
Neural Network based Modeling and Simulation for the Optimization of
Safety Logic

by

Neeraj Agarwal

M.S., Environmental Engineering (2001)
University of Connecticut

B.Tech., Civil Engineering (1999)
Indian Institute of Technology, Kanpur

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Civil and Environmental Engineering

at the
Massachusetts Institute of Technology, June 2002

© 2002 Massachusetts Institute of Technology
All rights reserved

S ignature of A uthor......................... . .................................................
ment of Civil and Environmental Engineering

May 10, 2002

C ertified by ....................................
br. Amar Gupta

Co-Director, Productivity From Information Technology (PROFIT) Initiative
Thesis Supervisor

Certified by.................................... ............. ...
Dr. Ruaidhri M. O' Connor

A -'istant Professor
Thesis Reader

Accepted by.. ..................
Oral Buyukozturk

Chairman, Jepartment Committee on Graduate Studies

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN .BARKER

LIBRARIES



Neural Network based Modeling and Simulation for the Optimization of
Safety Logic

by

Neeraj Agarwal

Submitted to the Department of Civil and Environmental Engineering
On May 13, 2002 in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Civil and Environmental Engineering

Abstract

This thesis focuses on a knowledge based approach to reduce the incursion situation in an
airport. In an effort to reduce the number of runway incursions that occur on an airport
surface and the surrounding areas, the Federal Aviation Administration (FAA) is actively
investigating automated systems to provide the air traffic controllers with early warnings
about impending incidents. The Airport Movement Area Safety System (AMASS) is the
first ground surveillance safety system that is being deployed at the 34 busiest airports in
the United States. The optimization of the parameters, which control the safety logic
algorithms that generate warnings of possible incursions, is a labor and time intensive
endeavor. Currently AMASS uses over 200 safety parameter values for all airports
independent of the organization or traffic flow of a specific airport.

The thesis focuses on how neural networks are used to organize alert types in a semi-
autonomous process that will provide alerts to air traffic controllers as early as
expediently. The methodology developed provides a generalized system that can be
optimized independently for each airport and still generate warnings of possible
incursions. Several networks exhibit good learning shown using different statistical
parameters and could eventually be integrated with AMASS. Based on the current
operations of neural networks it is projected that neural networks will use the AMASS
log data and data filter software to extract necessary information. In the future the
technologies discovered in these neural network models can help generate new versions
of safety logic software for the advanced surveillance systems.

Thesis Supervisor: Dr. Amar Gupta
Title: Co-Director, Productivity From Information Technology (PROFIT) Initiative
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1. Introduction

The advancements in the information systems have given rise to a new trend to identify

and generate meaningful information from the historical data. Due to the incorporation of

this information, it has become a key to gaining an advantage over the existing methods.

The value of data mining is to proactively seek out or predict the trends and thus to

provide research or industry a better understanding.

Over the past few years, there had been an increasing interest in using Neural Networks

to mine the large historical data and extract meaningful patterns and relationships. Neural

Network based data mining has been applied to multitude of fields like inventory

reduction [1] [2] [3], finance [4], weather prediction [5], electronic commerce [6],

medicine [7], image recognition etc. Neural Networks provide a good tool in prediction

of complex processes.

This thesis focuses on the use of Neural Network based data mining in reducing the

runway incursion situations on an airport. Federal Aviation Administration (FAA) is

actively investigating automated early warning systems to reduce the number of runway

incursions that occur on an airport surface and the surrounding areas. These systems are

designed to provide the air traffic controllers, who are responsible for traffic management

on the runways and taxiways, with early warnings about impending incidents. With this

additional information, it is hoped that an air traffic controller can intervene in time to

avoid the actual incursion.
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One such system is the Airport Movement Area Safety System (AMASS), developed by

the Northrop Grumman Norden Systems (NGNS) under contract with the FAA. AMASS

is the first ground surveillance safety system that is being deployed at the 34 busiest

airports.

Optimization of the parameters that control the safety logic algorithms that generate

warnings of possible incursions is labor and time intensive. AMASS has approximately

400 different safety cells that require a distance parameter, a time parameter or a

combination of both [8]. Of these 200 safety cells, 71 cells are available to warn air

traffic controllers of a possible incursion. The average time required to optimize the

entire AMASS system including different components like Terminal Automation

Interface Unit (TAIU), Airport Safety Detection Equipment (ASDE), etc. is 6 months.

The safety parameters that have been optimized are common for all 34 AMASS systems

currently deployed. Minor variations to these safety parameters are made based on

airport operating conditions and procedures. The FAA has focused approximately two

years on the optimization of these 71 safety parameters; the remaining safety parameters

values have yet to be determined.

As successful as the AMASS program has been over the last two years, we propose that

some form of an autonomous process is needed to fully exploit the AMASS system

capability to maximize its effectiveness. This thesis focuses on the initial development

and testing of Neural Networks (look into Appendix 1-3 for more details) on flight data.

Neural networks can be used as a potential solution to organize alert types in an
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autonomous process that will provide air traffic controllers earlier warning times while at

the same time, introduce the availability of a larger set of alerts than currently available in

AMASS. The proposed process can be integrated with the existing AMASS system. The

objective of the research is to provide a safety system that is optimized according to air

traffic controller actions for each and every individual airport.

The thesis is organized as follows. Chapter 2 will give details about the AMASS and its

operation, Chapter 3 will detail the dataset used for the study, Chapter 4 outlines the

Neural Network (NN) based approach, Chapter 5 details the statistical parameters used to

check the robustness of the NN, then analysis and results are followed by the conclusion

and future studies.
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2. AMASS Operations

The structure of AMASS and its associated safety logic are shown in Figure 1. The

upper left corner of Figure 1 depicts the Airport Surface Detection Equipment radar

(ASDE-3) that feeds into the AMASS. The lower left corner shows the Airport Surface

Radar (ASR-9) and the Automated Terminal Radar System (ARTS, not depicted) that are

used to feed the Terminal Automation Interface Unit (TAIU) providing AMASS with

airborne target information. In short, the AMASS cabinet processes this information

through safety algorithms and outputs tracked targets onto the existing ASDE-3 Operator

Display Unit (ODU) seen in the upper right corner of Figure 1. The ODU is located in

the airport tower cab for controller use. The ODU displays target information and text

alerts. Aural alerts are broadcast over a set of speakers which are also located in the

tower cab.

Aircraft velocity, acceleration and heading parameters are derived parameters that can be

defined in terms of raw data collected by radar. No unique aircraft information is

available to the controller except for ARTS arrival tag information. In other words,

AMASS does not have or use aircraft performance characteristics. For instance, the

controller does not know the weight or the type of the aircraft.

10
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3. Preliminary Data Set

For the purpose of this study, we use data for aircrafts using runways at one of the 34

busiest airports. The airport was selected where there was frequent use of the same

runway for both departures and arrivals. In order for neural networks to operate

effectively, a data set needs to be provided to the network so that it can be trained on the

normal operation of the traffic. It is desirable, but not necessary, for the data set to

provide examples of incursion situations. The reasoning for this hypothesis is provided

in the subsequent sections of this thesis. We noted that only one "AMASS" incursion

situation was recorded in the analysis data set used for the initial study.

Figure 2 highlights the one "AMASS" alert situation recorded in the analysis data. This

figure schematically shows one aircraft departing on a runway and another aircraft

landing on the same runway. The rest of the data recorded are similar instances of this

one scenario except that they do not generate an alert.

