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Current research in materials has devoted much attention to graphene, with a considerable 

amount of the chemical manipulation going through the oxidized state of the material, known 

as graphene oxide (GO). In this report, the hydroxyl functionalities in GO, the vast majority 

that must be allylic alcohols, are subjected to Johnson-Claisen rearrangement conditions. In 

these conditions, a [3, 3] sigmatropic rearrangement after reaction with triethyl orthoacetate 

gives rise to an ester functional group, attached to the graphitic framework via a robust C-C 

bond. This variation of the Claisen rearrangement offers  an unprecedented versatility of 

further functionalizations, while maintaining the desirable properties of unfunctionalized 

graphene. The resultant functional groups were found to withstand reductive treatments for 

the deoxygenation of graphene sheets and a resumption of electronic conductivity is observed. 

The ester groups are easily saponified to carboxylic acids in situ with basic conditions, to give 

water-soluble graphene. The ester functionality can be further reacted as is, or the carboxylic 

acid can easily be converted to the more reactive acid chloride. Subsequent amide formation 

yields up to 1 amide in 15 graphene carbons and increases intergallery spacing up to 12.8 Å, 

suggesting utility of this material in capacitors and in gas storage. Other functionalization 
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schemes, which include the installation of terminal alkynes and dipolar cycloadditions, allow 

for the synthesis of a highly positively charged, water-soluble graphene. The highly 

negatively and positively charged graphenes (zeta potentials of -75 mV and +56 mV, 

respectively), have been successfully used to build layer-by-layer (LBL) constructs.  

 
1. Introduction 

Chemically modified graphenes have captured the imagination of materials 

researchers and have a plethora of potential applications, ranging from polymer composites[1] 

to electronic devices[2] to biomedical devices,[3] which leverage the extraordinary mechanical, 

electronic, and thermal properties of graphene.[4] A significant emphasis has centered on the 

chemical manipulation of graphene oxide[5] (GO) through use of the high density of 

carboxylic acid, alcohol and epoxide functionality.[5- 8] Although GO is easy to manipulate 

synthetically, the material properties are inferior to graphene. The conductivity of graphene 

drops to that of an insulator upon oxidation to GO[9] and the effective elastic modulus drops 

by more than half.[10] To this end, researchers have developed methods to chemically reduce 

(deoxygenate) GO to restore the physical properties, including use of sodium borohydride,[9] 

hydrazine,[11, 12] vitamin C,[13] and thermal “reduction.”[14- 16]  However, significant drawbacks 

exist in that most of the functionalization methods developed for GO convert the surface 

bound hydroxyls and epoxides into carbon-heteroatom bonds[5, 7] that are heterolytically 

unstable and can be removed during reduction, allowing the reduced GO sheets to quickly 

assemble into stacked structures. 

There are a number of advantages to graphene oxide functionalization schemes that 

install “reduction-proof” carbon-carbon bonds that allow the reduced GO to remain 

functionalized after reduction. In contrast to carbon nanotubes,[17, 18] GO can not be 

functionalized with strongly alkaline organometallic reagents, which produce hydroxide ions, 

due to the residual water, and cause a reduction of the GO.[19] The GO activation is important 
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because graphite is only functionalized peripherally and minimally exfoliated when 

functionalization is directly attempted.[20, 21] To extend GO functionalization schemes, our 

group has recently made use of the fact that most (if not all) of the hydroxyl functionalities are 

allylic alcohols that, if converted to vinyl-ethers, will undergo a [3, 3] sigmatropic Claisen 

rearrangement to produce reduced GO functionalized with tertiary amides.[22] Unfortunately, 

further chemical transformation of the tertiary amide was limited, so the utility of this method 

was not broad. 

To expand the utility of this chemistry, we now report graphene functionalization by 

another variation of the Claisen reaction, known as the Johnson Claisen rearrangement.[23] In 

this process, triethyl orthoacetate is used as the solvent and reagent and in the presence of 

catalytic acid produces graphenes with ester functional groups. The resulting carbonyl groups 

are attached to the graphitic framework via a carbon-carbon bond that survives reductive 

graphene-deoxygenation conditions. This variation offers vast improvements over previous 

work in the the enhanced reactivity of the activated ester over the tertiary amide and opens 

doors for functional applications of this method. Furthermore, the cost of the reagents are 

considerably less.  In this contribution, we demonstrate the efficacy of this process and the 

utility of the functional graphenes afforded by these methods.  

 

 
2. Results and Discussion 

2.1. Synthesis 

GO was synthesized by a modified Hummers method.[24, 25] This synthesis uses highly 

oxidizing conditions and appropriate caution should be used in work-up/ manipulation to 

avoid exothermic thermal decomposition or reactions with oxidizable chemicals/ solvents. 

Moderately oxidized GO (C to O ratio of 3:1) was used for this procedure since it is 

amphiphilic, which allows for a better dispersion than fully oxidized GO in the organic 

conditions used. Fully oxidized GO (C to O ratio of ≤2:1) required significant sonication to 
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form a good dispersion in triethyl orthoacetate (TEOA) due to its hydrophilicity, while the 

partially oxidized GO formed a good dispersion with only stirring. Both the lower oxidation 

state and the minimalization of the sonication used in preparation allow for larger graphene 

flakes and better electronic properties.  

TEOA was chosen as the orthoacetate ester reagent and solvent for the reaction with 

GO. While slightly more expensive than trimethyl orthoacetate, previous work suggested that 

the higher boiling temperature of triethyl orthoacetate (108 oC vs. 142 oC) would be 

advantageous to the extent of reaction.[22] Initial experiments confirmed the greater reactivity 

of the ethyl ester. The use of the ethyl ester resulted in the greater intensity and clarity of the 

new peaks in the infrared spectrum as well as a greater weight loss in the thermogravimetric 

analysis (TGA), suggesting a higher density of ester groups installed. para-Toluene sulfonic 

acid (TsOH) was chosen as the acid catalyst, and unexpected covalent incorporation of this 

reagent would be readily apparent by the appearance of a sulfur peak in the X-ray 

photoelectron spectroscopy (XPS) analysis. In our first generation of GO functionalization, 

Cl-GO1 is produced by reaction in TEOA at reflux for 36 hours, followed by cooling to room 

temperature, centrifugation, and washing with polar, aprotic organic solvents (tetrahydrofuran, 

acetone) (Scheme 1).  

