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Abstract

Two different hemodynamic-based neuroimaging techniques were studied in this work.

Near-Infrared Spectroscopy (NIRS) is a promising technique to measure cerebral
hemodynamics in a clinical setting due to its potential for continuous monitoring.
However, the presence of strong systemic interference in the signal significantly limits
our ability to recover the hemodynamic response without averaging tens of trials.
Developing a new methodology to clean the NIRS signal from systemic interference
and isolate the cortical signal would therefore significantly increase our ability to
recover the hemodynamic response opening the door for clinical NIRS studies such
as epilepsy. Toward this goal, a new method based on multi-distance measurements
and state-space modeling was developed and further optimized to remove systemic
physiological oscillations contaminating the NIRS signal. Furthermore, the cortical
and pial contributions to the NIRS signal were quantified using a new multimodal
regression analysis.

Functional Magnetic Resonance Imaging (fMRI) based on the Blood Oxygenation
Level Dependent (BOLD) response has become the method of choice for exploring
brain function, and yet the physiological basis of this technique is still poorly under-
stood. Despite the effort, a detailed and validated model relating the signal measured
to the physiological changes occurring in the cortical tissue is still lacking. Modeling
the BOLD signal is challenging because of the difficulty to take into account the com-
plex morphology of the cortical microvasculature, the distribution of oxygen in those
microvessels and its dynamics during neuronal activation. Here, we overcome this dif-
ficulty by performing Monte Carlo simulations over real microvascular networks and
oxygen distributions measured in vivo on rodents, at rest and during forepaw stimu-
lation, using two-photon microscopy. Our model reveals for the first time the specific
contribution of individual vascular compartment to the BOLD signal, for different
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field strengths and different cortical orientations. Our model makes a new prediction:

the amplitude of the BOLD signal produced by a given physiological change during

neuronal activation depends on the spatial orientation of the cortical region in the

MRI scanner. This occurs because veins are preferentially oriented either perpendic-

ular or parallel to the cortical surface in the gray matter.

Thesis Supervisor: David A. Boas, Ph.D.

Title: Professor of Radiology, Harvard Medical School
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Chapter 1

Introduction

1.1 Why measuring the hemodynamic response of

the brain?

The human brain is a very complex organ composed of billions of neurons. Detecting

which neurons are involved in a specific cognitive process is a challenging task. In

fact, the electromagnetic fields produced by the neurons when they discharge are

very tiny. To be able to detect them, several neurons from a given location have to

discharge synchronously. Moreover, the measurements of the electromagnetic fields

produced by neurons can only be performed non-invasively at the surface of the head.

This means that complex mathematical models have to be used to solve the inverse

problem and to reconstruct the activation located in the brain. Given the high level

of noise in electrophysiological recordings, this is a challenging task.

To overcome this drawback, researchers often measure the regional changes in blood

oxygenation following neuronal activation, which are much easier to detect. These

changes in blood oxygenation are the results of two competing mechanisms.

1. The first one is that increased firing rate requires more oxygen to be consumed

17



in order to maintain the ionic concentrations across the cell membrane. This

decreases the oxygen saturation of the blood supplying the activated cognitive

region.

2. The second mechanism is a feedback mechanism that dilates regionally the

blood vessels supplying the activated cognitive region, increasing blood flow to

this region of the brain. This mechanism is called neurovascular coupling. The

increase in blood flow enhances the arrival of freshly oxygenated blood to the

activated cognitive region and therefore increases blood oxygenation.

Generally, the second mechanism wins and the net result is a regional increase in

blood oxygenation in the activated cognitive area. Detecting an increase in blood

oxygenation during a cognitive task is a good indicator that this region was activated

during the cognitive process. Using the same reasoning, we found that blood oxy-

genation decreases in regions where neuronal inhibition occurred. There are a lot of

circumstances for which the above conclusion doesnt hold due to alteration to the

neurovascular coupling. These circumstances are still the subject of intense research.

Nevertheless, mapping task-evoked variations in oxygenation in the brain is an ac-

curate way of mapping which region of the brain is involved in a specific cognitive

process.

1.2 Two complementary ways of measuring task-

evoked hemodynamics in the brain

The most widely used method to measure task-evoked blood oxygenation variations

is Blood Oxygen Level Dependent functional Magnetic Resonance Imaging (BOLD-

fMRI) [82, 102]. The advantages of this method are that it is relatively straightforward

to implement on a conventional MRI scanner and it provides functional brain map-

ping with high spatial resolution ( 1 mm3 ) and with uniform sensitivity across the

18



entire brain. An inconvenient of this technique is that it is really difficult to relate

the amplitude of the signal measured to the amplitude of the physiological changes

occurring in the cortical tissue [16]. The principal reason is that the amplitude of

the signal detected in a given voxel depends not only on the physiological changes

but also on baseline physiology in this voxel (blood volume, blood oxygenation, blood

flow, etc) [22, 61].

Another complementary technique to measure task-evoked oxygenation variations in

the brain is Near-Infrared Spectrocopy (NIRS) [99, 59, 36]. As opposed to BOLD-

fMRI, NIRS is a low-cost portable technique that has potential for long term bedside

monitoring of brain functions in a clinical setting. NIRS is also less sensitive to motion

artifact compared to fMRI which makes it the method of choice for cognitive stud-

ies on young children. Finally, NIRS also provide simultaneously changes in blood

oxygenation as well as changes in blood volume. The major inconvenient of NIRS

is its non-uniform sensitivity to different brain regions, with very high sensitivity to

superficial region and no sensitivity to deeper brain regions [7]. This gives rise to two

technical problems: (1) It is not possible to measure task-evoked hemodynamic varia-

tions in deep regions of the brain and (2) the signal measured is strongly contaminated

by systemic physiology (unrelated to the cognitive process studied) occurring in the

scalp. Moreover, the spatial resolution of NIRS is limited to 3 cm which introduces

quantification error due to large pial vessels irrigating the surface of the cortex.

1.3 Why bother about quantitative hemodynamic

measurements?

One could say that mapping brain function is a yes/no question. A brain region is

either involved or not involved during a cognitive process. Well, that is not the entire

story. The brain is never at rest. Information is continuously processed everywhere

in the brain. Most cognitive processes will involve a lot of regions and one would get
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that all the brain gets activated during any cognitive task. It is much more interesting

to studies how much each region is involved during a cognitive process. This by itself

justifies the need for quantitative hemodynamic measurements.

Another point is that most cognitive studies involve multiple subjects. It becomes

really hard to study cognitive processes in different subjects if the measurements de-

pend on baseline physiology (i.e. whether the subject had coffee or not that morning).

The same reasoning applies to clinical studies, where disease (or medication) can alter

physiology. The lack of quantification in hemodynamic-based brain imaging largely

limits the utilization of these techniques in the clinic.

Finally, quantitative hemodynamic imaging of the brain provides additional physi-

ological information about the brain health. It is well known that oxygen supply

is critical to brain functions [123, 112]. Measuring hemodynamic parameters in the

brain in disease states or during healthy aging is an important research area.

1.4 Alternatives for quantitative measurements

Positron Emission Tomography (PET) is a very quantitative technique [39] that is

already well established in the clinic [112]. However, PET doesnt allow measuring

physiological changes occurring within seconds since measurements must be collected

for several minutes before the image can be reconstructed. For the purpose of imaging

brain functions during short cognitive processes, PET is not the method of choice.

Moreover, the method requires the injection of radioactive contrast agents, which

makes the method not suitable for repeated measurements.

Alternatively, there are a lot of fMRI sequences specifically designed for measuring

quantitative physiology in the brain [57, 33, 9, 17]. These methods are really promis-

ing in the near future. At the moment, the signal-to-noise ratio (SNR) with these

methods is much lower compared to BOLD-fMRI and this remains the main issue
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today. Moreover, these sequences must be validated against well-establish modali-

ties (like PET) since some of them rely on a number of assumptions about cerebral

physiology. Nevertheless, these new sequences constitute the future of brain imaging.

1.5 Importance of BOLD

The above section should have convinced you that BOLD-fMRI is still the method

of choice in several applications [89]. The method is well established and high SNR

is achieved. Variations of the order of 0.1 % in the signal measured are routinely

detected. Such sensitivity is desirable to study resting-state brain functions, a new

avenue in cognitive neuroscience. Moreover, BOLD-fMRI contains all the physiolog-

ical information we want, but in a very convoluted way [16]. We are very good at

measuring this signal. We only need to underpin the information contained in it.

These are the main reasons why a physiological interpretation of the BOLD signal is

still relevant today, twenty years after the first BOLD-fMRI measurements. Although

the technique has driven a revolution in neuroscience, the physiological basis of the

signal is still poorly understood, preventing the technique to be used at its full power.

1.6 Importance of NIRS

As mentioned before, NIRS is a portable technique and allows for continuous mon-

itoring. This opens the doors for specific clinical applications. A first example is

pain monitoring during surgical procedure [3]. As you might imagine, a quantita-

tive interpretation of the signal is imperative in this case. Another potential clinical

application is hemodynamic monitoring during epilepsy [115]. It is very difficult to

predict when patient will have seizure so continuous monitoring is a key advantage

of NIRS here. Moreover, seizures usually occur with a lot of motion of the subjects

head, requiring a method robust to motion artifact (another advantage of NIRS).
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Quantitative NIRS in this case would allow monitoring oxygenation of brain tissue

during seizures and indicate whether hypoxia is developing during the seizure.

1.7 Goal of the thesis

With these motivations established, the goals of this thesis are twofold. The first goal

is to improve the quantification of the NIRS signal by isolating the cor-

tical signal. The hypotheses are that state-space analysis combined short optode

separation will help removing contamination from superficial tissue and that multi-

modal NIRS with BOLD-fMRI will allow to quantify the contamination by pial veins

washout.

The second goal is to develop a validated framework that can predict BOLD-

fMRI signals from microscopic measurements of the underlying physiol-

ogy. The hypothesis is that combining Monte Carlo simulations with two-photon

microscopy measurements of vascular morphology and p02 during functional stimu-

lation will predict the fMRI response measured in vivo.

1.8 Overview of the thesis

This thesis consists of two parts. In the first part, we focus on near-infrared spec-

troscopy (NIRS). Chapter 2 introduces a state-space framework to remove superficial

physiological interference in NIRS data using short separation optode together with

Kalman filtering. In Chapter 3, we use this framework to study how the systemic

physiology spreads over the surface of the human head. We then improve our method

in Chapter 4 by modifying the optical probe to get short separation measurements

both at the source and the detector location. In Chapter 5, we combined NIRS with

BOLD-fMRI to quantify the contribution of pial vein washout in the NIRS signal.
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In the second part of the thesis, we move to microscopic optical imaging (multiphoton

microscopy and optical coherence tomography (OCT)) and try to model the BOLD-

fMRI signal with the best possible accuracy from the microscopic measurements. In

Chapter 6, we introduce a method to model the BOLD-fMRI signal with Monte Carlo

simulations over the microscopic measurements. Finally in Chapter 7, we study how

the use of OCT measurements can constrain the flow reconstruction in our modeling

framework.
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Chapter 2

State-space modeling for NIRS

This section was publisehd in:

Gagnon, L., Perdue, K., Greve, D.N., Goldenholz, D., Kaskhedikar, G. and Boas, D.A.

(2011). "Improved recovery of the hemodynamic response in diffuse optical imaging

using short optode separations and state-space modeling." NeuroImage 56(3): 1362-

1371.

In the present study, we combined small separation measurements and state-space

modeling for the estimation of the hemodynamic response and simultaneous global

interference cancellation. We developed both a static and a dynamic estimator. We

evaluated the performance of our algorithms using baseline data taken from 6 human

subjects at rest and by adding a synthetic hemodynamic response over the baseline

measurements. We finally compared our new methods with the adaptive filter [147]

and the standard method using no small SD separation measurement.
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2.1 Introduction

Diffuse optical imaging (DOI) is an experimental technique that uses near-infrared

spectroscopy (NIRS) to image biological tissue [138, 99, 47, 59, 63]. The domi-

nant chromophores in this spectrum are the two forms of hemoglobin: oxygenated

hemoglobin (HbO) and reduced hemoglobin (HbR). In the past 15 years, this tech-

nique has been used for the noninvasive measurement of the hemodynamic changes

associated with evoked brain activity [138, 63].

Compared with other existing functional imaging methods e.g., functional Mag-

netic Resonance Imaging (fMRI), Positron Emission Tomography (PET), Electroen-

cephalography (EEG), and Magnetoencephalography (MEG), the advantages of DOI

for studying brain function include good temporal resolution of the hemodynamic re-

sponse, measurement of both HbO and HbR, nonionizing radiation, portability, and

low cost. Disadvantages include modest spatial resolution and limited penetration

depth.

The sensitivity of NIRS to evoked brain activity is also reduced by systemic physio-

logical interference arising from cardiac activity, respiration, and other homeostatic

processes [98, 133, 105, 29]. These sources of interference are called global interference

or systemic interference. Part of the interference occurs both in the superficial layers

of the head (scalp and skull) and in the brain tissue itself. However, the back-reflection

geometry of the measurement makes NIRS significantly more sensitive to the super-

ficial layers. As such, the NIRS signal is often dominated by systemic interference

occurring in the skin and the skull.

Different methods have been used in the literature to remove the systemic interference

from DOI measurements. Low pass filtering is widely used in the literature, as it is

highly effective at removing cardiac oscillations [40, 74]. However, there is a signifi-

cant overlap between the frequency spectrum of the hemodynamic response to brain

activity and the spectrum of other physiological variations such as respiration, sponta-
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neous low frequency oscillations and very low frequency oscillations. Frequency-based

removal of these sources of interference can therefore result in large distortion and

inaccurate timing for the recovered brain activity signal. As such, more powerful

methods for global noise reduction have been developed. These include adaptive av-

erage waveform subtraction [49], subtraction of another NIRS source-detector (SD)

channel performed over a non-activated region of the brain [40], principal component

analysis [145, 41] and finally wavelet filtering [84, 94, 73, 85].

A recent development for removing global interference from NIRS measurements is

to use additional optodes in the activated region with small SD separations that are

sensitive to superficial layers only [117, 147, 148, 146, 136, 141, 51]. Making the as-

sumption that the signal collected in the superficial layers is dominated by systemic

physiology which is also dominant in the longer SD separation NIRS channel, those

additional measurements can be used as regressors to filter systemic interference from

the longer SD separations. Saager et al [116] used additional optodes and a linear

minimum mean square estimator (LMMSE) to partially remove the systemic interfer-

ence in the signal. In a second step, the evoked hemodynamic response was estimated

using a traditional block-average method over the different trials. The algorithm was

further refined by Zhang et al [147, 148, 146] to consider the non-stationary behavior

of the systemic interference. They used an adaptive filtering technique together with

additional small separation measurements to filter the systemic interference from the

raw signal and then performed the block-average technique to estimate the hemody-

namic response in a second step.

Although these methods greatly reduced global interference in NIRS data, the filtering

of the systemic interference and the estimation of the hemodynamic response were

performed in two steps, which might not be optimal. Previous studies have shown

that the simultaneous estimation of the hemodynamic response and removal of the

systemic interference using temporal basis functions [81, 1111 or auxiliary systemic

measurements [28] was possible using state-space modeling. Moreover, Diamond et

al proposed a way to quantify the accuracy of such filtering methods. Real NIRS
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data collected over the head of human subjects at rest were used to generate realistic

noise. A synthetic hemodynamic response was added over the real NIRS baseline time

course and the response was then recovered from this noisy data set. The recovered

response was then compared with the synthetic one used to generate the time course.

This method for evaluating reconstruction algorithms has been reproduced by other

groups [84, 94, 85].

In the present study, we combined small separation measurements and state-space

modeling for the estimation of the hemodynamic response and simultaneous global

interference cancellation. We developed both a static and a dynamic estimator. We

evaluated the performance of our algorithms using baseline data taken from 6 human

subjects at rest and by adding a synthetic hemodynamic response over the baseline

measurements. We finally compared our new methods with the adaptive filter [147]

and the standard method using no small SD separation measurement.

2.2 Methods

2.2.1 Experimental data

For this study, 6 healthy adult subjects were recruited. The Massachusetts General

Hospital Institutional Review Board approved the study and all subjects gave written

informed consent. Subjects were instructed to rest while simultaneous BOLD-fMRI

and NIRS data were collected. Three 6-minute long runs were collected for each

subject. Only the NIRS data was used in this study. The localization and the

geometry of the NIRS probe used are shown in Fig. 4-1 a) and b) respectively. Only

the two 1 cm SD separation channels and the 8 closest neighbor (3 cm SD separation)

channels were used in the analysis.

Changes in optical density for each SD pair were converted to changes in hemoglobin

concentrations using the Beer-Lambert relationship [19, 24, 7] and the SD distances
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Figure 2-1: a) Position of the probe over the head of the subjects b) Geometry of the
optical probe. Two different SD separations were used: 1 cm and 3 cm. The NIRS
channels used for the analysis are shown in red.

illustrated in Fig. 4-1 b). A pathlength correction factor of 6 and a partial volume

correction factor of 50 were used for all SD pairs [69, 70].

2.2.2 Synthetic hemodynamic response

To compare the performance of our two algorithms with existing algorithms, a syn-

thetic hemodynamic response was generated using a modified version of a three com-

partment biomechanical model [68, 66, 65]. Each parameter of the model was set

to the middle of its physiological range [68] which results in an HbO increase of 15
MM and an HbR decrease of 7 uM. The amplitude of this synthetic response was

of the same order as real motor responses on humans using NIRS and those spe-

cific pathlength and partial volume correction factors [70]. These synthetic HbO

and HbR responses were then added to the unfiltered concentration data with an

inter-stimulus interval taken randomly from a uniform distribution (10-35 s) for each

individual trial. Over the six-minute data series, we added either 10, 30 or 60 individ-

ual evoked responses. The resulting HbO and HbR time courses were then highpass

filtered at 0.01 Hz to remove any drifts and lowpass filtered at 1.25 Hz to remove the

instrument noise. The filter used was a 3 rd order Butterworth-type filter.

Four different methods were then used to recover the simulated hemodynamic re-
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sponse added to our baseline data. The first two were taken directly from literature

and consisted of the standard General Linear Model (GLM) without using a small SD

separation measurement and the adaptive filtering (AF) method developed by Zhang

et al [147]. The third one was a simultaneous static deconvolution and regression

and will be called the static estimator (SE) here for simplicity. The last one was a

dynamic Kalman filter estimator (KF).

2.2.3 Signal modeling

For all the methods used in this study, the discrete-time hemodynamic response h at

sample time n was reconstructed with a set of temporal basis functions

N.

h [n] =Z wibi [n] (2.1)
i=1

where bi [n] are normalized Gaussian functions with a standard deviation of 0.5 s and

their means separated by 0.5 s over the regression time as shown in Fig. 2-2 a). N"

is the number of Gaussian functions used to model the hemodynamic response and

was set to 15 in our work. Using this set, the noise-free simulated HbO response

was fit with a Pearson R 2 of 1.00 and a mean square error (MSE) of 9.2 x 10- 5 and

the noise-free simulated HbR response was fit with an R 2 of 1.00 and an MSE of

2.1 x 10-5. The MSE was lower for HbR only because the amplitude of the simulated

HbR response was lower. These fits are shown in Fig. 2-2 b). The weights for the

temporal bases wi were estimated using the four different methods described in the

following sections.

For the standard block average estimator, we modeled the concentration signal in the

3 cm separation channel y3 [n] by

00

y3 [n] = h [k] u [n - k]. (2.2)
k=-oo
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Figure 2-2: a) Temporal basis set used in the analysis. The finite impulse response
(FIR) of the temporal basis functions ranged from 0 to 8 s after the onset of the
simulated response. b) Noise-free simulated responses (dotted lines) overlapped with
the responses recovered with a least-square fit (continuous lines) using the temporal
basis set. The R2 and the MSE of the fit are indicated for both HbO and HbR.

u [n] is called the onset vector and is a binary vector taking the value 1 when n

corresponds to a time where the stimulation starts and 0 otherwise.

For our static simultaneous estimator and our dynamic Kalman filter simultaneous

estimator, we modeled the signal in the 3 cm separation channel y3 [n] by a linear

combination of the 1 cm separation signal yi [n] and the hemodynamic response h [n]

by
00 Na

k=-oo i=1

Na is the number of time points taken from the 1 cm separation channel to model

the superficial signal in the 3 cm separation channel. This value was set to 1 in our

work for all three estimators using short SD separation measurements but could be

any integer in principle. The ai's are the weights used to model the superficial signal

in the 3 cm separation channel from the linear combination of the 1 cm separation

signal. The states to be estimated by the static and the Kalman filter estimators were

the weights for the superficial contribution ai and the weights for the temporal bases

wi. All those weights were assumed stationary in the case of the static estimator, and
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time-varying in the case of the Kalman filter estimator.

The motivation for Eq. 4.2 is that the residual between the 3 cm channel and the

1 cm channel corresponds to the hemodynamic response of the brain. This is well

justified when the brain activation is detected only in the 3 cm separation channel

and when the systemic physiology pollutes both the 1 cm and the 3 cm separation

channels. It is a reasonable assumption for cognitive NIRS measurements performed

on an adult head. In this case, the hemodynamic response is expected to occur

only in the brain tissue and the 1 cm separation channel does not reach the cerebral

cortex, making the 1 cm measurement sensitive to scalp and skull fluctuations only.

This would also be justified for cognitive measurements on babies by reducing the

separation of the 1 cm signal to ensure that this channel remains insensitive to brain

hemodynamics. However, our assumption would be violated for specific stimuli (e.g.

the Valsalva maneuver) for which the hemodynamic response occurs more globally

across the head. Other scenarios that could be troublesome would be if the systemic

physiology occurs only in the brain tissue (e.g. an activation-like oscillation a few

seconds after the true stimulus response) or if the interference is phase-locked with

the stimulus. In this case, the systemic physiology could potentially be modeled by

our temporal basis set (overfitting).

2.2.4 Standard General Linear Model

For this first method, and only for this one, the 1 cm SD separation channels were

not used. The pre-filtered concentrations from the 3 cm SD separation were further

lowpass filtered at 0.5 Hz using a 3 rd order Butterworth filter. Re-expressing Eq. 2.2

in matrix form, we get

y3 = Uw (2.4)

where y 3 is simply the length N time course vector y3 [n]

] T
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The columns of U are the linear convolution of the onset vector u [n] with each

temporal basis function bi [n]

U= [u*b1[n] -.. u * bNw[] (2.6)

and w is the vector containing the weights for the temporal basis wi

]TW W ... w -(2.7)

The estimates of the weights ' are found by inverting Eq. 2.4 using the Moore-

Penrose pseudoinverse

* = (UTU)- UTy 3  (2.8)

and the hemodynamic response is finally reconstructed with the estimates of the

temporal basis weights zibi obtained from *.

When the GLM was used without any other estimator (i.e. not as the last step of

the adaptive filter or the Kalman filter), we included a 3 rd order polynomial drift as a

regressor. This procedure is used regularly in fMRI analysis. In this case, the matrix

U is expanded

G = U D (2.9)

where D is an Nt by 4 drift matrix given in the 2.6. The estimates of the weights *

are found by inverting

* = (GTG) 1 GTy 3. (2.10)

2.2.5 Adaptive filtering

The adaptive filtering technique was taken directly from [147]. Only the salient points

are outlined here. The HbO and the HbR responses were recovered independently

and the adaptive filter was used for both. The two pre-filtered concentration signals

at 1 cm (yi) and 3 cm (y3) were first normalized with respect to their respective
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standard deviation. This was to ensure that the standard deviation of the two signals

used in the computation were close 1 to accelerate the convergence of the algorithm

[147]. The output of the filter, e [n], is then given by

N.

e [n] = y 3 [n] - Wk,n Yi [In - k] (2.11)
k=O

where the coefficient of the filter, Wk,n, is updated via the Widrow-Hoff least mean

square algorithm [55]:

Wk,n = Wk,n_1 + 2/ie [In - 1]1 Y[In - k]. (2.12)

In our study, w was initialized at Wk,1 = [1 0 0 ... ]T and ft was set to 1x10- 4 as in [147].

