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Abstract

We present a novel modeling methodology which enables the generation of a high-
performance, cycle-accurate simulator from a cycle-level specification of the target
design. We describe Arete, a full-system multicore processor simulator, developed
using our modeling methodology. We provide details on Arete's resource-efficient and
high-performance implementation on multiple FPGA platforms, and the architectural
experiments performed using it.

We present clear evidence that the use of simplified models in architectural studies
can lead to wrong conclusions. Through two experiments performed using both cycle-
accurate and simplified models, we show that on one hand there are substantial
quantitative and qualitative differences in results, and on the other, the results match
quite well.
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Chapter 1

Introduction

Performance modeling plays a critical role during the design cycle of a processor. It

enables designers to explore and analyze architectural ideas that emerge from their

knowledge, experience and intuition. To facilitate architectural exploration, simula-

tors used for performance modeling have to be easily modifiable. To reliably assess

the impact of architectural changes on processor performance, these simulators also

have to model the processor architecture accurately, and run a representative set of

benchmarking applications in a reasonable amount of time.

Most performance modeling is done through simulators written in C/C++. This

eases the model development effort and facilitates design-space exploration. The

speed of these simulators, however, has always been found lacking. As the complexity

of processor designs continues to grow, the challenge of software simulation speed gets

tougher to tackle.

This growing problem has been tackled in three different but complimentary ways.

In the first approach, a representative subset of benchmarks is selected, based on

the kind of simulation study being performed. For example, for a memory study,

memory-intensive benchmarks are used. Benchmark selection is then coupled with

sampling, which involves executing representative, periodic or random portions of

the benchmarks on a detailed performance model with considerably low speed, and

the remaining portions on a fast functional model. This approach can skew results

if representative benchmarks and samples are not chosen carefully. However, there
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have been many advances in this domain [1], and generally there is consensus in the

community on how sampling should be done, and when it can be used acceptably.

For all the experiments presented in this thesis, we used standard benchmarks, and

did not employ any sampling.

The second approach makes use of faster substrates, the most obvious being mul-

ticore hosts and clusters/workstations, to simulate large multicore designs. Cycle-

accurate simulations in this environment have proven to be much harder than ex-

pected. A new emerging trend is to use FPGAs for cycle-accurate simulations, as op-

posed to, for emulation and validation of RTL. In the last 7-8 years researchers have

shown that flexible and cycle-accurate performance models can be built on FPGAs

which provide 1000x performance improvement over software. An important con-

tribution of this thesis is to show a new way of building cycle-accurate FPGA-based

performance models starting from a cycle-level specification of the target design, writ-

ten in a high-level language.

The third approach to solving the simulation speed problem is to simplify the

target machine. For example, one can use a very a simple unpipelined core model

when studying a large multicore processor design. The justification being that if one

is studying inter-processor communication properties through the memory subsystem

and the on-chip network, then perhaps the architecture of the core has minimal

impact on the study. The problem is that such hunches are almost never validated.

The approach is similar to using mice models for studying a biological phenomenon

in human beings. No one would suggest that such a study offers any conclusive

insight into human behavior unless the study is repeated on human subjects. In this

thesis we will show through concrete experiments that the use of simplified core models

in multicore processor simulators leads to wrong conclusions, both quantitatively and

qualitatively.

The main conclusion of this thesis is that there is no way to get around building

cycle-accurate models because, even when simplified models work, we know that

only ex post facto, by conducting the same experiments on cycle-accurate models.

Simulators with simplified models can save time, but only when used in conjunction
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with cycle-accurate models. Furthermore, the methodology presented in this thesis

(jointly developed with Muralidaran Vijayaraghavan) provides an efficient way of

building cycle-accurate models on FPGAs. The methodology is efficient in the sense

that both the simulator RTL for FPGAs and the RTL for ASIC-synthesis can be

generated from the same source.

1.1 The case for FPGA-based modeling

Timing-accurate simulation of multicore processors on multicore hosts has proven re-

markably difficult. It usually entails an exchange of timing tokens which represents

an increasing overhead as the various simulator threads get out of phase. The tech-

niques for parallel discrete event simulation (PDES), i.e., how to simulate the timing

of large multicore processor architectures in parallel on multicore hosts, are discussed

in detail in [2]. In PDES, events are distributed among the many host cores and exe-

cuted concurrently to provide the illusion of a global order. PDES techniques can be

either pessimistic, requiring synchronization every time there is an ordering violation,

or optimistic with speculative execution, requiring roll-back on ordering violations.

In either case, the level of detail implemented in the timing model determines both

its accuracy and its speed. Perhaps, for this reason very few distributed simulators

model time accurately.

FPGAs, because of their "sea of gates" kind of organization, can mimic processors

much more directly, avoiding many layers of interpretation necessary in any software

simulator. Often, even with an order of magnitude slower implementation clock,

FPGA-based simulators can outperform a simulator running on a general purpose

processor. However, one has to be cautious of two things: 1) FPGAs are difficult to

program, and 2) even if RTL for the processor being simulated is available (that is a

big if), it is generally not suitable for simulation on FPGAs. Experience has shown

that there are many hardware structures that map very well to ASICs but not to

FPGAs.

HAsim is arguably the first simulator on FPGAs which was designed deliberately
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to preserve cycle-accurate behavior. The methodology for constructing simulators

used in this thesis, like HAsim, abstracts time in terms of enqueues and dequeues

into queues, which correspond to wires in the target design. However, our tools and

methodology relieves the designer of having to think in terms of queues by letting

him express the design as a collection of blocks, each specified as a cycle-level state

machine. This has the advantage of avoiding much tedium in design, as well as

maintaining a clear cycle-level specification of the machine being simulated.

There have been many other efforts aimed at building multicore processor sim-

ulators on FPGAs. We present them in detail in Chapter 3, and describe how our

modeling technique and our FPGA-based simulator, Arete [3], differs from them.

1.2 The case for cycle-accurate modeling

Besides using a faster substrate, architectural simplifications are also widely used to

speed up processor simulations. To understand architectural simplifications, let us

consider the following scenario. Suppose we want to study how much improvement

the LRU replacement policy provides over the random replacement policy, in the

shared last-level cache of a multicore processor. Whether the expense of implementing

LRU is justified, depends on its quantitative benefits. One may also be interested in

whether these benefits vary with each benchmark, and with the number of cores in

the processor.

Of course, one generally has limited time to answer these questions in a real

design setting. An accurate simulator that includes detailed models of core, memory

and on-chip network, will require a lot of time and effort to build, and, even if

available, will be quite slow to execute. A detailed cycle-accurate software simulator

may execute at 10-100 KIPS [4] and take a few days to completely run one benchmark.

Since the evaluation of replacement policies is limited to the cache, it can be argued

that a detailed model of the core is not necessary because core behavior is only

remotely linked to cache and network behaviors. It is indeed possible to run the same

benchmark on a simplified core model in a matter of hours as opposed to days. If
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one's intuition about the irrelevance of the core architecture is correct then a lot of

time and effort can be saved in simulation. In this thesis we emphatically answer this

question in the negative.

When we performed the replacement policy experiment using a cycle-accurate core

model, the results matched our intuition completely, i. e., LRU increased the cache hit

rate, decreased the memory traffic and improved the overall performance, as depicted

by the blue bars in Figure 1-1.

To test the supposed irrelevance of the simplified core model, we performed the

replacement policy experiment using the 1-IPC core model. On 1-IPC, instructions

which do not incur cache misses are executed in 1 cycle. Only stalls due to cache

misses are modeled, while speculative instructions and data hazards are not modeled.

Such simplified cores are used often in large multicore processor studies.

We found that when 1-IPC was used in the replacement policy experiment, the

benefits of LRU over random were no longer definitive. Roughly half the benchmarks

exhibited opposite trends, as depicted by the green bars in Figure 1-1. When using

1-IPC, one would not be able to conclude that LRU is better than random. It was,

however, quite clear when we used the cycle-accurate model. In Chapter 6, we discuss

in detail where this disparity in results comes from.

There is a large body of work which explores the use of simplified and abstract

core models in processor simulations, and its impact on simulation accuracy. We

describe these efforts and contrast them with our work in this domain in Chapter 5

and Chapter 6.

1.3 Summary of contributions

The contributions of this thesis can be divided into two main categories: FPGA-based

modeling and architectural exploration using cycle-accurate simulation.

We present a modeling methodology, which starts with a cycle-level specification

of the target processor design. We show how the specification can be transformed into

a latency-insensitive bounded dataflow network (LI-BDN) [5] and refined to achieve
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random.
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a resource and timing efficient FPGA implementation. The specification can also be

compiled into RTL for ASIC implementation and validation of the refined LI-BDN

implementation.

Using our modeling methodology we built Arete [3], an FPGA-based full-system

cycle-accurate multicore processor simulator with detailed core, memory and network

models. Arete boots SMP Linux and runs multithreaded applications, achieving 55

MIPS performance on 8 cores. We also demonstrate its flexibility for architectural

exploration and portability across FPGA platforms.

We present a general technique for building a deterministic, model-cycle-level de-

bugging infrastructure [6], based on the LI-BDN modeling methodology. We demon-

strate the technique by building a comprehensive debugging infrastructure for Arete.

We show that this debugging infrastructure provides a rich set of features, while

incurring small resource and performance overheads. It allows for stopping and start-

ing any module in the processor model independently by making a novel use of the

provisions of the LI-BDN methodology, and avoids complex forwarding and rollback

mechanisms. It also allows us to remove the non-determinism from events such as

DRAM access, network access and I/O, without keeping expensive logs.

We ask the question: Can we reliably study architectural changes in the memory

hierarchy or the on-chip network of a multicore processor using a simulator that in-

cludes detailed cycle-accurate models of memory and network, but a simplified model

of core? We provide empirical evidence that the use of simplified core models, such as

1-IPC, leads to conclusions that are wrong both quantitatively and qualitatively. We

also give reasons for the error in results. Finally, we show that the error magnitude

in such studies increases with the number of cores.

1.4 Document outline

The remaining document is organized as follows.

Part I

e Chapter 2 presents our modeling methodology. It describes the development

25



of a cycle-level specification for processor microarchitecture, the transformation

of the specification into an LI-BDN, and its refinement to achieve an efficient

FPGA implementation.

" Chapter 3 describes our efforts to build an FPGA-based cycle-accurate mul-

ticore simulator called Arete. It also presents the comprehensive simulation

infrastructure included in Arete and its flexibility and portability.

* Chapter 4 presents a general technique for deterministic, model-cycle-level de-

bugging based on LI-BDNs. It describes an application of the technique to build

the debugging infrastructure for Arete.

Part II

" Chapter 5 analyzes the impact of abstract models and abstraction parameters

on the accuracy of single-core processor simulations.

" Chapter 6 explores if we can reliably study architectural changes in the memory

hierarchy or the on-chip network of a multicore processor using a simulator that

includes detailed cycle-accurate models of memory and network, but a simplified

model of core.

" Chapter 7 presents another architectural experiment, Data Movement Control

(DMC), which comprises of new instructions, architectural enhancements and

runtime support to enable software-based cache management and computation

migration.

" Chapter 8 provides a summary of the work presented in this thesis. It also

discusses some new projects in which Arete is being used. These include power

modeling, improving the accuracy of 1K-core processor simulations, and hard-

ware/software codesign.
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Part I

FPGA-based Modeling
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Chapter 2

Functional and Timing

Specifications for a Cycle-Accurate

Model'

2.1 Introduction

As mentioned in Chapter 1, simulation speed has always been a major issue in simu-

lating computer systems. Even though the machines on which we simulate are getting

faster or have increasing number of cores, the simulation speed cannot keep up with

the ever increasing complexity and size of simulation studies that the designers want to

perform. In the last few years the advent of FPGA-based simulators has changed the

landscape. Projects like CMU's ProtoFlex [7], Intel-MIT's HAsim [8], UT Austin's

FAST [9] and Berkeley's RAMP Gold [10] have shown that it is possible to gain one

to three orders of magnitude in performance over detailed software simulators. Yet,

many questions remain. For example, what target microarchitecture is being modeled

by the simulators? And how difficult are FPGA simulators to write and modify as

compared to software simulators?

The collective experience of the community in writing FPGA-based simulators

The work presented in this chapter was jointly carried out with Muralidaran Vijayaraghavan.
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shows that the RTL that is suitable for ASIC synthesis is almost never suitable for

mapping on to FPGAs; it tends to make inefficient use of FPGA resources. Thus,

people have devised techniques which allow an operation that is performed in one

model clock cycle to take multiple FPGA clock cycles while keeping track of the

model time [4, 9, 10]. We will refer to the RTL that explicitly keeps track of the

model time as T-RTL for Timed RTL, and the RTL that does not, as D-RTL for

Direct RTL.

In this chapter we describe a method for writing cycle-accurate specifications of

processor microarchitecture in terms of high-level cooperating synchronous sequential

machines, and compile these specifications into T-RTL (Section 2.2). T-RTL can be

further optimized for FPGA implementations without compromising the specifica-

tions (Section 2.3). If desired, our specifications can also be compiled into D-RTL,

which can be used to synthesize an ASIC or validate T-RTL.

2.2 Cycle-accurate specifications

Intuitively, cycle-accurate specifications of a machine describes its behavior for each

clock cycle. The behavior may be characterized as the values of all the machine's

state elements (registers, memories, etc.) every clock cycle. Sometimes it is sufficient

to consider only a subset of the state elements, e.g., the program counter and the

register file, in our specifications, and ignore others, e.g., the pipeline registers inside

a multiplier.

To give the timing specifications for a processor it is not sufficient to say that

the adder takes 1 cycle, the multiplier takes 3 cycles, caches have a hit latency of 1

cycle and a miss latency of 16 cycles, etc. The designer also needs to specify which

modules are pipelined, which bypass paths are present, and in case of the reorder

buffer, what operations are done concurrently. This level of specification is usually

available only in the D-RTL description of a machine, which is itself generated from

low-level hardware description languages (HDLs), like Verilog or VHDL.

It is an accepted fact that it is tedious to write D-RTL for large systems, and also
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(a) Traditional (b) Our methodology

Figure 2-1: Approaches to FPGA-based modeling

that D-RTL is almost never flexible enough for the kinds of changes that designers

want to make for architectural exploration. Software simulators for architectural

exploration came into vogue precisely to alleviate this flexibility problem. However,

the problem of cycle-accurate specifications has remained and there is a constant

debate about which timing aspects are being modeled correctly or incorrectly by a

given simulator.

2.2.1 Timed RTL (T-RTL)

As we said in the introduction, projects like ProtoFlex [7], HAsim [8], FAST [9]

and RAMP Gold [10], have all developed fast FPGA-based processor simulators by

thoroughly optimizing them for the FPGA substrate. For example, they avoid using

CAM-like structures because CAMs map poorly to FPGAs. Instead, they rely heavily

on FPGA-specific structures, like Block RAMs for large register arrays, and DSP

slices for complex computations, such as floating point multiplications. Without

such optimizations, the D-RTL for complex processor microarchitectures consumes

too many FPGA resources, making it impractical to use the target processor's D-

RTL directly, even if it were available. In industry, FPGA-based emulation is done

using D-RTL, but it requires tremendous amount of FPGA resources. Moreover, the

emulation speed is in the 1 MHz range.

For cycle-accurate simulations on FPGAs, RTL is usually written in a highly styl-
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y(i) = f (X(i), r(i)) ,i > 0
r(i + 1)= y(i) i> (2.1)

where f is a combinational circuit

Figure 2-2: A synchronous sequential machine (SSM)

ized manner, where one explicitly keeps track of the model clock, and the amount of

work in a model clock cycle can take many FPGA or implementation clock cycles.

The events in the model time are often represented as enqueue and dequeue opera-

tions in this type of RTL which we refer to as T-RTL or Timed RTL. Since T-RTL is

significantly different from the D-RTL of the target processor, one needs to develop

a notion of equivalence between the simulator and the target machine in order to es-

tablish the cycle-accuracy of the simulator (see Figure 2-1(a)). Unfortunately D-RTL

is almost never available at the time of architectural exploration and most designers

of cycle-accurate simulators work with informal timing specifications which are never

written down explicitly.

We propose the modeling methodology illustrated in Figure 2-1(b), where we first

develop the cycle-accurate specifications of the target system. These specifications

can then be used to generate automatically either D-RTL for an ASIC implementation

or T-RTL for an FPGA implementation. This T-RTL conforms to the specifications

of the target system by construction, and it can be optimized further in a modular

manner without affecting its conformity to the specifications.

2.2.2 Timing specifications for a processor

Our timing specifications are built using Synchronous Sequential Machines (SSM)

which may be characterized as shown in Figure 2-2. Precise timing specifications for

a complex processor can be built by specifying it as an appropriate composition of
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SSM modules, each corresponding to a pipeline stage or some other major block in

the microarchitecture. The composition of SSMs is straightforward and results in an

SSM. Our specifications are considerably easier to write than any type of RTL, and

we have the tools to generate both D-RTL and T-RTL from our specifications. We

demonstrate the level of detail in our specifications through two examples.

A shared TLB for instruction and data memories

We describe the specification of a TLB which is shared between instruction and data

memories, and is managed by software. As shown in Figure 2-3, the TLB can have

up to three simultaneous requests: an i-side address translation, a d-side address

translation and a TLB update. The presence of a request is shown by an associated

valid bit. Similarly, the presence of each response is also indicated by a valid bit.

An address translation request returns either a hit with a page number or a miss.

A TLB update request can either invalidate or update an entry and generates an

acknowledgement when the operation has been completed. A description of such a

TLB is given in our language in Figure 2-3.2

In this TLB description the response is always generated in the same cycle, and

thus a response can be invalid only if the input request is invalid. However, we could

have also written a different specification where it would take several clock cycles to

do the lookup and the update, without changing the interface. A correct use of this

module would require that a new request not be issued until the previous one has

been satisfied. The user of this module should accept the response in the cycle in

which it becomes available, i.e., valid, otherwise the response will be lost.

2Syntax notes: Due to extensive use of Valid/Invalid and Hit/Miss signals we use the syntax
of tagged-union types which are common in functional languages, and can also be expressed in C++.
Thus, one can test iReq by writing iReq. valid and extract the address from a valid request by
writing iReq.virtPN. iResp can be constructed by writing Invalid or Valid Hit ppn or Valid
Miss. Another syntax point to note is that we use <= to specify a register or state update, and
use := to write to an output. Such assignments can only be used at most once per clock cycle per
variable.
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Figure 2-3: Specification of a shared TLB
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interface TLB;
Input iReq, dReq, updReq;
Output iResp, dResp, updResp;

module TLB mkTLB {
Reg entries[sizeTLB] (initial Invalid);

every clock cycle {
local iRespLocal = iReq.valid ? Valid Miss
local dRespLocal = dReq.valid ? Valid Miss

foreach i in [0, sizeTlb)
if (tlb [i] . valid)

if(iReq.valid && iReq.virtPN == tlb[i].virtPN)

iRespLocal = Valid Hit getPhysPN(tlb[i]);

if(dReq.valid && dReq.virtPN == tlb[i].virtPN)
dRespLocal = Valid Hit getPhysPN(tlb[i]);

if (updReq. valid)

foreach i in [0, sizeTlb)
if(updReq.op == Inv)

if(updReq.virtPN == tlb[i].virtPN)

tlb[i] <= Invalid;
if(updReq.op = Write)

tlb[updReq.index] <= Valid upd.entry;

iResp iRespLocal;
dResp dRespLocal;
updResp := updReq.valid;

}
}

:Invalid;
:Invalid;
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Figure 2-4: Specification of a completion table

Completion table

As a more complex example, we describe a completion table (CT) which is used

in some out-of-order machines (Figure 2-4). A CT is an associative structure that

has all the functionality of a traditional Reorder Buffer (ROB) except for issuing

instructions to the functional units. Each valid entry in a CT corresponds to an

instruction and contains <completion bit, exception bit, dead bit, pointer

to the instruction template, pointer to the rename table>. There are the

usual head and tail pointers associated with a CT where head points to the slot for

the next instruction and tail points to the oldest instruction to be committed. The

issue unit knows the index of the slot in the CT corresponding to each instruction

template. Following operations are performed in a CT.