The above scenario may give the impression that one is looking for events that are

happening on a single runway at an airport. The real environment being analyzed is much

more complex as one is looking simultaneously at multiple runway, and also areas in

proximity to such runways. This includes, for example, taxiways leading up to different

runways.
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~5000 feet

Arriving aircraft is encroaching too close to the departure aircraft that is
located on the runway. This scenario results in an AMASS "Go-Around"

In addition, one needs to distinguish between and analyze several different scenarios [8],

such as:

(i) Lander behind Lander Scenario (LL): In this case, two planes are coming in to

land on the same runway, one behind the other. If the separation distance

between these two aircrafts is predicted to fall below a nominal threshold, one

could try to delay the landing of the second aircraft. However, this may not

always be possible, especially if there is a third aircraft coming in to land after

the first two aircrafts;

(ii) Lander behind Departure Scenario (LD): In this scenario, one plane is landing

and another is taking off, both from the same runway. Again, there are

intricate interdependencies on how to maintain high operational throughput

from that runway while still maintaining adequate separation distances and

safety margins;

13
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(iii) Intersecting Runways: In this scenario, there are two (or more) runways that

physically intersect with each other. Analysis of the point of intersection

requires detailed data from each of the relevant runways. Accordingly, it

becomes hard to model such runways using conventional techniques;

(iv) LASHO: Long Arrival Short Hold: This is a special case of intersecting

runways where the runway is long enough to allow the landing aircraft to

come to a complete halt just before the point of intersection. It is like stopping

at a "STOP" sign on a busy intersection, and then proceeding further after one

has verified that there is no traffic on the perpendicular road. Situations like

these cannot be analyzed easily with the current version of AMASS software;

(v) Taxiing Aircraft(s) Approaching Active Runways: In this case the objective is

to maximize the number of takeoffs and landings while maintaining order and

safety in the relevant parts of the airport.

One should note that there is wide variety in the way airports and constituent runways

are laid out in the U.S. In many cases, it becomes necessary to incorporate the

characteristics of the specific airport and runway into the model. However, one

wishes to make the models as generic as possible, with respect to broad applicability.

This makes the problem of predicting the alert situation more challenging.
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4. Neural Networks Approach

Neural Networks (NN) are complex mathematical models that are nonlinear and input-

output mapping adaptive. NN offer uniformity of analysis and design that make them

easy and efficient to use for problems such as pattern recognition, optimization, system

modeling, and data compression, among other applications (Haykin, 1999). In general

NN models are composed of individual processing units called nodes. The nodes are

interconnected by links or weights. A node connection arrangement may range from full

to sparse or locally connected. A NN generally contains multiple layers of nodes

interconnected with other nodes of same or different layers. These layers could be an

input layer, hidden layer(s), or an output layer. The inputs to each layer and the weights

associated with the links are processed by a weighted summation function to produce a

sum, which is subsequently passed to an activation function and the result from there is

the output for that node. This is illustrated in Figure 3. For more details about neural

networks, the reader can refer to Bishop (1995) or Haykin (1999).

Any NN has to be calibrated, or trained, before its application. The training can be of

three types - supervised, unsupervised, or reinforcement type. Training is basically a

procedure of adjusting the NN weights to best represent the problem solution.

Supervised learning may conceptually be thought as a teacher having knowledge of the

environment, and that knowledge is gained by a set of input-output pre-acquired data.

When the NN and the teacher are exposed to a training vector drawn from that

environment, the teacher by virtue of its prior knowledge is able to provide NN with a

desired response for that vector. By desired response is meant that the set of weights are
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altered, and this adjustment is carried out iteratively until the NN emulates the teacher;

the emulation is presumed to be optimum in some statistical sense using objective

criteria. This way the whole training data set is ingested and NN trained which is

subsequently ready to deal with the environment by itself. In this research the

backpropagation training scheme is employed (see Appendix 2 for complete description).

In the unsupervised scheme there is no external teacher to check on the learning. Rather,

provision is made for a task-independent measure of the quality of measurement that NN

has to learn, and the free parameters of the network are optimized with respect to that

measure. After the NN is tuned to the statistical regularities of the input data, it is ready

for application. More detailed information on NN calibration procedures can be found in

Haykin (1999).

In general, the advantageous characteristics of the NN approach can be summarized as

follows: (1) the addressed problem or task does not have to be clearly defined and it does

not require prior knowledge of the problem; (2) one may not explicitly recognize all the

existing complex relationships as during the training NN is able to form these

relationships (non-parametric method); (3) NN almost always converges to an optimal (or

sub-optimal) solution and need not run to any pre-specified condition; (4) no prior

solution structure is assumed or enforced on the NN development; and (5) large amount

of data can be handled quite efficiently. These advantageous characteristics of the NN fit

very well with the particular requirements of prediction of separation distances, as we are

dealing with large dataset and there is no well-defined relationship between data and the

separation distances in future.
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Figure 3. Iterative process of designing a Neural Network

To determine the number of hidden layers in the network, one needs to often make this

crucial decision by trial and error. In order to get optimal results, if one increases the

number of hidden layers, one gets into a state of "over fit" in which the network has

problems of generalization. The training set of data will be memorized, making the

network ineffective when dealing with new data sets.

There are several different types of NNs. The more popular techniques employ the

Multilayer perceptron, which is gradually trained with the backpropagation of error

algorithm; Recurrent Neural Network, which is trained with recurrent algorithm (i.e.

implement feedback) depending on how data are processed through the network.
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The data provided by the AMASS included absolute positions of each plane (x, y and z

co-ordinates), heading and velocities. Accordingly, a data extraction tool was developed

to extract specific features of interest.

The output of the data extraction tool was processed on a sequential basis as depicted

above. In the training phase of the NN, since NN is untrained initial errors are high and

correlation is low. If the NN is training well the errors come down and finally stabilize at

some low value. The correlation also stabilizes at value close to 1 that shows that NN has

learned the outputs. On the other hand, if the training results show bumps and valleys it

means NN is unable to learn. Figure 4 shows the overall approach for the study.

Data Creating TestingNeural-+ NeuralExtraction Features Networks
L Networks

Figure 4. Overall approach for use of Neural Networks in optimization of safety logic

The initial endeavor was to utilize a breadth first approach that involved applying several

different NN techniques to perform preliminary analysis of the underlying dataset. In

conjunction with the breadth first approach, several models for predicting alert conditions

were tried on two distinct cases: landing - landing (L-L: Pair of successive flights

landing on the runway) and landing - departure (L-D: Pair of successive flights landing

on and departing from the same runway). Detailed analysis of these models is presented

in the next section. It is important to note that the models varied significantly based on
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the type of Case (L-L or L-D), Inputs (absolute values such as x, y coordinates and

derived parameters such as Separation distance, Separation velocity and Separation time),

Outputs (Separation distance in future), Hidden layers (1 through n) and the particular

NN technique.

