
Template-based Hardware-Software Codesign for

High-performance Embedded Numerical Accelerators

by

Ranko Radovin Sredojevid

Submitted to the Department of Electrical Engineering and Computer
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

Science

ARtCHIVE!
A SACHUSETTS INSTITUTE

OF TEC!-HNOLOGY

OCT 0? 2013

LIBRARIES

© Massachusetts Institute of Technology 2013. All rights reserved.

Author..
Department of Electri(Eineering and Computer Science

August 30, 2013

Certified by..........V. . ..
Vladimir Stojanovic
Associate Professor

Thesis Supervisor

Certified by............V.........................
Alexandre Megretski

p1 Prcfessor of Electrical Engineering
Thesis Supervisor

C ertified by
Arvind

Jhnson Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
C ia fessor Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Template-based Hardware-Software Codesign for High-performance

Embedded Numerical Accelerators

by

Ranko Radovin Sredojevi6

Submitted to the Department of Electrical Engineering and Computer Science
on September 2, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Sophisticated algorithms for control, state estimation and equalization have tremendous
potential to improve performance and create new capabilities in embedded and mobile
systems.

Traditional implementation approaches are not well suited for porting these algorithmic
solutions into practical implementations within embedded system constraints. Most of the
technical challenges arise from design approach that manipulates only one level in the design
stack, thus being forced to conform to constraints imposed by other levels without question.
In tightly constrained environments, like embedded and mobile systems, such approaches
have a hard time efficiently delivering and delivering efficiency.

In this work we offer a solution that cuts through all the design stack layers. We build
flexible structures at the hardware, software and algorithm level, and approach the solution
through design space exploration. To do this efficiently we use a template-based hardware-
software development flow.

The main incentive for template use is, as in software development, to relax the gener-
ality vs. efficiency/performance type tradeoffs that appear in solutions striving to achieve
run-time flexibility. As a form of static polymorphism, templates typically incur very little
performance overhead once the design is instantiated, thus offering the possibility to de-
fer many design decisions until later stages when more is known about the overall system
design.

However, simply including templates into design flow is not sufficient to result in ben-
efits greater than some level of code reuse. In our work we propose using templates as
flexible interfaces between various levels in the design stack. As such, template parameters
become the common language that designers at different levels of design hierarchy can use
to succinctly express their assumptions and ideas. Thus, it is of great benefit if template
parameters map directly and intuitively into models at every level.

To showcase the approach we implement a numerical accelerator for embedded Model
Predictive Control (MPC) algorithm. While most of this work and design flow are quite
general, their full power is realized in search for good solutions to a specific problem. This is
best understood in direct comparison with recent works on embedded and high-speed MPC
implementations. The controllers we generate outperform published works by a handsome
margin in both speed and power consumption, while taking very little time to generate.

Thesis Supervisor: Vladimir Stojanovic

3

Title: Associate Professor

Thesis Supervisor: Alexandre Megretski
Title: Professor of Electrical Engineering

Thesis Supervisor: Arvind
Title: Johnson Professor of Computer Science and Engineering

4

To my Parents,

for your gift of Life.

To my Teachers,

for illuminating my Way.

To my Friends,

for the Time you have given me.

To my Muses,

for Passions and Love.

5

6

Acknowledgments

The time I have spent at MIT was an amazing journey full of interesting people and expe-

riences. It transformed me both as a person and as an engineer.

First and foremost, I would like to thank my advisor, Prof. Vladimir Stojanovid. I

could not have been luckier to have him as my mentor. He was my "negative feedback"

when I needed to focus on the problem at hand and my "positive feedback" when I was in

the homestretch. He let me explore many areas of engineering research, and the fact that I

finally found my true engineering domain is due to him.

I would not have been able to undertake this journey without the support and en-

couragement of my undergraduate mentors. Above all, I wish to thank Prof. Aleksandra

Pavasovid, who inspired me to pursue a graduate degree and believe in myself. She saw

more in me than even I did at the time, and I am infinitely grateful for her support and

advice. I am grateful to Prof. Jelena Popovid and the late Prof. Slavoljub Marjanovid, who

always had words of encouragement for me.

I am lucky to have many great friends, on both sides of the Atlantic and the Equator -

too many to single out without forgetting someone. Thank you for all the support in good

times, and advice in bad times. You bring out the best in me, and help me control my

worst. I always look forward to spending more time with all of you.

Finally, I cannot give enough thanks to my mother Stanica, my father Radovin and my

sister Vesna. Without you none of this would have been possible. No matter how far apart

we might be, thinking of you makes me happy and helps me endure.

7

8

Contents

1 Introduction

1.1 Embedded Digital Signal Processing and Control

1.1.1 Traditional Development Flows

1.1.2 Template-based Hardware-Software Codesign

1.1.3 Example Design: Model Predictive Control

1.2 Contributions .

2 System Overview

2.1 Template-based Hardware-Software Codesign for Embedded

2.1.1 Processor Template

2.1.2 Statically Scheduling Compiler

2.1.3 Algorithm Formulations

2.1.4 High Level Synthesis Comparison

2.2 Sum m ary .

Acceleration

3 Processor Template

3.1 Processor Template

3.2 Template Architecture

3.3 Generalized Unit Architecture . .

3.3.1 Unit control

3.3.2 Available unit primitives .

3.4 Test Infrastructure and Protocol

3.5 Summary

9

17

18

20

23

26

27

29

30

30

31

32

34

35

37

38

40

47

48

53

56

57

4 Statically Scheduling Compiler 59

4.1 Com piler Flow 60

4.1.1 Input M ethods 61

4.1.2 Data Flow Graph (DFG) Exploration and Optimization 68

4.1.3 DFG Scheduling and Code Generation 77

4.2 Sum m ary . 80

5 Algorithms 83

5.1 Interior Point Method for Quadratic Programming 84

5.1.1 Initialization . 86

5.1.2 Iteration . 88

5.2 Model Predictive Control Formulations . 92

5.2.1 MPC: Linearizing Pre-Equalization 92

5.2.2 MPC: Constrained Reference Tracking 97

5.3 Sum m ary . 100

6 Results and Evaluation 101

6.1 LDLT decomposition . 103

6.1.1 DFG Scheduling Modes: Throughput and Latency Limits 104

6.1.2 Minimal and maximal processor size for latency optimization 105

6.1.3 Performance comparisons . 108

6.2 MPC: Linearizing Pre-Equalizer . 109

6.3 MPC: Constrained Reference Tracking . 113

6.3.1 Latency vs. Throughput: Diminishing returns 114

6.3.2 Performance comparison . 115

6.4 Sum m ary . 118

7 Conclusions and Future Directions 119

7.1 Extensions . 120

7.2 C hallenges . 121

A Flow Mechanics 123

10

List of Figures

Typical algorithm-first design cycle . .

Platform-first design cycle

Template-based design cycle

Full system design flow chart

Simple data flow graph

Processor architecture

Unit micro-architecture

Testing setup for the processor

4-1 Compiler flow showing the four main stages and

compiler and the processor configuration. . . .

4-2 DFG example

4-3 DFG with collapsed nodes

4-4 Super-node expansion: optimal and suboptimal

the interactions between the

4-5 Super-node representations of x = (2b) + (4ac) for constant folding optimization

4-6 Super-node representations of x = (a + b) - (c - (d - a)) for inverse operation

optim ization .

4-7 Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; without duplicating

nodes

4-8 Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; with duplicating nodes

5-1 MPC as linearizing pre-distortion . 93

6-1 Performance bounds for LDLT decomposition example 105

6-2 LDLT latency results for custom accelerators 106

11

1-1

1-2

1-3

2-1

2-2

3-1

3-2

3-3

. 2 2

. 2 3

. 2 4

. 3 1

. 3 3

. 41

. 47

. 56

61

69

72

73

74

75

76

77

6-3 LDLT latency results compared to other processors 109

6-4 Model Predictive Control (MPC) as linearizing pre-equalizer 113

6-5 Control (u) and output (y) signal for step reference when controlled by an

MPC implemented in C++ and on our processor 116

A-1 Initial computation graph as produced by the norm template 127

A-2 Final computation graph after optimization, scheduling and memory assign-

ment 128

12

List of Tables

3.1 Operational unit types and parameters available in processor template . . . 54

4.1 Available operators and functions in simple text file input language 62

4.2 Functions and operators overloaded for graphMaker to construct the DFG . 66

6.1 Processor parameters for studying processor size and latency on LDLT de-

composition example algorithm . 107

6.2 Profiling results for CVXGEN [21] generated MPC 110

6.3 MPC performance for different processor resources and DFGs 112

6.4 MPC performance for different processor pipeline structures and throughputs 114

6.5 Resource utilization comparison between our design and a hand-crafted MPC

im plem entation . 117

13

14

List of Acronyms

QP Quadratic Programming

MPC Model Predictive Control

UAV Unmanned Aerial Vehicle

RF Radio Frequency

WSN Wireless Sensor Network

MC Microcontroller

DFG Data Flow Graph

DSL Domain Specific Language

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

KKT Karush-Kuhn-Tucker

IP Interior Point

LTI Linear Time Invariant

DSP Digital Signal Processing

SS State Space

SSB System Side Bus

FSB Front Side Bus

15

BSV Bluespec System Verilog

HDL Hardware Definition Language

HLS High Level Synthesis

NOP No Operation Instruction

USB Universal Serial Bus

UART Universal Asynchronous Receiver/Transmitter

ADC Analog to Digital Converter

DAC Digital to Analog Converter

RAM Random Access Memory

PLL Phase-Locked Loop

GCC The GNU Compiler Collection

ICC Intel C Compiler

IO Input/Output

16

Chapter 1

Introduction

For it is unworthy of excellent men to lose hours like slaves

in the labor of calculation which could safely be relegated

to anyone else if machines were used.

-GOTTFRIED WILHELM VON LEIBNIZ

We should forget about small efficiencies, say about 97% of

the time: premature optimization is the root of all evil.

-DONALD KNUTH

Success of a technology is only partially determined by the- promise of the underlying

scientific principles. For widespread adoption a solution must also be time and cost ef-

fective. This usually requires a wide range of applications, fast development and reliable

maintenance cycle. Until recently, advanced signal processing and control were considered

to be out of the reach of embedded and mobile platforms due to their modest computing

capabilities.

In the last decade, implementations of sophisticated signal conditioning algorithms for

use in embedded systems have been under active development. However, most of the solu-

tions reported to date are based on ad-hoc considerations and specific treatment of a problem

instance. Few that consider building infrastructure for efficient implementation are usually

heavily dependent on existing hardware/software infrastructure. This is not enough to raise

advanced Digital Signal Processing (DSP) to the level of technology in these spaces. While

the results are quite promising and the possible improvements in performance appealing,

the unstructured design flow is hard to predict, schedule and use reliably.

Showing that advanced signal processing and control are viable and reliable solutions

17

for improving performance of embedded and mobile systems involves addressing most of

the risk factors. Ad-hoc approach to implementation should be replaced by a general

framework for accelerator construction to remove uncertainties of unstructured design flow.

At the same time, it should be demonstrated that the resulting approach yields accelerators

with competitive performance, thus confirming that the new set of applications is within

reach. This can be done by considering and tightly connecting all layers of embedded

design hierarchy - from hardware design through software implementation up to algorithm

exploration. In such a flow, if executed well, a small team of designers can own all the

design decisions and make sure that system components fit together and perform under

desired conditions.

1.1 Embedded Digital Signal Processing and Control

Sophisticated digital signal processing and control have tremendous potential to improve

performance of many systems in robotics, mobile and general embedded markets [1-5].

However, the applicability of these sophisticated techniques was traditionally considered to

be quite limited; their deployment was considered only in systems where powerful worksta-

tions can be used for implementation and sampling rates are very slow. The reason for this

is difficulty in achieving efficient implementations of these demanding computational loads

under the resource constraints of embedded environments [6,7]. This generally disqualifies

them in embedded systems with standard computation resources, leaving them with simple

signal processing like digital filtering and algorithms with low-cost recursive update.

In this work we are interested in re-evaluating these conclusions. We focus on embed-

ded systems, usually constrained in area, weight and power consumption (e.g. mobile and

battery powered devices). Many such designs would benefit greatly if more sophisticated

algorithmic solutions could be used within the resource constraints. The applications we

consider require known, and fixed, input-to-output latency (e.g. discrete time communica-

tion and feedback control systems). In other words, we consider systems where worst case

latency is of interest for the correct operation. Typically, in such designs, queueing, flexible

pipelines and other techniques for average processing rate increase are not of much benefit.

For example, many prototypes of Unmanned Aerial Vehicle (UAV) and general robotics

are reported with off-board control and state estimation using an indoor visual tracking

18

system and a dedicated control server [5, 8, 9]. While they are showing very promising

results, such an approach poses significant challenges in scaling past the proof-of-concept

stage. Off-board state estimation and control imply significant round-trip delays during

Radio Frequency (RF) communication with the controller setup [9]. Consequently, the

distance between the unmanned robot and the control setup must be kept small, limiting

the possible applications. Long sensor to control delays also results in poorer performance

under disturbance and limit some of these techniques to indoor use or to proof-of-concept

systems. Achieving high performance on-board control under the speed, area, weight and

power constraints of these systems would enable construction of more agile systems capable

of properly functioning in a wider range of situations [5]. This is one of the reasons research

in controller implementations suitable for on-board operation [4] is receiving more attention

lately.

Similar tradeoffs can be observed in Wireless Sensor Network (WSN) settings. Analysis

of power tradeoffs shows that it is preferable to avoid RF communication from a WSN

node because of the disproportionately high power cost of RF communication [10] relative

to the cost of signal acquisition and computation. It is always preferable to do as much

computation as possible on the node before passing data further into the network [10].

Furthermore, overall functionality and performance of WSN is very dependant on com-

munication delays [11] and powerful node controllers could trade off communication for

computation. In that sense having high-performance numerical accelerators with low power

and area footprint would be quite beneficial for WSN applications as well.

Embedded processor resources and instruction sets evolved targeting linear digital fil-

tering and data acquisition operations. As such, they cannot efficiently run more sophisti-

cated classes of control and signal processing algorithms, which are based on optimization

solvers [6]. Furthermore, it is hard to optimize processor resources for low latency without

knowing the program. Thus throughput performance is usually considered as a surrogate

latency, even though it is well known that they do not coincide [12].

On the other hand, general purpose desktop and server processors usually consume

orders of magnitude more power than what is available in mobile, robotic and embedded

systems in general. Unsurprisingly, achievable average performance can be quite good if a

general purpose processor can be used [6]. However, ensuring real-time algorithms always

execute properly on machines with out-of-order execution, complicated cache hierarchy and

19

other speculative attempts at throughput optimization is quite difficult and sometimes even

impossible [12-14]. A statically scheduled system with straightforward execution timing

would be more appropriate for all applications mentioned, especially time-critical ones since

fast computing is not real-time computing [12].

Poor latency of embedded processors and high power of high-performance processors,

coupled with advances in numerical and signal processing algorithms [6, 15] give rise to

research in custom offload engines [6, 7, 15-26]. Usually, these solutions rely on extreme

customization, hand-crafted code and optimizations based on thorough examination of the

algorithm structure, reducing the generality, impeding design reuse and increasing the engi-

neering cost and time to market. Few works recognize the need for establishing proper infras-

tructure and not relying on guesswork and ad-hoc methods in the design process [6,15,21,24],

but not all of them are suited for embedded and low power use simply because of the tools

and processor power they need to operate efficiently [6].

1.1.1 Traditional Development Flows

In general, two major paths to custom accelerator construction can be seen in literature:

algorithm-first or platform-first.

The algorithm-first route assumes that the top-level algorithmic choice can be made

before the system implementation begins. A sketch flow-chart of this design approach is

shown in Figure 1-1. The algorithm is analyzed and partitioned into smaller functional

units, usually defining the major modules for system implementation. The inter-module

synchronization and data handoff protocols are also defined at this point, thus fixing the

algorithm execution timing to a large degree. As each module is implemented the first

performance measures start emerging, but only estimates and bounds to the system perfor-

mance can be given until the system is fully integrated. Changing any of the system-level

design decisions (e.g. algorithm, algorithm partitioning) requires going through the full

design cycle again, at the expense of human designer time. An example design following

this methodology can be found in [17].

Usually, algorithm-first designs produce hardware-based solutions. In other words, most

of the functionality is achieved by mapping it directly into hardware.

Often, system and algorithm designers have little information about implementation

tradeoffs and feasible design space before the implementation starts. Algorithms can have

20

many equivalent formulations and the choice might not be obvious, making the laborious and

long implementation a risky endeavor and possibly a trial-and-error route to an acceptable

solution.

Ideally, the algorithm-first route should offer great flexibility in defining and fine-tuning

the system. This intuition comes from the belief that full knowledge of the algorithm, cou-

pled with full control of every aspect of the implementation, can help designers make better

decisions. Unfortunately, the serialized development cycle, Figure 1-1, makes feedback in

design decision making very expensive in terms of time and design effort. Furthermore, in

every iteration we are working only with a particular algorithm instance and implementing

one accelerator instance. Observing general tradeoffs is quite challenging in this setting, and

carrying tradeoff knowledge across redesign spins is not easy because every implementation

attempt tends to be very specific.

Despite its initial promise, this approach usually yields quite rigid design descriptions,

seldom capable of any algorithmic tradeoffs. Furthermore, without the abstract system

model to unify common ideas between different implementations the design is easily lost in

the low-level implementation clutter.

The platform-first route starts with hardware component design or choice as shown in

Figure 1-2. Following is a process similar to algorithm-first approach, but it happens entirely

on the software side. In this way, a mostly software-based solution is created. Examples of

such designs are [6,7,26].

The platform is optimized according to results of profiling of expected programming

loads. The software infrastructure (e.g. OS, libraries, etc.) is constructed next. Finally,

the user defined application is implemented. Inevitably, decisions made with lack of full

algorithm specification constrain the algorithm design space, resulting in loss of flexibility

for the algorithm designer. Furthermore, some standard processor and compiler optimiza-

tion (e.g. out of order execution, pipeline flushing, instruction reordering) strategies make

verifying real-time constraints very hard [13,14].

The platform-first route enables high level of effort reuse because the whole processor/li-

brary stack can be thought of as reusable component. However, the reusable components

are created without much regard for the final application. This often brings more con-

straints than necessary and limits the achievable performance. The extra weight of solu-

tions achieved through this approach comes from the necessity to design a platform that

21

algorithm
selection

0

3
i-9

3 CD
0nCD

3
CD
=3
CDr

flexibility for high
level change

flexibility for
major implementation
change

subsystem
performance
measures

system
performance
measures

Figure 1-1: Typical algorithm-first design cycle

can work in many different scenarios, most of which are unknown or insufficiently described

at the platform design time. In a sense, it resembles dynamic (run-time) polymorphism in

programming. A generic support infrastructure that can express any solution in a given set

is built and then programmed to perform one specific task. However, the overhead cost of

unused components can be quite high.

A mixed approach is sometimes utilized [16]. In such framework part of the solution

is implemented in platform-first and part in algorithm-first fashion. Usually, control and

top level sequencing is implemented platform-first by using an embedded Microcontroller

(C). Critical computation sections are then moved to a custom computation engine. This

approach is mostly an implementation convenience. In terms of flexibility and code reuse

it is the intersection, not the union, of previous two flows; it suffers from poor effort reuse

on the custom side, just like most of algorithm-first designs; on the platform-first part of

the design, the reuse potential is quite limited as changes in the sequencing or data handoff

easily propagate into the custom part of the design. It gives the worst of both worlds in

22

ciV
E

major impact
od power
consumption

a>o
Ehoie flexibility for high

level change

(DCD -

CD 0
Un 2

system
performance
measures

reimplement

Figure 1-2: Platform-first design cycle

terms of design flexibility, trading it off for implementation convenience.

All these traditional flows suffer from the same problem: they manage design complexity

by aggressively locking design decisions along the way. The algorithm-first approach starts

by fixing the algorithm; the platform-first locks hardware/software infrastructure right at

the beginning of the design. The result is a very quick loss of flexibility as the design

progresses. Either approach is good if some aspects of the design performance can be

sacrificed. In high performance embedded signal processing and control this is not feasible.

1.1.2 Template-based Hardware-Software Codesign

An ideal design flow would preserve the best of both worlds, offer the flexibility of the

algorithm-first approach while achieving the high level of design reuse similar to platform-

first design.

The need for improved design strategy stems from the observation that problems with

both main design flows in literature arise from aggressive decision making at the early stages

of the design, when the design tradeoffs are largely unknown and unpredictable. Our main

motive is to follow a different route and only fix the minimal number of design decisions to

make progress towards completing the system. As much of the design as possible, at each

design level, should be left unspecified and presented at the design layer interface as pa-

rameters. This allows parallel development at every design layer. Furthermore, such design

23

approach simplifies and focuses reimplementation loops. It replaces the highly serialized

development flows of Figures 1-1 and 1-2 for the parallelized and localized design flow in

Figure 1-3.

E hardware / ksoftware / algorithm
template(s) template(s) U formulation(s)

reimplement reimplement reimplement

Figure 1-3: Template-based design cycle

By keeping this simple idea in mind we are working towards a class design. The goal

is a description of an area of the design space of interest, not a particular point in that

area. This lets us prepare the low-level implementation details beforehand, in a generalized

form. Relying on generalized descriptions of whole design space regions, we should be able

to achieve the reuse levels similar to those in platform-first approach. The difference is in

the fact that our design is not a run-time flexible system, but a compile-time flexible system

description keeping the performance penalty acceptable as well.

To produce the desired design , we need only to determine the desired instantiation

parameters. This can be done efficiently through design space exploration mostly at the

expense of machine and not human time. Trading off human work at early stages (pre-

instantiation) of the design for, mostly, machine time in latter (post-instantiation) stages is

why this step can be postponed. In other words, being able to synthesize instances, from

the generalized form, quickly and cheaply (in terms of human work/time invested) allows

us to postpone the synthesis step and spend more design time determining the instantiation

parameters.