Cl-GO1 was characterized by Fourier transform infrared spectroscopy (FTIR), TGA, 

XRD, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) and all are 

consistent with the proposed transformation. The TGA showed a a similar total weight loss to 

GO over the temperature range of 50 to 850 oC, however, the decomposition profile shifts 

such that weight loss predominantly occurred over one clean transition at 230 oC, suggesting a 

majority of one type of functional group. The temperature is near to where the decomposition 

transition occurs in carbon nanotubes functionalized via C-C bonds.[18] To confirm that this 

weight loss did not originate from reagent trapped in the interstitial gallery of GO, control 
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experiments were performed. GO was solicited in TEOA for 1 hour in the absence of the acid 

catalyst. The dispersion was then centrifuged and some of the sample was taken wet, as well 

as after drying under vacuum over night. TEOA is high boiling (boiling point of 142 oC), but 

extremely volatile and from the wet sample, it can be observed that trapped TEOA is 

completely released from the GO layers by 60 oC. Furthermore, after drying under vacuum, 

the TGA trace of GO is unaltered from before the introduction to TEOA. This suggests that 

TEOA does not react with GO without the acid catalyst, which offers further suggestion of the 

proposed reaction. TsOH also can not the source of this weight loss or expansion since no 

sulfur can be observed by XPS. (Figure S1) 

The Raman spectra showed a slight decrease in the D-band at 1330 cm-1 of Cl-GO1 

relative to GO and a general sharpening of the peaks, suggesting increased order. The XPS 

spectra of Cl-GO1 showed only carbon and oxygen peaks, although the carbon to oxygen 

ratio had shifted from 3:1 (found in GO) to 4:1. Since a C to O ratio of 2:1 characterizes the 

functional group itself, this represents a degree of thermal reduction as well as 

functionalization in the reaction conditions. Furthermore, a high resolution scan of the carbon 

peak showed that the C-O component peak at 286.5 eV decreased from 36% in GO to 26% of 

the total carbon content in Cl-GO1. The C-C component peak at 284.7 eV increased from 

52% in GO to 61% in Cl-GO1. Unfortunately, it is not possible to discern the sp2 hybridized 

C of the graphene lattice from the sp3 hybridized C of the installed functional group in this C-

C component. However, this data can be interpreted that roughly 10% of the C-O bonds were 

converted into C-C bonds, via reduction or functionalization. Additionally, the C=O 

component at 287.3 eV decreases and the O-C=O at 288.8 eV increases and sharpens. All of 

this is in accordance with the proposed transformation (Figure S2).[22, 26, 27]  

The XRD spectra provide an analysis of surface functionalization and without surface 

groups the reductively deoxygenated GO reassembles into stacked disordered graphite-like 
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structures (i.e. reduced GO in Figure 1). Pristine graphite has a regular interlayer spacing 

given by a sharp peak at 3.4 Å and with exfoliation to GO, this spacing becomes 8.49 Å. After 

reaction under the Johnson Claisen conditions, the peak defining the interlayer spacing 

cleanly expands to 9.93 Å, which suggests that functional groups were successfully and 

homogenously installed on the graphene surface (Figure 1). This is slightly larger than the 

expansion to 9.3 Å that was observed for the installation of dimethylamide groups using the 

Eschenmoser Claisen reaction.[22] The interlayer spacing here might be expected to be larger 

given that use of the ethyl ester installs a group one carbon longer than N,N-

dimethylacetamide dimethyl acetal used in the Eschenmoser Claisen reaction. It is also 

possible that the higher degree of functionalization by the present method contributes to this 

larger spacing. 

Perhaps the most informative characterization of Cl-GO1 comes from the FTIR 

spectra (Figure 2). GO is characterized by several peaks including a broad, intense –OH 

stretch at 3425 cm-1, a C-O stretch at 1075 cm-1, and two C=O stretches at 1600 cm-1 

(carboxylate) and 1735 cm-1 (peripheral lactones). In Cl-GO1, the –OH stretch is greatly 

decreased in relative intensity and a new peak appears at 2970 cm-1. This latter peak is typical 

of the CH2 asymmetric stretch of the methylene group, which would appear if the 

rearrangement occurs and a methylene spacer separates the functional group from the 

graphene network. The CH2 of the ethyl group also contributes to this resonance. A new C-O 

peak also appears at 1240 cm-1. Two sharp carbonyl peaks are visible at 1725 cm-1 and 1590 

cm-1. The C=O stretch at 1725 cm-1 is easily explained by the expected ethyl ester, however 

the shift of the carboxylic acid peak was not expected and merited further investigation. We 

find that the zeta potential of Cl-GO1 after our organic solvent workup is -55mV at pH= 9, 

which is higher than GO saponified with base at the same pH (-38 mV). Given the ionizable 

nature of GO,[28] it is hypothesized that in the acid catalyst creates carbocations along the 
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basal plane of the GO, which activate the ester carbonyl. This facilitates the nucleophilic 

attack of water[5] liberated from the GO (Figure 3). 

Based on this finding, we endeavored to find conditions that would directly produce 

the carboxylic acid exclusively. Given the metastable intermediate, it seemed that favoring the 

formation of the carboxylic acid should be relatively straightforward. To this end, after the 36 

hours at reflux, we treated the warm reaction mixture with 1M NaOH and allowed the 

reaction to stir an additional 3 hours as it cooled to room temperature. Then, the reaction 

mixture was centrifuged and washed with deionized water three times. The resultant material 

was suspended in DI water with the pH adjusted to 9.0 using NaOH to give a stable dispersion. 

This resulting material, Cl-GO2, now showed a zeta potential of -75 mV and a greater 

intensity of the carboxylate C=O at 1590 cm-1 in comparison to as-synthesized Cl-GO1 

(Figure S3). It is also noteworthy that the CH2 stretching bonds are preserved in the IR spectra 

as would be expected for graphene-CH2CO2H groups. 

