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Abstract

Many network information theory problems face the similar difficulty of single letter-
ization. We argue that this is due to the lack of a geometric structure on the space
of probability distributions. In this thesis, we develop such a structure by assuming
that the distributions of interest are all close to each other. Under this assumption,
the Kullback-Leibler (K-L) divergence is reduced to the squared Euclidean metric
in an Euclidean space. In addition, we construct the notion of coordinate and in-
ner product, which will facilitate solving communication problems. We will present
the application of this approach to the point-to-point channels, general broadcast
channels (BC), multiple access channels (MAC) with common sources, interference
channels, and multi-hop layered communication networks without or with feedback.
It can be shown that with this approach, information theory problems, such as the
single-letterization, can be reduced to some linear algebra problems. Solving these
linear algebra problems, we will show that for the general broadcast channels, trans-
mitting the common message to receivers can be formulated as the trade-off between
linear systems. We also provide an example to visualize this trade-off in a geometric
way. For the MAC with common sources, we observe a coherent combining gain due
to the cooperation between transmitters, and this gain can be obtained quantitively
by applying our technique. In addition, the developments of the broadcast channels
and multiple access channels suggest a trade-off relation between generating common
messages for multiple users and transmitting them as the common sources to exploit
the coherent combining gain, when optimizing the throughputs of communication net-
works. To study the structure of this trade-off and understand its role in optimizing
the network throughput, we construct a deterministic model by our local approach
that captures the critical channel parameters and well models the network. With this
deterministic model, for multi-hop layered networks, we analyze the optimal network
throughputs, and illustrate what kinds of common messages should be generated to
achieve the optimal throughputs. Our results provide the insight of how users in a
network should cooperate with each other to transmit information efficiently.
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Chapter 1

Introduction

In this thesis, we study a certain class of information theory problems for discrete

memoryless communication networks, which we call the linear information coupling

problems.

1.1 The Fundamental Set-up Of The Linear Infor-

mation Coupling Problems

For a communication network, the corresponding linear information coupling problem

asks the question that how we can efficiently transmit a thin layer of information

through this network. More rigorously, we assume that there are sequences of input

symbols generated at each transmitter from an i.i.d. distribution Px. We also assume

that the network is composed of some discrete memoryless channels, whose outputs

are sequences with an i.i.d. distribution Py. We take this setup as an operating

point. To encode an information U = u, we alter some of these input symbols,

such that the empirical distribution changes to PxiUgu. We insist that for each

U, Pxiu=u is close to Px, which means we can only alter a small fraction of the

input symbols. Moreover, when averaging over all different values of u, the marginal

distribution of X remains unchanged. The receivers can then decode the information

by distinguishing empirical output distributions with respect to different u. The goal

13



of the linear information coupling problem is to design Pxlu=u for different u, such

that the receivers can distinguish different empirical output distributions the most

efficiently. Mathematically, for the point-to-point channel with input X and output

Y, the linear information coupling problem of this channel can be formulated as the

multi-letter problem

1
max -I(U; Y"), (1.1)U--XX-+Y nn

subject to: -I(U;X") < 6, (1.2)

whre6 sth aontofifomaio odlae i prinutsybl , n asue

-|1Px]iV- =U - Pxn|| = O(6), VU, (1.3)
n

where 6 is the amount of information modulated in per input symbol X, and assumed

to be small. Here, both Pxniu=u and Pxn in (1.3) are viewed as JXJ' dimensional

vectors, and the norm square is simply the Euclidean metric.

In fact, the problem (1.1) is almost the same as the traditional capacity problem

1
max -I(U; Y'), (1.4)

U-+xn-Yn n

where U is the message transmitted in the channel. This traditional problem has

the solution maxp, I(X; Y) [1]. The difference between (1.4) and (1.1) lies in the

constraint (1.2) and (1.3). Somewhat surprisingly, we will show that with these dif-

ferences, the linear information coupling problem (1.1) can be solved quite differently

from the corresponding capacity problem (1.4).

The linear information coupling problem (1.1) indeed captures some fundamental

aspects of the traditional capacity problem. We will demonstrate in chapter 2 that

the problem (1.1) is a sub-problem of the capacity problem. In general, the problem

(1.1) is a local version of the global optimization problem (1.4), and the solutions of

(1.1) are local optimal solutions of the corresponding capacity problem. In addition,

we can "integral" the solutions of a set of linear information coupling problems back

to a solution of the capacity problem.

One important feature of the linear information coupling problems is that there is a
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systematic approach for single-letterization for general multi-terminal communication

problems. We first show in section 2.2 that, for the point-to-point channel case, the

single-letterization of the linear information coupling problem (1.1) to its single-letter

version

max I(U; Y), (1.5)
U-+x-*y

subject to: I(U; X) < 6,

||pXIUu_- pX1|2 = 0(6), Va,

i.e., the process to establish the fact that the optimal solution to (1.1) is the same

as that to (1.5), is a linear algebra problem. Then, we illustrate in chapter 3 and

4 that for general multi-terminal communication problems, the single-letterization

procedures are conceptually the same as the point-to-point channel case. Note that

the single-letterization is precisely the difficulty to generalize the conventional capac-

ity results on the point-to-point channels to general multi-terminal problems, this

systematic procedure for the linear information coupling problems thus makes these

problems particularly attractive.

The main technique of our approach is based on the local approximation of the

Kullback-Leibler (K-L) divergence. Note that in the linear information coupling

problem for a communication network, we assume that the conditional distributions

Pxiu=u are close to the empirical distribution Px for all u. Therefore, we can approx-

imate the K-L divergence of two distributions around Px by a quadratic function,

which turns out to be related to the Euclidean distance between these two distribu-

tions. With this local approximation, the space of the input distributions is locally

approximated as an Euclidean space around Px. Similarly, the space of the output

distributions can also be locally approximated as an Euclidean space around Py. We

can construct geometric structures in these Euclidean spaces, such as orthonormal

bases and inner products. Moreover, it can be shown that the channel behaves as a

linear map between the input and output Euclidean spaces. Our purpose is to find

the directions to perturb from Px, according to the information U = u to be encoded,

15



in the input distribution space; or equivalently, to design Pxu=U - Px, such that after

the channel map, the image of this perturbation at the output distribution space is

as large as possible.

In chapter 3 and 4, we apply this technique to solve the linear information cou-

pling problems of the general broadcast channels, and multiple access channels with

common sources. From that, we find that, under the local assumptions, the trans-

missions of different types of messages, such as private and common messages, can be

viewed as transmitted through separated deterministic links, and the channel gains

of these links can be computed as some linear algebra problems. As a consequence,

for a multi-terminal channel, we can quantify both the difficulty of broadcasting com-

mon messages than sending private messages, and the gain of transmitting common

messages by the cooperation between transmitters. This development is particularly

useful when studying the multi-hop networks, because it quantifies the tradeoff be-

tween the gain of sending a common message and the cost to create such common

message from the previous layer, and hence evaluates whether or not a certain com-

mon message should be created.

Motivated by the above idea, in chapter 6, we apply the local geometric approach

to the multi-hop layered networks. It turns out that with this approach, we can

construct a deterministic network model that captures the channel parameters, which

models the channels in the ability of transmitting private and common messages.

Then, the linear information coupling problems become linear optimization problems

of the network throughputs, and the solutions indicate what kind of common messages

should be generated to optimize the throughputs. We also consider the large scale

layered networks with identical layers. In these cases, the optimal communication

schemes are composed of some fundamental transmission modes, and we specify these

transmission modes in section 6.1. Our results in general provide the insights of how

users in a communication network should cooperate with each other to increase the

network throughputs.

In addition, we also explore the role of feedback using this local geometric ap-

proach. For that purpose, we consider the same networks as in chapter 6, but with

16



additionally feedback links from each node to the nodes of the preceding layers. For

these networks, we characterize the optimal communication scheme of each node that

maximizes the amount of information that flows into destinations. As one conse-

quence, we find that the layer-by-layer feedback strategy, which allows feedback only

for the nodes in the immediately-preceding layer, yields the same performance as the

most idealistic one where feedback is available to all the nodes of all the preceding

layers. Moreover, we find that feedback can provide a multiplicative gain for a class

of discrete-memoryless networks than the case without feedback. Specifying the op-

timal communication schemes in these cases illustrate how users in networks should

cooperatively exploit the feedback to communicate efficiently.

1.2 The Relation To Hirschfeld-Gebelein-Renyi Max-

imal Correlation

Our results are related to [11], which investigates the efficiency of investment in

stock markets. In [11], the authors showed that when 6 - 0, the maximum of the

ratio between I(U; Y) and I(U; X), subject to ||Pxu - Px 12 = (6)1, approaches

the square of the Hirschfeld-Gebelein-R6nyi maximal correlation (or simply Renyi

maximal correlation) [12]-[15] between random variables X and Y, which is given as:

pm(X, Y) = sup E [f (X)g(Y)] , (1.6)

where the supremum is over all Borel-measurable functions f and g such that

F [f (X)] = E [g(Y)] = 0, (1.7)

F [f 2 (X)] = E [g 2 (y)] = 1.

In section 2.4, we present an alternative way of showing this fact by using the local

approximation approach, which deals precisely with the region of small 6. In fact,

1In [11], the authors did not explicitly mention this constraint, but implicitly used it in their
proof.
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this illustrates the connection between our local approach and the Renyi maximal

correlation. In addition, the applications of our local approach to multi-terminal

communication systems in chapter 3 and 4 also demonstrate the potential of general-

izing the R6nyi maximal correlation to more than two random variables, and provide

new insights between communication problems and the statistics of random variables.

1.3 Some Remarks On The Local Constraint

Note that in our linear information coupling problem (1.1), we not only assume that

the mutual information ~I (U; X') is small, but also restrict the conditional distri-

butions Pxniu= satisfy the local constraint ' PxnIu=u - Pxn||2 = 0(6), for all u.

With the local constraint on PxnIu=u, we can then guarantee the validity of the local

approximation of KL divergence (see section 2.1 for the detail).

It is important to note that assuming -I(U; X') to be small does not necessarily

imply the local constraint on all the conditional distributions. It is possible that

the joint distribution Pxnu satisfies -I(U; X') < 6, but the conditional distributions

PXnlu=u behave as some "tilted distributions" of u, i.e., for some u, the conditional

distributions Pxniu=u are far from Pxn, but with Pu(u) = 0(6), and for other u,

Pxnlu=u are close to Pxn with Pu(u) = 0(1). Therefore, optimizing the mutual

information 1I(U; Yn) with only the constraint 1I(U; Xn) < 6 can be a different

problem from our linear information coupling problem.

In fact, Ahlswede and Gics in [24], and a recent paper by Nair et al. [25] considered

the following quantity

s(XnY) = lim sup I(U;Y)(18)
' (U;Xn)-o U-xriyn I(U; Xn)'

where they established two important statements:

(i) For i.i.d. Pxnyn = Psy, the s(Xn, Yn) can be tensorized (single-letterized),

i.e., s(Xn, Yn) = s(X, Y).

(ii) In general, s(Xn, Yn) can be strictly larger than pm(Xn, yn).
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The statement (i) is an important property of s(X', Yn), because it addresses the

single-letterization of the multi-letter problem in information theory, which reduces

a computationally impossible problem to a computable one. On the other hand,

the pm (Xn, Yf) we consider in our local geometry can also be tensorized by a linear

algebra approach (see section 2.2 for the detail). So, both s(X", Yn) and pm(Xn, Yn)

have this nice tensorization property in the point-to-point case.

Moreover, the statement (ii) implies that, without the local constraint, the optimal

achievable information rate -I(U; Yn), subject to _I(U; Xn) < 6, is s(Xn, Yn) - 6.

This is strictly better than the case with the local constraint, where the optimal

achievable information rate is pm(Xn, Yl) - 6. Therefore, the s(Xn, Yn) is indeed

a stronger quantity than the one we considered in our linear information coupling

problems, i.e., pm(Xn, Y ).

However, we would like to argue that it is still worth considering the quantity

pm(Xn, Yn), and studying the linear information problem can still provide many

insights in network problems. The reason here is that the local geometric approach

we developed for solving the linear information coupling problem in the point-to-point

case can be easily extended to general networks, and the corresponding tensorization

property can still be obtained just by some linear algebra. However, for harder

network problems, the tensorization of the rather global problem (1.8) are impossible

to be solved. To see this, let us consider a slightly harder problem, where now we

want to broadcast messages to two receivers Y and Y 2 through a general broadcast

channel. Then, the natural extension of (1.8) becomes

. _I(U; Yi") I(;n2)s(Xn, Y", Y2 ) li m sup mm
' ~~u mi J(~n- e.g~ ~ (U; Xn)' J(U; Xn)

It turns out that the approachs in [24] and [25] for proving the tensorization s(Xn, Yf)

s(X, Y) can not be directly applied to tensorize s(Xn, Yn, Y2 ), and the tensorization

of s(Xn, Y1n, Y2n) is overall a non-convex optimization problem over an infinite dimen-

sional space, which is an extremely difficult problem. In fact, one can show that the

proving technique in [25] for tensorization is closely related to the single-letterization

19



of the degraded broadcast channel, which can not be generalized to general networks.

On the other hand, with the local constraint on the conditional distributions PXnIU=U,

we can develop the local geometric structure, which allows us to solve the problem

. I(U; Y) I(U; Y2 )max I JX UPn12:()minI(;m) U nU_ X_4(Yn IY2-): _I(U;X_)<;6,1 |n i -x|=() IU "'IU

just as a simple linear algebra problem, and we can show that this problem can be

single-letterized, i.e., has the single-letter optimal solution (see chapter 3 for the de-

tail). Moreover, this approach can be easily generalized to general networks, which

provides a systematic way to solve the single-letterization for communication net-

works. Therefore, this local geometric structure gives us a tool to study how infor-

mation can be efficiently exchanged between different terminals in general networks,

and is useful in investigating network communication problems.

Finally, we would like to also point out that the global optimization problem,

1
max -I(U; Yf),

U-+Xn-+Yn:-LI(U;Xn)<6 n

where the 6 is not assumed to be small, but can be an arbitrary number, is also known

as the information bottleneck [27, 28, 29]. In contrast to the small 6 regime, for general

6, the authors in [27] employed the Lagrange multiplier method, and developed an

algorithm to compute the optimal conditional distribution Pxiu. Moreover, when X

and Y are distributed as jointly Gaussian random variables, some analytical solutions

can be obtained [28].

1.4 Thesis Outline

This thesis is organized as follows. In chapter 2, we study the linear information

coupling problems for point-to-point channels. We first introduce the notion of local

approximation, and show that the K-L divergence can be approximated as the squared

Euclidean metric. Then, the single-letter version of the linear information coupling

problems will be solved by exploiting the local geometric structure. Moreover, the
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single-letterization of the linear information coupling problems will be shown to be

equivalent to simple linear algebra problems. We will discuss the relation between

our work and the capacity results as well as the code designs in section 2.3, and the

relation to the Renyi maximal correlation in section 2.4. Chapter 3 is dedicated to

applying the local approach to the general broadcast channels. It will be shown that

the linear information coupling problems of general broadcast channels are different

from that for the point-to-point channels in general: the single-letter solutions are

not optimal, however finite-letter optimal solutions always exist. This provides a new

way to visualize the local optimality of the celebrated Marton's coding scheme in

general broadcast channels [8]. The application of the local approach to the multiple

access channels with common sources is presented in chapter 4. We show that there

are coherent combing gains in transmitting the common sources, and also quantify

these gains. In chapter 5, we apply the local geometric approach to the interference

channels, and we construct a deterministic model that captures the critical channel

parameters. We extend this deterministic model to multi-hop layered networks in

chapter 6. A Vitrtbi algorithm is proposed for characterizing the optimal network

throughputs under our deterministic model. For the multi-hop layered networks with

identical layers, in section 6.1, we further simplify the optimal communication schemes

to some fundamental communication modes. Moreover, in section 7, we consider the

situation where the feedback is allowed in our deterministic model. In this case, we

observe certain feedback gain due to the extra available feedback path. Finally, the

conclusion of this paper is given in chapter 8.
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Chapter 2

The Point-to-Point Channel

We start with formulating and demonstrating the solutions of the linear information

coupling problems for point-to-point channels. For a discrete memoryless point-to-

point channel, with input X E X and output Y E Y, where X and Y are finite sets,

let the IYI x IX channel matrix W denote the conditional distributions corresponding

to the channel. For this channel, it is known that the capacity is given by

max I(X; Y). (2.1)
Px

This simple expression is resulted from a multi-letter problem. If we encode a message

U in n-dimensional vector X", and decode it from the corresponding n-dimensional

channel output, we can write the problem as

1
max -I(U; Yf), (2.2)

where U -+ Xn -+ Y' denotes a Markov relation. It turns out that for the point-

to-point channel, there is a simple procedure to prove that (2.2) and (2.1) have the
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same maximal value [1]:

1 1
-I (U; Yn) < -I (X"; y,)

n n

I E H (Y|Y-) - H (Y|X, Yi-1)

< I E H (Y) - H (YXI)
n.

= !Z I(X; Y) < max I(X; Y). (2.3)
n

This procedure is known as the single-letterization, that is, to reduce a multi-letter

optimization problem to a single-letter one. It is a critical step in general capacity

problems, since without such a procedure, the optimization problems can potentially

be over infinite dimensional spaces, and even numerical solutions of these problems

may not be possible. Unfortunately, for general multi-terminal problems, we do not

have a systematic way of single-letterization, which is why many of such problems

remain open. The most famous examples of such problems are the general (not

degraded) broadcast channels.

In contrast to the capacity problems, we study in this thesis an alternative class

of problems, called linear information coupling problems. In this chapter, we consider

the linear information coupling problems for point-to-point channels. Assuming as

before that X and Y are the input and output of a point-to-point channel, the linear

information coupling problem of this channel is the following multi-letter optimization

problemi

1
max -I(U; Y"), (2.4)

U-+X--+Yn n
1

subject to: -I(U; Xn) < 6, (2.5)
n
1- ||PxniU=U- Pxn||21= - (6), Vu, (2.6)
n

'In the assumption -I(U; X') < 6, we implicitly assume that 6 is a function 6(n) of n, and
n - 6(n) < 1, for all n. Thus, the approximation in chapter 2.1 will be valid for any number of
letters.
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where 6 is assumed to be small. The difference between (2.2) and (2.4) lies in the

constraints (2.5) and (2.6). In the capacity problem, the entire input sequence is

dedicated to encoding U; on the other hand, for the linear information coupling

problems, we can only alter the input sequence "slightly" to carry the information

from U. Operationally, we assume that sequences of i.i.d. Px distributed symbols

are transmitted, and the corresponding Py distributed symbols are received at the

channel output. This can also be viewed as having Pxy jointly distributed multi-

source. Then, we encode the message U = u by altering a small number of symbols

in these sequences, such that the empirical distribution changes to Pxiu=U. As we

only alter a small number of symbols, the conditional distribution Pxu=u is close to

Px. For the rest of this thesis, we assume that the marginal distribution Pxn is an

i.i.d. distribution over the n letters2 . Our goal is to find the conditional distributions

Pxiu=u for different values u, which satisfy the marginal constraint Px, such that a

thin layer of information can be conveyed to the Y end the most efficiently.