In such a design flow we are not forced to make algorithmic decisions early, restraining

the design within an unknown region of the design space without being able to exactly

describe it. With the infrastructure in place, and most groundwork already done, we are

free to explore various algorithmic solutions and equivalent algorithm forms taking into

account the cross-layer interactions without the clutter of low-level implementation details.

As we will see, this allows us to tweak the design and achieve the level of performance and

24

flexibility present in algorithm-first design approach.

Achieving this ideal design flow is not currently feasible, but we can come reasonably

close. Most of the desired properties of the generalized system design can be achieved

through metaprogramming techniques. Similar reasons lead to macro and template system

developments in software design. Thus, it is natural to extend these well tested techniques

by applying them at all the levels of the design hierarchy, from top level algorithms down

to software and hardware implementations. However, even metaprogramming facilities of

high-level languages have their limitations. We will have to concede to making some of

the design decisions outside of the flexibility of the proposed framework like other design

paradigms do. Such decisions, as we will see, are mostly in aspects of the design that are

hard to parameterize or describe within the metaprogramming facilities of the language

we use (e.g. topological properties of the processor architecture). However, we strive to

minimize such design decisions, as they introduce all the undesirable effects we seek to

avoid.

We note that a design flow with seemingly similar characteristics could be developed

within the context of High Level Synthesis (HLS). Detailed analysis of the proposed flow in

this thesis will clarify the difference and how HLS and the proposed flow address different

shortcomings of the traditional design approaches. HLS is concerned, mostly, with hardware

design and not on hardware-software codesign. To achieve the flexibility we desire, the code

for HLS would have to be written in a template form, anyways. Finally, HLS puts too much

pressure on the input language and the compiler [27]. Current compiler technology is not

advanced enough to provide provably optimal manipulation of the computation structure

described by the input code [28]. Thus, it is easy to end up in a situation where design and

debug are quite tedious as small code changes result in dramatic, discontinuous performance

change after HLS tool is applied. We offer a more general and more controlled alternative.

Every design is explicitly controlled at multiple levels by insisting on human-designed, and

human-readable, descriptions.

Recently, similar ideas, under the term chip generators, started appearing in research re-

lating to the design productivity and cost of Application Specific Integrated Circuit (ASIC)

designs [29-31]. Our work has similar scope, and while we prototype and evaluate on Field

Programmable Gate Array (FPGA) there is nothing precluding us from using the same

methodology in ASIC development. The main differences between our and similar works is

25

in the mechanics of how the flexible, generalized solution should be constructed, the level

of control over design that we wish to retain for designers at all levels of hierarchy and our

focus on latency-critical system design.

What we are proposing is the construction of Domain Specific Language (DSL) at each

level of the design hierarchy. Unlike other works dealing with the design flows for ASIC

and FPGA for embedded applications we embed our DSL in powerful, high-level languages.

By doing so we enable incremental construction of the solution through the use of standard

development practices. It is this process of discovering the desired properties of system

templates at each level of the hierarchy that we find most valuable for the efficient design.

Works in chip generators [?] did not focus on efficiency of template construction.

In this work we will guide the reader through the design process of one such template-

based solution. We will describe the process of evolving the template structure at each level

of the hierarchy through design space exploration.

1.1.3 , Example Design: Model Predictive Control

The main design example we use to show our design flow is a Model Predictive Control

(MPC) control algorithm [2]. This choice was motivated by the high volume of control and

system architecture publications dealing with efficient implementation of the algorithm in

the past few years [6,7,16,17,19,20,22,23,32].

The algorithm is based on interior point solver for Quadratic Programming (QP) prob-

lems [33]. It is an iterative algorithm that requires solving a linear system of equations

at each step followed by a one dimensional function optimization by line search. Due to

this, it is considered as a computationally very demanding load and rarely used in em-

bedded environments despite many advantages it offers in handling the system constraints

explicitly [2,6].

We do not advertise the MPC for any particular application. Our intention is to showcase

a methodology for arriving to high performance numerical offloading engines in a consistent

and reliable manner that enables design reuse. Implementation of the MPC control engine

is to showcase our methodology on an algorithm considered challenging to implement in

embedded environment.

26

1.2 Contributions

The contributions of this work are:

1. Definition of template-based hardware-software co-design flow for embedded compu-

tation offloading.

Templates offer generality of the design while suffering minimal performance degra-

dation of the resulting instances. Using them promotes design reuse and opens up

designer time for analyzing cross-layer performance tradeoffs of the system. Utiliz-

ing them as flexible design layer interfaces provides excellent frame for discovering

good solutions to a given problem through negotiations between designers at each

level. We must make sure that template parameters have meaningful interpretations

at both sides of the design boundary. One would be hard-pressed to build such a

general framework without specifying the application sufficiently to be able to ex-

ploit the specific structure of the problem. That is why we focus on latency critical

numerical algorithms. As it turns out, this narrows the desired implementation suf-

ficiently for our methodology to achieve designs with superior performance to other

implementation techniques.

2. Implementation of necessary infrastructure to enable such a design flow for embedded

numerical acceleration.

In our proposed design flow, the compiler becomes the main link between the algorithm

and processor descripitons. It serves not only as a programming code generator, but a

tool for processor and algorithm matching. It helps us determine desired instantiation

parameters through analysis of Data Flow Graph (DFG) of the computation. Com-

piler maps hardware-level template parameters into meaningful properties of DFG

manipulated at the algorithm formulation level and enables their visualization and

analysis. Unlike a compiler for a predefined processor architecture, our compiler-like

tool has flexible, extensible design enabling quick mockups of new unit types and

testing of their influence on the DFG structure and scheduling. Finally, since DFG is

available for inspection at multiple stages of the compilation process, we are always

aware of the exact latency of the computation and operation count as a surrogate for

latency is not necessary. Having this type of tool can significantly change the way

27

algorithm designers pick implementation candidates because guesswork based on oper-

ation count can be replaced by quick experiments on the compiler that will eventually

produce the final hardware instance and programming files.

3. Implementations of several demanding, optimization-based, signal processing algo-

rithms that outperform all similar systems reported to date.

Leveraging the flexibility of the design flow and tools we constructed, we show how a

class of demanding numerical applications can be accelerated on a custom hardware-

software combination. We present accelerator design at all the levels of hierarchy:

hardware, software and algorithm. Using the compiler as our exploration tool, we

show how algorithms can be molded into equivalent forms that enable more parallel

execution and better interaction with processor primitives, often requiring counter-

intuitive decisions from the perspective of traditional design approach. For example,

quick mockups of processor functional units help define exact functionality of our

predication units, semantics of true and false for efficient implementation of line search

in interior point algorithms. The results are control algorithm designs that outperform

recently published solutions while achieving high degree of design reuse and flexibility

for change at late stages of the design process.

28

Chapter 2

System Overview

This is your last chance. After this, there is no turning

back. You take the blue pill - the story ends, you wake up

in your bed and believe whatever you want to believe. You

take the red pill - you stay in Wonderland and I show you

how deep the rabbit-hole goes.

-MORPHEUS, THE MATRIX

In this work we are looking to efficiently develop a flexible implementation of numerical

computation engine. Our hardware-software codesign flow will be set up with that purpose

in mind. In that sense the choice of template structures and their parameterization, i.e.

the small part of design decisions that escape our design flow and the philosophy of lazy

(or late) parameter definition, depends on the specific target algorithmic class of interest.

Our intention is to construct a numerical accelerator setup for QP optimization based

control algorithms, e.g. MPC. We will use Interior Point (IP) class of algorithms for solving

QP problems. These are iterative algorithms that utilize linear algebra kernels and simple

decision making (i.e. conditional processing) in each iteration. In the interest of reusability

and cost effectiveness of the solution we would like the design to be customizable. This

can be done in multiple ways: at the design compile time or through programmable final

design. Compile time flexibility, achievable through static polymorphism, is useful in custom

tailoring area and some power consumption aspects of the design. This can come handy

when we want to provide a maximally optimized processor size for a given size of MPC

formulation. On the other hand, run-time programmability of the design can be useful if

the same processor instance is to be used in various designs and applications. To showcase

29

the most general setup and to justify both FPGA and ASIC applications we will provide

both options: the design will be customizable at compile time and programmable after

implementation.

If some of these properties are not needed the design can be further customized for

potential gains in performance, but we will not go into such an implementation. We will see

that, despite the very general setup outlined here, proper design-space exploration driven

high-level algorithmic choices can bring significant performance gains compared to hand-

crafted designs where platform or algorithm was chosen before implementation details and

tradeoffs are fully known.

2.1 Template-based Hardware-Software Codesign for Embed-

ded Acceleration

Our design flow infrastructure for the previously defined target problem set is illustrated

in Figure 2-1. We will follow general guidelines described in Section 1.1.2, including the

structure of design flow sketched in Figure 1-3. Our design spans three co-dependent layers

of the accelerator structure: hardware, software and algorithm.

2.1.1 Processor Template

As we show in the Chapter 6, real time latency of computation depends on the amount of

parallelism that can be extracted from the algorithm for a particular processor configuration

and maximum frequency. Thus, it is of utmost importance to configure the accelerator

only after the intended load is known. This reconfigurability is provided by extensive

parameterization of the hardware template, outlined in full yellow line in Figure 2-1, by the

* number of operation units of each type,

" number of data memories,

" pipeline latencies of each operation unit type,

" pipeline latencies of all transport layers.

Generalized hardware descriptions can be challenging since majority of Hardware Defini-

tion Language (HDL)s do not provide sufficient metaprogramming facilities to build a tem-

30

Algorithm

Algorithm
Optimization

Optimized
DFG

Software Processor
Optimization Parameters

Bluespec
Schedule Synthesis

Optimized Optimized
Software Hardware

HW
Implementation

of Algorithm

Figure 2-1: Full system design flow chart

plate design. For this reason and for development efficiency Bluespec System Verilog (BSV)

was chosen as the implementation language at the hardware level. Careful template devel-

opment in BSV can leverage its flexibility while mitigating the built-in overhead. Details

of the processor template design are outlined in Chapter 3.

2.1.2 Statically Scheduling Compiler

Since the compiler, outlined in broken green line in Figure 2-1, is the bridge between the

algorithm and the processor, it is an ideal place to explore the effects of processor parameters

on algorithm execution time. In our system, the compiler serves not only as programming

code generator for the algorithm, but as a tool for determining instantiation parameters for

the processor template through analyzing properties of algorithm DFG.

31

The program loads of interest are sets of algebraic expressions to be evaluated, as shown

in Listing 2.1 example. Additionally, some forms of conditional or data dependent processing

(e.g. min, max, conditional-expression operator) are supported.

The DFG in Figure 2-2 corresponds to the computation in Listing 2.1. Nodes of the

graph represent operators and edges represent data flow.

x (a + b) - (c + d);

y f + g;

z x * sqrt(e) / y;

Listing 2.1: Simple numerical computation

Our compiler needs to be able to look at a DFG and determine quickly how fast it

will run on a given processor so it can look at many processor configurations in a short

amount of time and determine the best one for a given application. At the same time, the

compiler can provide a range of diagnostic information like bottlenecks in the evaluation

graph, the size of the DFG, the number of each type of operation, and the length of the

critical path, as a feedback to both algorithm and processor template designers. To do

this it uses the DFG of the algorithm and defines cycle-distances on it using the specified

processor configuration. Then it attempts scheduling the graph for execution on the given

processor, obtaining the schedule cycle-length. Finally, the processor post-implementation

(i.e. post-place-and-route) cycle-time is used to calculate real time length of the schedule.

Detailed description of compiler architecture, implementation and interaction with other

parts of the system is given in Chapter 4.

2.1.3 Algorithm Formulations

Design flow in Figure 1-3 puts the algorithm designer in charge of the majority of system

decisions. Similar things can be done in more common design flows. The mechanism for

achieving it, however, is very different in traditional design flows, and so are the results.

In more traditional implementation flows design phases have a serial chain type depen-

dencies, Figures 1-1 and 1-2, forcing sequential decision making. Because of this, infor-

mation describing tradeoffs in the design and interactions between design components is

carried only through long redesign cycles.

In template-based flow we are looking to find a way to postpone decisions (that could be

influenced by system parameters outside the template scope) if it is easy and efficient to do

32

a b c d

+ + e

sqrto fg

Z

Figure 2-2: Simple data flow graph

so. This approach preserves much of the design flexibility until many of the decisions can

be made jointly, at the modest expense of running a design configuration through the tool

chain. As this process, essentially template instantiation, does not require much human

time or work it is cheap and fast. Thus, low level implementation details of each template

can be developed, upgraded or modified independently for the most part, and then checked

by running a highly automated set of trials.

While the need for building templates restricts the set of applicable architectures or

algorithms to ones that can be efficiently parameterized, the benefits of joint decision making

at all levels of the design outweigh this downside. We will demonstrate this in Chapters 5

and 6.

Through design exploration, outlined in dotted blue line in Figure 2-1, we will demon-

strate that there exist both the lower and the upper bound on the size of processor structure

to execute a given DFG within a given time. Furthermore, we will see that manipulating,

although counter-inttuitive, DFG of a computation into an equivalent form with higher

number of operations can result in faster execution, in cases where we can afford to have

adequate hardware resources.

33

These two results give particular examples demonstrating weakness of both algorithm-

first and platform-first design flows. Coupled with the final measurement results demon-

strating superior performance of achieved designs, when compared to recent published

works, they completely justify investment in template-based development.

2.1.4 High Level Synthesis Comparison

Recently, various HLS tools have been advertised by major FPGA vendors. Nominally, these

tools implement design flows with the same objective we declare in Section 1.1.2: equip the

algorithm designer for cross-tayer system performance optimization while facilitating design

reuse.

However, non-speculative comparison between this work and HLS-based design flows is

not possible. Despite HLS tools being available for number of years, very few publications

report any results implementing high-performance numerical algorithms. At the time of

this writing, no complex embedded controller design using HLS was described in literature,

to the best of our knowledge.

Furthermore, the HLS approach usually assumes a high-level software development lan-

guage (e.g. C, C++, System C) as the design language and aims to deliver full hardware

implementation based on low-level hardware primitives. This approach is sometimes re-

ferred to as C-to-gates.

This is too aggressive from two important design cycle aspects.

In the first place, most languages for software design are not well suited for describing

hardware operation [27]. Thus, fine tuning of hardware primitives and their inference from

the high-level code is not an option in HLS flows. This problem is emphasized by the fact

that most optimizing compilers only optimize through application of heuristic rules [28].

This obscures design process and makes it hard for designers to predict the output code

performance change given the change in input code. Hardware synthesis compilers with

randomized place-and-route algorithms come to mind: it is not unusual for a strictly simpler

design code input to result in poorer performance, often making performance-driven redesign

loops very challenging.

Closely related is the problem of efficient testing and debug in HLS flows. Input and

output code are separated by multiple levels of indirection and transformation, inside the

compiler, and usually not accessible to the designer. They short-circuit all the intermediate

34

design levels we show in Figure 2-1, going from the input directly to the low-level hardware

representation. This makes tracking the changes and relating input and output design

representation very complicated, sometimes even impossible.

In sharp contrast to the standard HLS approach stands our implementation of template

based flow. We insist on multiple human-made (and thus human-readable) intermediate

representations of the design, shown in Figure 2-1. This makes tracking changes, system-

wide interactions and performance impacts of changes easier and more understandable.

Every template, with its parameters and interfaces serves as a point where a designer can

exercise full control of the design at a certain level.

2.2 Summary

While the first chapter outlined the motivation for development of an alternative design

flow, this chapter gives an overview of the structure of the proposed solution. We briefly

introduce major sections of the thesis, aligned with the logical partitioning of the designed

accelerators. Finally, we discuss the differences between the design flow we created and the

design with HLS-based flows.

35

36

Chapter 3

Processor Template

So, you'd like to make progress, but also at the same time

never be bound by the consequences of your decisions.

Data abstraction is one way of doing this.

-HAL ABELSON

More computing sins are committed in the name of

efficiency (without necessarily achieving it) than for any

other single reason - including blind stupidity.

-WILLIAM WULF

Choosing the computation structure for accelerator construction is not a straightforward

process, but it must be done in some sense for any progress towards design completion to

be made. This is one of the decisions that cannot be fully deferred, no matter which of the

design flows is used. Even in HLS flows the achievable design set is fully determined by the

set of primitives the compiler can infer from the high-level language.

In the case of algorithm-first design flow, the decision is usually based on intuitive, and

mostly speculative, algorithm partitioning as in [16,17. Platform-first designs usually settle

for an off-the-shelf general-purpose processor, as in [3], or construct a specialized processor

after profiling a particular algorithm implementation and partitioning, the approach used

in [7].

Technically, the flow in Figure 2-1 could be used to postpone hardware-level development

by first spending time to study properties of the DFGs of interest. This route has potential

and will be briefly discussed in Chapter 7. However, it would require significant effort in

DFG analysis to find general primitives of interest for our computation that do not, at the

37

same time, reduce generality or presume, even implicitly, a certain algorithm partitioning

or coarse-grain schedule of operations. As we are developing a proof of concept system we

will not pursue this.

It will become clear in Chapter 6 that current solutions offered in literature can be

overtaken with the simplest processor template imaginable. We will proceed assuming that

processor units perform simple algebraic operators or basic predication. Each unit has only

one function. In other words, we will treat DFG of computation at its most fine-grained

form, essentially accounting for every algebraic operation separately.

3.1 Processor Template

The main tool for accelerator construction is exploiting parallelism present in the algorithm

of interest. Uncovering parallelization opportunities is crucial for performance improvement

[34] and in the case when the load of interest and the target processor are known it is possible

to do through DFG analysis [35-37]. Conversely, given a DFG, an optimal processor resource

configuration for maximal parallelization can be deduced [35]. In other words, parallelization

opportunities are determined by the DFG of the computation, but whether they can be

exploited depends on the processor microarchitecture and resources.

This is another reason for working with fine-grained computational model. Every al-

gorithm partitioning introduces, implicitly, a coarse-grained operation schedule, reducing

the number of manipulations that can be done with the DFG. It also brings data handoff

between units into the picture. This often introduces wait states until a meaningful unit of

data is ready at the input of a subsystem, thus underutilizing the resources of that block.

We will see this exact effect when we compare FPGA resource utilization of our solution

and hand-crafted and human-scheduled solutions in literature, Chapter 6.

That is why our template structure exposes every computation unit to the compiler

directly and without any constraints. Any unit can be used at any point in the schedule.

We should note that better solutions could be possible. However, finding them would require

DFG analysis capabilities beyond the scope of this work and at a higher level than anything

in current literature.

With fine-grained computation structure, treating every operation in the DFG inde-

pendently and having options to schedule it on any available unit of the proper type, the

38

compiler construction becomes simpler and many optimizations are simpler to achieve. A

particular and important point here is that the algorithm can be partitioned and written in

any form that is intuitive and convenient for the algorithm designer, while the compiler can

violate this logical partitioning and calculate pieces of sequential logical blocks in parallel

if it brings performance benefits. This is the process of software pipelining [38,39].

Even when we impose this general structure onto the processor template we are left with

many microarchitectural parameters that can strongly influence the final performance. In

particular we need to look into pipeline structure of basic units and the question of processor

unit count.

Higher unit count enables more parallel operations to be issued, but increases rout-

ing congestion and placement footprint as well as active and leakage power consumption.

This limits the highest achievable running frequency. In fact, we will see that augmenting

processor resources past a certain point can actually hurt the performance since the fre-

quency will go down but the amount of parallelism that can be extracted will not make

up for its decrease. Similar observations have been made in the energy efficiency studies of

circuit-architecture codesign [29,40].

Increasing the number of unit pipeline stages enables higher clocking frequency, but

also increases the cycle length of critical path of the DFG. This is the fundamental tradeoff

of the low-latency design: real-time latency of evaluation is proportional to the product

of cycle-length of the DFG and the cycle-time. These variables are negatively correlated

through technology dependent running frequency vs. cycle-latency curves of building blocks

(such as post-placement crossbar transport path, floating point cores, etc.).

Previous observations are common base for accelerator construction in literature. The

downside is the necessity of deep analysis of the algorithm before the construction of the

accelerator can begin. This lengthens the design process by introducing an unnecessary

sequential dependence. Taking the metaprogramming approach would enable construction

of template before full processor configuration is known, thus offering more flexibility in

design.

Templates are standard tools for code reuse in software. However, few HDLs have suf-

ficiently rich abstraction model to allow similar techniques. This is the main reason why

we use BSV in our design flow. It allows structured, top-down approach to system con-

struction through early interface specifications. It is relatively simple to express structures

39

that could be instantiated with different number of submodules depending on parameters.

Finally, achieving data type (in our case number representation) polymorphism is simple

and static type checking goes a long way to keep many wiring errors in check.

Templates make generating different processor configurations easy, but have no impact

on post-instantiation programmability of the structure. This is of no consequence if FPGA

implementation is to be used as the fabric can be reprogrammed with a different processor

instance at any time. However, ASIC implementation cannot rely on this. To keep the de-

sign flexible and provide possibility of in-system reprogramming in both FPGA and ASIC

implementation obtained instances must be programmable. This requirement dictates ar-

chitectures similar to previous supercomputer designs [41]. Popular systolic arrays [16,42]

are less desirable due to their rigid data flow and limited post-synthesis programmability.

3.2 Template Architecture

The core computation engine of our accelerator is shown in Figure 3-1. Three major logical

subsystems are: crossbars, operation and data (memory) units. At this level of hierarchy the

design is parameterized by the number of operation and data units, and the pipeline depths

of operand and result transport bus, collectively referred to as System Side Bus (SSB). This

provides sufficient flexibility to custom fit processor resources to the DFG of interest, as we

will see in Chapter 6. Unit count parameters also determine the sizing of crossbar output

multiplexers.

For the sake of generality and simplicity of scheduling, Chapter 4, we have an every-

to-every crossbar for both data transport directions, Figure 3-1. Every operation unit can

load operands from any of the data unit outputs. Similarly, every data unit can store

result from the output of any operation unit. Furthermore, Figure 3-1 illustrates pipelining

the crossbar transport path. The number of pipeline stages is left as a parameter to be

determined during the algorithm compilation process described in Chapter 4.