Selectively trapping the ester by preventing the saponification proved to be more 

challenging. Introduction of sodium borohydride (NaBH4), lithium aluminum hydride (LAH), 

and even bis-pyridinylidene (a powerful organic reducing agent),[29] either after or before the 

refluxing period did not prevent the formation of new carboxylates and measured zeta 

potentials of the products were approximately -60 mV.  

2.1.1. Reduction of the Cl-GO 

To test the robustness of the newly installed functional groups and to restore desirable 

electronic properties, we endeavored to reduce Cl-GO1 using sodium borohydride. To this 

end, we used a well-established literature procedure to reduce GO,[9] using 20 mM NaBH4 in 

THF (Scheme 2). Both the reduced GO (red-GO) and reduced Cl-GO1 (red-ClGO) were 

characterized by TGA, Raman, FTIR, and XRD. The TGA shows a decreased weight loss for 

both species, as would be expected for the removal of the oxygen-based functional groups 

(Figure S4) and the Raman spectra showed a slight increase of the G band at 1575 cm-1 in 
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comparison with the D band at 1330 cm-1 (Figure S5). In red-GO, the FTIR spectrum shows 

a significant decrease in intensity of the absorptions above baseline. Most notably, the 

carbonyl peak at 1630 cm-1 decreases with respect to the peak at 1725 cm-1 and the peak at 

1180 cm-1, corresponding to C-O single bonds associated with residual oxygens bound to the 

graphene, disappears.  To contrast, red-ClGO still displays the characteristic C-H asymmetric 

stretch of the methylene spacer at 2970 cm-1, indicating that the installed functional group 

remains intact. Furthermore, strong C=O stretches at 1570 and 1725 cm-1 remain, which is 

expected since NaBH4 should not reduce esters and carboxylic acids under these conditions. 

Perhaps the most convincing piece of data can be found in the XRD spectrum.  The spacing 

remains expanded from the interlayer spacing of 8.49 Å found in GO with a sharp peak 

indicating an interlayer distance of 9.71Å. This is slightly reduced from the 9.93 Å found for 

Cl-GO1, but significantly distinct and expanded from the broad peak found over the spacings 

of 3.4- 5.5 Å characteristic of reduced GO9 (Figure 1).  

The most important test of the effectiveness of our functionalization and reduction 

scheme comes with the determination of the electronic properties, most notably electrical 

conductivity. In attaining processability, often the sought-after electronic properties of 

functionalized graphenes can be lost. Functional groups create sp3 hybridized defects that tend 

to disrupt the delocalized electronic structure. However, the functional groups also enhance 

the solubility and prevent aggregation, which could allow oxygen-based defects to be 

removed more completely with chemical reduction. Electrical conductivities were determined 

by a 4-point probe. Pristine single-layered graphene is an impressive conductor[4] (σ > 108 

S/m) and the aggregation into graphite reduces the conductivity to 103-107 S/m, which is still 

considered highly conductive.[28] GO is accepted to be an insulator and chemical reduction of 

GO only partially restores the electronic properties.[9] To compare to these systems, the 

conductivity of Cl-GO1 and red-ClGO were compared to the standard systems (Table 1). It 
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is observed that although GO is an insulator, Cl-GO1 does show low conductivity, 

presumably due to partial reduction during the reaction by liberated alcohol groups.[30] 

Interestingly, red-ClGO reattains a greater degree of conductivity than is observed in red-

GO using the same conditions, insinuating that the installed groups allow the restoration of 

some of the electronic delocalization. This suggests that GO functionalized this way may 

show promise for electronic applications or conductive composites. 

2.1.2 Further Transformations 

Having established the robust nature of the installed functional groups, we endeavored 

to further expand the utility of these methods. Considering the reactivity of the carbonyl 

groups installed, it is logical to evaluate reactions with amines to give functional amides. In a 

first strategy the amine was introduced directly to the ester/ carboxylic acid functionality in 

isolated Cl-GO1 by allowing the reagents to stir overnight at 100 oC after sonication in 

dioxane solution. Three different bulky amines were investigated to achieve a further 

expansion of the graphene interlayer spacing (Scheme 3). Using increasingly bulky amines, 

the interlayer spacing, as measured by XRD, increased to 10.45, 10.65, and 12.4 Å. Following 

the same amidation procedure using GO instead of Cl-GO1 results in materials with poorly 

ordered interlayer spacings. (Figure S6) The small difference in interlayer spacing with the 

biphenyl over the phenyl is understood to be a consequence of conformations that allow for 

the biphenyl to lay parallel to the graphene plane. The three dimensional nature of the 

triptycene, as expected, enforces a larger interlayer spacing. Materials with large interlayer 

spacings such as these show promise for use in capacitors or in gas storage applications.  

Successful amidation was confirmed by a decrease in the intensity of the ester 

carbonyl at 1725 cm-1 and appearance of a new C=O peak at 1600 cm-1, a frequency typical 

for amides (Figure S7). Successful incorporation of the nitrogen was confirmed using XPS. 

Cl-GO1 is 80% C and 20% O, with no other elemental signals visible. XPS analysis of 

AGO2 shows the emergence of a nitrogen peak, accounting for 1.5 % of the elemental 
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composition, with the balance of elements being carbon and oxygen. This translates to 

approximately 1 amide group per 30 graphene carbons, suggesting efficient functionalization 

over two steps. 

Two additional amide functionalized GOs were synthesized to demonstrate the utility 

of this transformation for other applications. AGO4 was synthesized as a substrate for further 

chemistry via the copper-based “Click” reaction[31] and AGO5 is synthesized to give a water-

soluble cationic graphene. To see if we could further increase the efficacy of this 

transformation, we chose to first transform some of the installed carbonyls to more-reactive 

acid chloride groups, and then carry out the amidation step. For this procedure, Cl-GO2 

(primarily carboxylic acid functionalities) was reacted with oxalyl chloride in dioxane in the 

presence of catalytic dimethyl formamide[32] to achieve acid-chloride functionalized GO (AC-

GO). The presence of the acid chloride was confirmed by XPS and FTIR. XPS revealed a 

modest incorporation of 0.65% chlorine with a peak at 202 eV. This value is likely lower than 

the actually efficiency as the acid chloride easily reacts with humidity in the air during sample 

transfer to give carboxylic acids. The plausibility of this transformation is further suggested 

by an increased percentage of oxygen (24% in AC-GO vs. 20% in Cl-GO1). In the FTIR, the 

carbonyl peak was shifted to 1750 cm-1, where a higher wavenumber suggests the covalent 

attachment to the more electron-withdrawing chloride group. Additionally, a sharp peak at 

670 cm-1, which can be attributed to the C-Cl, bond appears (Scheme S6).  

