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The sensitivity of searches for astrophysical transients in data from the Laser Interferometer

Gravitational-wave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian

noise artifacts, which occur at a high enough rate such that accidental coincidence across multiple detectors

is non-negligible. These ‘‘glitches’’ can easily bemistaken for transient gravitational-wave signals, and their

robust identification and removal will help any search for astrophysical gravitational waves. We apply

machine-learning algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO

detectors that monitor degrees of freedom unaffected by astrophysical signals. Noise sources may produce

artifacts in these auxiliary channels as well as the gravitational-wave channel. The number of auxiliary-

channel parameters describing these disturbances may also be extremely large; high dimensionality is an

area where MLAs are particularly well suited. We demonstrate the feasibility and applicability of three

different MLAs: artificial neural networks, support vector machines, and random forests. These classifiers

identify and remove a substantial fraction of the glitches present in two different data sets: four weeks of

LIGO’s fourth science run and one week of LIGO’s sixth science run. We observe that all three algorithms

agree on which events are glitches towithin 10% for the sixth-science-run data, and support this by showing

that the different optimization criteria used by each classifier generate the same decision surface, based on a

likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar performance to the bench-

mark algorithm, the ordered veto list, which is optimized to detect pairwise correlations between transients in

LIGO auxiliary channels and glitches in the gravitational-wave data. This suggests that most of the useful

information currently extracted from the auxiliary channels is already described by this model. Future

performance gains are thus likely to involve additional sources of information, rather than improvements in

the classification algorithms themselves. We discuss several plausible sources of such new information as

well as the ways of propagating it through the classifiers into gravitational-wave searches.

DOI: 10.1103/PhysRevD.88.062003 PACS numbers: 04.80.Nn, 07.05.Mh, 07.05.Kf

I. INTRODUCTION

The Laser Interferometer Gravitational-wave
Observatory (LIGO) is a two-site network of ground-based
detectors designed for the direct detection and measure-
ment of gravitational-wave signals from astrophysical
sources [1,2]. The LIGO detectors, in their initial configu-
ration [1], have operated since 2001 and conducted several
scientific runs, collecting data with incrementally in-
creased sensitivity in each run [1,3,4]. Although no gravi-
tational waves were detected, these runs tested and refined
key technologies, as well as provided a large amount of

data characterizing the detectors. The next generation of

detectors, referred to as the advanced LIGO detectors, are

currently under construction and are expected to be opera-

tional by 2015 [1,2]. Major upgrades to lasers, optics, and

seismic isolation/sensing will provide roughly a factor of

ten improvement to sensitivity, which corresponds to a

factor of 1000 in the observable volume of space and

the number of detectable sources. Based on our current

knowledge of potential astrophysical sources, the advanced

LIGO detectors are expected to make routine gravitational-

wave detections (see, for example, Ref. [5]) and will open

the era of gravitational-wave astronomy.
The LIGO detector noise may be characterized by an

approximately stationary component of colored Gaussian*vaulin@ligo.mit.edu
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noise, with the addition of short-duration non-Gaussian
noise artifacts called ‘‘glitches.’’ (Other noise sources,
such as nonstationary lines and broadband nonstationarity,
do not always fit neatly into this framework.) The stationary
noise in the instrument is dominated by low-frequency
seismic noise coupling to mirror motion, thermal noise in
the mirrors and suspensions, 60 Hz power lines and har-
monics, and shot noise. Sources of transient noise can
include temporary seismic, acoustic, ormagnetic disturban-
ces, power transients, scattered light, dust crossing the
beam, instabilities in the interferometer, channel satura-
tions, and other complicated and often nonlinear effects.
To monitor these disturbances and keep the instrument in a
stable operating condition through active feedback, each
detector records hundreds of auxiliary channels along with
the gravitational-wave channel. These auxiliary channels
keep track of important non–gravitational wave degrees of
freedom in the interferometer, as well as information about
the local environment. They are critical to understanding
the state of the instrument at any particular time.

One of LIGO’s main scientific goals is the detection of
transient gravitational-wave signals, which can come from
the coalescence of a compact binary or core-collapse su-
pernova, among other astrophysical sources [6]. The pres-
ence of glitches is problematic for searches targeting these
signals because glitches can be easily confused with tran-
sient gravitational-wave signals. They dominate back-
ground at moderate and high signal-to-noise ratios, where
Gaussian noise contribution is completely negligible, mak-
ing the detection of most realistic transient gravitational-
wave signals with a single LIGO detector alone virtually
impossible. The primary method to distinguish a real
gravitational-wave transient from an instrumental artifact
is to check that a signal appears in two or more spatially
separated detectors. While this coincidence requirement is
extremely effective, a high rate of glitches means that the
accidental coincidence of noise transients across multiple
detectors still dominates the search background, resulting
in weaker upper limits and making the confident detection
of real signals challenging [7]. Even in the case of the
search for gravitational waves from binary neutron stars—
in which the waveforms are well modeled and powerful
signal consistency tests are employed to reject glitches—
the volume search sensitivity is 30% less than what it could
be in the presence of only Gaussian noise [8]. The problem
is most severe in the searches for transients with poorly
modeled or little identifying waveform structure, such as
generic gravitational-wave bursts or intermediate-mass bi-
nary black-hole coalescence, which spend only a short
amount of time (a few cycles) in the LIGO sensitive band.

For instance, using the KleineWelle analysis algorithm
[9] as a proxy for a generic search for gravitational-wave
bursts, one finds that the rate of moderately significant
Gaussian noise fluctuations (with �Gauss � 15) is of order
10�3 Hz in a single detector. The rate of such fluctuations

occurring at two detectors within 10 ms (the light travel
time between two LIGO detectors) of each other and
characterized by a similar central frequency is 10�3 Hz�
10�3 Hz� 10�2 s� 10�3 � 10�11 Hz, making them ap-
proximately one-in-3000-years events.1 Taking this as a
reasonable threshold for detection, one finds [e.g. from
Fig. 5(b) showing the distribution of glitches] that in the
presence of glitches bursts with a significance of �glitch �
1000 occur at similar rate, 10�3 Hz. Given that the ratio of
burst significances is equal to the ratio of their energies, it
is inversely proportional to the square of the distances to
the astrophysical sources (�Gauss=�glitch � EGauss=Eglitch ¼
D2

glitch=D
2
Gauss). The sensitivity of the burst search is

degraded by glitches by a factor of DGauss=Dglitch �
ð1000=15Þ1=2 � 8 relative to the same search in Gaussian
noise. The number of astrophysical sources grows as
distance cubed, so this reduction in sensitivity is very
detrimental to searches for generic bursts of gravitational
radiation. While these order-of-magnitude estimates cor-
respond to gravitational-wave signals of unknown form,
they give a sense of the severity of the problem glitches
impose.
While the precise noise characteristics in the advanced

detectors will be different from those of the initial LIGO,
glitch sources for future data will exist and the detection
problem for short-duration signals will persist. Thus, it is
critical to develop data analysis methods for the robust
identification of glitches in LIGO data. Many algorithms
have been developed to look for glitches. These algorithms
typically involve generating a statistic that measures the
pairwise correlation between glitches from a single auxil-
iary channel and glitches from the gravitational-wave
channel. In particular, algorithms have used the use per-
centage (ratio of gravitational-wave channel glitches
removed to auxiliary glitches used) [10,11], the veto effi-
ciency (fraction of gravitational-wave channel glitches
removed), the fractional deadtime (the fraction of analysis
time removed by vetoes), veto significance (the probability
of observing at least as many coincident gravitational-
wave channel and auxiliary glitches assuming two uncor-
related Poisson processes) [12], and the ratio of veto
efficiency to fractional deadtime [13]. Other algorithms
include those in Refs. [7,14–17]. Machine-learning algo-
rithms (MLA)s are distinct from these other algorithms in
that they can consider information from many different
auxiliary channels simultaneously, rather than assuming a
pairwise correlation or some other restriction on the glitch-
coupling mechanism.
We use the ordered veto list (OVL) algorithm as a

benchmark for our investigations [13]. OVL has been

1We require that central frequencies of the bursts in two
detectors coincide to within 1 Hz. Given the detector’s approxi-
mate bandwidth of 1 kHz, this leads to a probability of chance
coincidence of 10�3.
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used in recent LIGO science runs as one of the primary
glitch-detection algorithms. In particular, an earlier version
of OVL described in Ref. [18] was used during LIGO’s
fifth science run [19]. OVL attempts to measure the degree
of likelihood that a gravitational-wave candidate can be
associated with a transient instrumental disturbance found
in one of the many auxiliary channels using the ratio of
efficiency to fractional deadtime.

Glitches are induced by the detector’s environment,
noise in the detector subsystems, or a combination thereof.
These sources may appear in the auxiliary channels as
well. In order to avoid potential bias we use a subset of
auxiliary channels shown to be insensitive to test signals
introduced in the nominal gravitational-wave channel. This
subset is generated through hardware injections at the
detectors [12]. The hardware injections involve driving
the test masses through magnetic couplings2 with an ex-
pected gravitational-wave signal and searching for evi-
dence of that signal in auxiliary channels. If the signal
does not systematically appear in an auxiliary channel, that
channel is deemed ‘‘safe’’ and we include it in our analysis.
By analyzing information from these auxiliary channels,
one may be able to distinguish glitches from genuine
gravitational-wave signals and ideally establish their
cause. The main difficulty in such an analysis is processing
the information from hundreds of channels which may
manifest nontrivial correlations between themselves
when they respond to an instrumental disturbance. Given
the high dimensionality and the absence of reliable models
for noise and couplings between auxiliary channels, tradi-
tional computational methods are not well suited to this
problem. On the other hand, MLAs have been used to solve
problems like this since the 1970s in other fields, such as
computer science, biology, and finance.

This paper presents the use of MLAs for the purpose of
glitch identification in gravitational-wave detectors. The
main goal of the paper is to establish the feasibility of
applying MLAs in the context of the LIGO detectors. We
consider three well-known algorithms: the artificial neural
network (ANN), the support vector machine (SVM), and
the random forest (RF). We explore their properties and
test their performance by analyzing data from past scien-
tific runs. Based on these tests, we discuss the prospects for
using MLAs for glitch identification in the advanced LIGO
detectors.

This paper is organized as follows. In Sec. II, we de-
scribe the process for reducing raw time-series data and
preparing feature vectors for the MLA classifiers. This is
followed by a general formulation of the glitch detection
problem in Sec. III. Then, in Sec. IV, we briefly describe
the classifiers’ algorithms. Training and testing of the
classifiers is discussed in Sec. V. Finally, we evaluate and

compare the classifiers’ performances using the standard
receiver operating characteristic (ROC) curves in Sec. VI
and investigate various ways of combining classifiers in
Sec. VII. In Appendix B, we explore several optimization
criteria used by the classifiers and verify their theoretical
consistency.

