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Abstract

Many current intrusion detection systems (IDSes) are vulnerable to intruders because

they are running under the same operating system (OS) as a potential attacker. Since

an attacker will often be attempting to co-opt the OS, this leaves the IDS vulnerable

to subversion by the attacker. While some systems escape this threat, they typically

do so by running the OS inside a modified hypervisor. This risks of adding new bugs

that reduce the correctness or security of the hypervisor, and may make it harder

to incorporate upstream improvements. VMware has a technology called VProbes

that allows setting breakpoints, examining machine state, and inspecting memory

from a VM host. This thesis introduces VProbe Instrumentation for VM Intrusion

Detection (VIVID), which makes subverting the instrumentation much harder while

still allowing the use of an off-the-shelf hypervisor.
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Chapter 1

Introduction

One common mechanism for defending computers against malicious attackers is in-

trusion detection systems, or IDSes. Network IDSes monitor network traffic to detect

intrusions, while host-based IDSes monitor activity on a specific machines. One com-

mon variety of host-based IDS watches the kernel-application interface, monitoring

the system calls that are used [12][6][18][19]. Based on the sequences of syscalls used

and/or their arguments, these IDSes aim to determine whether or not an attack is

underway. Naturally, intrusion detection systems are not fully effective, but they have

proven to be useful tools for catching some attacks.

However, because a host-based IDS runs on the host it is protecting (see Figure 1-

1), it is vulnerable to a virus or other attacker that seeks to disable it. An attacker

might block network connectivity the IDS requires to report results, disable hooks it

uses to gather information, or entirely kill the detection process. This is not merely a

theoretical risk - viruses in the wild, such as SpamThru, Beast, Win32.Glieder.AF,

or Winevar [16], directly counter anti-virus software installed on their hosts.

Our contribution is VProbe Instrumentation for VM Intrusion Detection (VIVID),

which provides a host-based intrusion detection system that resists attacks by avoid-

ing running any software within the host being monitored. Instead, we leverage

virtualization to look into the guest virtual machine from the host (see Figure 1-2).

In addition, we do so while using a common hypervisor, without making any changes

to the hypervisor itself.

13
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Figure 1-1: Typical host-based intrusion detection system (IDS). An IDS typically

will have a userspace and/or kernelspace agent which monitors behavior of other

programs on the machine and reports anomalous behavior to an administrator.

monitor

0

0

Figure 1-2: In contrast to the typical approach (Figure 1-1), which leaves the agent

vulnerable inside the machine being protected, VIVID's approach utilizes virtualiza-

tion to protect the agent from potential attackers without modifying the VM being

protected.
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In Chapter 2, I discuss related work. Chapter 3 describes goals and design. Chap-

ter 4 describes the instrumentation I developed. Chapter 5 describes two proof-

of-concept analysis modules that determine if a system call sequence is suspicious.

Finally, in Chapter 6 I conclude.
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Chapter 2

Background and related work

This project focuses on detecting attackers by examining traces of system calls, while

avoiding subversion by using virtual machines to gather the required data.

First, I present related work on intrusion detection systems, which falls into three

main categories. In Section 2.1.1, I cover the extensive literature in how to use system

call data to detect attacks. In Section 2.1.2, I discuss intrusion detection systems that

use kernel or userspace code. In Section 2.1.3, I discuss virtual machine techniques

for extracting data such as system calls from a running system.

Next, I present background information on the tools I'm using for instrumentation.

I begin by describing DTrace in Section 2.2.1, and move on to its spiritual descendant

VProbes, which I use for the instrumentation, in Section 2.2.2.

2.1 Intrusion detection systems

Host-based intrusion detection systems are well-studied in academic literature. Many

systems are based on using system call patterns to detect attacks. While my work

focuses on gathering the data rather than analyzing those patterns, I was influenced

in what data to gather and in building my prototype by those systems, described

in Section 2.1.1. Most host-based intrusion detection systems use an in-guest agent,

running in userspace or kernelspace, to gather their data. These systems, described

further in Section 2.1.2, suffer by being possible for an attacker to compromise them

17



in various ways. In Section 2.1.3, I describe several more recent projects that use

virtualization to protect their agent. Unlike most of these tools, I use hooks already

included in the shipping VMware monitor to build my instrumentation.

2.1.1 System call traces

The largest category of related work is using system call traces for intrusion detection.

