
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2014-002 January 28, 2014

P IKA: A Network Service for Multikernel
Operating Systems
Nathan Z. Beckmann, Charles Gruenwald III,
Christopher R. Johnson, Harshad Kasture, Filippo
Sironi, Anant Agarwal, M. Frans Kaashoek, and
Nickolai Zeldovich

PIKA: A Network Service for Multikernel Operating Systems

Nathan Z. Beckmann, Charles Gruenwald III, Christopher R. Johnson, Harshad Kasture, Filippo Sironi
Anant Agarwal, M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

ABSTRACT

PIKA is a network stack designed for multikernel operat-
ing systems that target potential future architectures lacking
cache-coherent shared memory but supporting message pass-
ing. PIKA splits the network stack into several servers that
communicate using a low-overhead message passing layer. A
key challenge faced by PIKA is the maintenance of shared
state, such as a single accept queue and load balance infor-
mation. PIKA addresses this challenge using a speculative
3-way handshake for connection acceptance, and a new dis-
tributed load balancing scheme for spreading connections.
A PIKA prototype achieves competitive performance, excel-
lent scalability, and low service times under load imbalance
on commodity hardware. Finally, we demonstrate that split-
ting network stack processing by function across separate
cores is a net loss on commodity hardware, and we describe
conditions under which it may be advantageous.

1 INTRODUCTION

Recent research has proposed several distributed kernel (i.e.,
multikernel) architectures for multicore processor operating
systems [6, 24]. These multikernel architectures do not share
data structures among cores to avoid scalability bottlenecks
that have plagued monolithic kernels [7]. Multikernels are
particularly suitable for multicore processors that do not sup-
port cache-coherent shared memory [15]. Although the jury
is out whether future multicore and manycore processors will
support cache-coherent shared memory or not [17], an in-
teresting research question to explore is how to design and
implement system services that require shared state but cannot
rely on cache-coherent shared memory. This paper explores
the design and implementation of one such system service,
the network stack, and proposes a novel design that achieves
good performance and scalability under a wide range of work-
loads.

A simple design for a multikernel network stack is to have
one instance on one core shared between all applications (e.g.,
web servers) [20], but this design does not scale well with an
increasing number of cores running application code. The
other extreme is to have a replica of the network stack on
several cores without sharing, but this design may result in
low utilization and makes it challenging to share, for instance,
a single TCP port for incoming connections. This paper in-
vestigates a split design for the network stack [6, 24], called
PIKA, consisting of a collection of servers (i.e., user-space

processes) that collaborate to provide high-performance, scal-
able networking. PIKA’s instance of a split design has one or
more Link Servers that manage the network interface cards
(NICs), one or more Transport Servers that provide transport
services such as TCP, and one or more Connection Managers
that are in charge of connection establishment. Our imple-
mentation allows each of these components to either be run
as separate servers each on their own core or to be combined
into hybrid servers on fewer cores. We evaluate the perfor-
mance implications of each of these design alternatives and
the conditions under which splitting network stack processing
may be advantageous.

The biggest challenge in PIKA’s design is the management
of shared state among the servers without the convenience
of cache-coherent shared memory. Specifically, connection
management requires the abstraction of a single accept queue
to distribute connections among applications.1 Additionally,
maintaining high utilization in the presence of applications
with high and low service time requires load balancing of
connections among them. The challenges of shared state
are most apparent in short-lived connections, which stress
the accept queues and load balancer. PIKA addresses these
challenges with a speculative 3-way handshake protocol to
accept connections and a novel distributed load balancing
scheme.

Moreover, as computation has moved into the data center
and multicore processors have encouraged parallel computing,
response times have come to be dominated by the long tail of
service time distributions [5, 9]. It is increasingly important to
design network services not only for throughput, but for worst-
case latency. Load balancing is thus a first-order challenge for
PIKA. Our evaluation shows that PIKA maintains low service
times across a variety of load imbalances.

The main contributions of this paper are as follows. First,
we show that a network stack for a multikernel can achieve
good performance and scalability without reliance on cache-
coherent shared memory. Second, we present a novel load
balancing scheme that allows the network stack to achieve
high throughput and low latency in the presence of applica-
tion delays. Third, we evaluate various design choices for a
network stack on a multikernel via a thin message passing
layer built on top of the Linux kernel to emulate a multi-
kernel architecture. Using this setup we investigate which

1Throughout this paper, we use application to mean a single instance of
an application (i.e., a process).

1

design performs best on commodity hardware. Combined,
these contributions serve as a template for the design and
implementation of network services for multikernels.

The rest of the paper is organized as follows: Section 2
provides an overview of related work. Section 3 discusses
the design of the system and the various components of the
networking service. Section 4 provides implementation de-
tails while Section 5 presents experimental results. Finally,
Section 6 concludes the paper.

2 RELATED WORK

PIKA is the first network stack design we are aware of that
achieves good performance, scalability, and load balance with-
out reliance on cache-coherent shared memory. In particular,
PIKA tackles challenges similar to those addressed in pre-
vious research on multikernels and microkernels with split
network stack designs, load balancing of connections, new
application programming interfaces (APIs) for monolithic
kernels, and techniques to avoid scaling problems due to data
sharing (e.g., data structures and locks) in monolithic kernels.
Split Network Stack Designs. PIKA adopts a split network
stack design from the Barrelfish [6] and fos [24] multikernels.
PIKA extends the design with support for load balancing to
distribute connections across the different applications, pro-
viding fast emulation of a shared accept queue. Although
our evaluation uses a modern 10 Gigabit Ethernet (GbE) NIC
instead of a 1 GbE NIC (yielding 10× higher peak through-
put), we achieve approximately 100× the throughput of Bar-
relfish and fos. PIKA achieves these gains despite the fact that
higher throughput stresses PIKA’s design much more than
previous research. Our evaluation further explores the best
configuration of components on commodity hardware and
how architectural changes could affect this decision.

Hruby et al. [16] also proposed splitting the network stack
into several user-space processes that communicate via mes-
sage passing. However, they focused primarily on reliability,
and their design factors the network stack into components
that manage different layers and protocols (e.g., network –
IP, transport – TCP and UDP, etc.) to provide fault isolation.
PIKA, by contrast, is focused on performance and scalability
by minimizing the shared state among components.
Load Balancing of Connections. PIKA employs a dynamic,
distributed load balancing algorithm to distribute connections
to applications: it determines how to distribute connections
based on the current state of the system, in a decentralized
fashion (e.g. it does not rely on a centralized server for mak-
ing load balancing decisions[10, 21]).

It is assumed that connections accepted by an application
under PIKA are processed by that same application until com-
pletion, so there is no load balancing of connections between
applications. Our load balancing algorithm is therefore simi-
lar to web server load balancing which distributes connections
across several web server instances capable of satisfying the

request [8]. In those systems, the decision of which web
server receives a connection is left to the client, a DNS server,
or a separate dispatcher system which may take factors such as
server load and network congestion into account [13]. PIKA’s
load balancer, by contrast, is integrated with the network
stack on the system hosting the application rather than as
a discrete component and therefore does not need to take
outside network state into account.
New APIs for Monolithic Kernels. A number of researchers
have proposed changes to the interfaces of monolithic ker-
nels to address scaling problems. Soares and Stumm [22]
proposed FlexSC, an exception-less system call mechanism
for applications to request system services. FlexSC batches
synchronous system calls via asynchronous channels (i.e.,
system call pages); system call kernel threads running on
dedicated cores provide system services, thus avoiding trap-
ping from user to kernel mode and addressing cache pollution
problems. The synchronous execution model is preserved by
a user-space threading library that is binary-compatible with
the POSIX threading API and also makes FlexSC transpar-
ent to legacy applications, while the asynchronous execution
model is supported by libflexsc [23]. PIKA also dedicates
multiple cores to network stack processing but assumes hard-
ware supporting message passing instead of cache-coherent
shared memory.