II. DATA PREPARATION

We use data taken by the 4 km arm detector at Hanford,
WA (H1) during LIGO’s fourth science run (S4: 24
February–24 March 2005), and data taken by the 4 km
arm detector at Livingston, LA (L1) during one week
(28 May–4 June 2010) of LIGO’s sixth science run (S6:
7 July 2009–20 October 2010). Hereafter we refer to these
data sets as the S4 and the S6 data.
In the time between the fourth and the sixth science runs,

the detectors underwent major commissioning and im-
provements to their sensitivity. Thus, while the H1 and
L1 detectors are identical by design, the data taken by H1
during S4 and the data taken by L1 during S6 are quite
different. These data sets represent evolutionary changes in
both the detector-noise power spectral density and the non-
Gaussian transient artifacts. Differences in the detectors’
environments due to their distant geographical locations
add another degree of freedom. Processing data from de-
tectors separated in time and location allows us to deter-
mine how adaptable and robust these analysis algorithms
are. This is important when extrapolating their perform-
ance to advanced detectors.
Classification, or the separation of input data into vari-

ous categories, is one of the MLAs’ main uses; thus, they
are often referred to as classifiers. We have two categories
of data: glitches (Class 1) and ‘‘clean’’ data (Class 0). If
one was to perform a search for gravitational-wave tran-
sient signals, the first category, glitches, would generally
be identified as candidate transient events and considered
false alarms. The second category, ‘‘clean’’ data, contain
only Gaussian detector noise in the gravitational-wave
channel. A true gravitational-wave signal, when it arrives
at the detector, is superposed on the Gaussian detector
noise. If the signal’s amplitude is high enough, it also
would be identified by the search algorithm as a candidate
transient event. Since it is a genuine gravitational-wave
transient, it would constitute an actual detection, as op-
posed to glitches which act as noise. Hereafter we refer to
such candidate gravitational-wave transients, either genu-
ine gravitational-wave transients or glitches, as transient
events or simply as events.
We characterize a transient event in either class by

information from the detector’s auxiliary channels.
Importantly, we record the same information for both
classes of events. Each channel records a time series mea-
suring some non-gravitational wave degree of freedom,
either in the detector or its environment. We first reduce
the time series to a set of non-Gaussian transients using the

2In advanced LIGO detectors, test masses will be driven via
electrostatic actuation.
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KleineWelle analysis algorithm [9], which finds clusters of
excess signal energy in the dyadic wavelet domain. The
detected transients are ranked by their statistical signifi-
cance, �, defined as the negative logarithm of the proba-
bility that a random cluster of wavelet coefficients subject
to Gaussian noise would contain the same or greater signal
energy,

� ¼ � lnPðErandom � EobservedÞ: (1)

The MLA classifiers use the properties of auxiliary-
channel transients coincident in time with the gravitational-
wave channel event to classify the gravitational-wave event.
Given an event in thegravitational-wave channel at time t,we
build a feature vector x out of the nearby auxiliary-channel
transients. Each channel contributes five features:

(i) �: The significance of the single loudest transient in
that auxiliary channel within �100 ms of t.

(ii) �t: The difference between t and the central time
corresponding to the auxiliary-channel transient.

(iii) d: The duration of the auxiliary-channel transient.
(iv) f: The central frequency of the auxiliary-channel

transient.
(v) n: The number of wavelet coefficients clustered to

form the auxiliary-channel transient (a measure of
time-frequency volume).

The KleineWelle triggers are recorded for transients with
significance � � 15; below this threshold there is substan-
tial contribution from random (uncorrelated) Gaussian
noise which is uninformative. If no such auxiliary transient
is found within 100 ms of t, the five fields for that channel
are set to default values of zero. The 100-ms window
covers most transient coupling timescales identified by
previous studies [12]. However, there is no guarantee that
this window is an optimal choice, or that it should be the
same for all auxiliary channels. In total, we analyze 250
(162) auxiliary channels from S6 (S4) data, resulting in
1250 (810) dimensions for the auxiliary feature vector, x.
In addition, we record certain bookkeeping information
about the original gravitational-wave channel event,
the state of nearby non-Gaussian transients in the
gravitational-wave channel, and other information about
data quality. These values are stripped before classifier
training and evaluation so that we train the classifiers on
only information contained in the auxiliary features.

The set of ‘‘glitch’’ (Class 1) samples, fxg1, is generated
by running KleineWelle over the gravitational-wave
channel from one of the LIGO detectors. This set of non-
Gaussian transients from the gravitational-wave channel
can, in principle, contain true gravitational waves.
However, prior to the coincidence requirement, they are
overwhelmingly dominated by noise artifacts. Even for the
most sensitive data set (S6), the expected rate of detectable
gravitational-wave transients from known astrophysical
sources is extremely low (�10�9 Hz [5]) with respect to
the rate of single-detector noise transients (�0:1 Hz).

Should there be a significant contribution of real gravita-
tional waves in our single-detector glitch sample, the effect
would be a reduction of training quality as the gravitational
waves provide no useful correlations with auxiliary chan-
nels across the disjoint training and evaluation data sets.
For the advanced LIGO detectors, it may be appropriate
to remove coincident gravitational-wave candidates from
the glitch training samples to avoid contamination from
detectable gravitational-wave events. In both classifiers’
training and performance evaluation, we treat all
KleineWelle transients from the gravitational-wave chan-
nel as artifacts. In total, we identify 2832 (16 204) noise
transients above a nominal significance threshold of
� � 35 from the Livingston L1 (Hanford H1) detector
during one week of the S6 (four weeks of the S4) science
run. At this threshold, effectively all detected transients are
non-Gaussian outliers (Fig. 5), and contribute to the bulk of
non-Gaussian background in searches for gravitational-
wave transients. The central time from each event is used
to trigger feature-vector generation, so that fxg1 is a set of
2832 (16 204) sample vectors, each described by 1250
(810) features derived from coincident auxiliary-channel
information. The samples are most representative of the
background in gravitational-wave burst searches which
generally target short, unmodeled signals.
‘‘Clean’’ (Class 0) samples, fxg0, are formed by first

generating 105 randomly distributed times to estimate the
auxiliary states at times when no glitch is present. To
further aid in distinguishing times when there is no distur-
bance, we exclude Class 0 samples which fall within
�100 ms of a Class 1 sample. As with Class 1, the full
set of Class 0 samples fxg0 is built from auxiliary-channel
information nearby each randomly selected time.

III. GENERAL FORMULATION OF THE
DETECTION PROBLEM

The data analysis problem which we address here can be
formulated as the robust identification of transient artifacts
(glitches) in the gravitational-wave channel based on the
information contained solely in the safe auxiliary detector
channels. Clearly, the solution to this problem is directly
related to the solution to the ultimate problem of the robust
detection and classification of gravitational-wave tran-
sients in LIGO data. The identification of glitches will
reduce the non-Gaussian background and improve the
sensitivity of gravitational-wave searches. We leave the
question of how the results of our current analysis of
the auxiliary channels can be incorporated into the search
for transient gravitational waves to future work.
For a given transient event in the gravitational-wave

channel, we construct a feature vector of auxiliary infor-
mation, x, following the procedure outlined in Sec. II. Our
detection problem reduces to binary prediction on whether
this transient is a glitch (Class 1) or a clean sample (Class 0)
based on x and only x. In feature space, x 2 Vd, this binary
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decision can be mapped into identifying domains for
Class 1 events, V1, and Class 0 events, V0. We call the
surface separating the two regions the decision surface.
Unless the two classes are perfectly separable, which is
typically not the case, there is a nonzero probability for an
event of one class to occur in a domain identified with a
different class. In this case, one would like to find an
optimal decision surface separating two classes in such a
way that we maximize the probability of finding events of
Class 1 in V1 at a fixed probability of miscategorizing
events from Class 0 in V1. This essentially minimizes the
probability of incorrectly classifying events. P1 represents
the probability of glitch detection, which we also call glitch
detection efficiency, and P0 is called the false-alarm proba-
bility. This optimization principle is often referred to as
the Neyman-Pearson criteria [20].

The probability of detection and the probability of false
alarm can be expressed in terms of conditional probability
density functions for the feature vector, x,

P1 ¼
Z
Vd

�ðfðxÞ � F�Þpðxj1Þpð1Þdx; (2a)

P0 ¼
Z
Vd

�ðfðxÞ � F�Þpðxj0Þpð0Þdx: (2b)

Here pðxj1Þ and pðxj0Þ define probability density functions
for the feature vector in the presence and absence of a
glitch in the gravitational-wave data, respectively. pð1Þ and
pð0Þ are prior probabilities for having a glitch or clean
data, related to one another via pð1Þ þ pð0Þ ¼ 1. The
Heaviside step function �ðfðxÞ � F�Þ defines the region
V1 which signifies a glitch in the gravitational-wave data,
and fðxÞ ¼ F� defines the decision surface. F� is a thresh-
old parameter, which corresponds to a specific value of the
probability of false alarm through Eq. (2b).

The optimal decision surface is found by maximizing
the functional

S½fðxÞ� ¼ P1½fðxÞ� � l0ðP0½fðxÞ� � P�
0Þ; (3)

where P�
0 is a tolerable value for the probability of false

alarm and l0 is a Lagrange multiplier. Setting the variation
of this functional with respect to fðxÞ to zero leads to a
condition for the points on the decision surface,

pðxj1Þpð1Þ
pðxj0Þpð0Þ ¼ Constant: (4)

The ratio of conditional probability density functions,

�ðxÞ 	 pðxj1Þ
pðxj0Þ ; (5)

is called the likelihood ratio (sometimes also referred to as
the Bayes factor). The Constant in the optimality condition
(4) does not carry any special meaning, and the condition
can be satisfied if the decision surface is defined as the
surface of constant likelihood ratio [21],

fðxÞ ¼ �ðxÞ ¼ F�; (6)

with F� set by the probability of false alarm, P�
0, through

Eq. (2b). Actually, the decision surface can be defined by
any monotonic function of the likelihood ratio with a trivial
redefinition of F�. There is a unique decision surface for
each value of P�

0 2 ½0; 1�, and we can label decision sur-

faces by their corresponding values of P�
0. See Appendix A

and Fig. 9 for an illustration of the concept of the
likelihood-ratio decision surfaces in a toy example.
The optimization of Eq. (3) maximizes the detection

probability, P1 ! POPT
1 , for every value of the probability

of false alarm, P0 ¼ P�
0. The curve P

OPT
1 ðP0Þ is called the

ROC curve. It is a standard measure of any detection
algorithm’s performance. We can think of optimizing
Eq. (3) as maximizing the area under the ROC curve. For
further details on the use of the likelihood ratio in the
gravitational-wave searches, see Refs. [21,22].
Finding the optimal decision surfaces by direct estima-

tion of the conditional probability density functions, pðxj1Þ
and pðxj0Þ, is an extremely difficult task if the feature
vector contains more than a few dimensions. For high-
dimensional problems, when no parametric model for
these probability distributions is known and with a limited
number of experimental samples that can be used to esti-
mate these probability density functions, one has to resort
to some other method. MLAs are well suited for these
detection problems.
In this paper, we consider three popular MLAs: ANN,

SVM and RF. They differ significantly in their underlying
algorithms and their approaches to classification. This
allows us to investigate the applicability of different types
of MLAs to glitch identification in the gravitational-wave
data. However, all MLAs require training samples of
events from both Class 1 and Class 0. The MLA classifiers
use the training sets to find an optimal classification
scheme or decision surface. In the limit of infinitely
many samples and unlimited computational resources, dif-
ferent classifiers should recover the same theoretical result:
the decision surface defined by the constant likelihood
ratio (6). To this end, it is critical that classifiers are trained
and optimized using criteria consistent with this result. In
Appendix B, we explore several standard optimization
criteria and derive the decision surfaces they generate in
this theoretical limit. We find that all of these criteria lead
to a decision surface with a constant likelihood ratio. In
particular, this is true for the fraction of correctly classified
events and the Gini index criteria that are used by ANN/
SVM and RF, respectively.
While all classifiers we investigate here should find the

same optimal solution with sufficient data, in practice, the
algorithms are limited by the finite number of samples in
the training sets and by computational cost. The classifiers
have to handle a large number of dimensions efficiently,
many of which might be redundant or irrelevant. By no
means is it clear that the MLA classifiers will perform well
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under such conditions. It is our goal to demonstrate that
they do.

We evaluate their performance by computing ROC
curves.3 These curves, which map the classifiers’ overall
efficiencies, are objective and can be directly compared. In
addition to comparing the MLA classifiers to one another,
we benchmark them using ROC curves from the OVL
algorithm [13]. This method constructs segments of data
to be vetoed using a hard time window and a threshold on
the significance of transients in the auxiliary channels. The
veto segments are constructed separately for different aux-
iliary channels and are applied in the order of decreasing
correlation with the gravitational-wave events. By con-
struction, only pairwise correlations between a single
auxiliary channel and the gravitational-wave channel are
considered by the OVL algorithm. These results have a
straightforward interpretation and provide a good sanity
check.