Note that the crossbar latency shows as an effective latency increase of every operation

unit and directly influences the DFG and its critical path cycle-length with a multiplier

that depends on the number of operations on the critical path. Due to statically scheduled

instruction stream, the latency of all communications over the crossbars is fully deterministic

since the traffic pattern is fully determined and accounted for during compilation.

40

Crossbar
multiplexer
matrix

Operand
crossbar

Data
(memory)......A
(memory) Operation

units
(multicycle)

Result
crossbar

xbar
pipeline

Figure 3-1: Processor architecture

The whole processor core is in a single, high-speed, clock domain. This is significant

simplification for the compiler since it allows the compiler to work entirely in cycle-time

domain. This decouples the compiler from the post-place-and-route performance of the

processor for the purpose of DFG generation, optimization and scheduling.

In the rest of this chapter we present details of BSV implementation of the processor

template. The static schedule assumption, a design contract between the processor and

compiler design, allows simplification of data handoff protocols in hardware but requires

care in coding approach to avoid, in our case, unnecessary automatic micro-protocol hand-

shake [43] insertion. Similarly, describing polymorphic modules with non-type template

parameters requires sidestepping limitations in the language and we present one possible

solution.

The key to efficient processor implementation is instantiating all the operation unit types

at the same level of hierarchy. This is done most easily by utilizing the Connectable class [43]

to provide uniform and scalable description of communication between units and crossbars.

However, the template should allow for instantiations of processors with specified number

of units. To do this we must declare a vector of interfaces to those units [43]. And this is a

point where even the flexibility offered by BSV is not enough for a simple, straightforward

and self-documenting code.

Instantiating a vector requires specifying the size, which must have a specific type,

called numeric type in BSV. The trouble arises as BSV does not allow passing numeric

41

types to modules, which are BSV's abstractions used to represent, among other things,

actual digital circuits. Only interfaces, essentially protocols for interacting with a module,

can have numeric types as parameters mostly for dealing with size relationships between

bit-representable objects. Thus, to create a module that can be asked to instantiate a

variable number of sub-modules we have two options, both feeling "hackish" and bringing

us to the boundary of BSV (or rather its imperative skin emulating Verilog) expressiveness

in modeling non-type related polymorphism.

The first option is to create a dummy object of the required size, and pass it to the

module in question. The module can ignore the object and only determine the size of it,

obtaining a numeric type value needed for sub-system instantiation. The other option is

to pass the number of units for sub-system instantiation through the interface the mod-

ule implements, as shown in Listing 3.1. The listing shows the interface to the processor

instances generated from our template. All the numeric parameters are irrelevant at the

interface and only meaningful in the implementation of the processor module. The inter-

face announces that the processor presents the serial side of the Universal Asynchronous

Receiver/Transmitter (UART) interface to the testing infrastructure.

While this solution works (compiles) and in our template it does not create much trouble

as it only happens at the top level, it is far from ideal. The problem is that the number

of units in each sub-system are purely implementation detail of the polymorphic module

and have nothing to do with the interface the module implements for communication with

the outside world. Thus, we are polluting the interface definition with unnecessary and

potentially misleading information. It also makes two processors with different number

of units appear as if they were implementing different interfaces. This could introduce

a lot of overhead and incidental complexity if we were to use sets of processors in some

higher level function generators. However, passing processor configuration through the

interface instantiation is much more succinct than polluting the processor instantiation

by construction of a large number of vacuous objects to smuggle a parameter into the

polymorphic module constructor by appearing to be of certain size.

With this interface declaration we can write the skeleton of our processor template. It

is, essentially, a large instantiation of all necessary components and a recipe for connecting

them, like we show in Listing 3.2. Because all the modules are instantiated at the same

level of hierarchy, the only way for modules to communicate is by connecting appropriate

42

methods of their interfaces through Connectable modules [43].

interface PRCIfce#(

numeric type n-addsub, numeric type n-mul,

numeric type n-div , numeric type n-sqrt , numeric type n-comp,

numeric type n-mem, numeric type pps-xbar , numeric type pps-mem-ctl

numeric type pps.comp, type op-t)

interface UARTIfce-srlSide#(Bit#(1)) conn

endinterface PRCIfce

Listing 3.1: BSV interface declaration of our processor template

This design approach makes it hard to make use of BSV's implicit ready/enable micro-

protocol handshake [43] inserted across interface boundaries. However, in our system design

they are unnecessary. Since our processor is statically scheduled, the compiler ensures avail-

ability of every resource during code compilation and no unit will try to access another at

a moment when the other unit is not ready for communication. Hence, locks and synchro-

nizations are not needed. This will have consequences in unit coding approach since we

want to make sure that the handshake hardware is removed from the final processor code.

All the units are numbered, from 0, as they appear in the code. Since BSV does not

seem to support non-numeric indexing, e.g. associative data structures, we are forced to

use index arithmetic and synthetic naming of units.

module mkProc#() (

provisos(

Add#(

Add#(

Add#(

Add#(

Add#(

Add#(

Add#(

Add#(

Add#(

/ I

TAdd#(naddsub, TAdd#(n-mul, TAdd#(

n-div, TAdd#(n-sqrt , n-comp)))) 0, nops)

n-ops, n-mem, n.units),

0, 0, offset addsub),

offset-addsub, n-addsub, offset-mul

offsetmul , n_mul, offsetdiv)

offset _div n-div , offsetsqrt

offset-sqrt , n-sqrt , offset-comp

offset comp , ncomp, offset-mem

offset-mem , nrnem, bound-mem)

instantiate fsBtu s mmx/wvires

43

)

MXBuslfce#(nunits Bit #(8)) fsBusMux <- mkOutMXBusAsync();

/***** **

instantiate ssBus muxes (one for each unit

/1**~*********************

// memory imuxes

Vector#(n-mem,

MXBuslfceGen#(n-units , Bit#(32), pps-xbar)) muxes-mem;

for (Integer idx 0; idx < valueOf(n-mem) idx = idx + 1

begin

muxes-mem[idx] <- mkOutMXBusPipe((Bit#(32)) '(0));

end

Vector#(n-units

MXBuslfceGen#(n-mem,

Vector#(n-units ,

MXBuslfceGen#(n-mem,

Vector#(n-comp ,

MXBuslfceGen#(n-mem,

for (Integer idx = 0; idx

begin

muxes-fpus-A [idx] <-

muxes-fpus-B[idx] <-

end

Bit #(32) , pps-xbar)) muxes-fpusA;

Bit#(32), pps-xbar)) muxes-fpusB;

Bit#(32), pps-xbar)) muxesfpus-C;

< valueOf(n-ops); idx = idx + 1)

mkOutMXBusPipe((Bit#(32)) '(0)

mkOutMXBusPipe((Bit#(32)) '(0));

for (Integer idx 0; idx < valueOf(n-comp); idx = idx + 1)

begin

muxesfpus-C[idx] <- mkOutMXBusPipe((Bit#(32)) '(0));

end

instantiate control uiiits

7/ nart, etl

BridgeMasterlfce#(n.units) uart <- mkBridgeMaster ()

// addsubs

Vector#(n-addsub,

OPUPipeCtrllfce#(n-mem, NUM-type, pps-mem-ctl , pps-comp))

opus-addsub;

44

711 for (Integer idx = valueOf(offset-addsub);

T5 idx < valueOf(n-addsub); idx = idx + 1)

FA; begin

57 Ulnt#(7) idxui fromInteger (idx)

5, let idx-rel idx - valueOf(offset-addsub)

opus-addsub[idx] <- mkOPUCtrl(idx-ui , 1);

60 end

w1

es //! muls, divs ,s(Irts ,(Omlps, m111ems 1 n t anti at iols

hi // *****~**5'*******

5 // connections to the fsBu,

6 // ********************1********************** ******** * ****

67 mkConnection (fsBusMux. rPort read, uart .takeResp)

i 'S mkConnection (uart. driveAddr , fsBusMux. selectBus)

G9

7 / lddsubs <-> fsbus

71 for (Integer idx = valueOf(offset-addsub)

,2 idx < valueOf(offset _mul); idx = idx + 1

T, i begin

-I let idx-rel idx - valueOf(offset-addsub)

6 mkConnection (opus-addsub [idxrel]. fsBus . putRsp,

77 fsBusMux. wPorts [idx]. drive);

7S mkConnection (uart . passData ,

7! opus-addsub [idx-rel]. fsBus .getData);

NO end

'81

2 // muls, divs , sqrts , cormps, meis <-> fsbus

/7 ***

// connections to the ssBus

so// ***

7 messageM("AITACI-IING: addsubs <-> ssBus");

// addsubs <-> ssBus

'0 for (Integer idxADDSUB = 0;

90 idxADDSUB < valueOf(n-addsub); idxADDSUB idxADDSUB + 1)

9 1 begin

92 // hook up addressing lines

45

mkConnection (opus-addsub [idxADDSUB]. ssBus. selOpA,

muxes-fpus-A [idxADDSUB]. selectBus) ;

mkConnection (opus-addsub [idxADDSUB]. ssBus. selOpB ,

muxes-fpusfB [idxADDSUB]. selectBus);

1. // hook tip out put

99 mkConnection (muxes-fpusA [idxADDSUB]. rPort .read,

I (Aopus-addsub[idxADDSUB].ssBus.getOpA);

IM mkConnection (muxes-fpusB [idxADDSUB]. rPort . read ,

2 opus-addsub [idxADDSUB] ssBus. getOpB);

// hook up input s (from mieiories)

or for (Integer idxMEM = 0;

I M; idxMEM < valueOf(nmnem); idxMEM = idxMEM + 1)

107 begin

I ON, mkConnection (opus-mem [idxMEM]. ssBus. writeData,

muxes-fpusA [idxADDSUB]. wPorts [idxMEM]. drive);

mkConnection (opus-mem [idxMEM]. ssBus. writeData ,

i muxes-fpus-B[idxADDSUB]. wPorts[idxMEM].drive);

1 12 end

I1:. end

11 ',' inuls, divs 1sqrls com~ps, toets <-> sli

II: / ***

I I // in t erface

120 PRCIfce#(n-addsub, n-mul, n.div , n-sqrt , n-comp,

121 n-mem, pps-xbar , pps-mem-ctl , pps.comp, NUM-type) ifce;

122 ifce = interface PRCIfce

123 interface conn = uart .srlPort

L2 1 endinterface PRCIfce;

12G return ifce

127

12s endinodule : mkProc

46

Listing 3.2: BSV module implementation of our processor template

3.3 Generalized Unit Architecture

Uniformity of the design at the top level enables code reuse at the unit level. All the

operation and memory units have a very similar, to the number of operands, architecture.

A unit diagram, for a two-operand unit, is shown in Figure 3-2.

The main control unit interacts with code memory through a pipelined transport layer.

It decodes instructions and produces control signals for the input multiplexer and the slave

unit. The slave unit is the unit performing actual work inside every top-level operation,

predication and memory unit. In the current design the slave units are synthesized as FPGA

cores and wrapped in BSV wrappers.

slaveoutput
unit xbar

input tclk
xbar

instr pipeline

Figure 3-2: Unit micro-architecture

The result of the described design and unit coding approach is a very long instruction

word (VLIW) [44] processor with distributed control and code memory. Though unusual,

this design strategy simplifies the template design significantly.

In the first place, it simplifies the processor template design by providing a straightfor-

ward solution to scaling the number of units. If the design had centralized control unit,

that unit itself would have to be a template. Furthermore, much of the code dealing with

the data flow at the processor level would have to be replicated in the control unit itself.

Distributed nature of the control logic and instruction memory makes it possible to

place these components close to their slave units, see Figure 3-2. This is quite convenient

as it reduces the routing congestion and shortens many potentially critical paths in control

logic. It is likely that it would have higher impact in an ASIC implementation than in an

47

FPGA implementation due to additional routing and placement constraints in FPGA.

Every unit is parameterized by the number of pipeline stages of that slave unit and the

number of pipeline stages of the code transport path, Figure 3-2. Note that, unlike the

latency of data transport path previously discussed, the latency of the code transport path

lengthens the overall schedule only by the number of cycles equal to the number of pipeline

stages.

3.3.1 Unit control

The described factoring of the processor core is convenient and powerful from the size-

scalable template construction point of view. The question that arises is whether every unit

must have complete schedule information and what tradeoff applies if they do not. Further-

more, problems of unit synchronization must be addressed in this, effectively, distributed

system design.

Unit synchronization

Storing complete computation schedule in every operation unit would be expensive and we

would want to avoid that. Ideally, every unit would only store its own activity schedule.

The main question that arises is what the scheduling variable should be.

In general, it could be the full state of the processor (i.e. the aggregate state of all sub-

units). However, this would significantly complicate processor control logic. Furthermore,

it would require communicating unit states, a significant routing and power overhead.

For simplicity we would like to use local variable for scheduling in each processor unit.

With units storing only their own schedule, the only such variable can be the cycle-count

from some globally observable (i.e. observable by all units) event. This is possible because

the whole core is in a single clock domain, and this is the solution we use in control units

in Figure 3-2.

Absence of explicit synchronization and reliance on local cycle count greatly simplifies

control and auxiliary communication circuitry within the processor, as previously discussed.

However, it imposes some fundamental constraints on the schedules the compiler is allowed

to produce.

Essentially, computations that pass through multiple physically different units must

guarantee timeliness of results. The same constraint any multi-threaded application would

48

have. As the scheduling variable is just the cycle-count (all unit cycle counts are the same

as noted earlier) that means that every unit must guarantee that their outputs will be valid

by some cycle-count. In other words, all unit schedules must guarantee cycle-latency of

every computation.

Code branching

Guarantees on cycle-latency of computations can be achieved in many different scenarios.

In general, code branching could be used but the branches would have to be of equal cycle-

length. In other words the shorter branch would have to be padded with No Operation

Instruction (NOP) by the compiler. Moreover, when branch is taken the instruction pipeline

in Figure 3-2 would have to be flushed and reloaded.

For simplicity of hardware, software and compiler implementation we chose to work

without code branching. In other words, the same exact code stream must be executed

every time, regardless of the input data. This limits the space of algorithms that can be

executed, but we will see that our algorithms of interest can be written in a form that does

not require code branching.

Avoiding code branching requires indirection and some primitive unit support, discussed

in Chapter 4, to work at algorithm level, but it provides a lot of low-level implementation

benefits.

Implementation implications

As we mentioned before, the compiler ensures availability of all the resources, making the

implicit BSV micro-protocol [43] unnecessary for guaranteeing the correct functionality of

the processor.

BSV handshake signals can be coded up in a way that results in an unloaded signal

wire in the Verilog produced, which the synthesis tools remove them during optimization.

Added benefit of this design organization is that local synchronization handshakes do not

appear in the final design, thus removing a large source of critical paths.

To do this, in low-level core wrappers we tie off enable signals of Action methods to high,

by declaring them with inhigh, making them always enabled [43]. At the slave-unit level, we

re-wrap all the low-level modules in a way that unifies most of their interfaces. In this process

we use Wire types to provide access to the slave unit without ready/enable micro-protocol.

49

Inside the unit module, we assert that the low-level core wrapper interface methods are

always ready by requesting checking the no-implicit-condition scheduling attribute on the

rules defining atomic actions of the slave unit state machine [43]. Furthermore, we assert

fire-whenenabled flag and write rules with no explicit scheduling condition for the BSV

compiler to ensure that we also interact with the CoreGen core in every clock cycle. All

this is shown, on the example of the multiplier slave unit, in Listing 3.3.

I module mkXLNXSPFPUMulCore(XLNXSPFPUIfce

2 // instantiate the wrapped version

XLNXMulSPFPUIfce mulFPU <- mkMulCore-low-level()

// synchronizit ion wires

Wire#(Bool) ceWire <- mkDWire(True

7 Wire#(Bool) rstWire <- mkDWire(False

Wire#(Bool) IdWire <- mkDWire(False

Wire#(Bit #(32)) opAWire <- mkDWire(Bit #(32) '(0)

Wire#(Bit#(32)) opBWire <- mkDWire(Bit#(32) '(0)

12

1:11 Wire#(Bool) rfdWire <- mkDWire(False

11 Wire#(Bool) rdyWire <- mkDWire(False

1-

Wire#(Bit#(32)) rsltWire<- mkDWire(Bit#(32) '(0)

1~

7, rules

19(* fire-when-enabled , no-implicit -conditions *)

2 rule clockRunningEXC (True)

21 mulFPU. ctrl .clockRunning(ceWire. _read())

22 endrule : clockRunningEXC

231

24 (* fire-when-enabled , no-implicit -conditions *)

2n 5 rule resetStateEXC (True)

26 mulFPU. ctrl .resetState(rstWire. -read())

27 endrule : resetStateEXC

29(* fire-when-enabled , no-implicit -conditions *)

31) rule sendOpAEXC (True)

31 mulFPU. dataln.opABus. put(opAWire._read())

32 endrule : sendOpAEXC

50

A (* fire-when-enabled , no-implicit -conditions *)

rule sendOpBEXC (True

mulFPU. dataln. opBBus. put (opBWire. -read ()

37 endrule : sendOpBEXC

(*fire..when-enabled no-implicit .conditions*)

41 rule sendOprIn (True)

n mulFPU. ctrl.loadOp(IdWire.-read())

12 endrule : sendOprIn

i (* fire-when-enabled no-implicit _conditions *)

15 rule grabRFD (True)

10 rfdWire..write(mulFPU. ctrl.getOpRFD())

17 endrule : grabRFD

19 (* fire-when..enabled no-implicit _conditions *)

50 rule grabRDY (True)

-) I rdyWire. _write (mulFPU. ctrl .getRdy()

52 endrule : grabRDY

5, (* fire _when-enabled , no-implicit _conditions *)

rule grabRSLT (True

56 let x <- mulFPU.dataOut.resBus.get()

57 rsltWire . -write (x

endrule : grabRSLT

// bind methods

G interface FPUOperandlfce dataln

62 interface GetPut::Put opABus

63 method Action put(Bit#(32) opA) if (True

611 opAWire._write(opA

65 endmethod put

G6 endinterface opABus

G7 interface GetPut:: Put opBBus

t imethod Action put(Bit#(32) opB) if (True)

opBWire. .write(opB)

endmethod put

71 endinterface opBBus

51

endinterface

71 interface FPUResultIfce dataOut

77 interface GetPut::Get resBus

76 //method Act ionValtie#(Bit #(32)) get () if (True

7s // NOTE: as we cliose to make this a GetPut::Get, beeing

ActionValue . we

/ had to indicate an "enable' signal in BVI wrapper

/7 Since this bhids to nothing . in the Verilog layer . I had to

define it

/ as * inhigh but that required calling it in every cycle so we

1ha(d to

,// let it go without "trdy" in BVI but "simnlate rdy checking" here

method ActionValue#(Bit #(32)) get ()

if (ceWire .read () && !rstWire. -read () && rdyWire. read ())

Bit#(32) x

x = rsltWire ._read ()

,,7 return x

endmethod get

endinterface resBus

.9 endinterface dataOut

92 interface FPUControllfce ctrl ;

method Action clockRunning(Bool clkStatusSet) if (True

ceWire .write (clkStatusSet)

endmethod clockRunning

method Action resetState(Bool rstSignal) if (True

rstWire . -write (rstSignal)

endmethod resetState

IM // t his is already protected by rdy on getXXX in BVI wrapper

M2 method XLNXStatCode getStatus () if (ceWire. _read () &&

rstWire . -read ()) ;

return XLNXStatCode { underflow mulFPU. ctrl . getUnderflow ()

overflow mu1FPU. ctrl . getOverflow ()

invalid-op : mulFPU. ctrl .getInvalidOp()

52

dataln

11 divide-by_0 : False

na };
IO endmethod getStatus

1n method Action takeOp(XLNXOpCode opr

II if (ceWire. _read () && rstWire . _read ())

12 IdWire. -write(True

I endmethod takeOp

iM endinterface ctrl

1_

i endmodule : mkXLNXSPFPUMulCore

Listing 3.3: BSV Mul slave unit implementation

At this level, most operation units are almost identical, differentiating only in the type

of the slave unit they instantiate, Figure 3-2. Every operation unit module implements the

Front Side Bus (FSB) protocol state machine, code memory and transport pipeline and

operand multiplexers. The only rule that is unique in every unit type is the instruction

decoder.

This level of design reuse, enabled by the high level abstractions of BSV, is key for

efficient and reusable design.

Instruction encoding

In the current implementation of the processor, no instruction set optimizations were per-

formed. All units have 32-bit wide instruction words. For simplicity of instruction fetch

and decode no packing was performed even when it was possible. In general, each instruc-

tion encodes one operation, specifying the input multiplexing for each operand and the

particular operation performed for multi-operation units (e.g. AddSub, predicator).

3.3.2 Available unit primitives

A small set of low-level algorithmic primitives was developed for encoding of algorithms of

interest. Functionality and presence of units performing simple algebraic operation in the

processor is obvious. More interesting is the particular functionality of the predicator unit.

We present basic parameters of each unit type, for completeness.

53

Table 3.1 outlines pipeline depth range available to the template for each type of unit

available.

Unit Name Inputs Pipeline Depths Operations
AddSub 2 1-11 addition and subtraction

Mul 2 1-6 multiplication
Div 2 3-28 division
Sqrt 1 1-28 square root
Pred 3 0-2 min, max, comparison, predication

Table 3.1: Operational unit types and parameters available in processor template

Data units

All data storage, initial and intermediate results, is done by the data storage units. Oper-

ation units do not have any local registers.

Slave unit used in data units is a two-port memory block. In every cycle the memory

can store one and read one result, with read first semantics if the read and the store are

addressing the same cell. Cycle-latency is 1 for data units and it cannot be modified.

Although possible, the current implementation does not parameterize the size of data

memories. Memories are fixed to lkWord, where Word has 32 bits.

Each data unit instruction encodes

" input multiplexer control,

" storage cell address, and

" read cell address.