Han et al. [12] presented MegaPipe, a new API for scal-
able network input/output (I/O). MegaPipe employs thread-
local accept queues, which are responsible for connection
establishment on a particular subset of cores, thus avoiding
remote cache accesses. MegaPipe also batches asynchronous
I/O requests and responses via synchronous channels with
traditional exception-based system calls to favor data cache
locality. PIKA attains good performance and scalability imple-
menting the POSIX socket API, thus supporting unmodified
applications. Moreover, PIKA achieves good load balance for
both uniform and skewed workload thanks to connection load
balancing, which is not supported by MegaPipe.
Avoiding Scaling Problems in Monolithic Kernels. Recent
work by Boyd-Wickizer et al. [7] and Pesterev et al. [18]
has focused on fixing scaling problems in the Linux kernel’s
network stack due to data sharing through cache-coherent
shared memory. In contrast, PIKA assumes hardware lacking
cache-coherent shared memory and solves these problems by
other means; hence, these techniques are not applicable. This
paper demonstrates that the benefits of Affinity-Accept [18]
are attainable in a multikernel design on hardware lacking
cache-coherent shared memory but supporting message pass-
ing.

Shalev et al. [20] describe IsoStack, a network stack design
that eliminates unnecessary data sharing by offloading net-
work stack processing to a dedicated core as in the multikernel
architecture [6, 24]. A prototype built inside the AIX ker-
nel with support from a user-space library exploits message
queues, event-driven operation, and batching to achieve high

2

(a) Split system architecture. (b) Combined system architecture.
Figure 1: Split and combined system architectures. In the split configuration (a) the components are divided apart and run
separately. The number of instances of each component is configurable. For the combined configuration (b) the key consideration
is the number of instances of the network stack to run.

data throughput matching line speed. PIKA harnesses similar
techniques but exploits multiple dedicated cores exploring
various parallel configurations to achieve both high connec-
tion throughput and low response latency under uniform and
skewed workloads. With the same number of concurrent con-
nections, PIKA achieves comparable performance at low core
counts and up to an order of magnitude higher performance
at high core counts, which IsoStack cannot exploit.

3 DESIGN

The goal for PIKA is to provide a high-performance, scalable
network stack for a multikernel across a wide range of work-
loads. The main challenge is managing shared state to imple-
ment POSIX semantics without reliance on cache-coherent
shared memory. PIKA load balances connections among
servers to maximize throughput and minimize latency. Since
multikernels cannot rely on cache-coherent shared memory to
share state, PIKA uses message passing to share information
and employs a number of techniques to minimize the number
of messages sent while maintaining correctness and achieving
good performance. This section describes elements of PIKA’s
design and the techniques it uses to achieve its goals.

3.1 PIKA Components and Design Choices
Like FlexSC [22], PIKA employs dedicated cores for network
stack processing which are distinct from application cores.
Furthermore, PIKA splits the network stack into various con-
ceptual components based on functionality. The design of
PIKA allows each of these components to either be run as
stand-alone servers or combined with other components into
a composite server. An instance of a PIKA system consists of
one or more servers, each of which may encapsulate one or
more of these components (Figures 1a and 1b).

The Link Server (LS) is the component that interacts di-
rectly with the NIC. Its responsibilities include configuring
the NIC (e.g., managing the flow director), sending packets
on the hardware interface in response to requests from other
components of PIKA, as well as to receive inbound packets
and transfer them to the appropriate PIKA component. In
particular, it does packet inspection to forward SYN packets to
Connection Managers (CMs) as described below. The number
of LSs desired depends on the hardware configuration. For

instance, it may not be desirable to have more LSs than the
number of hardware direct memory access (DMA) rings that
the NIC can support, since having multiple LSs share a single
ring may affect scalability.

The Transport Server (TS) component is responsible for
managing TCP/IP flows, including packet encapsulation/de-
encapsulation, Transmission Control Block (TCB) state man-
agement, out-of-order packet processing and re-transmissions.
There is no shared state among separate flows, and thus differ-
ent flows can be managed by different TSs entirely in parallel.
The number of TSs can thus be scaled up trivially to meet
the system requirements. Note also that other network stack
protocols such as UDP, ICMP, DHCP, DNS, and ARP are
also handled by the TS. However since these protocols either
do not demand high throughput or are stateless they are not
considered in any further detail in this paper.

The CM is responsible for TCP/IP connection establish-
ment. The CM encapsulates all the shared state necessary
for the implementation of TCP/IP sockets that adhere to the
POSIX socket specification. In particular, it maintains the lis-
ten queues where incoming connection requests are enqueued
and then distributed to listening applications. The CM also
decides which TS should manage each established connec-
tion. The CM shares state with the application (Subsection
3.2), and also with other CMs in order to correctly implement
POSIX sharing semantics (i.e., a single listen socket shared
among multiple application processes) and to effectively load
balance among various application processes listening on the
same port (Subsection 3.3). Scaling up the number of CMs
has associated challenges and trade-offs. A single CM for
the entire system can become a bottleneck when high con-
nection throughput is required. On the other hand, deploying
multiple CMs presents challenges in sharing state to ensure
correctness and high performance (discussed in Subsection
3.2 and Subsection 3.3), since the overhead of maintaining
shared state between CMs increases as the number of CMs
grows.

In addition to the parallelism within each component, an-
other design consideration is when to combine various compo-
nents into a single composite server. Combining components
(Figure 1b) has the benefit of using fewer cores and reducing

3

context switch overhead over a split configuration (Figure 1a).
Additionally, communication between components within a
composite server has much lower overhead (function calls vs.
messages). This unfortunately leads to loss of control over
the level of parallelism within each component. For example,
one might want to have many TSs in the system, but not as
many CMs (because of the high cost of sharing) or LSs (if the
NIC only has a few hardware DMA rings). Splitting compo-
nents into stand-alone servers may have advantageous cache
effects (eliminating cache conflicts between components and
reducing the working set size), but this potential benefit is
offset by the need for a higher number of cores and higher
communication costs. Traditional microkernels combine all
components into a single server. However, a number of recent
multikernels have argued for a split design [6, 24]. The design
of PIKA allows us to evaluate the design trade-offs involved
in each of these choices; we present the results in Subsection
5.4.

3.2 Speculative 3-Way Handshake

In monolithic kernels, the library function accept() is im-
plemented using a shared accept queue within the kernel from
which all applications can dequeue incoming connections;
these queues are an example of shared state within the net-
work stack that can become a scalability bottleneck [7, 18]. In
PIKA, by contrast, each CM maintains its own accept queue,
without cache-coherent shared memory to keep the queues
coordinated. This fact presents a challenge in the implemen-
tation of accept().

