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Likelihood-based encoding models founded on point processes have re-
ceived significant attention in the literature because of their ability to re-
veal the information encoded by spiking neural populations. We propose
an approximation to the likelihood of a point-process model of neurons
that holds under assumptions about the continuous time process that
are physiologically reasonable for neural spike trains: the presence of
a refractory period, the predictability of the conditional intensity func-
tion, and its integrability. These are properties that apply to a large class
of point processes arising in applications other than neuroscience. The
proposed approach has several advantages over conventional ones. In
particular, one can use standard fitting procedures for generalized linear
models based on iteratively reweighted least squares while improving
the accuracy of the approximation to the likelihood and reducing bias
in the estimation of the parameters of the underlying continuous-time
model. As a result, the proposed approach can use a larger bin size
to achieve the same accuracy as conventional approaches would with
a smaller bin size. This is particularly important when analyzing neu-
ral data with high mean and instantaneous firing rates. We demonstrate
these claims on simulated and real neural spiking activity. By allowing
a substantive increase in the required bin size, our algorithm has the
potential to lower the barrier to the use of point-process methods in an
increasing number of applications.
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2 L. Citi, D. Ba, E. Brown, and R. Barbieri

1 Introduction

Technological advances of the past decade have given us an unprecedented
glimpse into the inner workings of the brain. A common paradigm in ex-
perimental neuroscience is to record the activity of groups of neurons in
various behavioral settings or in response to sensory stimuli. In computa-
tional neuroscience, this paradigm is exploited by building models of the
encoding process from behavior/stimulus to neural responses. In recent
years, likelihood-based encoding models based on point processes have
received attention in the literature (Paninski, Pillow, & Lewi, 2007; Barbi-
eri, Quirk, Frank, Wilson, & Brown, 2001; Wang & Principe, 2010; Berger
et al., 2011; Meng, Kramer, & Eden, 2011; So, Koralek, Ganguly, Gastpar,
& Carmena, 2012) because of their ability to significantly improve neu-
ral decoding tasks (Brown, Nguyen, Frank, Wilson, & Solo, 2001; Paninski
et al., 2010; Srinivasan, Eden, Willsky, & Brown, 2006; Barbieri et al., 2004;
Barbieri, Wilson, Frank, & Brown, 2005). The goal of encoding models is to
improve our understanding of brain function and, most important, help to
design algorithms for inferring behavior/stimulus from previously unseen
neural data, a process referred to as decoding and commonly used in the
design of brain-machine interfaces (BMIs) (Shoham et al., 2005; Srinivasan,
Eden, Mitter, & Brown, 2007; Sanchez et al., 2008).

Likelihood-based models of neural spike trains are based on a
continuous-time point-process model of a neuron. A point process is fully
characterized by its conditional intensity function (CIF), which generalizes
the notion of rate of a Poisson process to include time and history depen-
dence (Andersen, Borgan, Gill, & Keiding, 1995; Daley & Vere-Jones, 2007).
Generalized linear models (GLMs) are a class of discrete-time models based
on log-linear expansions of a discrete-time version of the CIF of a point
process (Berman & Turner, 1992; Paninski, 2004; Truccolo, Eden, Fellows,
Donoghue, & Brown, 2005). Berman and Turner (1992) were among the first
to suggest the use of discretization for approximate maximum likelihood
estimation of point-process models using the GLM framework. In neuro-
science, this has resulted in the development of successful frameworks to
characterize the dynamics of various neural systems (Paninski, 2004; Truc-
colo et al., 2005) and to develop algorithms for decoding based on neural
data, with applications to BMIs (Chiel & Thomas, 2011).

In this article, we demonstrate that this approximation can be signifi-
cantly improved by imposing a biophysically motivated structure on the
continuous-time CIF of a pointprocess model of a neuron. Coincidentally,
this translates into a specific, data-dependent form of the weighting func-
tion in Berman’s approximation. The proposed approximation holds under
assumptions about the continuous time process that are reasonable for
neural spike trains: the presence of a refractory period, the predictability
and integrability of the CIF. These properties are not exclusive to neu-
ral point processes but also apply to point-process models of geysers,
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Likelihood Methods for Point Processes with Refractoriness 3

heartbeats, and repeated failures of components in engineering systems (see
section 2.4).

The resulting point-process likelihood has several advantages over state-
of-the-art approximations (Paninski, 2004; Truccolo et al., 2005). First,
one can use standard fitting procedures for GLMs based on iteratively
reweighted least-squares (IRWLS) while improving the accuracy of the ap-
proximation to the likelihood and reducing bias in the estimation of the
parameters of the underlying continuous-time model. Stated otherwise,
the proposed approach can use a larger bin size to achieve the same ac-
curacy as the other approaches noted with a smaller bin size. This aspect
is particularly important when analyzing neurons with high spiking rates,
which often require a sampling frequency of at least 10 kHz. Tested on
one example of this type of recordings, our method achieved at 1 kHz re-
sults comparable to those of a Poisson GLM (Paninski, 2004; Truccolo et al.,
2005) at 10 kHz. Second, we find that our formulation partly obviates the
use of the correction techniques introduced in Haslinger, Pipa, and Brown
(2010) for goodness-of-fit assessment using the time-rescaling theorem and
discrete-time approximations to the CIF. We demonstrate our claims on
simulated data, as well as real data, from rat thalamic neurons recorded in
response to periodic whisker deflections varying in velocity (Temereanca,
Brown, & Simons, 2008). These data are characterized by high mean and
instantaneous firing rates—on the order of 20 and 200 Hz, respectively.

The remainder of our treatment proceeds as follows. First, we intro-
duce our model of continuous-time point processes with refractoriness in
section 2, along with the resulting discrete-time likelihoods. In this section,
we also compare the latter to conventional discrete-time approximations of
continuous-time point-process likelihoods. We use simulations to demon-
strate the power of our new model, which accounts for refractoriness. Then,
in section 3, we propose a class of parametric log-linear models and discuss
the connections with conventional GLMs and iteratively reweighted least
squares. We apply the log-linear models to analysis of real neural data.
Finally, we provide concluding remarks in section 4.