Insertion It is invoked by the instruction dispatch unit. Given a pair of pointers to

an instruction template and a rename table, an insertion operation stores the pointer

in the head slot, sets the completion, exception and dead bits to false and increments

the head pointer. It also exports the recently allocated slot for the issue unit.

Completion It is invoked by a functional unit (FU) when it completes an operation.

When an FU completes the operation corresponding to the instruction in the ith slot,

the completion and exception flags are set appropriately for the ith slot in the CT. In

case of a mispredicted branch, if the entry is not already marked as dead, the correct
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interface CT

Output notFull, enqueIndex; Input enque;

Input complete[numCompletes]; Output pcRedirect;

Output commitInstTempl, commitRenameTbl, exception;

module CT mkCT {
Reg entries[sizeROB] (initial Invalid);

Reg head, tail, numElems (initial 0);

every clock cycle {
local cNumElems = numElems;
local cEntries = entries;

notFull := numElems != sizeRob;

enqueIndex := head;
if(enque.valid)

cEntries[head] = {comp: False,

excep: False,
dead: False,
instTemplPtr: enque.instTemplPtr,

renameTblPtr: enque.renameTblPtr};

cNumElems++;
head <= head + 1;

local pcRedirectLocal = Invalid;

foreach i in [0, completesNum)

if(complete [i].valid)

cEntries[complete[i].index].comp = True;

cEntries[complete[i].index].excep = complete[i].excep;
if(complete[i].misPred && !cEntries[complete[i].index].dead)

pcRedirectLocal = Valid complete[i].newAddr;

foreach j moduloin (i, tail)

cEntries[j].dead = True;

pcRedirect : pcRedirectLocal;

if(numElems 0 && (cEntries[tail].comp 11 cEntries[tail].dead))
commitInstTempl := Valid cEntries[tail].instTemplPtr;

commitRenameTbl : Valid {dead: cEntries[tail].dead,

ptr: cEntries[tail].renameTblPtr};

exception := cEntries[tail].dead? False : cEntries[tail].excep;

tail <= tail + 1;

cNumElems--;
else

commitInstTempl := Invalid;

commitRenameTbl : Invalid;

exception := False;

numElems <= cNumElems;
entries <= cEntries;

}
}

Figure 2-4: Specification of a completion table (cont.)
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program counter is sent to the fetch unit. The dead bits of all the slots from i to head

are set. This operation has to be performed for each functional unit that completes

in the same cycle.

Commit If the oldest entry in the CT is either complete or dead, the commit opera-

tion either commits or discards it. It exports the pointer to the instruction template

for the committed instruction so that the instruction template entry can be freed.

It also exports the pointer to the rename table for the committed instruction along

with the dead bit that tells the rename table whether the registers written by the

instruction are to be discarded or committed into the architectural state. Finally, if

the instruction is not dead, but the exception flag is set, the exception is sent to the

fetch unit which services it by fetching from a known interrupt handler address. The

tail pointer is incremented after completing the commit operation.

2.2.3 Target simplification vs. implementation refinement

The complexity of prevalent and future systems make modeling them very difficult.

Moreover, modeling every detail of a target specification can adversely affect the

speed of the simulator and consume disproportionate amount of resources. In order

to overcome these difficulties, often times, the target specification is simplified. Some

of the common examples of target simplification are unaligned memory references and

variation in DRAM latency because of access patterns.

Sometimes the changes in specification are motivated by implementation concerns.

Consider the specification of a processor with a single-cycle multiplier. In the FPGA-

based model of the processor, we may choose to replace the single-cycle multiplier with

a 4-cycle unpipelined multiplier to reduce the resource requirements and improve the

FPGA clock speed. We could make use of such a multiplier by changing the processor

specification so that it can accept a 4-cycle multiplier. Changing the specification

may be justified on the basis that the multiplier is used infrequently and would

not affect the overall performance estimates significantly. However, changing the

processor specification to tolerate a 4-cycle latency may not be as straightforward as

it seems because it may make the entire specification functionally incorrect. Cycle-
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Figure 2-5: A refined SSM

accurate specifications by their very nature are quite brittle and can easily become

functionally incorrect even with the smallest of changes.

Another way to replace the single-cycle multiplier with a 4-cycle multiplier is

to change the implementation of the model in such a way that when the 4-cycle

multiplication takes place, the rest of the model remains frozen. In this way, one can

reproduce the state of the processor every model cycle by reading the value of all the

registers every fourth FPGA cycle. Here, we are still simulating a processor whose

specification has a 1-cycle multiplier. Only the implementation of the model is refined

to take 4 cycles for every multiply operation, while keeping track of the model clock.

We refer to this technique as implementation refinement and elaborate on this in the

next section.

We always maintain a clear distinction between target simplifications and imple-

mentation refinements and generally do not simplify the target specifications to meet

FPGA resource constraints.

2.3 Implementation refinements

As discussed in the previous section, we need a way to refine the implementation of

a target specification to optimize it for the FPGA fabric, while accurately reproduc-

ing the values of the state every model cycle. In FPGA-based simulators, different

modules of a simulator operate in parallel. Two modules, after refining, may take

different number of FPGA cycles to simulate one model cycle.

For example, consider a refinement of Figure 2-2 where f is replaced by fi and f2

where f(x(i), r(i)) = f 2(fi(x(i), r(i))) and the length of the critical path is reduced
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by inserting a register between fi and f2 (see Figure 2-5). If this refined implemen-

tation is used in place of the original SSM, then the rest of the circuit connected to

this module must be changed to account for the 1-cycle latency. A large body of

theoretical work on making such refinements has been produced in recent years (see

for example, Carloni et al. [11], Vijayaraghavan et al. [12], Krstic et al. [13]). All

these techniques essentially model the time explicitly in the circuit itself and ensure

that the cycle-by-cycle behavior of the original SSM is preserved. Here, we elabo-

rate on Vijayaraghavan et al. technique called Latency-Insensitive Bounded Dataflow

Networks (LI-BDNs) [12].

2.4 The LI-BDN technique for writing cycle-

accurate simulators

The LI-BDN technique models the timing of the SSM in terms of enqueue and dequeue

operations on the input and output queues. Thus the ith input and the ith output

in an SSM correspond to the ith dequeue operation on the input queue and the ith

enqueue operation on the output queue, respectively. The refinement of an LI-BDN

module may introduce new logic and state, but it has to preserve the timing behavior

by recreating the values assumed by the input and output wires and the original

module state, for each cycle of the original SSM, referred to as the model cycle. The

use of LI-BDNs makes it easy to synchronize the model cycle across different modules

where each module can take different FPGA cycles to simulate one model cycle. The

technique also works across multiple FPGAs.

We give a brief overview of the LI-BDN technique using the example of a multi-

ported register file module. We start with the cycle-level specification given in

Figure 2-6 and depicted in Figure 2-7(a). The module can take in three requests

simultaneously: reading of two register values, and update of one register value. The

presence of the update request is indicated by an associated valid bit. If all the re-

quests are present simultaneously, and either of the registers being read is also being

39



module regFile {
Input rdRegi, rdReg2, upd;
Output valRegi, valReg2;
Reg entries[ sizeRF ] rf ( initial 0 );

every clock cycle {
if( upd.valid ) {

rf[ upd.idx ] <= upd.val;
}

valRegl upd.valid && rdRegl == upd.idx ? upd.val
rf [ rdRegl ];

valReg2 upd.valid && rdReg2 == upd.idx ? upd.val :
rf [ rdReg2 ];

}
}

Figure 2-6: Synchronous specification of a 2-read, 1-write register file module

updated, the updated value is bypassed as the read response. Such a specification

does not map well to the FPGA fabric in terms of both resources and timing.

We transform the specification into an LI-BDN so that the register array which

has three ports and combinational reads can be simulated with a Block RAM which

has two ports and one-cycle-latency reads. We start by attaching FIFOs to all the

ports and done flags to all the output ports, as shown in Figure 2-7(b). Note that

these FIFOs are in addition to the FIFOs which may be part of the synchronous spec-

ification. Now as Figure 2-7(c) depicts the valRegi output depends on the rdRegl

and the upd inputs, which are both available. So we enqueue valRegi and set its

done flag. We handle the valReg2 output in the same manner. Finally, after all the

outputs are enqueued and all the inputs are available, we update the Block RAM,

dequeue all the inputs and reset all the done flags, as shown in Figure 2-7(d). The

control logic for the LI-BDN transformation of the register file module is provided in

Figure 2-8.

The conversion from a specification into an LI-BDN module is what we call the

LI-BDN transformation of a module [5, 14]. The two requirements, that an output

waits only for the inputs that it depends on, called the no-extraneous dependencies

(NED) requirement, and that all the input FIFOs are dequeued when all the inputs

are available and all the outputs have been produced, called the self-cleaning (SC)

requirement, together guarantee the absence of deadlocks from the LI-BDN transfor-
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Figure 2-7: Transforming a cycle-level specification into an LI-BDN module
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libdn regFile {
LiBdnIn rdRegl, rdReg2, upd;
LiBdnOut valRegi, valReg2;
BlockRAM entries[ sizeRF ] rf ( initial 0 );

Reg rdlStart, rd2Start ( initial False );

rule rdl {
if( !valRegl.done && !valRegl.full && !rdRegl.empty

&& !upd.empty && !rdlStart )
{

rf.reql( Read, rdRegl.first, DontCare );
rdlStart <= True;

}

if( rdlStart )
{

valRegl.enq( upd.first.valid && rdRegl.first == upd.first.idx ?

upd.first.val : rf.respl );

valRegl.done <= True;

rdlStart <= False;

}
}

rule rd2 {
if( !valReg2.done && !valReg2.full && !rdReg2.empty &&

!upd.empty && !rd2Start )
{

rf.req2( Read, rdReg2.first, DontCare );

rd2Start <= True;

}

if( rd2Start )
{

valReg2.enq( upd.first.valid && rdReg2.first == upd.first.idx ?
upd.first.val : rf.resp2 );

valReg2.done <= True;
rd2Start <= False;

}
}

rule finish {
if( valRegl.done && valReg2.done )
{

if( upd.first.valid )
{

rf.reql( Write, upd.first.index, upd.first.val );

}
rdRegl.deq; rdReg2.deq; upd.deq;
valRegl.done <= False; valReg2.done <= False;

}
}

}

Figure 2-8: Refined LI-BDN register file module
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SSM LI-BDN Improvement

Slice LUTs 4039(5.8%) 460(0.7%) 8.78x

Slice flip flops 2240(3.2%) 839(1.2%) 2.67x

BRAMs 0(0.0%) 1(0.7%) -
FPGA frequency 192.9MHz 229.1MHz 1.19x
FMR 1 4 0.25x

Effective frequency 192.9MHz 57.3MHz 0.30x

Figure 2-9: Comparison of resource and timing statistics for SSM and LI-BDN im-
plementations of a register file with 32x64-bit entries, 2 read ports and 1 write on
the XUPv5 board

mation.

The time duration between the enqueuing of the output FIFOs and the dequeuing

of the input FIFOs comprises one model cycle for the transformed module. During

one model cycle, the transformed module can use any number of implementation

cycles to produce the outputs or to update the state. In this manner, the model cycle

is decoupled from the implementation cycle which enables an efficient implementation

of the model on the desired platform while maintaining model-cycle-level accuracy.

Figure 2-9 provides a comparison of resource and timing statistics for the SSM

and the LI-BDN implementations of the register file module. The FMR (FPGA

to model cycle ratio) statistic listed in the table is the average number of FPGA

cycles used to simulate a model cycle. Although the effective clock frequency of the

LI-BDN module of the register file is one-third of the clock frequency of its SSM,

typically the opposite is true. The reason is that critical path is typically present

in complex logic blocks, such as multipliers and dividers. These blocks slow down

the clock for the entire design. LI-BDN modules of these blocks preserve their timing

behavior but implement them over many cycles, improving the overall clock frequency.

Although the FMR of these LI-BDN modules is high, since multipliers and dividers

are infrequently used, the overall FMR of the design remains low. The high overall

clock frequency and the low overall FMR result in a higher effective frequency than

that of the SSM.
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Figure 2-10: Modeling methodology

We have built a library of FPGA-optimized components which make use of Block

RAMs and DSP slices which are used to implement modules such as a multi-ported

register file, a Reorder Buffer or complex combinational logic like multiplication and

division efficiently. Moreover, if the resulting simulator is too large to fit into a single

FPGA, we partition it across different FPGAs. We create identical partitions and

use LI-BDNs to preserve cycle-level behavior across them. A general technique for

partitioning a large design among multiple FPGAs using latency-insensitive links has

been presented by Fleming et al. in [15].

2.5 Summary

Figure 2-10 summarizes our modeling methodology. We start by writing a cycle-level

specification of the target processor design. This specification is then compiled into

an LI-BDN, which is refined to achieve an efficient FPGA implementation. We will

describe our FPGA-based cycle-accurate multicore processor simulator built using

this technique in Chapter 3.
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Chapter 3

Fast and Cycle-Accurate Modeling

of a Multicore Processor

3.1 Introduction

In this chapter we present Arete, an FPGA-based cycle-accurate simulator for a mul-

ticore PowerPC architecture. We developed this simulator adhering to a cycle-level

specification of the architecture. For the purpose of efficient FPGA implementation

we used the LI-BDN technique [12] which helps to improve the FPGA cycle time and

to reduce the FPGA resource requirements by using multiple FPGA cycles to simu-

late one cycle of the target architecture. We boot off-the-shelf SMP Linux and run

applications such as the PARSEC [16] and the SPLASH-2 [17] benchmark suites on

Arete. Our simulator is also suitable for architectural exploration. We demonstrate

this by evaluating three branch prediction schemes and four cache line replacement

policies, and by extending the cache coherence scheme to provide software with bet-

ter control over the contents of the caches. We also show how the cycle-accurate

models of core and cache hierarchy can be easily modified to create abstract models.

We have ported Arete to two single-FPGA platforms (XUPv5 and ML605) and one

'The work presented in this chapter includes contributions from Muralidaran Vijayaraghavan
and Silas Boyd-Wickizer.
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Figure 3-1: Architecture of a processor tile

multi-FPGA platform (BEE3).

To our knowledge Arete is the first cycle-accurate FPGA-based multicore proces-

sor simulator which includes both a realistic core architecture and a detailed cache

coherence engine. Along with modeling this level of detail, Arete delivers high perfor-

mance, viz, 55 MIPS while simulating eight cores on four FPGAs and up to 11 MIPS

while simulating one core on one FPGA.

Chapter organization: Section 3.2 describes the architecture of the processor being

modeled. Section 3.3 provides a detailed description of Arete, and provides statis-

tics on its performance and resource utilization. Section 3.4 discusses some of the

related work in the areas of multicore processor modeling and the use of FPGAs for

implementing these processor models. Section 3.5 provides a summary of our work.

3.2 Processor architecture

The processor makes use of a tiled architecture where the number of tiles is a synthesis

parameter that is specified according to the resources available on a particular FPGA

platform. As shown in Figure 3-1, each tile is composed of a parameterized number

of cores, a shared and inclusive L2 cache, a cache coherence engine and a network
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Figure 3-2: Architecture of an in-order PowerPC core

controller. Each tile directly accesses a region of DRAM memory, the size of which

is platform dependent. A network layer connects all the tiles in the processor.

3.2.1 Core

The core comprises of a 64-bit, in-order PowerPC pipeline and implements the Power

ISA-Embedded Environment [18]. Figure 3-2 shows the microarchitecture of the

core. The pipeline is designed to provide a high degree of flexibility, and includes the

following features.

(I) Pipeline stages can be split or combined without modifying the rest of the

pipeline because the stages are designed to be latency-tolerant. For example,

instruction decode may happen over multiple cycles, instead of one. Moreover,

the two instruction fetch stages may be combined into one, if the hit path in

the LI cache is combinational.

(II) The mechanism to handle change in instruction flow allows any stage to perform

branch prediction, branch resolution or exception handling.
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(III) Any stage can read the register file and the various special purpose registers,

but only the last stage updates them when committing instructions. Updated

register values are fully bypassed, but the pipeline may still stall due to read-

after-write hazards.

Each core has private instruction and data Li caches with a pipelined hit latency

of 1 model cycle. These caches are parameterized for associativity, line size, number

of entries and replacement policy. The tag and data arrays of the Li caches are

implemented on block RAMs.

The core also has a shared TLB which is parameterized for number of entries,

and is implemented using a combination of block and distributed RAMs. It provides

multi-ported combinational access for instruction and data address translation, as

well as for TLB update. It supports variable-size pages.

Pipeline description

The front-end of the core pipeline comprises of five stages. The fetch-1 stage maintains

a branch target buffer (BTB). It sends the program counter (PC) to the first stage

of the instruction-side Li cache and the TLB, and updates the PC based on inputs

received from the branch prediction, the branch resolution and the exception stages.

The fetch-2 stage receives a single instruction from the second stage of the instruction-

side Li cache. This instruction is forwarded to the branch prediction stage. The

branch prediction stage partially decodes the instruction to determine if it is a branch.

In case of a branch instruction, it consults a branch history table (BHT) to predict

the direction of the branch. The crack stage partially decodes the instruction to

determine if it is a complex load or store. In case of a complex load or store, it

divides the instruction into several simple load or store instructions and forwards the

simple instructions to the decode stage one by one. The decode stage fully decodes

the instruction to determine the registers it reads and modifies, and the functional

unit it uses for execution.

The back-end of the pipeline also comprises of five stages. In the first stage the

register file is read. The next stage determines the address for memory instructions
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and the target PC for branch instructions. If either the direction or the target of

the branch was mispredicted by the front-end of the pipeline, this stage resets the

PC with the correct address. In case of a memory instruction, the memory-1 stage

sends the virtual address to the first stage of the data-side Li cache and the TLB. All

other instructions are simply forwarded to the next stage. The execute stage sends

data to the data-side Li cache for store instructions, receives data from it for load

instructions and executes all other instructions appropriately. All exceptions are also

handled in this stage, i.e., whenever an exception is encountered, it sets the PC to

the address of the relevant exception handler. The last stage updates the register file

with data computed or obtained from the cache in the execute stage.

The back-end of the pipeline is fully bypassed. However, an instruction may still

stall due to RAW hazards, besides stalling because of cache misses. The address

calculation stage is the only stage, besides the execute stage, which makes use of

register values. So an instruction may be stalled in it, if that instruction reads a

register which will be modified by an instruction either in the memory-1 stage or the

execute stage.

One of the key features of the core's design is its modularity. It can support a

completely different RISC ISA with appropriate modifications confined to the decode

and the MMU modules.

3.2.2 Shared memory and cache coherence

Figure 3-3 shows the hierarchical structure of the shared, coherent memory archi-

tecture which forms the backbone of the multicore processor. We have designed and

implemented a hierarchical, directory-based MSI protocol to provide cache coherence.

Figure 3-4 provides the state transitions for cache state, while Figure 3-5 provides the

state transitions for directory state. Each level of the memory hierarchy considers

the next higher level as its parent, while the next lower level as its child. State (X,

Y) represents a transitional state. Although we did not formally verify the coherence

protocol, we tested it using an extensive suite of hand-coded microbenchmarks.

The L2 cache is inclusive and is shared by all the cores in a tile. It is parameterized
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Figure 3-3: Shared memory architecture

for associativity, line size, number of entries, replacement policy and access latency.

Access latency and replacement policy are runtime parameters while the rest of the

parameters have to be specified before synthesis. The tag arrays and the directory

state in the L2 cache are implemented on block RAMs, while the data arrays are

mapped to a private region of DRAM. The coherence directory at L2 cache maintains

coherence among the Li caches to which the L2 cache is connected.

We have arranged the main memory in a distributed and shared manner where

each tile has fast access to the region of main memory to which it is directly connected,

but it has to traverse the network layer to access those regions which are connected to

other tiles. Off-chip main memory is incorporated into Arete as an LI-BDN module.

This enables us to model its access latency which is another runtime parameter of

the model. DRAM latency can be fixed to a particular value or modeled as variable

within a certain range. In the latter case, we do not model the variability in the

target specification. Instead, we rely on the variable latency of the DRAM on the

FPGA board. A private region of DRAM is used to implement the directory state in

the main memory which provides cache coherence among all the L2 caches.

Just like the core, the memory subsystem is designed to be quite flexible. One can

implement a new cache coherence protocol by modifying the cache coherence engine

alone. Similarly, memory organization can be completely altered without modifying

the rest of the system, namely the core and the on-chip network.