A naïve solution would have the CM enqueue all incoming
connections; the application would then need to send a mes-
sage to the CM on every invocation of accept(). In response,
the CM would choose one of the enqueued connections and
notify the owning TS to offer the connection to the applica-
tion. This implementation, while straightforward, is not very
performant. First, it adds the latency of up to three messages
to every invocation of accept() (App → CM, CM → T S,
T S→ App). An invocation of select() for a listen socket
would similarly incur a round trip messaging cost to the CM.
Each hit in a select loop would thus require five messages,
while a miss would need two, leading to prohibitively high
communication costs. More importantly, it can lead to very
high message traffic as applications poll select().

Our solution is to have the CM speculatively assign in-
coming connections to applications. Both select() and
accept() become purely local operations: the application
simply checks for new connection messages asynchronously
forwarded by the CM. This scheme presents a challenge, as
applications that either do not subsequently call accept() or
happen to be busy lead to lost connections (above the TCP
layer) or high latency. The CM must therefore keep an accu-
rate list of ready applications so that most assignments are
serviced quickly, and additionally provide a recovery mecha-

nism in case the application does not claim the connection in
a short time frame.

PIKA solves this challenge by employing a 3-way hand-
shake between the application and the CM/TS. On the first
invocation of accept() or periodically on invocations of
select(), the application adds itself to the CMs list of ac-
ceptors by sending an ACCEPT-CONNECTION message. An
incoming connection is then assigned to one of the accep-
tors and the TS is notified as such, causing the TS to send a
CONNECTION-AVAILABLEmessage to the application. On the
next invocation of accept() or select(), the application
claims this new connection by sending a CLAIM-CONNECTION
message to the TS, at which point the TS finishes connection
establishment and confirms to the application that it success-
fully claimed the connection. If, however, the application
does not respond to the CONNECTION-AVAILABLE message
within a set period of time, the TS notifies the CM that the
application timed out. In response, the CM removes the ap-
plication from its list of acceptors and assigns the connection
to another acceptor. If the original acceptor subsequently
tries to claim the connection, it is notified that it timed out,
at which point it needs to add itself again to the CM’s list of
acceptors by sending another ACCEPT-CONNECTIONmessage.
By using a small timeout, new connections can be efficiently
reassigned from busy applications to ready applications.

The speculative 3-way handshake thus allows the CM to
maintain an approximate list of acceptors that is lazily up-
dated, greatly reducing the number of messages and improv-
ing latency relative to the naïve approach.

3.3 Load Balancing
PIKA CMs must distribute incoming connections among ap-
plication processes, prioritizing those with the lowest service
times. Ideally, CMs would know the immediate service times
of all processes listening on a port and use these to select
the best destination. This is unfortunately impossible due
to the lack of cache-coherent shared memory. Instead, each
CM maintains a private accept queue and attempts to model
a globally shared queue via message passing. This presents
several challenges: (i) maintaining accurate, shared state in a
volatile environment, (ii) responding to load imbalance effec-
tively without disrupting service time of other PIKA servers or
applications, and (iii) doing so with minimal communication
and synchronization overhead.

PIKA’s load balancing scheme, described below, effectively
balances incoming connections across all applications giving
priority to local applications (i.e. processes on the private
accept queue). It automatically handles the special case when
a CM has no listening applications, acting as a connection
distribution mechanism by allowing connections to be “stolen”
by other CMs.

The general approach PIKA takes for balancing the load
is to have CMs periodically (every 50µs in the current im-
plementation) update each other on the service times of their

4

Offer 0

Offer 1

Offer 2

Local App 0

Local App 1
Local App

Selection

Tariff

Tariff

Tariff
>

Filter

Figure 2: PIKA load balancing scheme. Local applications
compete against offers from other CMs. Offers are only
considered when significantly better than local applications.
Competition occurs in rounds to scale gracefully.

applications. These updates are called offers and include the
service time of the best application to receive connections
(i.e., the fastest) along with its address (i.e., a handle) so it
can be directly contacted by other CMs without any further
coordination.

These service times are measured by keeping a window
of the last several connections’ service times. Service times
are reported to CMs by the TSs when a connection is closed.
Service time is defined as the time between connection of-
fered and connection closed. This design captures end-to-end
performance which includes a variety of load imbalances –
such as an application co-scheduled with another process,
applications servicing long-lived connections, applications on
temperature-throttled cores, and so on. This metric may need
to be changed to match the workload (e.g., for workloads with
long-lived, low-utilization connections). Note, however, that
load estimation is orthogonal to the remainder of the design.

Possessing the service times, CMs then compare their local
applications with offers from other CMs to determine where
to send incoming connections (Figure 2). Because service
times are updated periodically, PIKA selects between applica-
tions probabilistically to prevent flooding. Each application is
weighted by its inverse service time, favoring faster applica-
tions. This approach also lets the load balancer sample slow
applications to see if they have recovered.

In order to encourage locality, which improves latency
and reduces the number of messages, PIKA penalizes offers
(i.e., non-local applications) by a multiplicative tariff. Offers
are further filtered so that only those which are competitive
with local applications are available for selection. This is
done because there is no need for CMs to sample non-local
applications (this will be done by the local CM), so there is
never any benefit from choosing a non-local application with
worse service time over a local one. Filtering allows PIKA to
use low tariffs and still maintain locality.

PIKA selects between offers and local applications in a
tournament of three rounds (Figure 2). This design addresses
a scaling pathology that occurs with a single selection round.
With a single round, the relative weight of local applications
decreases with increasing numbers of offers. This means that
as the number of CMs scales up, locality decreases. By using

Figure 3: Diagram of PIKA implementation. All processes
run independently using message passing as the only means
for communication and synchronization. Dotted box indicates
components running on a single core.

a tournament, the relative weight of local applications and
offers is independent of the number of CMs.

Finally, PIKA employs high- and low-watermarking of
filtered offers to prevent thrashing (not shown in Figure 2).
Once an offer has passed the filter, its performance relative
to local applications must fall below a low-watermark value
before it is filtered again.

4 IMPLEMENTATION

In order to facilitate PIKA’s development, we implemented
a multikernel emulation environment on top of the Linux
kernel (Figure 3). This implementation allows PIKA to take
advantage of high-performance Linux’s NIC drivers, as well
as many debugging and performance monitoring tools (such
as gdb, perf, and Valgrind [4]). Note, however, that we
simply use Linux to bootstrap the infrastructure and to map
shared memory pages that are used solely by the user-space
message passing library.

All application and server processes communicate and syn-
chronize solely through message passing without reliance on
cache-coherent shared memory and locking primitives above
this messaging layer. Hardware DMA rings are mapped to
distinct PIKA servers, so no communication occurs between
cores in kernel-space (see Subsection 5.1). Process bound-
aries enforce communication via messages in user-space.
Thus the system emulates a multikernel architecture. This
design can easily be ported to hardware that does not support
cache-coherent shared memory and other multikernels.