Example Inputs Multi-
Layer

~D i 0i . X Position
Y Position
X Velocityl -
Y Velocity-
X Position-

Y Position

Figure 5. NN model with binary output (Alarm vs. Non-Alarm)

Output

Alert

Initially the output of the models was binary: Alert versus Non-Alert conditions. The

models showed very good training results i.e. the average errors very nominal and the

model showed high correlation with the actual values. The very low number of Alert

cases (2 records) made it difficult to accurately determine if the model is indeed learning

the true characteristics for an Alert condition. For example, if the model predicted Non-

Alarm outputs for all the cases including the two alert cases in the underlying dataset, the

performance metrics would show high accuracy while the results would hold little

relevance. This is because even if we have a trivial model which predicts every case as

Non-Alert, the overall rate of errors computed to be low due to few cases of Alerts.
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To overcome the above problem, the output of the network was changed to calculate

separation distances at different times in future. In such a case, the low number of alarm

cases does not present a challenge to the training phase of the model. The output

estimates of the separation distance can be utilized to develop a post processor that could

trigger an alarm or near alarm situation. The overall system suggested would then take

parameters like absolute positions and velocities to accurately predict the alarm condition

sooner than what is possible with the current version of AMASS.

20



5. Statistical Parameters

In a range of hundreds of neural networks, it is extremely difficult to find which types

and classes of neural networks are suitable for predicting alarm conditions. To

objectively evaluate the performance of different types of networks, three different

statistical indicators were used. These indicators are: Pearson Correlation Coefficient

(PC), Normalized Mean Square Error (NMSE), and Average Error (AE) [2].

Each of the performance indicators represent a precise method of measuring how well a

simulation performed. No one indicators can tell how well one simulation fared against

others; instead all of these three numbers should generally be considered together. The

Pearson Correlation Coefficient (Equation 1) shows how well trends, i.e., bumps and

valleys, were picked up. The Pearson Correlation is a number ranging between -I and 1.

If the simulation predicts bumps and valleys perfectly, then the corresponding Pearson

Correlation would be 1.

Xl,6 -EXlYl
P.Correlatin =N

X' N( X 2 _(N 2NX - (X, NY E2 _

Equation 1: P.Correlation, where X and Y are different NN input features and N is

the number of points in the data set.
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The Normalized Mean Square Error (NMSE) (Equation 2) is a method to compare the

mean of a series against the predicted values. If the NMSE is greater than 1, then the

predictions are worse than the series mean. If the NMSE is less than 1, then the forecasts

are better than the series mean. The NMSE is widely used measure in academic journals

to evaluate how well a Neural Network has performs.

( X Predicted - x 0u,, )2

1 X -X 2
NMSE =

N

Equation 2: NMSE, where X is NN output and N is the number of points in the data

set.

The Average Error (AE) (Equation 3) is another way to compare the forecasts with the

actual values. It indicates, as a percentage value, the average difference between the

predicted and actual value. For instance, an AE of 0.30 means that the neural network

will provide predictions which on the average are within plus or minus 30% of the actual

values. Unfortunately the AE tells one nothing of how well the computer predicts trends

and for that one must use Pearson Correlation factor.

AE = v(Xoutput - XP, edicted)

N

Equation 3: AE, where X is NN output and N is the number of points in the data set.
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6. Analysis and Results

6.1 Single Layer Perceptron (SLP)

SLP is the simplest form of a neural network. It is used for classification of patterns that

are linearly separable (i.e., patterns that lie on the opposite sides of a hyper plane). For

instance in two dimensions it is analogous to linear regression. An SLP consists of a

single neuron or a node with adjustable weights and bias. For details refer to Appendix 1.

This can only be used to distinguish between two classes: in our case, Alert and Non-

Alert situations.

This model is intended to test the viability of predicting alert conditions from the

separation distance, the separation velocity and the separation time information, relative

to many sets, each relating to a pair of planes. These features were calculated using the

raw position and the velocity data. The NN based model was built using the derived

parameters from the raw data set; the hypothesis was that such a model could be

employed for multiple runways with no further training needed. The input features (SD,

SV and ST) are the separation distance, the separation velocity and the separation time

for a pair of planes on the runway. The output for the model is a single value

representing the likelihood of an alert occurring between the pair of planes. A zero

represents an Alert condition and a one represents a Non-Alert condition.
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Pearsons Coefficient (PC)

Figure 6. Pearson's Correlation for a single runway

For the training phase of the model, the alert output corresponded to the pair of planes

that caused an AMASS alert in the log. This alert condition was associated with the pair

of planes for all instances of alerts that were utilized in the model.

The above model did not exhibit characteristics of good learning as the Pearson's

Correlation (Figure 6) was almost zero although the AE of the model with respect to the

desired output drops to a low value. These factors indicate that the model does not show
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learning capabilities. As such, one focused more on MLPs and RNNs, which are

described next.

6.2 Multiple Layer Perceptron (MLP)

An MLP can be thought of as a cluster of many SLPs. Unlike SLPs, an MLP can emulate

any real continuous function. MLPs consist of a set of source nodes that constitute the

input layer, one or more hidden layers of computation nodes, and an output layer. The

input signal propagates through the network in a forward direction, on a layer-by-layer

basis.

MLP has two distinguishing characteristics from SLPs. First, all its nodes or neurons

utilize a nonlinear activation function. The most commonly used activation function is

the sigmoid function (Equation 4). The presence of non-linearity enables MLPs to map

the input to the output using any real function. Second, the hidden layer or layers enable

the network to learn complex tasks. For more details refer to Appendix 2.

1
l+ebn

Equation 4. The sigmoid function used as activation function.

The Multiple Layer Perceptron model used derived parameters. The input features were

the separation distance; the separation velocity and the separation time for a pair of

flights at time to and time tn. The output for the model was separation distances into the

future between the pair of flights.
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MLP based models were deployed for the following cases -

" Single Runways

" Multiple Runways

Single Runways:

This case is used for airports where we consider the air traffic only for individual

runways and the taxiways, which lead to them. Figures 7, Figure 8 and Figure 9 show the

different error statistics for the MLP model. Figure 7 represents the Average Errors in

separation distances in feet versus the epochs. We see that the model is learning well as

the errors are stabilizing to a low value. Similar conclusions can be drawn from Figure 8

and Figure 9.

Multiple Runways:

This case is used for airports where there are runways, which intersect each other. In this

case we have to consider the air traffic across all the intersecting runways as well as the

taxiways, which lead to them. Figures 10 - 12 show the different error statistics for the

MLP model. Figure 10 represents the Average Errors in separation distances in feet

versus the epochs. We see that the model is learning well as the errors are stabilizing to a

low value. Similar conclusions can be drawn from Figure II and Figure 12.
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6.3 Recurrent Neural Network

RNNs are connected networks from output nodes to hidden layer and/or input layer

nodes, and they also allow interconnectivity between nodes of the same layer, specifically

between the nodes of hidden layers.

Various training algorithms for RNN have been proposed by several researchers such as

Jordan (1986) [14]; Rumelhart, Hinton, and Williams (1986) [15]; Williams and Zipser

(1989) [16]; and Elman (1990) [17]. Elman training algorithm is being used in this

research.