Algebraic units

Depending on its type, every algebraic unit has appropriate operation unit as the slave,

see Figure 3-2. In FPGA prototype implementation operation units are generated from

intellectual property core templates (CoreGen).

Algebraic unit instruction encodes

* input multiplexer control for each operand separately, and

* operation type if applicable.

54

Conditional unit

Predication unit is somewhat more complex than other types of units. It was designed

through compiler-enabled analysis and experimentation on various DFGs. Certain conve-

niences were discovered and used to optimize conditional processing for the target algorith-

mic class.

Basic functionality of the unit is predication. It instantiates a comparator unit as the

slave and enables standard scalar relationships (e.g. =, $, <, ...) to be established.

For conditional processing of vector data, more is needed. For example, if we want to

choose the one with smaller norm out of two vectors, because we do not have vectorized units

(i.e. all our units operate on scalars) we have to construct 'conditional vector assignment.

Having a conditional scalar assignment is sufficient. For this we implement the ?: ternary

operator present in many programming languages (e.g. C, Verilog, ...). In other words the

conditional unit has a mode of operation where it evaluates

out = cond ? inA : inB.

The condition is considered true if it is positive when interpreted as a number, otherwise

it is considered false. This is a slight optimization that enables cutting some computation

in certain algorithms since computation results have meaning in conditional context. For

example, this simple encoding decision avoids having to call predicate on two numbers, a

and b, if a partial result a - b is available. This saves multiple cycles and can add up in

very serialized computation DFGs.

When working with scalars, having separate predication and conditional assignment

can be unnecessary and a source of computation overhead. For this purpose a fused mode

was introduced. In this mode the conditional value for the ?: is first calculated from inA

and inB instead of being loaded as the third data input, which is what happens in pure

conditional mode. This fusing of conditional and predicate mode enables short-circuiting

of computation in simple calculations like:

min(inA, inB) = (inA < inB) ? inA : inB.

All these modes will come handy in our algorithm formulations in Chapter 5.

Conditional unit instruction encodes

55

* input multiplexer control for all three possible inputs,

" operation mode (predication, conditional or fused), and

* sub-operation (e.g. relation type in predication mode).

3.4 Test Infrastructure and Protocol

For testing of processor instances a hardware-in-the-loop testing setup was developed. For

each algorithm implementation a Matlab and C++ benchmarks were developed. Processor

results and their comparison to these benchmarks will be presented in Chapter 6.

To set up a test for FPGA prototype the Universal Serial Bus (USB) to UART interface

to the ML605 development board from Xilinx was used. The processor core is instantiated

in a testbed shown in Figure 3-3. The core processor is shown in red, while the testing

infrastructure is in green.

The UART controls communication acting as FSB master. All processor core units

act as FSB slave units in this context. UART can initiate burst reads or writes with any

processor core unit. For this purpose each unit has an FSB address assigned in the process

of BSV to Verilog compilation.

Amspons l' m"u

PC

Figure 3-3: Testing setup for the processor

Using this simple protocol computer-side testbench can populate all data and code

memories in the processor, and set each unit initial state (e.g. program counter). Broadcast

56

message to all units can be used to start programs in all processor core unit simultaneously.

FSB is only needed as testing infrastructure, but it has no purpose during normal op-

eration when processor is running as a controller in an embedded system. In deployment,

processor instances would need simple Input/Output (IO) units to interface Analog to Dig-

ital Converter (ADC) and Digital to Analog Converter (DAC), i.e. sensor and actuator,

units. The number of samples obtained in every sampling interval for most control algo-

rithms is small.

3.5 Summary

In this chapter we present the architecture and the coding approach for construction of our

compile-time configurable processor template.

Implementation details for describing modules with configurable number of sub-modules,

in BSV, was discussed. We argued that the implicit synchronization micro-protocol BSV

inserts in the design is unnecessary for this particular example design due to high-level

synchronization functionality in our statically scheduling software compiler, described in

Chapter 4. Methods for removing the micro-protocol circuits from the Verilog produced

during the BSV compilation were discussed as well.

Finally, while BSV was chosen for its static typing and good top-down design support

there are other, practical, advantages in using a language with high expressive power. Our

design fits in ~ 4,000 lines of BSV production code. Even with synthesis boundary around

every design module, ensuring that BSV compiler defines the module once and instantiates

it multiple times instead of flattening the whole design, the BSV to Verilog code size ration

is between, impressive, 10x and 16x, depending on the processor size.

57

58

Chapter 4

Statically Scheduling Compiler

Computers are good at following instructions, but not at

reading your mind.

-DONALD KNUTH

The number of lines of code a programmer can write in a

fixed period of time is the same independent of the

language used.

-CORBATO's LAW

The design flow shown in Figure 2-1 recognizes the importance of the compiler in im-

plementations seeking high-performance computation.

In embedded development, the compiler is usually treated as an oracle for software

performance optimization. We hope to change this perspective by showing how useful the

compiler can be in steering the process of hardware and algorithm design in the design

flow outlined in Figure 1-3. For this, as we will see, the compiler should have an open

and accessible architecture that allows us to see the program at various intermediate stages

before the final translation is done and the code tested on the processor.

As progress is made on the compiler and processor implementations, and abstractions

that model processor behavior become available, we can slowly morph the initial algorithm

representation by replacing parts of it with structures that model evaluation on our pro-

cessor. In this way we achieve an interactive design environment where the initial proof of

correctness of the algorithm is slowly becoming our specialized implementation. The main

benefit of this approach is that a functionally correct representation of our computation

is available quickly and can be used to steer us towards a good solution for the custom

59

representation. The fact that it all happens within the same tool and on the same codebase

is a major convenience in development.

In our template-based flow, almost all the system parameters meet inside the compiler,

making it the backbone of the system design. It is also the only tool algorithm designers

would use and as such it has the responsibility of representing the processor template at

the algorithm design level. Because of this, our compiler is designed like an exploration tool

first and final program translator second. In this sense we believe that an exploratory tool,

akin to our compiler, would be useful in embedded computation accelerators even when no

software component exists in the final system design.

The point of compiler-like tool in the design flow we follow is to provide sufficient

information for the platform and algorithm decisions to be finalized. Whether a software

component will eventually be implemented is less relevant, the compiler should offer us

tools to make well informed decisions about the particular platform resources and algorithm

formulation that work best together. This should be contrasted with algorithm-first and

platform-first approach, which in the best case can profile one of the sides and never both

together including the interaction between them.

As such, the compiler should give full control over the process to the user. Every opera-

tion on the DFG, from micro-optimizations to their visualization should be easily accessible

and controlled by the user. Furthermore, the compiler itself should offer possibility to

efficiently change its primitives if it is beneficial to do so.

Finally, the compiler should offer convenient and reusable input primitives for the target

algorithmic class. In conjunction with reasonably fast compilation process, this enables

efficient reimplementation and provides incentive to experiment with the design throughout

the design cycle since every change in the algorithm, compiler or hardware component can

be quickly evaluated.

4.1 Compiler Flow

Working with the compiler as the system design exploration tool proceeds in a few phases:

algorithm input, DFG exploration and final program translation. Processor configuration

is a pivotal piece of information at every stage of the process. Logical partitioning of the

compiler is shown in Figure 4-1.

60

Algorithm
Processor

Configuration

Instructions Processor
Configuration

Figure 4-1: Compiler flow showing the four main stages and the interactions between the
compiler and the processor configuration.

At the algorithm input stage, the set of primitives offered by the processor is of vital

importance. For compiler design simplicity we should write algorithms in a form that can

be expressed easily in terms of these primitive forms offered by the processor. Violating

this would face us with the difficult task of mapping one language to another efficiently in

the compiler, a problem encountered in HLS. We prefer to guide compiler by providing a

more meaningful set of basic forms that designers can reason about easily.

During DFG exploration, the processor microarchitecture, the pipeline depths directly

map to distance metrics on the DFG.

Finally, the number of processor units has major impact on scheduling and overall timing

achievable.

4.1.1 Input Methods

There are two input methods the compiler provides for the algorithm designer. Both were

designed for efficiency of representation and ease of testing against standard software im-

plementations of numerical algorithms.

61

Assignment =

Algebraic operators +, -, *, /, sqrt()
Relational operators <, <=, >, >=, ==, !=
Conditional function cond(p,a,b), min(a,b), max(a,b)

Table 4.1: Available operators and functions in simple text file input language

Text Based Input

The first input method for the compiler is a plain text file with simple syntax. The file is

parsed into the compiler and generated into a DFG by a lexer and parser generated by Flex

and Bison [45,46].

The file contains two parts: an optional header and a list of assignments separated

by semicolons. The optional header includes parameters for the target processor. Any

parameters omitted are assumed to be default values provided by the compiler. Listing 4.1

shows an example header.

addsubs 6 latency 5;
> muls 5 latency 3;

divs 1 latency 15;
sqrts 1 latency 18;
xbar 1 1;

Listing 4.1: Example header for medium processor

The body of the input file is a list of assignments separated by semicolons. For each

function the processor's operational units can perform, there is a function or an operator

in the language to express it in the text file. A full list of operators and functions can be

seen in Table 4.1. An example for calculating the distance between two points in 3D space

in this language is shown in Listing 4.2.

As discussed in Chapter 3, the processor does not support loops or branches and neither

does this input language, but they could be useful if added to the input language as a sort

of preprocessor.

Currently, a function to compute the distance between two points in N dimensional space

for N = 2 to 10 would require a separate file for each N used. With a preprocessor loop,

the N could be used as the range for a loop and different code could be generated depending

on N. Adding this behavior to the language would enable parameterized algorithms, but it

would also add a lot of complexity.

62

d-x = A_x - B_x;
d-y = A-y - By;
d-z = A-z - B_z;
distance = sqrt(d-x * d-x + d-y * d-y + d-z * d-z

Listing 4.2: Computing distance between two points in 3D space

We instead decided to leverage already quite flexible function templates in C++ to

design a more powerful DSL for the class of algorithms of interest.

C++ Template Based DSL

When using this input method, the compiler no longer has the traditional compiler flow. In

a sense, in this situation the compiler might be thought of as a library that we link against.

We write our algorithm, compile and link it with the compiler itself and run the resulting

program as a tool for algorithm exploration.

We illustrate this on an example. A simple C++ function template, in this case imple-

menting Euclidean norm calculation, is shown in Listing 4.3.

template <class T>

T norm(T* in, int size) {

T temp = 0;

for(int i = 0; i < size; i++) {

temp += in[i] * in[i];

}
return sqrt (temp)

}

Listing 4.3: C++ function template for Euclidean norm calculation

To use this template we would write a program similar to the mock-up code in Listing 4.4.

If the C++ compiler, compiling the code snippet, is given the TESTBENCH flag it will com-

pile with typedef float dataType;, thus instantiating the norm template with norm<float>(

float*, int). At the main() the tesbench code, do.testbencho, will be invoked to test

the results. A full example, along with an explanation of the mechanics of the flow, can be

found in the appendix.

If TESTBENCH flag is not defined the C++ compiler will compile with our graphMaker

class, thus instantiating norm<graphMaker>(graphMaker*, int). Then our custom com-

pilation routines will be called to analyze the resulting computation graph and provide

63

I #i nclude "com piler . hpp"
2 #include "norm. hpp"

n #include " testbench . hpp"

, # i f d e f TESTBENCH
1 typedef float dataType;
7 #define datalnit = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.01
, #else
9 typedef graphMaker dataType;

10 #define datalnit

i #endif
12

.a int main() {
II dataType input[10] datalnit;

T dataType out = norm<dataType>(input , 10);
S #i f d e f TESTBENCH
(do-compile()
I: #else
19 do-testbench()
20 #endif
21 return 0;

2 }

Listing 4.4: Example main function for compiling my-algorithm

reports or programming files.

The fact that the code can be targeted for software testing or for compilation to our

processor by making an, essentially, trivial change on a handful of code lines is just a

convenience. The important thing to note here is that both the testbench norm<float>()

and the programming norm<graphMaker> 0 come from the exact same template code. This

is where the correctness and performance of the algorithm meet in our design flow for

embedded computation.

The need for algorithmic prototype and reimplementation of it for high-performance

disappears. These two implementations become, for the most part, one. Early implementa-

tions of the algorithm can start well before the compiler and the processor template are fully

developed, using float data type to prove the correctness of the algorithm implementation.

At this stage we should not worry about performance of the algorithm implementation, just

yet [47]. This, first, implementation is used to prototype the algorithm itself, in some form

and representation, as one would do in any other design flow.

The important thing to remember is that, in this process, we always have the luxury

of quickly reverting to a known data model (e.g. float in our example) to verify logical

correctness of any large change in the code. As extensive testing is easy to access at each

64

step of development, we have significantly cut debug and reimplementation loops at the

system-wide level. The result is a very quick feedback, almost interactive development with

the fully functional system at all times.

At the same time we keep an explicit handle on processor abstractions and implementa-

tion through the processor template and the matching basic primitives in the compiler. In

this way we keep very tight control of implementation at all the design levels. This allows us

to control, to a good extent, the complexity of the design space the compiler needs to deal

with, something that cannot be achieved in standard HLS. Besides BSV, depending on the

direction of development, some other tools might be appropriate for this kind of hardware

definition. Particularly interesting, due to open and transparent compiler, is Chisel [48].

The compiler does not behave as an oracle with opaque internal structure and unclear

functional behavior. In this way we avoid problems of hardware inference from language

constructs with insuficient expressiveness [27]. Exactly this is the point of human-created,

human-readable templates at each level of the design.

To do all this, we developed the graphMaker class. This class offers basic abstractions for

modeling the set of DFGs our processor template can execute efficiently. More concretely,

this class offers facilities to build graphs with nodes chosen from the set of the operations

supported by our processor, as discussed in Chapter 3.

The way to efficient implementation of such a class is through operator overloading

offered by object oriented languages, C++ in this case.

The graphMaker class is the class used to generate DFGs from template C++ functions.

Each graphMaker object is a container for a DFG node that can be combined with other

graphMaker objects with the specified overloaded operators and functions to produce a

node in the DFG that represents that function. In C++, the operators +, -, *, and /

are normally used on numeric data types to do math associated with the operator. When

running on graphMaker data, the operators +, -, *, and / are overloaded to add nodes to

the DFG to represent those operations and return a graphMaker object containing the new

node. All of the operations in Table 4.2 have been overloaded to work on graphMaker data

to generate nodes of a DFG for each operation and return a graphMaker object containing

the new node.

Each individual graphMaker object points to a node in the DFG, but the compiler needs

the entire graph to be able to process it. As each node is created, it is also added to a static

65

unary operators -

binary operators +, -, *, /
assignment operators =, +=, -=, *=, /=
relational operators lt(a,b), lteq(a,b), gt(a,b), gteq(a,b)

equality operators eq(a,b), neq(a,b)

conditional function cond(a,b, c)

arithmetic functions sqrt(a), min(a,b), max(a,b)

Table 4.2: Functions and operators overloaded for graphMaker to construct the DFG

member of the graphMaker class that contains the entire DFG. When the graph is done

generating and the compiler is called, the custom compiler looks at the static member of

graphMaker which contains the DFG to get the algorithm to compile.

The graphMaker class declaration can be seen in Listing 4.5.

2 * \hri f This class (re ates a dependencyGraph through overloaded

* operatio1ns inc (uding + -* , and /

* All eXample of creating a dependencyGraph uising this class 1can be

* see] below:

7* \code{.cpp}

s * glaphIiINIaker a.). c. (1. tip tmi 1 1)2 .su

* tipi = a *);

* 11p2 = c +(I

i * suml = tlp + tmp2;

2 * \e1ndcode

13

it class graphMaker {

public :

graphMaker ()

graphMaker(double constant);

graphMaker (i n t constant) ;

graphMaker(string nodeName-req);

20 graphMaker(const graphMaker& x);

21 graphMaker()

22 graphMaker operator+=(const graphMaker &rhs);

24 graphMaker operator-=(const graphMaker &rhs);

24 graphMaker operator*=(const graphMaker &rhs);

,2, graphMaker operator/=(const graphMaker &rhs);

66

graphMaker operator=(const graphMaker &rhs);

int getNodeID () const ;

void renameNode(string name-req)

static void newGraph();

static schedGraph *graph;

static int node-group;

/ Various optimlizations

static bool keep-nodes; // keeps constants and nodes from previous

graph

static map< pair<schedGraph* ,schedNode*>, pair<schedGraph* schedNode*>

> node-translation

stat ic bool optimize;

static bool reuse-sub..expressions

friend graphMaker operator+(const graphMaker &opA, const graphMaker &

opB);

friend graphMaker operator -(const graphMaker &opA, const graphMaker &

opB) ;

friend graphMaker operator-(const graphMaker &opB);

friend graphMaker operator*(const graphMaker &opA, const graphMaker &

opB) ;

friend graphMaker operator/(const graphMaker &opA, const graphMaker &

opB);

friend graphMaker sqrt(const graphMaker &opA);

friend graphMaker min(const graphMaker &opA, const graphMaker &opB);

friend graphMaker max(const graphMaker &opA, const graphMaker &opB);

friend graphMaker cond(const graphMaker &opA, const graphMaker &opB,

const graphMaker &opC) ;

friend graphMaker eq(const graphMaker &opA, const graphMaker &opB);

friend graphMaker neq(const graphMaker &opA, const graphMaker &opB);

friend graphMaker it (const graphMaker &opA, const graphMaker &opB);

friend graphMaker lteq(const graphMaker &opA, const graphMaker &opB)

friend graphMaker gt (const graphMaker &opA, const graphMaker &opB);

friend graphMaker gteq(const graphMaker &opA, const graphMaker &opB)

friend bool isZero (const graphMaker &x

friend bool isOne(const graphMaker &x

67

friend bool isTrue(const graphMaker &x

GO friend bool isFalse (const graphMaker &x);

friend bool isConstant (const graphMaker &x)

63 friend double constVal(const graphMaker &x);

1, private:

W; void ensureValidNode() const

67 bool isConstant () const ;

61S float getConstantVal () const

/// The pointer to the last. calcNode this class represented

71 schedNode *node;

72 schedGraph *myGraph;

};

Listing 4.5: C++ graphMaker declaration

Once a candidate DFG, for a computation of interest, is constructed, our compiler offers

various tools to evaluate its performance and, potentially, aid the designer in transforming

it to an equivalent but more efficient form. We describe the compiler functionality and how

it impacts the overall accelerator design flow. Details of the compiler implementation can

be found in [49].

4.1.2 DFG Exploration and Optimization

As the algorithm is inputted into the compiler, a DFG is generated. This DFG represents

the structure of the algorithm through nodes that represent operations and data storage

(hardware usage) and directed edges that represent data flow. The sources of the DFG

represent constants and input variables in the algorithm. The sinks of the DFG are, tech-

nically, terminal nodes that are not used in further computation. Some represent results

of the algorithm, but not all desired results are sinks, some are intermediate nodes. An

example DFG can be seen in Figure 4-2.

There are some restrictions on DFG properties for them to be acceptable in our system.

Since the directed edges in the DFGs represent the order in which operations are done

in the algorithm, there are no loops allowed in DFGs that should execute in our system. If

there were a loop in a DFG it would imply that an operation needs to be computed in order

68

b a c d f

+ + e
y

sqrto
x

z

Figure 4-2: DFG example

to compute itself, which is not possible. A DFG describing a looping iterative method such

as Newton's method for finding roots of functions would have the subgraph representing an

iteration repeated multiple times and placed in a sequence in the DFG.

Even though there are no loops in DFGs, their structure can still vary greatly. The

example DFG in Figure 4-2 has many inputs and one output, but an operation like a

complex Fourier transform has 2N inputs and 2N outputs making its top as wide as its

bottom. Operations such as vector-vector addition produce a forest of many small trees

since the individual operations do not depend on each other. The DFG for computing a

power of a number using successive squaring would have one input and one output, but

there would be a chain of multiplies between the two.

Another subset of processor parameters enters the picture at this stage. Microarchi-

tectural parameters of operation units, namely the cycle-latencies, essentially determine

distance on the computation DFG. The DFG in Figure 4-2 is annotated with distance

information corresponding to the processor configuration in Listing 4.1.

One of the main tools for acceleration, including acceleration of numerical code, is finding

parallelization opportunities [34]. Given a DFG, the parallelization opportunities are easy

69

to spot for certain graph structures [35]. However, many graphs can perform the same

computation. In other words, the set of all DFGs can be partitioned into equivalence classes

based on computations they perform. Not all the graphs in one equivalence class perform

the same. Thus, it is important to chose the right graph structure for implementation.

Some equivalence transformations require planning, ingenuity and abstract thinking. We

will see few such transformations in Chapter 6. Such optimizations usually introduce new

objects into computation and combine them to desired effect. Achieving this automatically

in the compiler would be quite challenging. On the other hand, some transformations can

be done by simple local rule application. Analogous, and more well known example, of this

difference is automatic derivative and anti-derivative finding. While the first is quite simple,

the second is much more challenging [50].

For the most part, the set of optimizations that can be automatically performed or

suggested by the compiler is based on heuristics aiming to increase number of parallel op-

erations that can be issued at each cycle. Whether that really helps scheduling in every

processor configuration is unclear [28]. However, with full control over optimizations per-

formed, the algorithm designer can decide whether to use an optimization option or not. In

our experience, most of the heuristics we present usually result in increased performance.

In this context, we will generally assume that the objective is to manipulate the com-

putation DFG into an equivalent form with the shortest possible critical path. In other

words, the longest chain from any source to any sink of the graph should me minimized,

while preserving all the computation results. An example would be arranging a large sum

into a balanced binary tree. Though intuitive, this is a heuristic: it does not guarantee

shorter execution time after scheduling on a given processor. However, it does achieve the

shortest cycle-time if sufficiently powerful processor is used [35].

Even with this qualification achieving the optimal packing of a DFG into a form with,

globally, minimum critical path is an unresolved problem. In this implementation we will

resort to local optimizations on the DFG and experimentation with formulation to achieve

a good final timing result.

Most of these local optimizations will be based on the algebraic structure of numbers

used in computation. For example, we will utilize associativity and commutativity of + and

* operators to rebalance computation DFGs during exploration phase.