Alternatively, we could have simulated PIKA on a target
architecture without cache-coherent shared memory. This ap-
proach would prevent any inadvertent use of cache coherence,
but it has many problems. Modeling high-performance net-
working in a simulator is inherently difficult and error-prone.
Because simulation runs orders of magnitude slower than na-
tive execution, faithfully modeling external network behavior
(e.g., at the switch or client machines) under high load is im-
possible. Moreover, modeling the behavior of modern NICs
is arcane and difficult to validate. Even disregarding these
problems specific to PIKA, simulations of large multicore

5

processors carry large margins of error and are difficult to
validate. We therefore opted for a native implementation on
commodity hardware and confirmed that no inadvertent use
of cache-coherent shared memory takes place (Subsection
5.1).

Applications communicate with PIKA using the POSIX
socket API. We use the GNU/Linux shared object inter-
position mechanism (through the LD_PRELOAD environment
variable) to load a PIKA compatibility library that intercepts
POSIX socket functions and translates them into messages
to PIKA servers. Applications do not need to be modified
or recompiled to use PIKA. This development infrastructure
can be used to build a variety of multikernel services. We
will release the source code publicly to encourage further
development.

4.1 Driver and Network Stack Processing
The PIKA LS manages the NIC using netmap [19], which
gives user-space programs device-independent access to the
network interface. netmap maintains a copy of the device
state in user-space, as well as a shadow copy in the kernel.
The user-space application (i.e., the LS) modifies its view
of the device state to enqueue packets for transmission or
dequeue packets from a ring. The interface into netmap is
through standard POSIX functions, which synchronize the
driver state between the kernel and the application. The LS
amortizes the costs of the system calls to interact with netmap
by enqueuing and dequeuing batches of packets before each
synchronization.

We use the version of netmap released in June 2012, which
includes a modified ixgbe driver 3.3.8-k2 for the Intel 82599
10 Gigabit Ethernet Controller. We extend netmap to support
additional features of our hardware, such as manipulating
flow director tables and reading the MAC address.

Flow director is a feature of the Intel 82599EB 10 Gigabit
Ethernet Controller that allows the software to control which
hardware DMA ring an incoming packet is routed to based
on attributes of the packet [2]. PIKA uses this feature to
route packets to individual hardware DMA rings based on
the low 12bits of the source port number as suggested by
Pesterev et al. [18]. Each hardware DMA ring is managed by
a separate LS, ensuring that different connections are spread
across the different servers while multiple packets for a given
flow are always delivered to the same server.

The network and transport layer processing code (e.g., IP,
TCP, etc.) employed by the PIKA TS is largely adapted from
the lightweight TCP/IP (lwIP) stack [3].

4.2 Programming Model
PIKA implements a high-performance message passing li-
brary whose fundamental abstraction is a first-in first-out
(FIFO) queue. Each queue is unidirectional; two queues are
combined to provide a bidirectional communication medium.

PIKA servers are event-driven programs supported by a
cooperative threading library and dispatcher. Each network

stack component registers callbacks for unique message types
and yields control to the dispatcher loop. Each callback is
invoked in a cooperative thread with its own stack that can
yield back to the dispatcher pending a response message from
other PIKA servers or applications. The dispatcher provides
its own message passing routines implemented on top of the
base message passing library that handle all remote proce-
dure call (RPC) traffic. The threading library implements
microthreads [14] that avoid costly context switching. This
model allows PIKA components to be easily combined into
a single process avoiding additional context switches among
components.

The message passing library runs on commodity hardware
and therefore relies on cache-coherent shared memory. The
queue abstraction is general enough, however, to be portable
to hardware supporting message passing [15].

5 EVALUATION

This section evaluates these questions experimentally:

• Lacking cache-coherent shared memory, PIKA uses
novel mechanisms to provide the illusion of a shared
accept queue per port and to balance connections be-
tween applications. Does the overhead of maintaining
this shared state affect the performance and scalability
of PIKA with increasing core count?

• How well does PIKA’s load balancing scheme main-
tain consistent service times? Can it adapt to changing
workloads?

• To what extent do the various design trade-offs discussed
in Section 3.1 impact the best configuration for PIKA,
and how is the choice of best configuration affected by
hardware parameters?

5.1 Experimental Setup
All of the results in this section are gathered on 4-socket,
40-cores PowerEdge 910 servers with four Intel Xeon E7-
4850 processors and an Intel 82599EB 10 Gigabit Ethernet
Controller. The machines run Ubuntu Server 11.10 x86-64
with the Linux kernel 3.0.0 and the “netmap-modified” ixgbe
driver 3.3.8-k2. All machines are connected with an Arista
7124S 10 Gigabit Ethernet Switch.

In evaluating PIKA, we focus primarily on connection es-
tablishment, since it is the metric which depends the most
on effective sharing of state for achieving good performance.
Other metrics of network performance, such as bandwidth
and small message throughput, are trivially parallelizable and
are therefore not very interesting.

Our experimental setup is as follows unless stated other-
wise. The application is a small multiprocess web server that
serves pages from memory; this isolates the network stack
and removes other potential performance bottlenecks. Since
we wish to focus on connection establishment, all our experi-
ments focus on short-lived connections (HTTP requests for
a 4B webpage without keep-alive). The client workload

6

2 4 8 16 32

0

100 000

200 000

300 000

400 000

Cores

C
on

ne
ct

io
ns

pe
r

Se
co

nd

Ideal

Linux

Pika

(a) Connections

2 4 8 16 32

500K

1M

1.5M

2M

Cores

R
eq

ue
st

s
pe

r
Se

co
nd

Ideal

Linux

Pika

(b) Requests
Figure 4: Scaling of requests per second vs cores. Clients perform HTTP Gets on a 4 B webpage with and without keep-alive.
Results show that PIKA scales ideally up to 32 cores. Linux is included for reference.

DMA misses Other misses Total kernel
per req. per req. misses per req.

Same socket 0.98 0.27 1.25
Across sockets 0.84 0.30 1.14

Table 1: Last-level cache misses in the kernel per HTTP
request. Four PIKA servers and four web servers are run
within a single socket or across different sockets. Cache
misses do not increase across sockets; Linux is faithfully
modeling a multikernel.

consists of 48 apachebench 2.3 [1] processes spread across
four machines, each with 4 concurrent connections. For each
result, clients are run for a sufficient time to capture steady
state behavior. A single web server can saturate a TS, thus all
of our configurations use an equal number of web servers and
TSs. All processes are run on separate cores with communi-
cating processes placed on the same socket where possible.

We provide comparisons to Linux kernel’s network stack
(Linux from now on) performance in many experiments to
demonstrate that PIKA achieves good performance at low core
counts. Due to the lack of other parallel network stacks that
do not rely on cache-coherent shared memory, we evaluate
PIKA in absolute terms against the network stack provided
by Linux. To this end, we also include an “Ideal” configura-
tion that ideally scales Linux’s performance at two cores (the
smallest system that can run PIKA) to larger systems. PIKA
also compares well with results published for research net-
work stacks employing cache-coherent shared memory [18],
however we cannot compare directly as Affinity-Accept [18]
does not run on recent versions of the Linux kernel.
Linux with netmap as a multikernel. By leveraging Linux
on a cache-coherent shared memory multicore processor, one
might worry that PIKA inadvertently benefits from cache co-
herence. To put this worry to rest, we measure the number
of last-level cache (LLC) misses per HTTP request for a
configuration of four combined PIKA servers and four web
servers. Linux device interrupts for each hardware DMA ring
are mapped to the corresponding PIKA server. The config-

uration is run with: all processes on the same socket; and
server/application pairs striped across sockets. If any com-
munication took place via cache-coherent shared memory to
handle an HTTP request then one would see an increase in
LLC misses when running across sockets.

