance on how to interpret the model parameters.  Specifically, 
these counting rules help define what to count and how to count it.  This paper provides the 
counting rules for what is believed to be the common language for communicating user needs: # 
                                               
1 Electronic Industries Alliance/American National Standards Institute 1999
2 International Organization for Standardization 2002



of System Requirements.  Pertinent background is provided on the model development and the 
relationship to the other size drivers in the model.  An example system specification is used to 
illustrate the counting rules and a use case framework is tailored to help define the appropriate 
level for requirements identification.  Finally, two studies involving requirements counting are 
compared to quantitatively demonstrate the benefits of counting rules. 

Model Development

In response to the need for System Engineering cost estimation, USC formed a working 
group to develop the model using volunteer experts from industry, government, and professional 
organizations.  Initial investigations revealed that the modeling of system engineering activities 
relied on heuristics and rules of thumb.  This led to a lack of confidence in the estimates from 
both contractors and acquisition organizations.  Moreover, system engineering contractors were 
struggling to justify their estimates during their bid and proposal process because of the absence 
an equivalent model used by software engineering such as COCOMO II3 or Cost Xpert4 and 
hardware engineering such as SEER-H5 or PRICE-H6.  Program managers found it easy to slash 
the systems engineering budget which generally was inconsistently defined across organizations.  
It was also a challenge to estimate the right amount of systems engineering for certain programs 
for which some rules of thumb had been developed [Honour 2004].

An initial framework of the model was developed using behavioral analyses performed with 
the help of the aforementioned organizations.  These analyses included the cost and size drivers 
as well as their range of variation.  Members of the team collaborated to solidify the definitions 
of the parameters and focused on the most difficult drivers: the size parameters. While experts 
agreed that the number of requirements was an indicator of the functional size of the systems 
engineering effort, most agreed that it was not a sufficient predictor.  Additional parameters were 
needed to capture the effort associated with specifying the interface requirements, algorithm 
development, and operational concepts of the system.  As the team dug deeper it found that 
determining how to count these parameters was not a straight-forward task.  More difficult was 
the fact that requirements were not consistently defined across organizations or contracts.  
Moreover, it was discovered that the domain in which systems engineering was performed 
influenced the selection of these parameters as well as how these parameters were counted.

An environment surrounded by inconsistent systems engineering domains and dynamic 
definitions of requirements offered two distinctively difficult challenges.  To address the first 
challenge the group decided to leverage off the existing EIA/ANSI 632 Standard for 
Engineering a System as a common work breakdown structure.  This helped participating 
companies adapt their WBS to emulate EIA/ANSI 632 as much as possible.  Asking 
organizations to emulate similar WBS activities created significant work since the mapping had 
to be done retroactively [Valerdi & Wheaton 2005].  Nevertheless, most domains were 
compatible with the standard to some degree.  The second challenge, the focus of this paper, was 
more difficult to address because the accuracy of COSYSMO was largely dependent on a 
consistent definition of requirements.

                                               
3 COCOMO II (Constructive Cost Model) is a product of the Center for Software Engineering at USC
4 Cost Xpert is a product of Cost Xpert Group, Inc.
5 SEER-H (System Evaluation and Estimation of Resources -Hardware) is a product of Galorath, Inc.
6 PRICE-H (Parametric Review of Information for Costing and Evaluation-Hardware) is a product of PRICE 
Systems, LLC.



Size Driver Attributes and Counting Rules

After achieving consensus about the model cost drivers, the biggest outstanding challenge for 
COSYSMO was to ensure that the sizing inputs involved in the system engineering effort were 
specified consistently.  In response, a two phased approach was developed: (1) ensure that the 
definitions have little room for misinterpretation, and (2) provide a framework that users can use 
to understand the scope associated with each driver.

Phase One.  The first phase has been an ongoing effort since the inception of the model in 
2001.  Working group meetings present an opportunity to review and refine the definitions of 
each driver to prevent confusion.  The four size drivers that the working group converged on are 
# of Requirements, # of Interfaces, # of Critical Algorithms, and # of Operational Scenarios and 
are listed in Figure 1.  Added together, these four drivers represent the functional size of a 
system which is believed to be a significant predictor of systems engineering effort.

Figure 1. COSYSMO Size Drivers

The scope of this paper is limited to the # of System Requirements driver; the most 
fundamental of the four.  A similar process will be used to define and improve the other three 
drivers.  The definition for the requirements driver is shown in Table 1.