In order to make the classifier comparison as fair as
possible, we train and evaluate their performances using
exactly the same data. Furthermore, we use a round-robin
procedure for the training-evaluation cycle, which allows
us to use all available glitch and clean samples. Samples
are randomized and separated into ten equal subsets. To
classify events in the kth subset, we use classifiers trained
on all but the kth subset. In this way, we ensure that training
and evaluation are done with disjoint sets so that any
overtraining that might occur does not bias our results.

An MLA classifier’s output is called a rank, rMLA 2
½0; 1�, and a separate rank is assigned to each glitch and
clean sample. Higher ranks generally denote a higher con-
fidence that the event is a glitch. A threshold on this rank
maps to the probability of false alarm, P0, by computing
the fraction of clean samples with greater or equal rank.
Similarly, the probability of detection or efficiency, P1, is
estimated by computing the fraction of glitches with
greater or equal rank. Essentially, we parametrically define
the ROC curve, POPT

1 ðP0Þ, with a threshold on the classi-

fier’s rank. Synchronous training and evaluation of the
classifiers allow us to perform a fair comparison and to
investigate various ways of combining the outputs of dif-
ferent classifiers. We discuss our findings in detail in
Secs. VI and VII.

IV. OVERVIEW OF THE MACHINE-LEARNING
ALGORITHMS

In this section, we give a short overview of the basic
properties of the classifiers and the tuning procedures used
to determine the best-performing configurations for each
classifier. Throughout this section, we will use the notation
xi where i ¼ 1; 2; . . .N to denote the set of N sample
feature vectors. Similarly, yi will denote the actual class
associated with the the ith sample feature vector, either
Class 0 or Class 1. Predictions about a feature vector’s class
will be denoted by yðxiÞ.

A. Artificial neural network

ANNs employ a machine-learning technique based on
simulating the data processing in human brains and mim-
icking biological neural networks [23,24]. As is well
known, the human brain is composed of a tremendous
number of interconnected neurons, with each cell perform-
ing a simple task (responding to an input stimulus).
However, when a large number of neurons form a compli-
cated network structure, they can perform complex tasks
such as speech recognition and decision making.
A single neuron is composed of dendrites, a cell body,

and an axon. When dendrites receive an external stimulus
from other neurons, the cell body computes the signal.
When the total strength of the stimulus is greater than the
synapse threshold, the neuron is fired and sends an electro-
chemical signal to other neurons through the axon. This
process can be implemented with a simple mathematical
model including nodes, a network topology and learning
rules adopted to a specific data-processing task. Nodes
are characterized by their number of inputs and outputs
(essentially how many other nodes they talk to), and by the
connecting weights associated with each input and output.
The network topology is defined by the connections be-
tween the neurons (nodes). The learning rules prescribe
how the connecting weights are initialized and evolve.
There are a large number of ANN models with different

topologies. For our purpose, we choose to implement the
multilayered perceptron (MLP) model, which is one of the
most widely used models. The MLP model has input and
output layers as well as a few hidden layers in between.
The input vector for the input layer is the auxiliary feature
vector, x, while the input for hidden layers and the output
layer is a combination of the output from nodes in the
previous layer. We will call these intermediate vectors z to
distinguish them from the full feature vector. Each layer
has several neurons which are connected to the neurons
in the adjacent layers with individual connecting weights.
The initial structure—the number of layers, neurons,
and the initial value of connecting weights—is chosen by
hand and/or through an optimization scheme such as a
genetic algorithm (GA).
When a neuron’s input channels receive an external

signal exceeding the threshold value set by an activation

3More traditional veto approaches to data quality in
gravitational-wave searches use another measure of veto quality.
For a given veto configuration consisting of a list of disjoint
segments of data, the fractional ‘‘deadtime’’ is computed from
the sum of the durations of all data segments to be vetoed. While
not precisely the same, this quantity is related to the probability
of false alarm, P0, which accounts only for the fraction of clean
data removed from the search. For a typical rate of glitches of
�0:1 Hz, the two measures are almost identical in the most
relevant region of P0 
 10�2. Thus, in that interval the ROC
curves of this paper can be directly compared to the often-used
figure of merit, efficiency vs fractional deadtime. See for
example Ref. [12].
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function, the neuron is fired. This process can be expressed
mathematically as

yðzÞ ¼ fðw � zþ bÞ; (7)

where yðzÞ is the output, z is an input vector, w are con-
necting weights, f is an activation function, and b is a bias.
One may choose the activation function to be either the
identity function, the ramp function, the step function, or a
sigmoid function. We use the sigmoid function defined by

fðw � zþ bÞ ¼ ð1þ e�2sðw�zþbÞÞ�1: (8)

We set the activation steepness s ¼ 0:5 in hidden layers
and s ¼ 0:9 at the output layer. There is a single neuron at
the output layer, and the value of that neuron’s activation
function is used as the ANN’s rank, rANN.

The topological parameters determine the number of
connection weights, which must be sufficiently large that
the ANN has enough degrees of freedom to classify a given
datum. The network’s flexibility depends on the number of
connection weights and should be matched with the size of
the training sets and the input data’s dimensionality. In our
work, the numbers of layers and neurons are chosen so that
the total number of connection weights is on the order of
104 when using the entire data set. In order to avoid over-
training, we decrease the number of layers and neurons in
the runs in which either the dimensionality or the number
of training samples are reduced.

The learning scheme finds the optimal connection
weights,w, in each layer. In this paper we use the improved
version of the resilient back-propagation algorithm [25],
which minimizes the error between the output value, yðxiÞ,
and the known value, yi. In this algorithm, the increase
(decrease) factor and the minimum (maximum) step size
determine the change in the connection weights, �w, at
each iteration during the training. In our work, the default
values in the Fast Artificial Neural Network library [26] are
used for all parameters except the increase factor, which is
set to �þ ¼ 1:001. The same learning rules were used in
all runs. We should note that ANNs can be optimized in an
alternative way, via a GA or other similar methods. When
using a GA, a combined optimization algorithm for topol-
ogy, feature and weight selection can be applied to improve
the performance of an ANN [27–31]. We explore these
options in a separate publication [32].

In addition to choosing the ANN configuration parame-
ters, we found that the ANN requires data preprocessing.
The input variables with high absolute values have a
greater effect on the output values, and thus we normalize
all components of the feature vector, x, to the range [0,1].
To better resolve small �t values, �t is transformed via a
logarithmic function before normalization,

�t0 ¼ �signð�tÞ log j�tj: (9)

This transformation improves the ANN’s ability to identify
glitches, which tend to have smaller values of �t. One can

find a more detailed description of the procedure for tuning
the ANN configuration parameters in Ref. [32].

B. Support vector machines

The SVM is anMLA for binary classification on a vector
space [33,34]. It finds the optimal hyperplane that sepa-
rates the two classes of training samples. This hyperplane
is then used as the decision surface in feature space, and
classifies events depending on which side of the hyper-
plane they fall.
As before, let fðxi; yiÞji ¼ 1; 2; . . .Ng be the training data

set, where xi is the feature vector of auxiliary transient
information near time ti, and yi 2 f1;�1g is a label that
marks the sample as either Class 1 or Class 0, respectively.
Then assume that the training set is separable by a hyper-
plane w � x� b ¼ 0, where w is the normal vector to the
hyperplane and b is the bias. Then the training samples
with yi ¼ 1 satisfy the condition w � xi � b � 1, and
the training samples with yi ¼ �1 satisfy the condition
w � xi � b 
 �1. SVM uses a quadratic programming
method to find thew andb thatmaximize themargin between
the hyperplanes w � x� b ¼ 1 and w � x� b ¼ �1.
If the training samples are not separable in the original

feature space, Vd, SVM uses a mapping, �ðxÞ, into a
higher-dimensional vector space, V�, in which two classes

of events can be separated. The decision hyperplane in V�

corresponds to a nonlinear surface in the original space, Vd.
Thus, mapping the problem into a higher-dimensional
space allows SVM to consider nonlinear decision surfaces.
The dimensionality of V� grows exponentially with the

degree of the nonlinearity of the decision surfaces in Vd. As
a result, SVM cannot consider arbitrary decision surfaces
and usually has to deal with nonseparable populations.
If the training samples are not separable after mapping, a
penalty parameter, C, is introduced to weight the training
error. Finding the optimal hyperplane is reduced to the
following quadratic programming problem:

min
w;b;�

�
1

2
w � wþ C

XN
i¼1

�i

�
; (10a)

subject to yi � ðw ��ðxiÞ þ bÞ � 1� �i; (10b)

�i � 0; i ¼ 1; 2; . . . ; N: (10c)

When the solution is found, SVM classifies a sample x
by the decision function,

yðxiÞ ¼ signðw ��ðxiÞ þ bÞ: (11)

In solving the quadratic programming problem, the func-
tion � is not explicitly needed. It is sufficient to specify
�ðxiÞ ��ðxjÞ. The function Kðxi; xjÞ ¼ �ðxiÞ ��ðxjÞ is

called the kernel function. The form of the kernel function
implicitly defines the family of surfaces in Vd over which
SVM is optimizing. In this study we use the radial basis
function as the kernel function. It is defined as
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Kðxi; xjÞ ¼ exp f��kxi � xjk2g; (12)

where � is a tunable parameter.
The SVM algorithm was implemented by using the open

source package libsvm [35]. As part of this package, the
kernel function parameter, �, and the penalty parameter, C,
are tuned in order to achieve the best performance for a
specific application. The best parameters (C and �) are
selected through an exhaustive search. For each pair of
parameters (logC, log�) on a grid, we calculate a figure of
merit. The parameters with the best figure of merit are then
used for classifying events. The default figure of merit in
libsvm is the accuracy (fraction of correctly classified
events). However, we replace it with a figure of merit better
adapted to glitch detection. Instead of using the accuracy,
our code calculates the area under the estimated ROC
curve [PEST

1 ðP0Þ] in the interval of the probability of
false alarm P0 2 ½0:001; 0:05� on a log-linear scale
(½0:001; 0:05� is a range of acceptable probability of false
alarm for practical glitch detection),

figure of merit ¼
Z P0¼0:05

P0¼0:001
dðlnP0ÞPEST

1 ðP0Þ: (13)

Performing an exhaustive search for the best SVM pa-
rameters is computationally expensive. We can speed up
this tuning process by exploiting the fact that the tuning
time grows nonlinearly with the training sample size. By
using smaller training sets, we can reduce the total time
spent determining the optimal parameters. We randomly
selected p subsets of vectors from the training set, with
each subset 10 times smaller than the full training set. The
best pair of the SVM parameters for each of the p subsets
was then calculated, with each subset optimization running
on a single CPU core. This gives p sets of best parameters,
calculated in parallel. The parameters C and � that are
selected the most often were then chosen as the final best
SVM parameters. This modified parameter optimization
algorithm was applied to various training sets (described in
Sec. V). We found that the optimal SVM parameters do not
depend on the training set. We therefore use the same
parameters for all calculations reported in this paper
(C ¼ 8 and � ¼ 0:0078125).

In its standard configuration, SVM classifies samples by
a discrete label, y 2 f1;�1g. However, the libsvm package
can provide a probability-based version of Eq. (11) that
yields continuous values, rSVM 2 ½0; 1� [36]. We use these
continuous values as the output of the SVM classifier.