Table 1 shows that LLC misses do not increase across sock-
ets; thus, there is no hidden communication among cores.2

The LLC misses that do occur are ≈ 1 miss per request in
ixgbe_netmap_rxsync when accessing the hardware DMA
ring, plus a small number of conflict or capacity misses else-
where. Process boundaries ensure no inadvertent sharing
occurs in user-space. The combination of Linux and netmap
therefore behaves as a multikernel in our experimental setup.

In the remaining experiments, one core is dedicated to
handling Linux device interrupts. Our driver uses polling, and
device interrupts are only used to notify netmap of waiting
packets in the hardware DMA rings. As a consequence, we
do not consider this core in our evaluation.

Message Passing Performance. Table 2 measures inter-
process communication in PIKA. The first experiment shows
the limits of the cache coherence hardware using atomic mem-
ory instructions to receive a message and send a reply, taking
on average 186 cycles per round-trip. For synchronous pro-
cesses, this benchmark is the best possible result, because
full-featured message passing must allow receivers to read a
message and write a response. The remaining experiments
evaluate PIKA’s message passing and dispatching. With two
synchronous processes, PIKA takes ≈ 600 cycles for a round-
trip. The additional delay over baseline is due to allocation
overhead and polling misses. However, with many communi-
cating processes, these misses are hidden and PIKA matches
the baseline performance at 150 cycles per round-trip. Dis-
patch adds modest overhead in all cases. Finally, creation,
scheduling, and execution of a microthread that does not yield
takes 26 cycles.

2Note that we disabled hardware prefetching to avoid false sharing.

7

Benchmark Socket Latency Cache misses

Shmem Micro On 186 2.00
Off 964 2.00

Synchronous
Messaging On 597 2.95

Off 1898 3.13

Dispatch On 706
Off 2058

Concurrent
Messaging On 150 2.00

Off 370 2.60

Dispatch On 378
Off 857

Microthread − 26

Table 2: Latency and cache misses for various programming
model operations. Latency is shown for both on- and off-
socket. Cache misses are an average for a single round-trip.

5.2 Scalability
This section evaluates the ability of PIKA to scale to meet
demand with increasing core counts. To apply maximum
stress to PIKA, we focus on shared state using a connection-
per-second microbenchmark. By using short connections and
small request sizes, we can isolate PIKA’s scaling without
any limitations from the application. As past research has
shown, the majority of connections in real-world internet
traffic is short-lived TCP connections [11]. We also present
separate results for long lived connections, validating PIKA’s
performance at the other extreme.

The following results were gathered using the PIKA con-
figuration that we empirically established as having the best
performance (Subsection 5.3 and 5.4): the TS, LS and CM
components combined in each server, and using the Tourna-
ment scheme with a tariff of 2 for load balancing.

Figure 4a reports the throughput obtained by PIKA for
short-lived connections for various core counts. The same
metric for Linux is included for reference. The data shows
that PIKA achieves performance competitive with Linux for
small core counts while significantly outperforming it for
large core counts, matching the Ideal configuration’s scaling.
PIKA achieves near perfect scaling, chiefly because the use
of individual accept queues by each CM removes the main
source of contention in connection establishment.

The only possible non-architectural source of imperfect
scaling is the messages exchanged by the CMs to maintain
sharing semantics and to exchange service times. The number
of these messages increases with increasing number of CMs.
Table 3 shows the overhead for these updates. From this
experiment, we can see that the number of updates per second
increases as the number of CMs increases. However, the
overhead for updating these local data structures is indeed
negligible as only 0.34 % of time is spent on these updates in
the worst case.

It is worth noting that Linux scales poorly due to lock con-
tention on the shared accept queue and a lack of connection

Number of CMs Updates / sec Time updating Overhead

2 21 27 µs 0.03%
4 63 65 µs 0.07%
8 147 131 µs 0.13%

16 315 342 µs 0.34%

Table 3: Time spent updating list of potential remote appli-
cations between Connection Managers over a 10-second test.
In the worst case, updates incur 0.34% overhead.

1 50 80 95 99100

0.5

1.0

1.5

2.0

2.5

3.0

Percentile

Se
rv

ic
e

T
im

e
Hm

sL

Linux

Pika

Figure 5: Service time percentiles for a connection/sec fo-
cused workload with load imbalance (see text). Results in-
dicate that PIKA adapts to the load imbalance with minimal
impact on service time (knee in curve occurs past 99th per-
centile). Linux is included for reference. Note log scale on
x-axis.

affinity to cores. Both of these problems have been addressed
in Affinity-Accept [18], however the proposed solutions have
not yet been incorporated into the Linux kernel.

In terms of absolute performance, the throughput num-
bers reported in the Affinity-Accept paper on a high number
of cores are roughly similar to the throughput numbers that
PIKA achieves on a high number of cores. PIKA’s throughput
numbers are much better than previously published numbers
for multikernels [6, 24] (i.e., 1.9Mreqs/s vs. 19Kreqs/s).
However, any comparison between published results is com-
plicated by the differences in experimental setup (e.g., pro-
cessors, memory, NIC, etc.).

In addition to good scalability on connection establishment,
Figure 4b demonstrates that PIKA achieves good performance
and scalability on long-lived connections. As with short lived
connections, PIKA achieves throughput that is competitive
with Linux at small core counts while outperforming it at
large core counts, even besting the Ideal configuration. While
the handling of long-lived connections can be trivially paral-
lelized, these results demonstrate that the various techniques
PIKA uses to optimize connection establishment do not ad-
versely affect its performance on long-lived connections.

The combination of these experiments demonstrate that
PIKA performs well both in absolute terms as well as scala-
bility for both short and long-lived connections, and thus it is
our view that PIKA can achieve good performance across a
wide range of workloads.

8

0. 0.5 1.5 3.1. 4. 5.
0

50

100

150

200

250

300

Time HsecL

Se
rv

ic
e

T
im

e
HΜ

sL

(a) Actual (b) Measured
Figure 6: Webserver service times over the duration of the experiment. Three web servers experience transient delays of different
magnitudes (yellow, green, magenta), while one web server remains consistently slow (purple). The four remaining web servers
experience no artificial delay.

5.3 Load Balancing
This section evaluates PIKA behavior under an imbalanced
workload and the trade-offs among different load balancing
schemes. The key questions are:

• Does PIKA maintain consistent service times under an
imbalanced workload?

• Does PIKA accurately and stably predict application
service times?

• How well do different load balancing schemes respond
to imbalance?

• What is the impact of different load balancing schemes
on performance and scalability?

In order to evaluate different load balancing schemes in the
presence of imbalance, we artificially introduce delays in the
web server as shown in Figure 6a. The configuration is a 16-
core system with 8 composite PIKA servers (TS, LS and CM
combined) and 8 web servers. The system is driven by a client
that maintains a constant request rate of 30K connections per
second.