These additional AGOs were characterized by FTIR and TGA to assure their covalent 

functionalization. Like AGO1-3, the C=O stretch was shifted to 1600 cm-1, indicating 

amidation. The C-Cl peak at 670 cm-1 disappears. In AGO4, the weak stretch of the 

asymmetric CC triple bond appears at 2120 cm-1. This peak was found to be greater in 

intensity that when the propargyl group was installed via direct amidation from Cl-GO1. 

Furthermore, XPS characterization of AGO4 prepared from the acid chloride revealed a 4.9% 
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incorporation of nitrogen, suggesting an increase in functional group density to approximately 

1 group per 15 graphene carbons.  As a result of the greater density acheived, AGO4 

synthesized via the acid chloride, was used for further reactions. In AGO5 the sp3 umbrella 

stretches of methylene units intensify, as one would expect from the insertion of the n-propyl 

group. Additionally, the zeta potential at pH= 5.0, where the tertiary amide is protonated, was 

found to be +56 mV. This was an improvement on the zeta potential of +40 mV found in the 

AGO5 synthesized from direct amidation of Cl-GO1. 

2.1.2 Further Functionalizations using “Click” Chemisry 

To further expand the usefulness of this chemistry, AGO4 was subjected to a copper 

catalyzed 1,3-dipolar cycloaddition, or “Click” reaction of a termial alkyne and an azide. 

Given the popularity of this chemistry,[31, 33, 34] there are a wide variety of azides 

commercially available, thus adding significant chemical utility and versatility to this covalent 

functionalization of graphene. For purposes of demonstration, three different azides were 

selected. For the first example, an azide with a very characteristic elemental tag was selected 

so that the efficiency of the reaction could be quantified by XPS. To this end, sodium 3-

azidopropane-1-sulfonate was synthesized by a simple literature procedure[35] and allowed to 

react at 50 oC in dioxane/ water overnight in the presence of copper catalyst to give S-GO 

(Scheme 5). S-GO was washed thoroughly and characterized by XPS, FTIR, and TGA to 

ensure successful functionalization. In the FTIR spectrum, the CC triple bond peak at 2120 

cm-1 decreases greatly in intensity and the appearance of a sharp peak 1340 cm-1 suggests the 

presence of the sulfonate, while the other distinct peaks of a sulfonate at around 1150 and 

1000 cm-1 are blended with other signals found in Cl-GO (Figure S8). Further proof of 

successful functionalization can be drawn from the XPS, which shows a sulfur peak at 153 eV. 

The elemental composition is shown to be 80% C, 14% O, 5% N and 1% S, suggesting that 

approximately 1 in 40 graphene carbons have a “Click” functional group.  
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To ensure that this procedure could be applied to other azides, easily prepared 

azidomethanol[33] and commercially available methoxypolyethylene glycol azide (PEG-azide) 

were subjected to the same conditions to give PEG-GO and HO-GO. PEG was chosen due to 

its versatility and the suggested potential of Cl-GO as a route to polymer-grafted graphene for 

use in composite materials. These materials were characterized by TGA and FTIR. Sucessful 

incorporation in PEG-GO was identifiable in the FTIR spectrum by the diminution of the CC 

triple bond stretch at 2120 cm-1, strengthening of the methylene CH2 asymmetric stretch 

signals at 2970 cm-1 and the appearance of new C-O peaks in the 1100 to 1300 cm-1 region.  

 Similarly, an increase in the intensity of the OH stretch at 3500 cm-1 was observed for 

HO-GO (Figure S8). All three materials prepared by “Click” chemistry show increased 

weight loss in their TGA and water solubility, which further confirms the characterization. 

Highly negatively charged graphene is readily available, considering that oxidation to 

graphene oxide gives many negatively charged groups. Overcoming these negatively charged 

groups with a reaction that installs a significant amount of positively charged groups is often a 

challenge,6 however it was easily overcome with the functionalization method used to 

produce AGO5. To demonstrate the efficacy of this chemistry in producing stable, charged 

suspensions in water, we chose to construct layer-by-layer (LBL) films. Here we demonstrate 

the assembly of both alternating polymer- graphene and all graphene LBL assemblies. 

Graphene solutions were prepared at a concentraion of 0.5 mg/mL in deionized (DI) 

water and the pH was adjusted using aqueous hydrochloric acid (HCl) or sodium hydroxide. 

The cationic graphene solution, AGO5, was adjusted to pH= 5.0, where the zeta potential is 

+56 mV and the anionic graphene solution, Cl-GO2, was adjusted to pH= 9.0, where the zeta 

potential is -75 mV. It is important to note that the zeta potential of GO at this pH is only -30 

mV.[6] This significant increase in zeta potential eases the LBL process and opens doors for 

further applications in LBL assemblies. Polymer solutions of cationic polyallylamine 
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hydrochloride (PAH) and anionic polystyrene sulfonate  (PSS) were prepared at a 

concentration of 10 mM and adjusted to pHs of 4.0 and 8.0 respectively, using aqueous HCl 

or NaOH. Glass slides were treated with a plasma/ ozone surface treatment, which leaves the 

glass negatively charged.  

To begin, the charged graphene solutions were alternated with well-known charged 

polymers. To ensure a uniformly charged substrate, the plasma treated glass was first dipped 

in a PAH solution for 20 minutes. To build the LBL film, substrates were subsequently 

dipped in either anionic Cl-GO2 or PSS for 20 minutes, dried using a gentle nitrogen stream, 

dipped in PAH or cationic AGO5 for 20 minutes and dried using a gentle nitrogen stream. 