RNN is deployed for the cases of single runways and the results are shown in figures 13

through 15. Figure 13 represents the Average Errors in separation distances in feet versus

the epochs. We see that the model is learning well as the errors are stabilizing to a low

value. Similar conclusions can be drawn from Figure 14 and Figure 15.
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Normalized Mean Square Error (NMSE)
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Figure 8. Normalized Mean Square Error for a single runway case. Each line in the graph
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through 1 second (the bottom most line) into the future.
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represents the output for a second in the future with the top most line being 10 seconds
through I second (the bottom most line) into the future.
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Figure 10. Average Error for a multiple runway case. Each line in the graph represents
the output for a second in the future with the top most line being 10 seconds through I
second (the bottom most line) into the future.
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Figure 11. Normalized Mean Square Error for a multiple runway case. Each line in the
graph represents the output for a second in the future with the top most line being 10
seconds through 1 second (the bottom most line) into the future.
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Figure 12. Pearson's Coefficient for a multiple runway case. Each line in the graph
represents the output for a second in the future with the top most line being 10 seconds
through 1 second (the bottom most line) into the future.
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Figure 13. Average Error for a single runway case. Each line in the graph represents the
output for a second in the future with the top most line being 10 seconds through 1
second (the bottom most line) into the future.
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Figure 14. Normalized Mean Square Error for a single runway case. Each line in the
graph represents the output for a second in the future with the top most line being 10
seconds through I second (the bottom most line) into the future.
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Figure 15. Pearson's Coefficient for a single runway case. Each line in the graph
represents the output for a second in the future with the top most line being 10 seconds
through 1 second (the bottom most line) into the future.

6.4 Comparison of AMASS vs. NN

The current AMASS system uses physically based rules to predict the future position of

each aircraft using its current position and its position at previous instances in time.

These positions are used to compute the velocity and the acceleration. This process

provides reasonably good estimates, but it totally disregards the actions that are likely to

be taken by the pilot or the human controller on the ground. The Neural Network based

approach, on the other hand, places heavy emphasis on past behavior and embodies the
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expected actions and reactions. As such, it becomes difficult to compare the results. In

the analysis below, we have compared several cases, each involving a pair of aircraft.

1.5 10

0.9

05 10 is
Time

Figure 16. Actual Separation Distance (in feet) (Calculated from the Log files of
AMASS)

Figure 16 shows the actual separation distances (in feet) versus Time (in seconds) for 15

seconds in the future as evaluated from the present the current report time by ASDE

radar. Each color in the graph shows the separation distances for each of 5 pairs of

planes.
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Figure 17. NN Separation Distance (Predicted Separation Distance using NN)

Figure 17 shows the predicted separation distance (in feet) versus time (in seconds) for 15

seconds in future with the neural network system using information from the past 5

seconds for each pair of plane as the input to the neural network. The figure shows the

NN predicted separation distance from I second through 15 seconds in the future.

(Please note that the current time stamp is assumed to be time 0). Each color in the figure

shows the separation distances for each of the 5 pair of planes.
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Figure 18. AMASS predicted separation distance

Figure 18 shows the AMASS predicted separation distances (in feet) versus. Time (in

seconds) from I second through 15 seconds in the future. Here separation distances are

calculated using 5 seconds of history for each plane and the present time stamp or current

report. The results do not depict the output from actual AMASS system as such output

was not available in the form needed for this comparison. Instead, we have simulated the

AMASS approach to enable this comparison study.

Again, each color in the graph shows the separation distances for each of the 5 pair of

planes.
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Figure 19. Actual Distance Predictions obtained using a Simulated Version of AMASS
approach

Figure 19 shows that the Average errors between the AMASS predictions and actual

distances increases as a quadratic function with the independent variable being time in

future.
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Figure 20. NN Vs Actual Distance - Overall Comparison

From the above preliminary comparative study of the results obtained using the AMASS

and NN models, one can see that NN models perform significantly better compared to

AMASS with respect to predicting future separation distances. AMASS shows biases in

predicting the separation distances as prediction is based on quadratic distance formulae.

The longer one looks out in the future, the poorer is the quality of the predicted values

provided by AMASS. This is expected, because AMASS does not take into account the

changes in flight speeds or directions made by the concerned pilots in future. These

impacts of such changes magnify over time. As aircrafts approach the airport, the pilots

reduce the speeds. Such expected changes are taken into account by the Neural Network

based system.
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7. Conclusions

This thesis examines the ability of different feed-forward neural networks to predict the

alert situations on an airport based on the input from the airport radar sites. The input

parameters reflect the current and past conditions of a pair of aircraft. Analysis using

different type of neural networks is presented. This thesis also analyzes the performance

of the neural networks based on some statistical parameters. The accuracy of the

prediction depends on the number of nodes in hidden layers and the training algorithm

used in the network. Different configurations of neural networks have been exploited to

best represent the airport scenario.

Three types of NN based data mining techniques were applied to predict the runway

incursion situations from the AMASS raw data. Both RNN and MLP models exhibit the

least average errors. A drawback to RNN models, however, is that these models take a

long time to train as compared to MLP models. On the other hand, SLP models take a

long time to train. SLP models also failed to emulate the different complex airport

scenarios and were hence not useful for this research.

The MLP and RNN based models were used to analyze the underlying AMASS data.

Several models that focused on predicting the future separation distance as the output.

These models yielded very good results. The average errors were well below 1000 feet

for predictions of up to 10 seconds in the future. The normalized mean square errors

were also fairly low and the Pearson's coefficients stabilized close to a value of I which

represents perfect correlation between the predictions and the actual value of separation
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distances. Combing all three performance metrics it is concluded that these models can be

applied for future studies to integrate NN based models into AMASS.

Some MLP based models used derived parameters like separation distances, velocities

and separation time while others were based more heavily on absolute parameters taken

directly from the raw data. Derived parameters like separation distance and separation

velocity have the same connotations for all runways and airports. As a result, such

models ideally do not require the training exercise to be repeated for each runway or

airport under constant traffic and runway configuration. Due to different runway

configuration and airport traffic this does not hold true and hence the models have to be

trained for each airport.

In general, neural network techniques have significant training costs, both in terms of

computing time and personnel. A single layer perceptron can take several days of

computing time for the initial training process, which involves the use of huge amounts

of historical data to compute the weights. (This is a process similar to determining the

coefficients of the various variables in a regression equation.) Once the network has been

trained, typically using huge amount of data from a runway, the model can be run on

commodity personal computers to make accurate predictions of separation distances

between two aircrafts. These trained NNs can be ideally run on real time basis with the

direct input from the ASDE, the airport radar.
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In an operational environment, input data for neural networks will come from relevant

radar sites. Such data are currently utilized to update the AMASS system on an ongoing

basis. NN based models will use such data from radar sites. Appropriate data filters will

need to be incorporated to enable direct feed of relevant subsets of data to the neural

network. These models will then perform predictions for separation distances, on a real-

time and continued bases, and provide such information to the human controllers, either

directly or via AMASS.

It is clear that the application of neural network data mining has been able to model the

airport scenarios pretty accurately. Section 6.4 gives a detailed comparison study between

the safety systems, AMASS that is currently used as opposed to the NN based models.

The results show an enormous amount of prediction capability of NNs in terms of errors

as well as an early prediction time.

Several networks demonstrate learning and could eventually be integrated with AMASS.

However, these networks have different applications as some predicts Alert and Non-

Alert situation and some predict separation distances between two aircrafts and thus

would be applied accordingly. Based on the current operations of neural networks it is

initially projected that the neural networks would be used to examine AMASS log data

(offline) to generate safety parameters. No modifications to the AMASS software would

be necessary. The neural networks use the AMASS log data and data filter software to

extract necessary information. Offline analysis will allow an individual to crosscheck the

safety parameters on the AMASS playback platform before they are installed on the
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AMASS system. In the future, the technologies discovered in these neural network

models can help generate new versions of safety logic software for the latest surveillance

systems.

45



References

[1] Bansal Kanti, Vadhavkar Sanjeev and Dr. Amar Gupta, "Neural Network Based Data
Mining Applications for Medical Inventory Problems", Data Mining and Knowledge
Discovery, 2 97-102, 1998, Kluwer Academic Publishers.