Given sufficient load, all applications can be kept busy
by simply distributing incoming connections round-robin,
ignoring application performance. So throughput, while im-
portant, does not indicate good load balancing. Worst-case or
near-worst-case service time is an important metric for load
balancing and can dominate overall response times in large
scale parallel computing [5, 9]. We therefore focus on service
time percentiles, particularly at the 95th percentile and above.

Figure 5 plots service time percentiles for PIKA and Linux.
PIKA uses the Tournament scheme with a tariff of 2. PIKA
has consistent service times with the knee in the curve occur-
ring past the 99th percentile, indicating that PIKA can respond
quickly and effectively to changes in service times of indi-
vidual applications, avoiding slow applications and ensuring
that overall service time percentiles do not suffer. Comparing
the shape of the curve to Linux, PIKA does better at higher
percentiles, showing that PIKA’s tournament selection outper-
forms traditional first-come-first-serve allocation of a shared
memory accept queue.

Accurate, stable, and responsive service time estimation
is critical to the load balancer. Figure 6b shows PIKA’s es-
timates of service time over the duration of the experiment.
This is nearly identical to the actual service times (Figure 6a),
demonstrating that PIKA has accurate knowledge of the ser-
vice times of each application. In these experiments, we used
a moving median with a window size of 128 and a sample
interval of 500µs. We found that a fairly large range of values
worked well; for example, very similar data was generated us-
ing a moving average with a window size of 256 and sample
interval of 1ms.

Next we compare the following load balancing schemes:
Tournament 2, Filtered 2, Unfiltered 2, Unfiltered 100, and
Naïve, where the number indicates the tariff in all cases.
Naïve always gives an incoming connection to a local appli-
cation. Unfiltered X does not filter out offers from other CMs
and performs a single selection round. Filtered X is similar to
Unfiltered X , except all CMs whose offers do not outperform
local applications with the tariff are ignored. Tournament X
is the complete load balancing scheme described previously,
including watermarking except where noted. The important
measures are performance, as reflected in scalability; and
quality of service, as reflected in service time percentiles.

Service Time. Figure 7 shows how well each scheme re-
sponds to the same imbalanced workload. Naïve’s service
time quickly degrades after the 80th percentile. Because
Naïve never re-distributes connections, it always suffers the
service time of its local application. Naïve has the steepest
growth of any scheme, including Linux. Naïve represents
a straightforward use of non-cache-coherent systems (e.g.,
running many independent Linux instances). Figure 7 shows
that in the face of load imbalance, PIKA greatly outperforms
systems without coordinated load balancing.

Unfiltered 100 performs poorly relative to the other
schemes as well, with its service time rising sharply before
the 99th percentile and diverging from the other schemes at
the 80th percentile. This reflects the high tariff, which heav-
ily penalizes distribution of incoming connections to other
CMs. This prevents Unfiltered 100 from responding except

9

1 50 80 95 99100

0.5

1.0

1.5

2.0

Percentile

Se
rv

ic
e

T
im

e
Hm

sL

Naive
Unfiltered 100
Unfiltered 2
Filtered 2
Tournament 2

Figure 7: Service time percentiles for different load balancing
schemes under an imbalanced workload. Tournament 2, Fil-
tered 2, and Unfiltered 2 perform similarly and degrade little
until the 99th percentile. Unfiltered 100 and Naïve perform
poorly, diverging before 80th percentile.

2 4 8 16 32

Cores

50 000

100 000

150 000

200 000

250 000

300 000

350 000

Connections per Second

Naive
Unfiltered 100
Unfiltered 2
Filtered 2
Tournament 2

Figure 8: Scaling of connections per second with different
load balancing schemes under a uniform workload. Naïve
performs no load balancing – connections are always sent
to the local web server. All load balancing schemes except
Unfiltered 2 match naïve scaling.

in the most extreme cases of load imbalance, and it responds
hardly at all to minor imbalances like those at 0.5s and 3s
(Figure 6a).

The three remaining schemes – Tournament 2, Filtered 2,
and Unfiltered 2 – perform nearly identically in this metric.
All have low growth in service time before the 99th percentile
and their service times are nearly identical.

Scalability. Figure 8 shows the scalability of the five load
balancing schemes under a uniform workload. These results
show the impact of load balancing on a balanced workload,
where the proper response is to not balance.

As expected, Naïve performs well as the uniform workload
does not require load balancing. Unfiltered 100 also does well,
as the large tariff prevents connections from going to other
CMs except in rare cases. Unfiltered 2, however, performs
very poorly. With a low tariff, connections are often given
to other CMs despite the uniform workload. This reduces
locality and increases communication overheads, leading to
a performance loss of over 2× at 32 cores. Filtering offers

Figure 9: Throughput in connections/sec vs. time for an
imbalanced workload. Throughput is partitioned by which
web server received the connection. Ticks along the x-axis
indicate changes in connection distribution as PIKA responds
to imbalance.

that do not beat the tariff addresses this problem, as shown by
Filtered 2 and Tournament 2, which match Naïve scaling and
performance.

These results, combined with the previous section, demon-
strate that Filtered 2 and Tournament 2 are the only schemes
that achieve good scalability and service times under a variety
of workloads.

Temporal Analysis. This section evaluates Tournament 2
over the test duration, showing how it responds to load and
improves upon Filtered 2 in some cases.

Figure 9 shows the behavior of the complete system during
the experiment. System throughput is plotted on the y-axis
versus time. Throughput is divided by the number of connec-
tions distributed to each application, represented by the same
colors as in Figure 6a. Ticks along the x-axis show where
imbalance changes. Throughput is maintained at request rate
throughout the experiment, with minor fluctuations when the
load changes.

The response to load balance is clearly evident in the chang-
ing distribution of connections shortly after each tick. At 0.5s,
web server #1 (yellow) slows and receives sharply fewer con-
nections. At 1s web server #1 recovers and its throughput
regains its previous rate. Similarly, web server #3 (green)
experiences a drop and recovery at 1.5s and 4s, respectively.

In order to demonstrate the value of the Tournament 2 load
balancing scheme over the other schemes we have plotted
the number of connections that are assigned locally for web
server #7 (magenta), the one that slows slightly at 3s, for the
workload in Figure 10. For Unfiltered 2 the tariff is inade-
quate to keep connections local, and it distributes connections
to remote connection managers for the duration of the exper-
iment yielding poor locality. Filtered 2 keeps connections
local while the web server is performing on par with the oth-
ers, however when the service time drops slightly at 3s, it
greatly prefers remote web servers much like Unfiltered 2.
Tournament 2 performs the best since it keeps connections lo-
cal until 3s, after which it shows only a slight decrease in the

10

0 1 2 3 4 5
0

2000

4000

6000

Time HsecL

C
on

n�s
ec

No Watermark

Unfiltered 2

Filtered 2

Tournament 2

Figure 10: A comparison of different load balancing schemes
for web server #7 (pink in previous figures) which has small,
transient slowdown starting at 3 s. See text for discussion.

number of local assignments, reflecting the slight increase in
service time. Due to multiple selection rounds, it still prefers
to assign locally and produces a similar response with two
CMs as with sixteen. Lastly, watermarking prevents thrashing
of the filter in Tournament 2.
Discussion. PIKA’s load balancer responds well to appli-
cation demand without degrading scalability. With an im-
balanced workload, naïve load balancing quickly degrades
performance to unacceptable levels. Simple load balancing
schemes are sufficient to address this, but filtering is necessary
to avoid performance degradation under heavy, uniform load.
The basic filtering scheme has undesirable scaling behavior,
however, disfavoring locality as the number of CMs increases.
This issue is addressed using a Tournament selector, which
allows a single tariff value to scale up to a large number of
CMs.