Although we assume that the operating point has i.i.d. Px distribution, it is not

priorly clear that Pxni=u should be also i.i.d.. Therefore, (2.4) has a multi-letter

form. In fact, we will show in section 2.2 that, unlike the capacity problems, the

linear information coupling problems allow easy single-letterization, and the optimal

PxniU=u indeed should be i.i.d.. This turns out to be a very important feature of

the linear information coupling problems, since the problems are then optimized over

finite dimensional spaces.

2.1 The Local Approximation

The key technique of our approach to solve the linear information coupling problems is

to use a local approximation of the K-L divergence. Let P and Q be two distributions

over the same alphabet X, then D(P Q) = E P(x) log(P(x)/Q(x)) can be viewed

as a measure of distance between these two distributions. However, this distance

2This assumption can be proved to be "without loss of the optimality" for some cases [10]. In
general, it requires a separate optimization, which is not the main issue addressed in this thesis. To
that end, we also assume that the given marginal Pxnhas strictly positive entries.
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measure is not symmetric, that is, D(PJ|Q) # D(QI P). The situation can be much

simplified if P and Q are close. We assume that Q(x) = P()+ eJ(x), for some small

value e, and a function J : X H-* R. Then, the KL divergence can be written, with

the second order Taylor expansion, as

D(P |Q) = - 1 P(x) log P(x)

= - P(x)log 1+6- -

= 2 . I 2 (X) + o(e2)
2 XP (X)

We think of J also as a column vector of dimension JXJ, and denote EX J 2 (X)/P(x)

as |1J|2, which is the weighted norm square of the perturbation vector J. It is easy

to verify here that replacing the weights in this norm by Q(x) only results in an o(62)

difference. That is, up to the first order approximation, the weights in the norm

simply indicate the neighborhood of distributions where the divergence is computed.

As a consequence, D(P |Q) and D(QHIP) are considered as equal up to the first order

approximation.

For convenience of the notations, we define the weighted perturbation vector as

L(x) A J(x), Vx E X,

or in vector form L LI J, where 1 ] represents the diagonal matrix with

entries {/P(x) E X}. This allows us to write ||J12 = ||L 12, where the last

norm is simply the Euclidean norm.

With this definition of the norm on the perturbations of distributions, we can

generalize to define the corresponding notion of inner products. Let Qi(x) = P(x) +

c - Ji(x), Vx, i = 1, 2, we can define

(J1 , J2)P P (x ) J2 (x) = (L 1, L2 ),
(X J2
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where Li = [/P Ji, for i = 1, 2. From this, the notions of orthogonal perturba-

tions and projections can be similarly defined. The point here is that we can view a

neighborhood of distributions as a linear metric space, where each distribution Q is

specified by the corresponding weighted perturbation L from P, and define notions

of orthonormal basis and coordinates on it.

After establishing the local approximation of the K-L divergence, we can now

study the single-letter version of the linear information coupling problem (2.4):

max I(U; Y), (2.7)

subject to: I(U; X) < 6, (2.8)

IPxIU= _- Px112 = O(6), Vu, (2.9)

and observe how the local geometric structure helps us to visualize the solution. Here,

we replace the notation 6 in the constraint by ic2, as its meaning is now clear. We

assume that the distribution Px is given as the operating point. The purpose of (2.7)

is to design the distribution Pu and the conditional distributions Pxiu= to maximize

the mutual information I(U; Y), such that the constraint

2I(U; X) = ZP(u) -D(Pxiu(-zt) |Px) e, (2.10)
U

is satisfied, and the marginal distribution E Pu(u)PxIU=u = Px. From the con-

straint (2.9), we can write the conditional distributions Pxlu=u as perturbations of

Px. Written in vector form, we have Px Iu = Px+E- Ja, where Ju is the perturbation

vector. With this notation and using the local approximation on D(Pxiu(.-u) lPx),

the constraint (2.10) can be written as

S P (u) -| xJu11 + O(E2) < 12,

U

which is equivalent to Z Pu(u) . 1Jn|_ < 1. Moreover, since Pxig=u, for different

U, need to be valid probability distributions and satisfy the marginal constraint, we
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have

Z Ju(x) = 0, for all u, (2.11)
x

and

P (u)JU = 0. (2.12)
U

Next, for each u, let Lu = Pxl] Ju be the weighted perturbation vector. Now,

we observe that in the output distribution space

PyIU=U = WPx +* -WJU

P,+ -W[ Px]Lu,

where the channel applied to an input distribution is simply written as the channel

matrix W, with dimension lY| x IXI, multiplying the input distribution as a vector.

At this point, we have reduced both the spaces of input and output distributions as

linear spaces, and the channel acts as a linear transform between these two spaces.

The linear information coupling problem (2.7) can be rewritten as, ignoring the 0(62)

terms:

max. E Pu(u) -W7Jull ,
U

subject to: ZP(u) -Ju, = 1,
U

or equivalently in terms of Euclidean norms,

r -i 1 2
max. LPu(u) Fvy W /VPx- Lu , (2.13)

U

subject to: 1: Pu (ut). 2 = 1. (2.14)
U
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In addition, from the definition of L., we can write (2.11) and (2.12) as

1 VPx(x)L,(x) = 0, for all u (2.15)

and

SPu (u)LU = 0. (2.16)
U

We should notice that a choice of Pxlu= is equivalent to a choice of Ls, thus it is

enough to just solve (2.13).

The problem (2.14) is a linear algebra problem. We need to find the joint distri-

bution U -* X -+ Y by specifying PU and the weighted perturbation vector Lu for

each value of u, such that the constraints (2.15) and (2.16) on Lu are met, and also

these perturbations are the most visible at the Y end, in the sense that multiplied by

the channel matrix, WJj's have large norms. This can be readily solved by setting

the weighted perturbation vectors La's to be along certain principal direction that

satisfies the constraint (2.15), and has the largest output image under the matrix

B A [ 'PY-,I W ( V"Px -

The point here is that, with our local approximation and the linearized structure,

for different values of u, the output norm square of the La's are simply added together

averaged over Pu(u). So, if there exists u1 , U2 E U such that B - L 1 112 > ||B.- LU2 12,

then we would like to align Lu2 to be along Lu1 , i.e. choosing a new vector Lu2 =

L.11 . Lu to replace L,2. With this new choice L U, we increase the averaged output

norm square (2.13), while keeping the constraint (2.14) to be satisfied. Therefore, we

can see that the optimal solution of (2.13) happens when all vectors Lu are aligned

along the principal direction that has the largest output image under the linear map

B. Moreover, from the linearity of the map B, once we solve this principal direction,

the choices of the cardinality of U and the corresponding Pu(u) do not effect the

optimal averaged output norm square, as long as the constraint (2.14) and (2.16)

are satisfied. So, we can without loss of generality choose U as a uniformly binary

29



L2 L

P24UO

(a) (b)

Figure 2-1: (a) Choice of Pu and Pxju to maintain the marginal Px. (b) Divergence
Transition Map as a linear map between two spaces, with right and left singular
vectors as orthonormal bases.

random variable, and Pxiuo = Px + e L, and Px1ui1 = Px - c -L, for some weighted

perturbation vector L. This step is critical in the sense that it reduces the cardinality

of U, and simplifies the overall problem as a readily solvable linear algebra problem.

Figure 2-1(a) illustrates this idea from the geometric point of view. Then, the problem

becomes

max. |IB - L 1 2 , (2.17)

subject to: ||L 1|2 = 1, (2.18)

V/Px(x)L(x) = 0. (2.19)
x

We call this matrix B the divergence transition matrix (DTM), as it maps divergence

in the space of input distributions to that of the output distributions.

Now, this is a linear algebra problem that aims to optimize (2.17) by a unit vector

L subject to the linear constraint (2.19). To solve this problem, first note that if we

ignore the linear constraint (2.19), the optimization of (2.17) is simply choosing L

as the largest right (input) singular vector of B corresponding to the largest singular

value. However, this choice may violate (2.19). In fact, the linear constraint (2.19)

can be viewed as the orthogonality of the vector L and a vector vo = ['/7, x E X].

Moreover, it is easy to see that v is a right singular vector of B corresponding to

the singular value 1 and the left singular vector wo = [V/TV, y E y] . Therefore, the

linear constraint (2.19) restricts the weighted perturbation vector L in the subspace
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spanned by all the singular vectors of B except for vo. This implies that the optimal

weighted perturbation vector L of (2.17) is the right singular vector of the matrix

B - _wovr corresponding to its largest singular value.

In addition, applying the data processing inequality, the following lemma shows

that all singular values of B are upper bounded by 1.

Lemma 1. Let the singular values of the DTM B be -o > a- > ... > am, with the

corresponding right singular vectors vo,vi,.. .,v, where m = min {|X|,|Y|} -1, then

go-= 1 and vo = Fx, x c X]T .

Proof. We only need to show that ao = 1. First, observe that since U -+ X -+ Y forms

a Markov relation, from the data processing inequality, we have I(U; Y) < I(U; X).

This implies that for any weighted perturbation vector L that satisfies (2.19), the

inequality JIB -L112 < ||Lfl2 holds. Because L can be chosen as any singular vector of

B other than v, all singular values of B are upper bounded by 1, hence o-= 1 is the

largest singular value. E

From this lemma, we can see that the largest singular value of B - w v r is the

second largest singular value of B, and the optimum of (2.17) is achieved by setting

L to be along the right singular vector of B with the second largest singular value,

i.e., Vi.

We can visualize as in Figure 2-1(b) the orthonormal bases of the input and output

spaces, respectively, according to the right and left singular vectors of B. The key

point here is that while I(U; X) measures how many bits of information is carried in

X, depending on how the information is modulated, in terms of which direction the

corresponding perturbation vector is, the information has different "visibility" at the

receiver end. Our approach is to exploit the optimal perturbing direction so that the

information can be conveyed to the receiver the most efficiently.

Example 1. In this example, we consider a very noisy ternary point-to-point channel

with input symbols X = {1, 2, 3} and output symbols Y = {1, 2, 3} such that:

(i) The sub-channel between the input symbols {2, 3} and the output symbols

{2, 3} is a binary symmetric channel (BSC) with crossover probability j - -y.

31



x Y
1 1

BSC(j -y)

2 2
0 0

(a)

x Y
1 +q

1

1 1

1 2

( 7)

2 2

33

(b)

Po = [1 0 ]T

PXI =0

x 1 1 I]T

Pxu=1

P2= 0 0 1 ]T p [0 1 ]T

(c)

Figure 2-2: (a) The ternary point-to-point channel that is composed of two binary
symmetric channels. (b) The channel transition probability of this ternary channel.
(c) The optimal perturbation direction for the ternary channel to convey information
to the receiver end. Here, the triangle represents all valid input distributions, and
the vertices are the deterministic input distributions of the three input symbols.

32



(ii) If we employ the auxiliary input/output symbol 0 to represent the transmis-

sion/receiving of the input/output symbols 2 and 3, then the sub-channel be-

tween the input symbols {0, 1} and the output symbols {0, 1} is a BSC with

crossover probability i -

This ternary channel is illustrated in Figure 6-5(b). Mathematically, the channel

transition matrix of this ternary channel can be specified as

221 2 1

which is illustrated in Figure 2-2(b). In addition, we assume that 1 > 7 > Y > 0, so

that this ternary channel is very noisy.

There are two modes that information can be transmitted through this channel.

The first one is to modulate the message in the input symbols 1 and 0 = {2, 3} of

the BSC (I - r), and then this message can be decoded at the receiver end according

to the output symbols 1 and 0. The second transmission mode is to modulate the

message in the input symbols 2 and 3 of the BSC (} - -y), and decode the message

according to the output symbols 2 and 3. In this example, we employ our framework

to study how information can be efficiently conveyed through this ternary channel,

and the relation of efficient communication to these transmission modes.

To apply our approach, we fix the empirical distribution Px as [ ]T, and the

corresponding output distribution Py is [ 1]T. Then, the DTM is

1 _ 1

For this DTM, the singular values are 1, 217, and (1 + 217) -y, with the correspond-

ing right singular vectors [_ 1]T, [_ -1 -1]T, and [0 - :]T. So, the sec-

ond largest singular value is -1 = 2,q, and the corresponding right singular vec-
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tor is v = [-- j]T. Thus, the optimal perturbation vector (not weighted) is

[j i]T, and the conditional distributions are Pxlu=o = [ + - - T

and Pxl1u = - IE + + E] . This can be geometrically visualized as in

Figure 2-2(c).

Note that perturbing the input distribution along the directions [ 1 1 ]T, and

[0 -]T corresponds to modulating and communicating the message through the

BSC (I - q), and BSC () - y), respectively. So, our approach shows that the most

efficient way to convey information through the channel is to couple the message into

input sequences through the communication mode BSC (I - 7).

Remark 1. The above arguments imply that

I (U; y) < U2. I I(U; X), (2.20)

where -1 < 1 is the second largest singular value of B. Thus, comparing to the

data processing inequality I(U; Y) < I(U; X), (2.20) can be viewed as a "strong data

processing" inequality. Moreover, the solution of (2.17) tells how the equality can be

achieved. Note that (2.20) comes from the local geometric structure, which requires

the local constraint (2.9). One can obtain a stronger result than (2.20) that does not

require the local constraint by replacing the ao2 by the s(X, Y) as we discussed in

section 1.3.

Remark 2. In fact, these ideas are closely related to the method of information

geometry [4], which studies the geometric structure of the space of probability dis-

tributions. In information geometry, the collection of probability distributions forms

a manifold, and the K-L divergence behaves as the distance measure in this mani-

fold. However, the K-L divergence is not symmetric, and this manifold is not flat,

but has a rather complicated structure. On the other hand, our approach introduced

in this chapter locally approximates this complicated manifold by a tangent hyper-

plane around Px, which can be viewed as an Euclidean space. Moreover, the K-L

divergence corresponds to the weighted Euclidean norm square in this linear space.

For the linearized neighborhood around Px, just like any other metric space, one can
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define many orthonormal bases. Here, we pick the orthonormal basis according to the

SVD structure of the DTM B, which is particularly suitable as our goal is to study

how much information can be coupled through this channel. This orthonormal basis

illustrates the principle directions of conveying information to the receiver end under

the channel map, and provides the insights of how to efficiently exploit the channel.

Remark 3. In many information theory problems, it is required to deal with the

trade-off between multiple K-L divergences (mutual informations), which is a non-

convex problem. Thus, finding global optimum for such problems is in general in-

trinsically intractable. In contrast, with our local approximation, the K-L divergence

becomes a quadratic function. Therefore, the tradeoff between quadratic functions

remains quadratic, which is much easier to deal with. In particular, our approach

focuses on verifying the local optimality of the quadratic solutions, which is a natural

thing to do, since the overall problem is not convex.

2.2 The Single-Letterization

The most important feature of the linear information coupling problem (2.4) is that

the single-letterization is simple. To illustrate the idea, we first consider a 2-letter

version of the point-to-point channel:

1
max -I(U; Y 2 ), (2.21)

U-+X 2 y 2 2
1

subject to: -I(U; X 2) < 62

- |Px21U_- PX2 |2 = 0(6), Vu,2

Let Px, Py, W, and B be the input and output distributions, channel matrix, and

the DTM, respectively, for the single letter version of the problem. Then, the 2-letter

problem has P(2) - Px 0 Px, P) = Py 0 Py, and W( 2) - W O W, where ® denotes

the Kronecker product, or also called as the tensor product. As a result, the new

DTM is B(2) = B 0 B. Thus, the optimization in (2.21) has exactly the same form

as in (2.7), where the only difference is that we need to find the SVD of B(2) instead
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of B. For that, we have the following well-known lemma:

Lemma 2. Let v. and v denote two right (or left) singular vectors of B with singular

values u-, and a- . Then, v* 0 v is a right (or left) singular vector of B(2) and the

corresponding singular value is 0-i . O-.

Recall that the largest singular value of B is [o = 1, with the right singular

vector vo = [ /PX, X E X] , which corresponds to the direction orthogonal to the

distribution simplex. This implies that the largest singular value of B(2) is also 1,

corresponding to the singular vector vo 0 v, which is again orthogonal to all valid

choices of the weighted perturbation vectors.

The second largest singular value of B(2) is a tie between o-o - a- and o-i - Uo, with

right singular vectors vo 0 v, and v, 0 vE, where a- is the second largest singular

value of B, and vi is the corresponding right singular vector. The optimal solution of

(2.21) is thus the weighted perturbation vectors along the subspace spanned by these

two vectors. This can be written as

PXIU== Px ( Px + IVPx 0 Px - (evo 0 V + e''V 0 vo) (2.22)

- (Px + e' [px] g (Px + e [ Pxl V) + 0(2), (2.23)

where (2.23) comes from noting that the vector vo = [ /Px, C X]T, and adding the

appropriate cross (higher order) terms for factorization. Here, we assume that e and

C' are of the same order, which makes the cross term 0(e2). This means that up to

the first order approximation, the optimal choice of PX2IU=U, for any value of u, has a

product form, i.e., the two transmitted symbols in X 2 are conditionally independent

given U. With a simple time-sharing argument, we can show that it is optimal to set

6 = e'. This implies that picking PX21UU to be i.i.d. over the two symbols achieves

the optimum, with the approximation in (2.23).

Finally, by considering the nth Kronecker product, we can generalize this procedure

to the single-letterization of the n-letter problem (2.4).

Remark 4. This proof of showing the single-letter optimality is simple. All we
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have used is the fact that the singular vectors of B(2 ) corresponding to the second

largest singular value has a special form, Lo 0 v, or v, 0 vo. We can visualize this as

follows. The space of 2-letter joint distributions PX21u, has (IX 2 - 1) dimensions.

Around the i.i.d. marginal distribution Px 0 Px, there is a 2. (JXJ - 1)-dimensional

subspace, such that the distributions in this subspace take the product form Q, 0 Q2,

for some distributions Q, and Q2 around Px. These distributions can be written as

perturbations from Px 0 Px, with the weighted perturbations of the form LO 0 v + v' 0

vo, for some v and v' orthogonal to v. The above argument simply verifies that the

optimal solution to (2.21), which is the singular vectors of the B(2) matrix, has this

form. Generalizing to n-letter problems, our procedure reduces the dimensionality.