50



Current Request Dequeue Response Request Response Request Response Next
state trigger trigger trigger from parent to parent to parent from parent state

M St, data yes M
M Ld yes data M
M Inv yes I, data I
M S S, data S
M I I, data I
S St, data no M (S,M)
S Ld yes data S
S Inv yes I I
S I I I

I St, data no M (I,M)
I Ld no S (IS)
I S I
I I I

(S,M) yes M M
(IM) yes M, data M
(I,S) yes S, data S

Figure 3-4: Cache state transitions
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Child's Other Trigger Deq. Req. Deq. Resp. Req. Resp. Req. Resp. Child's Other

current children's trigger from req. to to from to to next children's

state current child from child child child other other state next

state child children children state

M I S no S (MS) I

M I I no (M,I) I

M I I, data I I

S X = S/I S yes S X

S X = S/I I no (SI) X

S S M no I S (SI)

S I M yes M M I

S X=S/I I X

I M M no I I (MI)

I S M no I I (SI)

I I M yes M, data M I

I M S no S I (MS)

I X = S/I S yes S, data S X

(MS) I S, data S I

(MS) I I, data I I

(MI) I I, data I I

(SI) X = S/I I I X

Figure 3-5: Home directory state transitions
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Figure 3-6: Fully connected network topology in Arete

3.2.3 On-chip network

The current implementation of the network architecture supports a bidirectional,

fully-connected topology, as shown in Figure 3-6. It is parameterized for per hop

latency. It is capable of handling four types of traffic: cache coherence, inter-core

messaging, debugging and display, as shown in Figure 3-7. All message types are

part of the processor specification. However, the debugger and the display device are

only part of the FPGA platform and remain outside the specification.

All messages received by the network layer are first packetized, and then each

packet is broken down into flits with parameterized bit width, before being sent across

the network. We have built virtual networks for the four kinds of traffic. These virtual
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Figure 3-7: Various types of traffic supported by the on-chip network

networks include appropriate amount of buffering and utilize flow control mechanisms

to ensure deadlock-freedom. The network model can be modified in isolation to

support various other topologies as well as routing algorithms.

3.2.4 Message-passing support

We have added a message-passing layer to the model which allows any core in the

processor to communicate with all other cores via messages defined by the Power

ISA. The message-passing layer supports both unicast and multicast messages. These

messages are used either by the primary core to wake up the secondary cores or by

any core to cause a doorbell interrupt in another core.

3.3 Full-system processor simulator

The design and implementation of Arete provides simulation speed and accuracy

along with ease of modification and portability. We started by writing a cycle-level

specification of the processor, and then employed the LI-BDN technique described in

section 2.4 to incorporate various implementation refinements which helped achieve

an efficient FPGA implementation. In the process, we built a library of components

which may be used for FPGA implementations of other models. We used Bluespec

SystemVerilog (BSV) [19] to develop Arete.

In this section we outline the simulation infrastructure provided by Arete, and

describe its portability to various FPGA platforms. We also describe the resource

savings and performance improvements obtained from using various implementation

refinements enabled by the use of the LI-BDN technique. Finally, we evaluate the
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Figure 3-8: Simulation infrastructure

performance of Arete by running the PARSEC benchmark suite on top of SMP Linux.

3.3.1 Simulation infrastructure

As shown in Figure 3-8, we have strived to provide a comprehensive simulation infras-

tructure for architectural exploration and verification. We make use of the debugging

feature enabled by the use of the LI-BDN technique to build a debugging environ-

ment for Arete. A MicroBlaze soft core runs debugging software, written in C, which

provides a GDB-like interface to the user. The debugging software handles low-level

model initialization and provides access to all model state during simulation. Linux

2.6.32 boots on Arete and we use Buildroot [20] to generate a cross-compilation

toolchain for the PowerPC architecture, and a root filesystem. We also run the

BusyBox package [21] which provides many common UNIX utilities.

55



PCPCIGe

Figure 3-9: A complete view of the FPGA implementation of Arete

3.3.2 Portability across FPGA platforms

As shown in Figure 3-9, the model communicates with three external resources: a

Xilinx multi-ported memory controller (MPMC) which provides access to DRAM, a

MicroBlaze soft core which runs debugging software, and a PC which provides access

to a text terminal. For a particular FPGA platform, we wrap the interfaces to the

three resources in order to present latency-insensitive, request-response interfaces to

the model. We have ported Arete to three FPGA boards: XUPv5, ML605 and BEE3,

which are shown in Figure 3-10. This portability does not require any modifications

to the design of the model; one only needs to specify appropriate values of certain

parameters before synthesis.

When porting a model to a multi-FPGA platform several issues arise. One of

the main issues is that the model has to be explicitly partitioned, and a different

configuration file has to be generated for each FPGA, which can become tedious.

We have made use of functionally-identical partitions and a distributed protocol for

assigning identifiers to each partition. Together they enable one configuration file to

program all the FPGAs with tremendous compute savings during compilation and

synthesis.

Another issue is that implementing a model on multiple FPGAs can alter its timing
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BEE3

Figure 3-10: Supported FPGA boards

behavior. For example, when a path that is modeled to be two cycles long, originates

on one FPGA and terminates on another, it might require six FPGA cycles. We,

however, are able to preserve the timing behavior at the model-cycle-level through

the use of the LI-BDN technique.

These features are similar to those developed in earlier projects. BORPH [22]

is an operating system designed for FPGA-based reconfigurable computers. It aug-

ments the Linux kernel with hardware processes which are hardware designs that

run on FPGAs, but behave like normal user programs. In order to allow hardware

processes to communicate with the rest of the system, BORPH provides them stan-

dard system services, such as file system access. Similarly, LEAP [23] provides a set

of device abstractions, communication mechanisms and useful services across many

FPGA platforms. The goal is to facilitate application development on FPGAs by

providing a standardized platform architecture.

3.3.3 Flexibility for architectural experiments

Due to our platform's modularity and parameterization, we were able to conduct vari-

ous architectural experiments on Arete with moderate effort. The design, verification

and evaluation of three branch prediction schemes and four cache line replacement

policies each required only 2 man-days worth of work. A significant overhaul of the

cache coherence protocol to support software management of caches was carried out

in 30 man-days. Moreover, detailed, cycle-accurate models of core and memory were

transformed into simplified models in 5 man-days.

The simulation platform has been used in two class projects in the graduate-
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Prototype LI-BDN Improvement

LUTs 105104 24153 4.35x

Flip flops 638678 16165 39.51 x

Block RAMs 0 43 -

DSP slices 12 12 1.OOx

FPGA frequency (MHz) 4.8 110 22.92x

FMR 1 9 0.11x

Effective frequency (MHz) 4.8 12.2 2.54x

Figure 3-11: Comparison of the prototype and the refined LI-BDN implementations
of PowerPC on the XUPv5 board. Model parameters: 1 tile, 1 in-order 10-stage
core, 64 KB 4-way associative Li caches, 512 KB 4-way associative L2 cache, 512 MB
DRAM

level course, Complex Digital Systems (MIT 6.375). It has also been adopted by

our collaborators at IBM Research and Barcelona Supercomputing Center in their

research.

3.3.4 Synthesis statistics

In section 2.4 we described how a refined LI-BDN implementation of a cycle-level

specification can achieve both higher performance and reduced resource utilization on

FPGAs. To gauge the impact of the use of the LI-BDN technique and implementation

refinements on Arete, we synthesized both the cycle-level specification of a single-core

processor model, that we call the prototype, and its transformed and refined LI-

BDN counterpart. The LI-BDN version of the model included such implementation

refinements as the 5-ported register file being simulated by a dual-ported block RAM,

and complex combinational logic with long critical path being simulated by its multi-

cycle counterpart.

Figure 3-11 shows the comparison between the two implementations. The refined

LI-BDN implementation uses a fourth of the LUT resources consumed by the pro-

totype and provides a twenty times speedup in the FPGA clock speed. The FMR

(FPGA to model cycle ratio) statistic listed in the table is the average number of

FPGA cycles used to simulate a model cycle. As mentioned before, the multi-cycle
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Branch prediction

Decode

ALU
LI I-cache

LI D-cache

TLB

Miscellaneous

PowerPC core

L2 cache

Directory controller

Network layer

Peripherals

Overall

Utilization

LUTs Flip
flops

357 611

1016 392

11134 4426

1982 1795

2923 2203

2330 896

5165 6137

24907 16460

4597 5407

3238 3674

5653 6816

5980 7207

69282 56024

71% 57%

Figure 3-12: Resource utilization for the refined LI-BDN implementation of the
PowerPC model and peripherals on the BEE3 board. Model parameters: 1 tile, 2
in-order 10-stage cores, 64 KB 4-way associative Li caches, 512 KB 4-way associative
L2 cache, 2 GB DRAM

implementation of complex combinational logic is infrequently used. This results in

an FMR of 9 for the LI-BDN implementation, even though it takes up to 32 FPGA

cycles to simulate some combinational logic. The low FMR allows the LI-BDN im-

plementation to provide a 2.5x improvement in performance over the prototype.

Figure 3-12 provides a detailed breakdown of the resources used by the various

modules in the refined LI-BDN implementation of a dual-core processor model on

one FPGA chip of the BEE3 board [24]. The first section of the table lists the major

components of the processor core, while the second section lists the components of

the tile. Figure 3-13 and Figure 3-14 provide the synthesis statistics for Arete on the

XUPv5 board and the ML605 board, respectively.

The dual-core processor implemented on the BEE3 board has a higher resource

utilization than that on the XUPv5 board, because it includes the coherence directory
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Flip Block DSP
flops RAMs slices

PowerPC core 24897 16458 43 12

L2 cache 3173 3319 24 0

Peripherals 1637 2354 0 0

Overall 54604 38589 110 24

Utilization 78% 55% 74% 37%

Figure 3-13: Resource utilization for the refined LI-BDN implementation of the

PowerPC model and surrounding peripherals on the XUPv5 platform. Model pa-

rameters: 1 tile, 2 in-order 10-stage cores, 64 KB

KB 4-way associative L2 cache, 1 GB DRAM
4-way associative LI caches, 512

Flip Block DSP
flops RAMs slices

PowerPC core 24180 16254 43 12

L2 cache 4215 5243 30 0

Peripherals 2454 3056 0 0

Overall 103389 73315 202 48

Utilization 68% 24% 49% 6%

Figure 3-14: Resource utilization for the refined LI-BDN implementation of the

PowerPC model and peripherals on the ML605 board. Model parameters: 1 tile,
4 in-order 10-stage cores, 64 KB 4-way associative Li caches, 512 KB 4-way associa-

tive L2 cache, 512 MB DRAM

and logic for main memory, the network model, and the inter-FPGA links, which are

absent on the XUPv5 board. Since the Virtex-5 FPGAs on the BEE3 board are much

larger than that on the XUPv5 board, the utilization ratios are not very different.

The ML605 board has a Virtex-6 FPGA, and the quad-core processor implemented

on it has the lowest utilization ratios.

3.3.5 Performance evaluation

We implemented an 8-core processor model on the BEE3 board, where each FPGA

chip was programmed to simulate one tile of the processor. We ran a subset of the
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Figure 3-15: Performance evaluation using the PARSEC benchmark suite running on
top of SMP Linux. Model parameters: 4 tiles, 8 in-order 10-stage cores, 64 KB 4-way
associative Li caches, 512 KB 4-way associative L2 cache, 4 GB DRAM

PARSEC benchmark suite on top of SMP Linux, and calculated the performance

using counters built into the model. Figure 3-15 shows the speedup for the various

benchmarks as the number of allocated cores increases from 1 to 8. For each bench-

mark, the speedup is normalized with respect to single-core performance. Ferret,

which is very communication intensive, and Freqmine, which is parallelized with

OpenMP, exhibit almost no speedup. The remaining benchmarks are parallelized

using the Pthreads library, and scale between 4 x to 8 x from 1 to 8 cores. When all

the 8 cores were allocated, the processor model was able to achieve a performance of

55 MIPS on average.
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3.4 Related work

3.4.1 Software-based multicore simulators

Many software-based multicore simulators have been developed in recent years. Rsim

is a discrete event-driven simulator written in C++ and C [25], and provides detailed

models of out-of-order superscalar processors connected via coherent shared memory.

It does not run an operating system and only models user-level activity of applications.

Simics [26] is a popular commercial functional simulator which, on the other hand,

can boot an operating system and run applications on top of it. Simics can be coupled

with detailed execution-driven performance models like Gems [27], and M5 [28]. Gems

and M5 provide accurate models of the memory hierarchy and the on-chip network

for a multi-core system allowing detailed evaluation of these components. Garnet [29]

is one such accurate model of the on-chip network which uses the Gems framework.

COTSon [30] is another multicore simulator framework based on AMD's SimNow [31]

which is a JIT-based dynamically-translating emulator. COTSon runs an operating

system and applications on top of it. The MPARM SystemC framework [32] is a

complete system-level simulator, and includes cycle-accurate cores, complex memory

hierarchies and bus-based interconnection mechanisms. A linux port for MPARM is

underway. BigSim [33] is another multi-core simulator which simulates a distributed

memory as opposed to the shared memory model that we simulate. All of the above

simulators are at least an order of magnitude slower than the FPGA-based Arete.

A recent multicore processor simulator called Graphite [34] targets systems with

thousands of cores. It relaxes cycle-accuracy to attain a higher simulation speed

ranging in tens of MIPS. Unlike Arete, Graphite is not a full system simulator, and

it does not run an operating system. ZSim [35] is another recent effort aimed at

simulating thousands of cores which improves on both the accuracy and speed of

Graphite by combining instruction-driven timing models of the core with event-driven

timing models of the memory subsystem.
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3.4.2 FPGA-based processor simulations

FPGA-based performance modeling of multicore processor architectures was kick-

started by the Research Accelerator for Multiple Processors (RAMP) project [36]

in 2005. The focus of the project was to explore the role that FPGAs can play

in accelerating computer architecture research. The RAMP project brought together

many collaborators from both industry and academia with the common goal of sharing

ideas, techniques and infrastructure for FPGA-based research.

In the early phase of the RAMP project, many teams implemented the RTL of

various processor designs, developed for ASIC implementation, on FPGAs. The goal

was to quickly come up with a large multicore design implemented across an array of

FPGA chips. This effort brought the realization that the RTL developed for ASIC

implementation is not very well suited to the FPGA fabric. The key idea that emerged

from this experience was that model time should be separated from FPGA time in

order to improve simulation speed and reduce resource utilization on FPGAs.

Our effort to build Arete was based on this idea, and so were RDL, FAST,

ProtoFlex, HAsim and RAMP Gold. We first give an overview of these projects

and contrast their modeling approach with ours. We then describe some of the other

work in FPGA-based modeling of multicore processors.

RAMP Design Framework (RDF)

The goal of RDF [37] was to enable high-performance simulation and emulation of

large-scale, massively-parallel systems on a wide variety of FPGA platforms, and to

enable a large community of users to cooperate and build a useful library of inter-

operable hardware models. RDF is designed to support a wide range of accuracy with

respect to timing, from cycle-accurate simulations to purely functional emulations.

In RDF, a target model is a collection of loosely coupled units communicating

using latency-insensitive protocols. All communication between units is via messages

sent over unidirectional point-to-point FIFO channels. Channels are strictly typed

with respect to the messages they can carry, but messages can be fragmented during
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transmission, to enable flexibility in implementation. To model channel latency and

bandwidth, credit-based flow control is used.

RDF channels require that the units in the target model communicate with each

other using FIFO interfaces. Moreover, credit-based flow control is convenient when

communicating units are separated by long latencies, but it is excessive when units

are closely coupled.

ProtoFlex

The main idea behind ProtoFlex [7] from Chung et al. is to accelerate SMARTS-

style simulations [1]. In this style of simulations only a few small samples extracted

from a large benchmarking application are run on a detailed processor model. The

remaining application is run on a functional simulator which does not keep track of

the timing of the target processor design. Since the functional simulator executes

orders of magnitude more application code than the detailed processor model, the

functional simulator can become the performance bottleneck.

Chung et al. perform the functional simulation of multicore processors on FPGAs

to obtain higher performance. Their FPGA-based functional model is then coupled

with a timing model under SMARTS-style simulation.

One of the key observations in the ProtoFlex work is that there is a class of in-

structions whose implementation in the functional model is very inefficient, both in

terms of FPGA resources and timing. These instructions, however, are very rarely

executed. Chung et al. decided to split the functional model between FPGA and soft-

ware. Whenever the FPGA-based functional model detects one of these instructions,

it migrates the model state and execution to a host PC. Once the software-based

functional simulation of the instruction completes, model state and execution trans-

fers back to the FPGA. Although the migration between FPGA and software is quite

expensive, since it occurs very infrequently, its impact on overall simulation speed is

negligible.

Another contribution made in this work is time-multiplexing of the FPGA-based

functional model. Chung et al. observed that when functional modeling migrates to
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software, the FPGA-based functional model remains idle. In order to improve the

utilization of their FPGA-based model, they decided to implement multithreading.

They also observed that the functional model of the processor pipeline on FPGA could

be greatly simplified if each pipeline stage executes a different thread. Thus elimi-

nating the need for hazard detection and stall logic. They implemented a functional

model which executes 16 threads simultaneously.

FPGA-Accelerated Simulation Technologies (FAST)

In FAST [9], Chiou et al. make the opposite placement decision for the functional

and timing partitions of the simulator than ProtoFlex. FAST uses a software-based

functional emulator to generate an instruction stream which is fed to an FPGA-

based timing model that combines cycle-level timing information with the stream.

Using this approach, Chiou et al. have also developed a high-performance multicore

simulator [38].

The functional emulator in FAST is based on QEMU [39], and includes support

for check-points and rollback. This allows the timing model to redirect the functional

emulator whenever the instruction stream diverges from the correct execution path,

as determined by the timing model. This approach differs from traditional software-

based timing-directed simulators in that the long redirection latency between the

FPGA and the host PC means that the functional emulator cannot stall for feedback

from the timing model after executing every single instruction. Instead, FAST uses

a speculative functional emulator which produces an instruction stream along a path

that it predicts the timing model will take.

HAsim

HAsim [8] is a framework for building FPGA-based multicore performance models

using a technique called A-Ports [4]. A-Ports are communication primitives that en-

able asynchronous modeling of synchronous systems using FIFO queues. A-Ports also

include a variable-length shift register for modeling the latency of modules that com-

prise the synchronous system. This modeling technique was the source of inspiration
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for the LI-BDN modeling methodology that we used to build Arete.

Using HAsim, Pellauer et al. developed a multicore simulator on FPGAs with

detailed core and network models [40]. Making use of time multiplexing, the largest

system that they have demonstrated on a single FPGA chip comprises of 16 cores,

but the cache model lacks support for cache coherence. In a more recent attempt [15],

Fleming et al. mapped HAsim to two FPGAs and scaled it to 128 cores. HAsim is

also a functional-timing partitioned simulator, but unlike ProtoFlex and FAST, both

partitions are accelerated on the FPGA substrate.

RAMP Gold

Tan et al. 's RAMP Gold [10] is also a partitioned, time-multiplexed simulator. Like

HAsim, RAMP Gold places both the timing and functional partitions on the FPGA

fabric. The aim of RAMP Gold was to study the scaling of the cache hierarchy in very

large multicore processor designs. To accomplish this goal, Tan et al. implemented

only one core on the FPGA in the functional partition. The core stalls only on cache

misses and its design is thoroughly optimized for the FPGA fabric. In the timing

partition of RAMP Gold, the functional core model is used to simulate a 64-core

shared-memory processor architecture.

The limitations of this work include the inability to model core architectures which

involve branch prediction or out-of-order execution. Although a detailed memory

model is included in the timing partition, it does not model cache coherence. Cache

coherence is ensured by sharing the level-1 caches among the 64 cores. The network

model comprises of a magic crossbar.

Other FPGA-based multicore processors

Many projects made use of the MicroBlaze softcore, the MIPS softcore or the PowerPC

hardcore found on FPGAs to build large multicore processors with detailed mem-

ory and network models. These projects include Liberty [41], RAMP Blue [42],

ATLAS [43], Beehive [44], Heracles [45], Beefarm [46], and FPGA-based MPSoC

emulation frameworks from Valle et al. [47] and Nava et al. [48]. We provide an
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overview of a few of these projects below.