5.4 Configurations
In any multikernel architecture an important decision to make
is how to split the system services and how many instances
of each component should be run. Other multikernels have
proposed splitting the network service for both performance
and reliability reasons [6, 16, 24]. As discussed in Section
3.1, a split design affords better control over parallelism (with
the attendant ease in managing shared state) and may also
provide cache benefits. This comes at the price of higher
communication costs and a larger core budget. We use PIKA’s
flexible design to evaluate these trade-offs.

We describe configurations in the following notation:

1. XnYn implies that component X is combined with (i.e.,
in the same process as) component Y , and there are n
instances of this combined server.

2. XnYm (m ≤ n) implies that there are n servers imple-
menting the component X , and m of those also have
component Y attached.

3. Xn +Ym implies that the system has n instances of com-
ponent X and m instances of component Y (in separate
processes).

TS 8C
M 8+

LS 1

TS 8C
M 8+

LS 2

TS 8C
M 8+

LS 4

TS 8C
M 8+

LS 8

TS 8L
S 8+

CM 1

TS 8L
S 8+

CM 2

TS 8L
S 8+

CM 4

TS 8L
S 8+

CM 8

TS 8+

CM 1
+

LS 1

TS 8+

CM 2
+

LS 2

TS 8+

CM 4
+

LS 4

TS 8+

CM 8
+

LS 8

TS 8L
S 8

CM 1

TS 8L
S 8

CM 2

TS 8L
S 8

CM 4

TS 8L
S 8C

M 8

50 000

100 000

150 000

200 000

Connections per Second

Figure 11: Comparison of different configurations with T S8
held constant. Additional cores are used as LS, CM, or both.
The combined configuration outperforms all others, while
using fewer cores.

As an example, the split system architecture diagram (Fig-
ure 1a) depicts the configuration T S2 + LS2 +CM1, which
uses 5 cores, while the combined system architecture diagram
(Figure 1b) depicts the configuration T S2LS2CM2, which uses
only 2 cores.
Combined is Best. To evaluate the impact of using a split
design, we fix the number of TSs and applications at 8 cores
each while varying the number of LSs and CMs. This experi-
ment offers the most favorable evaluation for a split design, as
additional cores used by the LS and CM are “free”. Figure 11
shows the performance in connections per second from hold-
ing the number of TSs constant at 8 and adding “free” cores
for other components as required by the configuration.

The far right bar shows the performance of the baseline
configuration where all of the components are combined, thus
using the least number of cores. Results are divided into
four groups, all of which perform worse than the combined
configuration:

• Separate LSs. Performance is very poor until LS8. This
is unsurprising: since the hardware has sufficient par-
allelism, lowering the number of LSs makes them the
bottleneck. Separate LSs also suffer from additional
message passing overhead for each TCP/IP packet.

• Separate CMs. Separating out the CM also degrades
performance, although in this case not substantially from
the baseline.

• Separate LSs and CMs. Given prior results it is expected
that adding both LSs and CMs provides no net benefit,
although T S8 +LS8 +CM8 is close to the baseline (but
using twice as many cores for the full system).

• CMs in a subset of TSs. The subset configuration de-
picted in the last group shows acute performance degra-
dation at CM1 and CM2. This configuration reduces
the overhead incurred from updates between connection
managers; however, our results demonstrate that this
gain is not enough to improve overall performance.

In conclusion, the baseline (combined) configuration outper-
forms any split configurations while using fewer cores. Since

11

Configuration TCM Tbusy Tmsg Ttotal

T S1LS1CM1 0.31 µs 3.13 µs 7.12 µs 307 µs
T S1LS1 +CM1 9.24 µs 3.67 µs 7.34 µs 311 µs

Table 4: Time spent establishing a connection with split or
combined CM with a single client. Time spent in connection
establishment increases significantly with a split CM.

Configuration TCM Tbusy Tmsg

T S8LS8CM8 0.39 µs 3.26 µs 10.05 µs
T S8LS8 +CM1 17.78 µs 5.17 µs 8.61 µs
T S8LS8 +CM2 14.73 µs 4.96 µs 8.59 µs
T S8LS8 +CM4 13.67 µs 4.99 µs 10.05 µs
T S8LS8CM1 6766.68 µs 5.91 µs 10.91 µs
T S8LS8CM2 39.73 µs 5.92 µs 11.57 µs
T S8LS8CM4 10.46 µs 5.18 µs 12.38 µs

Table 5: Time spent establishing a connection over all CM
configurations using a full client workload. Time spent in the
CM increases significantly with all split configurations.

messaging overhead is low and pipeline parallelism is ample,
it is surprising that using more cores does not provide an
increase in performance. We now take a more detailed look at
where the time is being spent and cache behavior to determine
the performance trade-offs.

Performance Breakdown. To better understand the perfor-
mance trade-offs of running various components separately,
we instrumented our code to measure the cost of different
phases of handling an incoming connection. In particular,
we measure the connection management cost (TCM), defined
as the time spent between the time a SYN packet is received
by the LS to the time the packet is handed off to the TS to
manage the connection. We also measure the time spent in
the TS doing TCP/IP processing (Tbusy) and in the message
passing code (Tmsg).

To estimate the messaging cost incurred by a separate CM,
we compare the costs for T S1LS1CM1 and T S1LS1 +CM1,
where the application is a single web server and the client is
an apachebench process with concurrency of 1 (Table 4) . The
significant difference between the two is in TCM (8.93 µs).
This represents the additional communication cost incurred
in T S1LS1 +CM1 and accounts for the slightly higher end-to-
end latency (Ttotal) observed.

Table 5 presents these costs for all CM configurations, with
the full experimental setup shown in Figure 11. Again, the
most significant differences are in TCM . The difference in
TCM between T S8LS8 +CM1 and T S8LS8CM8 is higher than
can be accounted for by the communication cost alone. The
balance is the queueing delay experienced when a single CM
is overwhelmed doing connection management for 8 TSs. The
queuing delay decreases as the number of CMs is increased,

though not enough to be an advantage while still incurring a
communication overhead as well as using additional cores.

In the subset configuration, TCM is several orders of mag-
nitude higher for T S8LS8CM1. In this case, the connection
management time is made worse by the fact that the single
CM additionally competes with heavily loaded TS/LS compo-
nents, causing the queue length at the CM to grow unbounded.
These delays explain the reduced throughput for this config-
uration observed in Figure 11. This time is decreased as the
number of CMs is increased, however it remains much higher
than in the combined configuration.

These results indicate that splitting the CM into a separate
server or running it in a subset of the TSs does not provide any
performance gains on our hardware due to queueing delays
and additional communication cost.
Cache Size. One of the main motivations for splitting com-
ponents is to reduce the cache footprint of PIKA servers so
they fit in the private cache levels. To determine the cache
impact of splitting the various components of PIKA, we simu-
late PIKA behavior for two configurations (T S1LS1CM1 and
T S1 +LS1 +CM1) with a fixed workload of 10,000 requests
for various cache sizes using Cachegrind [4]. Figure 12
presents the number of cache misses per request incurred
for various cache sizes by these two configurations.