Moreover, it turns out that this procedure can be applied to more general problems.

In chapter 3 and 4, we will demonstrate that in quite a few other multi-terminal

problems, the similar structure can be proved and used for single-letterization.

We would like to emphasize that the advantage of our approach is that it does not

require any constructive proving technique, such as constructing auxiliary random

variables. For any given problem, one can follow essentially the same procedure to

find out the SVD structure of the corresponding DTM. The result either gives a

proof of the local optimality of the single letter solutions or disproves it without any

ambiguity.

Before moving to the more interesting multi-terminal problems, we discuss in the

rest two sections that how the linear information coupling problems can be connected

to the capacity problems, and also the relation between the linear information cou-

pling problems and the Renyi maximal correlation. Readers, who are only interested

in the application of our local approach to the multi-terminal problems, can directly

turn to the chapter 3 and 4.

2.3 Capacity Achieving Layered Codes

In this section, we demonstrate that how the linear information coupling problem

(2.4) can be a sub-problem of the capacity problem (2.2). The main idea here is that,
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after coupling a small piece of information U into input sequences by perturbing

the empirical distribution Px to Pxlu=,, we can keep coupling informations into the

resulting input sequences by further perturbing the distributions Pxiu=2. Iteratively

running this process, we can then come up with a layered coding scheme that couples

a sequence of informations U1, U2 ,... into the input sequences, where the i-th layer

of this coding scheme corresponds to the linear information coupling problem of the

information U that operates on the distribution Pxiu,=1 ...,- 1 =u__ resulted from the

previous i - 1 layers. In the following, we explore the detail of this layered coding

scheme.

Let us start from the one-layer problem of this coding scheme. For a point-to-point

channel with a transmitter X and a receiver Y, the goal of the one-layer problem

is to efficiently transmit information through the Markov relation U1 -+ X -+ Y,

subjecting to the constraint I(U1; X) < 12, and |HPxiui - Px ( = 0(c). From the

analyses of the linear information coupling problem, we know how to find the optimal

P I u and PG1 to achieve the solution3

r* = max I(Ui; Y) (2.24)
Ul-+ MY: J(U,;X)< e!2,

Now, we propose the following coding scheme to explain the operational meaning of

this solution. Suppose that there is a block4 of ni - k, i.i.d. Px distributed input

symbols x(1),... , x(k 1 ) generated at the transmitter, where X(i) E X i represents a

sub-block of n, input symbols xl(i), ... ,xn1 (i), for 1 < i < ki. Then, we "encode"

a binary codeword u1 (1), . . . , 'ui(ki), with empirical distribution P 1 , into this input

symbol block by altering some of the symbols, such that the empirical distribution of

each sub-block x(i) changes to P* . Note that the empirical distribution of the

entire symbol block remains approximately the same as Px. The receiver decodes this

codeword according to different empirical output distributions of the k, sub-blocks.

From (2.24), there exists binary block codes u1 (1),. . . ,ui(ki) with rate R* = ni -r*

3In this section, we implicitly assume that all the conditional distributions Px1i satisfy the local
constraint, so that they are all close to Px in the sense of E.

41n this thesis all the "block length" and "number of sub-blocks" are assumed to be large.
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Figure 2-3: The empirical distribution of different sub-blocks in each layer after en-
coding.

bits/U1 symbol, which can be reliably transmitted and decoded by using the above

coding scheme. The empirical distributions of different blocks of input symbols, after

this encoding procedure, are illustrated in Figure 2-3.

Now, we can add another layer to the one-layer problem. Theoretically, this is to

consider a new set of linear information coupling problems

r*(ui) = max
(U1,U2) X_ Y: I(U2;XjU1=Ui)<}E2, ||X|i 1U2 JU1=ui 10E

I(U2 ; Y U1 = UI),

(2.25)

where the conditional distribution of X given U1 = ui is specified as PIgu. We

can solve (2.25) with the same procedure as (2.24), and find the optimal solutions

P* yand

Then, we can encode this one more layer of codewords to the original layer with

a similar coding scheme. To do this, we further divide each sub-block x(i) into k2

small sub-blocks, and each of the small sub-block has n 2 symbols, where n 2 - k2= ni.

Then, for a binary code u2 (1), ... ,u 2(k 2) with rate R*(ui(i)) = n2 r*(u,(i)) bits/U 2

symbol, where the distribution of the bits in the codewords is P 2 1U-UM(i), we encode

the codewords into small sub-blocks of x(i) by exactly the same coding scheme as the

one-layer problem. The transmission rate of this coding scheme over the entire input
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U2=0 1=1
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Py

U1=0

Figure 2-4: A layered approach for the coding problem.

symbol block x(1), . .. , x(ki) is then

Z *(ui)Pru ( 1 ) = I(U2; YIU 1 ) bits/transmission.
UL1

After this, the empirical distribution of the j-th small sub-block of x(i) changes to

X*=u1 (i)U 2 =u2 (j), which is illustrated in Figure 2-3. On the other hand, the empirical

distribution of the entire x(i) remains approximately the same as P JUi_.1 (). Thus,

the decoding of the codewords ui(1),... , ui(ki) of the first layer is not effected by

adding the second layer, and can be proceeded as in the one-layer problem. The

codewords of the second layer are then decoded after the first layer is decoded.

We can keep adding layers by recursively solving new linear information coupling

problems, and sequentially applying the above layered coding scheme. Assume that

there is a sequence of messages U1, U2, ... , UK that we want to encode. First, we can

find a perturbation of the Px distribution according to the value of U1 by solving

the corresponding linear information coupling problem. Then, by solving the new

set of information coupling problems conditioned on each value of U1 = ul, we can

find further perturbations of that according to the value of U2 , and so on. The

corresponding perturbations in the output distribution space is illustrated in Figure 2-

4.

In particular, we should notice that in this layered coding scheme, informations

are encoded in a very large number of long symbol blocks. Thus, this scheme is in

general not practical. However, studying this layered coding scheme still provides
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much theoretical insights on linear information coupling problems as we discuss in

the following.

First, observing that the divergence transition map B depends on the neighbor-

hood, in both the input and the output distribution spaces, through the weighting

matrices [/x] and [ l]. As we sequentially add layers, the neighborhood,

and hence the weights, change from Px, to Pxu1 =, ,, to PxIU1=lU2= 2 .. Thus, the

sequence of local problems we need to solve changes gradually, and the underlying

manifold structure of the space of probability distributions has to be taken into con-

sideration.

More importantly, as shown in Figure 2-4, the valid choices of distributions on

the channel output must be in a convex region. For a given channel matrix W,

whose column vectors are the conditional distributions of the output Y, conditioned

on different values of the channel input X = x, the output distributions must belong

to the convex region specified by these column vectors. As we add more layers, at

some point the boundary of this convex region is reached. From which point, further

layering is restricted to be along the hypersurface of this convex region. Concep-

tually, there is not much difference, since moving the output distributions on the

hypersurface corresponds to not use a subset of the input alphabet. Hence, a local

problem can in principle be written out with a reduced input alphabet. This can

indeed be implemented in some special cases [10]. However, for general problems,

especially multi-letter problems, specifying this high dimensional convex region and

all its boundary constraints seems to be a combinatoric problem that forbids general

analytical solutions.

Finally, while we only consider small perturbations in each step, eventually the

perturbations reach the vertices of the simplex of valid distributions with probability

1. This implies that

lim I(U1, ... , UK; X)
K-+oo

=H(X) - lim H(XIUl,..., UK) = H(X),
K-+oo
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where H(.) is the entropy function. Thus, if we keep encoding layers in each step by

recursively solving the local optimization problems, we can integral the local solutions

in each step back to a global solution. This in fact provides a greedy solution to the

global problem, and potentially demonstrates how the capacity can be obtained.

Example 2. In this example, we apply the layered coding scheme to the ternary

channel that we considered in example 1, and show that the capacity can be achieved

by this scheme. First, note that the channel capacity of the ternary channel in Fig-

ure 2-2(b) is 2r72 + (_ + q) _y2 , with the optimal input distribution Px = [ j]T. Here,

we ignore the higher order terms of o(9q2) and o(7y2), since both q and -y are assumed

to be small. From example 1, the optimal perturbation vector is [1 Zi Zi]T, and the

corresponding conditional distributions are Pxli,_o =[ + 1 - 1 - E and

Px 1U=1 = !E- j + + T . To apply the layered coding scheme, we keep

increasing the perturbation vector until the boundary is reached, i.e., increasing 5 E to

1. Then, the conditional distribution Pxui,_o reaches the vertex [1 0 0 ]T, and Pxtui=1

reaches the boundary at [0 1 j]T. This is shown in Figure 6-5(c). The achievable

information rate by the first layer of perturbation is I(U1; Y) = j 2 (2,q) 2 = 22.

Next, we perturb the conditional distribution Pxlul=1 = [0 -j]T along the bound-

ary. This corresponds to a linear information coupling problem with reduced input

alphabet, since the first input alpha "0" has no effect here. Therefore, the DTM of

this problem has reduced dimension, and can be explicitly computed as

The second largest singular value of this DTM is or1 = /2+ 4 - -y, and the corre-

sponding singular vector is v = [0 ]T. Thus, the optimal perturbation vector

is [0 1 ZI]T, and the conditional distributions are Pxlu~,u 2 =0 = [0 1 + -}

5 Since we assume both 77 and y are small, the local approximation of all divergence and mutual
information of interests remains valid even if c is not small. This is why we can increase E here from
a small number to 1 without violating the local approximation.
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Pxu 1 =O = [1 0 O]T

Px = [.1 1]T

Pxu1 =i = [0 2 T

Px1=1p2=1 = [0 0 ]T Px1U1 =1,U 2=o = [0 1 0 ]T

Figure 2-5: In the first layer, the input distribution Px is perturbed to Pxlu,=o and
Pxu1 =1, where Pxu=o reaches one of the vertices, and Pxju,=i reaches the boundary.
In the second layer, the distribution Pu 1 j=1 is further perturbed to Pxlu,=u 2=o and
PxiU1=1,U2=1 , where the rest two vertices are reached.

and PxjU1=,u2=j = [0 1 - !E I + 1E . Then, we keep increasing the perturbation

vector until the two vertices [0 1 0]T and [0 0 1]T are reached with c = 1, as shown in

Figure 6-5(c). The achievable information rate by the second layer of perturbation is

I(U2 ; YjU1) = I(U2 ; YjUi = 1) -P(U1 = 1)

+ y2

After these two layers of perturbations, all the conditional distributions reach the

vertices, and the total achievable information rate is 2q2 + (I + q) y2, which achieves

the channel capacity of this ternary channel.

2.4 The Relation To Renyi Maximal Correlation

In this section, we show that the second largest singular value of the DTM is pre-

cisely the Renyi maximal correlation between random variables X and Y, where the

marginal distributions Px and Py are the given input and output distributions in the
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linear information coupling problem (2.7), and the transition probability kernel Pyix

is the channel W. Let us begin with the following definition.

Definition 1. [15] The Rernyi maximal correlation pm(X, Y) between two random

variables X and Y is defined by

pm(X, Y) = sup E [f (X)g(Y)], (2.26)

where the supremum is over all Borel-measurable functions f and g such that

£ [f (X)] = E [g(Y)] = 0(2.27)

E [f 2 (X)] = E [g 2(y)] 1.

The Renyi maximal correlation is a measure of dependence of random variables

that is stronger and more general than the correlation coefficient, since it allows arbi-

trary zero-mean, unit-variance functions of X and Y. The Renyi maximal correlation

is first introduced by Hirschfeld [12] and Gebelein [13] for discrete random variables

and absolutely continuous random variables. R6nyi [14, 15] compared the Renyi max-

imal correlation to other measures of dependence, and provided sufficient conditions

for which the supremum of (2.26) is achieved. In particular, for discrete random vari-

ables X and Y, the sufficient conditions are met, and R6nyi maximal correlation can

be attained. Moreover, Renyi showed that if the function pair (f, Y) achieves (2.26),

then

E [p(Y) |X] = pm(X, Y)f(X ),

E f (X) Y] = pm(X, Y) (Y).

Now, let E [- X] : gy + Fx be the conditional expectation operator, where FX and

gy are the metric spaces of functions f : X - R and g : Y-+ R, respectively, with
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the corresponding metric (., -)p, and (-, -)py. It is easy to see that

{$O = Px(x) 6XI, x E X (2.29)

V)" = /Py(y) 6 y, y EY ,

where

0, otherwise 0, otherwise

are orthonormal bases for Fx and gy. Thus, we can write the operator E [- X] as an

IXI x IY matrix Exy with respect to orthonormal bases (2.29), and the (x, y) entry

of this matrix is

Exy (x, y) =(#, E [Oy IX = x])p,

=E -X ( Px() ( ) ) (z Py() Y()PyIx WQIf

= PY(y) Py x (yIx) QPx(x).

Therefore, this matrix is precisely the transpose of the DTM. Consequently, there

is a one-to-one correspondence between the singular vectors of the DTM and the

singular functions of the conditioned expectation operator. In particular, note that

E [1y X] = 1 x, where 1 x and ly are constant functions with value 1 in Fx and

gX, respectively. Thus, the constant function is a singular function of the conditional

expectation operator, with singular vector 1. This corresponds to the first singular

vector [ Px(x), X E X] of the DTM. In addition, note that the zero-mean con-

straint (2.27) on functions in Fx is equivalent to the orthogonality to 1 x. Therefore,

the rest singular functions of the conditioned expectation operator satisfy (2.27), and

have a one-to-one correspondence to the singular vectors of the DTM other than the

first one.

From (2.28), we know that f has to be the left singular function of the operator

E [.I X] with respect to the largest singular value pm (X, Y), subject to the constraint

that f is orthogonal to 1 x. Therefore, we have the following proposition.
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Proposition 1. The second largest singular value of the DTM is the Renyi maximal

correlation pm(X, Y). Moreover, the functions f and g maximizing (2.26) can be

obtained from the left and right singular vectors of the DTM with the second largest

singular value, corresponding to the orthonormal bases (2.29).

In particular, the relation of (2.7) and the Renyi maximal correlation pm(X, Y)

was also shown in [11] and [26] by different approaches. With our local approximation

approach, we can see that Proposition 1 can be obtained with simple linear algebra.

Moreover, the geometric insight of the Renyi maximal correlation is also provided

through our analyzation of the divergence transition matrix. In chapter 3 and 4,

we will apply our local approach to multi-terminal communication systems, and the

relation between the local geometry and the Renyi maximal correlation suggests the

potential of generalizing the Renyi maximal correlation to the case of more than two

random variables.

2.5 The Application Of Linear Information Cou-

pling Problems To Lossy Source Coding

In this section, we illustrate how to apply our formulation of the linear information

coupling problems, and the local geometric structure in the point-to-point problems,

to the lossy source coding problems. The first attempt along this direction was from

Tishby et al. [27], where the authors in [27] formulated the lossy source coding prob-

lems mathematically similar to our linear information coupling problems, except for

the local constraints on I(U; X). In fact, in [27], the authors assumed that I(U; X) is

a fixed number, which is not necessary small. With this assumption, they exploited

the Lagrange multiplier method to develop an algorithm for finding optimal solutions.

However, from this Lagrange multiplier approach, it is somehow difficult to obtain

the insight of how information is exchanged between different terminals. Moreover,

the Lagrange multiplier approach is extremely complicated when generalizing to the

general networks, which can be considered as the result of the complicated manifold
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structures of the probability distribution spaces. On the other hand, as we intro-

duced in this chapter, our local geometric approach is a powerful tool to simplify the

complicated manifold structures of distributions. In the following, let us introduce

how to apply our approach to study the lossy source coding problems.

First of all, thinking of now we have a source Y generated from some i.i.d. prob-

ability distribution Py. Suppose we can not directly observe Y, but can observe a

noisy version X of Y, which can be viewed as passing the source Y through a transi-

tion kernel, or a channel Pxly. Then, with the noisy observation X, we want to infer

or estimate the original source Y. Traditionally, we would like to find the sufficient

statistic T(X) from X, which tells all information about Y that one can say from

observing X. However, in many application, such as the machine learning and image

processing, both Y and X can come from some high dimensional graphical models.

For example, the Y can be a set of images, and X can be the noisy observation of

these images. Now, if one want to make some decisions about Y from observing X,

such as classifying the images in a meaningful way, then the sufficient statistic can be

quite complicated and hard to deal with. Instead of taking the sufficient statistic, we

want to formulate a slightly different problem, where we only want to have an insuf-

ficient statistic U, but hope that it is efficient. Here is the mathematical formulation:

given a source Y and the noisy observation X, we want to just say a few 1c2 words

U about X, where c2 is assumed to be small, and hope that it can tell us as much

about Y as possible. Then, this naturally corresponds to the optimization problem:

max I(U; Y) (2.30)
I(U;x)<16

Again, we add the local constraint ||Pxly=U - PX1| = 0(c), so that the problem can

be solved with our local geometric structure and the solution is Pxlu=u - Px = E2 uI

where all the Ju's are along the scaled largest singular vector of the linear map between

the space Px and Py. Moreover, from the discussion in section 2.1, we can simply take

U as a binary random variable with Pu(0) = Pu(1) = 1/2, and let Px1u=o - Px = Ej,

and Pxlu=1 - Px = -eJ, where J is the unit vector along the same direction as all
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the Ja's. Then, we can view this bit U as the most informative piece of information

that X wants to say about Y.

Now, the next question is that, once we can observe a sequence of realizations

X1, ... , Xn from X, how can we extract the most informative one bit U from this

sequence? To answer this question, we can think of this as an inference problem,

where the joint distribution Pxu of X and U is given as the optimal solution of (2.30).

Then, we can use the maximum likelihood decision to estimate the value of U. To

this end, we first compute the empirical distribution of x 1, . . . , x,, and denote this

empirical distribution as Px. Then, the optimal decision rule is to compare the K-L

divergences D(PxllPxlyuo) and D(PxI Pxiu=1 ), which tells that Px is more close to

either Pxlu=o or Pxlu=_. Mathematically, the decision rule is

f 0, if D(Px||Px u_1 ) > D(Pxl|Pxlu=o)
U =(2.31)

1, if D(Px||Pxu=1 ) < D(Px||Pxlu-o).

Moreover, with PxiU=o - Px = eJ, and Pxlu=1 - Px = -eJ, we can further sim-

plify (2.31) by the local approximation to

0J if > 0
U if PX (Xi) - (2.32)

1 if 1 (x) < 0.

Now, from this decision rule, we can define the score function fscore for each observa-

tion xi as

fscore(xi) .(Xi) (2.33)

This is illustrated in Figure 2-6. Then, once we can observe a sequence of observations,

we can extract the most informative bit by first computing the score of this sequence,

which is the sum of the score of each observation, and then apply the decision rule

as (2.32).