After trying different values for Na, we identified Na = 1 as the value minimizing the

MSE between our simulated and recovered hemodynamic responses. The output e [n]

was then multiplied by the original standard deviation of y3 to rescale it back to its

original scale. The output of the filter was then further lowpass filtered at 0.5 Hz and

the hemodynamic response was finally estimated using the standard GLM method

(with no drift) by substituting Y3 by e in Eq. 2.8

* = (UTU)-1 UT e (2.13)

where e is simply the length Nt time course vector e [n]

e = e [1] ... e [N ] (2.14)

and again the hemodynamic response is finally reconstructed with the estimates of

the temporal basis weights tbi obtained from *.

33



2.2.6 Static estimator

Our static estimator is an improved version of the linear minimum mean square

estimator (LMMSE) developed by Saager et al [116, 117]. In their work, they used the

small separation signal and an LMMSE to estimate the contribution of the superficial

signal in the large separation signal. This superficial contamination was then removed

from the large separation signal and the hemodynamic response was then estimated

from the residual (large separation signal without the superficial contamination). In

our study, we simultaneously removed the contribution of the superficial signal in the

3 cm separation signal and estimated the hemodynamic response.

Eqs. 4.2 and 4.1 can be re-expressed in matrix form

Y3 = Ax (2.15)

where y3 is the vector representing the signal in the 3 cm channel and is given by Eq.

2.5, x is the concatenation of the wi's and ai's

]TX = WN, a, - aNa (2.16)

and A is the concatenation of the Nt by N, matrix U given by Eq. 4.7 and the Nt

by Na matrix Y

A = [U Y (2.17)

where

Y1 [1] 0 ...

Y= y1 [2 y1 [11 0 (2.18)

The first N, columns of A are the linear convolution of the onset vector u [n] with

each temporal basis function bi [n] and the last Na columns of A are simply the signal

from the 1 cm separation channel yi [n] delayed by one more sample in each column.

In order to compare the different estimators on the same footing, Na was set to 1 for
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all three estimators using short SD separations. A more explicit expression for A is

given in 2.6. The estimates of the weights k are found by inverting Eq. 2.15 using

the Moore-Penrose pseudoinverse

k = (AA) Ary 3  (2.19)

and the hemodynamic response is finally reconstructed with the estimates of the

temporal basis weights tbd obtained from k. This reconstructed response was further

lowpass filtered at 0.5 Hz.

2.2.7 Kalman filter estimator

For our dynamic Kalman filter estimator, Eqs. 4.2 and 4.1 need to be re-express in

state-space form:

x [n + 1] = Ix [n] + w [n] (2.20)

y3 [n] = C [n] x [n] + v [n] (2.21)

where w [n] and v [n] are the process and the measurement noise respectively. x [n]

is the sample n of x given by Eq. 4.6, I is an N, + Na by N + Na identity matrix

and C [n] is an N + Na by 1 vector whose entries correspond to the nth row of A in

Eq. 2.17. The estimate k [n] at each sample n is then computed using the Kalman

filter [77] followed by the Rauch-Tung-Striebel smoother [113]. The Kalman filter

recursions require initialization of the state vector estimate k [0] and estimated state

covariance P [0]. In our study, the initial state vector estimate k [0] was set to the

values obtained using our static estimator and the initial state covariance estimate

P [0] was set to an identity matrix with diagonal entries of 1x10- 1 for the temporal

basis states and 5x10-4 for the superficial contribution state. The Kalman filter

algorithm was run a first time to estimate the initial state covariance and then run a

second time. The initial covariance estimate for the second run was set to the final

covariance estimate of the first run. Running the filter twice makes the method less
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sensitive to the initial guess P [0]. Statistical covariance priors must also be specified

for the state process noise cov (w) = Q and the measurement noise cov (v) = R.

The process noise determines how big the states are allowed to vary at each time

step. If this value is small, the estimator will approach the static estimator. If

it is large, the state will be allowed to vary significantly over time. In this work,

the process noise covariance only contained nonzero terms on the diagonal elements.

Those diagonal terms were set to 2.5x10-6 for the temporal basis state and 5x10-6

for the superficial contribution states. This imbalance in state update noise was also

used by Diamond et al [28] and caused the functional response model to evolve more

slowly than the superficial contribution model. Practically, the measurement noise

determine how well we trust the measurements during the recovery procedure. In

our study, the measurement noise covariance was set to an identity matrix scaled by

5x10~2 . Different values have been tried for the process noise and the measurement

noise covariances. Changing the value of Q and R over two orders of magnitude

did not result in notable performance changes and we could have drawn all the same

conclusions presented in this paper using these alternative Q and R values. The

values for Q and R presented above were empirically determined to minimize the

MSE between the recovered and the simulated hemodynamic response. The algorithm

was then processed with the following prediction-correction recursion [46].

Since the state update matrix is the identity matrix in Eq. 4.4, the state vector x

and state covariance P are predicted with

k [nn - 1] =k I[n - 1In - 1] (2.22)

P [n~n - 1] = P [n - I1|n - 1] + Q.(2.23)

The Kalman gain K is then computed

K [n] = P [njn - 1] C [n]T (C [n] P [nrn - 1] C [n]T + R) (2.24)
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and the state vector x and state covariance P predictions are corrected with the most

recent measurements y3 [n]

:i [n~n] =k [n~n - 1] + Kn (y3 [n] -C [n] k [n~n - 1]) (2.25)

P [njn] = (I - K [n] C [n]) P [nIn - 1] . (2.26)

After the Kalman algorithm was applied twice, the Rauch-Tung-Striebel smoother

was applied in the backward direction. With the identity matrix as the state-update

matrix in Eq. 4.4, the algorithm is given by [56]:

k [nINt] = k [n~n] + P [n~n] P [n +1I|n]- (k [n + 1|Nt] - k [n + 11n]) . (2.27)

The complete time course of the estimated hemodynamic response h [n] was then

reconstructed for each sample time n using the final state estimates k [nINt] and the

temporal basis set contained in C [n]

h [n] = C [n] k [nNtI. (2.28)

This reconstructed hemodynamic response time course h [n] was further lowpass fil-

tered at 0.5 Hz and the standard GLM estimator (with no polynomial drift) was then

applied

= (UTU) -UTfi (2.29)

where U is the matrix defined in Eq. 4.7 and

h = h [1] ... h[Nt] (2.30)

to obtain the final weights zi used to reconstructed the final estimate of the hemo-

dynamic response. We observed that these last filtering and averaging steps further

improved the estimate of the hemodynamic response compared to reconstructing the

hemodynamic response from the final state estimates of the smoother.
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2.2.8 Statistical analysis

Only specific channels based on the following criteria were kept in the analysis. The

raw hemoglobin concentrations were bandpass filtered with a 3 rd order Butterworth-

type filter between 0.01 Hz and 1.25 Hz [148]. The Pearson correlation coefficient

R 2 between each 1 cm HbO channel and its 4 closest neighbor 3 cm HbO channels

(before adding the synthetic hemodynamic response) were then computed and the

SD pairs for which R 2 < 0.1 were discarded for the analysis. The mean R2 across

the selected channels was 0.47 for HbO and 0.22 for HbR. We also computed the

Pearson correlation coefficient after adding the synthetic hemodynamic response and

similar results were obtained. The mean differences between the R2 's computed be-

fore and after adding the synthetic response was 0.01 for HbO and 0.003 for HbR,

with the highest value obtained before adding the synthetic response to the real data.

Those small differences emphasize the fact that the signals were dominated by sys-

temic physiology in our simulations. This result also suggests that no resting state

measurement is required to select the channels which would benefit from the small

separation measurement since the correlation can be estimated from the time course

containing brain activation. Zhang et al [146] showed that the adaptive filter method

was working well when the correlation between the short and the long separation

channel for HbO was greater than 0.6. We used 0.1 in this work to include more

channels in the analysis and to show that our state-space method was working well

when the initial correlation was lower than 0.5. Using this criterion, 94 out of the

144 possible channels (6 subjects x 3 runs x 8 channels) were kept for further anal-

ysis. This represented 65 % of the original data set. The numbers of channels kept

for each of the subjects were 16, 14, 13, 17, 19 and 15 respectively. The signal to

noise ratio (SNR) for each channel was computed as the amplitude of the simulated

hemodynamic response divided by the standard deviation of the time course of the

signal. The mean SNR across the selected channels was 0.45 for HbO and 0.38 for

HbR.
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We used two different metrics to compare the performance of the different algorithms.

The first one was the Pearson correlation coefficient R2 between the true synthetic

hemodynamic response and the recovered response given by each algorithm. This

metric was used to access the level of oscillation in the recovered hemodynamic re-

sponse created by the global interference not removed by the algorithms and still

contaminating the signal. Since the R 2 coefficient is scale invariant, it could not give

any information about the accuracy of the amplitude of the recovered hemodynamic

response. To overcome this problem, we also used the mean square error (MSE) as a

metric to compare the performance of the different algorithms.

Since the random position of the trials across the same time course can greatly affect

the accuracy of the recovered hemodynamic response, we repeated the procedure 30

times with 30 different random onset time instances for each of the 94 selected chan-

nels. The mean and the standard deviation of the 2820 R 2 coefficients (94 channels

x 30 instances) for each algorithm were then computed after applying the Fisher

transformation

z = tanh-1 (R 2 ) (2.31)

and the results were then inverse transformed. The mean and the standard deviation

of the 2820 MSEs were also computed. This procedure was repeated independently

for 10, 30 and 60 trials in each six-minute data series. The different algorithms were

compared together by computing two-tailed paired t-tests on their MSEs and Fisher

transformed R 2 coefficients.

2.3 Results

Typical time courses of the recovered hemodynamic response overlapped with the

true simulated response are shown in Fig. 2-3 a) to d) for the four algorithms tested.

The SNR for this particular simulation was 0.33 for HbO and 0.81 for HbR. The R2 's

and the MSEs for HbO and HbR are shown in the legend of each individual panel.
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Those individual results were obtained from a single simulation with 10 trials. The

time courses for this specific simulation are shown in panel e) for HbO and f) for HbR.

Both the initial 1 cm channel and the 3 cm channel containing the added synthetic

hemodynamic responses are shown as well as the position of the 10 individual onset

times. The R2 between the initial 1 cm channel and the initial 3 cm channel (no

response added) is also shown in the legend of panel e) and f) for HbO and HbR

respectively. All concentrations are expressed in micromolar (pM) units.
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Figure 2-3: a) to d) Typical time courses of the recovered hemodynamic responses
overlapped with the simulated hemodynamic response. For these specific traces, the
SNR was 0.33 for HbO and 0.81 for HbR. R2 coefficients and MSEs between the
recovered (circles) and the simulated (dashed) response are shown in the legends.
a) Kalman filter estimator b) Static estimator c) Adaptive filter d) Standard GLM
with 3rd order drift. e) HbO and f) HbR time courses of the 3 cm channel (with
synthetic responses added) overlapped with the 1 cm channel. The positions of the
onset time are also shown and the correlation coefficients between the 1 cm and the
3 cm channels (before adding synthetic responses) are indicated in parenthesis.

The summary R2 statistics over all subjects, all channels and all instances are shown
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in a bar graph in Fig. 2-4 for both HbO and HbR. These values represent the Pearson

R 2 coefficients computed between the recovered and the simulated hemodynamic

responses. The bars represent the mean and the error bars represent the standard

deviation. Both the mean and the standard deviation were computed on the Fisher

transformed values and then inverse transformed. Two-tailed paired t-tests on the

Fisher transformed values were performed between all the different estimators and

statistical significance at the level p < 0.05 is illustrated by a black line over the bars

for which a significant difference was observed. In our three simulations using 10,

30 and 60 trials respectively, the R2's for HbO and HbR obtained using our Kalman

filter dynamic estimator were significantly higher (p < 0.05) than the ones obtained

using the adaptive filter. Moreover, the R2 's obtained were higher with the Kalman

filter than with the static estimator. These differences were significant (p < 0.05)

except in our 10 trial simulation for HbO.

Similarly, the summary MSE statistics over all subjects, all channels and all instances

are shown in Fig. 2-5. These values represent the mean square error computed be-

tween the recovered and the simulated hemodynamic responses. The bars represent

the mean while the error bars represent the standard deviation. Two-tailed paired

t-tests were performed between all the different estimators and statistical significance

at the level p < 0.05 is illustrated by a black line over the bars for which a significant

difference was observed. The MSEs obtained for HbO and HbR in our three simu-

lations (10, 30 and 60 trials) were significantly lower (p < 0.05) with our Kalman

filter estimator than with the adaptive filter. Futhermore, the MSEs obtained with

the Kalman filter were also lower (p < 0.05) than the ones obtained with the static

estimator for both HbO and HbR in our three simulations.

Table 2.1 summarizes the statistical analysis over all the subjects, all the channels

and all the instances for both HbO and HbR and for the simulations with 10, 30 and

60 trials. Each algorithm was compared to every other. The values shown are the

p-values obtained from a two-tailed paired t-test. Statistical differences at the level

p < 0.05 are indicated with bold script. These p-values were computed from the data
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Figure 2-4: Pearson R2 coefficients between simulated and recovered hemodynamic
responses. The bars represent the means and the error bars represent standard devia-
tions computed accross all subjects, all channels and all intances. The means and the
standard deviation were computed in the Fisher space and then inverse transformed.
Two-tailed paired t-tests were performed on the Fisher transformed R2 's. Statistical
differences (p < 0.05) between the four algorithms are indicated by black horizontal
lines over the corresponding bars.
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Figure 2-5: Mean squared errors (MSE) between simulated and recovered hemody-
namic responses. The bars represent the means and the error bars represent the
standard deviations computed accross all subjects, all channels and all instances.
Two-tailed paired t-tests were performed between the four estimators and statisti-
cal differences at the level p < 0.05 are indicated by black horizontal lines over the
corresponding bars.
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summarized in the bar graphs shown in Figs. 2-4 and 2-5.

Table 2.1: Cross-comparison of the different algorithms. P-values for the two-tailed
paired t-tests accross all subjects, all channels and all intances are shown. For the R2

coefficients, the tests were performed on the Fisher transformed values. Bold face
indicates significant difference at the p < 0.05 level. KF: Kalman filter estimator, SE:
Static estimator, AF: Adaptive filter, GLM: Standard GLM with 3 d order drift.

10 trials 30 trials 60 trials
KF SE AF KF SE AF KF SE AF

R2 HbO
SE 6e-02 - - 3e-03 - - 2e-07 - -

AF 2e-07 6e-06 - le-03 5e-01 - 4e-04 2e-03 -

GLM 3e-15 2e-13 4e-07 8e-16 2e-12 4e-13 6e-15 le-10 5e-14

R2 HbR
SE 5e-05 - - 2e-09 - - le-08 - -

AF 2e-07 2e-03 - 3e-05 5e-03 - 4e-02 6e-10 -

GLM 5e-04 2e-01 4e-01 7e-04 3e-01 4e-02 le-04 6e-01 7e-04

MSE HbO
SE 4e-06 - - 3e-05 - - 4e-06 - -

AF 2e-05 7e-03 - le-06 7e-01 - 2e-05 6e-02 -

GLM 2e-12 2e-09 5e-05 le-13 7e-11 le-11 4e-10 3e-08 2e-09

MSE HbR
SE 2e-05 - - 4e-05 - - le-04 - -

AF 3e-05 2e-01 - 2e-04 4e-03 - 7e-03 7e-05 -

GLM 6e-08 3e-02 le-02 3e-07 9e-01 9e-02 4e-06 le+00 5e-04

2.4 Discussion

2.4.1 Simultaneous filtering and estimation

One of the salient features of our Kalman filter estimator is that it filters the global

interference and simultaneously estimates the hemodynamic response. This feature

resulted in a more accurate recovery of the hemodynamic response with our Kalman

filter estimator compared to the adaptive filter, for which the filtering and the es-

timation were performed in two distinct steps. Independent regression of the small

separation channel potentially removes contributions of the hemodynamic response in

the signal which lead to an underestimation of the hemodynamic response thereafter.
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Our Kalman filter estimator avoids this pitfall. Compared to the adaptive filter, our

Kalman filter estimator showed significant improvements at the p < 0.05 level in both

HbO and HbR recoveries for our 10, 30 and 60 trial simulations. Those improvements

were observed in both Pearson R 2 and MSE metrics.

2.4.2 Dynamic versus static estimation

The systemic interference present in NIRS data is non-stationary. This has been nicely

shown by Lina et al [84] who performed a detailed wavelet analysis of resting NIRS

data with blood pressure, respiratory and heart rate data acquired simultaneously

on awake human subjects. The amplitude of the systemic physiology measured by

the 1 cm and the 3 cm channel depends on the respective pathlength of the light for

each channel. Systemic physiology could alter the optical properties of the tissue over

time. As a result, a sustained change in absorption could modify the pathlength of

the light independently in the 1 cm and the 3 cm channel, modifying at the same

time the relative amplitude of the systemic physiology detected in each channel.

This feature of the systemic interference explains why our Kalman filter, which is a

dynamic estimator, performed better than the static estimator. Using our Kalman

filter estimator, improvements in the HbO and HbR recovery were observed in both

the Pearson R 2 and the MSE metrics compared to the static estimator. All these

improvements were significant at the p < 0.05 level except for the HbO Pearson R 2

improvement which was not significant in our 10 trial simulation.

2.4.3 HbO versus HbR

In their wavelet analysis, Lina et al [84] also showed that the HbO time courses

were more contaminated by global interference than the HbR time courses. As such,

the correlation between the 1 cm and 3 cm channel should be higher for HbO than

HbR, and filtering methods using 1 cm SD separations should work better for HbO
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than for HbR. In our data, the mean initial Pearson R2 correlation between the 1

cm and 3 cm signals were higher for HbO than HbR (0.47 vs 0.22). Comparing

our Kalman filter estimator with the standard block average estimator, the p-values

obtained in the t-tests performed on the Fisher transformed Pearson R 2's and the

MSEs were at least five orders of magnitude lower for HbO than HbR. This indicates

that the improvements observed with our Kalman filter were more prominent for HbO

than HbR. This better performance in the recovery of HbO over HbR using a small

separation method was also reported by Zhang et al [146] using their adaptive filter.

2.4.4 Impact of initial correlation

In the case where the systemic physiology present in the 3 cm separation did not

correlate with the systemic physiology present in the 1 cm channel, the performance

of the Kalman filter was similar to the standard GLM. In this case, the model cannot

reproduce the data and the ai coefficients in Eq. 4.2 converge to zero. As such, the

wi's estimated by the Kalman filter are very close to the ones obtained using the

GLM. An important point is that in the case of low initial R2 coefficients (0.1 <

R2 < 0.2), taking into account the 1 cm channel with the Kalman filter did not

decrease the performance of the recovery compared to the GLM. On the other hand,

the performance of the adaptive filter for (0.1 < initial R 2 < 0.2) was worst than

the GLM. This counter-performance of the adaptive filter for poor initial correlation

between the short and the long channel was also reported by Zhang et al [146]. These

findings suggest that the Kalman filter can be used even if the correlation between

the 1 cm and the 3 cm channel is low as opposed to the adaptive filter. In the worst

case, the Kalman filter will be as good as the standard GLM. However, the higher

the initial correlation between the 1 cm and the 3 cm channel is, the more significant

is the improvement using a small separation measurement. This is illustrated by

the larger improvement obtained for HbO than HbR when using a small separation

measurement together with our Kalman filter.
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2.4.5 Technical notes

The MSEs obtained in our simulations and presented in Fig. 2-5 were lower for HbR

than HbO. This occurred because the amplitude of the simulated HbR response was

lower than the simulated HbO response which resulted in lower MSEs for HbR. This

is illustrated for noise-free data in Fig. 2-2b.

For all the results presented in this paper, a single time point was taken from the 1

cm channel to regress the 3 cm channel. In practice, this value could be any integer.

A simple phase shift (delay) between the 3 cm and 1 cm channel would be taken into

account by using multiple time points from the 1 cm. In this case, all the a's in Eq.

4.2 would converge to zero except for one a at the value of i corresponding to the

shift between the two signals in terms of number of sample points. Different values for

Na were tested during our simulations. With the adaptive filter, we obtained better

results using a single point than using 100 points as in Zhang et al [147]. Using

100 points results in overfitting the signal which removes more of the hemodynamic

response contribution than using a single point. This is another pitfall of the non-

simultaneous recovery and filtering feature of the adaptive filter which is avoided with

our Kalman filter. Finally, we did not observe any improvement when using multiple

points with our Kalman filter, suggesting that no delays were present in our data

between the 1 cm and the 3 cm channel.

The Gaussian temporal basis functions used in this work allow us to model different

hemodynamic responses with different shapes and components. This includes a po-

tential initial dip and post-stimulus undershoot, responses with a double bump and

negative responses. It is also easy to use additional Gaussian functions to extend this

method for longer stimuli, making the temporal basis set used in the present work

very general and less restrictive. However, as stated in section 2.2.3, the drawback

for using a more general set is the potential overfitting of phase-locked systemic phys-

iology. This could be avoided using a more restrictive temporal basis set such as a

gamma-variant function and its derivatives [67, 1, 64, 48], and at the same time could
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potentially reduce the number of parameters to estimate.

We tested different values for the separation between the basis and also different values

for the width of the Gaussians. The values of 0.5 second for both the separation and

the width presented in this paper resulted in the lowest MSEs between the recovered

and the simulated responses and highest R 2 's. The separation between our temporal

basis Gaussians and their widths was three times lower than the values used by

Diamond et al [28].

In order to compare the four methods used in this work on the same footing, we used

temporal basis functions for each estimator. For the standard GLM estimator, the

adaptive filter and the Kalman filter, we have also tried to replace the final step of

using the GLM with a temporal basis set by a simple block average without using

any temporal prior. For all these three estimators, using temporal basis functions

in the final step further improved the recovery of both HbO and HbR. The MSEs

between the recovered and the simulated hemodynamic response were lower when

temporal basis were used than when a simple block average without temporal basis

was applied. Similarly, the R2 's computed between the recovered and the simulated

responses were higher when temporal basis were used in the final block average step.

This result raises the importance of using temporal priors to reduce the dimensionality

of the estimation problem.

As stated in section 2.2.7, changing the state process noise and the measurement noise

priors over two orders of magnitude did not affect the performance of our Kalman esti-

mator. For HbO, no differences could be observed (two-tailed paired t-test, p < 0.05)

between the MSEs recovered using values for the process noise or the measurement

noise ten times lower or higher than the ones presented in section 2.2.7. For HbR,

small differences in the MSEs were observed but these results did not change any

conclusions drawn in this paper. The MSEs recovered with our Kalman filter in this

case were still the lowest of the four estimators.
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2.4.6 Future directions

As mentioned in Zhang et al [146], an important question is whether an additional

short separation optode is required for each longer separation optode or whether a

single one is sufficient. Although the systemic interference is thought to be global in

the brain, it might be reflected differently in the NIRS data collected over different

regions of the head. Sources of variation include blood vessel size which might affect

the amplitude of the recovered response but also blood vessel length and geometry

which might give rise to phase mismatches between different NIRS channels. Studies

using multiple small SD separation optodes at different locations over the head should

be performed in the future to address this question.