If fixed-point numbers are used this is always an option. However, floating-point num-

70

ber representation violates these relationships and the results might be inaccurate [51]. At

this point there is no answer that can be given at the implementation level for something

like this. It is the responsibility of the algorithm designer to evaluate any potential opti-

mization in terms of performance and the correctness of the result. The compiler should

offer tools to perform them if requested to do so. Our compiler infrastructure helps greatly

with this with previously mentioned processor unit modeling that help designer seamlessly

track the accuracy of the implementation by comparing it to the, well debugged, software

implementation with minimal effort.

Collapsing Nodes

When the DFGs are generated from the input algorithm, the graph represents a specific way

of combining inputs to get results, but since some of the operations used in the processor are

commutative and associative, there are many different ways of representing the combination

of inputs to get the same result. To reduce the dependency on representation, subtrees of

commutative and associative operations are collapsed into a single node called a super-node.

A node-collapsed version of the DFG in Figure 4-2 is shown in Figure 4-3. This action is

done during optimization primarily for rebalancing trees and shortening the critical path,

but it is also useful to have this collapsed representation of commutative and associative

subtrees when performing the other operations.

Super-nodes can be created for subtrees made up of + and - operations, subtrees of

x and +, subtrees of min, and subtrees of max. Since - and + are not commutative or

associative, the second operand in each of these cases is treated as if it is the inverse of the

operand so the operations can be treated as + and x. The super-nodes keep track of each

of the inverted inputs so when the node is expanded into individual operations, the subtree

still produces the same result.

Expanding Super-Nodes

The scheduling process requires each node in the DFG to be assigned a depth. The depth

is calculated using how long it takes to perform operations that occur along a path in the

dependency graph. If a path in the DFG passes through a super-node, then it is unknown

how many operations are on that path because super-nodes represent the combination of

multiple nodes, and there are multiple ways to arrange them. Depending on how the super-

71

a b C d f e

sqrto
X y

z

Figure 4-3: DFG with collapsed nodes

node is expanded, the super-node can represent few or many operations along the path.

Therefore DFGs with super-nodes cannot have an accurate depth calculation and cannot

be scheduled without expanding super-nodes.

When expanding super-nodes, the goal is to expand the nodes in such a way that the

critical path remains as short as possible. If the DFG is a single super-node of additions,

then when expanding that node, the ideal configuration would be a balanced binary tree of

additions because that has the shortest critical path of configurations.

It is not always ideal to have super-nodes expanded into balanced trees. Sometimes it is

ideal for a super-node to be expanded into an unbalanced tree because one of the operands

depends on many operations, and that path is more critical than the other paths entering

the super-node. Figure 4-4 shows a pair of super-nodes expanded optimally and expanded

into balanced trees.

The algorithm starts at the sources of the DFG and builds its way to the sinks. Along

the way, when the algorithm gets to a super-node from two of its operands, a new operand

node is created by the combination of the two inputs and it takes the inputs' place in the

super-node.

Constant Folding

Some nodes in the DFG represent constant values, and these known values can be used to

reduce the number of operations in the DFG through constant folding [28]. If there are

nodes in the DFG that depend only on constants, then the node can be evaluated and

replaced with a constant, at compile time, before scheduling. Additionally, if there are

72

a b C d

f g h

(a) DFG with super-nodes

C d a b I g

+ + h

(b) Optimal expansion

a b c d

f g h

0X

x

(c) Suboptimal balanced tree expansion

Figure 4-4: Super-node expansion: optimal and suboptimal

nodes that are

simplified too.

being operated on by the identity element of the operation, those can be

This optimization can also be performed on super-nodes to reduce the number of con-

stants a super-node is dependent on. If two inputs in a super-node are constants, they can

be replaced with the constant equal to the combination of the two constants. For example,

the equation
2b

4ac
(4.1)

can be expressed as a super node as shown in Figure 4-5a. This super-node has a x2 and

a +4 so the two of the can be replaced with a xO.5 resulting in the super node shown in

73

Figure 4-5b. This new super-node represents the optimized equation

= . (4.2)

2 b 4 a C

* * / /

x

(a) Before optimization

0.5 b a c

* * /I/

x

(b) After optimization

Figure 4-5: Super-node representations of x = (2b) + (4ac) for constant folding optimization

Additionally, some select operations that depend on only one constant can be optimized

as well using algebraic properties of 0 and 1 [28]. Since 0 is the identity element of addition,

the expressions a + 0 and a - 0 can both be reduced to a. Similarly, since 1 is the identity

element for multiplication, the expressions b x 1 and b + 1 can be reduced to b. Also, when

0 is multiplied by anything, the result is zero, so the expressions c x 0 can be reduced to 0.

Inverse Optimization

Another algebraic optimization available in the compiler is inverse operation optimization.

Inverse operation optimization is when an operation is able to be simplified because a value

and its inverse appear in the same expression. The optimization is performed by removing

the value and its inverse, and replacing them with the identity elementary for the operation

and performing further constant folding. The simplest form of this is replacing a - a and

74

a + (-a) with 0. For multiplication, this optimization replaces a - (a)- 1 and a + a with 1.

This optimization can be performed on super-nodes to find less trivial optimizations. If

two inputs in a super-node have the same data but opposite operation, they can be replaced

with the identity element for the operation. For example, the equation

x = (a + b) - (c - (d - a)) (4.3)

can be expressed as a super node as shown in Figure 4-6a. This super-node has a +a and

a -a so the two of them can be removed from the super-node and replaced with a +0. An

obvious optimization allows for the removal of +0 to produce the super node in Figure 4-6b.

This new super-node represents the equation

x = b - c + d. (4.4)

b c d a

+ + 1- + E

X

(a) Unoptimized

Figure 4-6: Super-node representations of x

optimization

b c d

+ 1- +

X

(b) Optimized

z + b) - (c - (d - a)) for inverse operation

Operation Duplication

The source of the schedule improvements from the previous optimizations are clear from

their actions. Constant folding and inverse operation optimization both reduce the number

of operations in a DFG, potentially lowering the throughput bound. If those removed

operations are on a critical path, then the latency bound could decrease also.

Even though it is not intuitive, sometimes it is advantageous to increase the number of

operations in order to shorten the critical path and reduce the latency bound. This is the

foundation for the operation duplication optimization; duplicating an intermediate result

so trees can be rebalanced easier to shorten the critical path.

75

Consider the algorithm in Listing 4.6.

The DFG for this algorithm can be seen in Figure 4-7a. If all subtrees of the DFG

made of associative operations are collapsed into super-nodes, the DFG is the one shown

in Figure 4-7b. This algorithm cannot be collapsed into a single super-node because x and

y both depend on tmp. Therefore, when the super-node is expanded, the resulting DFG as

seen in Figure 4-7c is the same as the initial DFG.

a b

+ C

d e
tmp

x y

(a) Initial DFG

a b c

tmp

x y

(b) DFG with super-nodes

a b

+ C

d e
tmp

x y

(c) Rebalanced DFG

Figure 4-7: Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; without duplicating

nodes

If the super-node for tmp is duplicated into a second node tmp2, then x could depend

Stmp = a + b + c;
2 x = tmp + d;
i y = tmp + e;

Listing 4.6: Simple subexpression duplication example

76

on tmp and y could depend on tmp2 like in Figure 4-8a. At this stage, the DFG can be

fully collapsed into two super-nodes, one for x and one for y. These super-nodes can be

expanded more efficiently than than the super-node in Figure 4-7b. When expanded, the

super-nodes in Figure 4-8b become the DFG seen in Figure 4-8c.

a b

Y

++
+

+ + d e e a b d
tmp tmp2

x y7 y X

(a) DFG with duplicated super-node (b) Fully collapsed DFG

a b d C e

x y

(c) Rebalanced DFG

Figure 4-8: Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; with duplicating nodes

The original DFG contains 4 additions, and the critical path is a chain of 3 additions.

The new DFG contains one more addition, but the critical path is shorter by one addition.

Often times, this optimization method is too aggressive, and it increases the number of

operations by so much that the throughput bound becomes the active bound for scheduling.

In these cases it is best to only do the other optimizations.

4.1.3 DFG Scheduling and Code Generation

Unlike optimizations we discussed, scheduling of a given DFG graph is a well studied prob-

lem with many satisfactory results [35-38]. At this stage of compilation the final piece of

information about the processor instance enters the picture: the number of operation units

and storage memories determines how big of a piece of the DFG can be issued for execution

77

at each cycle.

To schedule the DFG we perform node prioritization to determine urgency of each node.

More urgent nodes are scheduled earlier if possible. While scheduling it is assumed that

infinite memory resources are available and all intermediate results are simply named, but

not assigned an address. After scheduling, the schedule is post-processed to assign memory

locations to each computation result.

Depth Priority

At this stage, the DFG contains information about all the required operations, but it needs

information about relative importance of nodes for achieving an efficient schedule. A priority

for each node can be obtained by looking at required execution time after each node is

scheduled.

At each node in the DFG that is not a sink, there is at least one path from that node

leading to a sink of the graph. Each node along that path will require a calculation to

be performed that depends, either directly or indirectly, on the given node. Due to the

dependencies, these nodes will have to be scheduled after the initial node has completed

execution. These nodes will also have to be scheduled after each previous node on the

path has completed execution as well. This path gives a lower bound for the amount of

time required to finish executing the algorithm after the initial node has been scheduled for

execution. This bound is obtained by adding up the execution time for the initial node and

every node on that path. If there are multiple paths from the initial node to the sinks, then

each path can be examined to calculate a better lower bound. If the scheduled time is known

for the initial operation, then a lower bound for the completion of the entire algorithm can

be computed by adding the scheduled time to the lower bound.

The lower bound for completion time after scheduling can be used for prioritizing the

scheduling process. If there are multiple nodes that can be scheduled in the same time slot,

scheduling the node with the largest amount of computation required before completing

the algorithm is preferred. Scheduling that node later will increase the lower bound for

completion time of the entire algorithm.

The node prioritizer starts at each sink and calculates lower bounds for each node. After

the node prioritizer is done, the node with the highest lower bound for additional execution

time gives the latency bound. This lower bound is tight when there are sufficiently many

78

operation units. The path that causes this lower bound on total execution time is called

the critical path.

This priority is very similar to depth in a tree, except the difference in priority between

two nodes depends on computation time, not the number of edges between them as is the

case with depth.

In the example program shown in Figure 4-2, after the operation a + b is finished, there

is still a subtraction, a multiplication, and a division along the path from a + b to the sink

z. The priority for the operation a + b is the time it takes to do an addition, a subtraction,

a multiplication, and a division. The priority for d + f is only the time required to perform

an addition and a division, so a + b has a higher priority than f + g.

Scheduling

Scheduling is done using a list scheduling algorithm sequentially in time starting with the

first clock cycle. The compiler looks at all of the operations that depend only on variables

that will be valid in memory at the current clock cycle. It then chooses the operations

with the highest priorities and assigns them to be executed in the current clock cycle. The

results are then marked to be ready at a time in the future (when the specified operation

is completed and the results are written back). The compiler then looks at the next clock

cycle, and the process continues. Since the priority function is closely related to depth, this

process is very similar to depth first scheduling.

Memory Assignment

While scheduling produces the times for each operation to execute, the memory assignment

in the next step produces the read and write addresses for each operation. Each node in

the DFG needs to be assigned a memory and an address within that memory so there are

no conflicts within the processor. Since the processor memories have one read port and one

write port, this means that the memories can only be written to by one operation unit at

a time, and only one variable can be read from a memory at a time (even though multiple

units may be reading the same variable in the same clock cycle).

To make sure the memory ports are not overused in a single cycle, the compiler generates

a graph showing the dependencies between all of the variables. The graph has an edge

between two variables if they are both read in the same cycle or if they are both written

79

in the same cycle. If all the variables connected by edges are always in different memories,

then there will never be a resource conflict between instructions. The task of assigning

each node in the graph a different memory such that no two edges connect nodes with the

same memory is the same as finding an M coloring of the graph where M is the number

of memories. Once a valid coloring is found using a heuristic, the memory assignments are

shuffled while satisfying the constraints to even out the number of variables in each memory.

After the memory assignment, each variable needs to have an address within the memory

assigned to it. If the program does not have too many intermediate results, unique addresses

can be assigned to each variable in a memory. If space needs to be saved, the variables are

tracked in the schedule to see when they become valid, and how long they remain in memory.

The compiler will then share addresses between variables that do not need to be stored in

memory at the same time.

Instruction Generation

The last step of the compiler is to take all the scheduling information and memory as-

signments and write them into a file that can be loaded into the processor's instruction

memories. The processor has independent controllers for each crossbar and each memory,

so the compiler runs through the schedule figuring out the settings for the crossbars and

the address lines at each clock cycle, and it creates an instruction file for each unit. This

information is all known at compile time because the programs do not have data dependent

branches. Once the compiler has calculated all the control signals for each controller, there

is an instruction file for every unit on the processor ready to be loaded.

4.2 Summary

This chapter presented a custom optimizing compiler design. In our template-based design

flow, the compiler is used as the main design exploration and steering tool. This central

position in the design dictates a flexible and extensible design for the compiler.

The compiler front-end is a DSL embedded in C++, using C++ template metapro-

gramming. This enables rapid development of compiler-side models of processor units. The

reason is the easy access to testing of new constructs through simple changes in instantiation

parameters.

80

The core compiler is a configurable set of low-level optimization routines operating on

DFGs. It offers full control of optimizations performed as well as easy access to many

intermediate measures of the DFG performance.

The compiler back-end is the compiler in the narrow sense, usually referred to as "the

compiler" in embedded software development. It provides DFG scheduling and translation

into programming files for the processor instance of interest.

Throughout the chapter, we emphasized the relationship between the processor instance

configuration and compiler functionality in each compilation stage.

81

82

Chapter 5

Algorithms

An algorithm must be seen to be believed.

-DONALD KNUTH

Programs must be written for people to read, and only

incidentally for machines to execute.

-GERALD SUSSMAN

In this chapter we analyze a few interesting algorithms often found in embedded ac-

celeration literature. The material presented here explains the underlying structures for

discussion of the results in Chapter 6. In particular, we derive the exact formulations we

use to construct specific accelerators in Chapter 6. This is presented through a process of

transforming formulations from the forms used in literature to the form used in our for-

mulation, for each algorithm variant. The reader should bear in mind that the discussion

presented in this chapter is kept at the most generic level to maximize the utility of achieved

formulations. We look into particular MPC problems, as concrete instances of the general

methods in this chapter, in the next chapter where we also comment on the workload,

in terms of sizes of matrices and schedule lengths, required for calculating each problem

instance.

When manipulating pure numerical computation, we pretend to pack the problem for-

mulation in a form that reduces the size of matrices that undergo any kind of matrix

decomposition. There are two main reasons for this. First, smaller matrices require fewer

operations to be decomposed. Furthermore, as will be observed in examples in Chapter

6, matrix decompositions have very sequential DFG and it is often beneficial to substitute

a decomposition of a large matrix for a decomposition of a smaller matrix and multiple

83

matrix-vector multiplies, if the same result can be achieved. The reason for this is that it

is trivial to parallelize the matrix vector multiply. The second reason is numerical stability

of computation. While matrix pivoting can be done with the resources our processor tem-

plate offers, it is desirable to avoid it when speed is important and most implementations do

so [3,32]. Growth factors in matrix decompositions are related to the size of matrix [51] and

smaller matrices can be accommodated with smaller number representation while achieving

desired accuracy.

Special attention is paid to conditional (or data dependant) processing parts of algo-

rithms. As explained in Chapter 3, it is not hard to implement branching infrastructure in

our processor template. However, code branching comes with instruction pipeline flushing,

usually costing multiple operation cycles to re-populate. It is best if conditionals can be

avoided or hidden in predication atoms. In this chapter we will see that achieving this

requires changing the data structures used in the algorithm or analyzing conditionals to

derive simplified forms.

The main focus is on several variants of MPC algorithm with efficient implementations

reported in recent literature [3, 7, 22, 32]. Being computationally very demanding these

make good demonstration of the capabilities of the design flow. In particular, we wish to

demonstrate the capability of this flow to guide us in finding a good overall system configu-

ration and the appropriate algorithm form. At the same time, high volume of publications

reporting efficient implementations gives us an opportunity to set the performance bar and

evaluate our approach as the implementation technology for this and similar problems in

our scope.

Most MPC implementations are built on top of a QP optimization algorithm. To show

as much of the design behavior and simplify the exposition we present the MPC design

incrementally. In this implementation we use IP method for QP because of its efficiency in

practice.

5.1 Interior Point Method for Quadratic Programming

For our implementation we follow the Mehrotra's predictor-corrector method as presented

in [21]. We repeat it here for completeness and easy reference.

84

In general we are interested in solving the following optimization problem

minimize 1xT Qx + T x
X 2 (5.1)

subject to Gx < h, Ax = b,

given the positive semidefinite matrix Qx,, matrices Gixa, A, and vectors qnxi, hixi

and bx1.

Strictly speaking, the problem defined in Equation (5.1) could be infeasible. This hap-

pens when the regions defined by the inequalities and equalities happen to be empty or do

not intersect. Understandably, this is undesirable in real-time and mission-critical system

functions, but it can not be addressed at the implementation level. In case of a possibly

infeasible QP the algorithm designer must specify the desired implementation behavior.

Usually, MPC formulations do not have this problem. In the formulations we are imple-

menting this is actually impossible. In cases where it is the flexibility of the template-based

design flow is ideally suited for handling such problems even very late in the project devel-

opment.

The first step towards the solution of (5.1) is substitution of inequality constraints with

equality constraints and a simpler inequality constraint. The problem becomes

minimize 1xT Qx + qTx
x 2 (5.2)

subject to Gx+s=h, Ax=b, s>O,

where vector si is the vector of slack variables.

We assume that the problem in (5.1) is strictly feasible, an assumption that will be

justified when we present MPC formulations in the next section. This implies that the

Karush-Kuhn-Tucker (KKT) conditions

Ax=b

Gx~s=h, s>O
(5.3)

Qx+q+GT z+A Ty=0, z>0

SkZk=0, k C {1,...,i},

where zix1 and yex1 are dual variables corresponding to the inequality and equality con-

85

straints, respectively, are necessary and sufficient conditions of optimality [33].

In our MPC formulations we will avoid using equality constraints. This is a performance

driven optimization that, technically, limits the set of MPC problems we can solve. However,

all the MPC whose implementations we could find in literature can be written in the form

with no equality constraints. Thus, we can simplify the (5.1) we treat, and improve its

performance, by removing the equality constraints from it. The exact QP we will be solving

from now on is given by

minimize -xTQx + qTx
x 2 (5.4)

subject to Gx+s=h, s>O,

with the corresponding KKT conditions

Gx+s=h, s>0

Qx+q+GTz =0, z > 0 (5.5)

SkZk = 0, k E f 1,... , if.

From this point on, our objective is to find the solution to the KKT conditions (5.5) for

the Problem (5.4). To do this we will follow the program outlined in [21]. The solver will

operate in two distinct phases: initialization and iteration.

5.1.1 Initialization

To initialize the solver for (5.2) we must solve the system of equations [3]

Q GT AT x -q

G -I 0 z h (5.6)

A 0 0 yj b

As mentioned, we will not need the equality constraints, so we simplify the initialization

to

Q GT) (x) -q (5.7)

G -I z h)

by considering the simplified QP form (5.4). Since all matrices involved in initialization

phase are constant many operations needed can be precomputed. This means that the

86

general (5.6) and the simplified form (5.7) have very similar computation costs.

We could solve the (5.7) directly in the form given. The matrix is non-singular and it

has LDLT decomposition. However, an alternative form might be more appropriate. To

derive it we use the special structure of the initialization matrix.

From the second row we can write

z = Gx - h, (5.8)

which, after substitution into the first row, yields

(Q + GTG)x = -q + GTh. (5.9)

We will initialize by solving (5.9) and (5.8). By doing this we trade off the size of the

(5.7) matrix decomposition, for a smaller matrix (5.8) decomposition and a matrix-vector

multiplication (5.9). This formulation was selected through compiler experiments where it

was observed that matrix-vector multiplication can be parallelized much more effectively

than most matrix decompositions. Details of this tradeoff exploration can be found in

Section 6.1.

With the solution obtained we can set x(O) = x. Following the program in [21], we next

calculate s(O) as

a, =inf{al - z + a > 0}

s(0) Z ap < 0 (5.10)

t-z -+ (1 + ap) otherwise,

where vector to scalar addition is understood coordinate-wise. This calculation has a con-

ditional and we must transform it for efficient execution. We use the following:

ap =max z

P = 0 ap < 0 (5.11)
1 +aP otherwise

s(O) = -Z z+ .

The expressions for s(o) in (5.10) and (5.11) are equivalent, but the latter can be compiled

87

into a static, finite search tree. The conditional was moved to the calculation of the scalar

value Op and then a simple addition is applied to all the coordinates of z.

Similarly, we transform the expression for z(O)

ad =inf{alz + a > 0}

(0) z ad < 0 (5.12)

z + (1 + ad) otherwise,

to the form used in the formulation

ad = - min z

f 3d =ad < 0 (5.13)
1 + ad otherwise

Z(0) =z±+#.

We start the solver iteration phase from (x(0), s(O), z(0)).

5.1.2 Iteration

In every iteration we calculate the direction for the next move as a sum of two directions.

These are the predictor and corrector step of the iteration. As the directions in both steps

are calculated from the same linear system but with different right-hand sides [21] we will

derive a generalized form and then specialize for each step.

Both the predictor and corrector step are obtained by solving the system of the following

form

Q 0 GT AX xrh

0 S-1Z I AS = srh (5.14)

G I 0 AZj zrh

where we use Z and S to denote diagonal matrices with vectors z and s on the diagonal,

respectively. We also simplify the system from [21] by ignoring equality constraints due to

the MPC formulation we are using.