Techniques are quite variable. Some of the systems attempt define policies of what

system calls are allowed to be used, and what arguments are permissible. Others are

based just on the system call numbers, and do not use the arguments at all.

Warrender, Forrest, and Pearlmutter[19] review several techniques for detecting

intrusions. The techniques presented achieve 60+% success rate for true positives,

with several techniques achieving 95+% true positives. The frequency of false neg-

atives versus false positives can be tuned by altering parameters of the models they

use; predictably, higher rates of true positives tend to correspond to higher rates of

false positives. The average false positive rate seems to be under 0.1% for all values

tried, however.

The most popular approach from my survey of the literature, covered in Warrender

et al. among other papers, appears to be sequence time-delay embedding (stide). In

stide, a listing is made of all k-tuples of system calls that appear during normal

operation. System call traces are seen as deviant if there is a high enough rate of

unknown k-tuples over a period of time.

Kosoresow and Hofmeyr present work using deterministic finite automata to recog-

nize patterns [12]. System call numbers are used, but not syscall arguments. System

calls are grouped into blocks that are usually seen together, and then each block is

used as a single token for training the DFA.

Systrace[15] is one of many systems that use system call arguments in addition

to system call numbers. Systrace does its learning interactively; when an unexpected

system call is used, Systrace will give the user an opportunity to refine the policy or

just block the operation. This methodology is probably unacceptable for server use,

where I would expect my tool to be primarily deployed, though an interactive training

18



phase followed by non-interactive deployment to production may be effective.

Unfortunately, the literature also suggests numerous weaknesses of detecting in-

trusions using syscalls.

Tan et al. focus on argument-oblivious systems like stide [18]. To exploit these,

an attacker can insert additional system calls that are common in the real system

but do nothing significant. By spreading out the suspicious system calls, an attacker

can hope to avoid triggering anything unusual. There is also a risk that a suspicious

system call might be entirely replaced - while an execve might be unusual, an open

and a write might not be. On the other hand, if the file being opened and edited is

/etc/passwd, the open/write may be no less dangerous.

Garfinkel suggests that Unix may be too complicated for system call techniques to

work[6]. Features like hardlinks and the dup2 system call make it hard to do any sort

of tracking based on arguments; there are too many different ways to name objects

for it to be effective.

2.1.2 Kernel module or userspace approaches

Many intrusion detection systems are based on a kernel module and/or a userspace

component that uses kernel hooks to gather system call data. If the operating system

does not already provide hooks to gather system call data, adding new hooks into

the kernel to do so is generally easy. That data is then typically exported to a

userspace process on the machine being monitored. The kernel can easily pass the

data along, and by doing the analysis in userspace instead of in the kernel developers

get a generally easier environment to develop in, including more choices of language

and libraries to use.

Janus[6] is one system with this split. Janus secures a single process at a time.

A process being run under Janus has an associated userspace janus process which

is responsible for making decisions about what system calls to allow, along with a

kernel module that catches system calls and forwards them to the janus process to

make the decision.

Systrace[15] is another project with a similar split. It has a kernel module that
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catches system calls. The kernel module will then forward most system calls to a

userspace process to make policy decisions about whether to allow or deny the call.

That userspace process may request input from the user to make the decision, rather

than making it automatically.

2.1.3 Virtual machine approaches

While kernel or userspace approaches have significant advantages, they do present

some weaknesses. An attacker who can kill a userspace process or change a policy file

(as an attacker with limited or complete root access likely can) is able to neutralize

the system. Similarly, if the attacker can get new code into the kernel, such as by

loadable kernel modules or some kernel exploit, they can disable the kernel component.

Because of these risks, several systems instead use virtualization technology to protect

the monitoring software from being hampered.

Lares[14] is one such tool. While we use the hypervisor to place hooks outside the

guest being monitored, Lares instead runs the hooks inside the virtual machine. It

then uses a hypervisor modified to prevent code running in the guest from interfering

with those hooks. It also modifies the hypervisor to allow communication between

the untrusted guest and a trusted security VM. In contrast, we use facilities that

VMware already provides for inspecting the guest without significant modifications

to the guest kernel.