C. Random forest technology

RF technology [37,38] improves upon the classical de-
cision tree [39,40] approach to classification. The classify-
ing decision tree performs a series of binary splits on any/
all of the dimensions of the feature vector, x, that describes
an event. The goal is to distribute events into groups
consisting of only a single class. In a machine-learning

context, the decision tree is formed by training it on a set of
events of known class. During the training, a series of splits
are made, where each split chooses the dimension and its
threshold that optimizes a certain criterion, such as the
fraction of correctly classified training events or the Gini
index, defined by Eq. (B7). Splitting stops once no split can
further improve the optimization criterion or once the limit
on the minimum number of events allowed on a branch (the
furthest reaches of a decision tree) is reached; at this point
the branch becomes a leaf. Once a tree is formed, an event
of unknown class is fed into the tree, and depending on its
feature vector, x, it will be labeled as either Class 0 or Class
1. However, a single decision tree can be a victim to both
false minima and overtraining. To guard against this, we
create a forest of decision trees and average over their
answers; this results in a continuous ranking, rRF 2
½0; 1�, rather than a binary classification, as events can be
placed on a continuum between Class 0 and Class 1.
Each decision tree in the forest is trained on a bootstrap

replica of the original training set. If the original training
set has N events, each bootstrap replica will also have N
events, which are chosen randomly with replacement,
meaning any given event may be picked more than once.
Therefore, each tree gets a different set of training events.
To further avoid false minima, random forest technology
chooses a different random subset of the features to be
available for splitting at each node. This ensures that a
peculiarity in a particular dimension does not dominate the
decision-making process.
We use the STATPATTERNRECOGNITION software pack-

age’s [41] implementation of RF. The key input parameters
are the number of trees in the forest, the number of features
randomly selected for splitting at each tree node (branch-
ing point), the minimum number of samples on the termi-
nal tree nodes (leaves) and the optimization criterion. To
determine the best set of the RF parameters, we perform a
search over a coarse grid in the parameter space, max-
imizing efficiency or the detection probability, P1, at the
probability of false alarm, P0 ¼ 0:01. We find that beyond
a certain point, the RF efficiency grows very slowly with
the number of trees and the number of features selected for
splitting at the cost of a significant increase in running time
during the training process. Taking this into account, we
arrive at the following configuration, which we use in all
runs: 100 trees in the forest, 64 different randomly chosen
features at the branching points, a minimum of eight
samples on a leaf, and the Gini index as the optimization
criterion.

D. Ordered veto list algorithm

The OVL algorithm operates by looking for coinci-
dences between the transients in gravitational-wave and
auxiliary channels. Specifically, the transients identified in
the auxiliary channel are used to construct a list of time
segments. All transients in the gravitational-wave channel
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occurring within these segments are removed from the list
of transient gravitational-wave candidates. In effect, the
data in these time segments are vetoed prior to any search
for gravitational-waves.

The algorithm assumes that transients in certain auxil-
iary channels are more correlated with the glitches in the
gravitational-wave channel and looks for a hierarchy of
correlations between auxiliary and gravitational-wave
glitches. Specifically, a series of veto configurations is
created, corresponding to different auxiliary channels, the
time windows around transients and the threshold on their
significance. The ordered list corresponds to a list of these
configurations, and veto configurations are applied to the
data in order of decreasing correlation. For this study, the
maximum time window is set to�100 ms to match the one
we use to create auxiliary feature vectors for the MLA
classifiers (Sec. II). Similarly, the lowest threshold on
significance, �, is set to the auxiliary-channel nominal
threshold of 15. For each channel, the number of possible
veto configurations is equal to the number of unique com-
binations that can be constructed from the list of the time
windows [�25 ms, �50 ms, �100 ms] and the signifi-
cance thresholds [15, 25, 30, 50, 100, 200, 400, 800, 1600].

Importantly, a segment removed by a veto configuration
is not seen by later configurations. This prohibits duplicate
vetoes and results in a measurement of the additional
information contained in subsequent veto configurations.
The performance of each configuration is evaluated and
they are reranked accordingly. The OVL algorithm defines
the veto-configuration rank, rOVL, as the ratio of the frac-
tion of gravitational-wave glitches removed to the fraction
of analysis time removed. Repeated application of the
algorithm produces an ordered list with the better-
performing configurations appearing higher on the list.

Only some of the veto configurations make it to the final
list. Those which perform poorly (rOVL 
 3) are discarded.
This is done in order to get rid of irrelevant or redundant
channels and to speed up the algorithm’s convergence.
Typically, the OVL algorithm converges within less than
ten iterations to a final ordered list. We find that only 47 out
of 162 auxiliary channels in S4 data and 35 out of 250
auxiliary channels in S6 data appear on the final list.
Below, we refer to this subset of channels as the ‘‘OVL
auxiliary channels.’’ For a more detailed description of the
OVL algorithm, see Ref. [13].

The procedure for optimizing the ordered list of veto
configurations can be considered a training phase. An or-
dered list of veto configurations optimized for a given seg-
ment of data can be applied to another segment of data. Veto
segments are generated based on the transients in the aux-
iliary channels and the list of configurations. The perform-
ance of the algorithm is evaluated by counting fractions of
removed glitches and clean samples, and computing the
ROC curve. As with MLA classifiers, we use the round-
robin procedure for OVL’s training-evaluation cycle.

V. TESTING THE ALGORITHMS’ ROBUSTNESS

One of the main goals of this study is to establish if MLA
methods can successfully identify transient instrumental
and environmental artifacts in LIGO gravitational-wave
data. The potential difficulty arises from high dimension-
ality and the fact that information from a large number
of dimensions might be either redundant or irrelevant.
Furthermore, the origin of a large fraction of glitches is
unknown in the sense that their cause has not been pin-
pointed to a single instrumental or environmental source.
In the absence of such deterministic knowledge, one has to
monitor a large number of auxiliary channels and look for
statistically significant correlations between transients in
these channels and transients in the gravitational-wave
channel. These correlations, in principle, may involve
more than one auxiliary channel and may depend on the
transients’ parameters in an extremely complicated way.
Additionally, new kinds of artifacts may arise if one of
the detector subsystems begins to malfunction. Likewise,
some auxiliary channels’ coupling strengths to the
gravitational-wave channel may be functions of the detec-
tor’s state (e.g. optical cavity configuration and mirror
alignment). Depending on the detector’s state, the same
disturbance witnessed by an auxiliary channel may or may
not cause a glitch in the gravitational-wave channel. This
information cannot be captured by the KleineWelle-
derived parameters of the transients in the auxiliary chan-
nels alone and requires extending the current method. We
leave this problem to future work.
Because of the uncertainty in the types and locations of

correlations, we include as many auxiliary channels and
their transients’ parameters as possible. However, this
forces us to handle a large number of features, many of
which might be either redundant or irrelevant. The MLA
classifiers may be confused by the presence of these super-
fluous features and their performance may suffer. One can
improve performance by reducing the number of features
and keeping only those that are statistically significant.
However, this requires preprocessing the input data and
tuning, which may be extremely labor intensive. On the
other hand, if the MLA classifier can ignore irrelevant
dimensions automatically without a significant decrease
in performance, it can be used as a robust analysis tool for
real-time glitch identification and detector characterization.
By efficiently processing information from all auxiliary
channels, a classifier will be able to identify new artifacts
and help to diagnose problems with the detector.
In order to determine our classifiers’ robustness, we

perform a series of runs inwhichwevary the dimensionality
of the input data and evaluate the classifiers’ performance.
First, we investigate how their efficiency depends on which
transient parameters are used. We expect that not all of the
five parameters (�, �t, f, d, n) are equally informative.
Naively, � and�t, reflecting the disturbance’s amplitude in
the auxiliary channel and its degree of coincidence with the
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transient in the gravitational-wave channel, respectively,
should be the most informative. Potentially, the frequency,
f, duration, d, and the number of wavelet coefficients, n,
may carry useful information if only certain auxiliary tran-
sients produce glitches. However, it is possible that these
parameters are only correlated with the corresponding pa-
rameters of the gravitational-wave transient, which we do
not incorporate in this analysis. Such correlations, even if
not broadened by frequency-dependent transfer functions,
would require analysis specialized to specific gravitational-
wave signals and goes beyond the scope of this paper. We
perform a generic analysis, not relying on the specific
characteristics of the gravitational-wave transients.

Anticipating that some of the parameters could be ir-
relevant, we prepare several data sets by removing features
from the list: (�,�t, f, d, n). We prepare these data sets for
both S4 and S6 data and run each of the classifiers through
the training-evaluation round-robin cycles described in
Sec. III. We evaluate their performance by computing the
ROC curves, shown in Fig. 1.

We note the following relative trends in the ROC curves
for all classifiers. The omission of the transient’s duration,
d, and the number of wavelets, n, has virtually no effect on
efficiency. The ROC curves are the same towithin our error,
which is less than �1% for our efficiency measurement,
based on the total number of glitch samples and the normal
approximation for the binomial confidence interval,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð1� P1Þ=N

p
. The omission of the frequency, f, slightly

reduces the efficiency of SVM [Figs. 1(b) and 1(e)], but has
no effect on either ANN or RF. A comparison between the
ROCcurves for the (�,�t), (�) and (�t) data sets shows that
while a transient’s significance is the most informative
parameter, including the time difference generally results
in better overall performance. Of the threeMLA classifiers,
SVM seems to be the most sensitive to whether the time
difference is used in addition to significance. RF, as it
appears, relies primarily on significance, which is reflected
in the poor performance of the (�t)-only ROC curves in
Figs. 1(c) and 1(f). The trend for ANN is not as clear. In S4
data, including timing does not change the ROC curve

FIG. 1 (color online). Varying sample features. We expect some of the five features recorded for each auxiliary channel to be more
useful than others. To quantitatively demonstrate this, we train and evaluate our classifiers using subsets of our sample data, with each
subset restricting the number of auxiliary features. We observe the general trend that the significance, �, and time difference, �t, are
the two most important features. Between these two, � appears to be marginally more important than �t. On the other hand, the central
frequency, f, the duration, d, and the number of wavelet coefficients in an event, n, all appear to have very little affect on the
classifiers’ performance. Importantly, our classifiers are not impaired by the presence of these superfluous features and appear to
robustly reject irrelevant data without significant efficiency loss. The black dashed line represents a classifier based on random choice.
Panels (a), (b), and (c) show the ROC curves with S4 data for ANN, SVM, and RF, respectively. Panels (d), (e), and (f) show the ROC
curves with S6 data for ANN, SVM, and RF, respectively.
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[Fig. 1(a)] while in S6 data it improves it [Fig. 1(d)].
Overall, we conclude that based on these tests, most if
not all of the information about detected glitches is
contained in the (�, �t) pair. At the same time, keeping
irrelevant features does not seem to have a negative effect
on our classifiers’ performance.

The OVL algorithm, whichwe use as a benchmark, ranks
and orders the auxiliary channels based on the strength of
correlations between transient disturbances in the auxiliary
channels and glitches in the gravitational-wave channel.
The final list of OVL channels includes only a small subset
of the available auxiliary channels: 47 (of 162) in S4 data
and 35 (of 250) in S6 data. The rest of the channels do not
show statistically significant correlations. It is possible that
these channels contain no useful information for glitch
identification, or that one has to include correlations involv-
ing multiple channels and/or other features to extract the
useful information. In the former case, throwing out irrele-
vant channels will significantly decrease our problem’s
dimensionality and may improve the classifiers’ efficiency.