88

To solve this system we start from the third row in (5.14) writing

As = Z'h - GAx (5.15)

and further substitution in the second row yields

Az = s'h - (S-Z)Zrh + (S-1 Z)GAx. (5.16)

Finally, the first row can now be expressed as

(Q + GT(S-1Z)G)Ax = rh - GTsrh + GT(S-lZ)Zrh. (5.17)

Matrix (Q + GT(S-1Z)G) is guaranteed to be positive semidefinite, and in all MPC for-

mulations it is positive definite. The LDLT decomposition will always exist for it. Thus, the

system can be solved by LDLT decomposition in (5.17), followed by the forward-backward

substitution. After we solve for x, other variables follow from (5.15) and (5.16).

In every iteration we are looking to improve the current solution (x(k), s(k), Z(k)) and

produce a new one (x(k+1), S(k+1), z(k+l)). The number of iterations can be fixed [3,17] or

determined by an exit condition calculated from the current solution. With these general

considerations we evaluate an IP iteration as follows [21]

1. Solve the predictor step system

Q 0 GT AXaf f -(GTz(k) + Qx(k) + q)

0 S-1Z I Asaff = -z(k) (5.18)

G I 0 AZaff J(Gx(k) + s(k) - h)

using the approach outlined in (5.17, 5.16, 5.15).

2. Calculate

)CC = sup{a E [0, 1] 1 S(k) + Asaff > 0, z(k) + aAzaff > 0}

((s(k) + QcCASaff)T(Z(k) + accAza)) (5.19)

(S(k))TZ(k)
p=

89

where i is the number of inequality constraints as denoted in (5.1). An efficient way

to calculate a,, will be discussed after the algorithm outline.

3. Using the solution (Axaff, Asaff, Azaff) solve the corrector step system

Q 0 GT Axcc 0

0 S-1Z I- Azaff o s) (5.20)

G I 0 j Azcc 0

where 0 denotes the Hadamard (i.e. componentwise) product of vectors. For solving

we use the approach outlined in (5.17, 5.16, 5.15). Note that the matrix in both

the predictor (5.18) and the corrector (5.20) system is the same matrix. This means

that the matrix appearing in (5.17) is the same in both cases. Thus, its LDLT

decomposition need to be calculated only once. This is the standard practice in IP

solvers. Furthermore, compiler constant folding will simplify expressions (5.16, 5.15)

for the corrector step calculation. At this point we can calculate the final move

direction

AX = Axaff ± Axcc

As = Asaf + Ascc, (5.21)

Az = Azaff + Az~C.

4. Update the current solution by

al, = min{1, 0.99sup{a > 0 1 s(k) + aAs > 0, z(k) + aAz > 0}},

x(k+l) - x(k) + als Ax,

5 (k+l) - 5 (k) + C(.2As,

Z(k+l) = Z(k) + Cls Az.

We now look at the conditionals in steps 2 and 4 and their efficient formulation within

the constraints and resources of a statically scheduled system like ours.

In step 2 we are calculating acc = sup{a E [0, 1] 1(k) aAsaff > 0, z(k) +azaf f > 0}.

In this case components of Azaff and Asaff could have negative sign and the expressions

cannot be simplified as easily as between (5.10) and (5.11).

In this case we will rely on the evaluation context and the semantics of the result where

90

it is used to derive a substitute form:

1. Every step of initialization and iteration preserves z > 0, s > 0 constraints given in

KKT conditions (5.3).

2. Result ac is expected in [0,1] range.

The purpose of these calculations is to determine how far we can move in the desired

direction without violating primal or dual feasibility in (5.3). The way they do it is by

calculating when the constraint would be violated if we moved only along one coordinate

and then find the minimum of all such moves.

Note that we can never exit the feasibility region along any coordinate r where Azr f

0, since a > 0 and z(k) > 0. Thus, in that case we are free to just return the maximum

meaningful value for a which is 1 in this case. Let us define P = { r Ivr > 0}, the set of

coordinate indices for which a given vector is non-negative.

Similarly, we can define the set of coordinate indices for which a given vector is strictly

negative, A/v = { T Vr < 0}. On this coordinate subset, under the assumptions on (z, s, a),

we can write

acc = min{1, (s(k) 0 lAsaff I)a,,,ff, (z(k) o 1Az f I)A } (5.23)

where 0 denotes the componentwise division of vectors and index sets indicate the vector

coordinate indices where the expression is valid and should be evaluated.

In a statically scheduled system data dependent processing is not straightforward. We

have already discussed certain data dependent processing cases where static schedule per-

forms as well as more flexible code execution scheme. However, the variable-size min in

(5.23) is more challenging. Luckily, we should not treat it as a function with variable number

of arguments, nor do we have to.

We prefer solutions with guaranteed and easy to check execution time and variable-

length argument list could be problematic in such cases. However, the fixed number of

inequality constraints and our earlier observations allow us to construct a single expression

(and schedule) that functions correctly in all cases. As expected, if considered separately,

the latency of such a schedule is fixed and equals the worst case latency over all the cases

that it can correctly handle. For reasons that we discuss in latter chapters, this is not a

91

problem in practice for this set of applications.

Taking into account our previous observations we can write

0- (Z(k))-P'zff + (_AZaff)gr'aff,

0 - (S(k))P,,,aff + (-Asff)Aaf , (5.24)

acc = min{1, z(k) 0 6, S(k) 0 6sI,

where we use the same convention for index set subscript: the expression should be evaluated

only for denoted coordinate indices, otherwise ignored.

An alternative formulation is given by

0z = (z(k))p f + (maxz(k), - Azaff })Kzaff,

9s = (S(k))Paff ± (max s(k), Aaff })MATaff , (5.25)

acc = min{z(k) 0 0Z I(k) 0 9s}.

The form to be used depends on the implementation of floating point units, whether we

expect numerical problems when when approaching the feasible set boundary within desired

accuracy. We might also consider how the evaluation graph for this calculation fits in the

overal algorithm timing.

The same apprach can be used to transform expression for als in (5.22).

5.2 Model Predictive Control Formulations

After treating the general case of QP in the previous section, in this one we show how

to write several MPC variants in the form of (5.4). In this work we focus on efficient

implementations of numerical DSP for embedded systems. It is not our intention to argue

any particular control scheme. As we noted during derivation in Section 5.1.2, we will not

need the equality constraint handling.

5.2.1 MPC: Linearizing Pre-Equalization

In this application we use our framework and infrastructure to design a linearizing pre-

equalizer using MPC. The example is taken from [3]. The problem setup is shown in Figure

5-1. We use the standard convenience representation for implementation of the transfer

92

function of a linear system [52]. A Hammerstein structure, a saturation-type nonlinearity

followed by a stable Linear Time Invariant (LTI) system, is linearized by MPC. The goal of

the controller is to minimize the effects of the saturation. It is assumed that the controller

has access to the system model and the scalar input signal u with T sampling intervals of

lookahead.

A -]ref

u- -e
v f AIB y

MPC - - -

Figure 5-1: MPC as linearizing pre-distortion

Full details of the model and derivation can be found in [3,21].

The LTI part of the dynamical system under control is modeled in the State Space (SS)

form as

XT+1 = Ax, + Bf,
(5.26)

YT C ,-,

where xr is the state of the model at time T, YT is the output vector, and A, B and C are

constant matrices.

In this setup the forcing term is the output of a saturation when driven with the input

signal, i.e. ft = sat(vt), as shown in Figure 5-1. The role of MPC as the linearizing pre-

equalizer is to control the system under the condition that the control signal v never enters

the saturation region of the system control input, thus enabling us to write sat(vt) = vt [3].

We start our derivation by repeating their basic MPC form

t+N

min e2 + NP Bt+N

T=t+1

s.t. 'r+1 = A.T + B(vT - uT) (5.27)

eT = CXT

W vv < 1, r = {t, ... ,It + sN - 1}.

We deviate slightly from the original formulation in [3] in exclusion of et from the objective,

93

since it is a constant. Additionally, we renamed the prediction/control horizon length to

N = T + 1, to avoid confusion with matrix transpose and to achieve a more compact

notation.

The problem is formulated as a minimum square error tracking of the reference signal

on the prediction horizon. The controller is forced to minimize the tracking error under

the condition that the control signal V{t:t+N-1} never exceeds the saturation value, effec-

tively removing its influence. The reference signal is calculated by passing the input vector

U{t:t+N-1} through the linear system with the desired response. In this example the desired

linear system is the same as the LTI part of the Hammerstein model. Thus, the whole prob-

lem can be formulated in the tracking error space e. = Yr - Yr = C(x - =

where z- is the system state vector error between the desired LTI and the Hammerstein

model. It is assumed that in every horizon the initial state error et is a known vector

constant.

Note that the control vr = 0 for all r is a strictly feasible point for the problem (5.27).

This means that the solver could always return some solution, possibly achieving poor ref-

erence tracking performance. This justifies our strict feasibility assumptions in the previous

section. In other words, all the steps of the QP solve algorithm will be able to execute

regardless of the parameters in (5.27). Thus, no special handling of the infeasibility is

necessary for these MPC problems.

In Section 5.1 we hinted that for MPC applications of interest the QP solver need not be

capable of handling equality constraints. The first step in our reformulation of the problem

in (5.27) is to remove the equality constraints. This is achieved by finding a closed form

solution for it+k and et+k [17,22].

We do this inductively, calculating

zt+1= At + B(vt - ut),

it+2 = Aizt+1 + B(vt+1 - ut+1)

= A(Azit + B(vt - ut)) + B(vt+1 - ut+1)

= 2t AB(t - ut) + B(vt+l - ut+i), (5.28)

k-1

Xt+k = Akjt + E Ak-i-B(t+j - ut+j).
j=0

94

If we denote V{il:i2 } = (Vi2, ... , VI)T

can write this in the compact form

CAN

e{t+1:t+N} t

CA

for any vector v and two integer indices il and i2, we

CB ... CAN-1B

- - Ult:t+N-1}

CB

CB ... CAN-1B

+ (GB B v{t:t+N-1}-

CB

Similarly, we can write the expression for the final state in a compact form

Xt+N =(ANt - (B AB ... AN-1B) U{t:t+N-11

+ (B AB ... AN-1B) V{t:t+N-1}-

(5.30)

We can observe that both the error vector e{t+1:t+N} and the final state error t+N are

affine functions of control variable V{t:t+N}. The same holds for the first order difference of

the control variable

1 -1 0 ... 0 0

A V{t:t+N-1} 1t:t+N-1}

. -1 0

often added to the MPC objective to smooth the control variable [3,17].

From these observations we can reformulate the original MPC in (5.27) as

min He{t+1:t+N} I + Jt+NI P

s.t. |vrl <; 1, 7r = { t, . .. , t + N - 1}.

(5.31)

(5.32)

Note that in this formulation only the control moves are considered the optimization vari-

ables. Furthermore, we see that the objective is always a sum of weighted quadratic function

of some affine mapping of the optimization variables. To derive the final, and general, pack-

ing of this MPC variant into desired QP form we can consider one such quadratic function.

95

(5.29)

Dropping the subscripts for legibility we can write

IIHv + r||1W = (Hv+ r)TW(Hv + r)

= vT(HTW H)V + 2(r TWH)V + rTWr.

Noting that the scaling and the constant offset do not change the argument where the

optimum is achieved, we can write te final form of objective components

V(HTWH)v + (rW H)v, (5.34)
2

exactly the form assumed in QP formulation (5.4) if we put Q = HTWH and q = HTWTr.

Using this form and the fact that all the components would be scalled by the same factor

we can write the objective of (5.32) as

vt:t+N-1}(HeHe + HTPH;)V{t:t+N-1} + (reTHe + rjPH.)v{t:t+N-}, (5.35)

where we read He, r., Hj, r. by comparing e{t+1:t+N} = HeV{t:t+N-1} - re with (5.29) and

Xt+N = H'v{t:t+N-1} + ri with (5.30). Again, we see the objective form suitable for our

QP solver by putting Q = HTHe + HjPH. and qT = reHe + rjPHj.

Note that r. is not a compile time constant, but depends on U{t:t+N-1} while Q is fully

known at compile time. The compiler will recognize this and will, for example, precom-

pute the LDLT decomposition needed for the QP initialization step. It will leave the q

partially computed, postponing the final evaluation for run-time when the input signal over

the horizon is known. While the compiler performs some optimizations (e.g. constant fold-

ing, common sub-expression elimination, etc.) the results depend strongly on the actual

formulation. Further discussion and concrete examples regarding performance of various

equivalant formulations can be found in Chapter 5.

Finally, we deal with the remaining, inequality, constraints in (5.32). A standard trick

in this situation is to replace the absolute value constraints Iv, < 1 with double inequaliy

-1 v v< 1. Equivalently, we can write

-I V{t:t+N-1} 1(, (5.36)

96

understanding that right-hand side constants must be of appropriate size.

With this change we arrive to our final MPC formulation

mn (:t+N-1H + HrPHV{t:t+N-1}

+ (rTHe + rXjPHi)V{t:t+N-1} (537)

s.t. V{t:t+N-1} + 8 = () > 0.

This MPC formulation follows the exact form shown in (5.2) and can be evaluated using

the method presented in the previous section.

5.2.2 MPC: Constrained Reference Tracking

A second variant of MPC controller is developed for direct comparison with [7,17,22,32].

While they all implement a variant of MPC control, in their formulation the system error

prediction horizon Np and the forcing/control horizon N, are different. Mostly for managing

the computation complexity, it seems. Also, the objective in this case is given directly as

a reference to be tracked at the output. This should be compared to the indirect reference

specification in the previous section where the reference was the response of an LTI to an

input sequence.

We will present packing of the most general implementation, given in [22], and specialize

for other cases. In this example, the system under control, i.e. the plant, is modeled as an

LTI in SS form (5.26). The exact MPC formulation we are treating in this section is given

by
Np Ne

min I yt+T _-e, 2 + r Z Vt+r 2

i r=O

s.t. IIV{t:t+Nc-1}IOO K c1 (5.38)

{AVft:t+Nc-1}I1oo < C2

{(Y1}){t+1:t+Np}Iloo < C3-

97

Just like in the state error space we can derive

Xt+1 = Axt + Bft,

Xt+2 = Axt+1 + Bft+i

= A(Axt + Bft) + Bft+1

= A 2xt + ABft + Bft+i,

k-1

Xt+k = Akxt +(Ak-i-Bft+j.
j=O

Remembering that in

the expression for the

e{t+1:t+Np} =

this example reference output is explicitly given we can write down

tracking error over the horizon, similar to (5.29), as

C ANP

t

CA

- Y{t1:t+Np}

CB ... CANP-1B

+(V{t:t+Np-1}-

C B

(5.40)

The control horizon N, length is taken into account by putting v.t+Np-} (0, V {t:t+N1}

for the final form of the error prediction over the horizon

CANP

e{t+1:t+Np} =t

CA

- Y{1:t+Np}

CANP-NeB ... CANP-1B

+ V{t:t+Nc -1},

as given in [22,32].

Note that (5.41) is an affine form, just like (5.29, 5.30, 5.31). Thus, everything we said

98

(5.39)

(5.41)

in the previous section holds. In particular, it is easy to see how the objective (5.38)

min I|e{t+1:t+Np} 1P + I IAV{t:t+Nc-1} 112R (5.42)

where R = rI, can be expressed in the form of (5.4) by using the (5.31, 5.33, 5.35). The

same was done for (5.32).

To finish the formulation in [22] we need to show how additional constraints (e.g. con-

straints on output variable range, state range, differences of control or state variables, etc.)

can be handeled. For example, in [22] the actual formulation of the MPC problem has

constraints on the maximum absolute value of the control variable v, its first difference Av

and the first coordinate of the output vector y. In our notation we can write

min |Ie{t+1:t+N,} P+ A /V{t:t+Nc-1} I
s.t. v~~+c1 H00 K c

(5.43)

IIAV{t:t+Nc-1} Hoo C2

II(Y{1}){t+1:t+Np}Ioo _< C3-

In the previous equation, the constraint on the output vector, y{t+1:t+NP}, uses the same

index set notation imposed earlier: the constraint is evaluated only for the first coordinate

of the output vector, in this case.

First we note that all the constraints in (5.43) can be written as oc-norm bounds of an

affine map of the vector of optimization variables v. Thus, constraint cases by showing how

to bring a general constraint form

IGv + el l h (5.44)

into the form used in (5.4), where the derivations for general QP handling hold. This is

simple if we follow the same steps as for (5.36). We can easily write

IGv + e||O < h

< - h < Gv + e < h
(5.45)

G h - e

-G) (h + e

99

With this simple transform, all the constraints in (5.43) can be written in the form the

QP in (5.4) assumes. This is done by chosing the appropriate matrix G and vectors e and

h for each constraint of interest.

5.3 Summary

This chapter presented algorithmic formulations of example QP and MPC problems. The

formulations are developed both for execution on general purpose architectures, and with

some customizations, on our templated-hardware architecture. We will see, in Chapter 6,

that some of these ideas improve performance even on more commonly available architec-

tures.

Transformations presented are outside of the reach of automatic optimizations by any

current compiler. The reason is the understanding of the concepts involved and equivalence

relations between them. This should be contrasted with the rule-based automatic local

optimizations of the DFG outlined in Chapter 4.

The solutions we offer come in two flavors. For dealing with the purely numerical compu-

tation we resort to reducing the operation counts and DFG equivalence transforms exposing

parallelism. This will become fully apparent in Chapter 6. When it comes to conditional

(e.g. data dependant) processing we resort to indirection to hide decision making inside

atomic actions offered by the processor. While the technique is not general it brings quite

an advantage where applicable as it allows conditional processing without code branching.

100

Chapter 6

Results and Evaluation

For a successful technology, reality must take precedence

over public relations, for nature cannot be fooled.

-RICHARD FEYNMAN

In this chapter we finally show the end results of the work done until now. While

previous chapters dealt with methods for template-based DSL construction at each level

of hierarchy this one shows how we pick template parameters and how well the resulting

instances perform. We also open discussion of the design tradeoffs we observe and how they

affect implementation strategies we discussed in Chapter 1.

Due to our flexible design description, we will be able to see how processor configuration

influences the algorithm performance. On one side a processor with more units can schedule

a DFG in fewer cycles. However, such a processor is larger and it, as a rule, cannot achieve

clock frequencies (cycle time) that a smaller processor could. Such conflicting trends, orig-

inating at different layers of the design stack, cannot be studied in traditional design flows.

There, at the point when the full system design can be evaluated for performance, many

parts of the design are firmly locked and completely inflexible. Changing them would result

in many cascading changes throughout the system, due to serial dependencies we described

in Chapter 1. However, our flexible design description spanning all the design layers allows

us to observe these cross-layer tradeoffs and give answers to design questions that cannot

even be asked in traditional design routes. A new set of tradeoffs arise, challenging basic

assumptions of both algorithm-first and platform-first design approach.

We will show that achieving a given real-time computation latency can be possible only

within a certain processor size window. Having a processor too big would make it run too

101

slow, while a processor too small would need too many cycles to execute the calculation.

This is especially troublesome in platform-first design where the size of the processor is

often set before the particular algorithm implementation is chosen.

In a similar vein, we will show that choosing algorithms based on the operation count can

be a poor strategy if latency sensitive system is being implemented on a parallel architecture.

This example should serve as a warning bell if an algorithm-first route is being considered

for a design. We will see concrete examples of interesting, real-world, designs that benefit

from optimizations that increase the number of nodes in the DFG, but break dependencies

enabling better parallel scheduling.

Finally, we will show that the approach taken in this thesis results in superior per-

formance and size of the large class of numerical computation designs when compared to

recently published, hand-crafted implementations.

We start with simple linear algebra kernels and build up to the MPC algorithm we

initially set out to implement efficiently in hardware-software codesign flow. Various alter-

native implementations on embedded and desktop processors are built for comparison and

tradeoff study.

We present a detailed case study of several MPC implementations in the proposed

design flow and compare to multiple implementation reports in recent years [6, 7,17, 22].

The algorithmic details for each MPC variant are given in Chapter 5. In the interest of

fair and clear comparison, in each case we implement the exact MPC variant treated in the

work to which we compare. Where possible we analyze the performance gains by reporting

performance of our system for different configurations.

While the results clearly show superior performance over all the recent implementations

of MPC in every respect, we should keep in mind that this section is only interesting as

a justification of the work done so far. It is the process of building a DSL in high-level

language templates that brought us here. Using this approach we are able to produce a

description of a whole region in a design space, instead of producing a single design instance

as usually done. Furthermore, the process of constructing the parameterized model at each

level of design hierarchy naturally leads to matching of template parameters across the stack,

facilitating communication and discovery of best set of primitives for implementation.

All the reported timing and performance results are obtained by implementing the

designs on a Xilinx Virtex-6 (ML605) prototyping board. The device on these boards has

102

-1 (slowest) speed grade, so slight further improvements in FPGA implementations are

possible by utilizing a faster device. Reported clock speed is the highest Phase-Locked

Loop (PLL) clock speed for the core processor we could impose and successfully place-and-

route the design.

The run-times reported for our processor instances are calculated, due to static schedul-

ing, by multiplying the schedule cycle-length with the cycle-time (i.e. the inverse of the

achieved processor clock frequency).

All run-times reported for desktop and embedded processors were obtained by profiling

the execution of our software implementations, as well as available implementations reported

in other works [6]. To improve accuracy in solve-time measurement, we run the MPC!

(MPC!) function for a large number of times to reduce any harness-induced overhead cost

through averaging.

6.1 LDLT decomposition

LDLT is a simple linear algebra kernel that, in its basic form, does not require any condi-

tional and data dependant processing. It is a simple and straightforward numerical evalu-

ation that allows us to demonstrate our flow.

LDLT decomposition is a matrix decomposition algorithm for symmetric matrices. This

algorithm decomposes the matrix A into unit lower triangular matrix L and diagonal matrix

D such that A = LDLT. The values of L and D are commonly written as [53]

i-1

Di -= Ai - L kDk (6.1)
k=O

j-1(6)

Those two formulas can be used to create an algorithm to compute L and D. However,

examining the computations done in the algorithm reveals an inefficiency: Ljj is computed

using a division by Dii, but Ljj is later multiplied by Dii to calculate other values. These

multiplications by Dii undo previous divisions, and they should not be necessary assuming

you have enough space to store the intermediate values obtained when calculating Lji. This

is undesirable from both efficiency and accuracy standpoint.