In fact, the most attractive feature of our score function is that for a sequence of

observations, we can compute the score function of this sequence highly efficiently,
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P XY X> x fscore fscore (X)

Figure 2-6: The score function for each observation X = x.

because we only need to compute the score function for each observation separately

and then add them up, but no need to compute a joint function for the entire sequence.

While we will not discuss in detail, we would like to point out that this feature becomes

very important when both X and Y becomes high dimensional graphical models. In

those cases, our notion of score function provides efficient algorithms to extract the

most informative piece of information from the noisy observations.

Finally, we would like to mention that this efficient insufficient statistic can be

useful in different scientific areas, such as the stock market and the machine learning.

In stock market, we can think of the source Y as the stock prices, and X is some side

information. The goal is to extract one bit information U from X, which tells that

we should either buy or sell a stock, so we would like this bit U to bring as much

information about Y as possible. In particular, this problem was also studied in [11]

by Erkip and Cover.

Moreover, in machine learning problem, we can think of Y as the hidden graphical

model, and we can only observe the noisy observation X, and want to make some

decisions about Y. The main difficulty of this is that both X and Y can be high

dimensional models, and the complexity of making decisions can be extremely high.

However, with the notion of the score we introduce in this section, we can simply

obtain the most informative piece of information efficiently, and then make the deci-

sion according to this piece of information. Therefore, from these examples, we can

see that the score function we develop in this section is in fact very useful for many

problem, and local geometric structure turns out to be the core technique for studying

these problems.
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Chapter 3

The General Broadcast Channel

In this chapter, we apply the local approximation approach to general broadcast

channels, and study the corresponding linear information coupling problems. We

first illustrate our technique by considering the 2-user broadcast channel, and then

extend to the K-user case. Finally, with the local geometry structure derived in this

section, we will discuss the local optimality of the Marton's coding scheme on general

broadcast channels.

3.1 The Linear Information Coupling Problems Of

General Broadcast Channels

Now, let us start to discuss the geometry of general broadcast channels. First, a

2-user general broadcast channel with input X E X, and outputs Y E Y1, Y2 E Y 2 ,

is specified by the memoryless channel matrices W and W2 . These channel matrices

specify the conditional distributions of the output signals at two users, 1 and 2, as

Wj(y jx) = Pyjx(yjjx), for i = 1, 2. Let M1, M2 , and Mo be the two private messages

and the common message, with rate R 1, R 2, and R0 , respectively. Then, using Fano's

inequality, the multi-letter capacity region of the general broadcast channel is the set
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of rate tuple (RO, R1 , R 2 ) such that

Ro < min{I(U; Y), I(U; Y 2 )},

R, < I!(V1; Yl), (3.1)

R2 <- _n(V; Y2),

for some mutually independent random variables U, V1, and V2, such that (U, V1, V2 ) -+

X -+ Yl and (U, V1, V2 ) _ _X -+ Y 2, are both Markov chains. The signal vectors

here all have the same dimension n. In principle, one should just optimize this rate

region by finding the optimal coding distributions. However, since n can potentially

be arbitrarily large, finding the structure of these optimal input distributions is nec-

essary.

Now, we want to apply the local approximation technique we developed in section

2 to this broadcast channel problem. As a natural generalization from the point-

to-point channel case (2.4), the linear information coupling problem of this 2-user

broadcast channel is the characterization of the rate region:

o < min{I(U; Y), I(U; Y2 )}

R, < I (V ; Y1) (3.2)

R2 < _1I1V2; _Y2)

1 12
subject to: (U, V1, V2) - X -+ (Yl, Y 2), -I(U, V, V2 ; X) < -C2

n 2
1

1-fPXI(UV,V 2)=(u,vi,V 2 ) - PXLl = 0(), V (U, vi, v 2),n

where U, V1, V2 are mutually independent random variables.

This rate region is the same as the capacity region (3.1) except for the local

constraint I(U, V1, V2; X) < 1E2. This constraint can be interpreted as modulating

all the common and private messages entirely as a thin layer of information into the

input symbol sequence X. Then, the goal of the linear information coupling problem

(3.2) is to describe the boundary points of this region, by specifying the directions

of perturbing Px, or the conditional distributions PXI(UVV 2)=(uViv 2 ) that have the

marginal Px.
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Note that the characterization of (3.2) involves the optimization over multiple rates

RO, R1 , and R 2 , with respect to different messages MO, M1 , and M 2. The following

lemma seperates (3.2) to three sub-problems, so that we can apply the local geometric

approach that was developed in section 2 to each individual sub-problem. The idea

here is that, while the conditional distribution PXI(UV,V 2)=(u,Vi,V 2 ) is perturbed from

Px by some vector JU,1 ,12 that is in general a joint function of U, V1, and V2, by the

first order approximation, it is enough to only consider those perturbation vectors

JU'V1,V2 that can be written as the linear combination of three vectors Ja, Jo1, and JV2 -

Lemma 3. The rate region (3.2) is, up to the first order approximation, the same as

the following rate region:

R0  min{I(U; Y 1 ), I(U; Y 2 )}

R,1< -11(V; _Y1) (3.3)

R2  6 J(V2 ;Y 2 )

1 1
subject to: (U, V1i, V2 ) -+ Xl -+ (_Yi, Y), -I(U; X) < co

n

1 12 1 12
-I(V1I; X) < - -I(V2 ; X) < - , 2 E = E2
n 2 n 22 i

1
H-_XI(UV,V 2)=(U,Vi,V 2) - Px = 0(e), V (U, vi,V2)n

Proof. Appendix A. El

Now, we can apply our technique in chapter 2 to this problem. In particular, for a

tuple of (Co, ei, E2) with 2= ej =2 the optimization problem (3.3) reduces to three

sub-problems: for i = 1, 2, the optimization problems for the private messages Mi

1
n

1 12
subject to: Vi -+ X -+ Yi, -I(Vi; X) < -6

n 2"

n
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and the optimization problem for the common message MO

1.
max. - min{I(U; Y), I(U; Y 2 )} (3.5)

n
1 1

subject to: U -+ X -+ (YI Y 2), -I(U; X) < - 2
n 2

1
-|Pxu_ -Px| O(o), V u.n --

As in the point-to-point channel case, we assume that the input distribution of

X, as the operating point, is i.i.d. Px. Hence, the output distributions of the two

outputs Y and Y2 are also i.i.d. Py, and Py2 . Moreover, we denote the conditional

distributions as the perturbations from the marginal distribution: P2xii=u - P(l) +

Vnec - Ju and Pxv,=,, = Ph") + f/lec - J., for i = 1, 2.

Then, the optimization problems (3.4) for private messages are the same as the

linear information coupling problem for the point-to-point channel (2.4). Thus, by

defining the single-letter DTM's Bi A[ <1 W [ for i = 1,2, we can solve

(3.4) with the same procedure as (2.4), and the single-letter solutions are optimal.

The optimization problem (3.5) is, however, quite different from the other two.

Suppose that the weighted perturbation vector Lu = [Pi] Ju, the problem is

to maximize

min P(u) B )Lu , P (u) }B Lu , (3.6)

subject to

Pu(u) - ||Lu|21
U

and also the constraints (2.15) and (2.16) that guarantee the validity of the weighted

perturbation vector. Here, the B "n is the nh Kronecker product of the single-letter

DTM Bi, for i = 1, 2.

Now, the core problem we want to address for (3.6) is that whether or not the

single-letter version of (3.6) is optimal, and if it is optimal, how large of the cardinality
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JUI is required. The point here is that, if we come up with a single-letter optimal

solution of (3.6), but it requires the cardinality |UI to be large, which means that in

contrast to the point-to-point case, we need to design multiple directions to achieve

the optimal of (3.6), and this JUI is not just as a function of the cardinality JXJ and

JY, then we would consider this solution as a multi-letter solution. So, we are not

only interested in how many letters we need to use to achieve the optimality of (3.6),

but also how large is the corresponding cardinality U.

In order to answer these problems, we want to first choose U as a uniformly binary

random variable, and consider the simpler problem

A (n) = max min , B )Lu . (3.7)
Lu:lJLuJJP=1 1 22

Specifically, we want to understand whether or not the single-letter version of (3.7) is

optimal, i.e., A( 1) = supn A(n). Note that the problem (3.7) is not equivalent to (3.6).

However, it will be shown later in remark 5 that the single/multi-letter optimality

of (3.6) can be immediately implied by the solutions of (3.7). Therefore, we will focus

on solving (3.7) in the following.

First, note that different from the point-to-point problem (2.17), we need to choose

the weighted perturbation vector L, in (3.7) that have large images through two

different linear systems simultaneously. In general, the tradeoff between two SVD

structures can be rather messy problems. However, in this problem, for both i = 1, 2,

B () have the special structure of being the Kronecker product of the single letter

DTMs. Furthermore, both B1 and B 2 have the largest singular value 1, corresponding
T

to the same singular vector vo = [ Px, X E X] . Although the rest of their SVD

structures are not specified, the following theory characterizes the optimality of single-

letter and finite-letter solutions for general cases.

Theorem 1. Let Bi be the DTM of some DMC with respect to the same input dis-

tributions for i = 1, 2,... , k, then for the linear information coupling problem

A (n) = max min B ()Lu , (3.8)
Lu:ll LuJ =1, (LuEO()=O 1<i<k
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we have

J A 1) if k = 2

n A (k) if k > 2,

and for k > 2, there exists k-user broadcast channels such that

(k) (k- 1 )

In other words, the single-letter version of (3.8) is optimal for the case with k = 2

receivers. When there are k > 2 receivers, single-letter version of (3.8) may not be

optimal, but there still exists k-letter solutions that are optimal.

The existence of optimal single-letter solutions for the 2 receivers case, and op-

timal k-letter solutions for the case of k > 2 receivers are presented in appendix B.

It remains to show that when k > 2, to achieve the optimality of (3.8), the k-letter

version of (3.8) is in general necessary for broadcast channels with k receivers. We

illustrate here by an example that, when there are more than 2 receivers, i.i.d. distri-

butions simply do not have enough degrees of freedom to be optimal in the tradeoff

of more than 2 linear systems. Therefore, one has to design multi-letter product

distributions to achieve the optimal. The following example, constructed with the

geometric method, illustrates the key ideas.

Example 3 (The windmill channel). We consider a 3-user broadcast channel as

shown in Figure 3-1(a). The input alphabet X is ternary, so that the perturbation

vectors have 2 dimensions and can be easily visualized. Suppose that the empirical

input distribution Px is fixed as [} } }]', then the DTM B1 for the first receiver Y

is

2 T- T
B1 = - 1 = 9-!soL + U-i1iL,

where o-o = 1 and o-1 = (1 - 26) are the singular values of B 1, and uO [ ]T,
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Figure 3-1: (a) A ternary input broadcast channel. (b) The lengths of the output
images of L. through matrices B 1, B 1, and B1 are the scaled projection of L" and
its rotated version to the horizontal axis. (c) The optimal perturbations over 3 time
slots.
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1 [- z]T, o = [ ]T, and v,= [0 ]T are the corresponding left and

right singular vectors. Moreover, the DTM's B 2 and B3 for receivers Y2 and Y3 can

be written as

B2 = 3 1-

= -- T

= 0 OvEr + ai

B3 = -

T
= aoOkoLo + all

and

21 1 -- ]2

2

cos -sin 2 v
[1 0] 3 3 [-]

sin 2, COS , V T

2

_J

cos 4 - sin [1
,[1 0] 3 3 - J

sin Cos L

where v2 = [ ]T is the vector such that v0 , vl, and v2 form an orthonormal

basis of R3. Since the weighted perturbation vector L, has to be orthogonal to vo,

or equivalently, a linear combination of v and v 2, we can see that the lengths of the

output images of a weighted perturbation vector L, through B1 , B2 , and B3 are the

projection of the scaled version of L,, = [v v2]T L, as well as its rotated version with

angle 2 and L to the horizontal axis. This is shown in Figure 3-1(b).
3 3

Now if we use single-letter inputs, it can be seen that for any L, with L_ 2 = 1,

min {HJB 1Lu|12, B 2 Luf12 , B 3L 112} < 1- (1 -26)2. The problem here is that no matter

what direction Lu takes, the three output norms are unequal, and the minimum one

always limits the performance. However, if we use 3-letter input, and denote <;0 as

the perturbation vector such that

[-f 0 [ - - <;e = [cos 0, sin 0]T,
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then we can take

PX3U=U - (Px + 6q0) 0 (Px \ 600+1 0 (Px + E00+

for any value of 0, as shown in Figure 3-1(c). Intuitively, this input equalizes the three

channels, and gives for all i = 1, 2, 3, 11BZ )LL2 = 5 - (1 - 26)2, which doubles the

information coupling rate. Translating this solution to the coding language, it means

that we take turns to feed the common information to each individual user. Noting

that the solution is not a standard time-sharing input, and hence the performance

is strictly out of the convex hull of the i.i.d. solutions. One can interpret this input

as a repetition of the common message over three time-slots, where the information

is modulated along equally rotated vectors. For this reason, we call this example

the "windmill" channel. Additionally, it is easy to see that the construction of the

windmill channel can be generalized to the cases of k > 3 receivers, where k-letter

solutions is necessary.

Remark 5. Note that in (3.8), we let U be a binary random variable, and in this

case, while there are optimal 3-letter solutions, the optimal single-letter solutions

do not exist. However, one can in fact take U to be non-binary. For example, let

U = {0, 1, 2} with Pu (u) = 1/3 for all u, and let

for i = 0, 1, 2, then we can still achieve the information coupling rate 1/2. Thus, there

actually exists an optimal single-letter solution in (6.10) with cardinality |UI = 3. On

the other hand, we can see from this example that when there are k receivers, it

requires cardinality JUI = k for obtaining optimal single-letter solutions. This implies

that (6.10) is in general not single-letter optimal unless we allow the cardinality of

U to be proportional to the number of receivers. In fact, this example shows that

finding a single weighted perturbation vector with a large image at the outputs of

all 3 channels is difficult. The tension between these 3 linear systems requires more
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degrees of freedom in choosing the perturbations, or in other words, the way that

common information is modulated. Such more degrees of freedom can be provided

either by using multi-letter solutions or have larger cardinality bounds. This effect is

not captured by the conventional single-letterization approach.

Theorem 1 significantly reduces the difficulty of solving the multi-letter optimiza-

tion problem (3.5). The remaining is to find the optimal weighted perturbation vector

L, for the single-letter version of (3.5), if the number of receivers k = 2, or the k-

letter version, if k > 2. These are finite dimensional convex optimization problems

[16], which can be readily solved.

Remark 6. Suppose that the supremum of (3.7) is U2, and the second largest singular

values of B1 and B 2 are a, are -2 , respectively. Since the tradeoff between two systems

can not exceed the optimum of each individual system, we have

2 2
912 < o 2 min{of, a}, (3.9)

a + a2 0

where the lower bound comes from a simple time-sharing argument. This inequality

shows that, with the same amount of perturbations, less amount of common mes-

sages can be created to both receivers than the private messages. Moreover, with

our approach, we can explicitly computing all these o-i's, and therefore quantify the

difficulty of generating common messages at receiver ends than private messages.

3.2 The K-User Broadcast Channel

The extension of our approach to the general broadcast channels with K > 2 users

is straightforward. A K-user broadcast channel with input X E X, and outputs

Y E Yj, is specified by the memoryless channel matrices Wi, for i = 1, 2,... , K.

These channel matrices specify the conditional distributions of the output signals at

each user as Wi(ylx) = Pylx(ylx), for i = 1,2,...,K. We denote S as the set of

all nonempty subsets of {1, 2, ... , K}. Then, for all I = {ii, i 2 , .. . , ik} E S, users

i, i2, .. - , ik receive the common message MI, with rate R1 . Then, using auxiliary
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random variables U1 , and the notation Us A (UE, I E S), the linear information

coupling problem of the K-User broadcast channel is the optimization of the rate

region

subject to:

1
R <- min {I(U;Y)}, VIES

n iEI ;EJ I

US -+X (I ... , _YK-,

I I(UI; X) <_ eIC2 VI E S, 2 e=E2
n 2

1
-PxuS=,S - Px|| = 0(c), Vus E Us.
n

(3.10)

Following the same procedure as the 2-user broadcast channel case, the optimiza-

tion problem (3.10) can be reduced to some sub-problems. For each message MT that

is common to receivers I = {ii, 2 ,.-. , i'k}, the corresponding optimization problem

is

1
max. - min {I(UT; Y)}n iET

(3.11)

subject to:

Defining the DTM's Bi =

perturbation vectors Luz

(3.11) becomes

1 12
U1 __ _X -+ (_Yil . . ._Y),-(UI; X) _< - E2

n 2

-||Pxy - Px| = O(E), V U 1 E UT.
n

SP-yf] W [ Fx], for i= 1, 2, ... , K, and the weighted

[ P~_ Juz, for all I ES, the optimization problem

max min B(nL) 2}.
L, :liLuTJJ2=1 iEI{

(3.12)

Finally, from Theorem 1, the multi-letter optimization problem (3.12) can be reduced

to just a finite dimensional convex optimization problem.
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3.3 The Marton's Coding Scheme For General Broad-

cast Channel

The currently best inner bound of the general broadcast channel was due to Marton

[8]. The coding technique used by Marton is the foundation of many of the results on

multi-terminal problems we have today. In this subsection, our goal is to study the

local optimality of Marton's rate region under the local geometric structure.

Marton's achievable rate region is the following single-letter expression. For aux-

iliary random variables U, V, and V2, which satisfy the Markov relation (U, V1l, 172) -+

X -+ (Y, Y2), a rate tuple is achievable if

Ro < min {I(U; Y), I(U; Y2 )}

Ro + R1  < I(UV ; Y)

Ro + R 2  I(U,V2 ;Y 2 )

RO + R1 + R 2 < min{I(U; Y1 ), I(U; Y2 )} + I(V1; Y1 U) + I(V2 ; Y2 U) - I(V1; V2 U).

(3.13)

In fact, this achievable rate region is a generalization from a slightly different one,

which was first proposed by Cover [5], van der Meulen [6], and then improved by

Hajek and Pursley [7] (CMHP region):

Ro < min {I(U; Y1 ), I(U; Y2 )}

Ro + R1  < I(UVi;Yi) (3.14)

Ro + R 2  I(U, V2 ; Y2),

Ro + R1 + R 2 < min {I(U; Y), I(U; Y2 )} + I(V; Y1IU) + I(V2 ; Y2 IU).

where V and V2 are independent conditioned on U. The gist of the rate region (3.14)

is to use superposition code and i.i.d. PxjUv1V2 to obtain an achievable rate region.