Liberty [41] is originally a software simulator designed for implementation on a

parallel host by making use of barrier synchronization. Penry et al. 's work allowed

the migration of the software threads of the simulator to a PowerPC hardcore on a

Xilinx Virtex-IIPro FPGA. Additional logic was implemented around the PowerPC

core to correctly integrate it with Liberty's parallel task scheduler, and to stall it

when no thread was available. The thread executed much faster on the PowerPC

core, and the approach demonstrated that large speedups could be gained from such

a partitioning.

RAMP Blue [42] connected multiple BEE2 boards, each of which contains mul-

tiple FPGAs. Each FPGA was programmed to implement several MicroBlaze soft-

cores. The MicroBlaze cores were connected with a network that supported both

shared-memory and message-passing. Although RAMP Blue achieved several orders

of magnitude higher performance than software simulators, it did not model a realistic

target processor architecture.

ATLAS [43], also known as RAMP Red, is a multicore processor which was imple-

mented on the BEE2 board and included support for hardware transactional memory.

Similar to Liberty, ATLAS used the PowerPC hardcore found on some FPGA chips.

The PowerPC core was augmented with a transactional memory component. The

ATLAS project also demonstrated several orders of magnitude higher simulator per-

formance compared to software.

The Beehive processor [44] is an experimental many-core computer implemented

on a single FPGA on the XUPv5 board. The processor cores were based on a new

RISC ISA which was designed to be easily understood and readily modifiable. The

cores included private, split level-i caches which lacked cache coherence. A ring

network connected all the cores to each other and to main memory.

Discussion

Arete differs from earlier FPGA-based simulators in that Arete was developed using

a cycle-level specification of the target processor design. This specification was trans-
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formed into FPGA-optimized RTL using the LI-BDN technique which makes Arete

cycle-accurate by construction. Moreover, we maintain a clear distinction between

target simplifications and implementation refinements described in Section 2.2.3.

3.5 Summary

We have presented a fast and cycle-accurate simulator for a multicore PowerPC archi-

tecture. The simulator accurately models a shared memory subsystem which includes

a cache coherence engine. We are able to run off-the-shelf SMP Linux along with sev-

eral applications. We have also ported the simulator to several FPGA platforms

with both single and multiple FPGAs. The simulator is highly parameterized and

modular, and we have demonstrated its flexibility by performing various architectural

experiments with moderate effort.

We employed some novel ideas to provide a user-friendly simulation infrastructure.

(I) A distributed debugging environment using the LI-BDN technique enables us

to independently freeze any module in any model cycle. We provide its details

in Chapter 4.

(II) Functionally-identical partitions and a distributed protocol for assigning iden-

tifiers makes it possible to use one configuration file for all the FPGAs in a

multi-FPGA platform.

FPGA-based modeling has come a long way in the past few years. Although

it offers substantially higher simulation speed than software, a few key issues have

prevented its widespread adoption for architectural research. We have addressed these

issues in the design and development of Arete.

(I) Programmability: FPGAs are typically programmed in low-level RTL lan-

guages like Verilog or VHDL. Designing a large and complex system in RTL

requires a tremendous effort. Moreover, these designs are very inflexible for

architectural exploration. These issues are mitigated by the use of a high-level

specification language and BSV.
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(II) Resource management: Unlike software simulators, FPGA-based simulators

have hard resource constraints. To meet these constraints, one has to either

time-multiplex the limited resources or map the system to multiple FPGAs.

Both approaches can result in a loss of efficiency if the cycle-by-cycle timing

behavior of the implemented design has to be preserved. The LI-BDN technique

provides a much more efficient solution because it decouples implementation

from specification, and only preserves the timing behavior of the specification.

(III) Interfacing with off-chip memory or host PC: These interfaces tend to be quite

complicated and ill-documented. We have minimized this problem by wrap-

ping these low-level interfaces with split-transaction (send/receive) interfaces.

We have done this to port Arete to the three FPGA boards that are being

commonly used for academic research.

69



70



Chapter 4

Deterministic, Model-Cycle-Level

Debugging of Synchronous Systems

Modeled Asynchronously1

4.1 Introduction

As designs of digital systems continue to become more complex, designers are increas-

ingly adopting FPGAs for both performance modeling and rapid prototyping. The

FPGA fabric allows designers to exploit the inherent parallelism in these systems,

and delivers a tremendous performance improvement over software. As mentioned

in Chapter refchap:Spec, this adoption comes at a price. Parts of the target system

being modeled or prototyped often do not map well to the structures in the FPGA

fabric, in terms of both resources and timing. And the solution to the problem is to

implement the synchronous behavior of the target system in an asynchronous manner

on the FPGA, decoupling the model cycles from the FPGA cycles.

Debugging is an integral part of the design effort. A comprehensive debugging

infrastructure needs to provide model-cycle-level access to all the pertinent state in the

system. Providing such low-level access is not straight-forward in such asynchronous

'The work presented in this chapter includes contributions from Muralidaran Vijayaraghavan.
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implementations of synchronous systems as described above. Taking a snapshot of

the state in a certain FPGA cycle is possible, but the snapshot may contain values

of state elements from different model cycles. Either the lagging modules have to

be advanced or the hastening modules have to be rolled back in order for the state

snapshot to reconcile to a particular model cycle.

At a high level, a designer should be able to issue a stop(modelCycle n, state

S) command, which will freeze the entire system in model cycle n and provide the

values of all the state elements included in vector S. A start (state S) command

will also be needed to resume the operation of the asynchronous implementation with

the state elements initialized to the values specified in vector S.

Parallel systems with inherent non-determinism, such as multicore processors run-

ning parallel applications, offer yet another challenge for debugging. A large body

of work [49, 50, 51, 52] exists that strives to achieve deterministic execution. To cir-

cumvent the non-determinism in the system, these solutions have to keep a log of all

the non-deterministic events, the performance and resource overheads of which can

be prohibitive.

In this chapter we present 1) a technique for building a deterministic model-cycle-

level debugging infrastructure, based on the LI-BDN modeling methodology, and 2)

an application of the technique to build a comprehensive debugging infrastructure for

Arete [3], which is an FPGA-based multicore processor simulator.

We show that the debugging infrastructure in Arete provides a rich set of features,

while incurring small resource and performance overheads. It allows for stopping and

starting any module in the processor model independently by making a novel use

of the provisions of the LI-BDN methodology, and avoids complex forwarding and

rollback mechanisms. It also allows us to remove the non-determinism from events

such as DRAM access, network access and I/O, without keeping expensive logs.

Chapter organization: Section 4.2 presents the various debugging techniques used

in FPGA-based models and prototypes. Section 4.3 describes how deterministic

model-cycle-level debugging can be implemented using LI-BDNs. Section 4.4 dis-

cusses the debugging infrastructure in Arete, a multicore processor simulator, and
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Clock control Deterministic Resource-performance
type execution support overhead

Scan chains None No Substantial

SCE-MI-based FPGA No Substantial

ISA-based None No Moderate

Asynchronous models Modela Possible Substantial

LI-BDN-based Model Yes Minimal

arequires a forwarding or rollback mechanism

Figure 4-1: Summary of the comparison between the LI-BDN-based debugging tech-
nique and other common debugging techniques used in FPGA-based designs

presents statistics on its resource and performance overheads. Section 4.5 provides a

summary of our work.

4.2 Survey of debugging techniques for FPGA-

based designs

In this section we discuss some of the common debugging techniques used in FPGA-

based designs. Figure 4-1 provides a summary of the comparison between these

techniques and the technique based on the LI-BDN methodology that we present in

this chapter.

4.2.1 System monitoring through scan chains

System monitoring solutions based on scan chains [53, 54, 55, 56] are perhaps the most

widely used tools for debugging FPGA-based designs. They integrate logic analyzers

and other test and measurement cores with the target design on FPGA. A remote

graphical user interface communicates with these cores, and provides the designer

with a logic analyzing solution.

In ChipScope [53], for example, the designer generates integrated logic analyzer

(ILA) cores for all the modules in his design that he wishes to monitor. The ILA cores

are customizable and include logic for detecting trigger events. They also include logic
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for capturing and storing data using on-chip Block RAMs. An integrated controller

(ICON) core is then used to provide communication between all the ILA cores and

the software running on a host PC. The communication takes place over the JTAG

boundary scan port of the FPGA. The ILA cores and the ICON core can be integrated

into the design at either the HDL-source-code-level or the synthesized-netlist-level.

Although these tools provide some very useful features for debugging synchronous

designs, they lack control over both the FPGA and the model clocks. Moreover, the

monitoring cores are synchronous and use the FPGA clock. To use these tools for

debugging synchronous designs implemented in an asynchronous manner, the designer

would have to develop forwarding and rollback mechanisms to be able to construct

model time accurately. He would also have to develop some means of operating

the monitoring cores using the model clock. These tools do not include support for

deterministic execution, and the cost of comprehensively monitoring large designs

may be prohibitive.

UltraSOC [57] and ARM CoreSight [58] are similar debugging tools targeted to-

wards SoCs.

4.2.2 SCE-MI-based emulation environment

An emulation environment based on the SCE-MI standard, such as Bluespec emVM [59],

comprises of an FPGA configured with a hardware design and a host PC running the

emulation console. The FPGA and the host PC are connected by a physical link

such as PCIe, ethernet, RS-232, etc. The emulation console communicates with the

components of the hardware design through implementation-independent transac-

tors. These transactors allow the designer to start and stop the FPGA clock. They

also allow control over the hardware design in the form of reset and various testing

and debugging tasks. Probing functionality such as waveform viewing is also often

provided.

Although the provided set of monitoring and debugging features is not as extensive

as that in ChipScope, SCE-MI based emulation environments provide the ability to

freeze the entire synchronous design in any FPGA cycle. However, for debugging
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synchronous designs implemented in an asynchronous manner, the designer would

face the same set of challenges as he would with ChipScope. A lack of support for

deterministic execution and substantial resource and performance overheads also limit

the appeal of such tools.

4.2.3 ISA-based debugging

When using FPGAs for modeling processors, designers also have the option of imple-

menting the debugging facilities prescribed in the ISA. These facilities enable debug-

ging functions, such as reset, instruction and data breakpoints, and single-stepping

of programs. They generally consist of debug control and status registers, address

and data value comparison registers, and a debug interrupt. Whenever a debug event

takes place, it raises a debug exception (if enabled by setting the appropriate bits

in the control register). A debug interrupt handler routine is then invoked which

performs the appropriate debug operation.

ISAs also include instructions, such as Debugger Notify Halt (DNH) in the Power

ISA [18], which cause the processor to stop fetching and executing instructions, and

allow the processor to be managed by an external debugging facility. Such a facility

is allowed to access processor resources and control its execution.

Although ISA prescribed debugging facilities provide fine-grained control over

the processor's resources, they may be quite difficult to implement. For instance,

implementing a precise debug interrupt in an out-of-order processor can be quite

cumbersome.

4.2.4 Debugging in various asynchronous FPGA-based

models

Various FPGA-based simulators that rely on asynchronous modeling of synchronous

designs, such as ProtoFlex [7], UT-FAST [9], RAMP Gold [10] and HAsim [8], im-

plement debugging facilities in an ad-hoc manner. They need to implement forward-

ing and rollback mechanisms in order to achieve model-cycle-level debugging. In
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ProtoFlex, printf-like statements are added to the generated RTL to provide moni-

toring during software simulation of the RTL. The Connectors in UT-FAST include

support for triggering, logging of traces and user-specified aggregation. RAMP Gold

embeds a microcode injector into the functional processor pipeline for debugging and

simulation control. HAsim provides a distributed mechanism for model-cycle-level

control which involves waiting for all the A-Ports to become balanced, at which point

all the modules are in the same model cycle.

4.3 Debugging using the LI-BDN technique

The major requirement for debugging a large and complex model is to have the ability

to freeze it in a particular model cycle so that a precise snapshot of all the state can

be obtained. This requirement gets quite tricky when the synchronous specification

of a target design is decoupled from its platform-specific implementation. A designer

typically requires the values of the state during a particular model cycle as opposed

to the implementation cycle. Even if the entire implementation is frozen during a

particular implementation cycle, various asynchronous modules in the implementation

have to either rollback or advance so that the entire design converges to a particular

model cycle. Such an ability is similar to taking a snapshot of the architectural state

of an out-of-order processor for precise exceptions.

We present a novel technique, based on the LI-BDN theory, for freezing an asyn-

chronous implementation of a synchronous design during a particular model cycle.

The technique does not involve forwarding or rollback of modules. Instead, we make

use of the property that a model cycle of an LI-BDN module completes only when all

the outputs have been enqueued, all the inputs are available and have been dequeued,

and all the state elements have been updated.

As shown in Figure 4-2, we introduce a new input, proceed, to the LI-BDN register

file module from Figure 2-7(b). This new input does not alter the specification of the

register file module in any way as it is completely ignored. We also add debugging

logic, and debugReq and debugResp FIFOs to the module. An external debugger can
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Block
RAM

proceed debugReq debugResp

Figure 4-2: LI-BDN register file module with support for model-cycle-level debugging

freeze the module in model cycle n by enqueuing a Normal token n - 1 times into the

proceed input FIFO and enqueuing a Debug token the nth time. Once the module

receives a Debug token, it enters the debug mode and waits for debug commands

that are sent through the debugReq FIFO. The debug commands can either read or

update the Block RAM. Responses for Block RAM read requests become available one

cycle after the request is made, and are sent back to the external debugger through

the debugResp FIFO. When the external debugger sends a Finish command, the

module leaves the debug mode, updates the Block RAM, dequeues all the LI-BDN

input FIFOs, resets all the done flags and proceeds onto the next model cycle. The

highlighted code in Figure 4-3 shows the debugging logic added to the LI-BDN register

file module. Only the parts that deal with rf are specific to the register file module,

the rest can be added to any LI-BDN module for debugging.

Although sending a token to every LI-BDN module on every model cycle is expen-

sive, because very few modules contain state that needs to be accessed for debugging,

the area overhead of our debugging technique remains quite modest, as we will show

in Section 4.4. Moreover, since the debugging facility is not on the critical path, its

performance overhead is negligible.
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libdn regFile
{

LiBdnIn rdRegl , rdReg2, upd , ptod ;
LiBdnOut valRegi, valReg2;
fif oKn debugftq-,*
Fif*Qut dobugftap;
BlockRAM entries[ sizeRF I rf ( initial 0 );

Reg rdlStart, rd2Start ( initial False );

rule rdl

{
if( !valRegl.done && !valRegl.full && !rdRegl.empty

&& !upd.empty && !rdlStart )
{

rf.reqi( Read, rdRegl.first, DontCare );
rdlStart <= True;

}

if( rdlStart )
{

valRegl.enq( upd.first.valid && rdRegl.first == upd.first.idx ?

upd.first.val : rf.respl );
valRegl.done <= True;
rdlStart <= False;

}
}

rule rd2
{

if( !valReg2.done && !valReg2.full && !rdReg2.empty &&

!upd.empty && !rd2Start )
{

rf.req2( Read, rdReg2.first, DontCare );

rd2Start <= True;

}

if( rd2Start )
{

valReg2.enq( upd.first.valid && rdReg2.first == upd.first.idx ?
upd.first.val : rf.resp2 );

valReg2.done <= True;
rd2Start <= False;

}
}

Figure 4-3: FPGA-optimized LL-BDN register file module with support for debugging
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rule finish
{

if( valRegi.done && valReg2.done && !proceed.epty )
{

ift( proceed.first == Normal)

if( upd.first.valid )
{

rf.reql( Write, upd.first.index, upd.first.val );
}
rdRegl.deq; rdReg2.deq;
upd. deq;

proceed.deq;
valRegl.done <= False; valReg2.done <= False;

}
else if( !debugRe.empty)
{

if( debug4eq.first.type == Read !debugResp.full

if( C rdlMtart
{

rf.rel( Read, debugReq.first.indez, DontCare);
rdlStart <= True;

}

?eu~s.a4q( f.rnspl)
rdlStttt <= Faine;

}}
}}

rf.reql( MWite LbgNWq irsteide, m uewihs t fr debgg.v

(t( pont.rst)ald

tt trqt( Write, bpd-tirst4*4fl., upd~firot.v4),

r4dRrv.Aq r4dt~2dq;

va1Rgt 4on <= False; valRqe done <= False;

dobugRn-fle;

Figure 4-3: FPGA-optimized LJ-BDN register file module with support for debugging
(cont.)
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4.3.1 Correctness of the LI-BDN-based debugging technique

An LI-BDN module obtained through the transformation discussed in Section 2.4 has

the following properties.

1. It simulates a model cycle by first producing all the outputs once (in an order

determined by the availability of the inputs), followed by the firing of the f inish

rule.

2. It can take multiple implementation cycles to produce an output or to fire the

f inish rule.

3. The output rules can fire concurrently, but cannot fire in parallel with the

f inish rule. The f inish rule acts as a barrier and prevents output rules from

refiring before the model cycle is completed.

4. The LI-BDN transformation of any synchronous specification is fully automated,

and we assume that it is correct.

We establish the correctness of the LI-BDN-based debugging technique through

the following arguments.

1. The additional input, proceed, introduced for debugging, only affects the firing

of the f inish rule. The f inish rule waits for a proceed token to arrive before

firing, which can result in a prolonged model cycle. The latency of an LI-

BDN module, i.e., the number of implementation cycles consumed to simulate

a model cycle, can be varied without affecting the correctness of the module.

2. The external debugger has to enqueue a proceed token, either Normal or Debug,

for every model cycle. This ensures that every model cycle completes and

forward-progress is made.

3. proceed is added to every LI-BDN module containing model state which needs

to be monitored for debugging. Even though communicating LI-BDN modules

may consume different number of implementation cycles to simulate the same
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model cycle, proceed in a particular module remains independent of others,

and it is consumed when the finish rule in its module is fired.

4. The additional FIFOs, debugReq and debugResp, are out-of-band communica-

tion links that remain outside the scope of the LI-BDN. The debug commands

delivered by the debugReq FIFO are only serviced when the module is in the

debug mode, which can only be activated after all the outputs are enqueued,

but before the model state is updated. The LI-BDN resumes normal operation

upon leaving the debug mode.

5. The debugging logic does not introduce any new behaviors into the target design

being modeled. It only allows for reading and writing of model state when the

LI-BDN module is in the debug mode.

Debugging logic, as in the case of the register file example above, can be introduced

into an LI-BDN module such that it remains completely disjoint from the LI-BDN

control logic in the module. This is evident from the highlighted code in Figure 4-3.

4.3.2 Deterministic execution

There are many sources of non-determinism in complex, parallel systems such as the

randomness of the DRAM access latency. This complicates the debugging further

by prohibiting deterministic replays. The use of LI-BDNs in modeling provides an

opportunity to suppress the non-determinism. In the case of DRAMs, the access

latency can be fixed to any desired value. This is possible because the LI-BDN

can utilize different numbers of FPGA cycles to simulate different model cycles, and

accommodate the randomness appropriately. The enqueuing of the output FIFOs (or

the dequeuing of the input FIFOs) can happen when the non-deterministic event has

taken place.

As an example, we will show how a DRAM module with a non-deterministic read

latency is converted into an LI-BDN module with a deterministic read latency, viz, a

combinational read. Figure 4-4 presents the synchronous specification of a memory
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module memory
{

Input req;
Output resp;
DRAM dram;

every clock cycle

{
dram.req = req;
resp = dram.resp;

}
}

Figure 4-4: Synchronous specification of a DRAM module with non-deterministic
read latency

module that uses a DRAM. Both req and resp have associated valid bits. The

system which uses this module makes req valid for only one cycle, consumes resp in

the cycle in which resp is valid, and does not make another valid req until it receives

a valid resp. dram has a non-deterministic response time, and produces a response,

dram. resp, which is valid for only one cycle.

Figure 4-5 presents the LI-BDN module of the non-deterministic memory mod-

ule shown in Figure 4-4. It increments model time irrespective of the validity of

dram.resp. tempResp ensures that a valid dram.resp is not dropped. In this case,

every model cycle is simulated in two implementation cycles.