[2] Reyes, C., A. Ganguly, G. Lemus, and A. Gupta. A Hybrid Model Based on Dynamic
Programming, Neural Networks, and Surrogate Value for Inventory Optimization
Applications. Journal of the Operational Research Society, 49, 1998, 1-10.

[3] Bansal, K., S. Vadhavkar, and A. Gupta. Neural Networks Based Data Mining
Applications for Medical Inventory Problems. International Journal ofAgile
Manufacturing. 1-2, 1998, 187-200.

[4] Prokhorov, D., E. Saadm and D. Wunsch. Comparative Study of Stock Trend
Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks. IEEE
Transactions on Neural Networks, 9-6, 1998.

[5] Agarwal, N., E. N. Anagnostou. Investigating Improvements in Precipitation
Classification from Ground Based Weather Radar Observations. International
Symposium on Hydrological Applications of Weather Radar. 2001 Kyoto, Japan.

[6] Gupta, A., S. Vadhavkar and S. Au. Data Mining for Electronic Commerce.
Electronic Commerce Advisor. 4-2. 1999, 24-30.

[7] Penny, W. and D. Frost. Neural Networks in Clinical Medicine. Medical Decision
Making: An International Journal of the Society for Medical Decision Making. 16-4,
1996.

[8] Neural Network for Optimization of AMASS. Prepared for FAA. 2002.

[9] Avelino J. Gonzalez & Douglas D. Dankel, "The Engineering of Knowledge-
based Systems", 1993 Prentice-Hall Inc. ISBN 0-13-334293-X.

[10] Daniel Klerfors & Dr. Terry Huston, "Artificial Neural Networks", 1998
(http://hem.hj.se/-de96klda/NeuralNetworks.htm)

[11] Avelino J. Gonzalez & Douglas D. Dankel, "The Engineering of Knowledge-based
Systems", 1993 Prentice-Hall Inc. ISBN 0-13-334293-X

[12] Haykin Simon, "Neural Networks", 1994 Macmillan College Publishing Company
Inc. ISBN 0-02-352761-7

[13] Bishop Chris, "Neural Networks for Pattern Recognition", 1995 Oxford University
Press, ISBN 0-19853-8642

46



[14] Jordan, M.I., 1986. Serial Order: A Parallel, Distributed Processing Approach. In
Advances in Connectionist Theory: Speech, eds. J.L. Elman and D.E. Rumelhart.
Hillsdale: Erlbaum.

[15] Elman, J.L. 1990. Finding Structure in Time, Cognitive Science 14, 179-211.

[16] Williams, R.J. and D. Zisper. 1989. A Learning Algorithm for Continually Running
Full Recurrent Learning Algorithm. Connection Science 1, 87-111.

[17] Rumelhart, D.E., G.E. Hinton, and R.J. Williams. 1986. Learning Representations by
Back-Propagating errors. Nature 323, 533-536. Reprinted in Anderson and Rosenberg
[1988].

47



Appendix I

SINGLE-LAYERED PERCEPTRON

Xn 0 Wn

Wi

O o

----1. h ia pTeacher

Aci g(a)

x0 = -1.0 (of the bias parameter)

Figure 1. A Single Layered Perceptron Network.

The above figure shows the structure of a perceptron network [3] [4]. The values are as

follows:

" xo is permanently set to -1.0 for the bias parameter wo.

" The weight vector w exists for each class Ck and is a n dimensional vector.

" E= WTx (inner product that serves as the argument to the activation function.)

" Activation Function g(a) : The anti-symmetric version of the logistic function

such that

g(a) =1 when a >0

g(a) = -1 when a< 0

Aleorithm:

Step 1. Initialize wj' - the weight vector for each class Cj.
Step 2. Start iteration, ii = 1, 100 (say 100 epochs)
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DO ii =1, 1000

N_error=0

DO n = 1, Ntrain (Ntrain is the total number of patterns)
Pick a training data x"train whose class argument j is known.

Compute wjIXntrain for each class Cj. (The weight vector exist for each class
Compute k, where k= arg max i (wiTxnta)

Ifj=k do nothing (go to the next pattern, n=n+1) (right classification)
Else

N_error=N_error+1

wjn+ _ w j train (7)

wk = wk - lX ntrain (8)
ENDIF
ENDDO

ENDDO (End iteration once % Misclassification rate stabilizes to a nominal

value ( i.e., becomes constant)
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Appendix 2

MULTI-LAYER PERCEPTRON

Input Hidden layer (1) Output layer (2)

Xn

Xn.

X3 K=n-I

X2O K =n

X1

Figure 1. A Two Layered Perceptron Network.

Here the following should be noted.

" xo is permanently set to -1.0 for the bias parameter wo.

" The weight vector w exists for each class Ck and is a n dimensional vector.

0 1= wTx (inner product that serves as the argument to the activation function.)

9 Activation Function g(a) : The logistic sigmoid function such that

g(a)=1 when a > 0

g(a) = 0 when a< 0

Swj (L) refers to the weight in layer (L) connecting the ith node of the (L- I )th layer

to the j th node of the Lth layer.

e The same number of hidden units (n) were chosen for the hidden layer.
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Algorithm:

(Training of Weights)

Step 1. Initialize wjiL - the weight vector for each class Cj of layer L.

Step 2. Start iteration, ii = 1, 1000 (say)

Step 3. Forward Propagation:

i) Pick a training data xfain

ii) Compute aj at hidden layer for each of the hidden nodes as

aj= Y- wji X

iii) Compute activation g(aj) for each node as,

g(aj)= _
l+ea,

iv) Set zj = g(aj) at the hidden layer

v) Compute ak for each output node as

ak= E wji(2) zi

vi) Compute the output activation yk using the activation function as in

step iii). (yk= g(ak))

vii) Compute the error signal ek for each output node as

ek = yk- tk

where tk is the target value for class k (i.e. if xrain belongs to class k

then tk is 1.0. It is zero for the other classes). Summing up squares

of ek over k and then halving gives the value of the error function E
at iteration i.

E =- (3aa )2
2 k=1

Step 4. Backward propagation (Computing local gradients at each node)

i) Compute 8k at each output node. It is the same as the error signal ek.

ii) Back propagate 8 s to the hidden layer as
3

9. = zj(1- z )Jwk (2)4k
k=1
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iii) Compute the derivative of the Error function for the I' and 2nd layer
as

aE
=W x.

0ji

aE

akj

iv) Update the weights by an increment (at each layer) Awji as

Awji= - j8 xi and Awj = - i 8 zj

OR apply a suitable gradient scheme (conjugate gradient, incremental

gradient or memory less quasi Newton method) to update the weights

Step 5. Repeat steps 3 to 4 till the Error function value minimizes.
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Appendix 3

Recurrent Neural Network (RNN)

RNNs are connected networks from output nodes to hidden layer and/or input layer

nodes, and they also allow interconnectivity between nodes of the same layer, specifically

between the nodes of hidden layers.

Various training algorithms for RNN have been proposed by several researchers such as

Jordan (1986); Rumelhart, Hinton, and Williams (1986); Pineda (1989); Williams and

Zipser (1989); and Elman (1990). Elman training algorithm is being used in this research.

Each layer is considered of as representing a time delay in the network. Figure below

shows the fully connected NN with k hidden layers. Since a unique weight is associated

with any connection in the RNN, connection weights in the "equivalent" feed forward

network cannot be completely arbitrary and weights connecting nodes from one layer to

next layer are identical for all layers of weights as shown.