We can see that the only difference between Marton's rate region and the CMHP

region is that Marton allows V, and V2 to be dependent to each other, conditioned on

U. Therefore, Marton's rate region (3.13) is optimized over a larger set of probability
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AR 1 = I(U; Yj)

R2= min{I(U; Y),I(U; 2)

slope = R

AR 1

R* = maxI(X; Y1)

Figure 3-2: The slope around R* on the capacity region.

distributions, and can potentially be better than (3.14). On the other hand, with

the relaxation on the dependency of U, 1, and V2, there happens to be a minus term

I(V; V2 U) on the achievable sum rate.

In this section, we aim to apply our local geometric approach to study the lo-

cal optimality of the Marton's rate region. Our goal is to characterize the slope

around a boundary point on the multi-letter capacity region, and then verify if this

slope is achievable by Marton's region with i.i.d. PXUV1 V2 . Specifically, suppose that

(R 1, R 2 , Ro) is the rate tuple of the private and common information rates for a 2-user

broadcast channel, we want to focus on the slope of the boundary point (R*, 0, 0) on

the multi-letter capacity region along the R1 -Ro plane, where R* = maxp I(X; Y).

This slope 1 can be written in the multi-letter form

ma {I(U; l), I(U; _Y2)}1 = max .(.5
U-+X-+y: U(U;X)< I(U; 1)

Now, if we further restrict all the conditional distributions Pxiu=u are close to Px, for

all u E U, in the sense of (1.3), then (3.15) can be simplified by our local geometric
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approach to

min { JB "nL 12, IB (n)L12

max 2 (3.16)
||L11=1 JIB (n)L 112

where B1 and B 2 are the DTM's for this broadcast channel.

Now, let us show that (3.16) has single-letter optimal solutions. First, it is clearly

that 1 < 1. If there exists a weighted perturbation vector L such that IB n)L12 <

B B)L 12, then this L achieves 1 = 1. From Theorem 1, there exist optimal single-

letter solutions in this case. Otherwise, if for any L, IB (n)L112 > ||B n)Lf12, then

max 2 max IE(n)BL' 12, (3.17)
ILII2=1 JIB ()LI2 ||L'1=1

where L' = B ()L, and = B2BT-1. Following the same argument as section 2.2, there

exist optimal single-letter solutions for (3.17). Therefore, we know that (3.16) has

optimal single-letter solutions, and (3.15) with the local constraint can be simplified

to the single-letter form

min {I(U; Y), I(U; Y2 )}1 = max .(.8
U-+X-+Y: I(U;X)<;}e2, P xu-PxII=o(E) I(U; Y)

Note that (3.18) can be achieved in Marton's rate region by choosing V = X, V2 =

const., with the i.i.d. input distribution. Thus, Marton's coding scheme is locally

optimal around the point (R*, 0, 0), provided that all the conditional distributions

PXiu=u are assumed to be local.

Moreover, while Marton's achievable rate region is only for two-user case, her

coding scheme can be generalized to the K-user broadcast channels, for K > 2,

to obtain single-letter achievable rate regions. Similar to the 2-user case, we can

verify the single-letter optimality of the Marton's coding scheme on the slope around

a corner point on the capacity region. What is interesting here is that with our

local geometric structure, we can show that Marton's single-letter region does not

achieve the optimal slope on the multi-letter capacity region, unless we allow the
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cardinalities of the auxiliary random variables increase with the number of receivers.

For example, consider the degrade broadcast channel X -+ Y' -+ (Y, Y2, Y3), and

let R' be the private information rate of Y', and Ro is the common information rate

to all receivers. Then, the optimal slope around the corner point (R', 0) along the

R' - Ro plane can be written as

min {I(U; Y 1), I(U; Y 2 ), I(U; Y 3)}l max _IUY). (3.19)
(U;-C)<;p IS21(U;Y'

Again, if we assume all the conditional distributions Pxiu are local, i.e., 1HPxul -

Plxl = O(E), then from Theorem 1, we know that either multi-letter solutions or

larger cardinality of U is required to achieve the optimum of (3.19). On the other

hand, Marton's rate region can only achieve the slope of the single-letter version

of (3.19). Therefore, under the local constraint, in order to use Marton's coding

scheme to achieve the slope (3.19), we need to allow the cardinality of U to increase

with the number of receivers.

In fact, Nair and El Gamal showed in [9] that Marton's coding scheme is indeed

not globally optimal for a certain type of three-user broadcast channel. With our local

geometry approach, by Theorem 1, we can visualize why Marton's coding scheme may

potentially fail to be locally optimal, and how coding over multiple letters helps in

taking turns communicating to different users.
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Chapter 4

The Multiple Access Channel with

Common Sources

In addition to the broadcast channel, the multiple access channel (MAC) is another

fundamental multi-terminal communication model that has been widely investigated

in information theory [1], [17], [18]. In this chapter, we aim to develop new insights

of this communication model by our geometric approach. Here, we consider the set-

up, where the transmitters can not only have the knowledge of their own private

sources, but each subset of transmitters also share the knowledge of certain common

source. All these private and common sources are assumed to be independent with

each other. The goal is to efficiently communicate all the private and common sources

to the receiver. To illustrate how our technique can be applied to this problem, we

first consider the 2-transmitter multiple access channel with one common source.

4.1 The Linear Information Coupling Problems Of

Multiple Access Channels

Suppose that the 2-transmitter multiple access channel has the inputs X E X1,

X2 E X2 , and the output Y E Y. The memoryless channel is specified by the channel

matrix W, where W(yjx1, x 2 ) =PYrx 1 ,x 2 (y1x1, x 2 ) is the conditional distribution of
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the output signals. We want to communicate three messages M1 , M 2, and Mo to the

receiver Y with rate R1 , R2 , and RO, where M1 and M 2 are observed privately by

transmitters 1 and 2, respectively, and MO is the common source for both transmit-

ters. Then, the multi-letter capacity region of this problem is the set of rate tuples

(RO, R 1, R 2 ) such that

Ro < 11(U; Y),n
R, < I(V; Y), (4.1)

R2 < uI(V2 ; Y),

for some mutually independent random variables U, V, and V2 , such that U -+

( 1 , X 2 ) -+ Y, V -+ X, - Y, and V2 --+ X 2 -_ Y are all Markov chains. Again, we

assume that the signal vectors here all have the same dimension n. The corresponding

linear information coupling problem is then to characterize the following rate region:

Ro < I(U; Y)

R,1< -1I(V; _Y) (4.2)

R 2 < -I(V2 ; Y)

subject to: U -+ (X 1 , X 2 ) - Y, V1 V X 1 -+ _Y, V2 -X 2 - Y,
1 1- I(U, V1,i V2; XI , X2) _< - E2
n 2
1
-|PX1,,X 2 (UV, V2)=(u,Vi,V 2) - Px 1,x2= 0(), V (u, v1 , v 2 ).

Here, both PX ,X 2 1(,IVV 2 )=(u,vi,v 2 ) and Px1,_x are IXII x JX 2 dimensional vectors, and

the norm is the Euclidean norm. Now, following similar arguments as Lemma 3 in the

broadcast channel case, the rate region (4.2) is, up to the first order approximation,
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the same as

Ro I(U; Y)

R, < -I(V; Y) (4.3)

R 2 < -II(V2; Y)

subject to: U ( 1, X 2 ) -± Y, V1 - _X1 Y, V2  X 2 > _Y

1 1 2 1 21 1 222 2
-I(U;XDX 2) < -, -I(V; X1 ) < -, -I(2; X2) < -2, E i 2 2

n 2 n 2 2  i=
-I IPXXI(UV V2)=(U V1,v2) - Px,x 2  0 (E), V (U, v1, v2).
n

The optimization of the rate region (4.3) can be reduced to three sub-problems:

the optimization problems for the private sources M1 and M2:

1
max. -I(Vi;_Y) (4.4)

n
1 12

subject to: V -+ Xi -_ Y, -I(Vi; Xi) < -,
n 2

-||PxIv,=v, - Px.| = O(ci), V vi.
n

for i 1, 2, and the optimization problem for the common source MO:

1
max. -I(U; Y) (4.5)

n
1 12

subject to: U - (X 1, X 2) - Y, -I(U;X 1 ,X 2) < -EK 7n 2
1

-X AP2,x _ - PX,x 2 =O(co), V U
n

To apply our approach, we assume that the joint distribution of X 1 and _X2 is

i.i.d. Px1 ,x 2 as the operating point, then the corresponding output distribution at the

receiver is also i.i.d. Py. The conditional distributions are written as vectors that are

perturbed from the marginal distributions: Px vi = P + f/ei6 - Ji, for i = 1,2,

and Pxx - )=n)x 2 + V/dio - Jo,u. For the problems (4.4) and (4.5), note that

PYIV=vi = W P p =v,, for i = 1, 2, where W(n) is the ntth Kronecker product of
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the matrix

Wi(yIXi)
x3-iEX3-i

W(y xI, x 2)Px3 _i(x 3-i). (4.6)

Then, defining the DTM's Bi =[p ] W [ Px for i = 1, 2, we can solve (4.4)

and (4.5) with the same procedure as the point-to-point case.

To solve the common source problem (4.5), first observe that U is the only common

information that transmitters l and 2 can share, so X 1 -+ U -+ X2 forms a Markov

relation, and

,_[ X y_ I = PxIU=u 0D PX 2 U=U- (4.7)

Furthermore, we can also write the conditional distributions Pxgiu=u as the perturba-

tion form PX. + \n/coJ,u for some perturbation vector Ji,u, for i = 1, 2. Then, (4.7)

becomes

Px ,x2U=U = Px1 1u=u 0 Px2 1u=U (Px + V'EoJ1,U) 0 (Px2 + Vco J2,u)

= P( opnQ + eo -, P + EO - p (n J 2 ,u + O(6 2 ). (4.8)

Therefore, compare (4.8) to Px1 ,xgius =p x)2 + /nico - JO,, we know that JO,u

has a special form J1,2 0 Pn + Pf< 0 J2,u, and PnX2 is equal to Pp) 0 pn) up to

the first order approximation. This special structure of Jo,u comes from the Markov

relation X i -+ Uo -+ X 2 . Conceptually, this simplifies the problem in the way that it

significantly reduces the dimension of the space that we need to search for the optimal

perturbation vector Jo,u.
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Now, with (4.8), the conditional output distribution can be written as

PyIU=u

=W(n) . pX2|-

W(n). (pn) . p® n + 60. Ji,u ( P® n + 60

SP + W + +O(E2)

- Pn + fl W n) W (n) [
= pn) + 0W0,. - J 0(62)

where Wo,n

J2,UJz I
-P.0 J2 , ) + O(E2)

+ O(E2)

A LW() Wn] is the concatenation of the two matrices Wn) and Wn),

and J. A [JiT J21] is the concatenation of the two perturbation vectors J,u and

J2,u. Then, the problem (4.5) becomes

max. P(u) WO,nJu n
U

subject to:
U

Furthermore, if we define the DTM

BoA WO,n [ p(n)
x1

0

0

Vp(l) I= Bn) B ()

and the weighted perturbation vector

p(n)X11

Vp(n)XX2

J2I,
*J2 ,uJ

(4.9)
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then we can write the problem as

max. E Pu(u) - 2Bo,nLu|12

U

subject to: Z Pu(u) - L 2 1.
U

Following the same arguments as the point-to-point case, we can choose U as a

uniformly binary random variable without loss of generality, and the problem can

be simplified to the n-letter problem

max. ||B o,,L 2. (4.10)

subject to: L12 = 1, (4.11)

(), Li) = 0, i = 1, 2, (4.12)

where io= [P %, Xi C Xi] , and L, is the vector formed by the first n X1 entries

of L, and L 2 is the vector formed by the last n -IX 2 1 entries of L, i.e., L = [LT L ]T.

Here, the constraint (4.12) comes from (4.9) and the assumption that J1 ,. and J 2,u

are both perturbation vectors.

Again, our goal is to determine wether or not the multi-letter problem (4.10)

has single-letter optimal solutions. In fact, the problem (4.10) is quite similar to

the multi-letter point-to-point problem that we have solved in section 2.2, except

for two fundamental differences. First, note that the vector [(vfl,)T (,,())T] is

the right singular vector of BO,n corresponding to its largest singular value. So, the

constraint (4.12) implies that L has to be not only orthogonal to this singular vector,

but its two components L 1 and L 2 have to be individually orthogonal to v (n) and

(n) . This is a stronger constraint than (2.19) in the point-to-point case. Second, the

matrix BO,n in the n-letter problem is not the n-Kronecker product of the matrix Bo,1

in the corresponding single-letter problem.

Therefore, in order to apply the same procedure as the point-to-point case, we need

to prove two things. First, for the single-letter version of (4.10), we need to show

that the right singular vector of the B 0 ,1 corresponding to its second largest singular
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value satisfies the constraint (4.12). Second, we need to show that the second largest

singular value of BO,, is the same as B0,1, and the corresponding singular vector has

the product form just like the point-to-point case.

These two issues are addressed at Theorem 2 in section 4.2, which shows that (4.10)

is single-letter optimal and the optimum of the single-letter version of this problem

is achieved by the singular vector of the DTM corresponding to the second largest

singular value. Therefore, like the point-to-point case, we only need to deal with the

single-letter problem here, and the optimal solutions can be readily solved. In the

following, we simply denote B0,1 as BO.

Remark 7. Suppose that the second largest singular values of BO, B 1, and B 2 are

oa, oi, and O2, respectively. Note that ao, o-,, and O2 satisfy the inequality

max{o2, o-} 2 <- a <O + o- 2 (4.13)

where the lower bound of (4.13) is obvious, and the upper bound is due to (4.10) and

for any valid weighted perturbation vector L = [LT L TT,

11BoLH2  (|B1L1 ±B 2L2 | 2  U (4.14)

Here, the first inequality of (4.14) is the triangle inequality, and the second inequality

is from the Cauchy-Schwarz inequality. The inequality (4.13) tells that, by perturbing

the same amount, we can convey more common sources to the receiver end than the

private sources. This is not surprising, since both transmitters have the knowledge

of the common source, they can cooperate and obtain the coherent combining gain,

or also known as the beam-forming gain. Moreover, we can quantify this gain by

explicitly computing the parameters or's.

In fact, these kinds of quantification can be potentially useful in analyzing com-

plicated communication networks. Note that the common sources for multiple nodes

in a communication network are usually generated by preceding nodes as the com-

mon messages in some broadcast channels. Therefore, when optimizing the network
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X 1

Y

X 2

Figure 4-1: The binary addition channel with two binary inputs X1 and X 2, and the
ternary output Y = X 1 + X 2 .

throughput, there exists a tradeoff relation between generating common messages to

multiple node (c.f. remark 6) and the corresponding coherent combining gain. Our

approach in fact provides a quantitive way to describe these kinds of tradeoff relations.

Example 4. Consider the binary adder channel as shown in Figure 4-1, where X1

and X 2 are both binary inputs, and the tenary output Y = X 1 + X2 (the arithmetic

addition, not modulo 2). The empirical distribution of both Px1 and PX2 are fixed

as [I 1]T, and the corresponding output distribution is [ I T. The DTM's for

transmitter 1 and 2 are

0

B1 = B 2 =[6 Vi

.0

Thus, the DTM for the common source is

0 0

Bo=

The second largest singular value of B0 is 1 with right singular vector [ c i]T In

comparison, the second largest singular of both B1 and B2 are with right singular

vector [_ L%]T. Therefore, the cooperation between two transmitters by the common

source provides a 3dB coherent combining gain.
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Remark 8. In fact, the concept of the coherent combining gain can be readily under-

stood in the Gaussian noise additive multiple access channels, where the gain comes

from lying the transmission signals of the two transmitters along the same direction.

However, for the discrete memoryless MAC, it is in general not clear how the coherent

combing gain should be defined. The technique we developed in this section provides

a way to characterize this gain. Moreover, our results also provide the insights of how

to manage the interference between transmitters, which can potentially be useful in

analyzing the information flow of more complicated networks.

4.2 The K-Transmitter Multiple Access Channel

And The Deterministic Model

In this section, we extend our development to the K-transmitter multiple access chan-

nel with common sources. The K-transmitter multiple access channel has K inputs

X i E Xi, for i = 1, 2, ... , K, and one output Y E Y, with the memoryless channel

matrix W. The channel matrix specifies the conditional distributions of the output

signals at the receiver end as W(yJXi, X2 ,... , XK) Y PYIX1,X2,...XK(Y9 1, X2, ... -K).

Let S be the set of all nonempty subsets of {1, 2, ... , K}. Then, each subset of

transmitters i1, i2,... , ik observe the common source ME with rate R1 , where I =

{ii 2 , ... , ik} E S. Using auxiliary random variables UT, the linear information cou-

pling problem of the K-transmitter multiple access channel with common sources is

the optimization of the rate region

1
R -< -I(Ul; Y), VIE S (4.15)

n

subject to: U1 - (Xi , .. .,i) Y, VI E S,

11 2

n IES

± PXl. K SUS=US - _F,..,AK11= 0(), V uSE US.
n

With the same procedure as before, (4.15) can be reduced to some sub-problems:
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for each source M1 common to transmitters I = {i1 ,i 2 ,...,i}, the corresponding

optimization problem is

1
max. -I(UI; Y)

n

subject to:
1 12

U- - (_X, ... ,ik) -_ Y, -I(UI; XI) I
T n 2 _

Px . - , = O(eC), V uT E Ui.

Then, the DTM's for the sources observed by transmitters I = {ii, i 2 , ... ,k} is

(4.16)

B,,n = [B () ... for I E S, where B [ P W [ x] for i E I. Here,

similar to (4.6), the matrix W is defined as

Wi(yIXi) E (4.17)
xi XJGi ,j:

Moreover, let the perturbations on the marginal input distributions be Px.,j =

p~n) + Vn-[ E - Ji,JT, for e < j

Lu, = [LT ... L T]T, where Lij

< k. The weighted perturbations are defined as

= [ )P ] Jij,,, for I < j < k.

Then, following the same arguments as the 2-transmitter case, the multi-letter

optimization problem (4.16) becomes

max ||B.,nL 1H11 2 . (4.18)
Lu1 : IL. 1 112=1

The following Theorem shows the single-letter optimality of (4.18), and the optimal

weighted perturbation vector is again the singular vector of the second largest singular

value.

Theorem 2. For a multiple access channel with transmitters 1, 2,... , k, let Bi be the

corresponding DTM's. Then, the second largest singular value of BO,, = [Bn) ... B (

is the same as BO B 0,1. Moreover, let L, = [L[ ... L'] T be the singular vector

of B0 with the second largest singular value, where Li is an |Xi|-dimensional vector.