Since the polymers absorb minimally in the visible region, the UV-Vis spectra was taken only 

after each bilayer of graphene-polymer was built to monitor the LBL growth. Using these 

conditions, the LBL films were grown up to 8 bilayers. Using the absorbances at 350 nm and 

500 nm, it was observed that the UV-Vis spectra intensity increased linearly with the 

application of each bilayer, confirming well-behaved, uniform growth (Figure 4). 

Confident in the ability of the charged graphene solutions to form hybrid LBL 

constructs, we endeavored to extend these conditions to make an all graphene film. Starting 

with a layer of PAH to assure good adhesion, a LBL film 12 layers thick was assembled using 

the same procedure that was effective for the hybrid constructs. Here, the UV-Vis spectrum 

was taken after each layer (Figure 5a). The cationic layers of AGO5 absorbed slightly more 

than the anionic. This can be explained by the larger graphene particles in the cationic 

dispersion (1000 nm vs. 500 nm by light scattering), suggesting that there is a higher degree 

of aggregation in that solution. This is intuitive since the absolute zeta potential is slightly 

lower, the dispersion is by definition less stable. Additionally, it is observed that each 

graphene layer of the all-graphene construct is much thicker than those adsorbed in the 

polymer/ graphene hybrids. Presumably this is because in addition to the electrostatic 
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interactions that traditionally control LBL assembly, the π−π interactions of the graphene 

sheets also provide favorable energetics for adsorption. Like the polymer/ graphene hybrids, 

the absorbance intensity at 350 and 500 nm is plotted and fit to a line (Figure 5b). 

3. Conclusions 

In this report, the hydroxyl functionalities in GO were considered allylic alcohols and 

subjected to Johnson-Claisen rearrangement conditions to give esters and carboxylic acids 

connected to the graphene basal plane via a “reduction-proof” carbon-carbon bond that 

survives conditions used to further deoxygenate the graphene surface. The ability of this 

functional group to withstand reduction is demonstrated and a resumption of electronic 

conductivity greater than that found in pristine reduced GO is measured. The ester groups are 

easily saponified to carboxylic acids in situ with basic conditions, to give negatively charged 

water-soluble graphene (Cl-GO2). The ester functionality can be further reacted as is, or the 

carboxylic acid can easily be converted to the more reactive acid chloride. To this end, we 

have appended several different amines of varying utility through an amide formation (up to 1 

in 15 carbons by XPS). AGO1-3 allow for an increase in the intergallery spacing up to 12.8 Å, 

suggesting utility of this material in capacitors and in gas storage. AGO4 proves an adequate 

substrate for further functionalization using “Click” chemistry. The high density of carboxylic 

acid groups give highly negatively charged, water soluble graphene and tertiary-amine 

functionalized AGO5 gives a complementary highly positively charged graphene  (zeta 

potentials of -75 mV and +56 mV, respectively). These highly charged graphenes have been 

successfully used to build layer-by-layer (LBL) constructs with either oppositely charged 

polymers or in an all-graphene construct. This variation of the Claisen rearrangement offers 

improvements over previous work in the cost of reagents as well as the ease and versatility of 

further functionalizations. Applications of these functional graphene derivatives are diverse 

and are in the process of be being further explored. 
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4. Experimental 

4.1 Materials 

Triethyl orthoacetate and dioxane were passed through a column of activated alumina to 

eliminate moisture before use in reactions. Anhydrous tetrahydrofuran was collected from an 

Innovative Technology purification system. Graphite powder (99%, synthetic, 325 mesh) was 

used as received from Sigma Aldrich. All other chemicals used for synthesis were of reagent 

grade and used as received from Sigma-Aldrich. All synthetic reactions were carried out 

under an inert atmosphere of argon unless otherwise noted.  

4.2 Instrumentation 

Fourier transform infrared spectroscopy (FTIR) spectra were determined using a Nexus 

Model 470/670/870 Spectrophotometer using the Omnic software package. 

Thermogravimetric analysis (TGA) was performed using a TA Instruments Q50 under 

nitrogen at a scan rate of 15˚C/ min from 50 ºC to 850 ºC. Raman spectra were taken on a 

Horiba Lab Ram with equipped with a 533 nm YAG laser using LabSpec 5 processing 

software. X-ray diffraction was measured using Cu Kα radiation on an Inel CPS 120 position-

sensitive detector with a XRG 3000 generator using a 20-minute collection time.  Zeta 

potentials were measured in water using a Brookhaven Instruments Corporation Phase 

Analysis Light Scattering (PALS) Zeta Potential Analyzer. All values are an average of 10 

10-second scans. XPS spectra were recorded on a Kratos AXIS Ultra X-ray Photoelectron 

Spectrometer. Glass slides were prepared for LBL treatment using a Harrick PDC-32G 

Plasma Cleaner/ Sterilizer. The thickness of thin films were measured using a Dektak 6M 

stylus profiler by Vecco and electrical properties were measured utilizing a Signatone S-302-4 

four point probe connected to a Keithley SCS-4200 source meter. Conductivities were 

calculated using the formula:  

σ = I / (V * t * 4.53), where I = current, V = voltage, t = film thickness, and 4.53 is the 

correction factor for the 4-point probe geometry. 
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4.3 Synthesis 

4.3.1 Synthesis of Graphene Oxide (GO). Synthesis was accomplished using a modified 

Hummers method [25]. The product was lyophilized to yield 5.23g GO (68.18% C, 31.82% 

O) which was characterized by FTIR (Figure 1), TGA (Figure S1), XRD (Figure 2), Raman 

(Figure S3), and XPS (Figure S9). 

4.3.2 Synthesis of reduced GO (redGO). A flame-dried 100 mL round bottomed flask was 

charged with 40 mg GO and 50 mL anhydrous tetrahydrofuran (THF). The reaction mixture 

was sonicated for 10 minutes to ensure good dispersion and then the flask was brought to 0 oC 

in a ice water bath. Sodium borohydride (NaBH4, 99%, 39 mg) was added in one shot and the 

reaction was allowed to warm to room temperature slowly over 5 hours. The reaction was 

then allowed to proceed at room temperature for an addition 8 hours. At this point, the 

reaction mixture was exposed to air and isopropanol (iPrOH) was slowly added to quench and 

NaBH4 that had not yet reacted. Once bubbling ceased (addition of approximately 30 mL 

iPrOH), the reaction mixture was centrifuged (10 minutes at 11,000 rpm). The supernate was 

discarded and the residue was redispersed in iPrOH via vortex mixer and then centrifuged (10 

minutes at 11,000 rpm). This process was repeated once more with iPrOH, twice with DI 

water, and once with acetone. The product was dried under vacuum overnight to yield 28 mg 

red-GO which was characterized by FTIR (Figure 1), TGA (Figure S1), XRD (Figure 2), and 

Raman (Figure S3). This procedure is adapted from Shin et al [9]. 