In the latter case, classifiers might be capable of using
higher-order correlations to identify classes of glitches
missed by OVL.
We prepare two sets of data to investigate these possibil-

ities. In the first data set, we use only the OVL auxiliary
channels and exclude information from all other channels.
In the second data set, we further reduce the number of
dimensions by using only � and �t. We apply classifiers to
both data sets, evaluate their performance and compare it to
the run over the full data set (all channels and all features).
Figure 2 shows the ROC curves computed for these test runs.
In both S4 and S6 data, the three curves for RF

[Figs. 2(c) and 2(f)] lay on top of each other, demonstrat-
ing that this classifier’s performance is not affected by the
data reduction. ANN shows slight improvement in its
performance for the maximally reduced data set in the S6
data [Fig. 2(d)], and no discernible change in the S4 data
[Fig. 2(a)]. SVM exhibits the most variation of the three
classifiers. While dropping the auxiliary channels not in-
cluded in the OVL list has a very small effect on SVM’s

FIG. 2 (color online). Reducing the number of channels. One way to reduce the dimensionality of our feature space is to reduce the
number of auxiliary channels used to create the feature vector. We use a subset of auxiliary channels identified by OVL as strongly
correlated with glitches in the gravitational-wave channel (light blue). We notice that for the most part, there is not much efficiency loss
when restricting the feature space in this way. This also means that very little information is extracted from the other auxiliary
channels. The classifiers can reject extraneous channels and features without significant loss or gain of efficiency. We also restrict the
feature vector to only include the significance, �, and the time difference, �t, for the OVL auxiliary channels (green). Again, there is
not much efficiency loss, suggesting that these are the important features and that the classifiers can robustly reject unimportant
features automatically. The black dashed line represents a classifier based on random choice. Panels (a), (b), and (c) show the ROC
curves with S4 data for ANN, SVM, and RF, respectively. Panels (d), (e), and (f) show the ROC curves with S6 data for ANN, SVM,
and RF, respectively.
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ROC curve, further data reduction leads to an efficiency loss
[Figs. 2(b) and 2(e)]. Viewed together, the plots in Fig. 2
imply that, on the one hand, non-OVL channels can be safely
dropped from the analysis, but on the other hand the presence
of these uninformative channels does not reduce our classi-
fiers’ efficiency. This is reassuring. As previously mentioned,
one would like to use these methods for real-time classifica-
tion and detector diagnosis, in which case monitoring as
many channels as possible allows us to identify new kinds
of glitches and potential detector malfunctions. For example,
an auxiliary channel that previously showed no sign of a
problem may begin to witness glitches. If excluded from the
analysis based on its previous irrelevance, the classifiers
would not be able to identify glitches witnessed by this
channel or warn of a problem.

Another way in which input data may influence a classi-
fier’s performance is by limiting the number of samples in
the training set. Theoretically, the larger the training sets,
the more accurate a classifier’s prediction. However, larger
training sets come with a much higher computational cost
and longer training times. In our case, the size of the glitch
training set is limited by the glitch rate in the gravitational-
wave channel and the duration of the detector’s run. We
remind the reader that we use four weeks from the S4 run
from the H1 detector and one week from the S6 run from
the L1 detector to collect glitch samples. One would like to
use shorter segments to better capture the nonstationarity of
the detector’s behavior. However, having too few glitch
samples would not provide a classifier with enough infor-
mation. Ultimately, the size of the glitch training set will
have to be tuned based on the detector’s behavior. We have
much more control over the size of the clean training set,
which is based on completely random times when the
detector was operating in the science mode. In our simula-
tions, we start with 105 clean samples, but it might be
possible to reduce this number without loss of efficiency,
thereby speeding up classifier training.

We test how the classifiers’ performance is affected by
the size of the clean training set in a series of runs in which
we gradually reduce the number of clean samples avail-
able. Runs with 100%, 75%, 50%, and 25% of the total
number of clean samples available for training are supple-
mented by a run in which the number of clean training
samples is equal to the number of glitch training samples
(16% in S4 data and 2.5% in S6 data). In addition, we
performed one run in which we reduced the number of
glitch training samples by half, but kept 100% of the clean
training samples. While not completely exhaustive, we
believe these runs provide us with enough information to
describe the classifiers’ behavior. In all of these runs, we
use all available samples for evaluation, employing the
round-robin procedure. Figure 3 demonstrates changes in
the ROC curves due to the variation of training sets.

RF performance [Figs. 3(c) and 3(f)] is not affected by
the reduction of the clean training set in the explored range,

with the only exception being the run over S6 data where
size of the clean training set is to 2.5% of the original. In
this case, the ROC curve shows an efficiency loss on the
order of 5% at a false-alarm probability of P0 ¼ 10�3.
Also, cutting the glitch training set by half does not affect
RF efficiency in either S4 or S6 data.
SVM’s performance follows very similar trends, shown

in Figs. 3(b) and 3(e), demonstrating robust performance
against the reduction of the clean training set and suffering
appreciable loss of efficiency only in the case of the small-
est set of clean training samples. Unlike RF, SVM seems to
be more sensitive to variations in the size of the glitch
training set. The ROC curve for the 50% glitch set in S6
data drops 5%–10% in the false-alarm probability region of
P0 ¼ 10�3 [Fig. 3(e)]. However, this does not happen in
the S4 run [Fig. 3(e)]. This can be explained by the fact that
the S4 glitch data set has five times more samples than the
S6 set. Even after cutting it in half, the S4 set provides
better sampling than the full S6 set.
ANN is affected most severely by training-set reduction

[Figs. 3(a) and 3(d)]. First, its overall performance visibly
degrades with the size of the clean training set, especially in
the S6 runs [Fig. 3(d)]. However, we note that the ROC curve
primarily drops near a false-alarm probability of P0 ¼ 10�3,
and it remains the same near P0 ¼ 10�2 (for all but the 2.5%
set). The higher P0 value is more important in practice
because the probability of false alarm of 10�2 is still tolerable
and, at the same time, the efficiency is significantly higher
than atP0 ¼ 10�3. This means that we are likely to operate a
real-time monitor near P0 ¼ 10�2 rather than near 10�3.
Reducing the training sample introduces an artifact on
ANN’s ROC curves not seen for either RF or SVM. Here,
the false-alarm probability’s range decreases with the size of
the clean training set. This is due to the fact thatwith theANN
configuration parameters used in this analysis, ANN’s rank
becomes more degenerate when less clean samples are avail-
able for training, meaning that multiple clean samples in the
evaluation set are assigned exactly the same rank. This is in
general undesirable, because a continuous, nondegenerate
rank carries more information and can be more efficiently
incorporated into gravitational-wave searches. The degener-
acy issue of ANN and its possible solutions are treated in
detail in Ref. [32].
We would like to highlight the fact that in our test runs,

we use data from two different detectors and during differ-
ent science runs, and that we test three very different clas-
sifiers. The common trends we observe are not the result
of peculiarities in a specific data set or an algorithm. It is
reasonable to expect that they reflect generic properties of
the detectors’ auxiliary data as well as the MLA classifiers.
Extrapolating this to future applications in advanced detec-
tors, we find it reassuring that the classifiers, when suitably
configured, are able to monitor large numbers of auxiliary
channels while ignoring irrelevant channels and features.
Furthermore, their performance is robust against variations
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in the training set size. In the next sections we compare
different classifiers in their bulk performance as well as in
sample-by-sample predictions using the full data sets.

VI. EVALUATING AND COMPARING
CLASSIFIERS’ PERFORMANCE

The most relevant measure of any glitch-detection algo-
rithm’s performance is its detection efficiency, the fraction
of identified glitches, P1, at some probability of false
alarm, P0. The ROC curve is the key figure of merit and
can be used to assess the algorithm’s efficiency, and ob-
jectively compare it to other methods throughout the entire
range of the probability of false alarm. This is useful
because the upper limit for acceptable values of the proba-
bility of false alarm depends on the specific application. In
the problem of glitch detection in gravitational-wave data,
we set this value to be P0 ¼ 10�2, which corresponds to
1% of true gravitational-wave transients falsely labeled as
glitches. Another way to interpret this is that 1% of the

clean science data are removed from searches for gravita-
tional waves.
Our test runs, described in the previous section, demon-

strate the robustness of the MLA classifiers against the
presence of irrelevant features in the input data. We are
interested in measuring the classifiers’ efficiency in the
common case where no prior information about the rele-
vance of the auxiliary channels is assumed. For this pur-
pose, we use the full S4 and S6 data sets, including all
channels with a wide selection of parameters. Using ex-
actly the same training/evaluation sets for all our classifiers
allows us to assign four ranks, (rANN, rSVM, rRF, rOVL), to
every sample and compute the probability of false alarm,
P0ðriÞ and efficiency, P1ðriÞ for each of the classifiers.
While the ranks cannot be compared directly, these prob-
abilities can. Any differences in the classifiers’ predictions,
in this case, are from the details and limitations of the
methods themselves, and are not from the training data.
Glitch samples that are separated in time by less than a

second are likely to be caused by the same auxiliary

FIG. 3 (color online). Varying the size of training data sets. In our sample data, the number of glitches is limited by the actual glitch
rate in the LIGO detectors and the length of the analysis time we use. However, we can construct as many clean samples as necessary
because we sample the auxiliary channels at random times. In general, the classifiers’ performance will increase with larger training
data sets, but at additional computational cost. We investigate the effect of varying the size of training sets on the classifiers’
performance, and observe only small changes even when we significantly reduce the number of clean samples. We also reduce the
number of glitch samples, observing that the classifiers are more sensitive to the number of glitches provided for training. This is likely
due to the smaller number of total glitch samples, and reducing the number of glitches may induce a severe undersampling of feature
space. The black dashed line represents a classifier based on random choice. Panels (a), (b), and (c) show the ROC curves with S4 data
for ANN, SVM, and RF, respectively. Panels (d), (e), and (f) show the ROC curves with S6 data for ANN, SVM, and RF, respectively.
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disturbance. Even if they are not, gravitational-wave
transient candidates detected in a search are typically
‘‘clustered’’ with a time window ranging from a few
hundred milliseconds to a few seconds, depending on the
length of the targeted gravitational-wave signal. Clustering
implies that among all candidates within the time window,
only the one with the highest statistical significance will be
retained. In order to avoid double counting of possibly
correlated glitches and to replicate conditions similar to a
real-life gravitational-wave search, we apply a clustering
procedure to the glitch samples, using a one-second time
window. In this time window, we keep the sample with the
highest significance, �, of the transient in the gravitational-
wave channel.

The ROC curves are computed after clustering. Figure 4
shows the ROC curves for ANN, SVM, RF and OVL for
both S4 and S6 data.

All our classifiers show comparable efficiencies in the
most relevant range of the probability of false alarm for
practical applications (10�3–10�2). Of the three MLA
classifiers, RF achieves the best efficiency in this range,
with ANN and SVM getting very close near P0 ¼ 10�2.
Relative to other classifiers, SVM performs worse in
the case of S4 data, and ANN’s efficiency drops fast at
P 
 10�3. The most striking feature on these plots is how
closely theRF and theOVL curves follow each other in both
S4 and S6 data [Figs. 4(a) and 4(b), respectively]. In abso-
lute terms, the classifiers achieve significantly higher effi-
ciency for S6 than for S4 data, 56% versus 30% at
P0 ¼ 10�2. We also note that the clustering procedure has
more effect on the ROC curves in S4 than in S6 data. In the
former case, the efficiency drops by 5%–10% [compare to
the curves in Figs. 3(a) to 3(c)], whereas in the latter it stays
practically unchanged [compare to Figs. 3(d) to 3(f)]. The
reason for this is not clear. In the context of detector
evolution, the S6 data are much more relevant for advanced
detectors. At the same time, we should caution that we use
just one week of data from the S6 science run and a larger
scale testing is required for evaluating the effect of the
detector’s nonstationarity.