Then, Li is orthogonal to [(PX, Xi E Xi]
T

, for all 1 < i < k.
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Proof. We need to proof two statements: (i) the second largest singular value of B0 ,n =

Bin) ... Bk I is the same as B0 , and (ii) Li is orthogonal to [ Pxi C Xl , for

all 1 < i < k.

First, let us prove the statement (i). Suppose that Or,n is the second largest

singular value of BO,n, then we want to show that o1,n = o,1, for all n > 1. Let

us first show that o1,2 = Ol,1. Observe that [ yy C y]T is the left singular

vector of BO, corresponding to the largest singular value vik, thus we can assume

that the singular values of BO are o-k,1 = V > T1 ,1 > o-2 ,1 > ... ' -m,1, and the

corresponding left singular vectors are w = [ - , y w, _2 , where

mkA mi { 1 X 2 , Y} -1. Note that for all 0 K i Kin,

(_w w.)T- (BO, 2B' 2) = (w ® _i) - (B1 Bi 0 B1Bf + B 2 BT & B 2 BT)

= wy 0 [_wy (B 1BI + B2 B2)]

= w ® [w e- (BB ')] = 1 - _ 0 _i,

therefore, wO wi is a singular vector of BO, 2 , with singular value -, 1 . Similarly,

_X3 ®Wo is a singular vector of BO, 2, with singular value oj,i, for all 0 K j K m. Hence,

in order to show that 0 1 ,2 = a1 ,1 , we only need to show that for any unit vector

w E span {wli 0 w, 1 < i, j < m}, _wIT - Bo,2 11 < O~1,2 . To this end, note that from

Lemma 2, we have JIwT - (Bo 0 Bo) 1 < ,2 , therefore

|wIT -BO, 2 |2 < - BO,2 |12 + Il - (B1 0 B2 ) 1|2 + 1T (B2 0 B1 ) |1 2

|wT - (B 0 B0 ) 12 < U42 < 72-

Thus, we have U1,2 = U1 ,1. With the same arguments, we can show that for any

positive integer N, 91, 2 N = -1 , 1 . Since Uin is non-decreasing with n, this implies that

91,n = U1,1, for all n.

Now, let us prove the statement (ii). For simplicity, we denote v 0 = Px, xC E T

and v = [vo ... _ , then v is the singular vector of Bo, corresponding to the

largest singular value v k. Suppose that (Li, viO) = IEi, since L, is orthogonal to v,
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we have Z 1 Li = 0. If there exits a j such that EI # 0, then define the vector

= [Jir ... L]T, where Li = (Li - j. v) / 1 - I[, and I = ZI[? > 0. This

definition of Lu is valid because I < j= 1 |Lil2 = 1. Then, it is easy to verify that

| | =1, and Lu is orthogonal to v. Moreover,

k

Bo -Lu = 41 - E - (Bo -Lu -- ffIi - (Bi -Ej,o)

k
B0L= V1 -] o E-1 ~ w

1=

. = 1 -I[f (Bo u- fi),A - u

where wO = [ ,C y]T . Therefore, I Bo - Lu I > Bo - L| since If > 0. This

contradicts to the assumption that Lu is the singular vector of BO, corresponding to

the second largest singular value. Thus, Li is orthogonal to [ Px, xi E X] , for all

1 < i < k.

0
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Chapter 5

Interference Channels and The

Deterministic Model

In fact, the quantifications (3.9) and (4.13) in chapter 3 and 4 suggest some impor-

tant insights in studying the network communication problems. First from (4.13),

we know that transmitting sources that are known by multiple transmitters is more

advantageous as the transmitters can cooperate with each other to create coherent

combining gains. Therefore, in order to increase the communication rates of a net-

work, it is motivated to create common sources between transmitters. On the other

hand, in a communication network, these common sources are generated as the com-

mon messages in some broadcast channels from other nodes. From (3.9), we know

that it consumes more network resources, such as time, frequency band, or transmis-

sion power, to generate such common messages than the private messages. Hence,

there is a tradeoff relation between the cost of generating the common messages and

the coherent combining gain in transmitting common sources. With the framework

developed in the previous sections, we want to investigate the structure of this tradeoff

relation and optimize the communication rates of the networks. To this end, our next

step is to study the interference channels in this chapter, since the interference chan-

nel is the simplest channel model that includes the notion of both common sources

and common messages.
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5.1 The Linear Information Coupling Problems Of

Interference Channels

For an interference channel with transmitters X 1, X 2 , and receivers Y, Y2, we model

the common sources for transmitters and the common messages to receivers by con-

sidering the transmission of nine types of messages Uij, for i, j = 0, 1, 2. Here, the first

index i represents that the message is private to the transmitter X 1, X 2, and com-

mon to both transmitters, for i = 1, 2, and 0, and the next index is similarly defined

for the receivers. For example, the message U10 is the private source of X1 that is

transmitted to both receivers as the common message. Then, the linear information

coupling problem for the interference channel is:

Rij < I(Uj; Y), j # 0, Vi, (5.1)

Rio  min {I(Uo; l),I(Uo; Y 2)}, j = 0, Vi,

subject to the constraints:

1

n
1-I(UAi; _X1, X2) <_ hoj Viln

E 6ij = 6,
i,j=O,1,2

-||Px1_X{fe i,j=O,1,2} - Px1,xH2 2 0(6)

Here, we employ 6 and 6ij to indicate jE2 and 1E2 for the convenience of notation.

Following similar local geometric approaches as the broadcast channel and multiple

access channel cases, we can show that the multi-letter problem (5.1) has optimal

single-letter solutions1 . Therefore, we only need to focus on the single-letter version

'In fact, similar to the broadcast channels, for interference channels with k receivers, the corre-
sponding linear information coupling problems always have optimal k-letter solutions.
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of (5.1). With the same procedure as before, (5.1) can be reduced to

Rij = 6,jo2, for i, j = 0, 1, 2, 3 6i Y 6, (5.2)
i,j=0,1,2

where ao2' s are the channel parameters that model the ability of the channel in trans-

mitting different kinds of messages, and can be computed in a similar manner as

previous chapters:

osmax(Bij),I i 7 0,j 0;

2 maxv, min{ I Bilv2, BI2v 2 Hl2}, i 0, j 0;
0zj 2

o max([Bij B2j]), i = 0,j 0,

max, min {II[B 1 B 2 1]uH2 , |[B 12 B 22 ]uf l 2} i 0, j = 0.

Here, Bij indicates the DTM with respect to Wyix , and (vi, v 2, u) are unit-norm vec-

tors, such that v, and the first IX1I entries of u are orthogonal to [ Px1 , x 1 C x 1] T,

and v 2 and the last IX 2 entries of u are orthogonal to [Fx2 , X2 E X 2 ]T Note that

the oa's here also satisfy the inequalities similar to (3.9) and (4.13):

2 2U11 12 < T2l2i 2o

or 2 1 + 0 22 1 oil 11
1 2

222< or20 < Min 2or 2
2 + 0- I r_ 2

2 2

0O 2 "20 min{o 2, (5.3)
02 < 2<_na 1 1

0 1 + 0-2

max{o 1, ui} 1 < O r + oi,

max{o1 2, 221 - 0 2 - 12 2-

These inequalities demonstrate both the difficulties of transmitting common messages,

and the coherent combing gains of transmitting common sources, in an interference

channel. The following example shows the achievability of some of the inequalities.

Example 5. Consider a quaternary-inputs binary-outputs IC where the channel tran-
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sition probability P(y1|XiX2 ) is

(2- a),

al

}(4 - 5a),

'(-2 + 7a),

X1 X2 = (00, 01, 02, 10,11,12);

X1 X2 = (03,13,23, 33);

X1 X2 = (20, 21, 22, 32);

XiX 2 = (30, 31),

P(1 X1X2 ) = 1 - P(OiX2 ), V(Xi, X2 ),

and P(y 2 |XlX 2 ) is

P(0 x1 X2 ) =
a,

(4 - 5a),

'(-2 + 7a),

XiX 2 = (22, 23, 20, 32, 33, 30);

X1X 2 = (21, 31, 01, 11);

XiX 2 =(02,03, 00, 10);

X1X2 = (12, 13),

P(1lliX2 ) = 1 - P(OiX2 ), V(Xi, X2).

To have valid probability distributions, similarly we assume that < <a < j. Suppose7 - -7

that both Px, and Px2 are fixed as [ , 1, , ]T.

Wij w.r.t Pylx, is then computed as

Wn =[

W 2 1 = 

W 12 = 

W 2 2 = 

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

-a

a

a I

The probability transition matrix

-a a

a i- a

- a a

a i-a

2 2

a 1 1
2 2J

1 1

2 2

This gives Bij = $4W Performing similar computations as those in previous chap-
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ters, we can get

2l = af2 = U2$ = Or2 = 1 (1 - 2a) 2a l 2 2 1 2 2 1

2-l = - (1 - 2a) 2

U-2 = U 02 = (1 - 2c)2
U0 1  02

2 1
U-2 = - (1 - 2a) 2

This example is an extreme case where sending common message to both receivers is

the most difficult as possible, while sending the common source by the cooperation

between transmitters is the easiest due to the maximally-achieved beamforming gain.

Note that 4o = 2o-7 = 01, thus implying that (o , o- 2) achieve the lower bounds

in (5.3), while ( 0-1 , U- 2 ) achieve the upper bounds in (5.3).

5.2 6-Efficiency Region

For the convenience of presentation, in the rest of this thesis, we call the optimized

rate regions of the linear information coupling problems as the 6-efficiency regions,

as they characterize the first order efficiency of transmitting informations. Then,

the 6-efficiency regions of the broadcast channel, multiple access channel, and the

interference channel can be written respectively as:

CBC = J (RiR 2 ,Ro):R R < 6ioi E [O:2]},
61+62+60 -6

CMAC= U (Rl,R 2 ,Ro): Ri <6i-2,i e [O:2]}
61+62+60 6

CIC = (R , Rio, R 22 ) : R2 j < 6ijU, ij E [O:2]}.

zij 6ij 6

where the U?.'s in each region can be computed in the same way as before. Note

that while we restrict 6 to be small when deriving the 6-efficiency region, once the

region itself has been derived, the 6 becomes simply a scaling factor. Therefore, we
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U11 (I
U10 Tx 2 Rx 1 1

U1 2  10 U 2 1

U12 2

UOi 1 1 U 2

Uoo Tx 0 O o
U0222 U202

U21
2

U2N Tx 2 Rx 2 U
U22 2 CU22

Cic = U {(R ,1o,R , 2>22< Rsja S

Figure 5-1: A deterministic model for interference channels. The transmitter Tx k
transmits the messages Ukj, and the receiver Rx k decodes the messages Uik.

can normalize the 6-efficiency region with respect to 6 by replacing the 6 to 1 in this

region. This normalization still keeps the critical characterizations of the 6-efficiency

region, and the unit of the normalized region is then 6 nats. In the following, we will

just focus on the normalized 6-efficiency region, and still call it as the 6-efficiency

region without ambiguity. Now, with these notations and terminologies, we can start

to explore the details of our deterministic model.

5.3 The Deterministic Model

The 6-efficiency region of the interference channel leads us to model an interference

channel as a deterministic model with nine bit-pipes, each having the capacity of

6i a?. Unlike traditional wired networks, the capacities of these bit-pipes are flexible:

jij can change depending on different allocations of { 6} subject to E Jij < 1.
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Fig. 5-1 shows a pictorial representation of our deterministic model for an inter-

ference channel. The idea of this deterministic model is that, for k = 1, 2, a physical

transmitter Xk serves two purposes: transmitting its private sources, and cooperating

with the other transmitter to transmit the common sources. Therefore, we can model

X1 and X 2 by virtual transmitters Tx 1, 2, and Tx 0, such that Tx k intends to send

the private sources Ukj, for k = 1, 2, and Tx 0 intends to send the common sources

U03. Similarly, the physical receiver Y and Y2 can be modeled by virtual receivers Rx

1, 2, and Rx 0, such that Rx k wishes to decode the private messages Uik, for k = 1, 2,

and Rx 0 wishes to decode the common messages Uo. By presenting the virtual trans-

mitters and receivers, the interference channel is modeled with three transmitters and

receivers, where each transmitter transmits its individual type of sources, and each

receiver decodes its individual type of messages. Then, with this model, the message

Uij is transmitted from the Tx i to the Rx j. In addition, the circles here indicate

bit-pipes intended for the transmission of different types of messages. For instance,

the top circle indicates a bit-pipe for transmitting the private message w.r.t Rx 1.

Note that the circles also denote that the messages are transmitted through parallel

channels without interfering with each other. Therefore, the circles should be viewed

as nine pairs, where each pair represents one of the parallel links.

In this deterministic model, from (5.3), the largest among all af's is either or or

o02. So, to optimize the total throughput through this interference channel, we will

just let either 6o or 602 be 1, and deactivate other links. In other words, the optimal

strategy to convey information through this interference channel is to transmit it as

the common source for both transmitters to the receiver ends as the private message.

However, this deterministic model is less interesting in the single-hop case, because

the single-hop interference channel does not capture the difficulty of generating this

common source before transmitting it to the receiver ends cooperatively. On the

other hand, in general multi-hop layered networks, this kind of cost has to be taken

into account, since the common source of transmitters in one layer is generated from

the previous layer as the common message. This creates an issue of planning which

kinds of common messages should be generated in a given network to optimize the
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throughput. It turns out that the deterministic model we developed in this section

becomes a powerful tool in studying this issue for multi-hop layered networks, which

will be demonstrated in the next chapter.
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Chapter 6

Multi-hop Layered Networks

In this chapter, for the simplicity of presentation, we consider the general layered

networks with two users in each layer, while our approach can be extended to more

general cases without any difficulty. For the two-user L-layered network, the e-th

layer is an interference channel with input symbols X~f, X(), and output symbols

ye) yr), and the channel matrix WO that specifies the transition probability.2 1 YiY 2 IX1X 2

As shown in Figure 6-1, each user 1(0 in the -th intermediate layer of this network

is composed of a receiver Y 0 and a transmitter X .

To simplify the problem, we assume a decode-and-forward scheme [20], such that

the received signals of each layer are decoded as a part of the messages, which are

then forwarded to the next layer. With the decode-and-forward scheme, each layer can

abstracted as the deterministic model like what we did for the interference channel,

and a concatenation of these layers constitutes the deterministic model of the multi-

User 1(0) User 1(M User 1 (L-1) User 1 (L)

Y1vY x1x2 Y2|1xX2

X --- ( Y : X -+) - -1)-: x --L

User 2(0) User 21 User 2(L r User 2

Figure 6-1: The L-layered network.
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6(l) a2,(1) (L) 2, (L)

U1 2  U2 1

U00 o ro 0 do (0U0 2  U20

U2 1  (()
U20 S2 r()2
U2r2 2 2 O2U2 2  U22

Figure 6-2: A deterministic model for multi-hop interference networks. Here, o , for
i, j = 0, 1, 2 represent the channel parameters of the £-th layer. We use Si to represent
both the transmitter and receiver for every layer, for i = 0, 1, 2.

hop layered network. Then, the deterministic model of the L-layered network can

be constructed as Fig. 6-2. Here, we use node si to represent the transmitter i in

the first layer, and node di to represent the receiver i in the last layer, and node rV)

to represent both the transmitter i and receiver i in the f-th intermediate layer, for

i = 0, 1, 2, and f = 1, 2, ... , L - 1. In addition, the channel of layer f consists of 9

bit-pipes, each having the capacity of 6e)U,(#), for i,j =0,1,2, and ( E [1 : L], and

the corresponding constraint for 6ij's is, normalized with respect to the number of

layers,

L 2 2

<L. (6.1)
t=1 i=0 j=0

Importantly, in this thesis, we focus on the routing capacity for simplicity, i.e., we do

not allow for network coding [21]. Then, for each set of V that satisfies (6.1), we can

obtain a layered network with fixed capacity 6  a2 in each link (i, j) in the f-th

layer. This becomes the traditional information routing problem, and we can find

the capacity region for these 9 types of messages Ujj in this network. Therefore, the

6-efficiency region of this layered network is the union of these capacity regions over

all sets of P) satisfying (6.1). The following Theorem characterizes the 6-efficiencyri

region of a multi-hop layered network.
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Theorem 3. Consider a two-source two-destination multi-hop layered network illus-

trated in Fig. 6-2. Assume that 9 messages Uj's are mutually independent. Under

the assumption of (6.1), the 6-efficiency region is then

CLN = U {(R 1 , Rio, ... , R 2 2 ) : Ri 6 ju2 } , (6.2)
E 6ij <L

where

c-jg = - max
L qe[1:3L-1]

Here M(P|f) denotes the harmonic mean of the elements in the set P( , which

consists of the capacities of the links along the q-th information-flow path from virtual

source i to virtual destination j.

Proof. Unlike single-hop networks, in multi-hop networks, each link can be used for

multiple purposes, i.e., V can be the sum of the network resources consumed for

the multiple-message transmission. For conceptual simplicity, we introduce message-

oriented notations 6 ij's, each indicating the sum of the u 's which contribute to

delivering the message Uij. The constraint of E 6§ ) < L then leads to I 6 2j K L.

Here the key observation is that the tradeoff between the 9-message rates is decided

only by the constraint of E 6ij < L, i.e., given a fixed allocation of 6 ij's, the 9

sub-problems are independent each other.

Now let us fix 6i 's subject to the constraint, and consider the message Uij. Note

that there are 3 L1 possible paths for the transmission of this message, the problem

is reduced to finding the most efficient path that maximizes Rij, as well as finding a

corresponding resource allocation for the links along the most efficient path.

We illustrate the idea of solving this problem through an example in Fig. 6-3.

Consider the delivery of U10 . In the case of L = 2, we have three possible paths

(p), 10 p ), identified by blue, red and green paths. The key point here is that

the maximum rate for each path is simply a harmonic mean of the link capacities

along the path, normalized by the number of layers. To see this, consider the top

89



U10 2(1) r( )2(2)
10

2,(1)

2 (2)

80 TO - do U10

82 r2 CA 2 d2

S= max M (U2 (1) ,2 (2), ,(1) , 2 ), M(o72, (I) Or,())

Figure 6-3: The maximum rate for U10 when L = 2. In this example, we have three
possible paths for sending U10 as shown in the figure. For each path, the maximum
rate is computed as a harmonic mean of the link capacities along the path, normalized
by the number of layers. Therefore, oT is given as above.

blue path P( consisting of two links with capacities of O and ,2) i.e., 7'1 =

{a ,) 2,(2 }. Suppose that Jij is allocated such that the A fraction is assigned to the

first link and the remaining (1 - A) fraction is assigned to the second link. The rate

is then computed as min{AUo ('), (1 - A)o 2 }. Note that this can be maximized as
2,(1) 2,(2)

1 (1) 2(2) - 'M(o I ,10 ). Therefore, the maximum rate is

= max M( ,U2, ), V17 2 , 2-2), M(O), or 2)) .