Figure 4-6 presents the LI-BDN memory module with combinational reads. If

req is valid in a model cycle, the LI-BDN module sends it to dram, and waits, with-

out incrementing the model cycle, until dram. resp becomes valid. When dram. resp

becomes valid, the LI-BDN enqueues it into resp and completes the model cycle by

dequeuing req. This LI-BDN module may consume a varying number of implementa-

tion cycles, depending on the dram latency, to simulate difference model cycles. Even

though dram can take a non-deterministic number of FPGA cycles to produce a valid

response, model cycles are incremented deterministically leading to deterministic ex-

ecution.

The two LI-BDN modules presented in Figures 4-5 and 4-6 model different memory

modules, but both fulfill the NED and SC requirements, and are deadlock-free.
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libdn memory

{
LiBdnIn req;
LiBdnOut resp;
DRAM dram;
Reg tempResp ( initial Invalid );

rule tempRule

if( !tempResp.valid )
f

tempResp <= dram.resp;

}
}

rule respRule

if( !resp.done && !resp.full )
{

resp.enq( tempResp );
resp.done <= True;
if( tempResp.valid )
{

tempResp <= Invalid;
}

}
}

rule finish

{
if( resp.done && !req.empty )
{

dram.req = req.first;
req. deq;
resp.done <= False;

}
}

}

Figure 4-5: LI-BDN DRAM module with non-deterministic read latency
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libdn memory

{
LiBdnIn req;
LiBdnOut resp;
DRAM dram;
Reg start ( initial False );

rule respRule

if( !resp.done && !resp.full && !req.empty && !start )
{

if( req.first.valid )
{

dram.req = req.first;
start <= True;

}
else
{

resp.enq(
resp.done

}
}
if( dram
I

}

Invalid );
<= True;

.resp.valid )

resp.enq( dram.resp
resp.done <= True;
start <= False;

rule finish

{
if( resp.done )
I

I

req. deq;
resp.done <= False;

Figure 4-6: LI-BDN DRAM module with combinational reads
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4.4 LI-BDN-based debugging infrastructure for a

multicore processor model: A case study

Using the LI-BDN-based debugging methodology described in Section 4.3, we built

a comprehensive debugging facility for Arete [31, which is an FPGA-based cycle-

accurate multicore simulator. Arete may be implemented as a distributed multicore

simulator on a multi-FPGA platform, which requires the debugging infrastructure to

be implemented in a distributed manner. We make use of the tiled microarchitecture

of the processor to partition the model among various FPGAs in such a way that

only one configuration file can be used for all the FPGAs. This enables a simple

replication of the debugging facilities, but complicates the design of the controller.

The distributed debugging facilities in FPGA are controlled by a software run-

ning on a MicroBlaze soft core. The MicroBlaze core communicates with the model

through the PLB. The software presents a GDB-like interface to the user. Its features

include model initialization, break points, single-stepping, access to processor state

such as program counter, general purpose registers (GPRs), special purpose registers

(SPRs), TLB array, and data and tag arrays in caches, and access to performance

counters which include model cycles, FPGA cycles, instructions, stalls due to data

and control hazards, and cache hits and misses. Figure 4-7 presents a screen shot of

the debugging capabilities provided by the debugging software developed for Arete.

Figure 4-8 shows the debugging facilities incorporated into a core in Arete. These

FPGA-based facilities include logic and state for

o model initialization, which may be done in a distributed manner on a multi-

FPGA platform, and requires assigning a unique identifier to each of the iden-

tical model partitions,

o distribution and accumulation of debugging and performance information from

various tiles, cores and modules,

o instruction address, data address and model cycle comparisons for freezing Arete

in a particular model cycle.
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The following commands can be issued at any time

freeze
The following commands operate only when the system is paused

help
exit
resume
getResume
getPc
setPc <addr>
setTlb <index> <data>

getTlb
getEpochs
getModelCycles
setModelCycles <n>
getHostCycles

setHostCycles <n>

getReg <index>
setReg <index> <data>

getMas

getTb
getInstCount

setInstCount <n>

getPrivInstCount
getMispreds
getExceps

getWrngPaths
getRAWStalls
getIStats
getDStats
getL2Stats
getBreakAddr

setBreakAddr <addr>
removeBreakAddr

getBreakCount
setBreakCount <n>

removeBreakCount
step <n>

setTID
setCoreO
set2Cores
set4Cores

set8Cores
getMem <addr>
setMem <addr> <data>

Figure 4-7: A screen shot of the debugging capabilities provided by the debugging
software developed for Arete
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Figure 4-8: Arete core with model-cycle-level debugging facilities

The use of the LI-BDN modeling methodology in building Arete also enables us

to provide deterministic execution of parallel applications on the multicore processor

model. We make the observation that the three sources of non-determinism in Arete

are memory, on-chip network, and external inputs. We transform the DRAM along

with the memory controller, and the on-chip network (implemented in a distributed

manner on multiple FPGAs) into LI-BDN modules. This allows us to fix their la-

tencies in the manner described in Section 4.3.2. We deal with external inputs by

freezing the model whenever the program expects such an input. This ensures that

the external input is always received in the same model cycle. Both of these tech-

niques have very low resource and performance overheads, and help to avoid keeping

expensive logs of non-deterministic events.

Figure 4-9 shows the minimal overhead of including the deterministic model-cycle-

level debugging facility in Arete. It causes an increases of 5% in resource utilization,

and reduces FPGA clock frequency by 6%. As described in the register file exam-

ple in Section 4.3, the debugging facility requires limited additional state and logic
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Without With
debugging debugging

LUTs 61155 64154 +5%

Flip flops 49359 51331 +4%

Block RAMs 111 111 0%

DSP slices 24 24 0%

FPGA clockFPG clck125 117 -6%
frequency (MHz)

Figure 4-9: Resource and performance penalties of the debugging infrastructure in
Arete. Model parameters: 1 tile, 2 in-order 10-stage cores, 64 KB 4-way associative
L1, 512 KB 4-way associative L2

resources, and the overhead is expected to scale linearly with model size. Moreover,

the debugging facility has no impact on the average number of FPGA cycles required

to simulate a model cycle, which remains 9.

4.5 Summary

In this chapter we presented a debugging technique based on the LI-BDN modeling

methodology. The technique facilitates deterministic model-cycle-level debugging,

while avoiding both forwarding or rollback mechanisms for model-cycle-level con-

trol, and logging of non-deterministic events for deterministic replay. We used the

technique to build the debugging infrastructure for Arete, which is an FPGA-based

cycle-accurate multicore simulator. The debugging infrastructure provides a rich set

of features, while incurring small resource and performance overheads.
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Part II

Architectural Exploration Using

Cycle-Accurate Simulation
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Chapter 5

Impact of Modeling Abstractions

on the Accuracy of Single-Core

Processor Simulations

5.1 Introduction

Suppose we want to evaluate three different branch prediction schemes in the context

of an in-order processor pipeline. A more sophisticated prediction scheme may pro-

vide a higher rate of instructions per cycle (IPC), but at the cost of some chip area

and power consumption. So a proper evaluation requires a quantitative cost-benefit

analysis. One also has to realize at the onset that any such study is constrained by

time and resources. For example a company may assign two engineers and give them

three to six months to conduct the study. In this chapter we focus on quantitatively

estimating the benefit of each branch predictor and ignore the question of cost.

Such studies are typically performed by running a suite of benchmark programs

using software simulators of the proposed architecture. Often a simulator for one of

the closely related machines is available and the experimenter repeatedly modifies it

to incorporate architectural features to be studied. Some of the perennial questions

in any such study are:
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1. Is the simulator detailed and accurate enough for what one wants to study? For

example, for studying branch predictors one must be able to study the effect of

instructions executed on the mispredicted path.

2. Is the simulator flexible enough so that it can be modified to study each alter-

native design? For example, for our study the simulator must be modifiable to

incorporate any of the three branch predictors.

3. Is the simulator fast enough so that the benchmarks of interest can be run to

completion in a reasonable amount of time?

4. Does the simulator have the capacity (e.g., memory) to run the benchmarks on

the data sets of interest?

Some published architectural studies are conducted using simulators that abstract

away many details of the cycle-accurate models. Though many researchers have

pointed out the dangers of unvalidated simulation models (see, for example [60, 61,

62, 63, 64, 65]), validation of simulation results against real machines or cycle-accurate

models is quite uncommon in published literature.

In this chapter, we quantitatively evaluate the accuracy of two abstract architec-

tural models used for estimating the performance of three branch prediction schemes.

We modified our base cycle-accurate simulator, Arete [3], for three different branch

predictors. These are 1. an always not-taken predictor (the ANT scheme); 2. a

2-bit branch direction predictor (the BHT scheme); and 3. a branch predictor with

a branch target buffer in addition to the direction predictor (the BTB scheme). The

architectural abstractions we studied were a) one where the memory hierarchy is re-

placed by a one-level memory combined with a statistical model parameterized by the

estimated number of cache misses (the AbsM model); and b) one where the back-end

(execute part) of the processor pipeline is replaced by a single stage and a statistical

model is used to inject stalls due to data hazards (the AbsME model).

As architects we would expect the BTB scheme to perform better than the BHT

scheme and the BHT scheme to perform better than the ANT scheme, though it would
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be difficult to guess by how much. Similarly, we would expect the AbsM model to

be more accurate than the AbsME model, provided we can find the right parameters

to plug into the abstract models. Can we estimate the cache miss rates and pipeline

stalls for each of the architectures without its cycle-accurate model? Do we expect

the cache miss rates or pipeline stalls to be different for each branch predictor? The

answers to these questions depend upon the behavior of the instructions executed on

the mispredicted path. For meaningful conclusions to be drawn from our architectural

study, the errors in predictions using abstract models should be significantly less than

the quantitative differences predicted by our abstract model studies.

Our study shows that the AbsM model was highly accurate and captured the

impact of changing the branch predictors correctly, both quantitatively and quali-

tatively. However, when the execution pipeline abstraction was added (the AbsME

model), the accuracy of the model dropped considerably, so much so that one may

conclude there was no significant advantage of the BHT scheme over the ANT scheme.

The parameters used in the abstract models (like the cache hit rate, the number of

stalls in the pipeline due to RAW hazards, etc.) have a big impact on the accuracy of

the abstract models. Finally, we argue that to validate abstract architectural models,

it is essential to build cycle-accurate models and it is practical to do so.

Chapter Organization: Section 5.2 discusses some of the related work. Section 5.3

discusses the memory and execute/stall abstractions that we employed in our abstract

models in greater detail. It also examines the accuracy of the abstract models with

respect to the cycle-accurate models. Section 5.4 provides a summary of our findings.

5.2 Related work

There is a substantial body of work to improve the speed of software simulators with-

out compromising the accuracy of performance estimates. Yi et al. discuss various

simulation methodologies that have been developed to reduce the number of instruc-

tions of a benchmark that a simulator needs to execute to predict the performance

for the full run of the benchmark [63]. The three common techniques are: 1) re-
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duced input-set simulation where a smaller but supposedly representative input set

is used for the benchmarks, 2) truncated execution where the execution is stopped

after running a fixed number of instructions, and finally 3) the sampling techniques

where performance is estimated by running randomly or periodically sampled instruc-

tions on the benchmarks. Their paper concludes that the sampling technique is both

the fastest and the most accurate. Our studies confirm the validity of the sampling

technique.

Papers [60, 61, 62] describe how abstractions in simulators can reduce the ac-

curacy of the performance estimates. Desikan et al. [60] compared the Sim-Alpha

simulator, which is an out-of-order simulator implemented according to the specifica-

tion of Alpha 21264 microarchitecture, against a real Compaq DS-10L workstation.

They recommend the use of microbenchmarks to calibrate the simulators against real

machines. To avoid errors due to incorrect parameters, they recommend using cache

hit ratio, etc. from published documents or from real machines. Our studies confirm

that the choice of parameters affects the accuracy of predictions made by the abstract

models substantially.

Cain et al. [61] again argue the need for high-precision (i.e., non-abstract) models

and actual workloads in order to correctly predict performance of real designs. They

show that OS and I/O effects drastically impact the accuracy of performance predic-

tions. But Cain et al. also assert that simulating instructions on the mispredicted

paths is largely unimportant for performance predictions. One cannot take this as-

sertion literally if the goal is to study various branch-prediction schemes. Indeed our

results show that inaccurate modeling of the behavior of mispredicted instructions is

the main reason for the decrease in accuracy of abstract models.

Bose et al. [62] argue that detailed simulation is expensive and not plausible

(This was probably a true assertion given the simulation technology of the time

when their paper was published). Instead they say that one should build abstract

simulators and these simulators must be calibrated against existing real machines

by running microbenchmarks that target specific portions of the machines such as

cache behaviors, loop executions, etc. Again the issue with this approach is that
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the new machine to be designed is going to be different from any existing machine

thus invalidating the calibration parameters obtained from the existing machines. We

show that even the slightest variation in parameters (obtained from a different but

close enough architecture) can cause huge inaccuracies in simulation.

Black et al. [64] give an instructive overview of simulation techniques. They iden-

tify the three basic kinds of errors: modeling errors (the errors in simulator code),

specification errors (the specification of the target architecture is erroneous resulting

in an erroneous simulator) and abstraction errors (errors that creep in because of

modeling a system with insufficient detail). They describe the design process used

by microarchitects, where they start out with a crude simulation model and system-

atically refine it, adding more features and details, and fixing bugs in the process, in

order to create a detailed simulator of the target architecture. Our work supports

most of the assertions made by Black et al. . They also claim that model refinement

does not improve the accuracy of the model monotonically which is confirmed by our

study.

Similar to Black et al. , Skadron et al. [65] give an overview of the state of affairs in

simulation technologies and provide recommendations on how computer architecture

evaluation techniques can be improved. They argue that designing benchmarks, both

micro and macro, is paramount for accurately predicting the performance of the

system being designed. They also claim that analytical modeling techniques are not

very well studied and that these will become important given the trend in computer

architecture to move towards multi-core architectures which will further slow down

the already slow simulators. They also say that the impact of abstractions on the

accuracy of performance projections is not well understood and several studies have

to be done in order to classify specific abstractions as good or bad.

We argue that detailed cycle-accurate simulations are necessary to validate ab-

stract models. Our solution is to build cycle-accurate models on FPGAs. This not

only enables validation of abstract models but also offers huge gains in simulation

speeds of cycle-accurate models. The technology for building cycle-accurate simula-

tors on FPGAs is improving and the library of components for building such simu-
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lators is growing. We believe that in the next few years it will become as easy to

build cycle-accurate simulators on FPGAs as it is to build cycle-accurate software

simulators.

5.3 Comparison of branch predictors using cycle-

accurate and abstract models

We evaluated the three branch prediction schemes (ANT, BHT and BTB) for the in-

order PowerPC pipeline by building three architectural variants of the cycle-accurate

processor model (the ACC models) on the XUPv5 FPGA platform with the following

configuration.

Tiles lx

Cores 1 x, in-order, 10-stage PowerPC

1 x, private, 64 KB, 4-way set-associative, 64B blocks,
Li I-cache

1 cycle pipelined hit latency

L1 D-cache 1x, private, 64 KB, 4-way set-associative, 64B blocks,

1 cycle pipelined hit latency

1 x, shared, inclusive, 512 KB, 4-way set-associative, 64B blocks,
L2 cache

32 cycle pipelined hit latency

Main memory 1x, 512 MB, 256 cycle latency

Figure 5-1 shows the IPCs for each of these models while running an off-the-shelf

32-bit Linux kernel and 5 benchmarks selected from the SPECINT2000 suite. The

ANT scheme is used as the baseline. These statistics show that the BHT scheme pro-

vides a 9% to 21% improvement in IPC over the ANT scheme while the BTB scheme

provides an additional 1% to 15% improvement. This is the type of performance that

we would expect if we actually built these machines.

In the rest of this section we want to study how close we could have come to this

conclusion using abstract models. To reiterate, the reasons for considering abstract

models are that they may be easier to implement and may run faster, especially
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Figure 5-1: Effect of different branch prediction schemes on IPC, obtained from the
ACC models. Baseline scheme is ANT.

in software. For each of the two abstract models, we will first provide its detailed

description and then exercise it using parameters obtained from the cycle-accurate

models. Finally, we will quantify the error in results obtained from it. At the end of

the section we will discuss a study based on sampled execution of benchmarks.

5.3.1 Model with memory abstraction (AbsM)

In this model all cache accesses are serviced directly by a flat memory model but

a certain percentage of accesses are treated as cache misses and charged a longer

latency. We divide the overall number of cache requests (at both Li and L2) into

chunks of 1000, and we treat x of these requests, chosen randomly, as misses, where

x is the average number of cache misses per one thousand requests obtained from

the cycle-accurate model. For those requests which are treated as cache misses, the

corresponding responses are not supplied until cycles equal to the appropriate cache

latency have passed. We justify the use of this abstraction through the following

argument.

We are modeling an in-order pipeline, with blocking caches. If the target machine

and the abstract model fetch the same instruction stream (including both correctly

and incorrectly predicted instructions), then it does not matter which instructions are
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penalized for cache misses (including both data and instruction cache misses). This

is because the cache miss latency simply gets added to the overall number of cycles

required to run an application. This assumption holds true only if both the abstract

model and the actual target specification always fetch the same instruction stream.

It fails when a stall in the pipeline due to a data cache miss delays the update of the

branch predictor resulting in the abstract model fetching a different instruction from

that fetched by the target specification. We believe this to be a second-order effect,

which should not have much impact on the accuracy of the abstract model.

Obtaining parameter values

When using abstract models, one of the challenges is to obtain accurate values for the

various parameters. Typically, these values are obtained from a real processor. They

are then tweaked to match the performance of the abstract model with that of the

real processor. When the abstract model is used to carry out an architectural study,

these parameter values may negatively impact the accuracy of the study, because

they may have exhibited variation if the study were performed on the real processor

(which is not possible). However, if the study is performed on a cycle-accurate model,

accurate parameter values can be obtained from each architectural variation of the

model.

For our experiment we use three sets of parameter values; the first two representing

the typical case, and the last representing the accurate case.

1. We assume that the cycle-accurate model with the BHT scheme is a real proces-

sor, and the parameter values we obtain from it are used in all the architectural

variations of the abstract model.

2. Next, we assume that the cycle-accurate model with the ANT scheme is a

real processor, and the parameter values we obtain from it are used in all the

architectural variations of the abstract model.

3. Finally, we obtain the parameter values from each of the three variations of

the cycle-accurate model, and use them in the corresponding variation of the
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abstract model.

Comparison of results

We now compare the performance statistics obtained from the AbsM model against

those obtained from the cycle-accurate model. Figure 5-2 shows the change in IPC

demonstrated by AbsM for each of the three sets of parameter values. All three graphs

are quite similar, and we can conclude that the increase in IPC after adding the BHT

is quite substantial compared to the increase in IPC after adding the BTB. This

observation matches quite well with that obtained from the cycle-accurate model.

Figure 5-3 provides the quantitative error in IPC values obtained from the AbsM

model when compared against those obtained from the cycle-accurate model. We see

that the memory abstraction is fairly accurate and the accuracy does not vary much

with different sets of abstraction parameters.

5.3.2 Model with memory and execution abstractions

(AbsME)

In case of the AbsME model, on top of the memory abstraction described above, we

replaced the back-end of the pipeline with a single execute stage. We also added

a bypass stage in front of this execute stage in order to correctly model the latency

between the misprediction of a branch and its resolution (and hence, the update of the

branch prediction tables). For this abstraction we divide the overall number of cycles

required to run an application into chunks of 1000, and we treat y of these cycles,

chosen randomly, as stall cycles, where y is the average number of stall cycles due

to RAW hazards per one thousand execution cycles obtained from the cycle-accurate

model. Every.time the abstract model chooses to stall, the instruction remains in the

bypass stage, and no progress is made.

The justification for this abstraction is similar to that for the memory abstraction.

If the target machine and the abstract model fetch the same instruction stream (in-

cluding both correctly and incorrectly predicted instructions), then it again does not
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Figure 5-2: Effect of different branch prediction schemes on IPC, obtained from the AbsM models. Graph in (a) is from the
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matter which instructions are penalized for stalling. Again, this assumption breaks

down when a mispredicted instruction gets resolved at a different time, resulting in

the update of the branch predictor at a different time. We consider this to be a

secondary effect as well.