2 A Model of Continuous-Time Point Process with Refractoriness

We consider a continuous-time point process defined in (0, T], with condi-
tional intensity function λ(t |Ht ), where Ht represents all the information
accumulated up to time t. This information can include the previous fir-
ing pattern of the same neuron and of its afferents (e.g., via postspike and
coupling filters), the values of other covariates and hidden states, and the
observations of deterministic inputs (e.g., an external stimulus). Let N(t)
be the counting process associated with the point process (Andersen et al.,
1995); for each realization, N(t) is a function counting the number of events
observed up to, and including, time t (see Figure 1).
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4 L. Citi, D. Ba, E. Brown, and R. Barbieri

Figure 1: Representative example of a realization of a neural point process. The
top plot shows the counting process, N(t), which is a right-continuous function
counting the number of events observed up to and including time t. The middle
plot shows its differential, dN(t), which is what is conventionally known as a
spike train—an indicator function that assumes a value of one if there is an event
at time t and zero otherwise. The bottom plot shows the conditional intensity
function, λ(t |Hs), which jumps to zero after every event because, as a result of
the refractory period, an additional event cannot take place arbitrarily close to
the previous one.

The likelihood function for the continuous-time point process can be
formulated by deriving the joint probability density of a realization of
the counting process in the observation interval, N0:T (Daley & Vere-Jones,
2007):

ln f (N0:T ) =
∫ T

0
ln λ(t |Ht ) dN(t) −

∫ T

0
λ(t |Ht ) dt . (2.1)

To facilitate the construction of encoding and decoding algorithms, typi-
cally a discrete-time representation of the point process is derived and used
as an approximation to the underlying continuous-time point process. The
observation interval is finely partitioned in I bins of width δ to obtain the
discretized spike train �N1:I = {�Ni}I

i=1 where �Ni is a function that takes
value zero if no events were observed in the ith bin and one otherwise. The
joint probability mass function (PMF) of the discretized spike train is used
as a likelihood function (see Truccolo et al., 2005, equation 3):

ln Pd(�N1:I) =
I∑

i=1

�Ni ln(λiδ) − λiδ , (2.2)

where λi is a sampled version of λ(t |Ht ).
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Likelihood Methods for Point Processes with Refractoriness 5

In the rest of this section, we will show that under the assumption that the
continuous-time point process is characterized by the presence of a refrac-
tory period, a better approximation to the joint probability mass function
of the discretized spike train is given by

ln Pn′ (�N1:I) =
I∑

i=1

�Ni ln(λiδ) −
(

1 − �Ni

2

)
λiδ . (2.3)

2.1 Key Assumptions. Before delving into the derivation of equ-
ation 2.3, we need to make three assumptions about the continuous-time
process. The first two require that the CIF be predictable and integrable
within a small time bin and free of possible discontinuities due to the in-
coming flow of information through Ht (property P1) or due to the intrinsic
form of the CIF (property P2). These two properties are a prerequisite for
the discretization of the point process and are needed to derive equations
2.2 and 2.3 alike. In particular, they are required for the existence of a well-
defined value λi in each bin that can serve as an accurate representative
value of the behavior of the function λ(t |Ht ) inside the bin.

The third property, P3, is refractoriness—the presence of a period of time
following each event during which another event cannot occur. Excitable
cells, like neurons and cardiac cells, have an absolute refractory period,
during which a second action potential cannot be initiated and a relative
refractory period during which the cell is hyperpolarized and requires a
greater stimulus to reach the threshold and initiate another depolarization.

All three properties are needed to derive equation 2.3. Formally, they can
be formulated as follows:

P1: Predictability. The CIF changes slowly in response to new infor-
mation coming from covariates and deterministic inputs. For all
ε > 0, there exist δ > 0 such that given s ∈ (0, T], τ ∈ (0, δ], and
N(s) = N(s + τ ), we have:

sup
t∈(s,s+τ )

∣∣λ(t |Ht ) − λ(t |Hs)
∣∣ < ε λ(t |Hs) . (2.4)

P2: Integrability. Given the history at a time s, the function λ(t |Hs) is
Riemann integrable for t ∈ (s, T]. This implies that for all ε > 0,
there exists δ > 0 such that for t1 ∈ (s, s + δ],∣∣∣∣λ(t1 |Hs) δ −

∫ s+δ

s
λ(t |Hs) dt

∣∣∣∣ < ε . (2.5)

Therefore, we can define a representative value λ̃ of λ(t |Hs) in
(s, s + δ] such that the former approximates the integral mean value
of the latter inside the interval:

λ̃ � 1
δ

∫ s+δ

s
λ(t |Hs) dt . (2.6)
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6 L. Citi, D. Ba, E. Brown, and R. Barbieri

P3: Refractoriness. The CIF, λ(t |Ht ), is a piecewise Lipschitz continuous
function in t that jumps to zero immediately after the occurrence of
every event:

lim
ε→0+

λ(t + ε |Ht+ε ) = 0 ∀t : dN(t) = 1 . (2.7)

A graphical representation of this property is given in Figure 1. This
assumption is plausible for point processes with a refractory period
such as neural spike trains, motor-unit firing trains (Hu, Tong, &
Hung, 2004), and others (see section 2.4).

2.2 Implications of Key Assumptions on Discrete-Time Approxima-
tion. Given δ small enough so that the key assumptions hold and that the
probability of two events in the same bin is negligible, we partition the
observation interval in I bins of width δ and attempt to relate the orig-
inal continuous-time point process with the resulting discrete-time point
process.

2.2.1 Probabilities of Key Events. When P1 and P2 apply, the probability
of observing no events in (̄ιδ, iδ] (̄ι is short for i−1) can be approximated as

Pr (N(iδ)−N(̄ιδ)=0) = e
−

iδ∫
ῑδ

λ(t |Ht ) dt � e
−

iδ∫
ῑδ

λ(t |H
ῑδ
) dt � e−λiδ, (2.8)

where λi is the representative value of the CIF inside the ith bin according
to equation 2.6. If P3 also applies and δ is sufficiently small, the probability
of more than one event in a given bin is negligible because the first event
causes the CIF to be approximately zero for the rest of the bin. In fact,
while for a generic point process the probability of two events occurring in
the same bin of infinitesimal size δ is O(δ2), when P3 holds, one can prove
that this probability is O(δ3) (see appendix A). Therefore, the probability of
observing exactly one event is simply 1 − e−λiδ . As expected, for δ infinites-
imal, the first-order Taylor expansions of the probability of no events and
of that of one event coincide with 1 − λiδ and λiδ, respectively that is, with
the results of a Bernoulli approximation of the Poisson process.