2.5 Summary

In summary, we filtered the global interference present in NIRS data by using addi-

tional small separation optodes and we simultaneously estimated the hemodynamic

response using a dynamic algorithm. Our dynamic Kalman filter performed bet-

ter than the traditional adaptive filter, the static estimator and the standard block

average estimator for both HbO and HbR recovery. These results were consistent

with the fact that dynamic estimation better captures the non-stationary behavior

of the systemic interferences in NIRS and that the simultaneous filtering and estima-

tion prevents underestimation of the hemodynamic response. The algorithm is easily

implementable and suitable for a wide range of NIRS studies.
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2.6 Appendix: Design matrix

The explicit expression for D in Eq. 2.9 is given by

2/Ne

3/NeNt Ni

1L3/IN3
23N

31/t3

33Nt3N

The dimension of the matrix D is N, by 4. Each column is normalized by its highest

value to keep the matrix G well conditioned and to avoid numerical errors during the

inversion in Eq.2.10.

The explicit expression for A in Eq. 2.17 is given by

bN. [1]

... bN. [2]

... bN. [Nb]

0

0

... bN. [1]
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0

y1 1
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0

0
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Nb is the length of each temporal basis function and was 80 in our work due to the

10 Hz temporal resolution and 8 s FIR for our temporal basis functions. The vertical
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dimension of matrix A corresponds to Nt, the total number of time points in the

entire time course. The number of copies of the temporal basis functions corresponds

to the number of trials (or stimuli) in the specific time course (i.e. if the run contained

10 trials, then 10 copies of the temporal basis set will appear in the corresponding A

matrix).
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Chapter 3

Impact of the short channel

location

This section was published in:

Gagnon, L., Cooper, R. J., Yucel, M. A., Perdue, K., Greve, D. N., and Boas, D. A.

(2011). "Short separation channel location impacts the performance of short channel

regression in NIRS." NeuroImage 59: 2518-2528

The main contribution of this chapter is to quantify the performance of the short

separation method as a function of the relative distance between 3 cm NIRS channels

containing the brain signal and 1 cm channels used as a regressors. We investigated

this relationship with both simulations and real functional data. NIRS measurements

including several short separation channels spread across the probe were acquired on

6 human subjects. The simulations were performed by adding a synthetic hemo-

dynamic response to the resting-state NIRS data. NIRS signals were also collected

during a series of finger tapping blocks for each of the 6 subjects. In both cases, the

performance of the short separation regression was characterized for different short

SD regressors located at different distances from the standard 3 cm channel.
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3.1 Introduction

Over the past 15 years, Near-Infrared Spectroscopy (NIRS) [138, 99, 47, 59, 63] has

emerged as a complement to functional Magnetic Resonance Imaging (fMRI) for

mapping the hemodynamic response associated with cerebral activity. NIRS non-

invasively measures the temporal variations of the two dominant chromophores in the

near-infrared window: oxygenated hemoglobin (HbO) and deoxygenated or reduced

hemoglobin (HbR).

The advantages of NIRS for the investigation of brain activity include the measure-

ment of both HbO and HbR concentrations, its low cost, and its portability. The

portability of NIRS enables long-term monitoring of the hemodynamic reponse as-

sociated with, for instance, epilectic activity at the bedside [115]. Disadvantages of

NIRS include modest spatial resolution of the order of one to three centimeters and

limited penetration depth [7].

A common problem with NIRS recordings is the presence of strong physiology-based

systemic interference in the signal which reduces the accuracy of NIRS for detecting

brain activation. This interference arises from cardiac activity, respiration and other

homeostatic processes [98, 133, 29, 105]. The contribution of this interference in the

NIRS signal is amplified because the light is both introduced and collected at the

surface of the scalp. This back-reflection geometry makes NIRS very sensitive to the

superficial layers of the head which contain no brain signal but exhibit strong systemic

fluctuations. As such, the NIRS signal is often dominated by systemic interference

occurring in the superficial layers of the head including the scalp and the skull.

Several methods have been described in the literature to remove the systemic in-

terference from NIRS measurements. Some post-processing algorithms include low

pass filtering [40, 74], principal component analysis [145, 41] and wavelet filtering

[84, 94, 73, 85]. Multi-distance NIRS measurements with layered models and path

length weighted methods have also being investigated [136, 137, 141]. Other methods

53



include the subtraction of a NIRS channel acquired in a non-activated region of the

brain from the signal of interest to reduce the systemic interference [40].

A more refined version of this method is to simultaneously collect additional NIRS

measurements using short source-detector (SD) separation channels (generally shorter

than 1 cm), which are sensitive to superficial layers only [116]. Assuming that the

signal collected with these additional short separation measurements is dominated by

the same systemic interference present in the longer SD channels, the small separation

signals can be used as regressors to filter the systemic interference from the longer

SD measurements. Several algorithms have been developed to perform the regression

of the small separation measurements. These include linear minimum mean square

estimation (LMMSE) [116, 117, 51, 118], adaptive filtering [147, 148, 146] and state-

space modeling with Kalman filter estimation [44].

An important question which was not addressed in these previous papers is the impact

that the relative location of the short and long SD channels has on the performance of

the short separation method. If good performance is obtained using a short separation

channel located far away from the standard long SD channel, then a single short

separation channel can be used as a regressor for all longer SD channels on the probe.

On the other hand, the performance of the short separation method potentially worsen

as the relative distance between the short and the long SD channel increases. In this

case several short separation channels would be required and only those closest to the

long SD channels would be suitable for regression.

The main contribution of this paper is to quantify the performance of the short sepa-

ration method as a function of the relative distance between long SD NIRS channels

(3 cm) containing the brain signal and short separation (1 cm) channels used as re-

gressors. We investigated this relationship with both simulations and real functional

data. NIRS measurements including several short separation channels spread across

the probe were acquired on 6 human subjects. The simulations were performed by

adding a synthetic hemodynamic response to the resting-state NIRS data. NIRS
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signals were also collected during a series of finger tapping blocks for each of the

6 subjects. In both cases, the performance of the short separation regression was

characterized for different short SD regressors located at different distances from the

standard 3 cm channel.

3.2 Methods

3.2.1 Experimental data

For this study, 6 healthy adult subjects were recruited. The Massachusetts General

Hospital Institutional Review Board approved the study and all subjects gave written

informed consent. Data were collected using a TechEn CW6 system operating at 690

and 830 nm. The NIRS probe contained 5 sources and 12 detectors as shown in Fig.

4-la. This source-detector geometry resulted in 14 long SD measurements (3 cm)

and 7 short SD measurements (1 cm). A set of 200 pm-core fibers was used for the

short separation detector optodes to avoid saturation of the photodiode. These fibers

are illustrated in orange in Fig. 4-1. An alternative to avoid photodiode saturation

could be the use of standard NIRS fibers with optical filters at the tip of the probe

to attenuate light intensity. The probe was secured over the left motor region of

each subject as illustrated in Fig. 4-1b. One of the short separation measurements

was acquired over the forehead. In this probe, the relative distances center-to-center

between the short and the long channels take the values 1.4, 1.7, 2.4, 3.3, 4.2, 5.2 or

6.2 cm. Examples are given for each case in Fig. 4-1c. The forehead short separation

channel was located more than 10 cm away from any 3 cm channel.

During the experiment, subjects were sitting in a comfortable chair in front of a

computer screen with a black background. The functional runs were divided as shown

in Fig. 3-2. Each run lasted 390 seconds and contained six blocks of 30 s finger

tapping interleaved with 30 s resting blocks. Three functional runs were acquired for
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Figure 3-1: (A) Geometry of the optical probe. Two different SD separations were
used: 1 cm and 3 cm. (B) Location of the probe on the subjects. The probe was
secured over the motor region. (C) Examples of short and long channel pairs. With
this probe arrangement, the possible relative distances between the short and the
long SD channels were 1.4, 1.7, 2.5, 3.3, 4.2, 5.2 and 6.2 cm.
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each subject. During the resting blocks, a small 0.5-by-0.5 cm white square located at

the middle of the screen appeared and the subjects were asked to fixate on this square.

During the finger tapping blocks, the instruction "tap your fingers" was displayed in

white characters on the computer screen using the Psychophysics toolbox in Matlab

[11]. At that time, the subjects were asked to touch their right thumb with each of the

fingers of their right hand alternately at a rate of 3 Hz. Following the three functional

runs, three baseline runs of 5 minutes each were acquired. During the baseline runs,

the subjects were asked to simply close their eyes and remain still.

30 sec +---+ 30 sec
+ Block +--+ Block 2 ... Block 6 30sec

t=0 s t=390s

Figure 3-2: Overview of the finger tapping protocol. A run consisted of 6 blocks of
30 seconds of finger tapping interleaved with 30 seconds of rest. Each runs started
and ended with a 30 second resting period. 3 functional runs were acquired for each
of the 6 subjects.

3.2.2 Data processing

An overview of the procedure is shown in Fig. 3-3. Both the short and long SD

measurements were bandpass filtered at 0.01-1.25 Hz. Even though the data will be

further low pass filtered at 0.5 Hz in the processing stream, it is important to keep the

0.5-1.25 Hz frequency band here, since most of the cardiac oscillations are contained in

this frequency band. These cardiac oscillations are strongly present in both the short

and the long SD measurements and this increases the baseline correlation between the

short and the long separation channel. These cardiac oscillations guide the dynamic

estimation of the superficial contamination to more accurately estimate the HRF. As

weve shown recently [44], prefiltering the cardiac oscillations reduces the performance

of the dynamic estimation and results in a poorer estimate of the HRF. For both the

simulations and the real functional data analysis, the Kalman filter algorithm was used

to regress the short separation measurement and recover the hemodynamic response
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simultaneously. This algorithm was described in detail previously [44] and only the

salient points are reviewed here.

Long separation
NIRS data

(HbO and HbR)

Brain +
signals

Bandpass
filtering

0.01-1.25 Hz

Temporal basis
functions

O.5s

Short separation
NIRS data

(HbO and HbR)

superfi

Kalman filter

Smoother

cial Superficial signal

Bandpass
filtering

0.01-1.25 Hz

Ii
Brain hemodynamic
time course

Lowpass
filtering
0.5 Hz

GLM
or

block-average

HRF estimate

Figure 3-3: Schematic of the NIRS data analysis. The NIRS data from both the
1 cm and the 3 cm separation channels were first converted to HbO and HbR time

courses and bandpass filtered. HbO and HbR were analyzed separately. The 1 cm

and 3 cm bandpass time courses were passed to the Kalman algorithm [44] and then

further lowpass filtered. The HRF was finally estimated using the GLM or a standard

block-average.

The hemodynamic response was modeled by

N.

h [n] = wibi [n].
i= 1

(3.1)
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where bi [n] are normalized Gaussian functions with a standard deviation of 0.5 s

and their means separated by 0.5 s. N, is the number of Gaussian functions used

to model the hemodynamic response and was set to 15 for our simulations (section

3.2.3) and 79 for our finger tapping data to recover the HRF over 0-8 sec and 0-40

sec respectively. The signal in the 3 cm separation channel y3 [n] was modelled by a

linear combination of the 1 cm separation signal yi [n] and the brain response Yb [n].

The expression for the 3 cm signal is given by

Y3 [n] = Yb [n] + a yi [n] (3.2)

with

Yb [n]= S h [k] u [n - k]. (3.3)
k=-oo

and where u [n] is the onset vector which is a binary vector taking the value 1 when

n corresponds to a time when the stimulus was presented and 0 otherwise. It is to

note that u [n] is equal to 1 only at the onset of the stimulus and not throughout the

duration of the stimulus.

The variable a is the dynamic weight used to model the superficial signal in the 3

cm separation channel as a linear combination of the short separation signal. Only a

single time delay was taken from the short separation channel to model the superficial

signal in the 3 cm channel since this has been shown to result in a better performance

in our previous paper [44]. The states to be estimated by the Kalman filter were the

weight of the superficial contribution a and the weights of the temporal bases wi. All

these weights were assumed to be time-varying. Eqs. (4.1), (4.2) and (4.3) can be

re-written in state-space form:

x [n + 1] = Ix [n] + w [n] (3.4)

Y3 [n] = C [n] x [n] + v [n] (3.5)

where w [n] and v [n] are the process and the measurement noise respectively. x [n]
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is the nth instance of x given by

]TX= w, . .. wN. a 1 36

The quantity I is an Nw + 1 by Nw + 1 identity matrix and C [n] is a 1 by Nw + 1

vector given by

C [n]= u* bi [n] ... u* bN, [n] Yj[n] ] (3.7)

where "*" denotes the convolution operator. The estimate k [n] at each sample n

is then computed using the Kalman filter [771 followed by the Rauch-Tung-Striebel

smoother [113].

The convergence of the Kalman filter depends on the initial estimate of the state

vector :Z[0]. To overcome this problem, x[0] was set to the values obtained using

a static least-squares estimator as in [44] to ensure a fast convergence. Moreover,

to overcome the problem of selecting a good initial guess for the state covariance

estimate P [0], the Kalman filter algorithm was run twice and the initial covariance

estimate for the second run was set to the final covariance estimate of the first run.

This process makes the performance of the filter almost insensitive to the initial

covariance estimate. For the first pass of the Kalman filter, we set P [01 to an identity

matrix with diagonal entries of 1x10- 1 for the temporal basis states and 5x10-4 for

the superficial contribution state. The process noise covariance Q only contained

nonzero terms on the diagonal elements. Those diagonal terms were set to 2.5x10-6

for the temporal basis states and 5x10- 6 for the superficial contribution state. The

measurement noise covariance R was set to an identity matrix scaled by 5x10 2 .

These values were extensively studied in our previous paper [44] and multiplying

or dividing these values by factor of 10 did not significantly affect the performance

of our method. The Kalman filter algorithm was then processed with the following

prediction-correction recursion [46]:
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: [njn- 1] = k[n- l|n- 11 (3.8)

N [nln - 1] =PN[n - 1|n - 1] + Q. (3.9)

K [n] = P [nn - 1] C [n]f (C [n] P [nIn - 1] C [n]T + R) (3.10)

k [nln] = i [n~n - 11 + K, (y3 [n] - C [n] fc [nIn - 11) (3.11)

P [nln] = (I - K [n] C [n]) P [nIn - 1]. (3.12)

After the Kalman algorithm was applied twice, the Rauch-Tung-Striebel smoother

was applied in the backward direction [561:

k [n!Nt] = k [nln + P [nln] P [n + ln]V (k[n + I|Nt] - k[n + 11n]) (3.13)

with N the number of time points in the data. The complete time course of the

filtered brain signal Yb [n] containing the estimated hemodynamic response h [n] was

then reconstructed for each sample time n using the first N, final state estimates

ib = [Wi ... WNW,]T and the temporal basis set contained in C [n]

Yb [n] = C [n] kb [nlNt] . (3.14)

This reconstructed filtered brain signal time course jb [n] was further low pass filtered

at 0.5 Hz to remove any cardiac fluctuations potentially present in the time course

and the final estimate of the hemodynamic response h [n] was obtained either by

applying a standard General Linear Model (GLM) procedure (without any cosine

bases or short separation regressor) containing the same temporal basis function as

in Eq. (4.1) or by block-averaging Yb [n]. More details can be found in our previous
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paper [44].

3.2.3 Simulations

For each baseline measurement, the changes in optical density were converted to

changes in hemoglobin concentrations using the modified Beer-Lambert relationship

[19, 24, 7]. A pathlength correction factor of 6 and a partial volume correction

factor of 50 were applied [69, 70]. The variance in all 252 (6 subjects x 3 runs x

14 pairs) baseline HbO and HbR time courses from the 3 cm measurements were

then computed. To ensure a uniform distribution of the noise in our simulations,

only the time courses showing a variance below 25 yIM 2 were kept in the analysis,

corresponding to 28.2 % of the data (71 of the 252 baseline time courses). We have

also tested and confirmed that our method was working for higher levels of noise.

Due to the non uniform level of noise across the probe, this threshold of 25 piM 2 was

required in order to compare all distances on equal footing.

Ten individual evoked responses were added over all 71 selected 3 cm baseline mea-

surements at random onset times with an inter-stimulus interval taken randomly from

a uniform distribution (10-30 sec). This procedure was repeated 30 times for each

baseline measurement to create 30 simulated time courses with 30 different onset

times and ensure reproducible averaged results. The duration of the synthetic re-

sponse was 8 seconds. The HbO time course increased by 15 MM at the peak while

the HbR time course decreased by 7 pM. The synthetic hemodynamic response was

the same used in our previous paper [44]. The resulting 2130 time courses (71 time

courses x 30 simulated runs) were then bandpass filtered (0.01-1.25 Hz) and passed to

the Kalman filter algorithm (Fig. 3-3) using each of the seven short separation (1 cm)

measurements available as a regressor. The HRF was also recovered using a standard

GLM with a set of cosine basis with 64 s period cutoff [42] for comparison (no short

separation used). This resulted in 17,040 estimated HRFs (2130 time courses x 8

regressors (7 short separations + 1 standard GLM with cosine basis set)). The HbO
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and HbR responses were recovered independently. For each 1 cm-3 cm combination,

the baseline R 2 coefficient before adding the synthetic HRF to the 3 cm channel was

computed.

For each short separation used, the relative center-to-center distance between the

3 cm and the short-separation channel was computed. With the probe shown in Fig.

4-la, the possible relative distances were 1.4, 1.7, 2.4, 3.3, 4.2, 5.2 or 6.2 cm as well

as > 10 cm for the forehead channel and are illustrated in Fig. 4-1c.

The quality of each recovered HRF was quantified by three different metrics: (1) the

Pearson correlation coefficient R2 between the true synthetic HRF (tHRF) and the

recovered HRF (rHRF), (2) the mean square error (MSE) between tHRF and rHRF

and (3) the Contrast-to-noise ratio (CNR) defined as the amplitude of rHRF divided

by the root-mean-square (RMS) of the residual of tHRF and rHRF

max (rHRF)
RMS (rHRF - tHRF) (3.15)

The average for each of these three metrics across all the recovered HRFs for each

specific relative distance was computed and the results were compared to the cor-

responding averaged metrics obtained from the HRFs recovered with the standard

GLM (no short separation) using a two-tailed paired t-test. As in our previous paper

[44], we used a paired t-test to resolve for small systematic differences. For the Pear-

son R2 metric, the average was taken after applying a Fisher transformation and the

resulting average was then back transformed. This comparison was performed for all

8 relative distances (1.4, 1.7, 2.4, 3.3, 4.2, 5.2, 6.2 cm and forehead).

This entire procedure was then repeated after introducing a time-lag in the short

separation channel. For each 1 cm-3 cm combination, the cross-correlation function

between the two channels before adding the synthetic HRF was also computed and a

time-lag corresponding to the maximum of the cross-correlation function was applied

to the short separation measurement. This time-lag could be any number in the

interval {-Nt, Ntj with Nt the number of time point in the NIRS time course but
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typical values obtained from our data ranged from -4 to 4 seconds for both HbO and

HbR. The values for R2 , MSE and CNR obtained by introducing a time-lag were also

compared with the zero-lag values with a two-tailed paired t-test.

The cross-correlation function used to identify the optimal time-lag was normalized

such that the zero-lag value corresponded to the Pearson R2 coefficient

RY1Y [mn]RV1 3 [im] = R 1- (3.16)
U1 7Y3

with o-,c the standard deviation of y3 [n]. The maximum of this normalized cross-

correlation function is the equivalent to shifting one of the channels by the optimal

time-lag before computing the standard correlation and thus we will refer to this value

as the optimal time-lag correlation for the rest of the text. To avoid any confusion,

we will refer to the standard R 2 correlation as the zero-lag correlation. The zero-lag

and the optimal time-lag correlations were also compared using a two-tailed paired

t-test of their Fisher transformed values.

3.2.4 Functional data

The functional data were analysed in the same way as above with the Kalman filter,

but the HRFs were recovered from 0 to 40 seconds after the stimulus onsets. Each

3 cm channel was analyzed using each of the seven short separation channels available

and also with a standard block-average for comparison.
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3.3 Results

3.3.1 Baseline correlation

The correlation (Pearson R2 ) between the baseline NIRS time courses are shown in

Fig. 3-4. In panels (A) and (B), the correlation between the 3 cm separation and

the short separation channels are plotted as a function of their relative distance on

the probe. These values are identified by the label "no time-lag" in the legends.

The optimal time-lag correlation values are also plotted and identified by the label

"optimum time-lag" in the legends. We observed a fast decay of both the zero-lag

and the optimal time-lag correlations as the distance between the two channels went

from 1.4 to 2.4 cm and the correlation then plateaued from 2.4 to 6.2 cm. This

trend was observed for both HbO and HbR. The optimal time-lag correlation values

obtained were slightly higher (but significant at the p < 0.05 level, two-tailed paired

t-test) than the zero-lag correlation for all relative distances on the probe. It is good

to re-emphasize that the statistical test is pairwise such that a small but constant

difference across the sample is marked as significant. The optimal time-lags obtained

increased with increasing relative distances indicating that this slight improvement in

correlation was real and not due to potential artifact in the processing. Finally, the

increases in correlation obtained by introducing time-lag were slightly more prominent

for HbR than HbO.

In panels (C) and (D) of Fig. 3-4, both the zero-lag and the optimal time-lag correla-

tions between two short separation channels are plotted as a function of their relative

distance on the probe. A similar fast decay was observed as the relative distance

between the two channels increased from 1 to 2 cm on the probe and then the corre-

lation plateaued for longer distances. The values for the optimal-time lag correlations

in this case were significantly higher (p < 0.05, two-tailed paired t-test) compared to

the zero-lag correlations.
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Baseline R2 vs distance HbO
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Figure 3-4: Effect of the relative distance on the initial baseline correlation between
the channels. The baseline data were bandpass filtered between 0.01 and 1.25 Hz
before the R2 correlation was computed. The values labeled "optimal time-lag" were
computed by taking the maximum of the normalized cross-correlation function (Eq.
3.16) while the "no time-lag" values are the standard Pearson R2 coefficient. Statisti-
cal differences at the p < 0.05 level are indicated with horizontal black lines (two-tail
paired t-test). The statistical test is pairwise such that a small but constant differ-
ence across the sample is marked as significant. (A)-(B) Initial baseline R2 between
the long and the short channels as a function of the relative distance between them.
(C)-(D) Initial baseline R2 between two short separation channels as a function of the
relative distance between them.
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Baseline R2 vs distance HbO [0.01-0.20] Hz Baseline R2 vs distance HbR [0.01-0.20] Hz
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Figure 3-5: Low frequency band. Effect of the relative distance on the initial baseline
correlation between the channels. The baseline data were bandpass filtered between
0.01 and 0.2 Hz (low frequency oscillations) before the R2 correlation was computed.
The values labeled "optimal time-lag" were computed by taking the maximum of the
normalized cross-correlation function (Eq. 3.16) while the "no time-lag" values are
the standard Pearson R2 coefficient. Statistical differences at the p < 0.05 level are
indicated with horizontal black lines (two-tail paired t-test). The statistical test is
pairwise such that a small but constant difference across the sample is marked as
significant. (A)-(B) Initial baseline R2 between the long and the short channels as a
function of the relative distance between them. (C)-(D) Initial baseline R2 between
two short separation channels as a function of the relative distance between them.
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Baseline R2 vs distance HbO [0.20-0.50] Hz
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Figure 3-6: Respiratory band. Effect of the relative distance on the initial baseline
correlation between the channels. The baseline data were bandpass filtered between
0.2 and 0.5 Hz (respiratory oscillations) before the R2 correlation was computed.
The values labeled "optimal time-lag" were computed by taking the maximum of the
normalized cross-correlation function (Eq. 3.16) while the "no time-lag" values are
the standard Pearson R2 coefficient. Statistical differences at the p < 0.05 level are
indicated with horizontal black lines (two-tail paired t-test). The statistical test is
pairwise such that a small but constant difference across the sample is marked as
significant. (A)-(B) Initial baseline R2 between the long and the short channels as a
function of the relative distance between them. (C)-(D) Initial baseline R2 between
two short separation channels as a function of the relative distance between them.
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Baseline R2 vs distance HbO [0.50-3.00] Hz
1

0.9

0.1

0.7

0.6

0.5

0.4

0.3

0.1

0

.9 . no time-lag

.8 optimum time-lag

.7 -.-.-.--.---.-

.6

.5 .. . .