In order to study the effects of different branch prediction schemes through the

AbsME model, we required the number of stalls due to RAW hazards in addition to

the miss rates of all the caches. We used the same three sets of parameter values that

we did in the case of the AbsM model.

Comparison of results

The three graphs in Figure 5-4 show the change in IPC demonstrated by the AbsME

model for the three sets of parameter values. The graph in Figure 5-4(a) shows that

when we have both the memory and the execution abstractions in the model, and we

use the parameters obtained from the cycle-accurate model with the BHT scheme,

adding the BHT has negligible impact on IPC, but adding the BTB increases IPC

quite substantially. This result is totally different from the ones obtained from both

the cycle-accurate model and the AbsM model.

Figure 5-4(b) demonstrates the bizarre nature of abstractions and parameters.

When we use the parameters obtained from the cycle-accurate model with the ANT

scheme, the variations in IPC obtained from the AbsME model match quite closely

with those obtained from the cycle-accurate model.

The use of two different sets of abstraction parameters in the AbsME model had

led us to two conflicting observations, albeit one of the observations was quite ac-

curate. To determine whether the inaccuracy was present in the abstraction, the

abstraction parameters or both, we decided to use the most accurate set of param-

eter values. We can see from Figure 5-4(c) that the AbsME model behaves quite

differently. However, the difference is not as large as in Figure 5-4(a).

Figure 5-5 provides the quantitative error in IPC values obtained from the AbsME

model when compared against those obtained from the cycle-accurate model. We see

that the variation in accuracy is quite large when the memory abstraction is coupled
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with the execution abstraction, which results in the varying observations we made in

Figure 5-4.

5.3.3 Sampled execution of benchmarks

We are able to run the cycle-accurate model of a single-core processor at the rate

of 6-10 MIPS on the XUPv5 platform. This enables us to run large workloads with

tens of billions of instructions within a few hours. For our final experiment we con-

sidered how sampled execution, a technique commonly used in software simulations

to quickly obtain performance statistics, would affect the accuracy of the simulator.

We obtained performance statistics from the execution of 10 million instructions at

different intervals during the execution of a multi-billion instruction program: once

at the start, then after 1 billion instructions, and finally after 2 billion instructions.

In Figure 5-6, we can see the variations in IPC obtained from these sampled

executions. We see that while the first sampled execution provides quite different

observations from the complete execution (Figure 5-1), the accuracy improves with

the second and third sampled executions.

5.4 Summary

We can study various branch prediction schemes in isolation using synthetic stimuli,

to determine which provides the lowest misprediction rate. Studying the impact of

a branch prediction scheme on processor performance, however, is quite challenging,

and requires detailed, full-system modeling. In this chapter we explored if certain

parts of the model can be abstracted to ease the model development effort and to

increase the simulation speed. From our study, we have reached several conclusions:

Firstly, even if we can justify the abstraction of individual components, the cumu-

lative effects of having abstractions for several components simultaneously, drastically

decreases the overall accuracy of the abstract model. We experienced this with the

memory and the execution pipeline abstractions. Just having the memory abstraction

did not reduce the accuracy of the abstract model, but having the execution pipeline
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abstraction, in addition to the memory abstraction, drastically reduced the accuracy

of the model.

Secondly, the relative performance predictions of different microarchitectures based

on the abstract models are completely off from the relative performance in the real

machines, quantitatively and sometimes even qualitatively. For example, from Figure

5-4(b), one may conclude that removing the direction predictor (BHT) will have min-

imal impact on performance. Moreover, the error in the abstraction is in the same

range as the performance improvement.

Another interesting aspect in abstract models is the choice of parameters related

to the abstraction. Since the correct parameters cannot be known a priori, these

parameters must be approximated for abstract models. In our studies, we saw that

the accuracy of abstract models for different microarchitectures is highly sensitive to

the parameters used.

Finally, we conclude that in order to validate any of the abstractions, we must use

a real machine or a cycle-accurate model of the real machine.
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Chapter 6

Impact of Simplified Core Models

on the Accuracy of Multicore

Processor Simulations

6.1 Introduction

While carrying out architectural exploration in the memory hierarchy or the intercon-

nect network of multicore processors, specially those with hundreds or thousands of

cores, it is desirable to use coarse-grained or simplified core models, such as the 1IPC

core model (which stalls only on cache misses). This helps to lower the simulator de-

velopment time and improve simulator performance, albeit at the cost of simulation

accuracy.

A survey of the proceedings of the three major computer architecture conferences

held in the year 2012 reveals that published simulation studies in memory and net-

work of multicore processors use a wide variety of core models. Figure 6-1 presents a

classification of the core models used in these publications. We see that most studies

use event-driven or execution-driven core models with varying degree of accuracy.

However, a few, particularly those that focus on processors with hundreds or thou-

sands of cores, rely on 1IPC core models. Fewer still, particularly those that focus on
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HPCA'12 3 4 5 7

ISCA '12 2 3 3 14

MICRO '12 3 5 5 11

avarying degree of accuracy, better than 1IPC

Figure 6-1: Publications with various core models in full-system simulators used to
study the memory hierarchy or the interconnect network

on-chip networks with hundreds of nodes, use synthetic traffic generators.

The use of these simplified core models in simulation studies carried out to esti-

mate not only memory and network performance, but also overall system performance,

points to the underlying belief that although results obtained from such studies may

not be quantitatively accurate, they can be used as qualitative predictions of perfor-

mance trends. In this chapter we challenge this notion by providing evidence that

there is substantial quantitative and qualitative error in such studies, which can lead

to wrong conclusions.

We use a full-system simulator with cycle-accurate models of core, memory and

network to perform studies in memory and network. We consider this simulator as

representative of a real machine, and use memory, network and overall performance

results obtained from it as gold standard. We replace the cycle-accurate core model

in the simulator with a 1IPC core model, and perform the studies again. Results

obtained from these simulations fail to capture any performance trends and have a

mean error of 59%. This is clear evidence that 1IPC cores simply cannot be used in

simulation studies for estimating performance without a thorough validation effort.

We analyze the error in results obtained using the 1IPC core model, and point out

the architectural as well as software phenomena behind it. We then systematically

add more details to 1IPC in order to improve simulation accuracy. Through this

validation effort, we show that by using a core which does not model pipeline stalls

due to data hazards, but accurately models speculative instructions, we can reduce

mean error by 6x, and capture every performance trend.
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To determine the scaling of error with the number of cores, we perform our simula-

tion studies using 2-core, 4-core and 8-core processor models. Although our processor

simulations are modest in size, our results clearly show that error magnitude increases

with the number of cores.

6.2 An experiment in the memory subsystem

For the memory experiment, we considered four cache line replacement policies in the

L2 cache.

1. random (used as the baseline)

2. LRU (least recently used)

3. MRU (most recently used)

4. LNS (least number of sharers)

We would expect the more sophisticated replacement policies, which are better

able to retain cache lines that are likely to be accessed again, to perform better. We

evaluated each policy in terms of

(a) cache hit rate,

(b) coherence traffic between Li and L2 caches, referred to as cache traffic,

(c) coherence traffic between L2 caches and main memory, referred to as memory

traffic, and

(d) overall system performance, measured in terms of execution time.

6.2.1 Experimental setup

To conduct our evaluation we used Arete [3], an FPGA-based cycle-accurate full-

system simulator. We modeled a tiled multicore processor architecture, in which each

of the identical tiles comprised of multiple cores with private split LI instruction and
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data caches, a shared and inclusive L2 cache, a cache coherence engine and a network

router. Cache coherence was implemented using a hierarchical directory-based MSI

protocol. Tiles communicated with each other using a fully-connected network.

We modeled a multicore processor on the BEE3 board [24], where each FPGA chip

was programmed to simulate one tile of the processor. The model was implemented

with the configuration provided below.

Tiles 4x

Cores 8 x, in-order PowerPC

8x, private, 64 KB, 4-way set-associative, 64B blocks,
Li I-cache

2 cycle pipelined hit latency

8x, private, 64 KB, 4-way set-associative, 64B blocks,
Li D-cache

2 cycle pipelined hit latency

4x, shared, inclusive, 1 MB, 8-way set-associative, 64B blocks,
L2 cache

16 cycle pipelined hit latency

4x, distributed, shared, 1GB,

(256 cycle + network traversal time) latency

Network 16-bit channel width, 6 cycle hop latency

We booted off-the-shelf SMP Linux and ran a mix of PARSEC [16] and SPLASH-

2 [17] benchmarks. Each application was run to completion with an average of ap-

proximately 100 billion instructions. We achieved an average system throughput of

approximately 55 MIPS.

Using the debugging facility described in [6], we were able to freeze the entire

system to create precise checkpoints, and accurately capture all the system state.

To isolate the impact of core model behavior on performance results, we elimi-

nated all kinds of variability from our simulation studies. We used highly detailed

cycle-accurate models of memory and network with fixed memory and hop latencies,

respectively. We ran applications using an automated script which was launched im-

mediately after the Linux boot completed. The only user input to the system was the

push of the start button. Thus ensuring that every run of a particular application

produced the same results, accurate to the cycle.
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Figure 6-2: Accurate core model

To gain confidence in our results and to ensure that they were not skewed, we also

performed a variability study. We ran each application multiple times and for each

run varied the memory latency and the scheduling of requests in the L2 cache.

6.3 Memory experiment using the cycle-accurate

core model

We began our evaluation with the cycle-accurate core model, referred to as ACC, and

shown in Figure 6-2. It comprises of an in-order, 10-stage processor pipeline with

split Li caches and a shared TLB. The front-end of the processor pipeline fetches

instructions, predicts branches, decodes instructions, and breaks down complex loads

and stores. The back-end reads the register file, calculates memory addresses, executes

instructions, handles branch mispredictions and exceptions/interrupts, and updates

the register file. In Figure 6-2, dark blue blocks represent pipeline stages, while light
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blue blocks represent functional components.

Using the ACC core model in the 8-core processor simulator, we evaluated the

four cache line replacement policies. Figure 6-3(a) depicts the percentage change in

cache hit rate when using LRU, MRU and LNS policies over the random policy. We

observe that both LRU and MRU always result in an increase in cache hit rate, albeit

not a very substantial one. On the other hand, LNS results in a small decrease in

cache hit rate in three out of eight applications.

In Figure 6-3(b), we see that LRU, MRU and LNS result in an increase in cache

traffic, with LNS resulting in the highest increase, except in the case of LU. This

increase in cache traffic is expected because of the increase in cache hit rate. Figure 6-

3(c) shows that LRU, MRU and LNS result in a decrease in memory traffic. This is

again expected because of the increase in cache hit rate.

Figure 6-3(d) shows the percentage change in performance resulting from LRU,

MRU and LNS over random. We see that both LRU and MRU provide a small

increase in performance, while LNS results in a small decrease in half of the appli-

cations. Although the variations in cache and memory traffic are quite significant,

we see only a small variation in performance. This can be explained by the under

utilization of the available network bandwidth, which remains below 5% for all the

applications that we considered for this study.

6.4 Memory experiment using the 1IPC core

model

Having obtained accurate results, we replaced the ACC core model with the 1IPC

core model in the simulator. Figure 6-4 shows the 1IPC core model. It comprises

of a single-stage processor pipeline which only models stalls due to cache misses.

Speculative instructions due to branch mispredictions and exceptions/interrupts, and

data hazards are not modeled. Instructions which do not suffer a cache miss, are

executed in one cycle.
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L

Figure 6-4: 1IPC core model

Using the 1IPC core model, we conducted the cache line replacement policy ex-

periments again and obtained the results which are shown in Figure 6-5. Comparing

these graphs with the corresponding ones in Figure 6-3, we see that there is a lot of

variation in results. Although some results obtained from 1IPC match quite closely

with those obtained from ACC, others are very different, and may lead to contradic-

tory conclusions. We calculated the average quantitative error magnitude in these

results as approximately 59% when compared with the results obtained from ACC.

6.4.1 Explaining the differences in results

To determine the reasons behind these large differences in the results obtained from

the 1IPC and the ACC core models, we looked at the differences in the number of

committed instructions and the rate of pipeline bubbles due to cache misses. These

differences are shown in Figure 6-6. We see that every multithreaded application as-

sumes different instruction paths on 1IPC and ACC. This results in 26% to 41% fewer
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instructions committed by 1IPC than by ACC, when running the same application.

We also see that the 1IPC core model results in a substantially lower rate of pipeline

bubbles due to cache misses.

In terms of architectural differences, we found that on average 30% of the instruc-

tions fetched and executed by the ACC core model were wrong path instructions

and approximately 35% of these wrong path instructions were either loads or stores.

(Loads and stores also accounted for approximately 35% of the total committed in-

structions.) This means that when the 1IPC core model was used, both the I-cache

and the D-cache had 30% fewer requests from the core, resulting in very different

memory and network traffic. We also found that on average 27% of the stalls on

ACC were due to data hazards. These stalled cycles were not modeled by 1IPC. As

a result of the missing speculative instructions and data hazards, we found that the

execution rate of 1IPC was, on average, 31% higher than that of ACC.

These architectural differences, particularly the large difference in the execution

rate, resulted in substantial software differences as well. We found that when applica-

tions were run on the 1IPC core model, on average, 36% fewer timer interrupts took

place compared to when they were run on the ACC core model. Since Arete runs at

a clock speed of 11.11 MHz, we expect that the number of timer interrupts during

the execution of an application will be 100x to 300x more than on a real processor.

When we increased the clock-frequency parameter in the device tree source (dts)

file for the Linux kernel by 100x, we saw that the difference in the number of timer

interrupts between ACC and 1IPC reduced to 14%.

All the applications that we run use POSIX synchronization (e.g., pthread-mutex-t)

implemented using the kernel's futex API. We found that, on average, 29% fewer in-

structions were executed from the synchronization subroutines on 1IPC than on ACC.

When an application thread blocks on a pthreadinutex-t, the kernel marks the

thread as "un-runnable". If there are no runnable threads, a core enters the idle

loop (cpu-idle) and spins in it waiting for a thread to become runnable. The large

difference in the execution rate between 1IPC and ACC also impacted the scheduling

of tasks by the operating system which resulted in a substantial difference in time
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spent in the idle loop. We found that the 1IPC core model executed, on average, 32%

fewer instructions from cpu-idle compared to the ACC core model.

6.5 Improving the accuracy of 1IPC

6.5.1 Lowering the execution rate

To improve the accuracy of the IPC core model, we decided to lower its execution

rate to the same value as that of ACC. For this purpose, we introduced stall logic

in 1IPC. We refer to the new core model as 1IPC-R. While running the applications

using the ACC core model we had determined that the rate of instructions per cycle

per core was approximately 0.67. We configured the stall logic in 1IPC-R to introduce

pipeline bubbles every three out of ten model cycles.

Using the 1IPC-R core model in the simulator, we ran the cache line replacement

policy experiments again and obtained the results which are shown in Figure 6-7.

Comparing these graphs with the corresponding ones in Figure 6-3, we again see

that all the results are quite different. Moreover, the results obtained when using

1IPC-R are also very different from those obtained when using 1IPC. We calculated

the average quantitative error magnitude in the results obtained from 1IPC-R as

approximately 27% when compared with the results obtained from ACC.

Figure 6-8 provides a comparison between the 1IPC-R and ACC core models. We

see that although the difference in the number of committed instructions is substan-

tially reduced compared to Figure 6-6(a), the difference in the rate of pipeline bubbles

due to cache misses is higher than in Figure 6-6(b). The latter happens because the

stall logic in 1-IPC-R causes only a slight increase in cache misses, but increases the

total execution time quite substantially. These results indicate that the role of spec-

ulative instructions in the behaviors of memory and network, as well as in the overall

execution time, cannot be ignored.
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Figure 6-9: 7NDH core model

6.5.2 Adding speculative instructions

After experimenting with the 1IPC-R core model, we decided to add handling of

mispredicted branches and exceptions/interrupts to the processor pipeline. The only

functionality missing from this pipeline is the handling of stalls due to data hazards.

The first no-data-hazard (NDH) core model is shown in Figure 6-9. The front-end of

the processor pipeline is identical to that in ACC. The back-end, however, comprises

of only two stages: execute and commit. We refer to this core model as 7NDH.

Using the 7NDH core model in the simulator, we conducted the cache line re-

placement policy experiments again. The results obtained from these experiments

are shown in Figure 6-10. Comparing these graphs with the corresponding ones in

Figure 6-3, we see that all the results are still quite different. The average quantitative

error magnitude in these results was approximately 30%.

To gain insight into the differences in results obtained from 7NDH and ACC, we

compared the two core models in terms of committed instructions and rate of pipeline
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bubbles due to cache misses, branch mispredictions and exceptions/interrupts. These

comparisons are shown in Figure 6-11. We see that in all the comparisons, 7NDH

trails ACC by approximately 15% to 30%.

The execution rate of 7NDH was found to be approximately 15% higher than that

of ACC. To further improve the accuracy of 7NDH we decided to lower its execution

rate by adding stall logic to the back-end of the pipeline. To achieve the same rate of

instructions per cycle per core as in ACC, we configured the stall logic to introduce a

pipeline bubble every fourth model cycle. We refer to the new core model as 7NDH-R.

After running the cache line replacement policy experiments using 7NDH-R, we

obtained the results that are shown in Figure 6-12. These results also turned out

to be quite different from those obtained using ACC. The average quantitative error

magnitude in these results was approximately 15%.

Figure 6-13 provides the comparison between 7NDH-R and ACC. As in the case of

1IPC and 1IPC-R, we see that when 7NDH-R is used, the difference in the number of

committed instructions is substantially reduced compared to Figure 6-11(a), but the

differences in the rate of pipeline bubbles due to cache misses, branch mispredictions

and exceptions/interrupts are higher than in Figures 6-11(b), 6-11(c) and 6-11(d),

respectively.

6.5.3 Adding the full speculative path

Besides the absence of pipeline stalls due to data hazards, a significant difference

between 7NDH and ACC is the mismatch between the number of speculative instruc-

tions that are fetched and executed. In the case of 7NDH, the speculative path is 6

stages long, while in the case of ACC, it is 9 stages long. In order to determine if

this mismatch can account for most of the differences between 7NDH and ACC, we

introduced three bypass stages in the back-end of the processor pipeline, as shown in

Figure 6-14. We refer to the core model thus obtained as lONDH.

We performed the cache line replacement policy experiments using 1ONDH, and

obtained the results which are shown in Figure 6-15. Comparing these graphs with

the corresponding ones in Figure 6-3, we see that the two sets of results are quite
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7

Figure 6-14: 1ONDH core model

similar, and 1ONDH is able to capture all the trends obtained using ACC. The average

quantitative error magnitude in these results was approximately 11%.

Figure 6-16 provides the comparison between 1ONDH and ACC. We see that all the

differences are quite small, and that variation in differences across cache line replace-

ment policies is also quite small. Moreover, the difference in the rate of instructions

per cycle per core between 1ONDH and ACC is minimal.

The results obtained using 1IPC, 1IPC-R, 7NDH, 7NDH-R and 1ONDH concretely

show that a) accurate modeling of speculative instructions is necessary, and b) pipeline

stalls due to data hazards can be ignored when exploring the impact of replacement

policies in the L2 cache.
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Figure 6-17: Increase in mean error magnitude as the number of cores increases in

processor simulations with various coarse-grained core models

6.6 Additional comments

6.6.1 Error scaling

To determined how error magnitude scales with the number of cores, we computed

the mean error magnitude for the 2-core, 4-core and 8-core simulator configurations.

The mean is calculated across the four experiments, i.e., cache hit rate, cache traffic,

memory traffic and performance, for each of the five coarse-grained core models. In

Figure 6-17, we see that the mean error magnitude increases with the number of cores

for all the coarse-grained core models, albeit at different rates. When simulating

processor configurations with hundreds or thousands of cores using coarse-grained

core models, the error magnitude is expected to be quite substantial.

6.6.2 Variability study

To gain confidence in our results and to ensure that they are not skewed, we also

performed a variability study. We ran each application sixteen times on the 8-core
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simulator configuration with the ACC and 1IPC core models. For each application

run, we varied the memory latency using a uniformly distributed pseudo random

integer between 0 and 32. We also varied the scheduling of requests in the L2 cache,

again using a uniformly distributed pseudo random integer. The results are shown

in Figures 6-18 and 6-19. The colored bars show the average results across sixteen

application runs, while the marks show the minimum and the maximum values. These

results exhibit little variability and match quite well with those from Figures 6-3

and 6-5. We believe that this is due to the length of application runs which is 100

billion instructions on average [66].