103

Removing these multiplications by hand optimization results in the algorithm shown in

Algorithm 6.1. This is the first algorithm we will explore.

Algorithm 6.1 LDLT decomposition with hand optimization

for i = 0 -+ N - 1 do
Di - Aii - E'-' LjkPk
for j = i + 1 - N - 1 do

Pj+- A13- ZI Pz3 Ljk > Pij is the product of Lij and Djj
Lij +- PijlDjj

end for
end for

6.1.1 DFG Scheduling Modes: Throughput and Latency Limits

There are two limiting factors for our processor in this algorithm: the critical path, and the

total number of each type of operation. The critical path for an N x N LDLT decomposition,

as reported by our compiler, is made up of N - 1 adds, N - 2 subtracts, N - 1 multiplies,

and N - 1 divides. That means that one lower bound for algorithm execution time on our

processor is the amount of time it takes for those operations to be performed sequentially,

that is, the next one starts only when the previous one is completed. This lower bound

increases linearly with the size of the problem.

An N x N LDLT decomposition has 1(N 3 - N) additions/subtractions, 3 - N)

multiplies, and 1(N 2 - N) divides. Considering the required throughput of the processor

to finish the algorithm in a certain amount of time produces another lower bound for total

execution time. The processor needs at least enough time to issue all of the operations

in the algorithm, so it needs at least } (N 3 - N) + naddsubs cycles to issue the add and

subtract commands to the addsub where naddsubs is the number of addsub units. Likewise,

it needs at least (N3 - N) + nmuls cycles to issue all of the required multiplies, and at least

(N 2 - N) + ndivs cycles to issue all of the required divides. This lower bound increases

quadratically or cubicly depending on which unit is constraining performance.

For a given processor configuration, the critical path will limit performance for smaller

problem sizes, and the throughput will limit performance for larger problem sizes. This

appears in Fig. 6-1 as a linear increase in latency for smaller problem sizes, and a cubic

increase in latency for larger sizes.

As we hinted in the introduction to this chapter, different processor sizes achieve different

104

3000

2500 Tnrougnput boun .

- 2000
0

1500

0)

C

U) 100

00

15 20 25 30 35 40
Size of problem

Figure 6-1: Performance bounds for LDLT decomposition example

maximal clock frequencies (i.e. minimal cycle times). This means that slopes, when we

observe the real time on the y-axis, of the execution time curves are different depending

on the processor size on which they execute. This is clearly visible in Figure 6-2, where we

analyze real time latency of LDLT computation for the processor configurations shown in

Table 6.1.

This observation gives us our first cross-layer system tradeoff.

6.1.2 Minimal and maximal processor size for latency optimization

To study the interaction between the processor size/configuration and the achievable latency

of computation we synthesized three processor configurations. We target each processor

configuration for execution of LDLT decomposition of a different size. The parameters of

each processor are shown in Table 6.1.

Choosing processor configurations, for a given algorithm, is a trial and error process.

This is, mostly, a consequence of unpredictable nature of place-and-route implementation

step in FPGA and ASIC toolchains. The only real solution, in view of inconsistencies in

randomized algorithms in FPGA implementation process, at this point in time is evaluation

of all (or most) possible configurations of the processor. This would, however, require

significant computational resources and quite some time. Finding the optimal design is

105

I I I 1
Compiler results ----

Latency bound ...

30 1111 1Processor A @110 MHz -
Processor B @ 101 MHz ------

25 Processor C @103 MHz

20

E
15

0
5 10 15 20 25 30 35 -40

Size of problem

Figure 6-2: LDLT latency results for custom accelerators

not our goal, however. We are satisfied with the possibility to locally tune designs from

some initial point and improve its performance, in an intuitive and somewhat controllable

manner, late in the design process.

We will use a type of local optimization heuristic to search for interesting instances. In

particular, we will start with a processor that has one of each type of units with latency

of one. As we saw in the previous section, such processor will be throughput limited

for any reasonable problem size. Then, we start adding units to the processor, checking

cycle lengths of schedules in every neighbouring configuration point. For this process, we

consider any processor with at most one additional unit of each type a neighbor. As we do

this, we typically observe diminishing returns from adding new units. This is because we

are exhausting the finite parallelization opportunities in the computation DFG. We stop

when the increase in resources does not improve cycle-time for more than a few percent.

It can be readily observed that processors B and C have the same performance for

27 x 27 matrix LDLT. As we initially explained, this happens because larger processors are

more challenging for implementation tools, generally achieving lower clock frequencies but

executing more operations in parallel.

We can note that any processor with less resources than processor B, say processor A,

would enter the latency-bounded mode of operation earlier than the processor B. This

106

Table 6.1: Processor parameters for studying processor size and latency on LDLT decom-
position example algorithm

Processor A Processor B Processor C

Target LDLT size 10 x 10 20 x 20 40 x 40

Number 1 2 7
Addsubs

Latency 2 3 4

Number 1 3 7
Muls

Latency 2 3 4

Number 1 1 1
Divs

Latency 10 10 14

Number 1 1 1
Comps

Latency 1 1 1

Crossbar latencies 1 2 2

Number of memories 6 16 35

Clock frequency (MHz) 111 101 103

would result in increased latency for the 27 x 27 decomposition, observable in the plot.

Thus, to meet the latency of 12ps, processor B is the processor with minimal resources that

we can use. This is a direct consequence of inability to exploit parallelization opportunities

of the DFG in question.

On the flip side, if we now analyze the intersection between latency curves for processors

A and B we see that both achieve ~ 6ps for 18 x 18 matrix decompositions. Any processor

with more resources than processor B, for example processor C, would run at a lower clock

frequency due to its size. Thus, due to hardware implementation constraints we also have

the maximal resources we can use to meet certain latency of computation.

This is quite intuitive. As we increase the processor size we can exploit more paral-

lelization opportunities in the DFG. However, the processors are becoming slower as we

increase their size. The amount of additional parallel operations we can issue with each

additional unit decreases and at some point the parallelization gain is completely offset by

the processor speed degradation.

While the quantitative aspects of this analysis might depend on the template struc-

ture, or more generally the architecture, qualitatively this effect should always exist in

system designs where many sub-systems must communicate. This reveals a potential weak-

ness of traditional design flows: early decisions might make it infeasible to reach specified

107

performance, no matter in which direction we try to err when deciding on initial platform

questions. Even worse, these problems cannot even be observed, much less quantified, when

a flexible and reconfigurable design description is not available.

6.1.3 Performance comparisons

We looked at three sizes of LDLT decompositions (10 x 10, 20 x 20, and 40 x 40) and chose

processor parameters that are well suited for each size. The chosen processor parameters

can be seen in Table 6.1.

For each set of parameters, the processor itself can be synthesized and tested. The

chosen parameters are inserted into the processor template, and the templated is compiled

into a bit file for the FPGA. The chosen algorithm is compiled for the processor, and then

the bitfile and the schedule are loaded onto the board.

To verify the correct operation of the processor and the schedule, we designed a system

to automatically load the board with test data, run the processor, read the results, and

calculate the error. For the LDLT decomposition test case, we load the board with a

random symmetric indefinite matrix and start the processor. Once the decomposition is

done on the processor, we read the calculated results L and D from the board. To make

sure L and D are accurate and the board works, we look at the forward and backward

errors. The forward error is L - L and D - D where L and D are the exact results, and

the backward error is A - LDLT [51]. If these errors are sufficiently close to zero, then the

processor is working. If the processor is working, then we know how many clock cycles it

took complete the algorithm from the compiled code thanks to static scheduling. Fig. 6-2

shows the performance of each processor setup.

As points of comparison, we use an Intel Core i7-3930k L 3.2 GHz, an Intel Xeon X5460

© 3.16 GHz, an older AMD Athlon 64 Processor 3200+ A 2.00 GHz, and a Broadcom

BCM2835 with an ARM1176JZFS core 9 700 MHz found on a Raspberry Pi board. The

test code is highly optimized custom code for LDLT decomposition with minimal overhead.

As a comparison for our custom LDLT code, we also use LAPACK to perform the same

problem on the Core i7 processor.

Note that, when it comes to latency of computation without conditionals, our FPGA

hosted processor instances cannot catch up to the, quite impressive, i7 architecture. How-

ever, the gap between i7 execution times and our execution times is far smaller than the

108

30 , , 1.
Processors A,B, and C

Intel Core i7 @3.16 GHz ------
25 LAPACK on i7 @3.16 GHz .--..--

AMD Athlon 64 @ 2 GHz .-.
Intel Xeon @ 3.16 GHz -------

S20 - Raspberry P1 @ 700 MHz -. -- -

124
E

15

0

0 -----
5 10 15 20 25 30 35 40

Size of problem

Figure 6-3: LDLT latency results compared to other processors

gap between operating frequencies. While running at a 30x higher frequency, i7 achieves

- 4x lower latency. This means that our processors extract quite a bit of parallelism from

the problem DFG. On the flip side, when compared to the ARM core our processors show

orders of magnitude improvements at similar power budgets.

To measure the power within the Core i7 processor we used the Intel Power Gadget.

The power was measured for the Raspberry Pi board through an external power supply

without any devices or displays connected to the Raspberry Pi board.

While idle, Intel i7, Raspberry Pi and FPGA, design B, based processors consume

3.05W, 1.57W and 1.05W, respectively. While running 20 x 20 LDLT decompositions, the

processors consume 17.97W, 1.73W and 3W, respectively.

6.2 MPC: Linearizing Pre-Equalizer

This section presents results of implementing the algorithm described in Section 5.2.1. The

example is taken form [3]. The implementation methodology used in the original work was

platform-first: their system takes problem descriptions in an abstract form, i.e. a language

specifically designed for modeling certain optimization problems, and produces C code that

can later be compiled for the appropriate architecture.

The results reported in [3] use The GNU Compiler Collection (GCC) and report timing

109

Table 6.2: Profiling results for CVXGEN [21] generated MPC

gcc icc gcc
i7-3930k U 3.2GHz j7-3930k A 3.2GHz RPi

Init (ps) 6 5 740

Iteration (ps) 15.5 13.5 790

Init + 10x Iter (As) 161 140 8640

Energy/solve (mJ) 2.9 2.52 13.0

results on Core 2 Intel desktop processor. They do not give the number of iterations the

code executes, but they do state the that it takes approximately 500ps for a solve.

We profile their code on Intel Core i7-3930k U 3.2GHz with GCC and with Intel C

Compiler (ICC) compilers and Raspberry Pi with an ARM-based processor. We do this by

replicating the example in section "Linearizing Pre-Equalization" in [3] in CVXGEN and

modifying the example test function to run the solve 100,000 times with fixed number of

iterations per solve. By changing the number of iterations we can reasonably accurately

measure both the iteration time, showing up as the proportionality constant in these mea-

surements, and the setup time, assumed to be equal to the translation of the linear curve

representing run time as a function of the number of iterations. The results of our measure-

ments are summarized in Table 6.2. We also calculate the energy per solve by measuring

power on i7 and Raspberry Pi and multiplying it with the solve time.

At this point we should note that the algorithm used in [3] does not solve the IP

iteration exactly. The linear system of equations arising is handled approximately, and

then an iterative correction step can be applied. The profiling results in Table 6.2 use the

algorithm settings from [3,6], with one iteration correction step. The details of the approach

are outlined in [6,21]. In contrast, the algorithm we use, described in Chapter 5, does not

need the correction step. Note that the authors in [6] state that most interesting MPC

problems converge in 10 IP iterations with one iteration of the correction.

We solve the linear system arising in our QP formulation exactly. For this particular

application both control and prediction horizon are the same Np = N, = N = 16. This

means that the LDLT decomposition in each IP iteration is done on a 16 x 16, dense

symmetric positive definite matrix.

The exact computation we perform is described in Section 5.2.1. We analyze achiev-

able performance on two processor instances and using two slightly different DFGs. Both

110

formulations produce the exact same outputs, given the same inputs, i.e. they are func-

tionally equivalent. Processor settings and the results of our experiments can be seen in

Table 6.3. We should note that the best result performs on par with, quite impressive, i7

processors at about 30x frequency penalty and several times less power consumption. Com-

pared to an embedded processor, an ARM core available on popular Raspberry Pi boards,

the custom solution shows orders of magnitude improvements. Integration into an ASIC, if

economically justified, would improve these results several times over.

The first DFG, denoted DFG1 in the table, we solve both the predictor and the corrector

step by forward-backward substitution, using a single LDLT decomposition. This is the

standard way to solve the IP iteration. Analysis of this DFG reveals that both forward

and backward substitution are very sequential operations. These are, essentially, recursive

relations for solving lower and upper triangular systems of linear equations. The recursive

quality makes this operation hard to parallelize.

An operation that is trivial to parallelize is matrix-vector multiplication. The fact that

forward-backward substitution has a sequential chain-type DFG also means that during

that phase of the algorithm very few units are utilized in the processor. Combining these

two observations we speculate that a sufficiently large processor might have opportunity

to use LDLT decomposition to find inverse of the decomposed matrix while, the forward-

backward substitution is being used to calculate the predictor step. Then we use this inverse

to calculate the corrector step, benefiting from the fact that this matrix-vector multiply is

easy to parallelize. This computation is denoted as DFG 2.

Note that Processor Z and Processor S cannot execute DFG 2 nearly as fast as DFG 1.

This is because the number of available operation units is low and the processors transitions

into throughput-limited mode. In throughput limited execution the number of operations

determines the time for evaluation, and we prefer a DFG with lower number of operations.

This observation explains the use of operation count as the algorithm selection criterion:

most embedded, and even desktop, processors have very few computation units available

and work in throughput-limited mode all the time.

On the other hand, Processor L has sufficient number of units to exploit parallel oppor-

tunities in DFG 2 . The resulting latency is about 20% lower than for DFG 1, on Processor

L. Note that both Processor S and Processor L perform similarly on DFG 1 . They achieve

the same performance but in different modes of operation, as we discussed in Section 6.1.

111

Table 6.3: MPC performance for different processor resources and DFGs

Processor Z

Addsubs Number 1 2 5

Latency 3 3 2

Number 1 2 5
Muls

Latency 3 3 2

Number 1 1 1
Divs

Latency 10 10 10

Number 1 1 1
Comps

Latency 1 1 1

Crossbar latencies 1 1 2

Number of memories 8 18 25

Clock frequency (MHz) 140 125 108

DFG DFG1 DFG 2 DFG1 DFG 2 DFG1 DFG2

Init Cycle-time 763 763 547 547 518 518

Iteration Cycle-time 2241 4210 1548 2186 1358 1125

Iteration Op Count 4183 8468 4183 8468 4183 8468

Init + 1Ox Iter (pts) 165.5 306.2 123.98 179.1 130.5 108.9

Energy/solve (mJ) N/A N/A 0.33 0.48 0.44 0.47

In view of utilization wall causing dark silicon, an observation that stagnating power

budgets and Moore's low exponential growth of transistor counts result in exponential

decrease in the number of transistors that we can afford to switch at the maximum speed

[54,55], this is good news: hardware-software codesign can help us find high-performance

solutions while avoiding throughput maximization as the main performance driver.

To test this MPC implementation we set up a hardware-in-the-loop experiment. As

a reminder, the block diagram of the equalization setup is given in Figure 5-1. The LTI

plant is simulated on a desktop computer, while the control actions are obtained from the

processor implementation. The results of one such simulation is shown in Figure 6-4. In the

figure, reference signal (ref) and the outputs from controllers implemented in C++ (mpc)

and on our processor (proc) overlap completely. The output from the system without pre-

distortion to ameliorate the effects of saturation (sat) exhibits poor tracking of the reference

(ref).

112

Processor S Processor L

9.9

npc Usn -
proc - using (6B):($2)

9.4

9.3

9.2

.1

9

-0.1

-0.2

-6.3 K

-9.4

-9.5
a lee 26 9e 49 566

Figure 6-4: MPC as linearizing pre-equalizer

6.3 MPC: Constrained Reference Tracking

In this section we show and analyze results of applying our design flow to the MPC variant

described in Section 5.2.2. As in the previous sections, we report post-place-and-route

timing and test the resulting processor instances on an FPGA board.

As comparison points we use two hand-crafted MPC implementations given in [7,17].

These formulations are computationally less demanding than the variant in the previous

section as the control horizon is much shorter. For this example we will use Np = 20

and N, = 3, just like in cited works. In this case, the main latency contribution from

the formulation outlined in Chapter 5 is LDLT decomposition of a 3 x 3 matrix and the

forward-backward substitution when solving the linear system of equations.

It should be noted that in [7], further explained in [32], the approach taken is the mixed

design route discussed in Section 1.1.1. The platform is custom constructed based on the

results of profiling of MPC load. The acceleration approach in [17] is algorithm-first with

113

'sat.txt" using (9e):($2)"sttt usn SO-(2

Table 6.4: MPC performance for different processor pipeline structures and throughputs

Processor

Addsubs Number 1 1 1 1

Latency 1 2 3 4

Muls Number 1 1 1 1

Latency 1 2 3 4

Number 1 1 1 1
Divs

Latency 7 7 10 12

Number 1 1 1 1
Comps

I Latency 1 1 1 1

Crossbar latencies 1 1 1 1

Number of memories 8 8 8 8

Init Cycle-time 190 203 223 243

Iteration Cycle-time 377 417 472 526

Clock frequency (MHz) 85 100 140 142

Init + 10x Iter (As) 46.6 43.7 35.2 38.7

fixed-point number representation to speed up basic operations.

For the sake of easy comparison, we will present timing for algorithm initialization and

ten interior point iterations. While results in [17, 32] do not necessarily run for ten full

iterations, they do report per-iteration timing, so this comparison is possible. At this point

we should note that our formulation uses single precision floating point numbers, allowing

for more accurate calculation than either of the works we use for comparison. We compare

at ten iterations as that would be a reasonable number of iterations for implementations

with a fixed iteration number. At the end of the section we will show evidence that our

formulation typically converges much more quickly.

6.3.1 Latency vs. Throughput: Diminishing returns

The configurations and performance of several processors used to implement the algorithm

are shown in Table 6.4. Each successive processor instance increases pipeline depths of

the operation units that participated in post-place-and-route critical paths. In this experi-

ment, all the processors have the same number of computation units and only differ in the

pipelining configuration. Once the critical paths move into instruction decoding logic, that

Processor

114

Processor Y Processor QX Z

we have not parameterized, we start seeing very slow increase in frequency from additional

pipelining of operation units and the overall performance starts decreasing.

We note that, in this example, an optimal pipeline structure and the corresponding,

shallow, latency optimum can be observed. The effect parallels the size-latency relationship

observed in Section 6.1. Interestingly, neither the minimum cycle-latency nor the minimum

cycle time produce the minimum latency.

We should be careful when using the results in Table 6.4 for drawing conclusions about

other design flows. All the examples in the table rely on the compiler for prioritization and

scheduling of operations. Thus, even for unfavorable configurations the compiler will strive

to minimize the schedule cycle length and the variation of the resulting latency might seem

small. Speculatively, due to the compiler actions, we remain close to some local minimum

in the design space. On the other hand, the gap between results from [7, 17] and our

implementation indicates that without the compiler to guide design decisions we could end

up quite far from this minimum.

In the algorithm-first strategy, where the execution order is implicitly specified by the

algorithm partitioning, we are more prone to poor performance if the microarchitecture is

not properly chosen. In the platform-first strategy compiler tools can help with software

optimization for latency performance. However, the results in Table 6.4 show that tuning

of the hardware platform could bring us between 10% and 20% in latency performance.

In Figure 6-5 we perform the test from [7], comparing our processor implementation to

our double-precision floating-point C++ implementation of the MPC algorithm from [7,17].

In the figure, the MPC controller is repositioning a second order system after a step change

on the reference input. In the tests, our formulation converges to surrogate duality gap

10-6 in at most five iterations for every control sample and disturbance profile we tried.

The report in [17] fixes the number of iterations to 4, but does not report the duality gap.

6.3.2 Performance comparison

For comparison, the work in [7] reports, and is quoted in [17], 450ps/iteration in an FPGA

design achieving 50MHz clock frequency. The implementation needs more than 4.5ms for

10 iterations and initialization. The result can be significantly improved by different system

partitioning and using fixed-point arithmetic to 18ps initialization and 28ps/iteration in

a 20MHz FPGA design [17]. The result is 298ps solve time for initialization and ten

115

cpp U
cpp y
aig U

1.5 alg y

0.5

0

-0.5 I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Figure 6-5: Control (u) and output (y) signal for step reference when controlled by an MPC

implemented in C++ and on our processor

iterations of the interior point algorithm.

We should compare that to our best result of a 35ps for the same solve. It is very

interesting to note that even if run at 20MHz, the cycle frequency used in [17], every

processor in Table 6.4 would outperform the competing solution. The most logical choice

would be to run Processor X, as the lowest cycle-latency processor for the calculation,

and that would reult in the solve time of ~ 200ps, a significant improvement over the

solution in [17]. This is a clear win for the compiler-centric design. It allows for algorithmic

explorations that are impossible to perform by hand, and results in a better algorithm form

that offers more parallelization opportunities.

Power is not reported for designs in [7, 17], but [17] does report resource utilization.

Resource utilization comparison to our Processor Y can be seen in Table 6.5.

The design we achieve is not only much faster, but more efficient in resource utilization

in almost every category. This is a great example to see how complex the space we have to

navigate is: without proper tools to illuminate the path, we can easily get overwhelmed by

the incidental complexity of HDLs and low-level implementation details.

Both designs we use for comparison report impressive performance improvements over

other solutions. However, they deliver an instance, with a lot of custom, hand-crafted

116

2

Table 6.5: Resource utilization comparison between our design and a hand-crafted MPC
implementation

FPGA resource usage comparison

resource [17] Processor Z

Occupied slices 8,040 3,572
Slice registers 10,704 6,924

Slice LUTs 20,923 8,665
Block RAMs 16 68

DSP 96 3

design and custom number representations (in both cases less than 32 bits per value). On

the other hand, our design instances for this comparison were generated from the same code

as all the previous examples. Furthermore, we use single-precision floating-point number

representation for which numerical analysis exists and guarantees on performance can be

given.