Table 1. Definition for the # of System Requirements driver 

This driver represents the number of requirements for the system-of-interest at a specific 
level of design.  The quantity of requirements includes those related to the effort involved 
in system engineering the system interfaces, system specific algorithms, and operational 
scenarios.  Requirements may be functional, performance, feature, or service-oriented in 
nature depending on the methodology used for specification.  They may also be defined 
by the customer or contractor.  Each requirement may have effort associated with it such 
as verification & validation, functional decomposition, functional allocation, etc.  
System requirements can typically be quantified by counting the number of applicable 
shalls/wills/shoulds/mays in the system or marketing specification.
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Each of the drivers in Figure 1 is adjusted with three factors: volatility, complexity, and 
reuse.  System requirements are frequently volatile and dynamic nature; often known to increase 
as the project progresses.  This phenomenon, known as scope creep, is commonly quantified by 
expansion and stability patterns [Hammer, et al 1998].  Although new requirements are created, 
deleted, and modified throughout the life cycle of the project, empirical studies suggest that there 
tends to be an average number of low level requirements that need to be written in order to 
satisfy the requirements at the previous i.e. high level.  These studies show that the expansion of 
requirement shows an expected bell curve.  Intuitively, it makes sense to implement stable 
requirements first and hold off on the implementation of the most volatile requirements until late 
in the development cycle [Firesmith 2004].

The second factor used to adjust the size drivers of COSYSMO model is the complexity level 
of the requirements.  A typical systems project may have hundreds or potentially thousands of 
requirements which are decomposed further into requirements pertaining to the next subsystem. 
Naturally, not all requirements have the same level of complexity.  Some may be more complex 
that others based on how well they are specified, how easily they are traceable to their source, 
and how much they overlap with other requirements.  It has been determined that a simple sum 
of the total number of requirements is not a reliable indicator of functional size.  Instead, the sum 
of the requirements requires a complexity weight to reflect the corresponding complexity of each 
requirement.  Logically, the more complex a requirement the greater the weight that is assigned 
to it and vice versa.

Reuse is the third important factor used to adjust the number of requirements.  As reuse 
facilitates the usage of certain components in the system it tends to bring down the efforts 
involved in the system development.  The sum of requirements is adjusted downwards when 
there are a significant number of reused requirements.  This is meant to capture an organization’s 
familiarity with the development, management, and testing of requirements.

The definition and three adjustment factors alone do not capture all the impact introduced by 
requirements.  Additional work is involved in decomposing requirements so that they may be 
counted at the appropriate system-of-interest.  These rules help clarify the definition and 
adjustment factors while providing consistent interpretations of the size drivers for use in cost 
estimation.



Phase Two.  The second, more recent, phase involves the development of a framework that 
can aide in improving the reliability of the size driver interpretation across multiple stakeholders.  
For example, one such issue faced with regards to sizing requirements is to decide what level is 
“too high”, “too low”, and more importantly “just right.”  The issue of requirements granularity 
is very important to the accuracy of the COSYSMO estimate.  Software cost models have rules 
on how to count lines of code based on the software language being used.  Unfortunately, no 
such rules exist in systems engineering for counting requirements.  This creates an opportunity to 
define such rules with the goal of improving them as feedback is received from practitioners and 
researchers.  Since # of System Requirements is one of the four size drivers in the model, an 
initial set of rules has been developed to help systems engineers produce consistent requirements 
counts that can be used in COSYSMO.

The challenge with requirements is that they can be specified by either the customer or the 
contractor.  In addition, these organizations often specify system requirements at different levels 
of decomposition and with different levels of sophistication.  Customers may provide high level 
requirements in the form of system capabilities, objectives, or measures of effectiveness; these 
are translated into requirements by the contractor and decomposed into different levels 
depending on the role of the system integrator.  The prime contractor could decompose the initial 
set of requirements and expand them to subcontractors below it as illustrated in Figure 2.

Customer Contractor

Capabilities, Objectives, or 
Measures of Effectiveness 10 Requirements (prime)

100 Requirements (sub)

10:1 
expansion

1,000 Requirements (sub)

10:1 
expansion

Figure 2. Example of Requirements Translation from Customer to Contractor

For purposes of this example, the expansion ratio from one level of requirement 
decomposition to the other is assumed to be 10:1.  Different systems will exhibit different levels 
of requirements decomposition depending on the application domain, customer’s ability to write 
good system requirements, and the functional size of the system.  The requirements flow 
framework in Figure 2 provides a starting point for the development of rules to count 
requirements.  These rules were designed to increase the reliability of requirements counting by 
different organizations on different systems regardless of their application domain.  The five 
rules are as follows:



1. Determine the system of interest.  For an airplane, the system of interest may be avionics 
subsystem or the entire airplane depending on the perspective of the organization interested in 
estimating systems engineering.  This key decision needs to be made early on to determine the 
scope of the COSYSMO estimate and identify the requirements that are applicable for the chosen 
system.