2.2.2 Discrete-Time Point-Process PMF. We formally define the discretized
spike train as �Ni = min{1, N(iδ) − N(̄ιδ)}. Therefore, a given realization of
the point process can be represented as a binary sequence �N1:I = {�Ni}I

i=1
with probability mass function (PMF)

Pn(�N1:I) =
I∏

i=1

(
1 − e−λiδ

)�Ni
(
e−λiδ

)1−�Ni , (2.9)
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Likelihood Methods for Point Processes with Refractoriness 7

where we use the subscript n to remind us that this is the PMF of a discrete-
time version of the continuous-time point process obtained using the prop-
erties of neural spike trains, in particular, the presence of a refractory period,
as per P3. The log probability is simply

ln Pn(�N1:I) =
I∑

i=1

�Ni ln
(
1 − e−λiδ

) − (1 − �Ni)λiδ . (2.10)

In appendix B we prove that as δ → 0, equation 2.10 converges to the
continuous-time log likelihood, equation 2.1.

2.2.3 Useful Approximation. We show here that equation 2.3 can be ob-
tained as an approximation of equation 2.10. In fact, noting that

ln
(

1 − e−ξ

ξ

)
= −ξ

2
+ o(ξ ) as ξ → 0 , (2.11)

equation 2.10 can be approximated as

ln Pn(�N1:I) =
I∑

i=1

�Ni

[
ln(λiδ) + ln

(
1 − e−λiδ

λiδ

)]
− (1 − �Ni)λiδ

=
I∑

i=1

�Ni ln(λiδ) −
(

1 − �Ni

2

)
λiδ + o(δ). (2.12)

We will see in section 2.5 that in most cases, this approximation intro-
duces an acceptable error. In section 3, we will show how equation 2.3
allows an efficient procedure of fitting a log-linear model by means of
an IRWLS algorithm. One can interpret equation 2.3 as a data-dependent
choice of the weighting proposed by Berman and Turner (1992). We stress
that Berman’s motivation behind the use of weighting functions is mostly
heuristic. However, in our setting, the weighting function is dictated by the
conditions imposed on the continuous-time point process—in particular,
refractoriness.

2.3 Comparison with Conventional Discrete-Time Approximation.
We now compare equation 2.3 with equation 2.2. While both of these ap-
proximations converge in the limit to the continuous PDF, equation 2.1,
they do so with a different linear coefficient for δ. Specifically, while their
first terms are the same, their second terms differ. From an empirical point
of view, we can think of this second term of equation 2.3 and 2.2, as the
numerical computation of the integral in the second term of equation 2.1
and the two implementations, equations 2.2 and 2.3, differ only in the way
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the CIF is integrated inside those bins containing an event. The contribution
of one such bin to the second term of equation 2.1 is

∫ iδ

ῑδ

λ(t |Ht ) dt
∣∣∣∣
�Ni=1

�
{

λiδ/2 in equation 2.3,

λiδ in equation 2.2.
(2.13)

Defining τ as the time when the event occurs relative to the start of the bin
and using the properties P3, P1, and P2 in this order, we obtain

∫ iδ

ῑδ

λ(t |Ht ) dt
∣∣∣∣
�Ni=1

�
∫ ῑδ+τ

ῑδ

λ(t |Ht ) dt �
∫ ῑδ+τ

ῑδ

λ(t |Hῑδ ) dt � λiτ .

(2.14)

We use a truncated exponential distribution to find the expected value of τ

conditioned on the fact that an event occurred inside the bin:

E[τ | �Ni = 1] =
∫ δ

0 τλie
−λiτ dτ∫ δ

0 λie
−λiτ dτ

= e−λiδ

λi

eλiδ − λiδ − 1
1 − e−λiδ

= 1
2
δ + o(δ).

(2.15)

Replacing equation 2.15 in 2.14, we see that for those bins where an
event occurs, approximately half of λiδ should be considered. Looking
at equation 2.13, we see that this corresponds to what our solution does,
while equation 2.3 tends to overestimate the left-hand side of equation 2.13.

2.4 Point Processes with Refractoriness Are Pervasive. The assump-
tions about the continuous time process under which the approximation
holds (the presence of a refractory period, the predictability of the CIF,
and its integrability) are not exclusive to neural point processes, but also
apply to a wide spectrum of point processes, such as models of geysers,
heartbeats, and repeated failures of components in engineering systems
(e.g., light bulbs).

There are two main approaches to modeling point-process data: model
either the CIF or the probability density (assuming it exists) of the interevent
intervals (IEIs). In some sense, these two approaches are equivalent because
the following one-to-one transformation between CIFs and IEI PDFs holds
(Daley & Vere-Jones, 2007):

λ(t |Ht ) = f (t |Ht )∫ ∞
t f (τ |Ht ) dτ

. (2.16)

In this article, we have adopted the former approach. In light of the above
transformation, it is not hard to show that the refractory property of the
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Likelihood Methods for Point Processes with Refractoriness 9

CIF in equation 2.7 holds if and only if the IEI distribution has a PDF that
vanishes as its argument goes to zero. Therefore, the proposed framework
for modeling point processes with refractoriness is also applicable to a much
broader range of problems. For example, the log-normal, inverse-gaussian,
Weibull, and gamma (with shape parameter k > 1) distributions, which are
commonly used in survival analysis (Kalbfleisch & Prentice, 2002), models
of heartbeats (Barbieri, Matten, Alabi, & Brown, 2005), and geyser and
seismic data (Nishenko & Buland, 1987), satisfy the property that their
respective PDFs vanish as their argument goes to zero. The corresponding
CIFs must therefore satisfy the refractory property of equation 2.7, which is
the backbone of the framework developed in this article.