We can easily show that for an arbitrary L-layer case, the maximum rate for each

path is the normalized harmonic mean. This completes the proof. F

Remark 9. Theorem 3 leads to a Viterbi-type algorithm to search for the optimal

path. Instead of searching for all possible paths with complexity 0(3 L), note that (3)

is equivalent to finding a path from the first layer to the last layer, where the inverse

sum of 2,(k) is minimized. Thus, we can take 1/o2W as the cost, and run the

Viterbi algorithm [22] to find the path with minimal total cost, and the complexity

is reduced to O(L).

In addition, Theorem 3 immediately provides the solution of the optimal total
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throughput of this network, which is the following Corollary.

Corollary 1. Consider a layered network illustrated in Fig. 6-2, the optimal sum rate

(3-sum efficiency) under the constraint (6.1) is

Csum = max M(oQ'2, 2 O,( 2) .. . ,, L) (6.3)
zi,i2,...,iL+1 E [0:2] ii ~ 3iZ+ )

where M(x1,-.. , x,) denotes the harmonic mean

n

Moreover, the optimal i 1 ,i 2, ... , iL+1 of (3) can be obtained by a Viterbi algorithm [22]

with complexity O(L).

6.1 Multi-hop Networks With Identical Layers

While Theorem 3 indicates how to find the optimal communication strategy in poly-

nomial time for general layered networks, it is sometimes more useful to understand

the "patterns" or structures of the optimal communication schemes for large scale

networks. For example, if the channel parameters are only available locally, then the

communication patterns can be helpful in the designs. In this section, we investigate

this issue by considering the L-layered networks, for L -± oc, with identical layers,

such that U2,() = 0?. for all f, as shown in Fig. 6-2. The following Theorem specifies

the fundamental communication modes of the optimal communication strategies for

the layered networks with identical layers.

Theorem 4 (Identical layers). Consider a layered network illustrated in Fig. 6-2,

where 2#) = AVe, and L -± oc. Then, the optimal sum rate (3-sum efficiency) is

Csum = max{fu, j, p2, M(oj 0 , oI ), 2(o 1, 0 2), 1(o 2 , ) (6.4)

M(o, 022, 072 ), M(o 2, o 1 O 2 )},

where M(x1, - -, x,) denotes the harmonic mean.
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Proof. (Converse proof) First observe that we use the routing-only scheme to pass

information through the network. Thus, for any optimal communication scheme, we

have the inflow equals to outflow for every node in the intermediate layers, i.e., for

all k and f,

2 2

ik ik .kj (6.5)
i=O j=0

Moreover, the total throughput of the network is kj Now, for a network

with L layers, let us define a tuple of 6(l) as a -y-scheme, if

2 2 2

6kj -kj - 6 kok =,
k=0 j=O i=0

and Cld,, is the optimal achievable throughput among all -y-schemes. Note that it

suffices to only consider -y-schemes that satisfy (6.5). For those -y-schemes, from the

definition of -y-schemes, we have

y 2C(L) < 2&2

where &2 - maxi, a?.. Thus, we can restrict ourselves to consider only the -- schemes

with y < 2&2, and then we have

Csum = lim max C(L) (6.6)
L-oo <;2 2 sum

Now, for any 7-scheme 6() of a network with L layers that achieves C(L, and satis-

fies (6.5), we consider the tuple S for i, j = 0, 1, 2, where

L

6'=1
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Then, we have

2 2

±k i
k=O j=O

2

i=O

2 2 L

k=O j=O 1=1

2 L 2

k=O 1=1 j=0

2 2

k=1 07
k=O j=O

ik ik

2 L

-( or 2

i=O 1=1

L+1 2

1=2 i=O

2

ik ik
i=0

L

Therefore, J,7 is a (-/L)-scheme for a network with one layer. Moreover, from (6.5),

for the -y-scheme 4 the inflow and outflow of all layers are the same. So, the total

throughput of the (' /L)-scheme 8,' is

2 2

k=O j=O

L 2 2

kj kJ
1=1 k=O =O

Hence, this scheme achieves C ,7. This implies that CS , CK.wt (6u),-,um

with (6.6), we have

CSUM < lim max C(1) 2
L-oo y<2&2 SUM' L

Combining

= C1,.

Hence, Csum is upper-bounded by the solution to the following optimization problem:

Csum < max E 6ijoj
6i3,ij i j

S.t. <1
i,j

2 2

6i > 0 Vi,, U2ik k kjukj, k E [0: 21.
i=O j=0

Note that the objective indicates the total amount of information that flows into the

destinations. The three equality constraints in the above can be equivalently written
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as two equality constraints:

Noting that all of the 6 ij's are non-negative, we take a careful look at the minus terms

associated with 602. This leads us to consider two cases: (1) 602 = 0; (2) 602 # 0.

The first is an easy case. For 602 = 0, the problem can be simplified into:

2

max 1: 6or + (26iooro + 36 20u0o + 2621-21)
i=O

2

s.t. E 6i +
i=O (1 + 

)120
+ 610 +

01) (1
2 2

-0 + 2 620 < < 1
~0 1 12)

21
+ 621

)0

6j > 0,1 Vi, j.

This LP problem is straightforward. Due to the linearity, the optimal solution must be

setting only one Jij as a non-trivial maximum value while making the other allocations

zeros. Hence, we obtain:

(6.8)

Here, the fourth term M(oa0 , 2i), for example, is obtained when 610 = I and

= 0 for (i, i) # (1, 0). The last term M(o 0 , o%2 1 2 ) corresponds to the case when

620= 1+22 2 2 and 62 = 0 for (i, j) (2 0).

We next consider the second case of 602 # 0. First note that since o, and 612 are

nonnegative, by (6.7), we get

\20) 6

602 () 620 +
\002

2 610

\2 21/

The key point here is that in general LP problems, whenever 602 # 0, the optimal
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(601 = 71 610 +

612 = r~ 620 +
012)

U2

2  620-
01 1

6212 -

02( 602
16

0 2
2 602.

1 2)

(6.7)

C0 2 max {or2 or o2, M(Or2 , Or 1), M(o2 2 j), M(U2o or 2, o- 2)}1.



solution occurs when 602 is the largest as possible and the above two inequalities are

balanced:

60 2 ( 2 ) 2 0 + ( 10,

(~1( (02) a21
2610 = 521.2) a00

Therefore, for 602 # 0, the problem can be simplified into:

2

max E3 iU 2l + (3610or2 + 26 2oo0 ):

2 O.2 -2o 20
sAt. 6 oi + I + -0 + 0 610 + 1 + Or2065; ,V,

i=O 0~2 21 0i o02

This LP problem is also straightforward. Using the linearity, we can get:

Csum < max {j, o1 , 2, M(o2 ,0o 2 ), M(o10, -22 oi)}. (6.9)

By (6.8) and (6.9), we complete the converse proof.

For the achievability, note that o-i = M(-ii), so all 8 modes in (6.4) can be

written in the form M(oi1i2 , Ui2j 3 , . - , oiki), for k = 1, 2,3, and i, . . . , ik are mutually

different. Then, for k = 1, 2,3, n E [1 : k], and t E [1 : L], the M(oili2, 0722V ... , ikii)

can be achieved by setting

C) -6, M(aili2l o7i2i, -.. I U ikii) (6-10)
nn+1 n2

n+1 (6.)inin+1

and deactivating all other links by setting their 6ij's to zero. We assume that in

(6.10), when n = k, 644,1 denotes 4kil . It is easy to verify that the assignment of

(6.10) satisfies the constraint (6.1), thus we prove the achievability. II

Theorem 4 implies that the optimal communication scheme is from one of the

eight communication modes in (6.4). Fig. 6-4 illustrates the communication schemes

that achieves modes a2, M(oU2 , o2), and M(oU2, om2, 2 ), where other modes can be
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a. = .i,= 1,2, 100

2 2 2 2

0 sum - maxp11, 0 cT2 2

si~ 2 ri 2 -2 di
10 0 0

-- 2o A)0,21 ) 2

s2 r r (L4-1)0

s2 21 d2-

M(0_0, oli), M(0720, 02), M(al2i 21)

(tTI 02, 21),7m(02o 0j 1f2)1 -

Figure 6-4: Sum efficiency of multi-hop interference networks with identical layers.

achieved similarly. For example, the mode M(oa0 , oi, ui) is achieved by using links

1 - 0, 0 - 2, and 2 - 1, such that

2 2 2 M(o,o 2 , o )J109-10 = J02UO2 =21 -21 =3 '

and other 6 jj = 0. Then, the information flow for each layer and the sum rate are all

M(o 0 , o, o).

More interestingly, in order to achieve (6.4), it requires the cooperation between

users, and rolling the knowledges of different part of messages between users layer by

layer. We demonstrate this by considering the communication scheme that achieves

M(oU0 , U 2 , 41) as an example. Suppose that at the first layer, the node si has the

knowledge of information mi, for i = 0, 1, 2. Since so is the virtual node that represents

the common message of both users, user 1 knows messages (mo, mi), and user 2 knows

(Mi, M 2 ). Then, to achieve MA(o 0, U2 o), user 1 broadcasts its private message mi
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M1 M1 M1

User 2 User 2User 1

(a)

(mO, mi) (mi, mO) (mo, mi)

(momi)(m 1 m2)(m 2 mo

User 1 User 1 User 1

1 fm

Ur 2 User 2 User 2

25 MO

(b)

(Tn, m ) (M , 2) ( 2, MO)

User 1 User 1 User 1

M2 MO

User 2 User 2 User 2

(MO, M2) 1M, MO) (M2, M1)

(C)

Figure 6-5: The rolling of different pieces of information between users layer by

layer for the optimal communication scheme that achieves (a) a,, (b) 1~o0,a)()
M(C20, U2, Orf).
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to both users in the next layer, and both users in the first layer cooperate to transmit

their common message to user 2 in the next layer as the private message. Thus,

in the second layer user 1 decodes messages (min, In 2) and user 2 decodes (min, mo).

Similarly, in the third layer, user 1 decodes (M 2 , mo) and user 2 decodes (M 2 , Mi),

and then loop back. This effect is shown by Fig. 6-5(c). Therefore, according to the

values of channel parameters, Theorem 4 demonstrates the optimal communication

mode, and hence indicates what kind of common messages should be generated to

achieve the optimal sum rate.

Remark 10. The generalization of our development in this chapter to arbitrary M-

source K-destination networks is straightforward. In the most general setting, we

have (2 M - 1) virtual sources, (2 K - 1) virtual destinations, and (2 M - 1)( 2 K _ 1)

messages. For example, in the case of (M, K) = (3, 3),

virtual sources: s1, s2, 83, S12, S13, s 23 , S12 3,

virtual destinations: di, d2, d3, d12, di 3 , d23 , d123,

where, for instance, S12 indicates a virtual terminal that sends messages accessible by

sources 1 and 2; and d12 denotes a virtual terminal that decodes messages intended

for destinations 1 and 2. Under this model, we have 7 x 7 = 49 messages, denoted by

Us,D, where S, D C {1, 2, 3}(-# 0), each indicating a message which is accessible by

the set S of sources, and is intended for the set D of destinations. For this network,

we can then obtain 49-dimensional 6-efficiency regions and 6-sum efficiency, as we did

in Theorems 3 and 4. This generalization can also be carried to the case of networks

with feedback, which will be developed in the next chapter.
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Chapter 7

Multi-hop Layered Networks With

Feedback

We next explore the role of feedback under our local geometric approach. As the

previous chapter, we employ the decode-and-forward scheme for both forward and

feedback transmissions, under which decoded messages at each node (instead of analog

received signals) are fed back to the nodes in preceding layers. In this model, one

can view feedback as bit-pipe links added on top of a deterministic channel. With

this assumption on the feedback, we can easily see that the feedback does not provide

any gain on the 6-efficiency region of the broadcast channels and multiple access

channels. However, in the following, we will show that feedback can indeed provide

certain gain on the 6-efficiency region of the multi-hop layered networks. Let us start

by considering the interference channels with feedback.

7.1 Interference Channels

Proposition 2. Consider the deterministic model of interference channels illustrated

in Fig. 5-1. Assume that decoded messages at each receiver are fed back to all the

transmitters. Let 6%j be the network resource consumed for delivering the message
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Figure 7-1: An alternative way to deliver the common message of U10. One alternative
feedback.-+vrulR

way is to take a route: virtual-Tx 1 - virtual-Rx 2 x virtual-Tx 0
1. The message is clearly Rx-common, as it is delivered to both virtual-Rxs. We can
optimize the allocation to the two links to obtain the rate of .M(U2  na.

Uii, and assume E 6% < 1. The feedback 6-efficiency region is then

C= {(R, ,R 22 ): Ro 6 kOo , k# 0, R 3  4ot, (i,j)# (1,O),(2,O)}
E 6j <;I

where

2,fb = Max 2 M(o 2 ,o%) 0(o1, o02)
10l10 2 2

2,fb = max o2 M(o 1 ,o 2) M(ol 2 , 2 )}(7.1)
a20 20X 2 2

Proof. Fix 6ij's subject to the constraint. First, consider the transmission of Uij when

(i, j) #L (1,0), (2, 0). In this case, the maximum rate can be achieved by using the Tx

i-to-Rx j link. Hence, Rij < 6ijof.Z

On the other hand, in sending U10 , we may have better alternative paths. One
feedback

alternative way is to take a route as shown in Fig. 7-1: Tx 1 -+ Rx 2 -+ Tx 0 -

virtual-Rx 1. The message is clearly Rx-common, as it is delivered to both virtual-

Rxs. Suppose that the network resource 61o is allocated such that the A fraction is

assigned to the o 2-capacity link and the remaining (1 - A) fraction is assigned to the

u 1-capacity link. The rate is then min{Ao 2 , (1 - A)o }, which can be maximized
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as -1 M(o' , a). The other alternative path is: virtual-Tx 1 -+ virtual-Rx 1 feedbac

virtual-Tx 0 - virtual-Rx 2. With this route, we can achieve IM(of1 , Ur 2). Therefore,

we can obtain 2,fb as claimed. Similarly we can get the claimed T 2. El

With this theorem, we find that in contrast to broadcast channels and multiple

access channels, feedback can provide an increase on the 6-efficiency region of the

interference channels. Here is an example.

Example 6. Consider the same interference channel as in Example 5 but which

includes feedback links from all receivers to all transmitter. We obtain the same Ui-'s

except the following two:

1 1
2,fb 2, fb - (1>- 2a)2  - a 2-2 2 )2

3 2 4

2,fb

Note that = when a # 1, implying a 33% gain w.r.t R 10 . 0

Here, the gain comes from the fact that feedback provides better alternative paths.

The nature of the gain coincides with that in [23, 19]. Also the feedback gain is

multiplicative, which is qualitatively similar to the gain in the two-user Gaussian

interference channels [19]. Note that feedback is useful in increasing individual rates

such as R10 or R 20, but it does not increase the sum-efficiency though:

Cfm = m2ax{of, fb 2fb} max{of, or 2} = Cm.

Remark 11. Note that with Proposition 2, one can simply model an interference

channel with feedback as a nonfeedback interference channel, where the channel pa-

rameters (or, 2(2) are replaced by the (oun', or ) in (7.1). See Fig. 7-2.

7.2 Multi-hop Layered Networks

For multi-hop layered networks, we investigate two feedback models: (1) full-feedback

model, where the decoded messages at each node is fed back to the nodes in all the

preceding layers; (2) layered-feedback model, where the feedback is available only
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Tx 1Rx 1

101

Tx 0 00,60Rx0
S2

12

Tx 2 00'o Rx 2

{(R 1 1 , Rio, . ,R22),

Tx 1 2ja, Rx 1

-- Tx 0 JoooRx 0

22

12

Tx 2 20 Rx 2

:Rio < Ji1u 2)f, R20 <_ 5200' 2, Rij < Jija o

Figure 7-2: Interference channels with feedback. A feedback IC can be interpreted as
a nonfeedback IC where (sO, U2) are replaced by the (oa", o- 2 ) in (7.1).

to the nodes in the immediately preceding layer. The following Theorem shows that

these two types of feedbacks in fact provide the same amount of gain on the 6-efficiency

region of the multi-hop layered networks.

Theorem 5. Consider a two-source two-destination multi-hop layered networks il-

lustrated in Fig. 6-2. Assume that 6f 's satisfy the constraint of (6.1). Then, the

feedback 6-efficiency region of the full-feedback model is the same as that of the layered-

feedback model, and is given by

CJi= <L

where

(-.- max M(Pb'().
3 L 1<q<3L-1

Here the elements of the set P9?' (q) are with respect to a translated network where
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C2= U
Zi 3 3%, 1

{(Ri , Rio, .. - ,R22) : Rij 5 ssf },



( 0o-,, o- 5 ) are replaced by ((eo 'I2, - for each layer f E [1: LI:

TI1(2, (1) 2#()
MVI('712 '70012

2
M (o- 2 , (t 02,m)

V1 -2 1  , O-02

2

(7.3)

f(o- 1 , -02

2

Proof. First we will prove the equivalence between the full-feedback and layered-

feedback models. We introduce some notations. Let Xi[t] be the transmitted signal

of virtual source si at time t; let Xf [t] be the transmitted signal of node r f at

time t; and let XV

Xt_1 = {X[j]}z:.

[t] = X)[t],Xo)[t],XP[t]1, where f E [1 : L - 1].

Let Yij [t] be the received signal of node r M at time t

Y[t] = YI [t], Y0 [t], Y2' [t]], where f E [1 : L]. Let

the notation A L B to indicate that A is a function B.

Define

and let

Ui = [U, UgO, Ui2]. We use

Under the full-feedback model, we then get

Xi[t] f(Us, {Y(1),-1}f 1)

(U Y(1't-, X(1),-1)

f(Us, Y(1)-1, {YN')}t-2)

(U, Y~-1, X(1)-2) (7.4)

f(U[, Y(1'-l, X 1)

(Ut, YN'),t

where the second step follows from the fact that in deterministic layered networks,

{y()t-1}fL2 is a function of X('),-1; the third step follows from the fact that X(1),-1

(y(1)2, {y-(e)t2}_-2); and the second last step is due to iterating the previous steps

(t - 3) times.
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..---- M - ----- full feedback

(L1)di

2 d2

layered feedback

_1) 0ac
r1 di

r2 d2

Figure 7-3: Network equivalence. The feedback efficiency region of the full-feedback
model is the same as that of the layered-feedback model.