2. Decompose system objectives, capabilities, or measures of effectiveness into 
requirements that can be verified or designed.  The decomposition of requirements may be 
performed by the customer or the contractor.  The level of decomposition of interest for 
COSYSMO is the level in which the system will be designed to; which is equivalent to the “A 
Spec”.  This is often also the level at which the system will be tested or verified.  Several levels 
of decomposition may take place before the requirements are at the right level of design for use 
in COSYSMO depending on the level in which they are initially available.  

3. Provide a graphical or narrative representation of the system of interest and how it 
relates to the rest of the system.  This step focuses on the hierarchical relationship between the 
system elements.  This information can help describe the size of the system and its levels of 
design.  It serves as a sanity check for the previous two steps.

4. Count the number of requirements in the system or marketing specification for the 
level of design in which systems engineering is taking place in the desired system of 
interest.  The focus of the counted requirements needs to be for systems engineering.  Lower 
level requirements may not be applicable if they have no effect on systems engineering. 

OR 

Count the number of requirements in the verification test matrix for the desired system 
of interest.  As an alternative, requirements may be counted from the Requirements Verification 
Trace Matrix (RVTM) that is used for testing system requirements.  The same rules apply as 
before: all counted requirements must be at the same design or bid level and lower level 
requirements must be disregarded if they do not influence systems engineering effort.  The 
RVTM has traditionally been used in systems engineering as an indicator for the number of 
systems engineering requirements and is widely used by the stakeholders of COSYSMO.

5. Determine the volatility, complexity, and reuse of requirements.  Once the quantity of 
requirements has been determined, the three adjustment factors must be applied.  Currently three 
complexity factors have been determined: easy, nominal, and difficult.  These weights for these 
factors were determined using expert opinion through the use of a Delphi survey [Valerdi, et al 
2003].

These five steps lead users down a consistent path of similar logic when determining the 
number of system requirements for the purposes of estimating systems engineering effort in 
COSYSMO.  It has been found that the level of decomposition described in step #2 may be the 
most volatile step as indicated by the data collected thus far.  To alleviate this, an example of 
requirements decomposition for a large system is provided.



Requirements Counting Example: 
FAA’s En Route Automation Modernization

The Federal Aviation Administration (FAA) has undergone a large acquisition effort for a 
new En Route Automation Modernization (ERAM) system that will coordinate the in flight 
resources in the U.S. [FAA 2005].  As the customer, the FAA provided a specification with two 
types of requirements: core and extensible [FAA 2003].  The core requirements are the minimum 
functional capabilities and performance required for acceptable operational suitability and 
effectiveness.  The extensible requirements are the goals in functional capabilities and 
performance that the FAA desires to achieve in the future.

A core requirement in this system specification can be found at the fourth level down in the 
document hierarchy.  This requirement can be tracked by the word “shall” but cannot be counted 
in COSYSMO since there is still one more level of requirements decomposition in existence.
The fourth level of decomposition would be considered too high in the system hierarchy to use 
for counting requirements.  Therefore, the requirements count should be done at the sixth level of 
the document hierarchy, or X.X.X.X-Y.Y-Z.

For example, the ERAM System Specification7 uses the following hierarchical categorization 
which complies with IEEE and NASA standards [Wilson, et al 1997]:

3 Requirements

3.2 Functional Capabilities

3.2.1 En Route – General

3.2.1.0-16 The system shall check input messages to 
ensure message completeness and coherency

3.2.1.0-16.0-1 The system shall provide format, logic, and 
validity checks for incoming data.

As the customer, the FAA decomposed their requirements one level.  It is at this level that 
they can communicate their needs for the ERAM system and it is left up to the developer who is 
awarded the contract to implement the requirement.  As an exercise, the lowest level requirement 
that was provided by the FAA has been decomposed into the following three additional 
requirements:

3.2.1.0-16.0-1  The system shall provide 
format, logic, and validity checks for message 
type 1.
3.2.1.0-16.0-2  The system shall provide 
format, logic, and validity checks for message 
type 2.
3.2.1.0-16.0-3  The system shall provide 
format, logic, and validity checks for message 
type 3.

                                               
7 The ERAM requirements have been sanitized due to the proprietary nature of the system



The need to decompose a single FAA requirement into three requirements is an example of a 
typical elaboration exercise performed by contractors.  In this example, three different types of 
messages were assumed to exist.  Each message has unique characteristics that will require it to 
be verified and validated independently.  For COSYSMO purposes it is assumed that the 
contractor will have to implement three requirements.  It is up to the systems engineer to 
determine the volatility, complexity, and reuse associated with the requirements. 