2.5 Simulations. In this section, we simulate three examples of renewal
continuous-time point processes to compare, as a function of the bin size δ,
the accuracy of estimates of the log-PDF (and consequently the log likeli-
hood) obtained using equations 2.10, 2.3, and 2.2:

Example 1: A homogeneous Poisson (P) process that, by definition, has
constant CIF λP and exponentially distributed interspike
intervals (ISIs), as shown in Figure 2. For such a process, P1
and P2 hold, while P3 does not.

Example 2: A Rayleigh (R) distribution for the ISIs. The corresponding
CIF is λR(z) = z/σ 2

R, which increases linearly with the time
since the last event, z. We chose this example because it
has the simplest form of CIF that also complies with P3.
The Rayleigh distribution is a special case of the Weibull
distribution; it is skewed and bell shaped (see Figure 2) and
can be used to approximate the ISIs of neural spike trains
(Lansky & Greenwood, 2005; Tyrcha, 2008).

Example 3: A renewal process for which the ISIs follow an inverse
gaussian (IG) distribution. The IG distribution is partic-
ularly suited to model spike trains because it represents
the distribution of the first threshold passage time of an
integrate-and-fire neuron driven by a Wiener process with
drift (Brown, 2005). Given the time since the last event, the
CIF corresponding to IG-distributed ISIs with mean μ and
shape parameter k is

λIG(z) = α3(z) ϕ(α1(z)−α2(z))

φ(α1(z)−α2(z))−e2α1(z)α2(z)φ(α1(z)+α2(z))
,

(2.17)

where the vector α(z) = [−√
kz/μ,−√

k/z,
√

k/z3] while
ϕ(x) and φ(x) are the probability density function and the
cumulative distribution function of a standard gaussian
random variable.
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10 L. Citi, D. Ba, E. Brown, and R. Barbieri

Figure 2: The plots on the left show the CIF of the point process and the PDF
of the associated ISI distribution for the three examples: homogeneous Poisson
process with exponentially distributed ISIs (top), Rayleigh-distributed ISIs (cen-
ter), and inverse-gaussian-distributed ISIs (bottom). On the right, for each case,
the plots show the corresponding log-PDF of the whole spike train evaluated
from the simulated data (see section 2.5) using ct, the continuous-time version,
equation 2.18; n, our discrete-time definition, equation 2.10; n, its approxima-
tion, equation 2.3; d, the conventional discrete-time formulation, equation 2.2;
and dm, a variant of equation 2.2, allowing for more events per bin.

2.5.1 Simulation Parameters. For each of the three distributions, we sim-
ulated one realization in (0, T] with T = 300 s, assuming that the last event
before the observation interval happened at u0 = 0. Given the set of event
times, {uk}N(T )

k=1 , the continuous-time log-PDF is simply

ln fD(N0:T ) =
N(T )∑
k=1

ln fD(uk − uk−1) + ln
(
1 − FD(T − uN(T ))

)
, (2.18)

where D ∈ {P, R, IG} and fD(z) and FD(z) are the PDF and CDF associated
with the ISIs.
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We binned each process for 31 values of the bin size, δ, logarithmically
spaced between 10−4.5 and 10−1.5, that is, roughly 0.03 ms and 30 ms. Then
we evaluated the log-PMF using equations 2.10, 2.3, and 2.2, in turn, fol-
lowed by subtraction of the correcting factor (ln(δ)

∑I
i=1 �Ni) to obtain an

estimate of the log-PDF from the log-PMF. For large bin sizes, realizations
of all three processes (and P in particular) may have more than one event
in some bins. To account for this, we also tested a variant of equation 2.2,
where �Ni is replaced with a noncapped version �N∗

i = N(̄ιδ) − N(iδ).

2.5.2 Results. Results of these simulations are presented in the right
panels of Figure 2. For the homogeneous Poisson process, all methods of
estimating the log-PDF starting from a discrete-time process fail miserably
unless a very small bin size is used. The only exception is the one that allows
for more than one event per bin. Because this type of point process does not
comply with P3, this result was expected.

For both the Rayleigh and the inverse gaussian distributions, the two
formulations presented in this article, equations 2.10 and 2.3, show a re-
markable improvement compared with the legacy approach of equation 2.2.
For example, for the Rayleigh distribution, the conventional approach re-
quires a bin size of 0.1 ms to achieve a result comparable to the one that our
method shows at 5 ms, while for the IG distribution, it requires 0.3 ms to
achieve the same result that our method shows at around 4 ms.

3 Log-Linear Models of Discrete-Time Point-Process Data

In this section, we compare our formulation of the point-process PMF with
the legacy approach in parametric, likelihood-based modeling of neural
data. Parametric, likelihood-based models of neural spike trains use the
log-PMF of the data as the likelihood function. It is natural to expect that
inference algorithms for these models would benefit from our novel for-
mulation of the discretized point-process likelihood. In the next section, we
show that this is indeed the case.

Parametric models of the log likelihood in equation 2.2 have been suc-
cessfully applied to the identification of neural systems (Paninski, 2004;
Truccolo et al., 2005). Their main advantage is the ability to relate neuronal
firing to extrinsic covariates such as stimuli or intrinsic ones, which cap-
ture the internal dynamics of neurons. In a linear-nonlinear-Poisson (LNP)
model, one expresses the intensity function of an inhomogeneous Poisson
process as a nonlinear function of the output of a linear filter applied to
the set of covariates: λi = hθ (β

Txi), where xi is the vector of covariates, θ

is a vector parameterizing the nonlinear function h(·), and β represents
the coefficients of the linear filter. The unknown parameters (θ, β) can
be estimated by maximum likelihood estimation by plugging this model
in the log-likelihood function. Sufficient conditions guaranteeing that our
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likelihood function, equation 2.3, has no nonglobal local maxima in the
parameters (θ, β), regardless of the observations, are the same as those for
the conventional likelihood—that is, that hθ (w) is jointly convex and log
concave in θ and w (Paninski, 2004).

A simple example of convex and log-concave function is the exponential
function that gives rise to log-linear models (Truccolo et al., 2005). This
turns equation 2.2 into a generalized linear model (GLM) with Poisson
observations and log link (Fahrmeir & Tutz, 2001). Below, we show that
a log-linear model of λi in equation 2.3 leads to a parametric model that
can be fit as efficiently as conventional GLMs of discrete-time point-process
data (Paninski, 2004; Truccolo et al., 2005).