The ROC curves characterize the bulk performance of
the classifiers, but they do not provide information about
what kind of glitches are identified. To gain further insight
into the distribution of glitches before and after classifica-
tion, we plot cumulative histograms of the significance, �,
in the gravitational-wave channel for glitches that remain
after removing those detected by each of the classifiers at
P0 
 10�2. We also plot a histogram of all glitches before
any glitch removal. These histograms are shown in Fig. 5.
They show the effect of each classifier on the distribution
of glitches in the gravitational-wave channel. In both the
S4 and S6 data sets, the tail of the glitch distribution, which
contains samples with the highest significance, is reduced.
At the same time, as is clear from the plots, many glitches
in the mid range of significances are also removed,

contributing to an overall lowering of the background for
transient gravitational-wave searches. The fact that our
classifiers remove low-significance glitches while some
of the very high-significance glitches are left behind in-
dicates that there is no strong correlation between the

FIG. 4 (color online). Comparing algorithmic performance.
We directly compare the performance of RF (green), ANN
(blue), SVM (red), and OVL (light blue) using the full data
sets. Glitches are clustered in time. We see that all the classifiers
perform similarly, particularly in S6. There is a general trend of
higher performance in S6 than in S4, which we attribute to
differences in the types of glitches present in the two data sets.
We should also note that all the MLA classifiers achieve per-
formance similar to our benchmark, OVL, but RF appears to
perform marginally better for a large range of the false-alarm
probability. The dashed line corresponds to a classifier based on
random choice. Panel (a) shows the ROC curves for S4 data.
Panel (b) shows the ROC curves for S6 data. Insets on both
panels show the ROC curves in the region of a false-alarm
probability P0 2 ½10�3; 10�2�.

RAHUL BISWAS et al. PHYSICAL REVIEW D 88, 062003 (2013)

062003-14



amplitude of the glitches in the gravitational-wave channel
and their detectability using auxiliary-channel information.
This in turn implies that we either do not provide all
necessary information for the identification of these

high-significance glitches in the input feature vector or
the classifiers somehow do not take advantage of this
information. Given the close agreement between various
classifiers that we observe in the ROC curves (Fig. 4) and

FIG. 5 (color online). Comparing the distribution of glitches
before and after applying classifiers at 1% probability of false
alarm. This cumulative histogram shows the number of glitches
that remain with at least as high a significance in the
gravitational-wave channel. We see that all our classifiers re-
move similar fractions of glitches at 1% probability of false
alarm. This corresponds to their similar performances in Fig. 4,
with efficiencies near 30% and 55% for S4 and S6 data, respec-
tively. We also see that the classifiers tend to truncate the high-
significance tails of the non-Gaussian transient distributions,
particularly in S6. For reference, in Gaussian noise the odds of
observing in a week of data a transient above the nominal
significance threshold used here (� � 35) are extremely small
(�10�6). Thus virtually all of the transients on the plot are non-
Gaussian artifacts. Panel (a) shows the distributions of glitches in
S4 data. Panel (b) shows the distributions of glitches in S6 data.

FIG. 6 (color online). Redundancy between MLA classifiers.
These histograms show the fractions of detected glitches identified
in common by a given set of classifiers at 1% probability of false
alarm (blue). The abscissa is labeled with bit-words, which are
indicators of which classifier(s) found that subset of glitches (e.g.
011 corresponds to glitches that were not found by ANN, but were
found by RF and SVM). The quoted percentages represent the
fractions of detected glitches so that 100% represents those glitches
whichwere successfully identifiedbyat least oneof the classifiers at
1% false-alarm probability. The three classifiers show a large
overlap for glitch identification (bit-word ¼ 111), meaning the
classifiers are largely able to identify the same glitch events. Also
shown is the fraction of clean samples (green) misidentified as
glitches, which shows a comparatively flat distribution across
classifier combinations. Panel (a) shows the bit-word histograms
for S4 data. Panel (b) shows the bit-word histograms for S6 data.
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the histograms of glitch distributions (Fig. 5), the former
alternative seems to be more plausible. Alternatively, our
choices of the thresholds and the coincidence windows that
went into the construction of the feature vectors might
not be optimal. Also, heretofore unincluded features

characterizing the state of the detector, which may amplify
transient disturbances in the auxiliary channels and induce
glitches in the gravitational-wave channel, might be crucial
for identifying glitches missed in the current analysis. We
leave the investigation of these possibilities to future work.
Although the ROC curves (Fig. 4) and the histograms

(Fig. 5) provide strong evidence that all classifiers detect
the same glitches, they do not give a clear quantitative
picture of the overlap between these methods. To see this
more clearly, we define subsets of glitches based on which
combination of classifiers detected them with a probability
of false alarm less than 10�2. We determine overlaps
between the MLA classifiers by constructing a bit-word
diagram (Fig. 6). It clearly demonstrates a high degree of
redundancy between the classifiers. The fraction of glitches
detected by all three MLA classifiers is 91.3% for S6 data
and 78.4% for S4 data. For comparison, we show in the
same figure the bit-word diagram representation for clean
samples that are falsely identified as glitches with a proba-
bility of false alarm less than 10�2. The classifiers’ pre-
dictions for clean samples are distributed almost uniformly.
This suggests that our classifiers select clean samples
nearly independently, or at least with a much lower level
of correlation than for glitches.
Next, we compare the MLA classifiers to OVL. In order

to reduce the number of possible pairings, we combine the
MLA classifiers following the maximum-likelihood-ratio
algorithm described in more detail in Sec. VII. In short, this
algorithm picks the most statistically significant prediction
out of the three MLA classifiers for each event. We denote
the combined classifier asMLAmax. As in the previous case,
we construct the bit-word diagram for both glitch and clean
samples detected with the probability of false alarm less
than 10�2 (Fig. 7). The redundancy is even stronger; the
fraction of glitches detected byMLAmax and OVL is 94.8%
for S6 data and 85.2% for S4 data. The full bit-word histo-
grams show the same behavior and we omit them here.

VII. METHODS FOR COMBINING CLASSIFIERS

On a fundamental level, the MLA classifiers search for a
one-parameter family of decision surfaces in the feature
space, x 2 Vd, by optimizing a detection criterion. The
parameter labeling the decision surfaces can be mapped
into a continuous rank, rMLAðxÞ 2 ½0; 1�. This rank reflects
the odds for a sample, x, to correspond to a glitch in the
gravitational-wave channel. As we discuss in Sec. III and
Appendix B, theoretically, if the classifiers use consistent
optimization criteria, they should arrive at the same optimal
decision surfaces and make completely redundant predic-
tions. In other words, their ranks would be functionally
dependent. In practice, however, different classifiers often
lead to different results, primarily due to the limitations in
the number of samples in the training sets and/or computing
resources. For instance, different classifiers may be more or
less sensitive to different types of glitches. In this case, one

FIG. 7 (color online). Redundancy between MLAmax and
OVL. This figure is similar to Fig. 6, except that these histograms
only compare the results of combining the MLA classifiers into a
single unified classifier (MLAmax) and OVL. Even though OVL
only considers pairwise correlations between auxiliary channels
and the gravitational-wave channel, we see that it identifies the
same glitches as MLAmax. This suggests that the glitches iden-
tified by the MLA classifiers are effectively characterized by
pairwise correlations between a single auxiliary channel and the
gravitational-wave channel, and that considering multichannel
correlations does not add much. We also see that these classifiers
are highly correlated in their selection of glitches (blue), but less
correlated across the set of misidentified clean samples (green).
Panel (a) shows the bit-word histograms for S4 data. Panel (b)
shows the bit-word histograms for S6 data.
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should be able to detect a larger set of glitches by combining
their output. Furthermore, the classifiers may be strongly
correlated in the ranks they assign to glitch samples, but
only weakly correlated when classifying clean samples.
Again, by combining the output of different classifiers, we
may be able to extract information about these correlations
and improve the total efficiency of our analysis.

This last case appears to be applicable to our data set.
From Sec. VI, we see that at a probability of false alarm of
1%, all classifiers remove nearly identical sets of glitches
(to within 10% for the S6 data). However, the classifiers
agree to a significantly lesser extent on the clean samples
they remove (Fig. 6). This suggests that the correlations
between the classifiers’ predictions are different for
glitches and clean samples, and combining the classifiers’
output could possibly lead to an improved analysis.

The general problem of combining the results from
multiple, partially redundant analysis methods has been
addressed in the context of gravitational-wave searches in
Ref. [22]. Treating the output of the classifiers—namely
their ranks—as new data samples, one arrives at the opti-
mal combined ranking given by the joint likelihood ratio,

�jointð ~rÞ ¼ pð ~rj1Þ
pð ~rj0Þ ; (14)

where ~r 	 ðrANN; rSVM; rRFÞ is the vector of theMLA ranks
assigned to a sample, x, and pð~rj1Þ and pð ~rj0Þ are the
probability density functions for the rank vector in the
case of glitch and clean samples, respectively. We should
point out that we can modify this ranking by multiplying by
the ratio of prior probabilities [pð1Þ=pð0Þ] to match the
rankings for individual classifiers without affecting the
ordering assigned to samples. Typically, these conditional
probability distributions are not known and computing the
joint likelihood ratio from first principles is not possible.
One has to develop a suitable approximation.We try several
different approximations when combining algorithms.

Our first approximation, and perhaps the simplest, esti-
mates the likelihood ratio for each classifier separately and
assigns the maximum to the sample. This method should
be valid in the two limits: extremely strong correlations
and extremely weak correlations between the classifiers. It
was first suggested and applied in the context of combining
results of multiple gravitational-wave searches in Ref. [22].
We estimate the individual likelihood ratios in two ways:
1) as the ratio of CDF and 2) as the ratio of kernel density
estimates for the PDF. Though a proper estimate should
involve the PDFs, the advantage of using CDFs is that we
already calculate them when evaluating the efficiency and
probability of false alarm for each classifier. They should
approximate the ratio of PDFs reasonably well in the tail of
the distributions, when the probability of false alarm is low.
This assumes that PDFs are either slowly varying or simple
(e.g. power law or exponential) decaying functions of the
rank. However, at large values of the probability of false

alarm or in the case when the probability distributions
exhibit complicated functional dependence on the rank,
our approximation may break down and we will have
to resort to the more fundamental ratio of the PDFs.
Explicitly, we estimate the joint likelihood ratio using

L1ð~rÞ 	 max
rj

�R1
rj
pðr0jj1Þdr0jR

1
rj
pðr0jj0Þdr0j

�
¼ max

rj

P1ðrjÞ
P0ðrjÞ : (15)

We refer to this method asMLAmax when introducing it in
the context of Fig. 7.
We also construct smooth one-dimensional PDFs for

clean and glitch samples from their ranks using Gaussian
kernel density estimation [42]. These estimates were built
using a constant bandwidth equal to 0.05 in the rank space,
which ranges from 0 to 1. Based on this, we define the
approximate combined rankings,

L2ð ~rÞ 	 max
rj

�
pðrjj1Þ
pðrjj0Þ

�
: (16)

It is by no means true that we can always approximate the
multidimensional likelihood ratio (14) with the maximum
over a set of one-dimensional likelihood ratios. If we can
better model the multidimensional probability distributions,
we should be able to extractmore information. To this end,we
also implement a slightly more complicated combining algo-
rithm.We observe that the algorithms are highly correlated on
which glitches they remove, and less correlated on the clean
samples (see Fig. 6). We therefore approximate pð ~rj1Þ �
max rjfpðrjj1Þg and pð ~rj0Þ � Q

jpðrjj0Þ, which assumes

that the algorithms are completely uncorrelated for the clean
samples. �joint is then approximated by

L3ð ~rÞ 	
max rjfpðrjj1ÞgQ

i
pðrij0Þ : (17)

Again, we compute the individual PDFs using Gaussian
kernel density estimation.
More subtle—but still useful—correlations between the

ranks assigned by different classifiers cannot be accounted
for by these simple analytical approximations. Estimating
the multidimensional probability distributions is a difficult
task and undersampling quickly becomes the dominant
source of error when expanding to higher than two dimen-
sions. Rather than developing a complicated analytic
model, we can use one of the MLA classifiers to compute
the combined rank. We use RF to attempt to combine the
ranks from each classifier and construct an estimate of the
full (three-dimensional) joint likelihood ratio.
We compare the methods for combining the classifiers

by computing ROC curves, which are shown in Fig. 8. We
reproduce only the S6 curves because the S4 data shows
the same trends.
All combined methods result in very similar ROC curves

and, when compared to the OVL curve, they do not seem to
improve the overall performance by more than a few
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percent. These combined results lead us to conclude that
the individual classifiers have already reached nearly opti-
mal performance for the given input data, and that their
combination, while increasing their robustness, cannot
improve the overall efficiency. Basically, all the useful
information has been extracted already.