Using similar arguments, we can also show that for f E [1 : L - 1],

(t) ()t- jy( ),t-11 =t+1j

L (Y(e)t-1 y(e+1),t-1 
2 (e+1),t-1)

± ( ),t-1 y(e+1),t-1 {y(j),t-2}L

L (Ye),t-1 y(e+1),t-1 jg(t+1),t-2) (7.5)

f (e),t-1 y(e+1),t-1 y(e+1)

f (e),t-1 y(+1),t-1)
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The functional relationships of (7.4) and (7.5) imply that any rate point in the full-

feedback 6-efficiency region can also be achieved in the layered-feedback 6-efficiency

region. This proves the equivalence of the two feedback models. See Fig. 7-3.

We next focus on the capacity characterization under the layered-feedback model.

The key idea is to employ Proposition 2, thus translating each layer with feedback into

an equivalent nonfeedback layer, where (a 2 , ) are replaced by (a2# '), o ) ')

in (7.3). We can then apply Theorem 3 to obtain the claimed 6-efficiency region. El

7.3 Multi-hop Networks With Identical Layers

Proposition 3. Consider a two-source two-destination symmetric multi-hop layered

network where o- = i, Vf and L = oc. For both full-feedback and layered-feedback

models, the feedback 6-sum efficiency is the same as

Cfb = max {o-21 , oro, ,
sum f O1 0 221

M(o2f , 021), 2fb , ) M(u2  Or) (7.6)
10 101 1 20 OO2 02 1211

M( 2,fb 1-2 2 r 2 2,fb or2 U21
0o 0, %, 2 1 ), M(U2o , O1,2) f ,

where (o J,f o2A) are of the same formulas as those in (7.1).

Proof. The proof is immediate from Theorems 4, 5, and Proposition 2. First, with

Theorem 5, it suffices to focus on the layered-feedback model. We then employ Propo-

sition 2 to translate each layer with the layered feedback into an equivalent nonfeed-

back layer with the replaced parameters (ob , u '). We can then use Theorem 4 to

obtain the desired 6-sum efficiency. E

Unlike single-hop networks, in multi-hop networks, the 6-sum efficiency can in-

crease with feedback. Here is an example.

Example 7. Consider a two-source two-destination symmetric multi-hop layered net-

work, where each layer is the interference channel shown in Fig. 7-4. The transmitter

1 has two binary inputs X' and X', and the transmitter 2 has one binary input. The
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X2 Y
Figure 7-4: The input X1 is composed of two binary inputs X' and
X 2 is binary. The output Y = XI GX 2, and the output Y2 = Xi'.

X1', and the input

output Y1 is equal to X' E X 2 and the output Y2 is equal to X". Suppose that Px2

is fixed as [0.1585,0.84151, and Px, = Pxix~l is fixed as

Px/x// { 0.095, XIX/' = (00, 01);

0.405, X/X/' = (10, 11).

Then, we have

(o, 21  2 or ) = (0.35, 1, 0.26),

(- 2 , 2 2) = (0.25, 0, 0),

(9-01, U0 2 1 0 ) = (0.6, 1, 0.375).

This is a valid example, as the above parameters satisfy (5.3) From Theorem 4, the

nonfeedback 6-sum efficiency is computed as Csum = M(oa2, -1) 0.4. On the other

hand, (o , ) = (0.375, 0.2) and from Proposition 3, the feedback 6-sum efficiency

is computed as Cim = M(oaJ, o-i) = 0.4615, thus showing a 15.4% improvement.

We also find some classes of symmetric multiple networks where feedback provides

no gain in 6-sum efficiency.

Corollary 1. Consider a two-source two-destination symmetric multi-hop layered
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network, where

2 := 2 2= or1 = g2
- : 1 1  1 .22,

2 2
10 = io=O20,

2 g2

2
0oo

Assume that the parameters of (A, ,-,o - ) satisfy (5.3). We then get:

C C- m = max{A, o-2, M(p, -), M(p, A, -)}.

Proof. Theorem 4 immediately yields Csum = max{A, or2, M (p, -), M(p, A, a-)}. From

Proposition 3, we get:

C0 m = max Csum, M

M (M( , a)
2

M(A,-)
2

M M(A, )
,M 2 '

A ( 2 A,
2A + -

where the inequality comes from o- < 2A due to (5.3). Similarly we can show that

A' (M(AOj) ., A) < A. Therefore, Cm =Csum.

107

Note that

A)



108



Chapter 8

Conclusion

In this thesis, we developed a local geometric approach, which approximates the K-L

divergence by a squared Euclidean metric in an Euclidean space. Under the local

approximation, we constructed the coordinates and the notion of orthogonality for

the probability distribution spaces. With this approach, we can solve a certain class of

information theory problems, which we call the linear information coupling problems,

for communication networks. We also showed that the single-letterization of multi-

terminal problems can be simplified as some linear algebra problems, which can be

solved in a systematic way. Applying our approach to the general broadcast channels,

the transmission of the common message can be formulated as the tradeoff between

multiple linear systems. In order to achieve the optimal tradeoff, it is required to either

code over multiple letters with the number of letters proportional to the number of

receivers, or allowing the cardinality of the auxiliary random variables growing with

the receivers. For the multiple access channel with common sources, there exists

some coherent combing gains due to the cooperation between transmitters, and we

can evaluate this gain quantitively by using our technique.

The development for single-hop communication channels can be generalized to

multi-hop communication networks, such as layered networks. The key observation

is that, with our approach, we in fact quantitively provide the cost of generating

common information, and characterize how beneficial the common source can be.

Therefore, we can formulate a new type of information flow optimization problem
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according to this local geometric approach. We implement this idea to the multi-hop

layered networks by constructing a new type of deterministic model that captures the

critical channel parameters by our approach. For the networks with general layers,

we propose a Viterbi algorithm to find the communication schemes that provides

the optimal throughputs. Furthermore, for networks with identical layers, we reduce

the optimal communication schemes to eight fundamental communication modes.

We also characterize how information are exchanging in each communication mode.

Finally, we explore the role of feedback in the network communication problems

under this local geometric framework. It turns out that the feedback can provide

certain multiplicative gain in the network throughputs. With our approach we can

also specify the communication schemes to optimally utilize the feedback gain. In

general, our results tell that how users in networks should cooperate with each other

to optimize the network throughputs. This provides the insights in understanding

the network architectures and the designing of communication systems.
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Appendix A

Proof of Lemma 3

Since U, V1, and V2 are mutually independent, we have

I(U, V, V2;X) = I(U; X) + I(V1 ; XJU) + I(V2 ; XJU, V1)

> I(U; X) + I(VI; X) + I(V2; X).

Thus, the rate region (3.2) is belong to (3.3). On the other hand, for any rate tuple

(Ro, R1, R 2 ) in (3.3) achieved by some mutually independent U, V1, and V2, with

nI(U; X) = , and I(Vi; X) =c for i = 1, 2, where _ K E2 we assume

that the conditional distributions achieving this rate tuple have the perturbation

forms PxlU=U = Px + iV/nEo -J,, and Pxiv,=,, = Fx + VineE - J,,, for i = 1, 2. Then, it

is easy to verify that

Qx1(u,V1 ,V2 )=(u,V 1 ,v2 ) = PX + V/nEOJu + V/'ElJl + V 62JV2

is a valid conditional distribution with marginal Px. Therefore, using Qx(U,,V 2 )=(U,V 1 ,v2 )

as the conditional distribution, the mutual information

I(U, V1, V2 ; X)
n

PU (u)Pv1 (v1)Pv2 (v2) - Ko Ju + CiJvl + C2 Jv2 12 + o(c2)
U,V1 ,V2

12
2 + E ) + o(2)

1
< I2 + O(E2)
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where (A. 1) is resulted from the definition of the perturbation vectors:

S P(u)JU 0,
U

5Pvi(vi)Jv, = 0, for i = 1,2,
Vi

Pumt) K|Ja = 1,
U

5 V Pv(Vi) IIJQi1 , for i= 1, 2.
Vi

Hence, we can take QXI(UVV,V 2 )=(u,V1 ,V2 ) as the conditional distribution in (3.2), and

obtain a rate tuple that is equal to (Ro, R1, R2 ), up to the first order approximation.
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Appendix B

Proof of Theorem 1

In this appendix, we prove the following two statements: (i) there exist k-letter

optimal solutions for k-user broadcast channels, and (ii) for 2-user broadcast channels,

there exist single-letter optimal solutions.

First, let us prove statement (i). Assume that B 1, . . . , Bk are DTM's of the k-user

broadcast channel, and denote vE0 = [X, x e- X]T, and m =XJ - 1. We want to

prove that the multi-letter problem

max min B n)L L (B.1)
L ER-'1X:j|Ljj2=1,(L,L0())=0 1<i<k{ 2

has k-letter optimal solutions, where vo is the n Kronecker product of v. The key

step is to show the following stronger result:

Lemma 4 (optimal solutions have product forms). For any n > k, there exist 1X1-

dimensional vectors v*,vI, .... ,v , which satisfy E_= ||v*l 2  1, and (voj E) = 0, for

i = 1, 2, ... , k, such that

k

L- (n-k)® ((i)®*®(i)

is an optimal solution of (B.1).

Once we can prove Lemma 4, following the same arguments as section 2.2, we
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can construct optimal k-letter solutions. Now, to prove Lemma 4, we need to first

establish the following Lemma 5, which illustrates the required degree of freedom for

describing the optimal tradeoff between multiple linear systems.

Lemma 5. Assume that E8 = diag{Oi,1, 0 i,2, ... , O,M}, for i = 1, 2,... , k, if the

optimization problem

max. lE| -c112  (B.2)

subject to :1 112 1, and |E| - c =2  A

for i =1, 2, ... , k - 1,

has global optimal solutions, then there is a global optimal solution c* = [c* c* ... c* T

with at most k nonzero entries.

Proof of Lemma 5. Let us assume that c* = [c* c* ... c*]T is the global optimal

solution of (B.2) with the least number of nonzero entries 1. If 1 > k, then without

loss of generality, we can assume that ci $ 0 for i < 1, and ci = 0 for i > 1. For i =

0,1, ... , k, define the vector 1 = [0 1 O?2 .. 1 T E R1, and 00,1 = [1 .. . ]E R.,

then the null space Null (6Ol) c R' has dimension at least 1 - 1, and the space of the

intersecting of null spaces U _- 'Null (f,,) has dimension at least 1 - k > 0. Let the

nonzero vector d = [d, d2 ... di]T E U- _'Null (6O,l), and c = [ci,t ... c1,, 0 ... 0 ]T E

Rm, where ci,t = Vci2 + t - di. Since c* is a global optimal, we have a 2 0,

which implies that (Qk,l, d_) = 0. Thus, !2. is also a global optimal solution, where

t* max {t : c* 2 + t - di > 0 VI < i < l}. However, ct. has at most 1 - 1 nonzero

entries, which contradicts to the assumption of c*. Therefore, c* has at most k

nonzero entries.

This immediately implies the following Corollary.

Corollary 2. Assume that E8 = diag {Oi, Oi,2, ... , Oi,M}, for i = 1, 2, ... , k, then the

optimization problem

max min {1E|i.fc2} (B.3)
1c112=1 1<i<k
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has a global optimal solution c* = [c* c* ... c*]T with at most k nonzero entries.

Now, let us prove Lemma 4. We demonstrate here the proof of the case k = 2.

The general cases can be proved by the same arguments

Proof of Lemma 4. Let o- = 1, o-1, ... , o-m and po = 1, pi,... ,Pm be the singular val-

ues of the DTM's B1 and B 2, respectively, and the corresponding right singular vectors

are vvI 1 , ... v and uO, 1, ..., jkm, wherein A XI -1, and v= = [ PXX C X].

Moreover, we assume that vi = qE #ikik, where 1o = [#1s] is an X-by-|XI

unitary matrix. Then, we have 000 = 1, #io = 0Oi = 0, for all i > 0. Suppose that

zL = Ce1..4- ( i --n ~
ill...,in=0

(Ji.i. ) (0 .. 0)
jl,...,jn=O

is an optimal solution of (B.1), where

O~i .. n =
j

ill,...,li'=0
(i ,.,s # 0..., 0)

O~i .. i~iil... /inin

Then, since IIL I = 1, we have

ill...,in=0

(i ,.,. # 0..., 0)

m

ji,...,jn=O

Now, let us define

Sk = i sI,...,i in) : i. . m, Vi1O a n, ik : 0, ik+1 - in = }

7T= { (ii, .. ik) : 0 < ia < m, V I < a < k},

115



with To = 0, T = U-"_-k, and

S:T {1

is a bijective map, where M T. Then,

2

m

=1 2 a..io 2 .. a 2i, . n =. 21 c2

n(i i , . .,i..(.,..,2

1-- in ik
k=1 (i,...,in)ESk

n

=zz
k=1 (ii. _1)CETk-1

n

k=1 (ii,..,ik_1)ET_1

M

- 2

where E = diag {O1,

m

a2 2
1---..ik-1ikO ... 0 ik

ik=l

2.(il,. 

, _1)11

.. , Um}, and a _k) is defined as

.iik1) .1 k 0 ail'''ik-120---.0 '

Moreover,

B n) - L2
2

m

- ... i - -A-in
j1,...,jn=O

ji,...,jn=O k=1 (ii,...,in)ESk

njj
k=1 j1,...,jn=O

2
'Ii'

2
.. 3n ai .inoi 1

((ii,...,in)ESk
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where (B.4) is because for any 1 < k, < k2 < n,

il.-- in Oilj1 '' inin )

... (~OJk 2 k"2 k2 P1

=o, since 20
k2

2
1131

21Ain

* 2
.. /tin

=0.

Then, let Q = diag {pi, ... , pm} and = [ij] for each k, we have

1,...,jn=O

-ft

i1,...,in)ESk

(i ,... in)ESk

E

2

Oinin )

' ' ' ni 
n )

2 2n

2

2
111k

--- i O ' - ... ('1 ' injin i'in) pk
1j,--- =O (i 1,...,in)ESk (iE

m

k= 5 (i(,.,ik-1)ETk-l k

(21,.-,k-1)E~k-1

2

ail1...ikO-- 
.. Oikik )

....,ik-l) 2

where (B.5) is because D is a unitary matrix, and

ft Oi'rjr irir
3r=0 {1

0

if tr =

otherwise

Therefore, (B.4) becomes

2 5
B n) 2 L n

k=1 (ii,...,ik-1)ETk--1

ji,., =

.. ,in)ESki((i
1

,.

Oijn ' ( :
(z1,--- in)(ESk

2

E
(i.i...,k1 ,0...,0) ESki

.i 2 0 ... ,0)ESk2

2
Pijk (B.5)

iik 
) 2

M
IQ TA 2
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Now, let us define 01 = diag {1,1, ... , 6 1,m, and 62 = diag {02,1, - .. , 0 2,M} as

0 1,i - 0
0

02,1 =

if I .2 | I 0

otherwise

IIQ4T I ill if 11T-4)T0

0 otherwise

Then, from Corollary 2, there exists an optimal solution c* of the optimization prob-

lem

max min {IIE 1* .c1 2, |12 .c 2 } ,cERM ICI2 1
(B.6)

with at most two nonzero entries. Let the ii-th entry c*1 and the i2-th entry c2 of c*

are nonzero. Note that = <- for all 1 < i < M, and

M

i=1 Ia l..i 112 = 11

m

ii,..i =

(ii,.,i ) (0..0)

thus the vector a = [Hall 1 2 1 ... ]T has unit norm. This implies that

min {11 - c*c12 162 . *12} ;>min 01 - g||2, 0192 - 2}

=min |Ei 112

=min {JB (i) -L|2 , Bn - L 11 .

Now, let us take vectors v* = _ , and v = m2 - v3 , whereIIQj 11 i, 11j IaIl j

!a(j) and ai2 (j) are the j-th entries of ca and a2, respectively. Then, the vector

(n-2) (E* ® v0 + vo 0 v*) satisfies L2 | = 1, and

min { JB (n - L 2 112 |JB () - L21} =min {I -c 02 2 _*112}

>min JB (nf LI.L 2, |B n) - L 11.
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Since L is an optimal solution of (B.1), L 2 is also an optimal solution, with the

product form. E

Now, let us prove statement (ii), i.e., when k = 2, (B.1) has optimal single-letter

solutions. To this end, we assume that L 2 = El ( V0 + Vo 0 V2 is an optimal solution,

where v, = j:' , _ = Z- bj j, and |Iv1|| 2 + |I 1 fL2 = 1. Let a = [a, ... am]T

and b = [b, ... bm]T, then,

min {||B - L 2 12, B 2 - L 2f12} min {||Z a|12 + | Ebl|2 QT a 2 + rQT 2}

Our goal is to show that there exists a unit vector c = [ci ... cm]T such that

IJEC112 ;> ||E_J 2 + |E bJ 121 (B.7)
IQ4DTC112 > JQ(DTa 12 + flQ4CTbk 2 .

||GQT~ c|| 2 T|24 Tb|

For m = 2, we consider the vectors c = [ a + b a + bj]T, and c2 =

a, + b - Va + b ]T. Obviously, IJEC1112 = |EC2|12 = E 2 + ||Eb 12. Note

that

(||QIT a 2 + QTb| 2 _ QDTC1|2) (4Ta |12 + Q4T b| 2 2Q4TC2 2)

= - 4 (a1 b2 - bia 2)2 - (01121 1 + #12#22/J2 < o

Therefore, at least one of ci and C2 satisfies (B.7).

For m > 2, let A = [a b], and consider the SVD of matrices EA = UTE 1V1, and

Q(TA =U2E2V2, where Vi is a 2 x 2 unitary matrix, and E is a diagonal matrix,

for i = 1, 2. Moreover, we denote V = [(O1 P21, and V2 = [01 V)2], where ,oj and V/i

are all two dimensional unit vectors. Then, Ea 12 = 2, |FE b2 = IIE1I2212,

and Q a 2 = ||E 2 (V2V 1 ) 1112 T b 12 = |EZ2 (V 2 V 1 ) V)2 2 Since V2V17 1 is a

unitary matrix, there exists a two dimensional unit vector c', such that

J 1 c' 2 > Ifl 2 + IP 2 112,

HZ2 (V2 v 1 ) c'l2 > E 2 (v 2 7 1 )1 12 + ||E 2 (V2 V 1) 0212
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Now, taking c = AV 1 c', then ZJEcJ 2 = | Elc'112, and |Q(DTcl 2 = |E 2 (V2V71) c' 2,

which implies that c satisfies (B.7). Thus, the unit vector L1 = civ satisfies

||L112 = 1, and

min {H|B 1 L1H12, ||B 2L112 } > min {|JB2 - L2 |12, JIB2 - L 2 f12

Therefore, L, is a single-letter optimal solution for (B.1).
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