3.1 IRWLS Algorithm for Log-Linear Model Fitting. GLMs are a gen-
eralization of linear least squares to observations from the exponential fam-
ily. They are computationally very attractive because they can be fit by
iteratively reweighted least squares (IRWLS), that is, by solving a sequence
of weighted least-squares problems (Fahrmeir & Tutz, 2001).

If we assume ln(λi) = βTxi, for a d-dimensional vector of parameters
β and a vector xi of covariates of the same dimension, then equation 2.3
becomes

ln Pn′ (�N1:I, β; X) ∝
I∑

i=1

�Ni β
Txi −

(
1 − �Ni

2

)
exp(βTxi), (3.1)

where X is the I-by-d matrix with xT
i in the rows. One can maximize

equation 3.1 using Newton’s method. In order to draw a parallel between
equation 3.1 and conventional GLMs, we consider the following generali-
zation of equation 3.1:

ln Pm(�N1:I, β; X, ρ) ∝
I∑

i=1

�Ni β
Txi − ρi exp(βTxi), (3.2)

where ρi = 1 − �Ni
2 and m = n′ for equation 3.1, while ρi = 1 and m = d

for conventional GLMs arising from maximizing Pd in equation 2.2 using
a log-linear parameterization of λi. In appendix C, we derive the IRWLS
algorithm for maximizing equation 3.2 showing that up to a choice of a
weighting function (ρ), maximizing equation 3.1 and fitting conventional
GLMs are equivalent. This implies that fast implementations (Komarek &
Moore, 2005) of IRWLS can be modified in a simple way to maximize the
log likelihood of equation 3.1.

3.2 Goodness-of-Fit Assessment. Quantitatively measuring the agree-
ment between a proposed model and a spike train is crucial for establishing
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the model’s validity prior to using it to make inferences about the neural
system being studied. The time rescaling theorem can be used to check the
goodness of fit of statistical models of neural spike trains (Brown, Barbieri,
Ventura, Kass, & Frank, 2002).

Haslinger and colleagues (2010) have drawn attention to the fact that the
finite temporal resolution of discrete-time models introduces some bias in
the application of the time rescaling theorem, which can lead to misleading
results, that is, indicating poor goodness of fit even for accurate models.
They found two root causes and proposed analytical corrections for these
effects. The first cause is that as an unavoidable consequence of binning,
there is a lower bound on the smallest possible ISI (one bin). The second
type of bias is introduced when one uses a Bernoulli distribution to fit the
model and obtain pi, the probability of one event in a discrete bin. Then if
one naıvely applies the time rescaling theorem (which implicitly assumes
a Poisson distribution) with λi = pi/δ, a bias is introduced because this
relationship holds only for λi, pi → 0.

Our method does not suffer from the second issue because it directly
estimates λi, a discretized version of the continuous-time function λ(t),
rather than the probability of one event in a discrete bin (as in the Bernoulli
case). As we have presented in section 2.2, when properties P3 and P2
hold, these two variables are related by pi = Pr(�Ni = 1) = 1 − e−λiδ , which
is exactly the inverse of the correction that the authors propose in their
equation 2.35.

In our proposed approach, the goodness-of-fit assessment can be simply
performed using the following procedure, adapted from Haslinger et al.
(2010):

1. Use the log-linear model, equation 3.2, based on equations 2.3 or 2.2,
to fit a model to the observed spike train and obtain an estimate of
the sampled CIF, λ̂i.

2. Given the set of bins containing a spike {ik | �Nik
= 1}, for each ISI,

find the integrated CIF as

ξk =
ik+1−1∑
i=ik+1

λ̂iδ + λ̂ik+1
τk, (3.3)

where τk represents the random time of the event relative to the start
of the bin and can be obtained by first drawing a random variable rk
uniformly distributed in [0, 1] and then calculating

τk = −
ln[1 − rk (1 − exp(−λ̂ik+1

δ))]

λ̂ik+1

. (3.4)

In most cases this expression can be approximated as τk = rkδ.
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3. After a further variable transform, zk = 1 − e−ξk , the goodness of fit
can be assessed by plotting the empirical CDF of the transformed
ISIs, zk, against the CDF of the uniform distribution.

3.3 Simulations. In this section, we present the results of the compar-
ison between the conventional GLM approach and our novel log-linear
model, equation 3.1, in the estimation of the regression terms of ln λ(t). We
assumed a simple yet plausible form for ln λ(t), allowing for simulation in
continuous time, and then assessed the estimation accuracy as a function
of bin size using either method.

3.3.1 Generation of Simulated Spike Trains. We modeled ln λ(t) as the con-
volution of a postspike filter (Pillow et al., 2008) with the comb of previously
observed events,

ln λ(t) = ln(�0) +
∫ t

0
ψ(t − τ ) dN(τ ), (3.5)

where �0 is a constant term. We chose a function ψ(z) that, by modulating
the conditional intensity function, was able to capture dependencies on
spike train history:

ψ(z) =

⎧⎪⎨
⎪⎩

ln

(
c1

(
z
c3

)3

+ c2

(
z
c3

)2
)

if 0 < z < c3

0 otherwise
. (3.6)

We chose this specific function (with parameters c = [−8, 9, 0.1] and �0 =
100) because it allows the simulation of spike trains in continuous time
without resorting to discretization and because it resembles a prototypical
postspike filter (Pillow et al., 2008) with three distinct regions able to explain
refractoriness, burstiness, and adaptation (see Figure 3). Thanks to this
choice of ψ(z), the CIF and its integral, �(t), are piecewise polynomials in
t, and from equations 3.5 and 3.6, we obtain

λ(t) = �0

N(t)∏
k=N(t−c3)+1

(
c1

(
t − uk

c3

)3

+ c2

(
t − uk

c3

)2
)

, (3.7)

where {uk}N(T )

k=1 is the ordered set of event times. To simulate a spike train,
the time rescaling theorem (Brown et al., 2002) was used to calculate the
next event uk+1 from the set of previous events as the solution of �(uk+1) −
�(uk) = − ln(qk+1) where qk+1 is a random variable uniformly sampled
in (0, 1). The solutions of this polynomial equation can be found as the
eigenvalues of its Frobenius companion matrix (Edelman & Murakami,
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Figure 3: The plot represents the exponential of the postspike filter in equa-
tion 3.6, that is, a continuous function in (0, +∞) that assumes value c1(z/c3)

3 +
c2(z/c3)

2 if 0 < z < c3 and one otherwise. It can be interpreted as a spike-induced
gain adjustment that accounts for the effects of the neuron’s spike history. The
first region (z < 50 ms, exp(ψ(z)) < 1) accounts for the presence of refractori-
ness, the second region (50 ms < z < 100 ms, exp(ψ(z)) > 1) for bursting activ-
ity, and in the third region (z > 100 ms, exp(ψ(z)) = 1), the filter is inactive.