53



OUTPUT OUTPUT OUTPUT TIME

W3,1 k+1

W1,1 W3,3

k
KW3,2k

I I|

W3,1

W1,1 W3,3

0

W3,2

INPUT INPUT INPUT

Algrithm

Step 1: Start with randomly chosen weights.

Step 2: Let time t = 0, and assume the initial condition

=y -0, V i, j, k.

jijStep 3: While MSE is unsatisfactory and computational bounds are not exceeded, do

Step 4: Compute the output of each node at the next time instant:

Yk(t+l) f r~ WkIZ1 (U)
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Step 5: Compute the error I (d, (t) - y, (t)2,
k

Step 6: for nodes k E U with a specified target value dk (t).

Step 7: Modify the targets:

A, (dk (t) - Yk (0)2
k

Step 8: For use in the next iteration, compute

Yk (t 1)
awi, j

Step 9: Increment time counter t;

Step 10: end while.

55

fk (netk (0) Wija'. + (5,.j zj(t



Appendix 4

All the codes are written in MATLAB 6.0

Data Extraction Codes:

function main(filename, varargin)

clear global;
global gCurrentRecordTime gFileHeader
gRecordHeader;

%% Initialize

%% Open file
gFileHeader = opencsv(filename);
lLastByteReport = 0;
lLastPercentReport = 0;

stdout = 1;

%% What columns do we want in
records
gRecordHeader.labels = {'TimeSec'...

PID', TgtType',...
XPos','Y_Pos',...
'XVel','Y_Vel' };

%% What column numbers do these
represent
gRecordHeader.columnNumbers =

findcolumns( gRecordHeader.labels,....
gFileHeader.labels);

%% Load filters to use
lFilters = getfilters('config.txt');
for iter = 1:length(lFilters)

IFilters{iter,2}{ 1} = ...
findcolumns( lFilters{iter,2} { 1},...
gRecordHeader.labels);

end % for
fprintf(stdout,'Loaded filters:\n',[]);

disp(lFilters);

%% Process file

%% CSV file --> Records

[lCurrRecord, lEOF] =
getrecord(gFileHeader,gRecordHeader.c
olumnNumbers);
% While still more records in file
fprintf(stdout, Running\n',[]);
fprintf(stdout,'(0% %)',[]);
while ( ~ lEOF )

%% Filter records

% For each filter
for lFilterIter = 1:size(lFilters,1)

% Run the filter
eval( [ICurrRecord =

lFilters { lFilterIter, 1}.
'( lCurrRecord,'...
'lFilters{lFilterlter,2} ); 1);

% If filtered out
if ( isempty( lCurrRecord))

% Can stop filtering this record
break;

end % If filtered out

end % For each filter

lCurrentByte = ftell(gFileHeader.fid);
if (lCurrentByte > lLastByteReport +

100000)
ILastByteReport = lCurrentByte;
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fprintf(stdout,'.',[]);
lPercentDone =

round(100*(lCurrentByte /
gFileHeader.size));

if (lPercentDone >
lLastPercentReport)

lLastPercentReport =
lPercentDone;

fprintf(stdout, [ \n('
num2str(lPercentDone) '%%)'],[]);

end % if
end % if

% Get new record
[lCurrRecord, lEOF] =

getrecord(gFileHeader,gRecordHeader.c
olumnNumbers);

end % While still more records in file

fclose(gFileHeader.fid);

function rFilters = getfilters(configfile)

rFilters = { };

if 0
% 1. Filter by time
rFilters = [ ...

rFilters;...
{...

'filtertime',...
{...

{ TimeSec'}....
[...

959710808 959712008; ...
959720408 959724008 ...

rFilters = [ ...
rFilters;...
{...

'filterconstraint',...
{...

{'X Pos''Y_Pos'}...
[...

-0.7590 -0.6511 ...

[...

-2513.0 ...

} ;...

{...

'filterconstraint',...
{...

{'X_Pos''Y_Pos'}...
I...

0.7503 0.6611 ...

[ 7...
3076.0..

}...

end

if 0
% 2. Filter 34R for SEA
rFilters = [...

rFilters;...
{...

'filterconstraint',...
{...

{'X_Pos''Y_Pos'}...
[...

1.0 0.0 ...

[...

1608.0 ...
end

if 0
% 2. Filter 14R {...
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'filterconstraint',...
{...

{ X_Pos''Y_Pos'}...
I...

-1.0 0.0 ...

[...
-968.0 ...

if 0
% 2. Filter 28L for SFO
rFilters = [ ...

rFilters;...
{...

'filterconstraint',...

{...
{ 0Pos'YPos'}...

0.4725 0.88 13..

[ ...

end

if 0
% 2. Filter 34L for SEA
rFilters = [ ...

rFilters;...
{...

'filterconstraint',...
{...

{ X_Pos'YPos'}...
....

1.0 0.0 ...

-1.6319e+003 ...

}...

{...

'filterconstraint',...
{...

{X_Pos''Y_Pos'}...
[4...

-0.4574 -0.8893 ..

[...
1.7141e+003 ...

[ 3...
2332.0..

}...

{...

'filterconstraint',...
{...

{NXPos'YPos'}...
[...

-1.0 0.0 ...

[...
-1664.0...

I...

end

end

if 0
% 2. Filter 1R for SFO
rFilters = [ ...

rFilters;...
{...

'filterconstraint',...
{...

{ X_Pos'Y_Pos'}...

0.8839 -0.4678..

-2...
-2.2906e±003..
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};...

{...

'filterconstraint',...
{...

{ X_Pos'Y_Pos'}...
[...

-0.8864 0.4630 ...

[...
2.5129e+003 ...

1...

}...

if 1
% 2. Filter Runway 17L for DFW
rFilters = [...

rFilters;...
{...

'filterconstraint',...
{...

{X_Pos''Y_Pos'}...
[...

1 0...

I...
-2481 ...

end
}...

if 0
% 2. Filter Runway 22L for ORD
rFilters = [...

rFilters;...
{...

'filterconstraint',...
{...

{'X_Pos'Y_Pos'}...
....

0.7421 -0.6703..

[...
-5788.1 ...

{...

'filterconstraint',...
{...

{ X_Pos'Y_Pos'}...
[...

-1 0 ...

2 ...
2832..

1...

}...

end

{...
'filterconstraint',...
{...

{'X_Pos'Y_Pos'}...
[...

-0.7289 0.6846 ...

[...
6787.4..

end

if (1)
% Filter planes
rFilters = [...

rFilters;...

'filterplane'...
{...

{ Time_Sec', PID', TgtType',...

XPos','Y_Pos',X_Vel','Y_Vel'}...
1...

}...
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end % if

% 3. Output record
rFilters = [...

rFilters;...

{...

'filteroutputrecord'...