4.3.3 Synthesis of Claisen Graphene Oxide (Cl-GO). A flame-dried 500 mL round bottom 

flask was charged with GO (1.23g) and Triethyl orthoacetate (98%, 250 mL). The GO was 

dispersed via 10 minutes of bath sonication. Catalytic para-Toluene sulfonic acid (>97%, 21 

mg) was added in one shot. The reaction vessel was placed in an oil bath and outfitted with a 

condenser column. The reaction was allowed to proceed at reflux (130o C) for 36 hours. This 

intermediate reaction mixture will be referred to as Cl-GO. 
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4.3.3 Purification of Cl-GO1. Reaction mixture Cl-GO was cooled to room temperature and 

centrifuged (10 minutes at 11,000 rpm). The supernate was discarded and the residue was 

redispersed in acetone via vortex mixer and then centrifuged (10 minutes at 11,000 rpm). This 

process was repeated four times with acetone. The product was dried under vacuum overnight 

to yield 1.08 g Cl-GO1 (79.95% C, 20.41% O), which was characterized by FTIR (Figure 2), 

TGA (Figure S1), Raman (Figure S3),  XRD (Figure 1), and XPS (Figure S10). 

4.3.4 Purification of Cl-GO2. To favor the formation of carboxylic acid functional groups, at 

this point, 50 mL of 1 M sodium hydroxide was added. The reaction was allowed to cool to 

room temperature, while continuing to stir vigorously for an additional 3 hours. The reaction 

mixture was then centrifuged (10 minutes at 11,000 rpm) and the supernate was discarded. 

The residue was resuspended in deionized water using a vortex mixer and then centrifuged 

(10 minutes at 11,000 rpm) and the supernate discarded. This was repeated three times with 

water and twice with acetone. The remaining residue was dried under high vacuum to yield 

1.15 g Cl-GO2, which was Cl-GO1 by FTIR (Figure S1) and found to be water soluble with 

a Zeta potential of -75 mV at pH= 9.0.  

4.3.5 Synthesis of reduced Cl-GO (redCl-GO). A flame-dried 100 mL round bottomed flask 

was charged with 40 mg Cl-GO1 and 50 mL anhydrous tetrahydrofuran (THF). The reaction 

mixture was sonicated for 10 minutes to ensure good dispersion and then the flask was 

brought to 0 oC in a ice water bath. Sodium borohydride (NaBH4, 99%, 39 mg) was added in 

one shot and the reaction was allowed to warm to room temperature slowly over 5 hours. The 

reaction was then allowed to proceed at room temperature for an addition 8 hours. At this 

point, the reaction mixture was exposed to air and isopropanol (iPrOH) was slowly added to 

quench and NaBH4 that had not yet reacted. Once bubbling ceased (addition of approximately 

30 mL iPrOH), the reaction mixture was centrifuged (10 minutes at 11,000 rpm). The 

supernate was discarded and the residue was redispersed in iPrOH via vortex mixer and then 
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centrifuged (10 minutes at 11,000 rpm). This process was repeated once more with iPrOH, 

twice with DI water, and once with acetone. The product was dried under vacuum overnight 

to yield 31 mg red-ClGO which was characterized by FTIR (Figure 1), TGA (Figure S1), 

XRD (Figure 2), and Raman (Figure S3). This is the same procedure used to produce red-GO. 

4.3.6 Synthesis of AGO1. A flame-dried 50 mL round bottomed flask was charged with 85 mg 

Cl-GO1 and 25 mL dioxane. The reaction mixture was sonicated for 10 minutes to ensure 

good dispersion and 1 mL Benzylamine (99%) was added in one shot. The reaction vessel 

was warmed to 100 oC in an oil bath and allowed to react overnight. After 12 hours, the 

reaction mixture was allowed to cool to room temperature was centrifuged (10 minutes at 

11,000 rpm). The supernate was discarded and the residue was redispersed in acetone via 

vortex mixer and then centrifuged (10 minutes at 11,000 rpm). This process was repeated four 

more times with acetone. The product was dried under vacuum overnight to yield 89 mg 

AGO1 which was characterized by FTIR (Figure S5), TGA (Figure S7), and XRD (Figure 

S4). 

4.3.7 Synthesis of AGO2. Synthesis of AGO2 was accomplished using the same method of 

synthesis and purification as AGO1 using 53 mg Cl-GO1, 25 mL dioxane, and 324 mg 4-

Phenylbenzylamine (97%). This yielded 60 mg AGO2 (80.24% C, 18.83% O, 0.93% N by 

survey) which was characterized by FTIR (Figure S5), TGA (Figure S7), XRD (Figure S4), 

and XPS (Figure S11). 

4.3.8 Synthesis of AGO3. Synthesis of AGO3 was accomplished using the same method of 

synthesis and purification as AGO1 using 50 mg Cl-GO1, 25 mL dioxane, and 363 mg 2-

Aminotriptycene, which was synthesized using a literature procedure [36]. This yielded 63 

mg AGO3, which was characterized by FTIR (Figure S5), TGA (Figure S7), and XRD 

(Figure S4). 
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4.3.9 Synthesis of the acid chloride-GO (AC-GO). A flame-dried 100 mL round bottomed 

flask was charged with 256 mg Cl-GO2, 50 mL dioxane, and 5 drops dimethyl formamide. 