Figure 4: Empirical PDF (histogram) of the ISIs of the simulated neural spike
train generated using the procedure described in section 3.3.

1995). We take the smallest real positive eigenvalue as time of the next
event, uk+1. Note that the CIF of Figure 1 was generated in this fashion.

Using this procedure, we generated 250 realizations of the continuous-
time point process, each one with an observation interval of 600 s and
approximately 40 events per second. The resulting distribution of ISIs is
reported in Figure 4.
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Figure 5: Value of �0 estimated using the conventional GLM (dotted line) and
using our log-linear model (dashed line) as a function of the bin size, δ.

3.3.2 Model Fitting. We considered the following model for the discrete-
time CIF,

ln λi = β0 +
�c3/δ∑

j=1

β j �Ni− j, (3.8)

which is the discrete-time equivalent of equation 3.5. Then we fitted the
conventional GLM and our log-linear model on each realization for nine
values of δ, logarithmically spaced between 10−3.5 and 10−1.5, that is, be-
tween approximately 0.3 ms and 30 ms.

3.3.3 Results. We assessed the difference between the original baseline
firing rate �0 = 100 and the value ln β0 estimated by the two methods as
a function of δ. The results are presented in Figure 5. Compared to the
conventional GLM, our method approaches the ideal value of �0 with higher
accuracy and less sensitivity to the bin size. In fact, the bin size can be
increased without much detriment up to the value (approximately 0.1 s)
where the probability of more spikes in a bin becomes significant, while the
accuracy of the traditional GLM progressively decreases for all bin sizes. We
also compared the accuracy of the two methods at the task of recovering
the postspike filter. Figures 6a to 6c show the true postspike filter ψ(z)

and the estimated one β j for three values of δ, while Figure 6d shows
the error β j − ψ(z), with j = �z/δ + 1/2�, for z = 0.02 s and z = 0.07 s as a
function of δ. From these results, we notice that the traditional GLM, which
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(a) (b)

(c) (d)

Figure 6: The figure compares the accuracies of the conventional GLM and
of our log-linear model in the estimation of the postspike filter ψ(z) (see
equation 3.6). Panels a to c show the reconstructed filter (represented by dotted
lines for the traditional GLM and dashed lines for our log-linear model) and
the target function ψ(z) (solid lines) for three values of bin sizes: δ � 0.3 ms,
δ � 1 ms, and δ � 3 ms, respectively. Panel d shows the estimation error (differ-
ence between the estimated value and the ideal one) for z = 0.02 s and z = 0.07 s
(i.e., the centers of the zoom insets 1 and 3 in panels a–c) as a function of the bin
size, δ.

maximizes the likelihood given by equation 2.2, tends to underestimate the
base firing rate �0, overestimate the filter for small values of z (i.e., briefly
after each event), and underestimate it for bigger z. Our log-linear model,
which maximizes equation 2.10, instead is able to estimate the postspike
filter with much higher accuracy.

3.4 Real Data. In this section, we demonstrate that the improvement
that our method shows on simulated data also holds for real neural spike
trains. In particular, we tested our approach on single unit recordings from
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individual thalamic barreloid neurons in the somatosensory whisker/barrel
system of an anesthetized rat.

3.4.1 Experiment. Here, we provide a brief description of the experi-
mental protocol that was reported in detail by Temereanca et al. (2008). The
principal whisker was deflected in caudal direction by means of a piezoelec-
tric stimulator using periodic waveforms of different velocity delivered at a
repetition rate of eight per second. Each deflection was 1 mm in amplitude
and began and ended from the neutral position of the whisker as the trough
(phase of 3π/2) of a single sine wave. The fast stimulus was generated by
taking one period of a 40 Hz sine wave and delivering it every 125 ms
for 2 s. The other two stimuli were generated similarly by taking one cycle
of a 25 Hz sine wave and one cycle of an 8 Hz sine wave. The whisker was
deflected pseudorandomly using the three stimuli, and pseudorandomized
blocks were delivered 50 times, with interstimulus intervals of 1.5 s. Spike
waveforms were analyzed off-line, clustered based on waveform shape and
interspike interval, and the spike stamps saved at 100 μs resolution.

3.4.2 Log-Linear Model of the CIF. In our analysis, we assumed a log-linear
CIF given by

ln λi = β0 + γ1 s(iδ) + γ2 s(iδ − q1) +
q2/δ∑
j=1

β j �Ni− j, (3.9)

where s(t) is the stimulus: the whisker deflection at time t. The parameter
q1 represents the delay between the two observations of s(t) (s(iδ) and
s(iδ − q1)) that allow the CIF to depend on the derivative of the stimulus
input in addition to its instantaneous value. The parameter q2 represents the
duration of the postspike filter. Their values (q1 = 1 ms and q2 = 6 ms) were
chosen based on prior extensive analyses of the same neurons considered
here. We used the conventional GLM and our log-linear model to estimate
the vector β = [β0, . . . , βq2/δ

, γ1, γ2] that best explains the observed spike
train given the stimulus and the process history. We repeated the analysis
for bin sizes δ ∈ {0.1, 0.2, 0.5, 1} milliseconds.