.4 . .I . . . .. .. . .. .. .. .

.3 .. . .

0 "1" -,,
1 2 3 4 5 forehead

Distance between two short channels (cm)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Baseline R2 vs distance HbR [0.50-3.00] Hz

B) B. M no time-lag

optimum time-lag

1.4 1.7 2.4 3.3 4.2 5.2 6.2 forehead
Distance between long and short channel (cm)

Baseline R2 vs distance HbR [0.50-3.00] Hz
1

0.9 D) no time-lag

0.8 optimum time-lag
0.7 .-- ---

0.6

0.5 -

0.4

0.3

00.1

1 2 3 4 5
Distance between two short channels (cm)

forehead

Figure 3-7: Cardiac band. Effect of the relative distance on the initial baseline
correlation between the channels. The baseline data were bandpass filtered between
0.5 and 3 Hz (cardiac oscillations) before the R2 correlation was computed. The
values labeled "optimal time-lag" were computed by taking the maximum of the
normalized cross-correlation function (Eq. 3.16) while the "no time-lag" values are
the standard Pearson R2 coefficient. Statistical differences at the p < 0.05 level are
indicated with horizontal black lines (two-tail paired t-test). The statistical test is
pairwise such that a small but constant difference across the sample is marked as
significant. (A)-(B) Initial baseline R2 between the long and the short channels as a
function of the relative distance between them. (C)-(D) Initial baseline R2 between
two short separation channels as a function of the relative distance between them.
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3.3.2 Simulation results

The results for the synthetic HRF simulations are shown in Figs. 3-8, 3-9 and 3-10

for the R 2 , MSE and CNR metric respectively. On panels (A) and (B) of all three

figures, the three metrics are plotted as a function of the relative distance between

the 3 cm separation and the short separation channel used as a regressor. Values

obtained by introducing a time-lag in the short separation channel are also shown as

well as the corresponding values obtained using a standard GLM. We observed a fast

decrease of the improvement obtained by the Kalman filter as the relative distance

between the 3 cm and the short separation channel was increased from 1.4 to 2.4

cm. The performance then plateaued for longer relative distances. Both the R 2 (Fig.

3-8) and the CNR (Fig. 3-10) decreased as the relative distance between the long-

and short separation channels was increased, while the MSE (Fig. 3-9) increased.

Using a short separation channel located 1.4 cm away from the channel containing

the synthetic HRF resulted in a mean increase in CNR of 50 % for HbO and 100 % for

HbR relative to the GLM method. Using a short separation channel located farther

than 2 cm away from the channel containing the synthetic HRF resulted in significant

(p < 0.05, two-tailed paired t-test) but negligible improvements of the order of a few

percent compared to the standard GLM procedure. Again, we re-emphasize that the

statistical test is pairwise such that a small but constant difference across the sample

is marked as significant. However the magnitude of the difference is small.

On panels (C) and (D) of Figs. 3-8, 3-9 and 3-10, the same R2 , MSE and CNR results

are plotted as a function of the baseline zero-lag correlation (Pearson R2) between the

3 cm and the short separation channels. Results obtained by introducing a time-lag in

the short separation channel are also plotted as a function of the baseline optimal time-

lag correlation. We observed a linear relationship between the improvement obtained

with the Kalman filter and both the baseline zero-lag correlations and optimal time-

lag correlations between the two channels. A baseline correlation greater than 0.8

resulted in a mean improvement in CNR of 50 % and 100 % compared to the standard
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Recovered R2 vs distance HbO
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Figure 3-8: Effect of the relative distance on the correlation between the recovered
HRF and the true HRF. Panels (A)-(B) show the recovered R2 as a function of the
distance between the short and the long NIRS channel. Panels (C)-(D) show the
recovered R2 as a function of the baseline R2 between the short and the long NIRS
channel. The value recovered using a standard GLM with no small separation is also
shown for comparison. Statistical differences at the p < 0.05 level are indicated with
horizontal black lines (two-tail paired t-test). The statistical test is pairwise such
that a small but constant difference across the sample is marked as significant.

71



MSE vs distance HbO
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Figure 3-9: Effect of the relative distance on the MSE between the recovered HRF and
the true HRF. Panels (A)-(B) show the MSE as a function of the distance between the
short and the long NIRS channel. Panels (C)-(D) show the MSE as a function of the
baseline R2 between the short and the long NIRS channel. The value recovered using
a standard GLM with no small separation is also shown for comparison. Statistical
differences at the p < 0.05 level are indicated with horizontal black lines (two-tail
paired t-test). The statistical test is pairwise such that a small but constant difference
across the sample is marked as significant.
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CNR vs distance HbO
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Figure 3-10: Effect of the relative distance on the Contrast-to-noise ratio (CNR)
defined in Eq. 3.15. Panels (A)-(B) show the CNR as a function of the distance
between the short and the long NIRS channel. Panels (C)-(D) show the CNR as
a function of the baseline R2 between the short and the long NIRS channel. The
value recovered using a standard GLM with no small separation is also shown for
comparison. Statistical differences at the p < 0.05 level are indicated with horizontal
black lines (two-tail paired t-test). The statistical test is pairwise such that a small
but constant difference across the sample is marked as significant.
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GLM for HbO and HbR respectively.

3.3.3 Functional data results

Each run of finger tapping was analysed independently for each subject. The SD

pair showing the strongest functional response was selected manually for each sub-

ject. To avoid any bias towards the Kalman filter method, both the Kalman filter

and the standard block-average results were taken into account independently. The

criteria for selecting the responses were a sustained increase in HbO and a sustained

decrease in HbR [20], as well as a sustained increase in HbT to avoid pial vein washout

contamination. Based on these criteria, the selected channel from the block-average

matched the one selected from the Kalman filter result for each subject, although the

HRF recovered with the block-average showed weak activation for three of the six

subjects. For each individual subject, the HRFs recovered from the selected channel

are shown for the first run in Fig. 3-11. Results from a single run are presented to

illustrate the power of our method and the high CNR achieved with only 6 individual

finger tapping blocks. Results from the second and the third run were very similar.

Columns 1-4 illustrate the corresponding HRFs (same 3 cm channels) recovered us-

ing: (1) a block-average with no small-separation channel, (2) the Kalman filter with

the small-separation channel located in the forehead as a regressor, (3) the Kalman

filter with the short separation channel located 2.4 cm away as a regressor and (4)

the Kalman filter with the closest short separation channel (located 1.4 cm away) as

a regressor.
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For subjects 1 ,4 and 6, the HRFs recovered without using the closest short separation

channel (columns 1-3) showed weak activation patterns only. However, the activation

became clear on the same channels using the Kalman filter together with the closest

short separation channel (column 4). For subjects 2, 3 and 5, a clear activation was

present whether the Kalman filter was used or not. For subjects 2, 3 and 4, a strong

artifact present between 15 and 30 s. was removed using the Kalman filter with

the closest short separation channel. Removing this artifact made the HRFs more

constant during the duration of the stimulus (0-30 s).

3.4 Discussion

3.4.1 Systemic interference measured by NIRS is inhomoge-

neous across the scalp

Systemic interference measured in NIRS has been termed "global" interference previ-

ously in the literature [116, 147, 148, 136, 118]. In contradiction, our present results

indicate that systemic interference is actually inhomogeneous across the surface of

the scalp, that is, the correlation between systemic interference measured at two

different locations decreases with the increasing relative distance between the two

measurements. Although the short separation channel measurements might contain

some cortical signal, Monte Carlo simulations have shown that this contribution is

negligible for a SD distance of 1 cm [147]. As such, panels (C) and (D) of Fig. 3-4

indicate that the origin of this decorrelation is located in the superficial layers of the

head and therefore, is not due to autoregulation mechanisms occurring in the brain

tissue [105].

Although introducing a time-lag re-established one third of the correlation between

the two short separation measurements, the other two thirds of the R 2 correlation

was still lost after introducing time delays. This finding indicates that only part of
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the correlation decay can be explained by simple transit time effects across different

locations on the scalp. The systemic interferences measured in NIRS are oscillatory

processes containing three dominant components [84]. These are the cardiac pulsa-

tions around 1 Hz, respiratory oscillations around 0.4 Hz and other low frequency

oscillations (including Mayer waves [76]) around 0.1 Hz. Analyses similar to the one

presented in Fig. 3-4 were performed with the NIRS data bandpass filtered at 0.01-0.2

Hz, 0.2-0.5 Hz and at 0.5-3 Hz (see supplementary figures 3-5, 3-6 and 3-7). These

frequency bands correspond to the low frequency, respiratory and cardiac oscillations

respectively. These analyses revealed a decay in correlation with increasing relative

distances in all these three frequency bands. Although the correlation decayed, it

never reached zero even for low frequency oscillations, which is in agreement with re-

cent findings by Tong and Frederick ([132]). Up to 3/4 and 1/2 of the correlation lost

in the 0.2-0.5 Hz band and the 0.5-3 Hz band respectiveley could be re-established

by introducing a time-lag. However, introducing a time-lag in the 0.01-0.2 Hz fre-

quency band resulted in only negligible improvements in correlation. These findings

are in agreement with a recent paper from Tian et al ([130]) indicating that cardiac

fluctuations (~I Hz) are more global while low frequency oscillations (~0.1 Hz) are

less spatially coherent.

From our results, one can conclude that (1) slow oscillations are inhomogeneous across

the surface of the scalp and (2) a significant proportion of the correlation decay in the

higher frequency bands (cardiac and respiration) is attributed to transit time effects

across different spatial regions. These phase mismatches of the cardiac and respiratory

pulsation over different locations arise potentially from spatial heterogeneity of the

vasculature such as blood vessel length, orientation, size, depth and dilation [147, 146].

However, 1/4 and 1/2 of the correlation lost in the respiration and cardiac frequency

band respectively could not be re-established by introducing a time-lag and future

studies will be required to investigate the origin of this correlation decay.
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3.4.2 Impact on the short separation method

This fast decrease in correlation with increasing relative distance has an important

impact on the performance of the short separation method. Panels (C) and (D) of

Figs. 3-8, 3-9 and 3-10 illustrate that all three metrics used (R2, MSE and CNR)

varied linearly with the baseline correlation, whether a time-lag was used or not.

Since the baseline correlation decreased with the relative distance as shown in Fig.

3-4, we expected the performance of the short separation method assessed with these

three metrics to decrease with the relative distance. This expectation was confirmed

by our simulations and are shown in panels (A) and (B) of Figs. 3-8, 3-9 and 3-10.

For relative distances larger than 2 cm, only mild improvements were obtained using

our short separation approach compared to the standard GLM method. No decrease

in performance was observed using our Kalman filter with any of the available short

separation. This is consistent with our previous findings [44] that the Kalman filter

improves or doesn't change recovery of the hemodynamic response. At worst, the

recovered response will be the same as the one recovered with a standard GLM with

no small separation used. To obtain larger improvements that are useful in practice,

the short separation channel must be located no more than 1.5 cm from the 3 cm

channel from which the HRF is to be recovered.

For large NIRS probes containing several long SD measurements spread over several

centimeters, our results indicate that multiple short separation channels are required

in order to combine each long-separation measurement with a short separation channel

within a 1.5 cm radius. In this case, our simulations indicate that the improvement

in CNR using the short separation method is of the order of 50 % for HbO and

100 % for HbR, as shown respectively in panels (A) and (B) of Fig. 3-10. As in

our previous paper [44], we observed an improvement for both HbO and HbR, in

contradiction with Zhang et al. [146] where no improvement was observed for HbR

using an adaptive filter method. In the simulations of our previous paper [44], we also

observed a decrease in performance for HbR using an adaptive filter. As we showed,
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our Kalman filter approach overcomes this pitfall by regressing the short separation

measurement and simultaneously estimating the hemodynamic response.

The necessity of using several short separation channels on the probe was also con-

firmed by our finger tapping experiment. Using the short separation channel located

at 2.4 cm from the 3 cm SD measurement, the HRF obtained from subjects 1, 4 and

6 showed a weak activation pattern only, as shown in Fig. 3-11. On the other hand,

the activation became very clear on these same channels using the short separation

channel located 1.4 cm away. The baseline correlations between the short separation

and the long-separation channels were around 0.3 for the short separation channel

located 2.4 cm away and around 0.5 for the short separation channel located 1.4 cm

away. This re-emphasizes the fact that the initial baseline correlation between the

short separation and the 3 cm channel is an important factor in determining the per-

formance of the Kalman filter algorithm. In practice, this baseline correlation can be

computed to predict the impact of using short optode separations. In our previous

paper [44], we showed that the presence of a hemodynamic response in the 3 cm

channel does not impact the baseline initial correlation between the short separation

and the 3 cm channel. This occurs because the contribution of systemic interference

in NIRS largely dominates the contribution of the hemodynamic response. This was

confirmed here with our real functional data.

3.4.3 How many regressors should be used?

In all the simulations presented in this paper, we used a single regressor at a time. We

also ran simulations using multiple regressors simultaneously but all of them resulted

in a significantly higher MSE and lower CNR compared to using the single short

separation channel. This is explained by a potential overfitting of the data. When

more than one regressor is used at the same time, we start fitting noise in the data

which introduces errors in the estimation of the hemodynamic response. The same

thing occurred in our previous paper [44] when a single regressor was used but multiple
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time delays from this regressor were used in the regression. To avoid overfitting the

data and to obtain the maximum power from the short separation method, we have

found that on average a single regressor performs better than two or more.

3.4.4 Alternatives for modelling the physiological interfer-

ence

Alternative methods for modelling the physiological interference have been proposed

in the literature. [111] used a set of sine and cosine functions to model the oscillatory

behaviour of the systemic physiology. The linear coefficients of these temporal bases

were included as additional states in the state-space model. Alternatively, [1] used a

set of sine functions only but included the phase as an additional state. These methods

were implemented and compared with the short separation method. In both cases, the

short separation approach performed better compared to these modelling techniques.

These models contain a higher number of degrees of freedom (i.e. larger number

of state) which potentially introduces crosstalk between the state corresponding to

the hemodynamic response and the state corresponding to the systemic physiology.

This phenomenon degrades the estimation of the hemodynamic response. The short

separation method reduces the number of degrees of freedom and reduces crosstalk

by measuring directly the systemic interference in the superficial layers of the head

and therefore, results in a more accurate estimation of the hemodynamic response.

3.4.5 Future studies

In this work, a small detector fiber was placed in proximity of each source fiber,

resulting in a single small separation channel for every long SD channel. An inter-

esting question is whether or not an additional short separation channel located in

proximity of the detector fiber would further improve the recovery of the hemody-

namic response. Doing so would maximize the overlap between the pathlength of the
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small separation channels and the longer SD channel, and might result in a further

improvement of the small separation method. However, care must be taken to ensure

that the additional source fibers do not inadvertently saturate the detectors and to

ensure that the fiber optic probe remains flexible for efficient coupling with the scalp.

We have begun to investigate the improvement of additional short separation mea-

surements on the long separation source and long separation detector simultaneously.

Our preliminary evidence indicates that as expected the results get better. For sure,

we can still use a single short separation regressor but choose the one which has a

higher correlation with the long separation measurement; either the short separation

coincident with the long separation source, or the long separation detector. When we

use both short separation regressors we have to ensure that we are not over fitting

the data. Sometimes using both short separation regressors will actually degrade our

estimate of the HRF, and thus statistical model testing needs to be implemented to

determine if one or two regressors should be used.

3.5 Summary

In this study, we have determined that the position of the short separation NIRS

channel relative to the long-separation channel impacts the performance of the short

separation regression method to improve the recovery of the hemodynamic response

in NIRS. We showed that the relative distance between the channel of interest and

the regressor must be less than 1.5 cm to have a meaningful impact on the recovery of

the hemodynamic response. In this case, improvements in CNR were of the order of

50 % for HbO and 100 % for HbR compared to the standard GLM approach. When

a short separation channel located farther than 2 cm was used as regressor, only

minor improvements were obtained compared to the standard GLM method, which

are of little practical use. This decrease in performance for longer relative distances

results from a decrease in the baseline correlation between the channel of interest

and the regressor. Our results indicate that this correlation decay is due to spatially
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inhomogeneous hemodynamics in the superficial layers of the head.
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Chapter 4

Double short separation

measurements

This section was published in:

Gagnon, L., Yucel, M. A., Boas, D. A. and Cooper, R. J. (2013). "Further improve-

ment in reducing superficial contamination in NIRS using double short separation

measurements." NeuroImage in press

The main contribution of this chapter is to demonstrate that using two short separa-

tion measurements, one at the source optode and one at the detector optode, further

increases the performance of the short separation regression method compared to

using a single short separation measurement. Our work emphasizes the importance

of integrating short separation measurements both at the source and at the detector

optode of the standard channels from which the hemodynamic response is to be recov-

ered. While the implementation of short separation sources presents some difficulties

experimentally, the improvement in noise reduction is significant enough to justify

the practical challenges.
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4.1 Introduction

Near-Infrared Spectroscopy (NIRS) is a non-invasive neuro-investigatory technique

used to measure the hemodynamic changes associated with evoked brain activity

[99, 63, 88, 36]. In adult populations, the majority of functional NIRS studies are

performed using a back-reflection geometry, with near-infrared light carried to and

from the head via optical fibers. This back-reflection geometry ensures that the

NIRS signal is extremely vulnerable to contamination by the hemodynamics within

the superficial layers of the head.

It has recently been shown that this interference can be significantly reduced with the

use of short separation (SS) recordings which are sensitive to superficial layers only,

including the scalp and the skull [116, 147, 136]. These SS measurements are used

as regressors during the post-processing of the NIRS signal and have been shown to

improve the detection of evoked brain activity using NIRS [146, 118, 141, 44].

In our previous work [43], we showed that the superfical NIRS signal obtained by SS

channels is spatially inhomogeneous across the scalp. In order to successfully regress

the superficial signal from that of the brain, the SS measurement must therefore be

located as close as possible to the long separation (LS) NIRS channel. For NIRS

measurements performed on adult humans, the source and detector optodes are gen-

erally separated by around 3 cm, which is large enough to observe the hemodynamics

of the cortex but short enough that enough light returns to the detector [7]. Any

change measured by a standard NIRS channel is the result of an integration of all

optical changes which occur throughout the volume of tissue traversed by the NIR

light. The NIRS signal will therefore invariably contain superficial interference from

two different locations: beneath the source optode and beneath the detector optode

and these interference signals may not correlate with one another. As a result, it

is reasonable to hypothesize that the performance of the SS regression method will

improve if the superficial NIRS signal is independently recorded from both the tissue

beneath the source optode and from the tissue beneath the detector optode.
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In this work, we investigated the performance of using two such SS measurements to

regress systemic physiological signals from NIRS data.

4.2 Methods

4.2.1 Experimental measurements

Five healthy adult subjects were recruited for this study. The Massachusetts General

Hospital Institutional Review Board approved the study and all subjects gave written

informed consent. Data were collected using a TechEn CW6 system operating at 690

and 830 nm. The NIRS probe con- tained 8 sources and 8 detectors as shown in

Fig. 4-1. The probe was designed to contain a SS measurement at each source and

at each detector optode of the LS measurement to provide maximal overlap between

the LS and the SS measurements. In order to avoid detector saturation, 200 pm-core

fibers were used for the SS detectors (shown in red in Fig. 4-1) and an optical filter

(Kodak WRATTEN ND 2.00) was glued to the tip of standard NIRS fiber bundles

(shown in green in Fig. 4-1) for the additional sources of the SS measurements. The

probe was secured over the left motor region of each subject.

During the experiment, subjects were sitting in a comfortable chair in front of a com-

puter screen with a black background. The 6-minute long functional runs consisted

of stimulus trials of 5-seconds of a finger tapping task, with an inter-trial interval

varying randomly between 12 and 18 sec. Each functional run contained between

19 and 21 trials and three functional runs were acquired for each subject. Between

stimulus periods, a small 0.5-by-0.5 cm white square appeared at the center of the

computer screen and the subjects were asked to fixate on this square. During the fin-

ger tapping periods, the instruction tap your fingers was displayed in white characters

on the computer screen using the Psychophysics toolbox in Matlab [11]. The finger

tapping task required the subject to touch their right thumb to each finger of their
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Figure 4-1: NIRS probe. (A) Geometry (B) Sensitivity In order to avoid detector
saturation, 200 [m-core fibers were used for the SS detectors (shown in red) and a
piece of optical filter (Kodak WRATTEN ND 2.00) was glued at the tips of standard
NIRS fibers (shown in green) for the additional sources of the SS measurements.

right hand in order as quickly as possible and repeat the process until the instruction

left the computer screen. Following the three functional runs, three baseline runs of

5 minutes each were acquired. During the baseline runs, the subjects were asked to

simply close their eyes and remain still.

4.2.2 Data analysis

An overview of the data analysis procedure is shown in Fig. 4-2. Both the SS and LS

measurements were bandpass filtered at 0.01-1.25 Hz and then used simultaneously

in a Kalman filter. The Kalman filter was identical to that described in our previous

papers [44, 43] with the addition of a second short separation regressor.
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The hemodynamic response was modeled by

N.

h [n] =Z wibi [n] (4.1)
i=1

where bi [n] are normalized Gaussian functions with a standard deviation of 0.5 s and

their means separated by 0.5 s. N, is the number of Gaussian functions used to

model the hemodynamic response and was set to 15 for our simulations to recover

the HRF over 0-8 sec. The signal in the LS channel YLS [n] was modelled by a linear

combination of the two SS signals ySrc [n] and yss [n] and the brain response Yb [n].

The expression for the LS signal is given by

YLS [n] = Yb [n] agSrc YSc [n] + aDet YD, [n] (4.2)

with
00

k=-oo

and where u [n] is the onset vector which is a binary vector taking the value 1 when

n corresponds to a time when the stimulus was presented and 0 otherwise. It is to

note that u [n] is equal to 1 only at the onset of the stimulus and not throughout the

duration of the stimulus.

The variables aSrc and aDet are the dynamic weights used to model the superficial

signals in the LS separation channel as a linear combination of the two SS signals.

Only a single time delay was taken from the short separation channels to model the

superficial signals in the LS channel since this has been shown to result in a better

performance in our previous paper [44]. The states to be estimated by the Kalman

filter were the weights of the superficial contribution aSrc and aDet and the weights

of the temporal bases wi. All these weights were assumed to be time-varying. Eqs.

(4.1), (4.2) and (4.3) can be re-written in state-space form:

x [n + 1] = Ix [n] + w [n] (4.4)
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YLS [n] = C [n] x [n] + v [n]

where w [n] and v [n] are the process and the measurement noise respectively. x [n]

is the nth instance of x given by

X w1 ... wN, aSrc aDet 1  (4.6)

The quantity I is an Nw + 2 by Nw + 2 identity matrix and C [n] is a 1 by Nw + 2

vector given by

[n] = u * bi [n] --- u * bN, [n] S [n] S [n -47

where "*" denotes the convolution operator. The estimate x [n] at each sample n

is then computed using the Kalman filter [77] followed by the Rauch-Tung-Striebel

smoother [113].

The convergence of the Kalman filter depends on the initial estimate of the state

vector x[0]. To overcome this problem, x[0] was set to the values obtained using

a static least-squares estimator as in [44] to ensure a fast convergence. Moreover,

to overcome the problem of selecting a good initial guess for the state covariance

estimate P [0], the Kalman filter algorithm was run twice and the initial covariance

estimate for the second run was set to the final covariance estimate of the first run.