The results indicate that the total instruction footprint of all
PIKA components fits in a cache size of 64 KB (Figure 12a).
Thus, there is no advantage in splitting up the components for
cache sizes over 64 KB. For smaller caches, the number of
cache misses in the two cases are very similar; therefore any
possible benefit due to components splitting, if at all present,
is likely to be small.

For data caches (Figure 12b), the total cache misses in-
curred by the two configurations are very similar for caches
bigger than 16 KB, and there are unlikely to be significant
cache benefits in splitting the system. For cache sizes of
16 KB or smaller, the data indicates that there might be some
advantageous cache effects to be obtained from splitting the
components.

In summary, for systems with private caches larger than
64 KB, splitting the components is unlikely to result in
better cache characteristics. The combined configuration
(T SnLSnCMn) is therefore better on commodity hardware,
and likely on most multicore and many core processors in the
foreseeable future. For smaller cache sizes or other system
services with larger footprint, the choice is less clear and
the answer depends on the relative importance of the various
factors discussed above.

6 CONCLUSION

This paper presented PIKA, a network stack for multikernel
operating systems. PIKA maintains a shared accept queue and
performs load balancing through explicit message passing,
using a speculative 3-way handshake protocol and a novel
distributed load balancing scheme for connection acceptance.

12

16K 32K 64K 128K 256K 512K 1M

200

400

600

800

1000
Misses per request

Combined
Transport Server
Link Server
Connection Manager

(a) i-cache size

16K 32K 64K 128K 256K 512K 1M

100

200

300

400

500
Misses per request

Combined
Transport Server
Link Server
Connection Manager

(b) d-cache size
Figure 12: Cache misses vs. private cache size. For private cache sizes larger than 64 KB it is preferable to combine components.

Our prototype achieves good performance, scalability, and
load balance on 32 cores for both uniform and skewed work-
loads. Moreover, an exploration of possible multikernel net-
work stack designs suggests that a combined network stack on
each individual core delivers the best performance on current
“big” cores, and that splitting the stack across several cores
would make sense only on cores with 16 KB private caches.
We hope that our techniques and results can inform the design
of other system services for multikernels that must maintain
shared state on future multicore processors.

ACKNOWLEDGMENTS

This research was supported by Quanta.

REFERENCES

[1] ab - Apache HTTP server benchmarking
tool. http://httpd.apache.org/docs/2.2/
programs/ab.html.

[2] Intel 82599 10 GbE Controller Datasheet.
http://www.intel.com/content/dam/www/
public/us/en/documents/datasheets/
82599-10-gbe-controller-datasheet.pdf.

[3] lwIP - A Lightweight TCP/IP stack. http://
savannah.nongnu.org/projects/lwip/.

[4] Valgrind. http://www.valgrind.org.

[5] Luiz André Barroso. Warehouse-Scale Computing: En-
tering the Teenage Decade. In Proceedings of the 38th
Annual International Symposium on Computer Architec-
ture (ISCA), 2011.

[6] Andrew Baumann, Paul Barham, Pierre Évariste Da-
gand, Timothy L. Harris, Rebecca Isaacs, Simon Pe-
ter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the 22nd
Symposium on Operating Systems Principles (SOSP),
2009.

[7] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert
Morris, and Nickolai Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2010.

[8] Valeria Cardellini, Michele Colajanni, and Philip S.
Yu. Dynamic Load Balancing on Web-Server Systems.
IEEE Internet Computing, 3(3), 1999.

[9] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Commun. ACM, 56(2), 2013.

[10] Daniel Grosu. Load Balancing in Distributed Systems:
A Game Theoretic Approach. PhD thesis, University of
Texas San Antonio, 2003.

[11] Liang Guo and Ibrahim Matta. The War between Mice
and Elephants. In Proceedings of the 9th International
Conference on Network Protocols (ICNP), 2001.

[12] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: A New Programming
Interface for Scalable Network I/O. In Proceedings of
the 10th Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[13] Nikhil Handigol, Srinivasan SeetharamanâĂă, Mario
Flajslik, Nick McKeown, and Ramesh Johari. Plug-n-
Serve: Load-Balancing Web Traffic using OpenFlow.
http://conferences.sigcomm.org/sigcomm/
2009/demos/sigcomm-pd-2009-final26.pdf,
2009.

[14] Joe Hoffert and Kenneth Goldman. Microthread - An
Object Behavioral Pattern for Managing Object Execu-
tion. In Proceedings of the 5th Conference on Pattern
Languages of Programs (PLoP), 1998.

[15] Jason Howard, Saurabh Dighe, Sriram R. Vangal, Gre-
gory Ruhl, Nitin Borkar, Shailendra Jain, Vasantha Er-
raguntla, Michael Konow, Michael Riepen, Matthias

13

Gries, Guido Droege, Tor Lund-Larsen, Sebastian Steibl,
Shekhar Borkar, Vivek K. De, and Rob F. Van der Wi-
jngaart. A 48-Core IA-32 Processor in 45 nm CMOS
Using On-Die Message-Passing and DVFS for Perfor-
mance and Power Scaling. J. Solid-State Circuits, 46(1),
2011.

[16] Tomas Hruby, Dirk Vogt, Herbert Bos, and Andrew S.
Tanenbaum. Keep Net Working - On a Dependable and
Fast Networking Stack. In Proceedings of the Annual
International Conference on Dependable Systems and
Networks (DSN), 2012.

[17] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin.
Why On-Chip Cache Coherence Is Here to Stay. Com-
mun. ACM, 55(7), 2012.

[18] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,
and Robert T. Morris. Improving Network Connection
Locality on Multicore Systems. In Proceedings of the
7th European Conference on Computer Systems (Eu-
roSys), 2012.

[19] Luigi Rizzo. netmap: a novel framework for fast packet
I/O. In Proceedings of the Annual Technical Conference
(USENIX ATC), 2012.

[20] Leah Shalev, Julian Satran, Eran Borovik, and Muli
Ben-Yehuda. IsoStack – Highly Efficient Network Pro-
cessing on Dedicated Cores. In Proceedings of the
Annual Technical Conference (USENIX ATC), 2010.

[21] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh
Singhal. Load Distributing for Locally Distributed Sys-
tems. IEEE Computer, 25(12), 1992.

[22] Livio Soares and Michael Stumm. FlexSC: Flexible
System Call Scheduling with Exception-Less System
Calls. In Proceedings of the 9th Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2010.

[23] Livio Soares and Michael Stumm. Exception-Less Sys-
tem Calls for Event-Driven Servers. In Proceedings of
the Annual Technical Conference (USENIX ATC), 2011.

[24] David Wentzlaff, Charles Gruenwald, III, Nathan Beck-
mann, Kevin Modzelewski, Adam Belay, Lamia Yous-
eff, Jason Miller, and Anant Agarwal. An Operating
System for Multicore and Clouds: Mechanisms and Im-
plementation. In Proceedings of the 1st Symposium on
Cloud Computing (SoCC), 2010.

14