This example provides a uniform approach for counting the # of System Requirements size 
driver.  Since COSYSMO is being developed from the contractor point of view, the main focus 
is on determining the best level at which to count performed systems engineering requirements 
rather than managed.  The FAA example is oversimplified as it contains a somewhat 
sophisticated specification from the customer.  Often times this initial specification is not 
available and the authorship of the requirements is left to the developer or prime contractor.  The 
important lesson here is that even when a customer provides detailed requirements the contractor 
needs to further decompose them to determine the actual systems engineering effort associated 
with the development, implementation, testing, and maintenance of the system.  The next section 
provides a framework that is helpful for describing the best level to count requirements.

Cockburn’s Use Case Hierarchy

The field of software engineering provides a rich environment that has influenced many 
systems engineering principles.  In his latest book, Writing Effective Use Cases, well known 
author and researcher Alistair Cockburn describes a framework for capturing software use cases.  
A use case is “a collection of possible sequences of interactions between the system and its users, 
relating to a particular goal.  The collection of use cases should define all system behavior 
relevant to the actors to assure them that their goals will be carried out properly.  Any system 
behavior that is irrelevant to the actors should not be included in the use cases.” [Cockburn 2001]

While the focus of the book is on software use cases, the framework is applicable to systems 
engineering as well.  Cockburn describes a sea level metaphor for named goal levels of use 
cases.  Like in use cases, the driving force behind systems engineering involves meeting user 
goals.  According to Cockburn, there are three named goal levels involved with the requirement 
use cases: summary goals, user goals, and subfunctions.  The basic idea behind the sea level
metaphor is that goals exist above and below sea level each serving a specific function.  User 
goals, however, are the most important since they often determine the success of a system.  The 
existence of the system is justified by user goals and its support for the various primary actors.  
Moreover, these goals are the basis for prioritization, delivery, team division, estimation and 
development.  In the sea level metaphor, sea level corresponds to the user goals.  A cloud or a 
kite indicate a higher level where a fish or a clam indicate lower levels as shown in Figure 3.



Figure 3. Three named goal levels framework for Use Case
(Used with permission.  Copyright 2001 Alistair Cockburn)

A closer look at the categorization of these use case levels brings out their relevance to the
five step rule framework described to count the # of requirements.  At step 1 the system of 
interest is determined.  It involves outlining the overall project and its summary goals.  The 
system of interest directly corresponds to the summary goals of the project.  Step 2 is where the 
breakdown of the high level requirements into the actual user goals takes place.  The 
decomposition occurs at multiple levels with the objective of describing high level requirements 
in terms of actual user goals by customer or the contractor.  Initial decomposition is more likely 
to be performed by the customer and is likely to provide direction to the contractors to further 
decompose the overall goals to specific sections of user goals.  At step 3, the hierarchical 
relationship between the different levels of the decomposition is targeted at defining the 
relationship between the system elements at the design level.  The level against which system 
testing and acceptance takes place is the level of user goals i.e. sea level.  At step 4, the number 
of requirements in the system specification corresponds to the summary goal level.  As the 
decomposition of these requirements arrives at sea level, the contractor or subcontractor can 
aggregate the number of requirements at the same level of design.  In doing so, lower level 
requirements should be ignored since they have no influence on systems engineering effort.  At 
step 5, adjustment of the requirements size according to their volatility, complexity, and reuse 
takes place.

The development of COSYSMO can be used to further illustrate the sea level metaphor.  The 
summary level, or sky level, use case is written for either a strategic or system scope.  For 
example, a sky level goal for COSYSMO is to “build a systems engineering cost model.”  The 
stakeholders of the model stated this as their basic need that in turn drives a collection of user 
level goals.  A kite level goal provides more detailed information as to “how” the sky level goal 
will be satisfied.  In the case of COSYSMO, it includes the standards that will drive the 
definition of systems engineering and system life cycle phases.  The sea level goals represent a 
user level task that is the target level for counting requirements in COSYSMO.  Continuing the 
example, it involves “utilizing size and cost drivers, definitions, and counting rules” that will 



enable the accurate estimation of systems engineering effort, also providing more information on 
“how” the higher goals at the kite level will be satisfied.  The sea level is also important because 
it describes the environment in which the model developers interact with the users and 
stakeholders.  A step below is the underwater level which is of more concern to the developer.  
In this example it involves the selection of implementation and analysis tools required to meet 
the user goals.  The examples are mapped to Cockburn’s hierarchy in Figure 4.