This process makes the performance of the filter almost insensitive to the initial

covariance estimate. For the first pass of the Kalman filter, we set P [0] to an identity

matrix with diagonal entries of 1x10- 1 for the temporal basis states and 5x10- 4 for

the superficial contribution state. The process noise covariance Q only contained

nonzero terms on the diagonal elements. Those diagonal terms were set to 2.5x10- 6

for the temporal basis states and 5x10- 6 for the superficial contribution state. The

measurement noise covariance R was set to an identity matrix scaled by 5x10- 2 .

These values were extensively studied in our previous paper [44] and multiplying or

dividing these values by factor of 10 did not significantly affect the performance of

our method. The Kalman filter algorithm was then processed with the following
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prediction-correction recursion [46]:

[nn - 1] = [n - 1|n - 1] (4.8)

P [nIn - 1] = P [n - ln - 1] +Q. (4.9)

K [n] = P [nIn - 1] C [n]IT (C [n] [nn - 1 C [n]T + R) (4.10)

i[nn = k[nIn - 1] + K [n] (yLS [n] -C[ n] k[rIn - 1]) (4.11)

P [nln] = (I - K [n] C [n]) P [n n - 1] . (4.12)

After the Kalman algorithm was applied twice, the Rauch-Tung-Striebel smoother

was applied in the backward direction [56]:

k [nNt] = k [nlnI + P [nPn] P [n + lIn (k[n + INt] - k[n + n]) (4.13)

with Nt the number of time points in the data. The complete time course of the

filtered brain signal Yb [n] containing the estimated hemodynamic response h [n] was

then reconstructed for each sample time n using the first N, final state estimates

kb = [W1 ... WNW]T and the temporal basis set contained in C [n]

Yb [n] = C [n] kb [n Nt] . (4.14)

This reconstructed filtered brain signal time course &b [n] was further low pass filtered

at 0.5 Hz to remove any cardiac fluctuations potentially present in the time course

and the final estimate of the hemodynamic response h [n] was obtained by applying a

standard General Linear Model (GLM) procedure (without any cosine bases or short
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separation regressor) containing the same temporal basis function as in Eq. (4.1).

More details of the algorithm and the parameters used can be found in our previous

papers [44, 43].

4.2.3 Simulations

Simulations were performed as described previously [44, 43] by adding a synthetic

HRF to the three baseline NIRS recordings acquired in each subject. For each

baseline measurement, the changes in optical density were converted to changes in

hemoglobin concentrations using the modified Beer-Lambert relationship [24]. A

pathlength correction factor of 6 and a partial volume correction factor of 50 were

applied [126, 69, 70].

An overview of the simulation procedure is shown in Fig. 4-3. Thirty individual

simulated evoked responses were added over each of the 60 LS channel baseline mea-

surements (5 subjects x 3 runs x 4 LS channels), with randomized onset times such

that the inter-stimulus intervals varied between 12 and 30 seconds.

There is increasing evidence that many functional activation tasks give rise to systemic

changes in oxyhemoglobin concentration which are time locked to the stimulus [79,

129]. These evoked systemic signals are likely due to an increase in heart rate and

blood pressure associated with the performance of a task. We therefore added an

evoked systemic artifact that was phase-locked with the stimulus to better represent

real functional experiments. The artifact was added to both the LS and SS HbO

signals. We used a sinusoidal function to model the artifact and the phase was chosen

such that the peak of the artifact matches the peak of the hemodynamic response.

No artifacts were added to the HbR traces since no evoked systemic artifacts have

been reported for HbR signals [79, 129]. Baseline signals for SS and LS optodes are

also shown at the bottom panels of Fig. 4-3. The green box emphasizes a portion

where the Source SS signal resembles the LS signal while the yellow box emphasizes a
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portion where the Detector SS signal resembles the LS signal. These boxes illustrate

the main hypothesis behind the double short separation method that the superficial

interferences beneath the source and the detector may be different and that using two

short separation measurements allows one to better capture the interference.

This procedure was repeated 30 times for each baseline measurement to create 30

simulated time courses with 30 different onset times to ensure robust averaged results.

The duration of the synthetic response was 8 seconds as shown in Fig. 4-3. The

resulting 1800 time courses (60 time courses x 30 simulated runs) were then band-pass

filtered (0.01-1.25 Hz) and passed to the Kalman filter algorithm as depicted in Fig. 4-

2. This algorithm was employed 3 times, using three different regressor cases: the

SS measurement located close to the detector (Det SS), the SS measurement located

close to the source (Src SS) and both SS measurements simultaneously (Src&Det).

To provide a comparison where no SS measurements are used, the HRF was also

recovered using a standard GLM approach, using a set of cosine bases with a 64 s

period cutoff [42] to model the baseline physiology and the same temporal basis set

used in the Kalman filter to model the HRF. Although simultaneous HbO and HbR

estimation is possible [28], the HbO and HbR responses were recovered independently

in this work to prevent potential crosstalk introduced by noise in the regression [126].

For each SS-LS combination, the baseline Pearson R 2 correlation coefficient after

adding the synthetic HRF to the LS channel was computed.

The quality of each recovered HRF was quantified using four different metrics: (1) the

Pearson correlation coefficient R 2 between the true synthetic HRF and the recovered

HRF, (2) the mean square error (MSE) between the true HRF and the recovered HRF,

(3) the baseline noise defined by taking the standard deviation over the intervals -5

to 0 sec prior to the stimulus onset and (4) the inter-trial variability obtained by

computing the standard deviation across individual trials and taking the mean of the

obtained variability over the interval 0 to 12 sec following the stimulus onset.

The average for each of these four metrics across all the recovered HRFs for each
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specific regressor was computed and the results obtained were compared using two-

tailed paired t-tests. As in our previous papers [44, 43], we used a paired t-test to

resolve for small systematic differences. For the Pearson R2 metric, the average was

taken after applying a Fisher transformation and the resulting average was then back

transformed.

4.2.4 Experimental finger tapping

The functional data acquired during the finger tapping task were analyzed in the same

way as above using the Kalman filter algorithm, but the HRFs were recovered from -5

to 18 sec after the stimulus onsets. Each of the four LS channels was analyzed using

the three regressor cases derived from its closest SS measurements (Det SS, Src SS

and Src&Det). The noise and the inter-trial variability metrics described above were

also computed. The R 2 and the MSE metrics were not computed for the experimental

finger tapping data since the true HRF is unknown.

4.3 Results

4.3.1 Baseline R2 correlation results

The baseline R 2 coefficients between the SS and LS channel were com- puted and

are shown in Table 4.1. The correlations computed for the simulations as well as

for the experimental finger tapping are shown. For the simulations, the correlation

was computed after the synthetic HRFs were added to the baseline LS trace and the

evoked systemic artifacts were added to both the LS and SS traces. These correlations

were calculated after all NIRS signals were bandpass filtered between 0.01 and 1.25

Hz to remove instrumental noise and drifts. As shown in Table 4.1, the baseline

correlation was higher between the LS signal and the source SS signal than between
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the LS signal and the detector SS signal.

Table 4.1: Baseline R 2 correlation between LS and SS signals.

Optode Sim HbO Exp HbO Sim HbR Exp HbR
Src SS 0.39 0.38 0.24 0.13
Det SS 0.28 0.29 0.08 0.04

4.3.2 Simulation results

The metrics described in section 4.2.3 were computed over the 1800 recovered HRFs

for each of the three regressor cases (Det SS, Src SS and Src&Det). To address how

often the SS method improves the recovery of the HRF, we computed a likelihood

ratio (as a percentage) which describes how often the SS method improved the re-

covery of the HRF in the 1800 traces of our simulations. The comparison was based

on the performance obtained with the standard GLM and the likelihood was com-

puted individually for each regressor case and using each of the four metrics. These

likelihoods are shown in Table 4.2. An improvement was identified as an increase

for R2 , and as a decrease for MSE, Noise and inter-trial variability. Likelihoods were

computed by taking the ratio of the number of recovered HRFs which meet these

criteria and dividing by 1800, the total number of recovered HRFs, and converting to

a percentage.

Table 4.2 illustrates that the likelihood of improvement is higher for HbO compared to

HbR. This pattern is consistent regardless of the metric used to assess the performance

of the regression. Using two SS measurements resulted in an improved HRF 96% of

the time for HbO and 53% of the time for HbR (based on the MSE metric).

The recovered HRF averaged across all subjects, all channels, all trials and all rep-

etitions are shown in Fig. 4-4 for each of the four recovery methods (3 regressors

cases + GLM). The width of the traces indicates the standard deviation taken across

all simulations (5 subjects, 3 runs, 4 channels, 30 trials, 30 repetitions). The true

simulated HRF is illustrated by dotted lines.
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Table 4.2: Likelihood of improving the recovery of the HRF with the SS method com-
pared to the standard GLM method. The likelihoods were computed by comparing
the HRFs recovered over the 1800 simulated time courses of our simulations.

Det SS (%) Src SS (%) Src&Det (%)
HbO
R2 77 83 85
MSE 89 94 96
Noise 88 92 95
Variability 95 88 95
HbR
R2 47 50 51
MSE 49 52 53
Noise 52 54 55
Variability 47 50 48

The evoked systemic artifact is still present in the HbO response recovered with the

GLM and this resulted in an overestimation of the HbO response when no SS regressor

was applied. The removal of the evoked systemic artifact was improved progressively

as the detector SS, the source SS and both the source and the detector SSs were

applied

A quantitative comparison of the different regressor cases is shown in Fig. 4-5. The

values of the four performance metrics described in section 2.3 were compared for the

three different regressor cases as well as for the standard GLM without SS regres-

sion. A significant improvement in performance was observed for all metrics (p<0.05,

two-tailed paired t-test) when two SSs were used compared to using a single SS mea-

surement.

4.3.3 Experimental finger tapping results

Fig. 4-6 shows the HRFs recovered during the finger tapping task for each of the

four recovery methods. Results are shown for a single run and for a single subject

to illustrate the high quality of the recovery and the traces corresponding to the 18

individual trials are shown to illustrate the variability. The mean HRFs are also

94



illustrated by a black dotted line in each case.

Quantitative comparisons of the noise and inter-trial variability were computed over

the 15 runs (5 subjects, 3 runs each). Results are shown in the bar graphs of Fig. 4-7.

A decrease in both noise and inter-trial variability (p<0.05, two-tailed paired t-test)

was observed when two SS signals were used compared to a single SS. This trend was

observed for both HbO and HbR.
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Figure 4-2: Overview of the algorithm for data analysis. Both the SS and LS mea-
surements were bandpass filtered at 0.01-1.25 Hz and then used simultaneoulsy as

regressors in the Kalman filter. A set of temporal basis functions was used to lower

the dimensionality of the problem. The output of the Kalman filter was further low

pass filtered at 0.5 Hz to remove any cardiac fluctuations potentially present in the

time course and the final estimate of the hemodynamic response was obtained by

applying a standard General Linear Model (GLM) procedure.
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Figure 4-3: Construction of synthetic data. Thirty individual evoked responses were
added over all 60 LS baseline measurements (5 subjects x 3 runs x 4 LS channels) at
random onset times with an inter-stimulus interval taken randomly from a uniform
distribution (12-30 sec). We also added an evoked systemic artifact to the HbO
signals (LS and SS) that was phase-locked with the stimulus onset. The green box
emphasizes a portion of the baseline signal where the Source SS signal resembles the
LS signal while the yellow box emphasizes a portion where the Detector SS signal
resembles the LS signal.
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Figure 4-4: Averaged recovered HRF across all simulations. The width of the traces
represent uncertainty given by one standard deviation taken across all simulations (5
subjects, 3 runs, 4 channels, 30 trials, 30 noise instances). The true simulated HRF
is shown with dotted lines in each case.
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in red for HbO and blue for HbR. The mean HRF taken across the 18 trials is shown
by a black dotted line.
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4.3.4 Combined results

To illustrate quantitatively the gain obtained by using two SS measurements, the noise

levels and the inter-trial variability in the recovered HRFs were compared explicitly for

the four different recovery methods across both the simulations and the experimental

finger tapping results. Values are shown in Table 4.3.

Across all simulation and experimental results, the noise level for HbO decreased

on average from 6.6 pM when using the GLM to 4.6 and 4.3 pM when using the

detector SS and the source SS respectively. This corresponds to a decrease of 31 and

35% respectively. When both SS signals are used, the noise further drops to 2.7 pM,

a decrease of 59% when compared to the standard GLM. For HbR, the noise level

dropped on average from 3.3 to 3.2 pM using the detector SS or the source SS. This

corresponds to a decrease of 2.6%. When the two SSs are used, the noise further

drops to 1.8 IpM, a decease of 47% when compared to the standard GLM procedure.

The inter-trial variability for HbO went from 19.6 pM when using the GLM to 10.3

and 11.9 pM when using the detector SS and the source SS respectively. This corre-

sponds to a decrease of 46 and 38% respectively. When both SS signals are used, the

variability further drops to 5.4 pM, a decrease of 72% when compared to the GLM.

For HbR, the variability went from 12.8 pM to 9.4 and 9.7 pM using the detector

SS and the source SS respectively. This corresponds to a decrease of 27 and 25%

respectively. When the two SSs are used, the inter-trial variability further drops to

3.0 pM, a decrease of 76% when compared to the GLM.
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Table 4.3: Comparison of the level of noise in the recovered HRF for different regres-

sors. Combined (simulations + experimental finger tapping) results are shown.

Method Noise ([pM) Comparison Comparison Comparison
with GLM (%) with Det SS (%) with Src SS (%)

Noise HbO
GLM 6.6
Det SS 4.6 -30.5
Src SS 4.3 -34.7
Src&Det 2.7 -59.3 -41.5 -37.7
Noise HbR
GLM 3.3
Det SS 3.2 -2.6
Src SS 3.2 -2.6
Src&Det 1.8 -47.1 -45.7 -44.9

Variability HbO
GLM 19.1
Det SS 10.3 -46.0
Src SS 11.9 -37.6
Src&Det 5.4 -71.9 -47.9 -54.9
Variability HbR
GLM 12.8
Det SS 9.4 -26.9
Src SS 9.7 -24.7
Src&Det 3.0 -76.4 -67.6 -68.6

4.4 Discussion

4.4.1 Using two SS measurements is better than using only

one

Our results show that using two SS measurements, one located close the source op-

tode of the LS channel and one located close to the detector optode of the LS channel

results in better performance of the SS method compared to when a single SS re-

gressor is used. From our results in Table 4.3 (simulation and experimental), further

improvements from 33% (Det: 30.5%, Src: 34.7%) to 59% in noise reduction and

from 42% (Det: 46.0%, Src: 37.6%) to 72% in inter-trial variability were achieved

for HbO. These values improved from 3% (Det: 2.6%, Src: 2.6%) to 47% for noise

reduction and from 26% (Det: 26.9%, Src: 24.7%) to 76% for inter-trial variability

for HbR. These improvements strongly motivate the incorporation of short separation
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measurements both at the source and at the detector optode of the LS channel.

The fact that two SSs perform better than a single SS is a consequence of the inho-

mogeneity of systemic physiology across the surface of the scalp. This inhomogeneity

of the systemic physiology was described in our previous work [43]. Because the two

SS measurements are located 3 cm away from each other, they measure different

superficial hemodynamic signals, which do not correlate exactly with one other. This

is probably due to the inhomogeneous nature of the vascular network in the scalp.

Since the standard LS measurement constitutes an integratation of concentration

changes throughout the volume traversed by the NIR light, the LS signal will contain

systemic physiology that cannot entirely be described by a single SS signal, but will be

better modelled by a linear combination of our two SS signals, as illustrated in Fig. 4-3.

For this reason, using two SS measurements as regressor inputs to our Kalman filtering

algorithm allows for improved recovery of the functional hemodynamic response signal

of the brain

4.4.2 Source SS versus Detector SS

Because of the inherent symmetry of the measurement sensitivity between source and

detector, a single SS measurement should perform identically whether it is placed close

to the source optode or the detector optode of the LS measurement. In practice, small

differences in performance can occur. As shown in Fig. 4-1, it was necessary to place

an optical filter at the tip of the additional source to avoid saturation of the standard

LS detector. In theory, the attenuation of the filter should be chosen such that the

LS detector detects an equal amount of light coming from both sources. Because of

the limited number of optical filter attenuations available, this condition is not always

met. In our study, the attenuation of the filter selected (ND 2.00) was a little too

high, resulting in a noisier signal and therefore a lower correlation between the SS

signal close to the detector optode and the LS signal, as shown in Table 4.1. This
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resulted in a better performance of the Src SS compared to the Det SS. Using a NIRS

system allowing the intensity of the sources to be adjusted easily would solve this

problem.

4.4.3 HbO vs HbR

The results in Table 4.2 show that the SS method is more likely to improve the

recovery of the HRF for HbO than for HbR. Futhermore, the improvements obtained

using the SS method were larger for HbO than for HbR. These results are in agreement

with previous studies [146, 44].

While the SS method did not improve the HbR recovery in 47% of cases in our simula-

tions (based on the MSE metric), the amplitude of the decreases in performance was

very low compared to the amplitude of the increases in performance resulting in an

overall improvement when results were averaged across all simulations (p<0.05, two-

tailed paired t-test) as shown in Fig. 4-5. This result is consistent with our previous

work [44] which reported no decrease in performance for HbR, though only averaged

results were provided. The fact that the likelihood of improvement is lower for HbR

should not prevent the use of the SS method for HbR since potential decreases in

performance will not be meaningful compared to the potential benefits. We showed

in our previous work [43] that a high improvement could be obtained for HbR as

long as the baseline correlation between the LS and the SS was high. However, in

practice, lower baseline correlations are obtained for HbR resulting in lower overall

averaged performance. The reason for this lower baseline correlation is unclear. A

potential explanation is that the interference mainly comes from the arteries, which

contain mostly oxygenated blood (HbO). The HbR component of the arterial blood is

comparatively much weaker (and therefore more noisy) which results in lower baseline

correlation. Future investigation will be required to identify the underling physiolog-

ical mechanism. Nevertheless, researchers can always predict the performance of the

Kalman regression algorithm by computing the baseline correlation between the LS

103



and the SS channels and thus decide whether this processing approach is the most

appropriate.

4.4.4 Practical difficulties

Using SS measurements both at the source and at the detector presents two challenges.

The first is the challenge of ensuring that the light levels match well the dynamic range

of the photo-detector. As discussed in section 4.4.2, an optical filter must be placed

at the tip of the additional source to overcome the low dynamical range and avoid

detector saturation. The second difficulty is the high density of fibers required which

makes the optical probe heavier and less flexible.

The results presented in this paper suggest that real benefits are obtained using two SS

measurements compared to using a single one. These benefits are significant in cases

where only a few trials can be performed such as in clinical studies [54, 12, 139, 93].

However, in cases where several trials can be averaged, using a single SS detector

located close to the source might be sufficient and less troublesome. Another example

where two SS might be beneficial is when the NIRS signals are used to compute the

cerebral metabolic rate of oxygen (CMRO2) [66, 127, 128, 144] since higher levels of

physiological noise could affect the accuracy of the CMRO2 estimation.

4.4.5 Future directions

It has been recently shown that tomographic reconstruction can accurately remove

superficial artifacts from NIRS data [51]. The researchers also compared the per-

formance of tomographic reconstruction with and without short separation signal

regression where the short separation was regressed using a static linear minimum

mean square estimator (LMMSE) as in [116, 118]. They concluded that each method

improves the contrast-to-noise ratio when used alone, and that the two methods act

synergistically, with greater improvements when used together. Since the Kalman
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filter used in the present study has been shown to perform better than the static

estimator [44] used by Gregg et al ([51]), it would be interesting in future work to in-

vestigate (1) how the Kalman filter compared with tomographic reconstruction alone,

and (2) how much is gained when used together with tomographic reconstruction.

4.5 Summary

This work has demonstrated that using two short separation measurements, one lo-

cated close to the source optode and one located close to the detector optode further

improves the performance of the Kalman short separation regression method com-

pared to using a single short separation measurement. Using both simulated and

experimental functional activation, reductions of 59% in noise level and 72% in inter-

trial variability were obtained for HbO and reductions of 47% in baseline noise level

and 76% in inter-trial variability were obtained for HbR compared to a standard

GLM approach. Our work emphasizes the importance of designing multi-distance

NIRS probes that incorporate short separation measurements at both the source and

the detector optode of the standard 3 cm NIRS channels.
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Chapter 5

Quantification of pial vein signal

This section was published in:

Gagnon, L., Yucel, M. A., Dehaes M., Cooper, R. J., Perdue K.L., Selb J., Hup-

pert T. J., Hoge R. D. and Boas, D. A. and (2013). "Quantification of the cortical

contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI

measurements." NeuroImage 59: 3933-3940

The main contribution of this chapter was to investigate the cortical contribution

to the NIRS signal using (1) Monte Carlo simulations over a realistic geometry con-

structed from anatomical and vascular MRI and (2) multimodal NIRS-BOLD record-

ings during motor stimulation. A good agreement was found between the simulations

and the modeling analysis of in vivo measurements. While different stimuli will result

in different pial vein contributions, our finger tapping results do reveal the importance

of considering the pial contribution.
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5.1 Introduction

Near-infrared spectroscopy (NIRS) [138, 63, 59] is a non-invasive technique for moni-

toring the hemodynamic changes occuring in superficial regions of the cortex. Using

non-ionizing light, NIRS measures the fluctuations of the two dominant biological

chromophores in the near-infrared spectrum: oxygenated (HbO) and deoxygenated

or reduced hemoglobin (HbR).

Over the past 15 years, NIRS has become an attractive alternative to functional

Magnetic Resonance Imaging (fMRI), with several clinical advantages [71]. NIRS is

portable and less susceptible to movement artifacts enabling long term monitoring of

the hemodynamic activity at the bedside. However, the spatial resolution of NIRS

is 1-3 cm [7] which is less than the resolution of standard fMRI scanners. Another

disadvantage of NIRS is its penetration depth which limits its sensitivity to the upper

1 cm of the cerebral cortex [7].

The biophysical origin of the functional NIRS signal is the variation of HbO and HbR

concentration resulting from changes in Cerebral Blood Flow (CBF) and Cerebral

Metabolic Rate of Oxygen (CMRO2 ). For evoked brain activity, the resulting varia-

tions in HbO and HbR are described by the Balloon model [15, 42, 14]. According

to this model, the arterial dilation driven increase in CBF following brain activation

induces a passive volume increase of the capillary and venous vasculature (termed the

windkessel compartment) as well as an increase in oxygen saturation. Compartmen-

tal microscopic hemodynamic measurements [58, 30] have revealed that this evoked

oxygenation increase propagates through the pial veins located at the surface of the

cortex but that this pial compartment exhibits very little volume variation following

brain activation. This pial vein signal is generally negligible in fMRI since the high

anatomical resolution allows the signal coming from the cortical region to be isolated.

Conversely, the NIRS signal is integrated through the different superficial layers of

the head. This potentially gives rise to a pial vein contamination of the signal if

the pial vessels happen to coincide with the path of the light during its propagation
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through the tissue.

Preliminary analysis of the impact of pial vasculature in NIRS has been performed by

[231. However, very few studies of the effect of pial vein oxygenation changes (termed

"the washout effect") on the NIRS signal have been performed [38, 661.

In this paper, the effect of pial vein contamination of the NIRS signal is investigated

over the motor cortex where superficial pial veins are present [50]. We first quantify

cortical and pial vein contributions to the NIRS signal by Monte Carlo simulation

performed on a realistic anatomical volume containing pial veins acquired with MRI.

We then use a biophysical model of the fMRI signal to analyze concurrent NIRS-

fMRI data acquired over the motor cortex of human subjects during a finger tapping

task. The cortical contribution to the HbR and HbO signals relative to the cortical

contribution of the HbT signal are both estimated by fitting the biophysical model

to the multimodal data.