Although it is not immediately apparent, these combining
schemes do add robustness to our identification of glitches.
The combining algorithms are able to ignore underperform-
ing classifiers and reject noisy input fairly well, and we see
that they tend to select the best performance from the
individual classifiers. By comparing Fig. 8 with Fig. 4, we
see that the combining algorithms follow the best ROC curve
from Fig. 4, even when individual classifiers are not per-
forming equitably. This is most evident at extremely low
probabilities of false alarm. This robustness is important
because it can protect a combined glitch-identification algo-
rithm from bugs in a single classifier. In this way, the
combining algorithm essentially acts as an automatic cross
reference between individual MLA classifiers.

VIII. CONCLUSION

In this study, we applied various machine-learning
algorithms to the problem of identifying transient noise

artifacts (glitches) in gravitational-wave data from LIGO
detectors. Our main goal was to establish the feasibility of
using MLAs for the robust detection of instrumental and
environmental glitches based on information from auxil-
iary detector channels. We considered several MLA clas-
sifiers: the artificial neural networks, the support vector
machine, and the random forest. We formulated the general
detection problem in the context of glitch identification
using auxiliary-channel information and showed that, theo-
retically, all classifiers lead to the same optimal solution.
In a real-life application, our classifiers have to monitor a
large number of channels. Even after data reduction, the
dimensionality of our feature space could be as high as
1250, making classification a truly challenging task. We
tested classifiers using data sets from the S4 and S6 LIGO
scientific runs. We used standard ROC curves as the main
figure of merit to evaluate and compare the classifiers’
performances.
Our tests showed that the classifiers can handle extra-

neous features efficiently without affecting their perform-
ance. Likewise, we found that the classifiers are generally
robust against changes in the size of the training set. The
most important result of our investigation is the confirma-
tion that the MLA classifiers can be used to monitor a large
number of auxiliary channels, many of which might be
irrelevant or redundant, without a loss of efficiency. These
classifiers can be used to develop a real-time monitoring
and detector characterization tool.
After establishing the robustness of the classifiers

against changes in the input data and the presence of
nuisance parameters, we evaluated the algorithms’ per-
formance in terms of the ROC curve and carried out a
detailed comparison between the classifiers. This included
their impact on the overall distribution of glitches in the
gravitational-wave channel and the redundancy of their
predictions. We found that at a false-alarm probability of
1%, all classifiers demonstrate comparable performance
and achieve 30% and 56% efficiency at identifying
single-detector glitches above our nominal threshold
when tested on the S4 and S6 data, respectively. While
not superb, this is a step toward the ultimate goal of
producing a cleaned data set, which is indistinguishable
from Gaussian noise.
In all tests we benchmarked the MLA classifiers against

the OVL classifier, which was optimized to detect pairwise
correlations between transients in single auxiliary channels
and transients in the gravitational-wave channel. Somewhat
unexpectedly, the MLA classifiers demonstrate a very high
level of redundancy with the OVL classifier, achieving
similar efficiency as measured by the ROC curves. The
thorough event-by-event comparison shows 85% and 95%
redundancy in glitch detection between the MLA and the
OVL classifiers for S4 and S6 data, respectively. Moreover,
only a small subset of all channels, 47 (of 162) in S4 data
and 35 (of 250) in S6 data, contributes to the total efficiency.

FIG. 8 (color online). Comparison of different combining al-
gorithms using S6 data. This figure compares the performance of
our various schemes for combining the output of the three MLA
classifiers. We note that all four algorithms, L1 (15), L2 (16),
L3 (17), and using RF to classify events based on the MLA output
vector ~r, agree to a remarkable degree. The fact that our simple
analytic algorithms perform just as well as the RF suggests that
there are not many subtle correlations between the classifiers’
output. The MLA combining algorithms do not perform much
better than OVL. Comparing these curves with Fig. 4 shows that
the combined performance does not exceed the individual classi-
fier’s performances. This suggest that the individual MLA classi-
fiers each extract almost all of the useful information from our
feature vectors, and that they identify the same types of glitches.
These conclusions are further supported by Fig. 6.
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This indicates that the input data are dominated by simple
pairwise correlations, and that the higher-order correlations
are either subdominant or altogether not present in the data.
This interesting insight into the structure of the data could
not have been gained without the application of MLAs. In
future work we will investigate how the current perform-
ance can be improved through boosting MLAs using OVL
predictions and including other types of information in the
input data.

One advantage of the MLA classifiers is that they pro-
vide a continues rank, rMLA 2 ½0; 1�, rather than a binary
flag. The OVL classifier’s output can also be converted into
a rank which, although by construction is discrete, is not a
binary flag. This rank can be incorporated directly into the
searches for gravitational waves as a parameter character-
izing a candidate event along with the rest of the data from
the gravitational-wave channel, as opposed to a standard
approach of vetoing entire segments of flagged data based
on a hard threshold on data quality. This approach offers
more efficient use of auxiliary information and opens new
possibilities for tuning and applying the MLA and OVL
classifiers in the specific gravitational-wave searches. We
will pursue this direction in our future work.

Another advantage of the MLA classifiers is that they
can incorporate various potentially diverse types of infor-
mation and establish correlations between multiple pa-
rameters. In the future, in addition to the fast, transient
noise data used in this study, we plan to include more
slowly varying baseline information about the detector
subsystems. For example, the state of alignment in the
interferometer may be important for predicting the amount
of noise that couples into the gravitational-wave channel
from elsewhere in the instrument. In the current study, we
recorded only significant, short-duration disturbances in
the alignment channels detected by the KleineWelle analy-
sis algorithm. In our future work, we will also include the
instantaneous level of misalignment in the optical cavity at
the moment of a glitch, which will amount to a different
representation of the data from the alignment channels.
Machine learning should be able to automatically identify
such nonlinear correlations, even if they are not known
previously. We would also like to include information from
other transient detection algorithms [9,43] that may be
better equipped to find and parametrize different classes
of signals.

As a final test of our study, we explored several ways
of combining the output of several classifiers (including
OVL) in order to increase the robustness of their predic-
tions and possibly improve combined efficiency. Following
general principles for combing multiple analysis methods,
we suggested several approximations for the optimal com-
bined ranking given by the joint likelihood ratio. We tested
our approximations and found that they perform similarly
to and do not improve upon the efficiencies of individual
classifiers.

Based on these results, we conclude that the three
MLA classifiers used in this study are all able to achieve
robust and competitive classification performance for our
set of data. The RF classifier was the most robust against
the form (range, shape, scaling, number) of input data,
while ANN and SVM benefit from reshaping certain
input parameters along physical arguments. Since all
classifiers achieve similar limiting performance and iden-
tify most of the same events, we conclude that they are
near-optimal in their use of the existing data. Future
improvement in classification efficiency is therefore
likely to come from including additional sources of
useful information, rather than refinements to the algo-
rithms themselves. In the future we plan to add a differ-
ent and/or better parametrization of auxiliary-channel
transients, and other baseline information from the aux-
iliary channels which may represent nonlinear couplings
to the gravitational-wave channel.
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APPENDIX A: A TOY EXAMPLE OF
LIKELIHOOD-RATIO DECISION SURFACES

To illustrate the optimization of decision surfaces, dis-
cussed in Sec. III, we consider a toy example in which
feature-space, Vd, is two dimensional. See Fig. 9.
Class 0 samples (black circles) follow a symmetric

Gaussian probability distribution centered at the origin,
pðxj0Þ ¼ ð1=2�Þ exp f�ðx21 þ x22Þ=2g. Class 1 samples

(blue diamonds) follow the same distribution but with its
center shifted to (3.0, 3.0), pðxj1Þ ¼ ð1=2�Þ exp f�½ðx1 �
3Þ2 þ ðx2 � 3Þ2�=2g. In this case, the optimal decision sur-
faces—defined as the surfaces of constant likelihood ratio
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(5), �ðxÞ ¼ pðxj1Þ=pðxj0Þ—are linear surfaces with nor-
mal vectorw ¼ ð1; 1Þ. They are shown as dotted lines in the
plot. The solid black line identifies the surface for which
�ðxÞ ¼ 1. The likelihood ratio grows in the direction of the
normal vector w. Each dotted line represents a tenfold
increase (decrease) in �ðxÞ. We assume that a priori prob-
abilities for a given sample to be of Class 0 or Class 1 are
equal. Using expressions for pðxj0Þ and pðxj1Þ, it is easy to
compute the detection and the false alarm probabilities,
Eq. (2), for any constant likelihood-ratio surface. For ex-
ample, the surface designated by the solid red line in the plot
corresponds to the false-alarm probability, P0 ¼ 10�2,
meaning that 1% of all Class 0 events are expected to fall
above this line. If the likelihood ratio itself is used as a
decision function inEq. (2),fðxÞ ¼ �ðxÞ, then the threshold
value corresponding to P0 ¼ 10�2 is F� ¼ 2:39. When
applying this decision threshold to classify events, samples
with�ðxÞ � 2:39will be classified as Class 1 and all others
as Class 0. This implies that on average 1% of the samples
that are Class 0 will bemisclassified as Class 1 and approxi-
mately 97% (P1 ¼ 0:97) of Class 1 events will be correctly
classified. This is the theoretical upper limit on the perform-
ance of any classification algorithm for this example. The
form and orientation of the decision surfaces are defined by
the probability distributions for both Class 0 and Class 1
events. For example, in the absence of any information
about Class 1 events, it would be natural to assume a
uniform distribution for them, pðxj1Þ ¼ const. This would
lead to the decision surfaces described by the concentric
circles centered at the origin.

APPENDIX B: DERIVATION OF THE
DECISION SURFACES FOR SOME
MLA OPTIMIZATION SCHEMES

In Sec. III, we stress that for the detection (or the two-
class classification) problem, the most natural optimizing
criterion is the Neyman-Pearson criterion, which requires a

maximum probability of detection at a fixed probability of
false alarm. Optimizing this criterion, which in functional
form is given by Eq. (3), leads to the one-parameter family
of decision surfaces defined as surfaces of constant like-
lihood ratio (6). Each decision surface is labeled by a
corresponding value of the likelihood-ratio, �ðxÞ, provid-
ing a natural ranking for unclassified events. The higher the
likelihood ratio, the more likely it is that that event belongs
to Class 1. The likelihood ratio can be mapped to the
particular value of the false-alarm probability, P0ð�Þ,
which assigns it a statistical significance. In practice, it is
often more convenient to define ranking in terms of some
monotonic function of the likelihood ratio, rð�Þ [e.g.
rð�Þ ¼ ln�]. Classifying and ranking samples based on
the likelihood ratio is guaranteed to maximize the ROC
curve P1ðP0Þ.
In their standard configurations, most MLA classifiers

apply other kinds of optimization criteria (e.g. the fraction
of correctly classified events or the Gini index). Many of
these criteria treat the two classes of the events symmetri-
cally, which often is more appropriate than the asymmetric
Neyman-Pearson criterion. In this appendix, we would like
to explore some of the most popular criteria used by the
MLA classifiers in their relation to the Neyman-Pearson
criterion. Specifically, we are interested in establishing
consistency between the various criteria used in this study,
in that they lead to the same optimal decision surfaces and
compatible rankings.