Figure 4. Cockubrn’s Hierarchy as Related to COSYSMO Use Case Levels
(adapted from Cockburn)

Going down the hierarchy from sky to underwater provides information on “how” a 
particular requirement will be satisfied by the system while going up the hierarchy provides 
information on “why” a particular requirement exists.

Comparison of Two Experiments

In order to quantitatively illustrate the benefits of using counting rules for the # of System 
Requirements driver, two experiments that used this metric are compared.  The first experiment 
is an empirical study performed on fourteen student eService projects over a three year period at 
USC [Chen, et al 2004].  These projects were part of a two-semester software engineering course 
which followed the MBASE8 development framework [Boehm, et al 2000].  The results are 
organized in the CeBASE9 archives; an NSF-sponsored center.  Among other things, the results 
of the experiment show that the software size in terms of SLOC is moderately well correlated 
with the both the number of external use cases in use case diagrams and the number of classes in 
class diagrams.  The experiment also demonstrates that the number of sequence diagram steps 
per external use case is a possible complexity indicator of software size.  

However, for this 14-project eServices sample, the UML-based requirements metrics were 
insufficiently defined to serve as precise sizing metrics.  The teams that participated in this 
experiment did not operate under any specific set of instructions on how to count requirements.  
As a result, each team adopted the best method that suited their needs.  This inconsistency in 
requirements decomposition, while not deliberate, allowed for different implementation 
philosophies.  It was no surprise that the teams described their software systems using 
requirements at different levels of design.  Intuitively there is an expectation that the more 
software requirements associated with a system the more software effort will be involved to meet 
those requirements.  To no surprise the requirements associated with the eServices projects did 
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not correlate well with software development effort10.  The relationship, yielding an R-squared11

of 0.02, is shown in Figure 5.

Figure 5. Requirements vs. SW Hours
(adapted from Chen, et al 2004)

Numerous factors could have contributed to this poor relationship including the difference in 
the complexity of the requirements.  More importantly the absence of uniform counting rules in 
the experiment could have negatively influenced the results.  Since the study was performed in 
retrospect there were no opportunities to control for these inconsistencies in the experiment.  
Additional threats to validity exist that could have contaminated this longitudinal experiment 
including the fact that students were not being graded on the quality of the requirements they 
produced; contributing even more to the variability in which requirements were reported.

The second experiment performed was under a significantly different environment.  The 
aforementioned 5-step process for counting the # of System Requirements was used on a set of 
thirty-five systems engineering projects.  Rather than using students, this experiment involved 
six aerospace companies12 representing a significant portion of the US military’s portfolio.  
There was an anticipated positive relationship between the number of system requirements, as 
defined earlier in this paper, and the amount of system engineering hours involved with the 
development, implementation, testing, and maintenance of those requirements.  Results confirm 
that the relationship between requirements and systems engineering effort are indeed positively 
correlated.  Figure 6 shows a relationship with an R-squared of 0.55.

                                               
10 Chen’s study provided requirements vs. software lines of code (SLOC).  The SLOC axis was normalized to effort 
in hours using the Constructive Cost Model (COCOMO II)
11 R-squared is also known as the coefficient of determination.  Values range from 0 to 1, where 0 indicates no 
correlation and 1 indicates perfect correlation
12 BAE Systems, General Dynamics, Lockheed Martin, Northrop Grumman, Raytheon, and SAIC



Figure 6. Requirements vs. SE Hours

While this experiment shows a much stronger relationship between requirements and effort 
there is still plenty of room for improvement.  As discussed at the beginning of this paper the 
number of requirements is not a sufficient predictor of systems engineering effort.  It is evident 
that other metrics are needed to arrive at a more reliable prediction of systems engineering size 
and, consequently, systems engineering effort.  The refinement of these metrics and their 
counting rules will involve our near-term goals as part of the development of COSYSMO.

Conclusion

It has been shown that the sea level analogy developed for use cases provides a useful 
framework for the decomposition of system requirements from the customer to the contractor’s 
system-of-interest.  Leveraging off this framework, summary level requirements can be broken 
down into user level requirements.  These user level requirements are then used to estimate the 
amount of systems engineering hours associated with the requirements.  The guidance provided 
can help organizations uniformly count the # of system requirements for accurate use in 
COSYSMO.  With this framework clearly delineated, it can lead to extensions for the three other 
size drivers in the model.  Finally, counting rules were shown to significantly improve the 
predictive abilities of requirements in different experiments.  While more work needs to be done 
to refine the counting rules for COSYSMO size drivers, significant progress has been made 
thanks to the support of INCOSE member companies and USC CSE13 Affiliates.

                                               
13 University of Southern California Center for Software Engineering
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