5.2 Theory

We used biophysical modelling to investigate the contribution of cortical changes in

HbO and HbR to the NIRS signal taken from in vivo NIRS-BOLD measurements.

The Obata model [971, a refined version of the original Balloon model [15], describes

the fluctuations in the BOLD signal as a function of the changes in deoxyhemoglobin

(HbR) concentration and cerebral blood volume (CBV) in a given voxel:

ABOLD (t) -V 0 [k ± k2) 1 HbR (t) (kk) - CBV (t) (5.1)
BOLD [ 1 - HbRo (2+ ) CBVo . .

All the parameters involved in the Obata model are summarized in Table 5.1.

The general idea behind our method is the following: NIRS can measure indepen-

dently variations in cerebral blood volume and in the concentration of deoxyhe-

moglobin. Based on the Obata model, these are the two physiological phenomena

giving rise to the BOLD signal. Therefore, one could potentially predict the BOLD
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Table 5.1: Parameters of the Obata model

Symbol Value Description

Vo - Resting venous blood volume fraction

ro 100 s 1  Taylor expansion of intravascular relaxation rate AR 21

VO 80.6 s- 1  Frequency offset at the surface of magnetized vessel

TE 20 or 30 ms Echo-time of the MRI sequence

6 0.59 for TE=30ms Intrinsic/Extrinsic signal ratio

0.70 for TE=20ms

Eo 0.4 Baseline oxygen extraction fraction

ki 4.3 - vo-Eo- TE Lumped constant

k2 e-ro-Eo- TE Lumped constant

k3 E - 1 Lumped constant

signal from the NIRS measurements. This idea has been investigated previously by

[70, 66]. However, the NIRS signal is contaminated by pial vein washout [21, 23].

While the pial compartment cannot be extracted from the NIRS measurements, this

component can be removed from the fMRI data because of the high spatial resolution

of BOLD-fMRI. Because NIRS suffers from pial contamination, the NIRS-predicted

BOLD signal will agree with the measured BOLD signal only if the NIRS data are

corrected for pial vein washout.

To apply the above methodology, the Obata model must be modified to account

for two discrepancies between BOLD-fMRI and NIRS. (1) Continuous-wave NIRS

cannot measure relative changes in hemoglobin but rather a quantity proportional to

absolute variations. (2) NIRS measures variations in total hemoglobin (HbT) rather

than CBV. The Obata model as written in Eq. (5.1) contains only dimensionless

variables i.e. all the variables are normalized by their value at rest. Making use of

the relation
Hct

HbTo = H V (5.2)
MW Hb

where Hct represents the hematocrit and MWHb the molecular weight of hemoglobin,

the Obata model can be re-written in terms of absolute hemoglobin variations which

can be measured by NIRS. The new model will be referred to the NIRS-adapted
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Obata model:
ABOLD (t) = a - AHbT - a 2 -AHbR (5.3)

BOLD

with

a1 = MWHb - (k2 ± k3 ) ' Y HbT. PVCHbT (5.4)

and
MWHb (k1 + k2 ) HbR PVCHbR. (55)

Hct 1+ Sa02(E 0 i)

The definition and value of the parameters involved in this new version are summa-

rized in Table 5.2.

Table 5.2: Parameters of the NIRS-adapted Obata model

Symbol Value Description

MWHb 64 500 g/mol Molecular weight of hemoglobin

Het 160 g/L Hematocrit
* HbT ~-_ 1 Cortical weighting factor for HbT
* HbR to be estimated Cortical weighting factor for HbR

**PVCHbT 50 Partial volume correction factor for HbT
**PVCHbR 50 Partial volume correction factor for HbR

Sa 0 2 0.98 Oxygen saturation in arteries

* -y handles cortical vs pial (which are both part of the activated brain tissue)
** PVC handles activated brain tissue vs scalp+skull+non-activated brain tissue

Generally, the pathlength of the light in the head can be separated into scalp and

skull layers, non-activated brain tissue and activated brain tissue [126]. In this paper,

we further separate the activated brain tissue into two regions: the cortical tissue

and the pial vasculature. More specifically, the quantity PVC represents a partial

volume correction extracting the signal coming from the activated brain tissue from

the signal coming from the rest of the head (i.e. skin/skull and non-activated brain

tissue crossed by the light). Finally, the variable -y represents the fraction of the

activated brain tissue signal that is coming from cortical tissue while 1 - -Y represents

the fraction originating from pial vein oxygenation changes.

The coefficients a1 and a2 in Eq. (5.3) were estimated from the multimodal data
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set using a standard least-square method. ABOLD/BOLD was extracted from the

fMRI data while AHbT and AHbR were computed from the NIRS data. Once a1

and a 2 were recovered, the cortical contribution of HbR relative to HbT defined as

H,"bR = IYHbR/HbT was computed using the following relation:

HbR a2  (k2 + k3) [1 + SaO2 (1 - E0 )] PVCHbT
= a1  ki + k2  PVCHbR (

fit assumed

where a1 and a 2 were obtained from the least-square fit and the value for the rest of

the parameters taken from the literature.

In our model, we separately account for the volume fraction of the activated brain

tissue (with PVC) and the cortical vs pial composition of the activated tissue (with

-y). With the above definition, PVC depends on the wavelengths of the NIRS sources

and y does not. [126] showed that measurements performed at 690 nm and 830 nm

minimize the cross-talk between HbT and HbR introduced by incorrect values of PVC.

Since these wavelengths were used in our measurements, crosstalk between HbR and

HbT was negligible and it was reasonable to assume PVC'bT= PVCHbR. As such,

these two factors cancel out in the estimation of 7 bR with Eq. (5.6), as do Hct and

MWHb. Our estimation of _YHbR was therefore independent of the values assumed for

these parameters. Under these assumptions, Eq. (5.6) reduces to

HbR a2  (k2 + k3) [1 + Sa0 2 (1 - Eo)]
y = - - ._(5.7)a1  ki + k2

fit assumed

[21] showed that the spatial extend of the activation region measured by HbT is

smaller than the one measured by HbO or HbR. The larger activation region measured

by HbO and HbR was attributed to potential washout of the deoxyhemoglobin in the

pial vasculature during the activation. The same phenomenon of extended pial vein

washout is handled by the parameter y in our model. Pial veins exhibit only very

small volume changes following brain activation [21, 58, 30]. Therefore, the value of
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7HbT is very close to 1 indicating that most of the HbT signal is coming from the

cortical region. Under this assumption, a pure washout of HbR is observed and thus

the amplitude of the pial increase in HbO matches the amplitude of the pial decrease

in HbR:

(1 - -HbO) AHbO - (1 - _HbR) AHbR (5.8)

where (1 - -y) indicates the pial fraction of the signal. One can derive the expression

for the cortical weighting factor for HbO (-Hy0) from Eq. (5.8):

HbO AHbT - -HbR - AHbR
AHbO (5.9)

The parameter -HbR alone cannot be extracted from the in vivo data but under the

assumption that 7HbT 1, the approximation ,HbR HbR holds. We will refer to

.Y IbO as the estimation of -y6b under this assumption by substituting 7HbR by -.HbR

in Eq. (5.9):
YO AHbT - .HbR - AHbR (5.10)

AHbO

where the subscript "r" emphasizes the assumption of no pial volume changes.

Conversely, in the cortical tissues the amplitude of the increase in HbO does not match

the decrease in HbR because vascular dilation gives rise to a change in blood volume

[15]. Therefore, the cortical fraction of the signal, -y, given by the ratio of the cortical

signal over the total activated tissue signal (cortia) , will be different for HbR and

HbO. Since the amplitude of the cortical AHbR is lower than the amplitude of the

cortical AHbO, the relative cortical weighting factor will be lower for HbR compared

to HbO (7HbR < -HbO)
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5.3 Methodology

5.3.1 Monte Carlo simulations

The effect of pial vein washout was first investigated using Monte Carlo simulation.

The anatomical model used in the simulation was the same as in [23]. A high res-

olution anatomical TI MRI image was acquired and tissues where then segmented

in four different types: scalp, skull, cerebrospinal fluid (CSF) and brain tissue (con-

taining both white and gray matter). The segementation was performed using the

Matlab package SPM8. A phase contrast MR angiography was also used to image

the pial vasculature located at the surface of the cortex [23, 95]. A saturation band

was applied to suppress the arterial blood signal such that only pial veins were kept

in the final anatomical model. The selected velocity encoding was 5 mm/s for the

plane described by the right-left and anterior-posterior encoding. The bandwidth

was 300 Hz/px and imaging times were TR/TE = 80.9/10.3 ms. The flip angle was

set to 15'. More information about the sequence parameters can be found in [23].

An illustration of the anatomical model with the position of the optical sources and

detectors is shown in Fig. 5-1.

veins
cortex
simulated activation
source
detector

Figure 5-1: Anatomical model used in the Monte Carlo simulations. The position of
the optical sources and detectors is also illustrated as well as the simulated region of
activation.

Specific optical properties were assigned to each tissue type and are summarized in

Table 5.3. These values were computed using the model from [126] which takes into

113



Table 5.3: Optical properties assigned to the different tissue types for the Monte Carlo

simulations. Absorption coefficient p [mm-'], scattering coefficients p,, [mm-'],
anisotropic factors g and refractive indexes n. The brain tissue includes gray and

white matter. Values were computed using the method given in [126].

A = 690 nm A = 830 nm
Tissu pa As g n Pao S 9 n
Scalp 0.0159 8.000 0.900 1.4 0.0191 6.600 0.900 1.4
Skull 0.0101 10.00 0.900 1.4 0.0136 8.600 0.900 1.4
CSF 0.0004 0.100 0.900 1.4 0.0026 0.100 0.900 1.4
Brain 0.0178 12.50 0.900 1.4 0.0186 11.10 0.900 1.4
Pial veins 0.5745 74.50 0.985 1.4 0.4758 67.50 0.992 1.4

account the blood content and the oxygen saturation of each tissue type. A baseline

oxygen saturation of 60 % was assumed in the pial veins [13]. In the specific cortical

region shown in red in Fig. 5-1, we simulated an increase in HbO of +9 IpM and a

decrease in HbR of -3 pIM. In our simulation, we also induced an increase in oxygen

saturation in the pial veins (SpO2) ranging from 5 to 10 %, as reported in the literature

[13, 142].

Monte Carlo methods were used to simulate the photon fluence at each NIRS detector

[6]. Fluences were computed for a baseline state i.e. using the optical properties

given in Table 5.3 as well as for an activated state i.e. modifying slightly the optical

properties of the brain tissue and the pial veins in Table 5.3 to take into account the

cortical activation as well as the change in oxygen saturation in the pial veins. We then

used the modified Beer-Lambert law [24, 19] to recover the hemoglobin concentration

changes from the fluences detected during the baseline and the activated state. In

our simulations, the relationship between the HbR change simulated in the cortical

region (AHbRsi) and the total HbR change recovered at the detector (AHbRl)

containing both cortical and pial contributions is given by

AHbRSm = AHbRl - PVCHbR ., HbR (5.11)

AHbR . '

with the Partial Volume Correction factor (PVCHbR) relating the total detected HbR
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change (AHbR j) to the total simulated HbR change (AHbR"') in the brain tissue.

Similar equations hold for HbT

AHbT~i" = AHbTi - PVCHbT HbT (5.12)
AHbTs'

and for HbO

AHbOf M = AHbOdet PvCHbO HbO (5.13)

AHbO t

Without simulating volume changes in the pial veins, yHbT = 1 and from Eq. (5.12) we

find that PVCHbT = AHbTm/AHbT e. We first verified that using tissue optical

properties for 690 nm and 830 nm, the partial volume correction factor (PVC) as

defined in this paper was the same for HbR, HbT and HbO by running a simulation

with an activation in the cortical region only i.e. -HbR = l and -y = 1 (see Fig. 7-

2A). Once this assumption was justified, a second simulation was run with a washout

effect in the pial vasculature on top of a cortical activation (see Fig. 7-2B). From this

second simulation, the cortical weighting factor for HbR and HbO were computed

using Eq. (5.11) with PVCHbR = PVCHbT and Eq. (5.13) with PVCHbO = PVCHbT

respectively
HbR- AHbRc"/AHbRt (5.14)

AHbT'm/AHbT

goAHbO'/AHbodeHbO -=ot (5.15)
AHbT'm/AHbT

5.3.2 In vivo studies

Two different studies were performed. In each of them, we recorded concurrent NIRS-

fMRI during a motor task which consisted of finger tapping blocks with a duration

of either 2 s or 20 s.

In the first study, simultaneous NIRS-fMRI data were acquired during 2 s finger
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tapping blocks. These data have previously been described by [69, 70, 66]. Six

subjects were scanned and completed six runs containing 30 individual events each.

The NIRS data were bandpass filtered at 0.03-0.8 Hz before being block-averaged

across all runs and all individual events. The source-detector pairs to be included in

the region-of-interest average were chosen for each subject consistently with the fMRI

data and from measurements showing statistically significant changes (p < 0.05).

The grand average across the six subjects was then computed. The BOLD data were

acquired using parameters TR/TE/0=500 ms/30 ms/900. The functional images

were first motion corrected and spatially smoothed with a 6-mm Gaussian kernel.

For each subject, a t-statistic map was generated and threshold was applied for p <

0.05. Significant voxels were then manually selected under the NIRS probe based on

fiducial markers and the grand average was computed across all six subjects. The

hemodynamic response functions were then calculated by an ordinary least-squares

linear deconvolution with a third order polynomial drift. Each of the AHbO, AHbR,

AHbT and ABOLD time courses were adjusted to cross y=0 at t=0 by subtracting

their respective value at t=0.

In the second study, concurrent NIRS-ASL data were acquired during 20 s finger tap-

ping blocks. These data have been previously published by [62]. The NIRS data were

bandpass filtered at 0.0167-0.5 Hz. The source-detector pairs to be included in the

region-of-interest average were chosen for each subject consistently with the fMRI data

and from measurements showing better than p < 0.05 significance. The grand average

across the five subjects was then computed. The BOLD signal was extracted from

the control images of the ASL acquisition [62] with parameters TR/TE=2 s/20 ms.

For each subject, we generated a t-statistic map to identify regions of significant

response. Each t-map was thresholded at p < 0.05 to compute the hemodynamic

response. This resulted in a focal ROI positioned on the precentral gyrus and located

beneath the source-detector array of the optical probe. The hemodynamic responses

were computed from the ROI using a linear deconvolution model with a third order

polynomial drift. Each of the AHbO, AHbR, AHbT and ABOLD time courses were
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adjusted to cross y=O at t=0 by subtracting their respective value at t=0.

For each study, we fitted Eq. (5.3) to the averaged ABOLD, AHbT and AHbR

reponses with a least-square method to recover a1 and a 2 before computing .y bR

using Eq. (5.7). The parameter yf'b was then estimated using Eq. (5.10).

5.4 Results

5.4.1 Simulation results

Results of the Monte Carlo simulations are summarized in Fig. 7-2. Panel (A)

shows the simulated concentration changes when no increase in oxygen saturation was

simulated in the pial veins. Using Eqs. (5.11-5.13) with 7HbR = YHbT = 7HbO = 1,

the PVCHbR/PVCHbT and PVCHbO/PVCHbT ratios computed were very close to 1

confirming that the Partial Volume Correction factor (PVC) was the same for HbR,

HbO and HbT. The region of interest (ROI) was defined by the three source-detector

pairs showing the strongest activation. Panel (B) shows the simulated concentration

changes when we added a 6% increase (60 to 66 %) in oxygen saturation in the pial

veins on top of the cortical activation (+9 puM AHbO and -3 pM AHbR). The average

cortical weighting factor -y computed with Eqs. (5.14-5.15) and taken over the three

source-detector pairs of the ROI was 0.17 (or 17 %) for HbR and 72 % for HbO.

We also ran the simulation inducing different oxygenation increases in the pial veins

ranging from 5 to 10 %. The yHbR values recovered in each case are shown in Fig. 7-2C

and ranged from 11 to 19%, while the yHbO values were less sensitive and decreased

from 73 % to 70 % as shown in Fig. 7-2D.
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Figure 5-2: Results of the Monte Carlo simulations performed on the numeri-
cal volume shown in Fig. 5-1. (A) Simulation of a cortical activation with no
pial vein washout (-YHbR = 1 and yHbO - 1) to define the ROI and verify that
PVCHbR = PVCHbT and PVCHbO PVCHbT. (B) Simulation of a pial veins oxy-
genation increase of 6 % (60 to 66%) on top of a cortical activation. No volume
changes were simulated in the pial veins (-yHbT = 1). (C-D) Sensitivity analysis show-
ing (C) the _ HbR and (D) the _yHbO values recovered by simulating an oxygenation
increase of 5 to 10 %.
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5.4.2 Modeling analysis of in vivo measurements

The average experimental time course for AHbO, AHbR, AHbT and ABOLD during

functional activation are shown in Fig. 5-3. The Y bR and -yHbO values recovered with

Eqs. (5.7) and (5.10) for each data set are also shown. The -YrbR value was 18% for

the 2 s finger tapping study and 23% for the 20 s finger tapping study. The - HbO value

was 77% for both studies. The uncertainty for -YHbO was larger than Y bR because its

calculation using Eq. (5.10) requires additional experimental measurements, which

introduced additional errors.

X 10- Study 1: 2 s 6 X-0 Study 11: 20s

"""-BOLD S2.5
10 - (A) - HbO - 10 (B)

8 - HbR 8 10 2
-- HbT1

6 6 1.5

U 40 0 00 0 00.
C - -2 - 0.

-4 y"0.180* 0.003 -4 Y 0.23 0.03-1

-"0.8±0.2 0H0.8±0.1 -1.5
05 10 0 10 20 30

time (sec) time (sec)

Figure 5-3: Finger tapping results. The average traces for AHbO, AHbR, AHbT and
ABOLD are shown as well as the -Y bR and 74'b values recovered with the NIRS-
adapted Obata model. Error bars represent the standard error computed across the
five subjects. (A) Study I: 2 s finger tapping. (B) Study II: 20 s finger tapping.

The value recovered in each case depends of the value assumed for six parameters:
pVCHbR
pVCHbT i E0 , c, v, ro and SaG2. A sensitivity analysis was performed for each of these

parameters and the results are shown in Fig. 5-4 for -YbR. Sensitivity for -Yr4 bO is

not shown since 7HbO was computed directly from Y bR using Eq. (5.10). In each

case, the value of a single parameter was varied while all the other parameters were

kept constant. For each parameter, the black vertical line indicates the value assigned

to this parameter while varying the value of another parameter. For all parameters
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except c (the Intrinsic/Extrinsic fMRI signal ratio), the yHbR 's recovered ranged be-

tween 15 and 30% when varying the Obata model parameters over a reasonable range.

However, the recovery was more sensitive to the value assumed for E and _yrbR ranged

from 10 to 100% when c varied from 0.5 to 1.4.
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Figure 5-4: Sensitivity analysis for different parameters of the model. (A)-(F) Sensi-
tivity of the recovered YrbR from our in vivo data for different values assumed for the
Obata model parameters. Results are illustrated for both the 2 s (blue) and the 20 s
(red) finger tapping studies. The vertical lines show the reference values indicated in
Tables 5.1 and 5.2.

5.4.3 Combined results

The combined results from the simulations and the modeling of the in vivo measure-

ments are summarized in Fig. 5-5. The average cortical weighting factor value was

19% ± 3% for HbR and 76% ± 3% for HbO.
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Figure 5-5: Summary of cortical weighting factors (yfrbR and yrbO). Results are
shown for the two in vivo studies, for the Monte Carlo simulations as well as the
grand average.

5.5 Discussion

5.5.1 Cortical contribution to the NIRS signal

As shown in Fig. 5-5, our simulations agreed very well with our modeling results from

the in vivo measurements, confirming the assumptions made in our computations.

The good agreement between the yHbR values computed from simulations (where

yHbT was forced to be 1) and the _YrbR values computed from the experimental data

indicates that -yHbT modeled from the in vivo measurements was very close to 1.

This result is strongly supported by exposed cortex animal imaging models [58, 30].

Therefore, our in vivo results can be interpreted on the same footing as our simulations

results.

Our combined results (averaged from simulations and in vivo modeling) indicate that

for a task-evoked response over the motor cortex, the cortical contribution of the

detected AHbR signal corresponds to 19% of the cortical contribution of the AHbT

signal e.g. that the cortical contribution is 5 times smaller for AHbR compared to
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AHbT. For AHbO, this value was found to be 76%. Our results suggest that both

the AHbO and AHbR signals contain a significantly higher pial vein contribution

compared to AHbT. It is therefore likely that the AHbT signal will provide better

spatial specificity [122, 211 and should be used instead of AHbO or AHbR to map

cerebral activity with NIRS.

Since our results suggest that no pial volume change occurred, .ybR .l 7Hb and thus

our numbers indicate that 19% of the entire A HbR signal and 76% of the entire AHbO

signal is coming from the cortical region. The remaining 81% and 24% of the signal

for AHbR and AHbO respectively originate from the pial veins located at the surface

of the motor cortex, where a change in oxygen saturation takes place following brain

activation. This finding is not surprising since NIRS exhibits a sensitivity profile that

exponentially decreases with depth [7] and the pial vasculature is located above the

surface of the cortex.

Previous work by [66] using the same data set used in our first study (2 s tapping)

found that 44% of the NIRS signal (accouting for both HbO and HbR) was coming

from the cortical region. Taking the average of our Y bR and -Yoo value gives 48%

which agrees well with this value.

Our sensitivity analysis revealed that the YrbR values found from the in vivo data

were not very sensitive to the parameters assumed in the Obata model, except for the

c parameter representing the Intrinsic/Extrinsic fMRI signal ratio. Assuming larger

c values would change our results by increasing .Yr bR as shown in Fig. 5-4C. However,

recent work by [52] supports the accuracy of our results by reporting similar C values

to those used in our study. Using a detailed analysis, Griffeth and Buxton showed

that for TE=32 ms, the c value is close to 0.5 in veins and goes up to 1 and 1.3 in

the capillaries and the arteries respectively. In our work, the arterial compartment

was assumed negligible since most of the BOLD signal is coming from the veins. The

capillary compartment was combined with the veins in a single compartment model

as in [971. Using the equations in Obata et al, we computed an effective e value of 0.58
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and 0.7 for TE=30 ms and TE=20 ms respectively, which agrees well with Griffeth

and Buxton's findings.

5.5.2 Impact on NIRS-fMRI CMRO2 estimation

Our results suggest that caution must be taken in quantifying cortical cerebral activity

from NIRS measurements acquired over a region where large pial veins are located. If

concurrent fMRI data are available, the NIRS-adapted Obata model (Eq. 5.3) allows

us to compute the cortical contribution under some realistic assumptions.

The Cerebral Metabolic Rate of Oxygen (CMRO2 ) can be estimated from concurrent

NIRS-fMRI recordings [62, 66]. The pial compartment was already taken into account

in [661's computation. In Hoge et al [62], CMRO2 was computed from the NIRS data

without any corrections for pial vein washout. CMRO 2 was given by the product of

the change in oxygen extraction fraction (E) and the change in CBF: rCMRO 2 = rE

x rCBF, where r denotes a quantity normalized by its baseline value. The change

in CBF was estimated from the ASL data while the change in oxygen extraction

fraction was computed from the NIRS data: rE = rHbR/rHbT. Following activation,

CBF increases (rCBF > 1) and the oxygen extraction fraction decreases (rE < 1)

[15]. Correcting rHbR for the pial contamination lowers the decrease in HbR result-

ing in a higher rE and a higher rCMRO 2. Depending on the baseline hemoglobin

concentrations, this correction can be significant. With the values given in [62], the

pial vein correction increases rCMRO 2 by 15% (from 1.40 to 1.61) while this value

increased from 1.26 to 1.49 assuming a lower baseline oxygen saturation measured by

time-resolved spectroscopy [45].