1. The fraction of correctly classified events

First, we consider probably the most popular criterion:
the fraction of correctly classified events. This criterion is
used by both ANN and SVM in our analysis. Following the
approach of Sec. III, we define it as a functional of the
decision function, fðxÞ, on the feature space, Vd,

C ¼
Z
Vd

�ðfðxÞ � F�Þpð1jxÞpðxÞdx

þ
Z
Vd

�ðF� � fðxÞÞpð0jxÞpðxÞdx; (B1)

where pð1jxÞ and pð0jxÞ are the probabilities for a sample
with feature vector x to be classified as Class 1 and Class 0,
respectively, and pðxÞ is the probability distribution of
obtaining a feature vector, x, regardless of its class. To
elucidate this expression, we note that pðcjxÞpðxÞdx cor-
responds to the fraction of total events that fall in the
hypervolume dx and are of class c. Without the � func-
tions, these integrals would evaluate to C ¼ pð1Þ þ
pð0Þ ¼ 1, and we see that the� functions select only those
events that are correctly classified. With this interpretation,
fðxÞ is the decision function. For a given threshold F�, it
defines two regions of samples as Class 1 and Class 0
through �ðfðxÞ � F�Þ and its complement �ðF� � fðxÞÞ,
respectively. Thus, the first term in Eq. (B1) accounts for

FIG. 9 (color online). A toy example of the likelihood-ratio
decision surfaces.
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correctly classified events of Class 1 and the second term
does the same for Class 0 events.

Using Bayes’ theorem, one can express pð1jxÞpðxÞ and
pð0jxÞpðxÞ in the first and second term of Eq. (B1) as

pð1jxÞpðxÞ ¼ pðxj1Þpð1Þ; (B2a)

pð0jxÞpðxÞ ¼ pðxj0Þpð0Þ: (B2b)

Here pðxj1Þ and pðxj0Þ, defined in Sec. III, are the proba-
bility density functions for feature vectors in the presence
and absence of a glitch in gravitational-wave data, respec-
tively. pð1Þ and pð0Þ are the prior probabilities for having a
glitch or a clean datum, related to each other via pð1Þ þ
pð0Þ ¼ 1 as always. The fraction of correctly classified
events is then given by

C ¼
Z
Vd

�ðfðxÞ � F�Þpðxj1Þpð1Þdx

þ
Z
Vd

�ðF� � fðxÞÞpðxj0Þpð0Þdx: (B3)

The requirement that the variation of Cwith respect to fðxÞ
must vanish,

�C ¼
Z
Vd

�ðfðxÞ � F�Þ�fðxÞ½pðxj1Þpð1Þ

� pðxj0Þpð0Þ�dx ¼ 0; (B4)

leads to the following condition for the points, x�, satisfy-
ing fðx�Þ � F� ¼ 0:

pðx�j1Þpð1Þ � pðx�j0Þpð0Þ ¼ 0: (B5)

This equation defines the decision surface consisting of
points for which

�ðx�Þpð1Þ
pð0Þ 	

pðx�j1Þpð1Þ
pðx�j0Þpð0Þ ¼ 1: (B6)

Thus, optimizing the fraction of correctly classified events
leads to a specific decision surface, for which the like-
lihood ratio �ðx�Þ ¼ pð0Þ=pð1Þ. By construction, the opti-
mization criterion (B1) treats events of both classes
symmetrically, maximizing the number of correctly clas-
sified events. As a result, it selects a specific decision
surface for which evidence that the sample belongs to
either one class or the other is equal.

2. The Gini index

Next, we consider the Gini index criterion, which is used
in RF. For two-class problems, the Gini index of a region in
the feature space, V, is defined as

GðVÞ ¼ 1� p2 � q2 ¼ 2pq; (B7)

where p and q are the fraction of Class 1 and Class 0
samples in the region, with pþ q ¼ 1. The Gini index for
multiple regions is given by the average

G ¼ X
i

GðViÞpðViÞ; (B8)

where pðViÞ is the probability for a sample to be in the
region Vi.
For the two-class problem, there are two distinct re-

gions: the region where samples are classified as Class 1,
V1, and the region where samples are classified as Class 0,
V0. We make the following definitions:

P¼
Z
Vd

�ðfÞpð1jxÞpðxÞdx

¼
Z
Vd

�ðfÞpðxj1Þpð1Þdx; (B9a)

Q¼
Z
Vd

�ðfÞpð0jxÞpðxÞdx

¼
Z
Vd

�ðfÞpðxj0Þpð0Þdx; (B9b)

where P (Q) is the probability that a glitch (clean sample)
will fall into V1 and �ðfÞ is shorthand for �ðfðxÞ � F�Þ.
We recognize that the expected fractions of events in V1

can be described as p ¼ P=pðV1Þ and q ¼ Q=pðV1Þ,
where pðV1Þ ¼

R
Vd
�ðfÞpðxÞx is the probability for any

event (either glitch or clean sample) to fall in V1.
Furthermore, we can immediately write the corresponding
relations for V0 in terms of P, Q, and pðV1Þ ¼ 1� pðV0Þ.
We then obtain

G

2
¼ PQ

pðV1Þ þ
ðpð1Þ � PÞðpð0Þ �QÞ

1� pðV1Þ ; (B10)

where pð1Þ and pð0Þ are the prior probabilities for an event
to be Class 1 and Class 0, respectively. We also note that
pðV1Þ, P, and Q are functionally related through

pðV1Þ	
Z
Vd

�ðfÞpðxÞdx

¼
Z
Vd

�ðfÞ½pð1jxÞpðxÞþpð0jxÞpðxÞ�dx¼PþQ:

(B11a)

We now optimize the Gini index, Eq. (B10), to
determine the optimal decision surface. For simplicity,
let us first optimize G while holding pðV1Þ constant. We
are interested in the optimal decision surface’s shape,
and this optimization will determine it while keeping
the ratios of the number of samples in V1 and V0 constant.
We obtain
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1

2

�G

�fðxÞ ¼
pðx�ÞQþ qðx�ÞP

pðV1Þ þ pðx�ÞQþ qðx�ÞP
1� pðV1Þ

� pð1Þqðx�Þ þ pð0Þpðx�Þ
1� pðV1Þ ; (B12)

where

pðx�Þ	 �P

�fðx�Þ
¼�x;x�

Z
Vd

�ðfðxÞ�F�Þpðxj1Þpð1Þdx; (B13a)

qðx�Þ	 �Q

�fðx�Þ
¼�x;x�

Z
Vd

�ðfðxÞ�F�Þpðxj0Þpð0Þdx; (B13b)

where �x;x� ¼ �fðxÞ=�fðx�Þ ¼ f1 if x� ¼ x; 0 otherwiseg.
We see that pðx�Þ and qðx�Þ are probability density func-
tions defined on the decision surface (x� 2 ffðx�Þ ¼ F�g).
We can write these variations in terms of conditional
probabilities on the decision surface,

pðx�Þ ¼ pðx�j1Þpð1Þ; (B14a)

qðx�Þ ¼ pðx�j0Þpð0Þ: (B14b)

Requiring the variation of the Gini index, Eq. (B12), to
vanish leads to the following relation:

pðx�Þ
qðx�Þ ¼ � pð1ÞpðV1Þ � P

pð0ÞpðV1Þ �Q
: (B15)

Identifying the left-hand side of this equation with
the likelihood ratio for a point on the decision surface,
�ðx�Þðpð1Þ=pð0ÞÞ ¼ pðx�j1Þpð1Þ=pðx�j0Þpð0Þ, and using
Eq. (B11) we find that

�ðx�Þpð1Þ
pð0Þ ¼ 1; (B16)

which will hold for all points on the decision surface.
Remarkably, this condition is independent of P, Q and
pðV1Þ. As in the case of the fraction of correctly classified
events (B6), it implies that the optimal decision surface is
the surface on which the likelihood ratio is equal to a ratio
of the priors.

If we consider the more general maximization problem,
in which we allow pðV1Þ to vary, we must maximize

G

2
¼ PQ

pðV1Þþ
ðpð1Þ�PÞðpð0Þ�QÞ

1�pðV1Þ þ�ðpðV1Þ�P�QÞ;
(B17)

where we use a Lagrange multiplier (�) to enforce the
condition pðV1Þ � P�Q ¼ 0 and consider variations of
pðV1Þ to be independent of variations in fðxÞ.

The variation with respect to pðV1Þ defines the Lagrange
multiplier,

�¼PQð1�2pðV1ÞÞ�pðV1Þ2½pð1Þpð0Þ�pð1ÞQ�pð0ÞP�
pðV1Þ2ð1�pðV1ÞÞ2

:

(B18)

Variation with respect of fðxÞ is given by Eq. (B12) minus
�ðpðx�Þ þ qðx�ÞÞ. Setting it to zero for all independent
variations of fðx�Þ leads to a more general condition on
the likelihood ratio,

�ðx�Þ ¼ � �pðV1Þð1� pðV1ÞÞ þ pð1ÞpðV1Þ � P

�pðV1Þð1� pðV1ÞÞ þ pð0ÞpðV1Þ �Q
;

(B19)

which holds separately for all points x� on the decision
surface.
First of all, note that this condition still requires a

constant likelihood ratio on the decision surface. For
each point on the surface, �ðx�Þ is determined by P
and Q, which are constants for a given surface. We
recover Eqs. (B15) and (B16) when � ¼ 0. In all other
cases, the likelihood ratio on the decision surface is
given by a quite complicated expression, obtained by
plugging Eqs. (B18) and (B11) into Eq. (B18). In prac-
tice, the likelihood ratio on the decision surface is set by
the desired value for the probability of false alarm, P0,
but the ratio will be constant over the entire surface.
Optimizing of the Gini index, then, will be equivalent to
optimizing the ROC curve in the region of interest, e.g.
in our study near P0 ¼ 10�2.

3. Asymmetric criteria

Both criteria considered so far are symmetric in their
treatment of events in Class 1 and Class 0. While the
asymmetry can be imposed by tuning the ratio of prior
probabilities [pð1Þ=pð0Þ], in some cases it might be desir-
able to use an explicitly asymmetric criteria. The RF
implementation in the STATPATTERNRECOGNITION pack-
age contains two different asymmetric criteria, which we
explore in our study: signal purity (P) and signal signifi-
cance (S) [41]. By construction, they identify one class of
events as signal and the other as background and place
more emphasis on correctly classifying signal rather than
background.
The signal purity and signal significance are defined as

P ¼ !1

!1 þ!0

; (B20)

S ¼ !1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

1 þ!2
0

q ; (B21)
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where !1 and !0 are the fraction of Class 1 (signal) and
Class 0 (background) events in the signal region. The aim is
to identify the signal region with the highest signal purity or
signal significance. In the process of the decision-tree con-
struction, the classifier identifies the terminal nodeswith the
highest values ofP orS and orders nodes using these criteria
as a rank. For a given terminal node of a tree, one can
express !1 and !0 in terms of conditional probabilities,

!1 ¼ pðxj1Þ; (B22)

!0 ¼ pðxj0Þ: (B23)

In terms of these, one can rewrite the signal purity and the
signal significance as

P ¼ pðxj1Þ
pðxj1Þ þ pðxj0Þ ¼

�ðxÞ
�ðxÞ þ 1

; (B24)

S ¼ pðxj1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxj1Þ2 þ pðxj0Þ2p ¼ �ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ðxÞ þ 1
p : (B25)

Both quantities are monotonic functions of the likelihood
ratio �ðxÞ ¼ pðxj1Þ=pðxj0Þ. Ordering nodes in the tree
would be equivalent to ranking events by the likelihood
ratio, which in turn is equivalent to using decision surfaces
of the constant likelihood ratio for classification.
In practice, different classifiers have various limitations

which result in suboptimal performance. Depending on the
application, one algorithm or criteria may be more optimal
than another, but we establish here that on a theoretical
level they all recover the same optimal solution. In the two-
class classification problem, the decision surfaces are sur-
faces of constant likelihood ratio, which also defines the
optimal ranking for samples.
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