{...
{ }

'outputfile.txt'...

function [a, b, c] = normalform2d(p1,
p2)
% Normal form of line passing through
p1 and p2
% ax+by+c= 0,aA2 + bA2 = 1

dp = p2 - pl;

% Initial values
a = dp(2);
b = - dp(1);
c = - pl(1)*dp(2) + pl(2)*dp(1);

nFactor = (aA2 + bA2)A(1/2);

a = a/nFactor;
b = b/nFactor;
c = c/nFactor;

function rHeader = opencsv(filename)
% opencsv
% Opens file and creates a header struct
% Assumes that file is a CSV file and
that the first line
% contains the column labels
% rHeader:
% .fid: file id for file
% .labels: cell array of strings

% open file
rHeader.fid = fopen(filename);
if (-1 == rHeader.fid)

error(['opencsv: Unable to open file'
filename])
end

fseek(rHeader.fid,0,'eof');
rHeader.size = ftell(rHeader.fid);
fseek(rHeader.fid,O, 'bof');

% get column labels
ILine = fgetl(rHeader.fid);
rHeader.labels = { };
[lLabel, lLine] = strtok(lLine,',');
while( ~ isempty(lLabel) )

rHeader.labels = [ rHeader.labels
{lLabel} ];

[lLabel, lLine] = strtok(lLine,',');
end

disp(['Opened 'filename':
num2str(rHeader.size) 'Bytes)]);

function [rRecord, varargout] =
getrecord( fileHeader, varargin)
% getrecord: Get next valid record from
file
% [rRecord [, rEOF]] = getrecord(
fileHeader [, desiredColumns] )
% rRecord: array of desired columns
% rEOF: 1 iff reach end of file
% fileHeader: must have (.fid, .labels)
% desiredColumns: array of file
columns to put in rRecord

% Check Arguments
try

iFid = fileHeader.fid;
if (0 < length(varargin))

desiredColumns = varargin { 1};
else
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desiredColumns =
[1:1:length(fileHeader.labels)];

end
catch

error(['getrecord.m: Invalid
arguments'])
end
rRecord = [];
varargout{11 = 0;

% Get next valid record
while ( isempty(rRecord) & ~
varargout{1} )

% Get Line from file
lLine = fgetl(lFid);
if (-1 == lLine)

% reached EOF
varargout{1} = 1;
waming('getrecord: EOF');
continue;

end
% tokenize line
]Row = {};
while ( -isempty(lLine))

[lToken,lLine] = strtok(lLine,',');
lRow = [lRow { IToken }];

end

% Get elements of record and convert
to number

try
for iter = 1:length(desiredColumns)

IToken = str2num(
lRow{desiredColumns( iter )});

if (isempty( lToken))
nToken = 0;

end
% Save the value
rRecord(iter) = lToken;

end
catch

warning(['getrecord: Error while
getting record]);

warning([' 'lasterr]);
rRecord = [];

61



All the codes are written in MATLAB
6.0

Code for Calculating performance
Metrics and plotting them:

function [ae,nmse,pc] =
testnet-v2(net,epochs,times,trainln,train
Out,testln,testOut)
% Calculates performance metrics for
network

global hAePlot hNmsePlot

prevEpochs = net.trainParam.epochs;
net.trainParam.epochs = epochs;
prevShow = net.trainParam.show;
net.trainParam.show = NaN;

nTest = size(testOut,2);
meanTrainOut = mean(trainOut,2);

fprintf(2,'Computing performance for
%d trainings of %d
epochs\n', [times,epochs]);

ae = [];
nmse = [];
pc = [];

for iter=1:times

% Train batches of 500
for jter = 1:size(trainOut,2)/500

first = (jter-1)*500 + 1;
last = (jter)*500;
net =

train(net,trainIn(:,first: last),trainOut(:,fir
st:last));

end %for

simOut = sim(net,testln);

[currAe,currNmse,currPc] =
performance(meanTrainOut,testOut,sim
Out);

ae = [ae,currAe];
nmse = [nmse,currNmse];
pc = [pc,currPc];

fprintf(2, '%d...',[iter]);

end % times

hAePlot = figure;
figure(hAePlot);
plot([epochs:epochs:iter*epochs], [ae]);
xlabel(Epochs');
ylabel('AE');
title('Average error (AE)');

hNmsePlot = figure;
figure(hNmsePlot);
plot([epochs:epochs:iter*epochs], [nmse]

xlabel(Epochs');
ylabel(NMSE');
title(Normalized Mean Square Error
(NMSE)');

hPcPlot = figure;
figure(hPcPlot);
plot([epochs:epochs:iter*epochs], [pc]);
xlabel('Epochs');
ylabel(PC');
title('Pearson"s Coefficient (PC)');

fprintf(2,'...done\n',[]);

function [ae,nmse,pc] =
performance(meanTrainOut,testOut,sim
Out)

% Number of outputs and test set size
nOutputs = size(testOut,1);
nTest = size(testOut,2);
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% For each output, measure performance
for iter = 1:nOutputs

ae(iter,1) = sum(abs(testOut(iter,:)-
simOut(iter,:)))/nTest;

nmse(iter,1) = sum(((testOut(iter,:)-
simOut(iter, :)).A2))./sum(((testOut(iter,:)

-meanTrainOut(iter, :)).A2));

pc(iter,1) =
pearson(simOut(iter,:),testOut(iter,:));

end

function correlationXY = pearson(x,y)

if (size(y,1)=1)
x =X';
y =y';

end

% input/output as row vectors
n = size(y,2);
sum_x = sum(x,2);
sumy = sum(y,2);
sum-sqx = sum(x.A2,2);
sumsqy = sum(y.A2,2);
dotp-xy = x*y';

correlationXY = (n*dotp-xy -
sum_x*sumy) ./...

( sqrt(( n*sum-sqx - sum_ ) * (
n*sum-sqy - sumy.^2 )) );

Code to make pairs of planes and
prepare input to NN.

function
[trainln,trainOut,testln,testOut,sdamass
_trainOut,sdamasstestOut,dataSize,tot
al_info,history]=
loadtrainv3_AMASSmodandrewSt(fi
lein,tFuture)

% Load train/test for series of positions
(version 2)
% i.e. the positions for pair of planes
over time.
% input will be tPast Separation
distance,velocity,time for each plane
% output: distances for tFuture seconds

%% Initialize
%% -----

% Open file
tPast=5;
IFileHeader = opencsv(filein);
lRecordHeader.labels =
{ Time_Sec','PID',X_Pos',Y_Pos''X_Ve
1', 'YVel'};
eTimeSec = 1; ePID = 2;
eXPos = 3; eYPos = 4; eXVel = 5;
eYVel = 6;
lRecordHeader.columns =
findcolumns(lRecordHeader.labels,File
Header.labels);

%% Load training set
%% -----

totaltrainIn =
totaltrainOut =
testIn = [];
testOut = [];
sdamasstotalout = [];
total-info = [];
%totalhistory = { };
% Pi2 = [];
% Pj2 = [];

% Info on planes
% Rows of (PID, last seen, total time on
radar)
info=[];
% History of positions for planes
history={ };
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fl = 1;

% Get first record
[lRecord, lEOF] = getrecord(
IFileHeader, lRecordHeader.columns);
while (-lEOF)

% Get one second's worth of planes

lCurrentTime = IRecord(eTimeSec);
while (-lEOF &...