The reaction mixture was sonicated for 10 minutes to ensure good dispersion and 0.7 mL 

oxalyl chloride (99%) was added dropwise over 5 minutes. The bubbling started immediately 

and the reaction vessel was allowed to react overnight at room temperature. After 12 hours, 

the reaction mixture was centrifuged (10 minutes at 11,000 rpm). The supernate was 

discarded and the residue was redispersed in dichloromethane via vortex mixer and then 

centrifuged (10 minutes at 11,000 rpm). This process was repeated twice more with 

dichloromethane and and three more times with acetone. The product was dried under 

vacuum overnight to yield 118 mg AC-GO (75.63% C, 23.72% O, 0.65% Cl) which was 

characterized by FTIR (Figure S6), TGA (Figure S8), and XPS (Figure S12). 

4.3.10 Synthesis of AGO4. A flame-dried 50 mL round bottomed flask was charged with 56 

mg AC-GO and 25 mL dioxane. The reaction mixture was sonicated for 10 minutes to ensure 

good dispersion and 0.9 mL Propargylamine (>97%) was added in one shot. The reaction 

vessel was warmed to 100 oC in an oil bath and allowed to react overnight. After 12 hours, the 

reaction mixture was allowed to cool to room temperature was centrifuged (10 minutes at 

11,000 rpm). The supernate was discarded and the residue was redispersed in acetone via 

vortex mixer and then centrifuged (10 minutes at 11,000 rpm). This process was repeated 

twice with dioxane and twice more with acetone. The product was dried under vacuum 

overnight to yield 54 mg AGO4 (84.86% C, 10.25% O, 4.89% N), which was characterized 

by FTIR (Figure S6), TGA (Figure S7), and XPS (Figure S13). 

4.3.11 Synthesis of AGO5. Synthesis of AGO5 was accomplished using the same method of 

synthesis and purification as AGO4 using 53 mg AC-GO, 25 mL dioxane, and 1.0 mL 

3(Dimethylamino)-1-propylamine (98%). This yielded 59 mg AGO5, which was 
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characterized by FTIR (Figure S6) and TGA (Figure S7). It was also found to be water-

soluble with a Zeta potential of +56 mV at pH= 5.0. 

4.3.12 Synthesis of S-GO. A flame-dried 25 mL round bottomed flask was charged with 15 

mg AGO4 and 12 mL 1:1 dioxane/ water. The reaction mixture was sonicated for 10 minutes 

to ensure good dispersion. Copper (II) sulfate (5 mg, 31 µmol), sodium ascorbate (2 mg, 10 

µmol), and Sodium 3-azidopropane-1-sulfonate (100 mg, 0.53 mmol) were added in one shot 

and the reaction was allowed to stir at room temperature overnight. After 12 hours, the 

reaction mixture was centrifuged (10 minutes at 11,000 rpm). The supernate was discarded 

and the residue was redispersed in deionized water via vortex mixer and then centrifuged (10 

minutes at 11,000 rpm). This process was repeated three times with DI water, twice with 1:1 

acetone/ DI water, and once with acetone. The product was dried under vacuum overnight to 

yield 16 mg S-GO (80.82% C, 13.39% O 4.89% N, 0.9% S) that was characterized by FTIR 

(Figure S6), TGA (Figure S8), and XPS (Figure S14).  

4.3.13 Synthesis of PEG-GO. The synthesis and purification of PEG-GO was completed 

using the same procedure as S-GO using 11 mg AGO4, 10 mL 1:1 dioxane/ water, 5 mg 

CuSO4 (31 µmol), 2 mg sodium ascorbate (10 µmol), and 200 mg Methoxypolyethylene 

glycol azide (Mn= 2000, 0.1 mmol). The product was dried under vacuum overnight to yield 

28 mg PEG-GO that was characterized by FTIR (Figure S6) and TGA (Figure S8).  

4.3.14 Synthesis of HO-GO. The synthesis and purification of HO-GO was completed using 

the same procedure as S-GO using 25 mg AGO4, 20 mL 1:1 dioxane/ water, 8 mg CuSO4 (50 

µmol) and 4 mg sodium ascorbate (20 µmol). In this case, the azidomethanol was synthesized 

in situ from formaldehyde (0.1 mL, 37 wt% aqueous), glacial acetic acid (1 drop), and sodium 

azide (6.5 mg, 0.1 mmol) using a literature procedure [31]. The product was dried under 

vacuum overnight to yield 31 mg HO-GO that was characterized by FTIR (Figure S6) and 
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TGA (Figure S8). The rearrangement in the substitution of the triazole is indicated in Scheme 

S1. 
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Scheme 1. Synthesis of Johnson-Claisen functionalized GO. Cl-GO1 is the original material, 
functionalized with both carboxylic acids and esters. Cl-GO2 is treated with strongly basic 
conditions in the work-up to give highly negatively charged, primarily carboxylate 
functionalized GO. 
 

 

 

 

 

 

 

Scheme 2. Reduction of GO and Cl-GO1 using NaBH4. For clarity of the affected 
transformations, the intricacies of the graphene/ GO sheet were omitted. 
 
 

 

 

 

 

 

 

 

Scheme 3. Synthesis of AGO1-3 via direct amidation (Method 1) with interlayer spacings 
measured by XRD are included. For clarity of the affected transformations, the intricacies of 
the graphene/ GO sheet were omitted. 
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Scheme 4. Synthesis of AGO4-5 through the use of the acid chloride (Method 2). For clarity 
of the affected transformations, the intricacies of the graphene/ GO sheet were omitted. 
 
 
 
 
 
 
 
 
 
 
 

 

 

Scheme 5. Functionalization of the Cl-GO using “Click” chemistry. HO-GO is synthesized 
from an in situ preparation of azido methanol, which results in a rearrangement of the 
substitution of the triazole ring.33 Details can be found in Scheme S1. For clarity of the 
affected transformations, the intricacies of the graphene/ GO sheet were omitted. 
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Figure 1. XRD spectra of GO, Cl-GO1, reduced GO (red-GO), and reduced Cl-GO1 (red-
ClGO). 
 

 
Figure 2. FTIR Spectra of GO, Cl-GO1, reduced GO (redGO), and reduced Cl-GO1 (red-
ClGO). Spectra are off-set for clarity. 
 