6.6.3 Comparison against real machines

Figure 6-20 presents a comparison of statistics obtained from running canneal with

the simlarge input on Arete, ARM Cortex-A9 and Core i7-965. In case of Arete and

Core i7, the instruction count includes both user and privileged code, while in case

of ARM, the application is run in stand-alone mode (without booting an operating

system). We see that the instruction count on ARM is slightly less than that on Arete.

This difference can be attributed to the missing operating system effects on ARM,

the 70x more timer interrupts on Arete due to the lower clock frequency, and the

counting of load and store multiword instructions as multiple instructions on Arete.

On the other hand, the instruction count on Core i7 is half of that on Arete, but

it matches quite well with the instruction count on an SMP x86 processor reported

in [67]. Comparing the micro ops on Core i7 with the instruction count on Arete, we

see that the difference is reduced to 23%.

The cycle count on Arete and Core i7 match almost exactly, but the cycle count

on ARM is only a quarter of that on Arete. The ARM Cortex-A9 processor includes a

4-wide out-of-order super-scalar core, and it is able to achieve a very high instruction

throughput. The low instruction throughput on Core i7 can be attributed to the low

cache hit rate. A survey of reported last level cache hit rates for canneal confirms

large fluctuations with the architecture of the cache hierarchy. In [68], cache hit rate

it is reported as 12% on a Phenom4 processor; in [67], it is reported as 30% for a 1
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6.7 Related work

There is a large body of work which proposed various techniques to improve the

speed of processor simulations without compromising the accuracy of the architectural

studies.

Black et al. [64] provided an instructive overview of the various simulation tech-

niques. They identified the three basic kinds of simulation errors: 1) modeling errors,

which are present in the simulator code, 2) specification errors, where the specifi-

cation of the target processor architecture is erroneous, and 3) abstraction errors,

which creep into the simulator because modeling is performed with insufficient detail.

They described the design process used by architects. It starts with a crude simula-

tion model which is systematically refined by adding more architectural details and

fixing bugs, resulting in an accurate simulator of the target architecture. They also

claimed that model refinement does not improve the accuracy of the model mono-

tonically. Their work showed the need for extensive, iterative validation before the

results obtained from a simulator can be trusted.

Skadron et al. [65] gave an overview of the state of affairs in simulation techniques,
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and provided recommendations on how they can be improved. They argued that

designing benchmarks, both micro and macro, is paramount for accurately predicting

processor performance. They also claimed that analytical modeling techniques were

not very well studied, and that such techniques would gain significance given the

trend in computer architecture to move towards multicore architectures, which would

further slow down the already quite slow simulators. They also argued that the

impact of modeling abstractions on the accuracy of performance projections was not

well understood and extensive studies were needed to classify a specific abstraction

as good or bad.

In [70], Yi et al. described, classified and compared a wide range of simulation

methodologies. These included techniques for validation of simulators, selection of

parameters, benchmarks and input sets, shortening of simulation time through re-

duced input sets, truncated execution and sampling, and reduction of the variability

in performance analysis through statistical approaches.

Bose et al. [62] argued that detailed simulation was expensive and not plausi-

ble. They stated that one should build abstract simulators, instead, and that these

abstract simulators must be calibrated against existing real machines by running mi-

crobenchmarks that target specific features such as cache behavior, loop execution,

etc.

Desikan et al. [60] compared sim-alpha, which is an out-of-order processor simula-

tor implemented according to the specification of the Alpha 21264 microarchitecture,

against a real Compaq DS-1OL workstation. Their results showed that unvalidated

simulators report higher performance than the target architectures that they model.

They recommended using microbenchmarks to calibrate simulators against real ma-

chines. To avoid errors due to incorrect parameters, they recommended obtaining

parameter values from either published documents or real machines.

In [61], Cain et al. argued the need for detailed models and actual workloads to

accurately predict the performance of real designs. They showed that OS and I/O

effects significantly impact the accuracy of performance results. They also asserted

that simulating instructions on the speculative paths did not impact the accuracy
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of the performance results. In our results, we show that this assertion is completely

false, and that accurate modeling of speculative instructions is perhaps the most

significant factor in the accuracy of simulation studies in memory and network of

multicore processors.

Collectively, [71, 72], showed that performance results obtained from unvalidated

uniprocessor simulators vary substantially from the performance of the target archi-

tecture, and cannot be deemed reliable. However, abstractions used in the simulator

can be iteratively refined through calibration against real machines to obtain fairly ac-

curate results. Similarly, parameter values can be obtained from either real machines

or rigorous statistical methods [73] to improve simulation accuracy.

Alameldeen and Wood [66] investigated the potential impact that variability can

have on simulation results. Their experiments showed that even a small amount of

variability, such as addition of a random amount of time to each L2 cache miss, can

lead to wrong conclusions in architectural studies. To minimize this problem, they

recommended adding pseudo random perturbation to the simulations, simulating each

test case multiple times, and using confidence intervals and hypothesis testing.

In [74], Alameldeen and Wood argued that during the various instruction paths

that result from timing variations, a program can execute a substantially larger or

smaller number of instructions to perform the same amount of useful work. The

number of instructions executed on a particular path is determined by how much

time the program spends executing idle-loop instructions, spin lock wait instructions

or system-level privileged code instructions. Although such instructions have little

impact on the amount of useful work a user program actually performs, they signif-

icantly change system behavior. They concluded that using the rate of instructions

per cycle as a measure of system performance was not reliable because instructions

per program vary substantially across various runs of the program.

In [40], Pellauer et al. studied the impact of core detail on on-chip network simu-

lations. They performed the same simulation study using 1IPC cores with only one

outstanding instruction miss, and using detailed 9-stage core models. The results

showed a significant error in performance estimates obtained from the 1IPC cores.
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6.8 Summary

In this chapter we presented a comprehensive evaluation of the use of coarse-grained

core models in multicore processor simulators for studying the memory system and

the on-chip network, and presented four significant results.

1. Use of the 1IPC core model leads to grossly inaccurate conclusions.

2. Pipeline stalls due to data hazards need not be modeled, but accurate modeling

of speculative instructions is necessary for reliable performance results.

3. Difference in the number of executed instructions between simplified and accu-

rate core models can be minimized through stall logic which equalizes the rate of

instructions per cycle per core, but performance results remain largely inaccurate.

4. Error magnitude increases with the number of cores.

Based on these results, we argue that although simulation speed is a major concern

in the modeling of many-core processors, obtaining performance results at a faster

rate would prove inconsequential if the results led to wrong architectural decisions.

We propose that when architects use coarse-grained models in full-system simulations,

they carefully validate the simulator through a wide range of techniques, such as those

demonstrated in this chapter, and established in previous work.
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Chapter 7

Data Movement Control: An

Architectural Experiment1

7.1 Introduction

There is an inherent cost for applications to access off-chip DRAM. A potential so-

lution is a single large on-chip cache that all cores access with uniform latency. This

architecture makes it easy for application developers to implement efficient inter-core

sharing and use the entire on-chip cache. A large shared on-chip cache, however, is

still prohibitively slow. Architects ensure each core has fast access to some portion of

on-chip memory by distributing on-chip memory in pieces so that every core is near

some cache. In theory this provides a large amount of aggregate cache capacity and

fast memory for each core. Unfortunately, it is more difficult for software to use a

distributed cache effectively than a shared cache effectively. The goal of this project

is to explore whether extensions to hardware can help software make better use of

distributed caches on multicore processors.

Consider some of challenges faced by software trying to use a distributed cache on

a multicore processor. In some architectures, an application can cache data only in

'The work presented in this chapter was jointly carried out with Silas Boyd-Wickizer.
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the caches of the cores that it is currently executing on. This provides applications

with access to only a small amount of on-chip cache capacity. Even if the application

is executing on all cores, it is expensive to access data in a remote core's cache, and it

is likely that each core's individual caches would end up caching the same commonly

accessed data. Duplicating data reduces the number of distinct data items cached

on-chip, which essentially reduces the effective cache capacity.

Promising software solutions (e.g., [75, 76]) use thread migration to help manage

cache contents. The basic idea behind these solutions is to assign data items to on-

chip caches and migrate threads amongst the caches as they access the data items.

Moving a thread closer to the data that it accesses reduces access latencies and helps

ensure that the same data is not duplicated many times. The implementations of

these solutions, however, can have significant overheads. Migrating a thread can

require as many as 20,000 cycles [77]. Distributing data items to caches requires

software to track the data items it assigns to a certain cache, adding overhead and

essentially duplicating directories maintained by hardware. Even if software is able

to efficiently manage mappings of data items to caches, it can only guess if a data

item is actually cached or has been evicted by hardware.

This project explores the opportunity to extend hardware to make it easier for

applications to use on-chip caches efficiently, thereby improve performance. We in-

troduce a set of hardware extensions, which we refer to as Data Movement Control

(or DMC), that are in the form of three new instructions: cpush, clookup, and cmsg.

The instructions give software more information about and control over on-chip cache

contents. cpush allows a thread running on one core to move cache lines into another

core's cache; clookup returns the location of any cache line; and cmsg provides an ef-

ficient mechanism for software to send an active message [78] to a remote core, which

allows a thread to efficiently manipulate data in a remote core's cache. Collectively,

these instructions address some of the shortcomings of previous software-only cache

management solutions.

To evaluate potential performance improvements we implemented the DMC in-

structions in Arete. The resulting DMC PowerPC microarchitecture is backwards
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compatible with the Book-E PowerPC microarchitecture originally implemented in

Arete. The original implementation, as well as the DMC implementation, provide

cycle-accurate processor timing when synthesized for the BEE3 board. Results from

running synthetic benchmarks on the DMC-BEE3 core indicate that using DMC in-

structions can improve the performance of operations that manipulate as few as two

shared cache lines.

A main challenge in implementing DMC is doing so without causing deadlocks or

invalid states in the cache coherence controller. The implementation of cpush is par-

ticularly tricky because the cache coherence controller must handle race conditions

where a core requests a particular cache line in a particular mode, e.g., M, while

another core simultaneously pushes the same cache line in a different mode, e.g., S.

Another challenge is implementing the DMC extensions so that they are compatible

with existing PowerPC applications, yet still provide high performance. For exam-

ple, when a remote core begins executing an active message it must not violate the

PowerPC ABI, which mandates that software restore all the execution state (e.g.,

register values) when the active message completes. If software saved and restored

all execution state, however, active messages would be prohibitively expensive.

The main contributions of this project are (1) the introduction of the DMC hard-

ware primitives that simplify software cache management; (2) a new type of active

message that is addressed by memory address instead of destination core; and (3) an

implementation and evaluation of DMC hardware using synthetic benchmarks.

Chapter organization: Section 7.2 briefly discusses some related work. Section 7.3

describes the interface and semantics of the DMC instructions, while Section 7.4

describes their design and the solutions to the design challenges that we faced.

Section 7.5 discusses the implementation of the DMC instructions and our testing

procedure. Section 7.6 describes the results obtained from applying the DMC in-

structions to microbenchmarks. Section 7.7 summarizes the work and discusses some

of its limitations.
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7.2 Related work

There is a significant amount of work related to multicore cache management and

computation migration. This section presents a few examples from each category.

7.2.1 Multicore cache management

Several techniques have been proposed to improve cache management on multicore

processors. 02 [75] is a software runtime that manages cache contents using thread

migration. The 02 runtime attempts to track cache contents, assigns data to a cache

when there is spare capacity, and migrates threads amongst cores as they access data

items. Software data spreading [76] aims to allow single-threaded applications to use

the capacity of caches in all the cores by using techniques similar to those of 02.

Several research operating systems, such as Corey [79], Barrelfish [80], and fos [81],

try to improve cache usage through the operating system kernel by dedicating cores

to operate on particular sets of kernel data.

7.2.2 Computation migration

The J-Machine was a 1024-node parallel computer built from message-driven pro-

cessors [82], which provided low-overhead messaging and context switching, similar

to cmsg. Application developers wrote fine-grained concurrent programs for the J-

Machine using J-Machine-specific programming languages and tools that distributed

data objects amongst the nodes and took advantage of the cheap messaging to ac-

cess objects efficiently. MCRL [83] and Olden [84] are software systems that migrate

computation to the chip that stores the data in its local memory in order to avoid

the latency of off-chip memory accesses. In MCRL the decision to migrate is made

dynamically by a runtime, while in Olden the decision is made statically by the com-

piler.

This project differs from previous work by augmenting an existing microarchitec-

ture with the DMC instructions. The goal is to improve the performance of existing

applications and runtimes with only a few minor modifications.
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7.3 DMC hardware interface

We present the hardware interface for each DMC instruction, describe the semantics

guaranteed by hardware, and give examples of how software might use each instruc-

tion. We assume a cache architecture with per-core Li data caches and an inclusive

L2 cache shared by all the cores. We think, however, that DMC instructions could

be implemented for other architectures as well.

7.3.1 cpush

The cpush instruction takes two arguments: an address and a core ID. When a

software thread executes cpush address core-id it is requesting that the hardware

copy the contents of the cache line at address to the core identified by core-id. If,

for some reason, hardware ignores the request, software correctness is not affected

(similar to ignoring a prefetch instruction).

The outcome of executing cpush address core-id depends on the cache line

state (modified, shared, or invalid) of address in the local Li cache. The following

list describes each outcome.

" If address is marked as shared in the local Li then the cache controller copies

the cache line to the destination cache and marks it as shared.

" If address is marked as modified in the local Li then the cache controller

invalidates the local cache line, copies the cache line to the destination cache,

and marks the cache line as modified in the remote cache.

" If address is invalid in the local Li then the cache controller ignores the request.

The processor pipeline does not wait for the cache controller to copy data between

caches.

Software can use cpush to optimize inter-core communication of shared memory

applications. If a thread running on one core knows it will need to to share recently

accessed data with another core it can use cpush to move the data to the other core's
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cache. The hope is that the data will arrive in the core's cache before the core tries

to access it.

One example usage of cpush it to optimize thread migration in multicore runtimes,

like MIT Cilk [85] or the Go programming language [86]. Multicore run-times migrate

a thread by de-scheduling the thread off the source core, saving the values of the CPU

registers in a thread context buffer, and adding the thread context buffer to the run-

queue on the destination core, which will execute the thread.

The cost of migration is composed of cache miss penalties to transfer the thread

context from one cache to another, and the cache miss penalties once a thread starts

executing and accessing its working set. A multicore run-time could reduce both of

these components using cpush to push the thread context and parts of the thread

working set (e.g., the top stack frames) from the source to the destination core before

the source core adds the thread context to the destination core's run-queue. The

cache controller will be transferring the thread context and the working set to the

destination core while the source core is adding the thread context to the run-queue.

The destination core can read the thread context buffer without incurring cache misses

and once the thread begins executing it will be able to access parts of its working set

without incurring cache misses.

7.3.2 clookup

The clookup instruction takes an address as an argument and returns the closest core

that caches that address. The return value of executing clookup address depends

on the cache line state in the local Li cache and the L2 directory. The following list

describes the return value based on the cache states.

" If address is marked as shared or modified in the source core's Li then hardware

returns the source core's core ID.

" If address is invalid in the local Li and the L2 directory indicates the cache

line is shared or modified in another core's Li then the hardware returns the

remote core's core ID.
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* If the cache line is invalid in the sending core's Li and invalid in the directory

then hardware returns -1 to indicate that no core caches address.

clookup was originally designed to help test the implementation of cmsg. We

think, however, that clookup might be useful in its own right. One challenge to

building software run-times that manage cache contents is tracking which cores cache

what data. Tracking data location in software is error prone, costly, and essentially

duplicates the cache line state maintained by hardware. These systems could po-

tentially replace their software data tracking schemes with clookup, which would be

accurate and have lower overhead.

7.3.3 cmsg

The cmsg instruction is an implementation of active messages. Active messages [78]

are an asynchronous communication mechanism. An active message contains a desti-

nation core ID and a function pointer which the destination core executes upon arrival

of the message, passing the message body as arguments to the function. Instead of

requiring software to provide a core ID, cmsg allows software to specify a memory

address, which the cache controller resolves to a core ID. Specifically, cmsg address,

pc, body causes the nearest core that caches address to start executing the function

at pc, loads the contents of body into Special Purpose Registers (SPRs), and loads

the source core's ID into an SPR. We refer to active messages sent in this manner

as content addressable active messages. The DMC implementation also allows an

application to specify a destination core directly using the core's ID, which is often

useful for replying to a content addressed active message.

Hardware handles cmsg address, pc, argument in several ways depending on

the cache line state in the source core's Li cache and in the L2 directory.

9 If the cache line is marked as shared or modified in the source core's Li then

hardware clears a "delivery" bit in the local condition register (CR) to indicate

the message was not delivered.
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" If the cache line is invalid in the local Li and the L2 directory indicates the cache

line is marked as shared or modified in another core's Li then the hardware

interrupts the other core as described below and sets the delivery bit in the

source core's CR to indicate that the message was delivered.

" If the cache line is invalid in the sending core's Li and invalid in the L2 directory

then hardware clears the delivery bit in the source core's CR.

Hardware always delivers an active message when the application passes the destina-

tion core ID to cmsg.

If the L2 directory holds a suitable destination core, the source core sends a

message containing pc and body to the destination core. When the message arrives

at the destination core, the destination core loads body into SPRs and generates an

interrupt, setting the program counter to pc. Similar to standard PowerPC interrupts,

the destination core saves a small amount of execution state in Save/Restore Registers

so that software can resume the execution before the interrupt.

cmsg provides a low-overhead mechanism for executing code on a remote core. If

a thread running on one core needs to manipulate several cache lines in another core's

cache, it can use cmsg to do so, instead of copying the cache lines into its local cache.

A type of application where this might useful is one that creates many threads which

operate on shared data structures. For example, the Linux kernel uses linked lists

and other shared data structures to implement the physical page allocator, LRU page

replacement, reverse page tables, and many other facilities. Adding to and removing

from these linked lists often incurs several cache misses as the kernel updates linked

list pointers and modifies subsystem specific shared meta-data.

Linux could reduce the number of cache misses by using cmsg to execute the list

manipulation code on the core likely to cache the list. The address supplied to cmsg

could be the address of the spin lock (or some other synchronization primitive) that

the kernel uses to serialize updates to the list. Since the spin lock would always be

acquired before updating the list, it is likely that if a core caches the address for the

spin lock it will also cache the list meta-data. Using cmsg, updates to the list and
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meta-data might avoid incurring cache misses.

7.4 DMC hardware design

We now discuss the microarchitecture design for implementing cpush, clookup, and

cmsg, and highlight some important decisions for ensuring correctness and high per-

formance.

We were able to augment the original PowerPC pipeline with the DMC instruc-

tions without making substantial revisions to the original design. The main reason

for this is that executing cpush, clookup, and cmsg requires performing many of

the same operations (e.g., calculating the effective address) and state updates (e.g.,

queuing a request to the Li cache) required to execute a load or a store instruction.

The bulk of our redesign was centered on the Li and L2 modules. The original

PowerPC design implements a directory-based MSI protocol and uses request and

response messages to communicate cache line state between the cores, the Li's, and

the L2. To avoid deadlocks the original PowerPC cache coherence design enforces

the invariant that requests do not block responses and that the Li handles L2-to-Li

requests before handling pending core-to-Li requests. In the original PowerPC cache

coherence design each L2-to-Li response had a matching Li-to-L2 request.

Figure 7-1 provides the state transitions for cache state, while Figure 7-2 provides

the state transitions for directory state added to the original cache coherence protocol

to support DMC.