5.5.3 Limitations and future studies

The values for the oxygenation increase induced in the pial veins in our Monte Carlo

simulation were taken from the literature [13, 142]. This was necessary since we did
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not monitor the response in the pial veins during our fMRI scans. Future studies

could use magnetic resonance susceptometry-based oximetry [72] to monitor oxygen

saturation in the pial veins following activation. These values would be more accurate

than the ones computed from a simplified model and could be used in the Monte Carlo

simulations to give more accurate results.

In our analysis, we have ignored any global systemic flow variations in the skin that

could be phase-locked with the hemodynamic response in the brain. These flow

changes in the skin potentially contaminate the NIRS signal because of its high sen-

sitivity to superficial tissues. If true, these contributions would have simply been

integrated with the pial vein washout (1 - -y) in our in vivo analysis without changing

the conclusion of this paper. However, we have completely ignored any skin contribu-

tions in our MC simulations. Such skin artefact should also be considered in future

work. Preliminary work by [79] analysed the fMRI response in the skin located under

a NIRS probe and was able to relate these responses to artefacts in the NIRS signal

acquired on the forehead.

Our setup did not allow us to acquire a pial angiogram and functional data on the

same subjects. Even though our simulation results matched our in vivo analysis, we

could not assess inter-subject vascular-based variability. Future multimodal studies

will be required to quantify how the geometry of the vasculature impacts the NIRS

signal. Preliminary work by [106] has shown that the inter-subject variability of NIRS

can be partially attributed to anatomical vasculature differences.

Our study was performed over the motor cortex where pial vasculature is known to

be present at the surface. Other regions might exhibit stronger contamination due

to larger vessels, such as the sagittal sinus in the visual cortex [23], or weaker con-

tamination due to smaller vessels as in the forehead. Future studies will be required

to map the contribution of the pial vasculature in the NIRS signal across different

regions of the brain.
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5.6 Summary

We have shown that the NIRS signal collected over the motor cortex during an evoked

task contained a smaller cortical contribution for AHbR and AHbO compared to

AHbT. The cortical contribution to AHbR was equal to 19% of the cortical contri-

bution to AHbT. Similarly, the cortical contribution to AHbO was equal to 76% of

the cortical contribtion to AHbT. Our results suggest that the pial contamination

is less important for AHbT, and therefore, the AHbT signal should be used rather

than AHbO or AHbR to map cerebral activity with NIRS. This pial vein contami-

nation has a significant impact on the quantification of cerebral activity using NIRS

and correction factors must be applied in order to compute CMRO2 from concurrent

NIRS-fMRI measurements.
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Chapter 6

Modeling the fMRI signal from

two-photon measurements

The main contribution of this chapter is to develop a modeling approach to predict

the fMRI signals from two-photon vascular stacks filled with oxygen distribution. We

performed Monte Carlo simulations over real microvascular networks and oxygen dis-

tributions measured in vivo on rodents, at rest and during forepaw stimulation, using

two-photon microscopy. Our model reveals for the first time the specific contribution

of individual vascular compartment to the BOLD signal, for different field strengths

and different cortical orientations.
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6.1 Introduction

Over the last 20 years, functional magnetic resonance imaging (fMRI) has been driv-

ing a revolution in the brain sciences, providing new insights into the brain's func-

tional organization. The celebrated Blood Oxygen Level Dependent (BOLD) contrast

[101, 82] is still the most widely used fMRI method [89]. Despite its widespread uti-

lization, the physiological mechanism that gives rise to the BOLD signal measured

during cerebral activation is still poorly understood [89, 78]. One of the reasons for

this challenge is the difficulty of measuring blood oxygenation in the microvascular

compartments during cerebral activation and linking these physiological changes to

the BOLD signal measured [135, 16]. Understanding how individual vascular com-

partments are reflected in the BOLD signal for different pulse sequences and for

different B-field strengths is critical for the choice of sequence parameters, for the

development of new quantitative fMRI methods, for the development of high-field

fMRI technologies and for the interpretation of neuroimaging data in the context of

vascular diseases. Moreover, quantifying how the signal varies across regions with

different spatial orientations and correcting for this potentially confounding factor

will positively impact our interpretation of BOLD images.

Recent advances in multiphoton microscopy have opened the door to measure mi-

crovascular oxygenation in vivo during cerebral activation in rodents [119, 83, 25, 103].

Here, we take advantage of this technology to measure microvascular networks with

oxygen distribution in vivo on rodents, at rest and during forepaw stimulation. These

tridimensional physiological measurements are then used to predict fMRI signals from

first principles. Monte Carlo simulations of nuclear spins diffusing over the measured

vascular networks placed in an external magnetic field are performed. The resulting

BOLD signal is validated against experimental BOLD data measured under the same

physiological conditions. Using this modeling framework, we compute the individual

contribution of arteries, capillaries and veins to the BOLD signal for different B-field

strengths and for both gradient echo (GRE) and spin echo (SE) pulse sequences.
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We also study the effect of spatial orientation in the MRI scanner and validate our

prediction against experimental BOLD measurements.

6.2 Reconstruction of baseline oxygen distribution

across real vascular networks and validation

against experimental P 0 2 measurements

Two-photon microscopy was carried out first on a set of anesthetized mice (n=6)

as described in the Supplementary Information. Briefly, an intravascular oxygen-

sensitive nanoprobe (PtP-C343) was injected for the PO2 measurements followed by

the injection of FITC for angiography. The angiogram for a representative animal is

shown in Fig. 6-1a.

In order to reconstruct microvascular oxygenation with sufficient spatio-temporal res-

olution to accurately model the BOLD signal, a vascular anatomical network (VAN)

model was created for each animal [8, 35, 5] (see Supplementary Information for de-

tails). Angiograms were graphed using a suite of custom-built computer programs

[35, 134] and a mesh of the vasculature was created for each animal [35]. Each vessel

segment was identified as an artery, a capillary or a vein as shown in Fig. 6-1b. Blood

flow distribution as shown in Fig. 6-1c was obtained after computing the resistance

for each vascular segment on the graphs. The oxygen distribution was simulated with

the VAN by using the experimental PO2 measurements as boundary conditions and

using a finite element approach described in [35]. An example of the resulting distri-

bution of PO2 obtained is shown in Fig. 6-1d and compared against the experimental

PO2 measurements in Fig. 6-le. The agreement between the simulated and the exper-

imental PO2 measurements is demonstrated in Fig. 6-1f where both PO2 and oxygen

saturation (SO 2 ) are compared as a function of branching order from pial vessels.
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6.3 Computation of physiological changes during

forepaw stimulation and validation against ex-

perimental measurements

The stimulus used for our functional measurements was a 2-sec long electrical stimu-

lation of the forepaw. The dilation of the vasculature following the stimulus was mea-

sured on a separated set of anesthesized rats (n=19) using two-photon microscopy as

described in [?] and in the Supplementary Information. Time courses of the dilation

were averaged for the surface pial arteries, the arterial diving trunk as well for the

1st and 2nd branching pre-capillary arterioles. These traces are shown in Fig. 6-2a.

These time courses were used as inputs to the VAN model to compute the resulting

changes in flow and volume across the entire network. The averaged flow changes and

volume changes (both relative to baseline) for individual compartments are shown in

Fig. 6-2b and Fig. 6-2c respectively. Note that no venous dilation was observed in

our two-photon measurements, a fact consistent with other studies involving a cranial

window [59, 86]. However, a venous dilation of 1-2% was computed from the VAN

model and used in the fMRI model, which is consistent with two-photon measure-

ments during short stimulus [30] under a reinforced thinned skull window [31].

Changes in oxygen saturation were computed from the VAN model given changes in

flow and volume and assuming a AFlow/ACMRO2 ratio of 3, which is the typical

value measured in rodents for short stimulations [68, 32]. Simulated SO 2 changes are

shown in Fig. 6-2d for different vascular compartments. To validate these simulations,

S02 measurements during functional stimulation were performed in pial vessels with

confocal microscopy on a separate of set of rats (n=10) under the same experimental

conditions [142]. The agreement between the simulations and the experimental mea-

surements for both arteries and veins are demonstrated in Fig. 6-2e. Changes in SO 2

across the entire vasculature (Fig. 6-2f) are shown at different time points following

the forepaw stimulus in Fig. 6-2g.
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6.4 Prediction of the BOLD response to forepaw

stimulation using Monte Carlo simulations of

proton diffusion within the VAN and valida-

tion against experimental data

The BOLD signal is a measure of the transverse magnetization of nuclear spins. In

gradient echo (GRE) BOLD, the signal decays to zero due to spin-spin interactions

as well as dephasing induced by magnetic field inhomogeneities. In spin echo (SE)

BOLD, most of the later process is reversed with the use of a 180 refocusing pulse.

The presence of deoxyhemoglobin in the vasculature gives rise to microscopic magnetic

fields perturbations within the cortical tissue (upon its introduction in the strong field

of the MR scanner) and therefore contributes to local magnetic field inhomogeneities.

During functional activation, variations in vessel size and oxygenation level affect the

geometry and the amplitude of these magnetic field inhomogeneities and therefore

affect the GRE signal. The oxygenation level in the vessels also affects spin-spin

coupling and therefore the SE signal.

The magnetic field inhomogeneities were calculated from the SO 2 volumes at each time

point using a numerical perturbative method [104, 17]. An example of SO 2 volumes

and the resulting magnetic field inhomogeneities are shown in Fig. 6-3a and Fig. 6-3b

respectively. BOLD was computed by simulating the random walk of proton nuclear

spins within these volumes as shown in Fig. 6-3c and accounting for irreversible spin-

spin dephasing (see Supplementary Information). A caveat of this approach is that

the perturbative method produces relatively uniform fields inside the vasculature,

which is not the case in reality as strong dipole fields arise around red blood cells

that are tumbling around. To overcome this difficulty, the intravascular protons were

treated separately as described in the Supplementary Information. Both GRE and

SE signals were computed by applying different sets of spatial gradients as illustrated

in Fig. 6-3d. An example of simulated GRE and SE BOLD are shown in Fig. 6-3e.
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Typical features of the BOLD signal can be appreciated including a large overshoot

followed by a post-stimulus undershoot. To test the accuracy of our simulations, we

performed experimental BOLD measurements on a separate set of rats (n=6) during

the same forepaw stimulations [131]. The agreement between the simulated and the

experimental BOLD response is demonstrated in Fig. 6-3f where the amplitudes of

the signals are compared.

6.5 Contribution of individual compartments for

different field strengths

The individual contribution of arteries, capillaries and veins computed over 6 animals

and two cortical orientations are shown in Fig. 6-4a . We found that 50-60% of

the GRE signal (depending on the cortical orientation) originates from oxygenation

changes occurring in the capillaries at 1.5T and that this number increases with

field strength to plateau at 65-75% at higher fields. For SE, the inversion pulse

refocuses the signal around larger vessels increasing the capillary contribution to 70%

at 1.5T. We note that the arterial contribution is negative for GRE as previously

reported [135]. The individual contribution of the intravascular and the extravascular

compartment were also computed for two cortical orientations and displayed in Fig. 6-

4b. For GRE, the intravascular contribution starts at 30-40% at 1.5T and decreases

rapidly to become negligible at 7T and higher fields. This result is in good agreement

with previous studies [10, 135]. For SE, the intravascular contribution starts higher

(70-80%) and persists up to 14T, again, consistent with [135]. Finally, the total BOLD

response increases linearly with the field strength for GRE but slightly saturates for

SE as shown Fig. 6-4c, which is also consistent with [135].
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6.6 Preferential orientation of veins gives rise to

an angular dependence of the BOLD effect

The angle between the cortical surface and the external magnetic field of the scan-

ner (0,) is shown to influence the contribution of individual compartments for GRE

(Fig. 6-4a) as well as the total BOLD response for both GRE and SE (Fig. 6-4c). The

difference in BOLD signal simulated between 0_=90 and 0=0 (as a percent change

normalized to 0,=0) is shown in Fig. 6-4d.

Arteries and veins are mostly oriented either perpendicular or parallel to the cortical

surface while the capillary bed has very little preferential orientation and is more

uniform (Fig. 6-5a). This observation is consistent with previous studies [5]. All

three compartments will exhibit an angular dependence as shown in Fig. 6-5b, but this

angular dependence will be stronger for the arterial and venous compartments because

of their larger preferential orientation. However, the individual contribution of the

arterial compartment to the total BOLD response is weak as shown in Fig. 6-5c, and

therefore the descending veins remain the principal cause of the angular dependence

of the BOLD effect. Moreover, the angular dependence is exclusively extravascular

as shown in Fig. 6-5d since the intravascular BOLD signal is totally isotropic. This is

due to the random nature of red blood cell distribution (and magnetic field distortion)

inside arteries and veins. In the capillaries, the red blood cells are oriented linearly

with the vessels but the distribution of the capillary orientations is mostly uniform as

shown in Fig. 6-5a. Accounting for all these facts results in an isotropic intravascular

signal globally over an entire voxel.

These results suggest that the same physiological change will produce BOLD re-

sponses with different amplitudes depending on the spatial orientation of each spe-

cific voxel in the scanner. To confirm this prediction, BOLD-fMRI was measured in

humans (n=5) during a hypercapnic challenge, which would be expected to produce

a relatively uniform change in deoxygenated hemoglobin over the cortical surface.
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The angle O, was computed for every voxel as shown in Fig. 6-4e [181. A scatter plot

of the BOLD changes versus 0, for all voxels of the gray matter was generated and

the mean BOLD change for each 0. is shown in Fig. 6-4f. A variation of 40% in the

amplitude of the BOLD response was observed between voxels at 0' compared to

voxels at 900 (Fig. 6-4g). We note that the maximum BOLD response in our simula-

tions was obtained for 0z=90* while in the experimental measurements the maximum

was obtained for 0_=0'. The position of the maximum in human data indicates that

surface pial veins contribution is higher in human data while the ascending veins

contribution is higher in our simulations. Simulations over larger two-photon stacks

containing more surface pial veins should confirm this hypothesis in future studies.

The angular dependence of the BOLD effect produces a confounding effect when

comparing BOLD response from different subjects with different brain morphologies

or with different spatial orientations of the head in the MRI scanner. The method

used to calculate 02 (Fig. 6-4e) will help to better characterize this phenomenon in

human BOLD data and to develop methods to correct for this confounding effect in

future studies.

6.7 Supplementary Information

6.7.1 Baseline measurements of P 0 2 and angiography

All experimental procedures were approved by the Massachusetts General Hospital

Subcommittee on Research Animal Care. We anesthetized C57BL/6 mice (male,

2530 g, n=6) by isoflurane (12% in a mixture of 02 and air) under constant tempera-

ture (37'C). A cranial window with the dura removed was sealed with a 150-m-thick

microscope coverslip. During the experiments, we used a catheter in the femoral

artery to monitor the systemic blood pressure and blood gases and to administer the

two-photon dyes. During the measurement period, mice breathed a mixture of 02,
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air, and CO 2 under the same isoflurane anesthesia. Imaging was performed using a

custom built two-photon microscope (Sakadi et al. 2010) and two-photon enhanced

oxygen sensitive phosphorescent dye PtP-C343 [37]. The time-domain measurements

of phosphorescence lifetimes were performed following the procedures outlined in

[119, 25, 103]. Approximately 400 PO2 measurements were collected in various mi-

crovascular segments down to 450 m from the cortical surface. The conversion between

PO2 and oxygen saturation of hemoglobin (SO 2) was performed using the Hill equation

with Hill coefficients specific for C57BL/6 mice (h = 2.59 and P50 = 40.2) (Uchida

et al. 1998). After collecting the PO2 measurements, we obtained structural images

of the cortical vasculature by labeling the blood plasma with dextran-conjugated flu-

orescein (FITC) at 500nM concentration. We acquired 600 x 600 x 662 um stacks of

the vasculature with 1.2 x 1.2 x 2.0 um voxel sizes under a 20X Olympus objective

(NA=0.95).

6.7.2 Functional measurements on rodents

Rationale for using both rats and mice

All baseline measurements were performed on mice while all functional measurements

were performed on rats. This was motivated by recent works performing a detailed

topological analysis of the cortical microvasculature of rodents and suggesting that

the topology of cortical vessels is very similar for mice and rats [4]. Therefore, our

analysis should lead to very similar results and conclusions whether we used rats or

mice. However, from a technical perspective, using mice for baseline measurements

allowed us to take advantage of the powerful two-photon PO2 measurement technology

[119] while using rats for functional data resulted in higher signal-to-noise ratio for

the parameters measured (especially arterial dilation and BOLD-fMRI).
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Stimulus

All experimental procedures were approved by the University of California at San

Diego Institutional Animal Care and Use Committee. Sprague-Dawley rats (130200

g) were anesthetized as described in [27, 261. The stimulation lasted 2 s and consisted

of a train of six electrical pulses (3 Hz, 300 s, 1 mA) with an interstimulus interval

of 2025 s. The intensity was adjusted to provide stimulation below the movement

threshold. Stimulation was presented using a separate computer that also acquired

transistortransistor logic (TTL) timing signals for data acquisition (trigger out TTLs

for each line or frame during two-photon acquisition and for each slice during fMRI)

using a National Instruments 10 DAQ interface controlled by a home-written software

in Matlab. The TTL data were used to determine the timing of each line/frame/ slice

relative to the stimulus onset during data analysis performed in Matlab.

Two-photon measurements of arterial dilation

Two-photon microscopy was performed on rats (n=19) as described in [26]. Fluorescein-

conjugated dextran (FD-2000; Sigma) in physiological saline was injected i.v [96].

Images were obtained with an Ultima two-photon microscopy system from Prairie

Technologies using 4 (Olympus XLFluor4/340, NA = 0.28) and 40 (Olympus, NA =

0.8) objectives. Line scans up to 1 mm long were acquired across multiple vessels (up

to six) with a scan rate of 80170 Hz. The scan resolution was 0.5 m or less. Diving

arterioles were measured in the frame mode at five to eight frames/s.

Confocal measurements of P 0 2

Confocal microscopy was performed on rats (n=10) as described in [142]. A solu-

tion of Oxyphor R2 in saline was administered through the femoral vein to yield a

concentration of 40 mmol/L in the bloodstream. At each location, phosphorescence

was excited for 100 ms. The resultant phosphorescence emission decay profile was
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collected at 50MHz sampling rate for 500ms. Fifty decay profiles were averaged for

each measurement ( 30ms per point measurement). The decay lifetime was calculated

and converted to P 0 2 [120, 143]. The temporal resolution was 0.5 to 1 sec depending

on the number of points measured per interval.

Functional MRI

MRI was performed on rats (n=10) on a 7T/21-cm BioSpec 70/30 USR horizontal

bore scanner (Bruker) as described in [131]. BOLD functional data were acquired

using a single-shot gradient-echo echo planar imaging (EPI) pulse sequence with the

following parameters: TE = 10 ms, flip angle = 30, matrix = 80 80, slice thickness

= 1 mm, TR = 1 s, five adjacent slices. The laminar analysis procedure used was

previously described in [131].

Graphing the angiograms

In order to estimate vessel diameters, to label vessel types and to compute statistics

across the angiogram such as branching order from pial vessels, a mathematical rep-

resentation of the vasculature must be obtained. This mathematical representation

in termed a graph, which consists of nodes interconnected by segments. Structural

images based on FITC-labeled blood plasma were used to construct a graph of the

microvascular network for each animal. A 3x3x3 median filter was used to enhance

vessel contrast. We created the graphs and performed image processing using a suite

of custom-designed tools in Matlab (MathWorks, Inc). Initial steps involved running

the VIDA suite [134]. The graphs were then inspected and manual corrections were

applied until all segments in the field of view become interconnected (single group).

Vessel diameter was estimated at each graph node by thresholding the image at a low

value of approximately 2% of the maximum image intensity, considering lines through

the node point oriented every 3 degrees in the local plane perpendicular to the vessel

axis, and finding the minimum distance from vessel edge to vessel edge [35].
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Vessel Type identification

Capillary labeling was done automatically by setting all segments with diameter equal

or less than 8 um as capillaries. Arteries were then manually identified as the up-

stream segments and veins as the downstream segments. Surface pial arteries tend

to be straighter and can be easily distinguish from surface pial veins, which are more

curvy. The p0 2 measurements were used in cases of ambiguity. The Floyd-Warshall

algorithm was then used to calculate branching orders of individual vascular segments

with respect to main pial vessels, which were manually identified.

6.7.3 Vascular Anatomical Network model

Rationale

The complete set of measurements required to acquire the angiogram and the P0 2

distribution at rest takes about 45 minutes. It is therefore not possible to measure

all vessel sizes and the entire P 0 2 distribution at every time point during functional

activation with short stimulus, which are the typical stimulus length used in human

event-related fMRI experiments. To model the BOLD signal accurately, we would

like to reconstruct these changes in vessel size and oxygenation with a temporal

resolution of 1 sec, which is 3 orders of magnitude too fast for the actual technology.

To overcome this limitation, we rather focused on measuring a single parameter at

a time (i.e. vessel diameters or P 0 2 changes) during functional activation. Together

with a vascular anatomical network (VAN) model, these functional measurements

allow to reconstruct oxygenation changes everywhere in the graph with very good

temporal resolution ( 0.1 sec), which is not achievable with the actual microscope

technology alone.
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Overview

Vessel dilation in the arterial compartment is an active process mediated by the re-

lease of vasodilatory agents and therefore these measurements were used as inputs

to perturb the VAN model from steady-state during functional activation. Flow

changes and volume changes can then be computed everywhere assuming a passive

compliance model for the capillary and the venous bed. Knowing flow and volume

changes allows to compute the changes in oxygenation in all the vessels assuming

a AFlow/ACMRO2 coupling ratio. To ensure that this gives accurate and realistic

results, the simulated oxygenation changes are then compared with partial P0 2 mea-

surements during functional activation. For all six vascular networks constructed,

this approach gave really good agreements between the simulated and the measured

functional changes as shown in Fig. 6-2e.

Steady-state VAN

The goal here is to reconstruct the resting distribution of oxygen in all vessels. This

distribution will then be compared with the PO2 distribution measured experimentally

to make sure it is realistic. This steady-state distribution will then be perturbed

during functional activation.

The oxygenation level in the vasculature is globally determined by two competing

parameters, which are blood flow and the cerebral metabolic rate of oxygen (CMRO2).

Higher blood flow increases oxygenation while higher CMRO2 decreases it. In steady-

state, these two parameters are related by:

CMRO2 = CBF x OEF x Ca (6.1)

where OEF is the oxygen extraction fraction and C, is the arterial blood oxygen

content given by

Ca = PaO2 -a + 4 - Hct - CHb -Sa0 2 (6.2)
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where alpha = 1.27x10~3 umol/mL/mmHg is the solubility of oxygen, CHb = 5.3

umol/mL is the hemoglobin content of blood and Hct = 0.4 is the hematocrit in

arteries. OEF can be computed directly for each animal using our two-photon mea-

surements:

OEF = Sa02 - Sv0 2  (6.3)
SaO 2

CBF in rodents is well documented in the literature [149, 140]. We therefore fixed

CBF to obtain a perfusion of 100 mL/100g/min in our volumes. CMRO2 was then

computed for each animal using the above equation and values obtained for each

animal are shown below:

Table 6.1: Physiological parameters measured in mice

ID PaO2 N002 SaG 2 SvO 2 OEF CMRO2

(mmHg) (mmHg) (%) (%) (%) umol/ml/min)
20100203 109 44 92 58 36.9 2.28
20110408 94 43 88 54 38.6 2.32
20120404 107 60 93 67 28.0 1.72
20120409 116 57 93 66 29.0 1.81
20120625 118 60 94 68 27.7 1.73
20120626 109 41 91 58 36.2 2.23
Mean 108.8 50.8 91.8 61.8 32.7 2.02
Std 8.5 9.1 2.1 5.9 5.0 0.26

Capillary segments cut by the limits of the field-of-view were removed to obtain a

closed graph between the 1-2 pial arteries and the 4-6 pial veins. This procedure was

previously used by [90, 91] and was shown to results in accurate flow distributions.