The higher utilization of block Random Access Memory (RAM) resources is inherent

for the design approach we took. The template described in Chapter 3 is programmable

and the majority of our RAM utilization is from code memory in operation units. A

small part of RAM resources is utilized for data storage units. It is likely that any design

with requirements for run-time programmability would require more RAM resources than a

customized, hand crafted solution with hard-coded execution flow and state machines, such

as [17,32].

On the flip side, all data-path related resources, i.e. logic, registers and DSP blocks,

have much better utilization in our design. The reason for this is finer granularity of our

design than in [17]. Due to this, software pipelining [38], happening in the compiler, can

reuse the same resource, say a multiplier, for both LDLT decomposition and, later on, line

search or current solution update. Contrasted with this is the approach usually taken in

algorithm-first designs, such as [16,17] where an algorithm is parsed into blocks and each

block is implemented as a separate hardware module. In such approach resource sharing

is much harder to achieve and every block, usually, ends up having its own computation

resources without possibility of reuse.

117

6.4 Summary

In this chapter we validated our design flow by presenting evidence that accelerators con-

structed using this flow outperform MPC solutions reported in recent literature. The po-

tential for design reuse that our flow offers is evident if we remember that all particular

implementations we test for comparison with other works are instantiated from the same

set of templates described in this thesis. This is in sharp contrast to most other works on

this topic where single instances are usually reported.

Going further than just delivering well performing design instances, we exploit the flex-

ible structure of our design to look at cross-layer design tradeoffs. We show examples of

real designs whose tradeoffs would be hard, if not impossible, to capture in any traditional

design flow.

As we saw in Section 6.1, platform-first approach could have problems determining the

hardware size for implementation as erring either on the side of too few resources at higher

speed or too many at lower could result in failure to meet latency requirements. On the

other hand, as we see from the examples in Section 6.2, the algorithm-first route can fail

when parallel architectures are available. Furthermore, the results confirm that latency

can be optimized at a different design point than throughput. Thus, latency minimization

might need different design than throughput maximization, where simple pipelining tends

to work well. Finally, comparison of results in Section 6.2 and Section 6.3 suggest that

significant insight into computation process, rather than simple local rebalancing of DFG

might be needed for best latency results.

This is the true reason for postponing design decisions through templating: capturing

tradeoffs and interactions between algorithm, software and hardware components and design

decisions at each level.

118

Chapter 7

Conclusions and Future Directions

If you give someone Fortran, he has Fortran. If you give

someone Lisp, he has any language he pleases.

-GUY L. STEELE JR.

This thesis outlines the design and verification of an alternative development infrastruc-

ture for construction of numerical accelerators for latency-critical applications in embedded

and other tightly constrained environments.

The main idea of the framework is to minimize the number of immutable, a priori

decisions in the design. At the same time, we want to keep full control of design at all

the levels of the hierarchy. Our main goal was to provide guidelines for construction of

such a methodology. As one possible solution, we presented the details of a template-based

design infrastructure leveraging the power of well supported hardware and software design

languages.

Having shown how the infrastructure can be constructed, we provided several examples

of designs achieved in the proposed design flow to verify the utility such approach. Interest-

ingly, despite very simple and general architectural features of our chosen design template,

they performed surprisingly well. Our implementations of a few variants of the popular and

challenging MPC algorithm (a computationally demanding control strategy based on QP

optimization), outperform the best designs in recent literature we could find. Furthermore,

we have seen that despite severe clock-frequency penalty in FPGA implementation this flow

can be used to find implementations that perform on par with the powerful desktop and

server processors, at a fraction of their power consumption. These results validate the old

119

wisdom from the software world: the choice of algorithm for the implementation substrate

is at least as important as low level optimizations.

The developed framework gives us the ability to make an informed decision. It does so

by offering us tools to explore cross-layer tradeoffs, usually completely hidden or at least

obfuscated by traditional design flows.

The price to pay for this design flow is its development complexity, which luckily does

not impact the users. The reward from using it are insights into system-level tradeoffs and

levels of effort reuse unmatched by any of the more restricted environments. Judging by

our results for MPC controller implementations, the price is well worth it.

7.1 Extensions

Our aim in this work was to showcase a design flow that can be constructed from tools

available to most hardware designers, and to evaluate the results achievable through such

approach. Thus, only the micro-architectural optimizations related to computation were

performed. As a consequence the design could be extended in many key areas. We mention

a few that we find most interesting.

Processor template was chosen for simplicity of hardware description and flexibility of

compiler design. It is unclear whether full flexibility in choosing the operand and destination

memories is necessary for efficient scheduling of DFGs. It might be possible that a contract

between compiler and processor could be established, increasing the complexity of compila-

tion but reducing the complexity of the processor by reducing the size of the operand and

result crossbars. As communication delays dominate the achievable cycle-period time for all

our processor instances (communication-to-logic delay on every critical path involving SSB

is ~ 2 : 1) reducing it would be a significant boost in performance. Furthermore, reducing

the number of wires in the crossbar would reduce routing congestion that is major obstacle

for implementing the current design. Furthermore, the algorithm designer could choose to

use different number representations (e.g. 8-bit floating point numbers) or test novel fused

units (e.g. mockup more complex fused unit than the common multiply-add) and quickly

test the impact of such decisions by running them through our compiler. After confirming

their utility he could propose additional units to the processor template to further test how

they influence processor cycle speeds.

120

Memory subsystem used in the current proof-of-concept system is quite simplistic.

All operation require a full read from shared, global memories and a store to those memories.

No local memory storage exists in operation units. Thus, we cannot expect any benefits

from data locality in scheduling, and the compiler does not pursue such optimizations. It is

conceivable that a better, hierarchical mix of small local and large global memories would

enable better packing and shorter interconnect delays in physical realization while giving

more opportunities for optimization to the compiler.

Instruction set was implemented for simplicity. Instructions carry very low informa-

tion content and quite a few have high number of unused bits. No compression of instruction

stream was implemented, not even the most rudimentary one. Thus an unit that is idle for

a while will still load a NOP instruction from its code memory on every cycle. Furthermore,

code memories cannot be repopulated while the processor is running. This severely limits

schedule sizes we can run per iteration.

While all the mentioned extensions have potential to boost the performance, these are

essentially implementation improvements. Big challenges are still in the design flow.

7.2 Challenges

One of the biggest challenges in this design flow is the complexity of the infrastructure

needed for adoption of this approach. The solution spans various environment and lan-

guages, using advanced features of each.

While on the software side it is easy to find languages with great metaprogramming

facilities, languages for software design do a very poor job of describing hardware in a way

that gives full control of the synthesized circuits to the designer.

On the flip side, advanced hardware design languages, such as BSV, offer a lot of tools

for exact definition of hardware. Unfortunately, the metaprogramming facilities exist in a

very restricted form. They were, clearly, an afterthought for the language designers and

one has to resort to all kinds of tricks to write a template such as ours in this environment.

A full blown template, or even better macro, system would be very useful in efficiently

achieving generalized circuit descriptions we need.

As a goal, we should seek to develop a unified development, platform, where both soft-

ware and hardware metaprogramming could be done within a homogeneous environment,

121

with no need for a priori specification of the implementation substrate for any component

of the system. Judging from the current state of hardware-software codesign landscape, we

have some work to do.

122

Appendix A

Flow Mechanics

In Listing A.1 we show a simple program for calculating L 2 norm of a vector. The program

first defines the norm template, tests it in C++ and finally compiles for execution on our

processor with specified configuration. The source is extensively commented and easy to

follow.

At the beginning of the source file we define the template we want to test. Then, in the

main(), we first do a quick test of the template using float type, followed by declaration

of the leafs/sources (i.e. input variables) of the graph, designated as in [10], a 10 element

array of graphMaker objects. Then we call the function template norm to construct the

initial DFG. By configuring the processor, using setProcessor, we indicate scheduling and

memory assignment constraints for the compiler. Finally, we configure optimizations and

call compile).

i #include <iostream>

#include "rsh .hpp"

using namespace std;

7 template <class T>

T norm(T* in, int n) {
T tmp = 0;

to for(int i = 0 ; i < n ; i++) {

I tmp += in[i] * in[i];

12}
H return sqrt(tmp)

123

II }

int main (int argc , char* argv []) {

compileJob *cj new compileJob()

processor *p = NULL;

20 // fun ctiol template used with floats to t est simple case of algorit, in

21 ffloat test-vector [3] = {3.0, -4.0, 12.0};

22 cout << "norm(test-vector . 3) << norm(test-vector , 3) << endl;

231

S // enable front-end optimizations that are performed by the graphMaker

cIa ss

25 graphMaker ::optimize = true;

27 // iln it i aliz e input s and name them using nainearray function

2> graphMaker in [10];

2! name.array (in , 10);

3 // call the templated function that generates the graph for the

computation

32 graphMaker result = norm(in , 10

A-

ml // rename the result so it is designated as a target of the computation

w e result . renameNode ("Norm);

17 // tell the compileJob to use the graph generated by the graphMaker class

cj ->useGraphMaker()

Wl // output the initial graph of the algorithnm to a dot file

11 cj ->getSchedGraph ()->writeDot File (" norm-graphinitial dot")

12

V1 // specify the processor parameters and pass the processor to the

compileJob

i4 p new processor(2, 3, 2, 2, 1, 10, 1, 18, 1, 1);

p->setXBarDelays (1, 1)

Ao p->setNumMems(13);

.17cj ->setProcessor (p)

19 // set the optimization level and compile

124

cj ->setOptimizationLevel(2)

cj ->compile ();

// results of the coipilationi are stored in text files within folders iin

the current directory

// additional results can be printed for quicker access

cout << cj->results() << endl;

inforiation about the DFG

cout << "latency bound << cj->getSchedGraph ()->getLatencyBound () <<

endl;

cout << "throughput bound = << cj->getSchedGraph ()->getThroughputBound ()

<< endl;

output the final graph of the algorithn to a dot file

cj ->getSchedGraph ()->writeDotFile(" norn-graphJiinal .dot"

return 0;

}

Listing A.l: Simple program for testing norm template and compiling it to a processor

configuration

Compiling this program with C++ produces an executable. Running the executable

will perform compilation of the computation defined in norm template. The outputs from

this program are schedule files, one per processor unit, that can be loaded into FPGA as

soon as the corresponding processor instance bitfile is programmed into it.

Our numerical compilation process also produces two Graphviz files, norm-graph-initial.dot

and norm-graph-final. dot, that can be rendered to produce images showing the computation

graph before and after optimizations are performed. We show these images in Figures A-1

and A-2. Note that the final graph shows the schedule and memory assignments.

The described flow of processor template instantiation, low-level (by the compiler) and

high-level (by human designer changing the norm template) graph optimizations is our

main tool for finding efficient and high-performance configurations from the algorithmic

level. We use graph renderings and statistics, printed by the compiler when it runs, to

diagnose bottlenecks and make optimization decisions.

Finally, good processor candidates are implemented and tested for highest clock fre-

125

quency to relate the cycle-latency of computation to the real-time latency.

126

10] in[l]

in[2].
nil n12 i[2

1+ in[3J
n3 n4

015 w16 in[4]

n17 n8 S n[51

in[61

in[7J

n25 n26
+ *

n27 n28

n29

sqrt

Nonn

Figure A-1: Initial computation graph as produced by the norm template

127

m[191 iS] in171 n6

M=20 M= 2.0 M= 11.0 M 0(

i[5 in141 ini3l inJ21 in]j mill n281 n26 n24 n22

M =9.0 M = 8.0 M 7.0 M = 60 M 4,0 M =S.0 1=1 t=1 1=0 1=0

M= 12,1 M=ll'l M= I0. M 9.1

+ +

n20 nIS nl16 nl4 nil M12 n31 n
3

2

t=4 t=4 t=3 f=3 t=2 t=2 I=7 t=6
M=8,1 M=7,1 M=6,1 M=5,1 M=3.0 M=4,1 M=2.2 M=3,2

+ +

M M=0,0

] n-33 n34 n35 n36

s.17

M=4.2 M =1.0 MI = 5.2M=0.

'==35=2

Figure A-2: Final computation graph after optimization, scheduling and memory assign-
ment

128

Bibliography

[1] A. Kirmani, A. Colago, F. N. C. Wong, and V. K. Goyal, "CoDAC: A compressive depth
acquisition camera framework," Acoustics, Speech and Signal Processing, pp. 3809-
3812, 2012.

[2] A. Bemporad and M. Morari, "Robust model predictive control: A survey," Robustness
in identification and control, 1999.

[3] J. Mattingley and S. Boyd, "Real-time convex optimization in signal processing," Signal
Processing Magazine, IEEE, no. May, pp. 50-61, 2010.

[4] A. Bry, A. Bachrach, and N. Roy, "State estimation for aggressive flight in gps-denied
environments using onboard sensing," in Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA 2012), (St Paul, MN), 2012.

[5] J. W. Roberts, R. Cory, and R. Tedrake, "On the controllability of fixed-wing perch-
ing," 2009 American Control Conference, pp. 2018-2023, 2009.

[6] J. Mattingley, Y. Wang, and S. Boyd, "Code generation for receding horizon con-
trol," 2010 IEEE International Symposium on Computer-Aided Control System Design,
pp. 985-992, Sept. 2010.

[7] L. Bleris, P. Vouzis, M. Arnold, and M. Kothare, "A co-processor FPGA platform
for the implementation of real-time model predictive control," 2006 American Control
Conference, p. 6 pp., 2006.

[8] S. Bayraktar and E. Feron, "Experiments with small helicopter automated landings at
unusual attitudes," arXiv preprint arXiv:0709.1744, pp. 1-20, 2007.

[9] R. Cory and R. Tedrake, "Experiments in fixed-wing UAV perching," in Proceedings of
the AIAA Guidance, Navigation, and Control Conference, (Reston, Virigina), pp. 1-12,
American Institute of Aeronautics and Astronautics, Aug. 2008.

[10] F. Chen, A. P. Chandrakasan, and V. Stojanovic, "Design and analysis of a hardware-
efficient compressed sensing architecture for data compression in wireless sensors," J.
Solid-State Circuits, vol. 47, no. 3, pp. 744-756, 2012.

[11] M. Pajic and R. Mangharam, "Topological Conditions for In-Network Stabilization of
Dynamical Systems," IEEE Journal on Selected Areas in Communications, pp. 1-14,
2013.

[12] J. Stankovic, "Misconceptions about real-time computing," IEEE Computer, 1992.

129

[13] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenstrom, "The worst-case execution-time problem - overview of methods and
survey of tools," ACM Trans. Embed. Comput. Syst., vol. 7, pp. 36:1-36:53, May 2008.

[14] P. Koopman, "Design constraints on embedded real time control systems," 1990.

[15] H. J. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl, "High-speed moving hori-
zon estimation based on automatic code generation," 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pp. 687-692, Dec. 2012.

[16] Y. Shoukry, M. El-Kharashi, and S. Hammad, "MPC-On-Chip: An Embedded GPC
Coprocessor for Automotive Active Suspension Systems," Embedded Systems Letters,
IEEE, vol. 2, pp. 31-34, June 2010.

[17] K. Basterretxea and K. Benkrid, "Embedded high-speed Model Predictive Controller
on a FPGA," 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pp. 327-335, June 2011.

[18] N. Yang, D. Li, J. Zhang, and Y. Xi, "Model Predictive Control System Based on
FPGA and A Case Study," in World Congress, pp. 9266-9271, 2011.

[19] T. Poggi and S. Trimboli, "Explicit hybrid model predictive control: discontinuous
piecewise-affine approximation and FPGA implementation," ... of Automatic Control,
no. 2002, pp. 1350-1355, 2011.

[20] A. Wills, A. Mills, and B. Ninness, "FPGA Implementation of an Interior-Point So-
lution for Linear Model Predictive Control," Preprints of the 18th IFAC World ... ,
pp. 14527-14532, 2011.

[21] J. Mattingley and S. Boyd, "CVXGEN: a code generator for embedded convex opti-
mization," Optimization and Engineering, vol. 13, pp. 1-27, Nov. 2011.

[22] K. Ling, B. Wu, and J. Maciejowski, "Embedded model predictive control (MPC) using
a FPGA," Proc. 17th IFAC World ... , pp. 15250-15255, 2008.

[23] J. L. Jerez and G. A. Constantinides, "Parallel MPC for Real-Time FPGA-based Im-
plementation," in Architecture, pp. 1338-1343, 2011.

[24] D. FroB, J. Langer, and A. FroB, "Hardware implementation of a Particle Filter for
location estimation," Indoor Positioning and ... , no. September, pp. 15-17, 2010.

[25] T. A. Johansen, W. Jackson, R. Schreiber, and P. To ndel, "Hardware Architecture
Design for Explicit Model Predictive Control," no. 5, pp. 1924-1929, 2006.

[26] P. Vouzis, L. Bleris, M. Arnold, and M. Kothare, "A Custom-made Algorithm-Specific
Processor for Model Predictive Control," 2006 IEEE International Symposium on In-
dustrial Electronics, pp. 228-233, July 2006.

[27] A. Agarwal, M. C. Ng, and Arvind, "A comparative evaluation of high-level hardware
synthesis using reed-solomon decoder," Embedded Systems Letters, IEEE, vol. 2, no. 3,
pp. 72-76, 2010.

130

[28] S. S. Muchnick, Advanced compiler design and implementation. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1997.

[29] 0. Shacham, 0. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley, J. Stevenson,
S. Richardson, M. Horowitz, B. Lee, A. Solomatnikov, and A. Firoozshahian, "Rethink-
ing digital design: Why design must change," Micro, IEEE, vol. 30, no. 6, pp. 9-24,
2010.

[30] A. Solomatnikov, A. Firoozshahian, 0. Shacham, Z. Asgar, M. Wachs, W. Qadeer,
S. Richardson, and M. Horowitz, "Using a configurable processor generator for com-
puter architecture prototyping," in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/A CM International Symposium on, pp. 358-369, 2009.

[31] G. Ezer, "Xtensa with user defined dsp coprocessor microarchitectures," in Computer
Design, 2000. Proceedings. 2000 International Conference on, pp. 335-342, 2000.

[32] P. Vouzis and M. Kothare, "A system-on-a-chip implementation for embedded real-
time model predictive control," Control Systems ... , vol. 17, no. 5, pp. 1006-1017,
2009.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004.

[34] G. Amdahl, "Validity of the single processor approach to achieving large scale comput-
ing capabilities," Proceedings of the April 18-20, 1967, spring joint ... , pp. 1-4, Dec.
1967.

[35] T. Hu, "Parallel sequencing and assembly line problems," Operations research, vol. 9,
no. 6, pp. 841-848, 1961.

[36] R. P. Nix, J. J. 0. Donnell, D. B. Papworth, and P. K. Rodman, "A VLIW Architecture
for a Trace Scheduline Compiler," vol. 37, no. 8, 1988.

[37] C. Ramamoorthy, K. Chandy, and M. Gonzalez, "Optimal scheduling strategies in a
multiprocessor system," Computers, IEEE Transactions on, vol. 100, pp. 137-146, Feb.
1972.

[38] M. Lam, "Software pipelining: an effective scheduling technique for vliw machines,"
SIGPLAN Not., vol. 23, pp. 318-328, June 1988.

[39] J. Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein, "Software pipelining
showdown: optimal vs. heuristic methods in a production compiler," SIGPLAN Not.,
vol. 31, pp. 1-11, May 1996.

[40] 0. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, "Energy-performance
tradeoffs in processor architecture and circuit design: a marginal cost analysis," in
Proceedings of the 37th annual international symposium on Computer architecture,
ISCA '10, (New York, NY, USA), pp. 26-36, ACM, 2010.

[41] G. R. Beck, D. W. L. Yen, and T. L. Anderson, "The cydra 5 minisupercomputer:
Architecture and implementation," The Journal of Supercomputing, vol. 7, pp. 143-
180, May 1993.

131

[42] C. Mead and L. Conway, Introduction to VLSI systems. 1980.

[43] Bluespec System Verilog Reference Guide. 2012.

[44] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quantitative Approach,
3rd Edition. Morgan Kaufmann, 2003.

[45] Lexical Analysis With Flex, for Flex 2.5.37. The Flex Project, 2012.

[46] C. Donnelly and R. Stallman, GNU Bison - The Yacc-compatible Parser Generator.
Boston, MA, USA: Free Software Foundation, 2012.

[47] P. Graham, ANSI Common Lisp. Upper Saddle River, NJ, USA: Prentice Hall Press,
1996.

[48] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanovic, "Chisel: constructing hardware in a scala embedded language.," in
DA C (P. Groeneveld, D. Sciuto, and S. Hassoun, eds.), pp. 1216-1225, ACM, 2012.

[49] A. C. Wright, "A Statically Scheduling Compiler for a Parameterized Numerical Ac-
celerator," Master's thesis, Massachusetts Institute of Technology, 2013.

[50] H. Abelson and G. 3. Sussman, Structure and Interpretation of Computer Programs.
Cambridge, MA, USA: MIT Press, 2nd ed., 1996.

[51] N. J. Higham, Accuracy and Stability of Numerical Algorithms. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, second ed., 2002.

[52] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. Prentice
Hall Professional Technical Reference, 1991.

[53] G. W. Stewart, Matrix Algorithms. Society for Industrial and Applied Mathematics,
1998.

[54] M. B. Taylor, "Is dark silicon useful?: harnessing the four horsemen of the coming dark
silicon apocalypse," in Proceedings of the 4 9th Annual Design Automation Conference,
DAC '12, (New York, NY, USA), pp. 1131-1136, ACM, 2012.

[55] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, "Conservation cores: reducing the energy of mature
computations," SIGARCH Comput. Archit. News, vol. 38, pp. 205-218, Mar. 2010.

132