3.4.3 Results. The top three panels of Figure 7 show the results of the
estimation of β0, γ1, and γ2 as a function of the bin size when using con-
ventional GLM and our log-linear model. Although in the case of real data
the ground truth is unknown, it is fair to assume that the true values are
more likely to be somewhere around those obtained with a finer sampling.
It is clear from the figure that when using the traditional GLM based on
equation 2.2, there is a strong effect of the bin size on the estimated values,
leading to a significant bias when a coarser sampling is used. This effect is
much less pronounced when using the log-linear model coming from our
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Figure 7: The top three panels show the results of the estimation of the pa-
rameters β0, γ1, and γ2 of equation 3.9 as a function of the bin size when using
conventional GLM (circles connected by dotted segments) and our log-linear
model (squares connected by dashed segments). The bottom panel shows the
KS distance achieved by the fitted models for different bin sizes.

new likelihood formulation, equation 2.3. In fact, the values obtained with
our model at 1 ms (1 kHz sampling rate) are similar to those obtained by
the GLM for 0.1 ms (10 kHz).

Using the time-rescaling procedure described in section 3.2, we per-
formed a goodness-of-fit analysis and assessed the Kolmogorov-Smirnov
(KS) distance achieved by the fitted models for different bin sizes. The
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results are reported in the bottom panel of Figure 7, which confirms the
increasing inaccuracy of the GLM model for increasing bin sizes. Our log-
linear model instead achieves approximately the same fit for all the sam-
pling rates tested. For even larger bin sizes (not shown in the figure), the fit
degrades rapidly for both methods as soon as the assumption of one spike
per bin is violated, similar to what is shown in Figure 2 for the likelihood.

4 Discussion

The traditional discretized version of the Poisson process PDF, equation 2.2,
as reported by Truccolo et al. (2005), serves as a building block for many
advanced statistical analysis and signal processing techniques (Paninski
et al., 2007; Friedman, Hastie, & Tibshirani, 2010; Zhao et al., 2012; Zhao
& Iyengar, 2010; Pillow, Ahmadian, & Paninski, 2011; Paninski et al.,
2010; Czanner et al., 2008; Lawhern, Wu, Hatsopoulos, & Paninski, 2010)
applied to neural signals. These techniques have been used for basic
neuroscience research (Kass, Kelly, & Loh, 2011; Okatan, Wilson, & Brown,
2005; Eldawlatly, Jin, & Oweiss, 2009; Berger et al., 2011; Jenison, Rangel,
Oya, Kawasaki, & Howard, 2011; So et al., 2012) to improve biophysical
neural models (Ahrens, Paninski, & Sahani, 2008; Meng et al., 2011; Mensi
et al., 2012) or to design better BMIs (Shoham et al., 2005; Srinivasan
et al., 2006, 2007; Truccolo, Friehs, Donoghue, & Hochberg, 2008; Wang &
Principe, 2010; Saleh, Takahashi, & Hatsopoulos, 2012).

In this article, we presented a new formulation for the probability mass
function of observing discrete-time realizations of continuous-time point
processes arising from neural spike trains. This new theory holds under
assumptions about the continuous-time point process that are reasonable
for neural spike trains: the presence of a refractory period, the predictability
of the conditional intensity function, and its integrability within a time bin.
These properties are not exclusive to neural point processes, but also apply
to a much wider spectrum of point processes, including models of geysers,
heartbeats, and repeated failures of components in engineering systems.
Our new definition represents a remarkable theoretical improvement over
the traditional discretized version of the continuous-time point-process PDF
in the presence of refractoriness. As a result, the estimated value approaches
the solution of the continuous problem, as the bin size goes to zero, at
significantly higher speed of convergence.

Based on this new definition, we also introduced a log-linear model that
shows an improvement over a traditional GLM fit. In both simulations and
with real data, our novel algorithm converges to the asymptotic value for
bin sizes one order of magnitude larger than the traditional GLM. This
can be advantageous when analyzing neurons with a high firing rate. For
example, we showed that our method achieves, on neural data resampled
at 1 KHz, more refined outcomes (e.g., in terms of goodness of fit) than
those of a Poisson GLM on the original recordings sampled at 10 kHz.
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The improvement shown by our log-linear model over the traditional GLM
is likely to extend to most models and algorithms based on the point-
process GLM framework and comes at virtually no cost because, as we have
shown with our log-linear model, the number of floating-point operations
is practically the same. In most cases, instead, the computational cost can
decrease drastically because our new definition allows the use of a coarser
sampling rate while still providing comparable accuracy.

As stated in section 1, an active field of research is the application of point-
process models to the decoding of neural signals, for example, for BMI or
sensory processing. Compared to spike-rate-based decoding algorithms,
point-process models have a potential advantage in terms of accuracy and
temporal resolution. Unfortunately, this comes at the price of a higher com-
putational cost (Sanchez et al., 2008) because they need to process the neural
signals at the timescale of the spike times (≤1 ms) instead of that of the
modulating signal. We are currently investigating whether the use of our
likelihood model, equation 2.3, within a decoding framework results in
the possibility of using larger time steps, which would be extremely useful
for BMIs and neural prostheses requiring real-time decoding. Preliminary
results with simulated data suggest that this is indeed the case and that a
recursive decoding filter algorithm (Barbieri et al., 2004) using our novel
likelihood allows for a twofold reduction in the sampling rate. An extensive
treatment of the extension of our method to the decoding problem and a
thorough analysis with simulated and real data will constitute the subject
of future work.

In conclusion, our method improves over conventional approaches by
taking advantage of an essential feature of spike trains, refractoriness, to
reformulate the discrete likelihood in a principled way that can improve
the performance of this powerful statistical model. Because it requires only
a minor modification to the likelihood term, it can replace the legacy point-
process likelihood (Truccolo et al., 2005) in virtually all instances where such
a probabilistic framework is used. By allowing a substantive increase in the
required bin size, our algorithm has the potential of lowering the barrier to
the use of point-process methods in an increasing number of applications.