 
 
 
 
 
Figure 3. Schematic suggesting the activation and set-up of nucleophilic attack of the Claisen 
rearranged ester by residual water. 
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Figure 4. UV-Vis absorbance of sequential layers of a) anionic graphene (Cl-GO2)/ PAH and 
b) cationic graphene (AGO5)/ PSS. c) Gives the linear fit of the UV-Vis absorbance at 350 
and 500 nm. A detector change-over at 475 nm is responsible for the noise. 
 

 

 

 

 

 

 

 
Figure 5. a) UV-Vis absorption data for the build-up of the all graphene LBL construct. 
Anionic layers are in blue and cationic layers are in red. A detector change-over at 475 nm is 
responsible for the noise. b) Linear fit for the absorbance at 350 and 500 nm. c) Represenative 
structures of anionic (Cl-GO2) and cationic (AGO5) graphene and UV-Vis absorption data 
for the all-graphene LBL construct. 
 
 
Table 1. Electronic conductivities and sheet resistances of graphite and related materials 
measured using a 4-point probe. 
 

 
Conductivity 

(S/m) 
Sheet Resistance 

(kΩ/sq) 

Graphite 1.1 x 105 10-5 

GO 1.2 x 10-7 106 

Cl-GO 1.0 80 

red-GO 11 48 

red-ClGO 39 1.6 
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The hydroxyl functionalities in graphene oxide (GO) are subjected to Johnson-Claisen 
rearrangement conditions, which trades the labile CO bond for a robust CC bond. Further 
functionalization allows for the synthesis of highly charged, water-soluble graphene. The 
negatively and positively charged graphenes (zeta potentials of -75 mV and +56 mV), have 
been successfully used to build layer-by-layer (LBL) constructs.  
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Scheme S1. Conditions for in situ prep of aziomethanol and rearranged triazole product.[31] 
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Figure S1. Thermogravimetric Analysis (TGA) curves from GO and GO treated with 

TEOA (wet and after drying) 
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Figure S2. High Resolution X-ray photoelectron spectroscopy and fit curves for a) GO and 

b) Cl-GO1 
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Figure S3. FTIR Spectra of Cl-GO2 in comparison with Cl-GO1. The intensity of the peakof 

the carboxylate C=O peak (1590 cm-1)  in comparison with the ester C=O  (1725 cm-1)  can be 

observed. 
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Figure S4. Thermogravimetric analysis of GO, Cl-GO1, red-GO, red-ClGO. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800

GO
Cl-GO
red-GO
red-ClGO

W
ei

gh
t %

Temperature (oC)



  Submitted to  

343434343434343434344343434 

Figure S5. Raman Spectra of graphite, GO, Cl-GO, red-GO and red-ClGO. The y-axis is 
offset in each sample for clarity. 
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Figure S6a. X-ray diffraction patterns of AGO1-3. D-spacings are 10.45, 10.65, and 12.81 Å, 
respectively. 

 
 
Figure S6b. X-ray diffraction patterns of GO treated with bulky amines (control). 
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Figure S7. FTIR spectra of AGO1-3 and AGO5. 
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Figure S8. FTIR of the acid chloride, AGO4, SGO, PEG-GO, and HO-GO. 
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Figure S9. TGA of AGO1-5. 
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Figure S8. TGA of AC-GO, SGO, PEG-GO, HO-GO. 
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Figure S11. XPS Survey Data for GO. 
-------------------------- 
Atomic Concentration Table 
-------------------------- 
      C1s        O1s          
    0.314      0.733        RSF  
   58.873    137.529    CorrectedRSF  
    68.18     31.82        
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Figure S12. XPS Survey Data for Cl-GO1. 
 
Quantification based on survey data (pass energy 160 eV, step size 1 eV) 
Peak              Position   FWHM    Raw Area   RSF    Atomic   Atomic   Mass    
                        BE (eV)    (eV)     (CPS)             Mass    Conc Weight%  Conc %   
C 1s         284.000   3.946  1131235.8      0.278   12.011   83.85      79.59    
O 1s        532.000   3.286   864291.5        0.780   15.999   16.15     20.41 
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Figure S13. Survey and High-res XPS Data for AGO2. 
 
Quantification Report: Survey 
 
      Peak              Position   FWHM    Raw Area   RSF    Atomic   Atomic   Mass    
                        BE (eV)    (eV)     (CPS)             Mass    Conc %  Conc %   
      C 1s               284.000   3.538  1094729.0  0.278   12.011   84.31   80.24    
      O 1s               531.000   3.983   764857.4  0.780   15.999   14.85   18.83    
      N 1s               399.000   2.907    23072.0  0.477   14.007    0.84     0.93 
 
Quantification Report: High-res                              
Quantification based on hires analysis (pass energy 20 eV, step size 0.1 eV)                              
 
      Peak              Position   FWHM    Raw Area   RSF    Atomic   Atomic   Mass    

BE (eV)    (eV)     (CPS)             Mass    Conc %  Conc %   
      C 1s               284.350   1.164    38776.8  0.278   12.011   98.72   98.51    
      N 1s               399.450   1.630      908.4  0.477   14.007    1.28    1.49 
 
 

 
 
 

0

5 104

1 105

1.5 105

2 105

2.5 105

3 105

971 841 711 581 451 321 191 61

C
PS

Binding Energy (eV)

O 1s

N 1s

C 1s



  Submitted to  

434343434343434343434434343 

 
Figure S14. XPS Survey Data for AC-GO. 
 
-------------------------- 
Atomic Concentration Table 
-------------------------- 
     C1s        O1s        Cl2p   
    0.314      0.733      0.954    RSF  
   58.873    137.529    202.251    CorrectedRSF  
    75.63      23.72       0.65   
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Figure S15. XPS Survey Data for AGO4. 
 
-------------------------- 
Atomic Concentration Table 
-------------------------- 
      C1s        N1s        O1s   
    0.314      0.499      0.733    RSF  
   58.873     93.593    137.529    CorrectedRSF  
    84.86       4.89      10.25 
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Figure S16. XPS Survey Data for S-GO. 
-------------------------- 
Atomic Concentration Table 
-------------------------- 
     C1s        N1s        O1s     S2p  
    0.314      0.499      0.733        0.717     RSF  
   58.873     93.593    137.529    153.301    CorrectedRSF  
    80.82       4.89      13.39          0.90        
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