7.4.1 Correctness of cpush

To work well with the original MSI implementation, the DMC PowerPC cache con-

troller sends the cache line associated with a cpush in a response message. This

design, however, breaks the invariant assumed in the original PowerPC implemen-

tation that L2-to-Li response has an associated Li-to-L2 request. A potential bug

might be that a core's Li cache receives a response due to a push request from another

core, but never processes the response. In this example the Li's cache state would
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Current Request Dequeue Response Request Response Request Response Next

state trigger trigger trigger from parent to parent to parent from parent state

M Push, id yes Push, id, data I

S Push, id yes Push, id S

I Push, id yes I

M, data M

S, data S

(IM) no S, data (SM)

M MSnd, msg yes M

S MSnd, msg yes S

I MSnd, msg yes MSnd, msg dlvrd/!dlvrd I

Figure 7-1: Cache state transitions for DMC

Q1



Child's Other Trgr. Deq. Req. Deq. Resp. Req. Resp. Req. Resp. Child's Other
curr. children's trgr. from req. to to from to to next children's
state curr. child from child child child other other state next

state child children children state

M I Push, id, data M, data I M
M I M/S yes M I

S S Push, id S S

S I Push, id S, data S S

S X = S/I S yes S X

I I !dlvrd MSnd, msg I I

I S dlvrd MSnd, msg MSnd, msg I S

I M dlvrd MSnd, msg MSnd, msg I M

Figure 7-2: Directory state transitions for DMC
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differ from the directory maintained by the L2.

Another tricky problem that arises with cpush is handling the case where a core

requests a cache line that another core is simultaneously pushing. For example, if a

core is waiting for a response to a request for a modified cache line and a response

arrives due to a push request from another core that contains a shared copy of the

cache line. If the Li accepts the shared copy, but marks it as modified, the Li state

and L2 directory state would differ.

7.4.2 Performance of cmsg

One potential performance problem with interrupting execution to handle an active

message is the cost of saving and restoring General Purpose Registers (GPRs) and

setting up a PowerPC ABI compliant environment for executing C code. This process

requires about 70 instructions.

To avoid saving and restoring execution state, we added a second register file.

When a core receives a cmsg, it switches to the secondary register file, and switches

back when the cmsg interrupt handler returns. It should be possible to ensure that the

secondary register file is always in an ABI compatible state when the core switches

to it. This solution precludes supporting nested cmsg interrupts, and requires an

additional register file, which is quite expensive in terms of area. On the FPGA,

however, the extra register file fits into a BRAM partially used by the original register

file.

Another shortcoming is that the source core sends cmsg after receiving a reply

from the L2 directory. In a more efficient implementation the L2 would send cmsg

directly after performing the lookup, instead of replying to the source core.

7.5 Implementation

We now describe the hardware implementation of the DMC extension to Arete, the

software implementation of the DMC run-time, and the tests we wrote for verification

and benchmarking.
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7.5.1 Hardware

The DMC PowerPC implementation adds about 250 lines and modifies about 750

lines of code in the original 7701 line PowerPC BSV code. Most of the modifications

were to the L2 cache and the LI data cache modules.

Working with a simulator written in BSV, and that runs on an FPGA has two

advantages over software simulators. One is that adding DMC instructions actually

requires modifying hardware, in contrast to software simulators. This allows us to

gauge the complexity of adding the instructions to a real processor implementation

and forces us to respect hardware constraints, such as limited on-chip storage and

short critical paths. This is in contrast to software simulators which developers of-

ten extend using C or high-level languages like Python. Without the constraints of

hardware, developers can implement overly simplistic or unrealistic designs.

A second advantage of running a design on an FPGA is that simulation is fast.

The PowerPC model runs at 100 MHz and uses approximately 9 FPGA cycles to

model 1 PowerPC cycle. Therefore, the simulated PowerPC runs at about 11.11

MHz. This is two orders of magnitude slower than a real PowerPC chip, but also

two orders of magnitude faster than a cycle-accurate full system simulator written in

C [87].

7.5.2 Software

The DMC run-time, which includes threads, a thread stealing scheduler, locks, a

linked list implementation, and a memory allocator, is about 2000 lines of C code.

DMC instructions are easy to use. Modifying code to use DMC instructions usually

requires changing only a few lines of C code.

7.5.3 Testing

We tested the DMC hardware using a series of software stress tests. Much of our

testing focused on cpush. One reason for this is that cpush is tricky to implement

correctly because it modifies cache state, therefore we wanted to test it thoroughly. A
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second reason is that we implemented cpush first and the implementation of clookup

and cmsg reused much of the well tested cpush code.

Our tests for cpush try to trigger the corner cases described earlier. For example,

to trigger the case where a core executes a cpush on a modified cache line while

another core simultaneously requests a shared copy of the cache line, the test would

create threads on different cores, one thread would spin in a loop incrementing a

shared variable then calling cpush, while the other thread would spin and constantly

read the value of the variable.

One challenge in testing cpush was to verify that executing cpush would cause a

cache line to be copied into another core's cache. To verify that cpush was behaving

as expected, we instrumented the L2 cache and the Li data cache modules to print

push requests and responses and inspected the output.

7.6 Evaluation

We evaluated the DMC PowerPC implementation by running Arete on the BEE3

board with the following configuration.

Tiles lx

Cores 2 x, in-order, 10-stage PowerPC

2x, private, 64 KB, 4-way set-associative, 64B blocks,
LI I-cache

1 cycle pipelined hit latency

2x, private, 64 KB, 4-way set-associative, 64B blocks,
Li D-cache

1 cycle pipelined hit latency

1 x, shared, inclusive, 512 KB, 4-way set-associative, 64B blocks,
L2 cache

32 cycle pipelined hit latency

Main memory 1 x, 1 GB, 256 cycle latency

We used three microbenchmarks, programmed to run with and without making

use of cpush and cmsg, to measure performance. We chose one microbenchmark to

measure how expensive it was to execute cmsg, and two others on the basis that they
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Figure 7-3: Results for the memory scan benchmark. The x-axis shows the number of
cache lines in a segment and the y-axis shows the average latency to the read segment
from another core's Li cache.

represented operations implemented in complex applications. The performance mea-

surements should be considered encouraging preliminary results. The DMC PowerPC

lacks features found in advanced processors, such as out-of-order execution, hardware

prefetching, and symmetric multi-threading, which would change performance.

7.6.1 Cost of cmsg

To understand the cost of executing a cmsg instruction we wrote a microbenchmark

that compares the cost of reading cache lines from another core's cache to the cost of

executing a cmsg to read the cache lines. The benchmark creates two threads. One

thread fills its cache with shared cache lines by modifying every cache line in a 64 KB

array. The second thread then reads the entire array in N cache line segments. The

benchmark measures the average time to read one N cache line segment using 1w and

using cmsg. After executing cmsg, the thread spins in a loop until a flag variable is

set to zero. The destination core sends replies using an active message, which clears

the flag variable. The point at which using cmsg becomes cheaper than 1w helps show

when it might improve performance.

Figure 7-3 shows the cost of using 1w and cmsg. The x-axis shows the number

of cache lines in each segment and the y-axis shows the average latency to read each

segment. The cmsg case always generates a pair of lookup request and response

messages, one inter process active message to read the cache lines, and one inter
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process active message to signal that the read is complete. The 1w case generates a

pair of request and response cache coherence messages for each cache line. Therefore,

we expect the latency of the 1w case to increase much faster than the cmsg case.

With 1 cache line, the use of 1w or cmsg generates the same number of cache

coherence requests and responses, and perform about the same. For two cache lines,

the cmsg reduces the latency to read the cache lines by about 17%. As the benchmark

manipulates more cache lines, cmsg provides more benefit. Using cmsg to access 8

cache lines is 52% faster than using 1w. The cost of cmsg increases slightly as the set

size increases because the benchmark must execute more instructions to read all the

cache lines.

7.6.2 Thread migration

To evaluate the potential software performance improvement from using cpush, we

wrote a microbenchmark that ping-pongs a thread between two cores and measures

the average round-trip time. The benchmark uses two cores, one executes the mi-

grating thread while the other spins in its scheduling idle loop, continuously checking

for threads on its run-queue. To migrate the thread, the source core deschedules the

thread, switches to another thread (the idle thread in this benchmark), which saves

the core's registers in a context buffer, and adds the thread context buffer to the

run-queue of the remote core. The idle core notices the new thread context on its

run-queue, dequeues the context, and starts executing the thread by reloading the

thread register values from the context buffer.

When the remote core loads the values of a thread's registers it usually incurs

several cache misses, which increases the round-trip time. We use cpush to reduce

the round-trip time by pushing the contents of the context buffer to the destination

core before writing to the shared variable. This means that transferring the context

buffer from one core to another will be overlapped with the operation of adding the

context to the remote run-queue.

Figure 7-4 presents the results of the thread ping-pong microbenchmark. The

x-axis shows the number of cache lines in the thread context that the benchmark
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Figure 7-4: Results for the thread migration microbenchmark. The x-axis shows the
number of cache lines the source core pushes to the destination core using cpush.

uses cpush to move from the source to the destination core. The y-axis measures the

round-trip time in cycles to migrate a thread from the source to the destination and

back.

Without using cpush, the round-trip time is about 2202 cycles. As the benchmark

uses cpush to move more cache lines, the round-trip time reduces steadily until 6 cache

lines, where the round-trip time is 831 cycles. Pushing more than 6 cache lines does

not decrease the round-trip time further because the FIFOs connecting the pushing

core's L1, the shared L2, and the destination core's Li become full. In the current

implementation the destination core stalls in this case. It would be correct, however,

to simply drop the push request in the source Li if the FIFO to the destination Li

is full.

7.6.3 Linked lists

Linked lists are commonly used to build more complex data structures. For example,

the Linux kernel uses linked lists to implement the physical page allocator, LRU

page replacement, reverse page tables, and many other facilities. The kernel usually

maintains invariants, implemented with shared memory, and associated with complex

data structure. When the kernel updates the underlying linked list, it also updates the

other invariants. For example, when adding a virtual page to a reverse page table,

the kernel acquires a lock, inserts the page into a list, and increments a per-page
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Figure 7-5: Results for the list microbenchmark

reference count.

We wrote a list microbenchmark to measure potential performance improvements

from using cmsg. The list microbenchmark initializes a list by inserting 20 elements

into the list, then creates two threads that insert into or remove from the list. To

operate on the list, a thread acquires a spin lock protecting the list, performs insertion

or removal with equal probability, and releases the lock. Performing an operation on

the list can incur as many as 5 cache misses: acquiring the lock, setting the list

entries next and previous pointers, setting the previous elements next pointer, setting

the next elements previous pointer, and releasing the lock. To model the situations

where software might update additional shared memory (e.g., the reverse page table

described above), the benchmark modifies a variable number of extra cache lines while

holding the spin lock.

The list microbenchmark uses cmsg to perform the list operation. The microbench-

mark uses the address of the spin lock to address the message, uses the address of the

function performing the list operation as the PC, and uses the list element to insert

or delete as the argument. After executing cmsg the thread spins until a flag variable

is set to zero. The destination core replies using an active message, which clears the

flag variable.

Figure 7-5 presents the results for the linked list microbenchmark. The x-axis

shows the number of extra cache lines the benchmark modifies while holding the spin

lock. The y-axis shows the average latency for executing a list operation.
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The results indicate that, even when modifying one extra cache line, using cmsg

decreases latency by about 22%. As the number of extra cache lines increases, the

cost of performing a list operation increases with and without cmsg. Both increase

because of the additional instructions the CPU must execute to modify the extra

cache lines. However, the cost without cmsg increases much faster than the cost with

cmsg, because every additional cache line modification incurs a cache miss. When

using cmsg, on the other hand, the extra cache lines are most likely present in the

destination core's Li cache.

7.7 Summary

In this chapter we introduced DMC instructions for managing on-chip caches, and

described their design and implementation on Arete. Results from mircobenchmarks

indicate that using DMC instructions improves the performance of certain operations

by reducing the number of cache misses. These results suggest that DMC instructions

may be useful for a large class of workloads.

The use of a cycle-accurate, full-system simulator to conduct these experiments

provided insight into the impact of the architectural changes on the system as a whole.

Not only were we able to explore and understand the reasons behind the change in

performance, we also gained an appreciation for the hardware constraints, namely,

limited resources and short critical paths.

7.7.1 Limitations

One factor limiting the range of workloads that we can evaluate is the low core and

cache count of our simulator. A dual-core processor model cannot evaluate how well

DMC performs for workloads that take advantage of a large aggregate on-chip cache

capacity by actively managing cache contents. Adding support for more cores would

allow us to explore the use of DMC instructions in such workloads.

The implementation and evaluation of cmsg and active messaging has a number

of loose ends. Currently, the use of cmsg assumes that the destination core is always
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running in the same virtual address space as the thread executing cmsg. This assump-

tion works when executing kernel functions in a kernel with a global virtual address

space, like Linux, but it does not allow user-level threads to execute cmsg, because

the destination core might be running in a different virtual address space. One po-

tential solution is to include the value of the Process ID (PID) register, which serves

as the core's TLB tag in the active message. Upon receiving the active message, the

destination core can load the PID value.

Our evaluation of cmsg does not address how the operating system kernel can

guarantee fairness. A core could spend all its time executing active messages from

other cores, starving the threads on its own run-queue. It might be possible to detect

this situation and either migrate all the threads to other cores, or mask active message

interrupts for a short while.

We also need to evaluate the patterns of memory accesses applications make for

which cmsg might hurt performance. For example, if an application reads some set

of data objects very often, it might not be beneficial to use cmsg to accesses them.

Instead, the cache coherence protocol should copy the objects into all the Li caches.
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Chapter 8

Conclusion

To conclude the thesis, we first discuss our modeling technique for developing FPGA-

based cycle-accurate simulators. We then discuss the empirical evidence which shows

that simplified models lead to wrong conclusions. Finally, we discuss the future

directions that are based on our modeling technique and processor simulator.

8.1 Processor modeling on FPGAs

Architectural experimentation requires fast, flexible and accurate simulators. In the

past few years, the technology for developing FPGA-based simulators has matured

to the point where a flexible simulator, which can provide up to 1000x speedup over

detailed software simulators, can be readily built. FPGA-based simulators, however,

remain harder to develop than software simulators.

In this thesis we presented a new robust technique for developing cycle-accurate

simulators on FPGAs. We showed how a cycle-level specification of the processor

microarchitecture can be automatically transformed into an efficient FPGA-based

model. The model, while preserving the timing behavior of the specification, can

achieve both high performance and low resource utilization. A concrete evidence of

the efficacy of our modeling technique is Arete. It runs at 55 MIPS when simulating

8 cores, and it has been modified for various architectural studies.
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8.2 The need for cycle-accurate modeling

It is understandable why architects may want to use simplified models, such as the

1-IPC core model, in simulation studies. These simplified models not only improve

simulation speed, if they turn out to be reliable, they can simplify the analysis of

experimental results.

The empirical evidence provided in this thesis, however, showed that simplified

models can lead to wrong conclusions. For example, if the replacement policy ex-

periment was performed using the 1-IPC core model, one might have concluded that

LRU was not much better than random. Similarly, if the branch prediction study

was performed using the abstract model of stalls due to data hazards, one might have

concluded that having a branch history table was not much better than having no

branch prediction at all. The only way to ascertain if a simplified model is reliable

is to compare it against a cycle-accurate model. Once validated, it can be used for

many faster simulation runs.

Our goal is to point out the flaws in 1K-core simulations which use 1-IPC core

models. Although, at present there may be no other feasible way to perform such

large-scale simulations, our results show that performance estimates obtained from

such simulations cannot be trusted.

8.3 Future work

In this section we present some of the future avenues we are planning to explore using

our modeling methodology and cycle-accurate processor simulator.

8.3.1 Power modeling

Reasonably accurate power estimates of a hardware design obtained prior to tape out

are as important, if not more, as its performance estimates. Tools and techniques

for power modeling encounter the same set of challenges as those for performance

modeling. To provide accurate estimates, commercial power modeling tools require
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Figure 8-1: Power modeling approach

a placed and routed netlist of the design, and a value change dump (VCD) of a

representative activation sequence, such as software running on a processor design.

A placed and routed design is only available in the final stages of ASIC development,

and generating a VCD for a placed and routed design is excruciatingly slow.

Another approach is to obtain activity statistics, such as register file reads and

writes, TLB lookups and misses, etc., from a cycle-accurate performance model of

the target design. These statistics are then combined with power measurements of

the respective events to estimate the power consumed by the entire design. The

modeling methodology we developed and used to build Arete is specially suited to

this approach. Figure 8-1 shows the proposed power modeling approach based on

our modeling methodology. The cycle-level target specification is transformed into a

refined LI-BDN implementation on FPGAs, from which accurate activity statistics

are obtained at a very high speed. The specification is also compiled into RTL which

is used to obtain power measurements for low-level events. The two are then fed

into a power model which provides reasonably accurate estimates of overall power

consumption.

Another interesting opportunity afforded by Arete is in low-level power gating of

processor designs. Figure 8-2 shows the activity rate and the toggle rate for the 3 read

and 2 write ports of the register file in the multicore PowerPC processor. Booting
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Application Read port 0 Read port 1 Read port 2 Write port 0 Write port 1
Activity Toggle Activity I Toggle Activity I Toggle Activity I Toggle Activity Toggle

linux 19% 38% 5% 23% 14% 10% 11% 4% 10% 8%
blackscholes 27% 51% 5% 33% 16% 13% 14% 4% 14% 11%
swaptions 26% 51% 6% 33% 15% 13% 14% 4% 14% 11%
streamcluster 26% 50% 6% 33% 15% 12% 14% 4% 13% 11%
canneal 27% 52% 6% 34% 16% 13% 13% 4% 14% 10%

Figure 8-2: Statistics for register file ports



Figure 8-3: Combining Arete with large-scale simulators like Graphite

of the Linux kernel and execution of four applications from the PARSEC benchmark

suite were used to obtain these statistics. We see that all the ports have low to

moderate activity as well toggling, which makes them suitable candidates for power

gating. Such insight can be obtained for all the low-level events in a processor.

8.3.2 Combining moderate-scale cycle-accurate simulations

with large-scale functional simulations

We propose to combine the large-scale simulation and high-level power-performance

modeling capabilities of Graphite [34] with the cycle-accurate activity-and perfor-

mance measurement capability of Arete [3] to provide a simulation infrastructure that

delivers the best of both worlds. Figure 8-3 provides a high-level view of the proposed

modeling approach and the information flow between the two simulation platforms.

Accomplishing such a merger gives rise to two research challenges: restriction and

projection.

Arete will play the role of a fast and accurate partial-system simulator. For
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instance, it will simulate a 64-core segment of the 1K-core processor, or only the on-

chip network. The first challenge will be to generate a restricted cycle-level trace from

Graphite that will drive a particular partial-system simulation. In order to simulate,

for example, the on-chip network, the trace will need to include all the network traffic

generated by the various nodes. Furthermore, this traffic will need to be coupled with

cycle-level timing information obtained from the high-level simulation. Similarly, for

simulating a 64-core segment of the 1K-core processor, the trace will need to include

the code and data segments of the application that are executed on the particular

core segment. It will also need to include timed memory and network interactions

between the core segment and the rest of the system.

Once performance and activity statistics are gathered from many partial-system

simulations, the second challenge will be to develop models that are capable of pro-

jecting full-system power and performance from these statistics. In case of a homoge-

neous multicore processor running homogeneous parallel applications, the projection

problem can be reduced to a straight-forward extrapolation. However, when either

the processor or the application exhibits heterogeneity, a careful partitioning of the

system will be required, along with many partial-system simulations. Statistics ob-

tained from these simulations will then be combined into full-system estimates. A

more complex processor microarchitecture or application behavior will translate into

both a higher frequency of partial-system simulations and a more involved combina-

torics problem.

8.3.3 Hardware/software codesign

To satisfy power and performance constraints, programs running on system-on-chip

(SoC) platforms exploit an increasingly wide range of special-purpose accelerators.

Generally, these are implemented as fixed-function ASIC blocks and are connected to

the application processor by an interconnection network. Choosing which accelerators

to implement in hardware is a risky undertaking, since it requires chip designers to

identify the important applications a priori. Moreover, implementing applications on

such platforms requires the programmer to use the fixed functionality effectively.
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Figure 8-4: Hardware/software codesign on Arete

Our modeling methodology facilitates the addition of hardware accelerates to

Arete, providing a cycle-accurate power-performance modeling platform for SoCs,

as shown in Figure 8-4. We can accurately model the relative clock speeds of the

processor, the accelerators and the communication channel. For example, in order to

model a clock speed ratio between the processor and an accelerator of 1 : 10, we will

set the FPGA to model cycle ratio (FMR) for the accelerator to 90, since the FMR

for the processor is 9. The latency and bandwidth of the communication channel can

be modeled in a similar fashion.
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