Appendix A: Asymptotic Probability of More Than
One Event in a Bin

A function f (t) is piecewise Lipschitz continuous in an interval (a, b] if there

is a positive constant C and a partition
J∪

j=1
I j = (a, b] such that

∣∣ f (t1) − f (t2)
∣∣ ≤ C |t1 − t2| ∀t1, t2 ∈ I j, 1 ≤ j ≤ J . (A.1)

In our specific case, using the Lipschitz condition and the fact that the only
jumps allowed are decreasing (the jumps to zero after each event), we obtain
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that the following condition holds for the CIF:

0≤ λ(t2|Ht2
) ≤ λ(t1|Ht1

) + C (t2 − t1) ∀ t1, t2 ∈ (0, T] : t1 ≤ t2 . (A.2)

Let us consider the ith bin and attempt to find the asymptotic behavior
of the probability that the number of events contained, n = N(iδ)−N(̄ιδ), is
at least one. Using condition A.2, we have that for t ∈ (̄ιδ, iδ),

λ(t |Ht ) ≤ λ(̄ιδ |Hῑδ ) + C (t − ῑδ) ≤ λ(̄ιδ |Hῑδ ) + C δ , (A.3)

leading to

Pr(n ≥ 1)= 1 − exp
{
−

∫ iδ

ῑδ

λ(t |Ht ) dt
}

≤ 1 − exp
{− [

λ(̄ιδ |Hῑδ ) + C δ
]

δ
} = O(δ) . (A.4)

Let us now find the probability of more than one event conditioned
on the presence of at least one event in the bin: Pr(n > 1 | n ≥ 1). Calling
t1 ∈ (̄ιδ, iδ] the time when the first event occurs and using property P3, we
have that lim

ε→0+
λ(t1+ε |Ht1+ε ) = 0 and therefore λ(t |Ht ) ≤ C (iδ − t1) ≤ Cδ

for t ∈ (t1, iδ]. Observing that n > 1 implies at least one event in (t1, iδ], we
can follow a reasoning similar to equation A.4 and obtain

Pr(n > 1 | n ≥ 1) ≤ [
1 − exp

(−C δ2)] = O(δ2) . (A.5)

Finally,

Pr(n > 1) = Pr(n > 1 | n ≥ 1) Pr(n ≥ 1) = O(δ3), (A.6)

which is what we wanted to prove.

Appendix B: Convergence for Infinitesimal Bin Size

We can define the logarithm of the normalized PMF (log-nPMF) as

ln
(
Pn(�N1:I) / δN(T )

) = −N(T ) ln δ

+
I∑

i=1

�Ni ln
(
1 − e−λiδ

) − (1 − �Ni)λiδ (B.1)

and show that in the limit δ → 0, it converges to the logarithm of
the continuous-time probability density function (log-PDF) of observing
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exactly those N(T ) events in (0, T], given in equation 2.1. We start by not-
ing that as δ → 0,

ln
(
1 − e−λiδ

) = ln
(

λi δ
1 − e−λiδ

λiδ

)
= ln λi + ln δ + o(1) . (B.2)

Then we take the limit of equation B.1, replace equation B.2, expand the
terms, and finally obtain

lim
δ→0

ln
(
Pn(�N1:I) / δN(T )

) = −N(T ) ln δ

+ lim
δ→0

(�T/δ∑
i=1

�Ni ln λi +
�T/δ∑
i=1

�Ni ln δ −
�T/δ∑
i=1

λiδ +
�T/δ∑
i=1

�Ni λiδ

)

= −N(T ) ln δ +
∫ T

0
ln λ(t |Ht ) dN(t) + N(T ) ln δ

−
∫ T

0
λ(t |Ht ) dt + 0, (B.3)

which simplifies to the continuous-time log-PDF in equation 2.1.

Appendix C: Log-Linear Model

Differentiating equation 3.2 with respect to β, we obtain its gradient and its
Hessian,

g(β) =
I∑

i=1

(
�Ni − ρiλi(β)

)
xi =

I∑
i=1

(
�Ni − ρi exp{βTxi}

)
xi (C.1)

= XT(�N − λρ(β)),

H(β) = −
I∑

i=1

ρiλi(β) · xix
T
i =−

I∑
i=1

ρi exp{βTxi} · xix
T
i

= XTWρ (β)X, (C.2)

where X is the I-by-d matrix with xT
i in the rows, �N and λρ(β) are I-length

vectors satisfying with entries �Ni and ρiλi(β), respectively, and Wρ (β) is
the I-by-I diagonal matrix with diagonal elements ρiλi(β).

One can maximize equation 3.2 by taking Newton steps as follows:

β(k+1) = β(k) − H−1(β(k))g(β(k)). (C.3)
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Substituting equations C.1 and C.2 in C.3 and rearranging, we find that
β(k+1) is the solution of a quadratic approximation to the objective function,
which we refer to as weighted least squares (WLS):

β(k+1) = argmax
β

−1
2
(b − Aβ)TC(b − Aβ), (C.4)

where b = Xβ(k) + W−1
ρ (β(k))(�N − λρ(β(k))), C = Wρ (β(k)) and A = X. One

maximizes equation 3.2 by iteratively solving equation C.4, hence the
name iteratively reweighted least squares (IRWLS). Assuming X is full rank,
equation 3.2 is a concave function of β. Therefore, there exists a unique so-
lution to which the Newton algorithm, implemented by IRWLS, converges.
The general formulation of equation 3.2 shows that maximizing equation 3.1
and fitting conventional GLMs of neural data (using equation 2.2) are equiv-
alent up to the choice of ρi.

The computational cost of each iteration is dominated by the matrix
product in equation C.2, which is O(2Id2), and by the Newton step, whose
cost is O

( 1
3 d3

)
using a Cholesky factorization to solve the linear system. If

ρi is precomputed, the additional cost per iteration due to our likelihood
function is only I multiplications.
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Wang, Y., & Principe, J. C. (2010). Instantaneous estimation of motor cortical neural
encoding for online brain-machine interfaces. Journal of Neural Engineering, 7(5),
056010.

Zhao, M., Batista, A., Cunningham, J. P., Chestek, C., Rivera-Alvidrez, Z., Kalmar, R.,
et al. (2012). An L1-regularized logistic model for detecting short-term neuronal
interactions. Journal of Computational Neuroscience, 32, 479–497.

Zhao, M., & Iyengar, S. (2010). Nonconvergence in logistic and poisson models for
neural spiking. Neural Computation, 22(5), 1231–1244.

Received March 19, 2013; accepted September 1, 2013.