(lRecord(eTimeSec)==
lCurrentTime ) )

% Add this record

% Check if this PID has been
loaded before

RecordIndex =

if (-isempty(info))
RecordIndex =

find(info(:,1)==lRecord(ePID));
end % if

if (isempty(Recordlndex))
% This plane has not been loaded

before

% Add plane to info and history
info =

[lRecord(ePID),lCurrentTime, 1;info];
history =

[{lRecord([eXPos,eYPos,eXVel,eYVel]
)};history];

else

% Update time
info(Recordlndex,2) =

ICurrentTime;
info(Recordlndex,3) =

info(RecordIndex,3) + 1;

% Update history

history{ RecordIndex } =
[lRecord([eXPos,eYPos,eXVel,eYVel]);
history{ RecordIndex}];

end % if

% Get next record
[iRecord, lEOF] = getrecord(

iFileHeader, lRecordHeader.columns);
end % while one second

% Delete old planes
% Planes are old if they are not on

radar at current time
if (-isempty(info))

OldPlanes = find(info(:,2)
lCurrentTime);

info(OldPlanes,:) =
history(OldPlanes,:)=

end % if
tPresent = tPast + 1;

if (-isempty(info))
MatchablePlanes =

find(tFuture+tPast <= info(:,3));

for iter =
1:length(MatchablePlanes)

for jter =
iter+ 1:length(MatchablePlanes)

total info = [total_info;
info(MatchablePlanes(iter),:)];

total-info = [total_info;
info(MatchablePlanes(jter),:)];

Pi =
history{MatchablePlanes(iter) 1;

Pj =
history{MatchablePlanes(jter)};

Pil =
flipdim(Pi(1:tPast+tFuture,:), 1);

Pj 1 =
flipdim(Pj(1:tPast+tFuture,:),1);
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if (iter==1 & jter == 2 & fl
== 1)

Pi2 = Pil
Pj2 = Pjl
fl = 0;

end %if

%SD According to AMASS
using userdefined projection time (time)

distamass =

(Pi I([tPresent],1:2)-
Pjl([tPresent],1:2)).^2;

distamass =
sqrt(distamass(:,1) + distamass(:,2));

% Target i
% Calculates the velocity,

acceleration and general direction

%Present target ie at time 6
xi = Pil([tPresent],1);
yi = Pil([tPresent],2);
gendirji = position(xi ,yi);
%END Present target ie at

time 6

cum-dist-i(1)=0;
for ii=2:tPresent

dist i = (Pil([ii-1],1:2) -
Pil([ii],1:2)).^2;

disti = sqrt(dist-i(:,1) +
dist-i(:,2));

cumdisti(ii)=disti +
cum-disti(ii-1);

end%for

vi = ((2*cum dist i(6)) +
(cum-dist-i(2)) - (cum dist-i(4)) -
(2*cumdisti(5))) / 10;

ai = ((2*cum dist-i(6)) -
(cum-dist-i(2)) - (2*cumdisti(3)) -
(cum-dist-i(4)) + (2*cumdisti(5))) /
7;

% Calculates the velocity,
acceleration and general direction

xj = Pjl([tPresent],1);
yj = Pjl([tPresent],2);
gendir-j = position(xj ,yj);
cum-dist_j(1)=0;
for jj=2:tPresent

distj = (Pjl(jj-1],1:2) -
Pj l(Uj],1:2)).^2;

distj = sqrt(dist-j(:,1) +
distj(:,2));

cum dist-j(jj)=dist-j +
cum-dist-j(jj-1);

end%for

vj = ((2*cum dist-j(6)) +
(cum-dist_j(2)) - (cum dist_j(4)) -
(2*cumdistj(5))) / 10;

aj = ((2*cum-distj(6)) -
(cum-distj(2)) - (2*cumdist-j(3)) -
(cum-dist-j(4)) + (2*cum dist-j(5))) /
7;

% Gets the distances traveled
in projection time

for time= 1:tFuture

si(time) = vi*time +
(0.5*ai*(timeA2));

sj(time) = vj*time +
(0.5*aj*(timeA2));

4->W

== 1)
% Target j

end %for

%for CHASE situation
%returns 1->N 2->E 3->S

% General direction is north

if (gendiri == 1) 1 (gendirmj

if (yi >= yj)
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ds = si - sj;
else

ds = sj - si;
end%if

% General direction is south
elseif (gendiri == 3)

(gendir-j == 3)
if (yi >= yj)

ds = sj - si;
else

ds = si - sj;
end%if

% General direction is East
elseif (gendiri == 2)

(gendir-j == 2)
if (xi >= xj)

ds = si - sj;
else

ds = sj - si;
end%if

% General direction is West
elseif (gendiri == 4)

(gendir-j == 4)
if (xi >= xj)

ds = sj - si;
else

ds = si - sj;
end%if

end%if

is = distamass + ds;

% output value calculated here
% Find closest distance for

tFuture seconds of history
distance =

(Pi 1 ([tPresent:tFuture+tPast],1:2)-
Pjl([tPresent:tFuture+tPast],1: 2 )).^2;

distance = sqrt(distance(:,1) +
distance(:,2));

% Input values calculated here
% Get series SDSV
SD = (Pil([1:tPast],1:2)-

Pjl([I1:tPast],1:2)).^2;
SD = sqrt(SD(:,1)+SD(:,2));
size(SD);
SV = (Pil([1:tPast],3:4)-

Pj1([1:tPast],3:4)).^2;
SV = sqrt(SV(:,1)+SV(:,2));

totaltrainIn = [totaltrainln,...
[SD;SV]];

totaltrainOut =
[totaltrainOut,...

distance];
%is=flipdim(is,1);

sdamasstotalout=[sdamasstotalout,i
s';
% end %if

end % for jter
end % for iter

end % if
end % while

%for getting the OUTPUT of Seperation
Distance in 2 files
%_testOut and _trainOut
d = size(totaltrainOut)
dl = size(totaltrainln)
da=round((d(2)*80)/100);
fprintf(1,'\noriginal da=%d',da);
dataSize = da;
if(da>10000)

da=10000;
end
fprintf(1,'\nnew da=%d',da);

trainOut=totaltrainOut(:, 1:da);
sdamasstrainOut=sdamasstotalout(:,
1:da);

%dlmwrite(strcat(fileout,'_trainOut.csv),
trainOut,',')
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testOut=totaltrainOut(:,da+ 1:d(2));
sdamass_testOut=sdamass_totalout(:,
da+1:d(2));

%dlmwrite(strcat(fileout,'_testOut.csv'),t
estOut,',')

%****** **** ***** ******

* ** *********** ** *

% %for getting the INPUT of SD;SV;ST
in 2 files
% %_testIn and _trainln

trainIn=totaltrainln(:,1:da);

************ ******** **

epochs=1;
times=70;
Range = minmax(trainln);

iLayerNumber = [10,15];
iLayerType =
{'purelin','purelin','purelin'};
iTrainType = 'trainlm';%'trainIm';
%net = newff(lRange, ILayerNumber,
ILayerType, lTrainType);
net = newff(lRange, ILayerNumber,
lLayerType, lTrainType);
[ae,nmse,pc,amassnnaeamassnnnm
se,amass-nn-pc] =
testnetv2_new(net,epochs,times,trainln,
trainOut,testln,testOutsdamasstrainO
ut,sdamass testOut)

% Close file
fclose(lFileHeader.fid);

% SubFunction to calculate the general
direction
%returns 1->N 2->E 3->S 4->W
function gen-dir = position(x, y)

% Finds N and E
if(x >= 0 & y >= 0)

if(abs(x) >= abs(y))
gendir=2;

else
gen_dir= 1;

end %if
end %if

% Finds S and E
if(x>=O & y<O)

if(abs(x) >= abs(y))
gendir=2;

else
gen_dir=3;

end%if
end%if

% Finds N and W
if(x<O & y>=O)

if(abs(x) >= abs(y))
gendir=4;

else
gen_dir=1;

end%if
end%if

% Finds S and W
if(x<O & y<O)

if(abs(x) >= abs(y))
gen dir =4;

else
gendir=3;

end
end
%end function
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