BOLD simulations were performed on regions of interest (Fig. 6-la) excluding regions

of tissue were capillary end-segments have been removed. The resistance for each

segment was calculated using Poiseuilles law corrected for hematocrit as described in

[108]. Flow speeds in inflowing pial arteries were calculated based on the perfusion

assumed (100 mL/100g/min) and the arterial diameters. Blood pressure boundary

conditions for pial veins were set using values from [87] and the blood flow distribution

was finally computed using the matrix equations given in [8] together with velocity

boundary conditions for inflowing arteries and the blood pressure boundary conditions
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for outflowing veins.

A tridimensional mask of the vasculature was obtained from the angiogram and the

graph and a mesh of the vasculature was generated using the software iso2mesh

[34]. Oxygen advection was then performed individually for each animal using the

computed blood flow distribution and the inflowing arterial PO2 given in the table

above for each animal. The PO2 was initialized everywhere to 10 mmHg and oxygen

advection was run with constant inputs until steady-state was achieved (typically

after 15 sec in the model time). The details of the finite elements algorithm used can

be found in our previous paper [35].

VAN model during functional activation

The arterial dilation traces shown in Fig. 6-2a were used as inputs to compute changes

in blood flow and blood volume as described in [8]. An intra-cranial pressure of 10

mmHg was assumed and the compliance parameter # was set to 1 for both capillaries

and veins [8]. Oxygenation changes during functional activation was then computed

using the same advection code [35] by keeping PO2 in the arterial inflowing nodes

constant and using the updated flow and volume values at each time point. CMRO2

was increased following a temporal profile corresponding the averaged arterial dila-

tion trace with a peak amplitude corresponding to a relative change 3 times lower

compared to the relative change in blood flow, giving a AFlow/ACMRO2 coupling

ratio of 3 [68, 32].

6.7.4 fMRI simulations

Overview

The BOLD signal is a measure of the transverse magnetization of nuclear spins.

In gradient echo (GRE) BOLD, two processes contributes to the decay of the sig-
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nal: dipole-dipole coupling (spin-spin interactions) as well as dephasing induced by

the inhomogeneities in the local magnetic field. The relaxation constant embedding

these two processes is termed T*. In spin echo (SE) BOLD, the second process is

reversed around larger vessels (veins) with the use of a 180 refocusing pulse. The

relaxation constant in this case is termed T 2 . A contributor to the local magnetic

field inhomogeneities is the presence of deoxyhemoglobin in the vasculature, which is

paramagnetic. During functional activation, variations in vessel size and oxygenation

level affect the geometry and the amplitude of these magnetic field inhomogeneities

and therefore affect T*. Furthermore, the oxygenation level affects spin-spin coupling

and therefore T 2 .

The challenges in modeling BOLD are (1) to compute the magnetic field inhomo-

geneities at every time point and (2) to keep track of spin-spin decay (T 2 effect).

These tasks both require to know exactly the microvascular geometry and the deoxy-

hemoglobin content in each vessel segments at every time point.

Computing magnetic field inhomogeneities

We used a numerical method previously described by [104] to compute the mag-

netic field inhomogeneities. The S02 volumes (like the one shown in Fig. 6-3a were

resampled to ixix1 um and converted to a susceptibility shift volume Ax using:

AX = AXO - Hct - (1 - SO2 ) (6.4)

where AXo = 4 - 0.264x10- 6 is the susceptibility difference between fully oxygenated

and fully deoxygenated hemoglobin [17 and Hct is the hematocrit that was assumed

to be 0.3 is capillaries and 0.4 in arteries and veins [52]. Assuming that the magnetic

field inhomogeneities are small, the method uses perturbation theory and the inho-

mogeneities across the entire volume are computed by convolving the susceptibility

shift volume AX with the geometrical factor for the magnetic field inhomogeneity
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induced by a unit cube:

6 1 a3
ABce = (3Cos 2 0 - 1) -Bo (6.5)

7r 3 r3

This procedure allowed to compute the magnetic field inhomogeneities across the

entire vascular volume ABnhom(x)Fig. 6-3b.

T 2 and T* volumes

T 2 and T* volumes are required on top on magnetic field inhomogeneity volumes to

accurately model the fMRI signals. T 2 and T* values (in sec) along the vasculature

were computed using the formulas obtained by fitting experimental measurements

and given in [135]

T2 ,vessel = (12.67. B- (1 - SO2 )2 + 2.74B, - 0.6) (6.6)

T2,vessel = A ± 0(1 - S0 2)2 (6.7)

where A and C are constants (in sec-1) which depend on the external magnetic field

BO and given below.

Table 6.2: Constants for T 2 and T* in the vasculature

BO < 1.5T A=6.5 C=25
1.5T < BO < 3T A=13.8 C=181

3T < BO < 4T A=30.4 C=262
4T < BO < 4.7T A=41 C=319

BO > 4.7T A=100 C=500

In the tissue (outside the vessels), T 2 and T* (in sec) were computed using the for-

mulas given in [135]

T 2 ,tissue = (1.74 - Bo + 777) 1  (6.8)

T2,tissue = (3.74. B0 + 9.77)~1 (6.9)
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Monte Carlo simulation of nuclear spins

Water protons experience diffusion in cortical tissue and this process was simulated

with Monte Carlo simulations. The positions of 107 protons were initialized uniformly

in the three-dimensional volume. Each proton experienced a random walk for a period

of TE sec as shown in Fig. 6-3c. The diffusion coefficient was set to 1x10- 5 cm 2 /sec

[104] and the time step dt was set to 0.2x10- 3 sec. At each time step, the position

X = (Xix 2X 3 ) of each proton was updated using

x' = x1 + N (0, 2 D dt) (6.10)

2 = x 2 + N (0, 2 D dt) (6.11)

X3 = X3 + N (0,2 D dt) (6.12)

Protons reaching a vessel wall were bounced-back such that all intravascular protons

stayed inside the vessels for the duration of the simulation and vice versa for the

extravascular protons. The MR signal was computed at each time step by averaging

the contribution of all N protons:

S (t) = Re - exP (On (t)) (6.13)

where the phase was updated every time step using:

t/dt

bn,intra (t) = _ T2,bI.d (x (k)) (6.14)
k=1

t/dt

kn,extra (t) = 7 - j - AB (x (k)) - T 2 ,tissue (x (k)) (6.15)
k=1

where AB = ABinhom + ABgradients with ABinham the magnetic field homogeneity

computed above and ABgradients is the field homogeneity introduced by the spatial

gradient shown in Fig. 6-3d. For spin echo (SE) signal, the imaginary part of the
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phase was inverted at TE/2

0, (TE/2) = conj (#, (TE/2)) (6.16)

We note that the intravascular and the extravascular protons were treated differently.

This method was adopted since the numerical method produces relatively uniform

magnetic fields inside the vasculature, which is definitively not the case in reality

where very strong dipole fields arise around red blood cells that are tumbling around

and water molecules are exchanged between red blood cells and the plasma. There is

no current microscopic way of modeling accurately the intravascular signal so we relied

on empirical formulas based on experimental measurements to model the intravascular

portion of the signal.

This procedure is repeated at each desired time point during the functional activation.

The relative signal changes was computed by comparing the signal obtained at each

time point to the signal obtained at t=O and converted to a percent change.

6.7.5 Comparison of simulations against experimental BOLD

For the simulations traces presented in Fig. 6-3e, the direction of the external mag-

netic field Bo (7T) was set perpendicular (900) to the z-axis. This matches the Bo

amplitude and direction of our experimental BOLD data which were collected with

a 7T horizontal bore magnet which leads to an angle of 900 between Bo and the cor-

tical surface of the forepaw area. The experimental data presented in Fig. 6-3f are

averaged over the first 600 um of the cortex (first three slices as described in [131] to

match the volume sampled in our Monte Carlo simulations (layers I-IV).
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6.7.6 Individual contributions to the BOLD signal

The individual contributions to the BOLD signal shown in Fig. 6-4a were computed

at the peak of the activation, which occurred between 3.5 and 4 sec (depending on

the animal) after the start of the stimulus. For each field strength, TE was set to

T2*,tissue for GRE and to T2,tissue for SE.

Arteries, capillaries and veins contributions

To compute the contribution of an individual vascular compartment (e.g. the cap-

illaries), two different simulations were performed. In the first one, the oxygenation

volume (with dilated vessels) computed with the VAN at the peak of the functional

activation was used. The signal obtained was compared to the signal obtained using

the oxygenation volume (with baseline vessel size) at t=O. This will be referred as

the total BOLD response. In the second simulation, we constructed a new volume

by using baseline (values at t=O) oxygenation and vessel size for arteries and veins,

but peak values for oxygenation and vessel sizes for capillaries. The signal obtained

in this case was also compared to the same baseline signal computed using baseline

oxygenation and vessel size everywhere. This signal change will be referred to the cap-

illary BOLD signal change. To compute the individual contribution of the capillaries,

the capillary BOLD signal change was divided by the total BOLD signal change and

converting to percentage. This procedure was repeated for arteries and veins, and for

all field strengths.

Intravascular and extravascular contributions

From a practical point of view, the extravascular BOLD signal is the signal one would

get by applying strong crusher gradients to null the signal of fast moving protons inside

blood vessels [10]. We used this definition for our simulations. Again, two simulations

were performed. The first one is identical to the one described previously and termed
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total BOLD signal change. In the second one, we simulated only extravascular protons

both at the peak activation and at baseline (t=0). The second one is referred to the

extravascular BOLD signal change. The extravascular contribution was computed

by dividing the extravascular BOLD signal change by the total BOLD signal change

and converting to percentage. The intravascular contribution was then computed by

subtracting the extravascular contribution in percentage from 100%. This way of

calculating the intravascular and extravascular contributions takes into account both

blood volume and blood oxygenation and is consistent with the practical definition

given above.

Calculation of the angular dependence of BOLD

To quantify the angular dependence of the BOLD response, we compared the BOLD

signal changes simulated at different 0,, values with the BOLD signal changes sim-

ulated at 0-, = 00. The difference was converted to a percentage with respect to

0z = 0*:

diff (Oz) = 100 x Aso - ASOZo (6.17)
ASo.=o

With this definition, a variation of 60% indicates that the BOLD signal change for

0z = 900 is 60% stronger compared to the BOLD signal change for 0, = 0o.

6.7.7 Experimental BOLD measurements on human

BOLD during Hypercapnia

All experimental procedures were approved by the Massachusetts General Hospital.

Healthy subjects (n=5) were enrolled in the study. Written consent was received

from each subject before the experiment. Each subject received 2 blocks of 2-min

hypercapnia during which his or her end-tidal pCO2 increased by 8 mmHg with

respect to their baseline pCO2 value. The hypercapnic blocks were interleaved with
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3-min blocks at normocapnia. Combined ASL-BOLD data were collected during

the gas manipulations. Only the control images were used in the BOLD analysis.

Sequence parameters were TR=3000ms, IR-1=600ms, IR-2=1800ms, TE=13ms, flip

angle=90, Res=3.4x3.4x6.0 mm, 6 slices. An anatomical Ti-weighted scan (MPRage)

was also collected (Res=lxlxl.2 mm).

Angular analysis

BOLD data were analyzed using Freesurfer. Motion correction and slice-timing cor-

rection were applied. No smoothing was used. BOLD signal changes between nor-

mocapnic and hypercapnic conditions were computed across the 6 slices. A complete

cortical surface reconstruction of the anatomical scan was performed with Freesurfer

using the recon-all function. An additional cortical surface was generated mid-way

in the gray matter and the angle between the normal to this surface and Bo was

computed as previously described in [18]. The BOLD signal volumes were then in-

terpolated on this surface, leading to a series of voxels containing both 0, and BOLD

change values. The data were pruned by selecting only voxel with a positive BOLD

response.

The pruned data point were binned based on 0, at every four degrees between 0 and

1800 and the average BOLD change for each bin was computed. The variation in

BOLD changes with respect to BOLD change at O, = 900 was computed using

ASo~ - ASo =9 o
diff (9z) = 100 x ASo 9 (6.18)

6.8 Summary

In conclusion, the modeling approach developed here permits study of the BOLD

effect in its finest details. This framework will help to validate and refine simplified
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BOLD models used in the calibrated BOLD approaches [22], or any other quantitative

T* fMRI method to infer physiological parameters. Finally, this framework has great

potential in the new field of MRI fingerprinting [92].
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Chapter 7

Multimodal reconstruction of

cerebral blood flow using combined

two-photon microscopy and optical

coherence tomography

The main contribution of this chapter is to investigate whether adding flow constraints

to vessel segments can help in computing cerebral blood flow (CBF) in incomplete

microvasculature networks. Simulations were performed on a synthetic network and

showed that flow constraints reduce the impact of imperfect pressure boundary condi-

tions and vessel resistance resulting in a more robust reconstruction of flow. We then

combine two-photon laser scanning microscopy (TPLSM) angiography with Doppler

optical coherence tomography (DOCT) to apply our method for calculating microvas-

cular blood flow within the rodent brain.
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7.1 Introduction

There is increasing interest in modeling blood flow from the perspectives of neuroimag-

ing [16, 60] and cerebrovascular physiology [75]. Several groups have performed the

computation of cerebral blood flow in realistic vascular networks [108, 35, 8, 114,

2, 53, 110, 100, 90, 91, 121]. Several difficulties arise when the computation takes

place over a real vascular network measured in vivo. This includes vessel diameter

estimation and therefore estimation of the resistance, as well as red blood cell (RBC)

rheology. Moreover, the truncation of the network at the edges of the imaging volume

inevitably increases the number of boundary conditions required for the computation

of flow[114, 90]. All these drawbacks increase the uncertainty of the flow distribution

computed with these models and surely limit their application.

Doppler Optical Coherence Tomography (DOCT) applied to the rodent cerebral mi-

crovasculature has recently been demonstrated [125] and validated [124] to evaluate

flow in a small number of vessels. Such measurements could in principle help the

reconstruction of flow in truncated microvascular networks.

Using simulations, we investigate the error reduction obtained by using measurements

to constrain the reconstruction of flow within the vascular network. We then apply our

method to in vivo data by combining DOCT for quantitative measurement of CBF

in specific vessels and two-photon laser scanning microscopy (TPLSM) for precise

measurement of the three-dimensional vessel morphology.

RA 2 node

7Rc segment

4 RD DOCT measurement
5

/RE

Figure 7-1: Graph representation of a vessel network.
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7.2 Theory

We represent a vessel network as a graph consisting of nodes joined by segments as

illustrated in Fig. 7-1. The flow in a given segment of length f and diameter d is

computed according to Poiseuille's law

F = 128,AP (7.1)
ird4

where the term 128f//wrd4 is the resistance R of the segment and AP is the pressure

gradient between the two nodes of the segment. 7 is the viscosity of blood and was set

to 15 x 10-6 mmHg - s in our work [107, 87]. More complex models described in the

literature [107, 109, 114] could be used similarly. Conservation of flow at branching

nodes implies that

FA + FB + FC = 0 (7.2)

FC + FD = 0 (7.3)

FD + FE = 0- (7.4)

If we first ignore the DOCT measurement in segment C, we substitute Eq. (7.1) into

Eqs. (7.2-7.4) to get
P 3 P 1 +  + 3 4= 0 (7.5)

RA RB RC

P4 - P3  P4 -P 5 =
± = 0 (7.6)RC RD

P 5 -P4  P 5 P- (7.7
+ = 0. (7.7)

RD RE

On top on flow conservation, boundary conditions for blood pressure need to be

established at the graph end points. In this work, these values were taken from

literature [87] based on the diameter of the vessel. For the simple graph of Fig. 7-1,

one gets

1 = P(7.8)
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p2 Plit (7-9)

P6 = Plit (7.10)

Eqs. (7.5-7.10) can be written in matrix form

MR*P=YR (7-11)

and the pressure for all nodes is solved simultaneously using a least-squared procedure.

If we now take into account the DOCT measurement in segment C (labeled F8CT)

and use this value as a hard constraint, we get

P3 - P 1 + - P 2 DOCT
RA + 2 - FDO (7.12)

RA RB

P4 - P3 = DOCT13)

RC

P5 - p4  P - P6+ = 0 (7.14)
RD RE

which together with Eqs. (7.8-7.10) can be written in matrix form

Mc -P =yc (7.15)

where the subscript C stands for constrained. In this case, neither the resistance nor

the length of the segments containing a DOCT measurement is taken into account in

the computation of flow.
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7.3 Material and methods

7.3.1 Animal preparation

Animal protocols were approved by the Massachusetts General Hospital Subcommit-

tee on Research Animal Care. We anesthetized C57BL/6 mice (male, 25-30 g) with

isoflurane (1-2% in a mixture of 02 and air) under constant temperature (370 C).

We then opened a cranial window with dura removed and sealed it with a 150-pm-

thick microscope coverslip. Blood plasma was labeled with fluorescein isothiocyanate-

conjugated dextran (FITC) at 500 nM concentration. Physiological parameters such

as blood pressure, heart rate and pCO2 were monitored and maintained within the

normal ranges.

7.3.2 Multimodal microscopy

Our multimodal microscope, described in Refs. [142, 119], has independent TPLSM

and OCT scanning arms which share a common imaging objective, allowing easy

switching between sequential TPLSM and OCT measurements.

We first performed a DOCT scan protocol (with a 856 nm laser source) for quantita-

tive flow measurements. The DOCT scan generated a three-dimensional map of the

axial (z) projection of velocity, v, (x, y, z) [125]. Flow at specific locations in vessels

was obtained from DOCT velocity axial projections by calculating the velocity flux

through the en face (also known as transverse or xy) plane

F = J OVz (x, y, zo) dxdy. (7.16)

The X-Y resolution of our OCT was 10-15 pm which did not permit accurate flow

estimation in capillaries . Moreover, the system could only accurately measure ve-

locity projections in the range ±3.6 mm/s before producing phase wrappings, and
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thus the higher velocities in large arteries could not be realiably measured. Because

of these two limitations, DOCT measurements were only considered in larger veins

in this work.

We then acquired a 600x600x660pm stack of the FITC-labeled vasculature using

TPLSM (1.17x1.17x 2.0pm voxel size) as described in ref [119]. Although OCT can

also be used to generate angiograms, the spatial resolution and contrast-to-noise ratio

is generally higher with FITC TPLSM, which makes it easier to graph (i.e. vectorize)

the vascular stack in the subsequent steps.

7.3.3 Data processing

The TPLSM angiogram was graphed with a custom software using a combination

of automatic segmentation procedures and manual corrections [35]. Vessel diameter

was estimated at each graph node by thresholding the image at a low value of ap-

proximately 2% of the maximum image intensity, considering lines through the node

point oriented every 3 degrees in the local plane perpendicular to the vessel axis, and

finding the minimum distance from vessel edge to vessel edge. We set the blood pres-

sure boundary condition for the arteries and venules crossing the sides of the imaged

volume using tabulated values from ref [87 given the vessel diameter and the vessel

type (artery or vein). This set of boundary conditions have been shown to result in

accurate and realistic flow distributions in previous studies [35, 90].

7.4 Results and discussion

7.4.1 Simulations

We investigated the improvement obtained by adding DOCT measurements to the

recovery procedure using a synthetic vessel network. The diameter of the vessels were
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fixed to 8 [im and flow was first computed given a set of boundary conditions at the

end nodes. Noise was then introduced by varying randomly the values for the pressure

boundary conditions and the resistance of the vessels. Flow was then recovered using

the erroneous pressure boundary conditions and resistance values without DOCT

priors using Eq. (7.11). A fraction of the vessels were then randomly selected and

DOCT priors were set for these vessels. Flow was then reconstructed using these

priors from Eq. (7.15). The fraction of vessels with DOCT priors ranged from 5 to

25 %. The value for the DOCT measurements was set to the true (simulated) flow

value with noise added, ranging from 5 to 25%. The performance was quantified by

computing the mean squared error (MSE) between the simulated and the recovered

flow in both cases (i.e. with and without DOCT priors). To insure reproducible

results, the simulations were run 30 times with different noise instances for boundary

conditions and resistance values and MSE values were averaged across all simulations.

a Segments containing b Error without Error using log-scale c Relative MSE
DOCT priors using DOCT (%) DOCT (%) .5

with DOCT 1.5 1
no DOCT

0.8 Mno DOCT
0.6 with DOCT

.5 0.6
0 OA

-0.5 0.2
0

Figure 7-2: Simulations showing the improvement in accuracy obtained by integrating
DOCT measurements in the computation of flow. The fraction of vessel with DOCT
was 20% and noise in the DOCT measurement was 25%. a) Segments containing
DOCT priors. b) Error map in percent for flow recovered with and without priors.
c) Comparison of the MSE.

A detailed output of the simulation is shown in Fig. 7-2 with 20% of the vessels

containing DOCT priors and for a DOCT noise level of 25%. Averaged results over

all simulations are presented in Fig. 7-3. As seen in Fig. 7-3, the improvement in MSE

varies almost linearly with the fraction of vessels with DOCT priors while noise has
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0.7 0.7
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fraction DOCT prior (%) noise level (%)

Figure 7-3: Averaged results of the simulations. a) Improvement in MSE for different
fractions of vessels containing DOCT priors. b) Improvement in MSE for different
level of noise in the DOCT priors.

less effect. Improvement in MSE of the order of 25% are obtained when 25% of the

vessel contained DOCT priors, even in measurements contain 25% noise. This result

highlights the importance of getting DOCT measurements in the largest possible

number of vessels to reduce the error in the flow computation.

Another point worth mentioning is the influence of DOCT prior locations in the

network. For the specific case illustrated in Fig. 7-2, the MSE was reduced by 60%

which is more than twice the averaged value obtained from all simulations (shown in

Fig. 7-3). This is explained by the location of the DOCT priors which are concentrated

around one of the inflowing vessels. Constraining the flow value in an inflowing vessel

will null the impact of the pressure boundary condition for this specific vessel and

several downstream vessels since flow must be conserved along the vascular tree. This

result indicates that getting DOCT measurements in large inflowing arteries or large

outflowing veins will have the most impact on the flow computation.

7.4.2 Experimental measurements

The TPLSM angiogram and the DOCT velocity volume are shown in Fig. 7-4a)

and b) respectively. The reconstructed flow distribution is illustrated in Fig. 7-4c).

We observe a large range of flow across the network with higher flow in larger pial
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Figure 7-4: Reconstruction of flow in the mouse cortex. a) TPLSM FITC angiogram.
b) DOCT velocity image. c) CBF computed from the the model with constrains
from DOCT. d) Blood pressure and e) blood velocity computed from the model as a
function of vessel type and diameter.

vessels and lower flow in smaller capillaries. The blood pressure drop and the velocity

profile from arteries to veins are plotted in Fig. 7-4d) and e) respectively and are

superimposed with experimental values measured on cats [87]. Our velocities for

capillaries are also in good agreement with values measured in the mouse cortex [80].

7.5 Summary

In conclusion, we demonstrate that adding flow constraints results in more accurate

reconstruction of blood flow in incomplete or truncated microvascular networks. Sim-

ulations show that measuring flow in 25% of the vessels can reduce the error by 25%.

We finally use TPLSM angiography together with quantitative flow measurements

from DOCT to apply this method for reconstruction of cerebral blood flow in the

mouse cortex down to a depth of 660pm.
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