BackTracker[11] uses a UMLinux virtual machine to gather information about how

processes interact with each other and with files and filenames on the system. Using

this data, it can help track an intrusion back to its source. It modifies the virtual-

machine monitor to gather records of syscalls that can result in such interactions,

incurring a 9% performance penalty on a loaded system. Unfortunately, the paper

contains little detail on the precise modifications, so I cannot tell how the mechanism

compares to our mechanism. The use the data is put to is certainly different. King et

al aim to backtrack a detected intrusion to find the source, doing it offline and often

at a significant delay. We aim to detect intrusions, generally in roughly real-time.

Ether[4] uses hardware virtualization in a modified version of Xen to analyze
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malware. Its focus is on analyzing malware for research purposes, rather than live

detection on a production system. It has two modes - instruction-level and syscall-

based. The first mode is prohibitively slow for a production system, while the system

call mode varies from a couple percent overhead to 70%, depending on the benchmark.

Antfarm[10] does not principally focus on security. It aims to identify processes

without customizing for the operating system in use. While Jones et al. use this

to implement an anticipatory disk scheduler, they suggest that the same techniques

might be usable for security software that remains relatively oblivious of the operating

system being monitored.

VSyscall[13] tracks system calls within a VM using a modified KVM or QEMU

hypervisor. Li et al. describe two applications: integrity measurement and an in-

trusion detection system much like our own. VSyscall's approach involves much less

knowledge of the guest kernel's internals, preferring to treat CR3 values as an opaque

token rather than examining the kernel data structures to get PID and program, as

we do. We also, of course, differ in which hypervisor we support, and can use VProbes

to avoid modifying the hypervisor as Li et al. do.

As with VIVID, VMwatcher[9] accesses the memory of the process running in

the virtual machine to gain semantic information available to the kernel. From the

paper, it is unclear to me how their "guest view casting" works, but my impression

is that for Linux they run Linux kernel code to do it: for example, that they use

the Linux ext3 driver in their intrusion-detection system. If true, this suggests that

their system may include a large quantity of C code that is shared with the guest

operating system. While surely helpful for accurately reconstructing guest state, it

suggests that the intrusion detection system might be vulnerable to the same buffer

overflows and other bugs as the guest kernel is, which seems concerning. The paper

is unclear about whether VMwatcher is able to trigger execution on specific events in

the VM, as we do, or merely scans periodically.

LiveWire[7 is in some respects the most similar project to ours. As with our

project, it uses hooks in VMware's monitor to inspect memory and registers. However,

LiveWire predates VProbes, so while we are able to use a stock VMware installation,
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LiveWire depends on a modified version. LiveWire also uses the third-party crash

program to introspect the OS and exposes a broader variety of information, while

our project uses custom introspection code and focuses on just examining a syscall

stream.

Many of these projects depend on using a modified hypervisor to gather the infor-

mation they need. One advantage of our project is that, due to VMware's VProbes

tool, we are able to use hooks exposed by VMware to trap events of interest in a VM

and analyze the VM's behavior without modifying the hypervisor at all. We cover

VProbes and its predecessor DTrace in the next section.

2.2 Instrumentation tools

To instrument an unmodified hypervisor, we use a VProbes, a tool provided by

VMware that is inspired by Sun's "DTrace". The design and motivation for DTrace

is described below, followed by an explanation of what VProbes adds and how it is

used.

2.2.1 DTrace

VProbes is based upon Sun's "DTrace" tool. DTrace[3] is designed to improve observ-

ability into a running machine. Historically, there has been an unfortunate conflict

between production and test. Most test infrastructure has a performance impact at

run time. The simplest approach is just scattering printf statements throughout

the code, which has an obvious impact. A slightly more complicated approach is to

insert statements like if (debug) printf ("we got here");. While this has less of

a performance impact - no need to parse format strings or write data out - it still

takes time to check the value of debug. In order to avoid unacceptable overhead,

debugging statements like these are generally included only in "test" builds, and are

left out of "production" builds.

As a result of the production / test build dichotomy, when a performance or cor-

rectness issue is found in production, fixing it requires a time-consuming, error-prone,

22



and complicated process. Installing a test build is not generally an option; it may be

too slow for even temporary diagnostic use; it may present different bugs, which might

be an unacceptable risk; and restarting the system to run the replacement build may

be too slow or disruptive. As result, problems need to be fixed in a lab environment

instead. First, the problem needs to be reproduced, as closely as possible, on another

machine running a test build. Then, engineers must iteratively test and try possible

fixes until they find something that appears to fix the problem. Finally, they deploy

the fix and see if it works.

Problems can creep in during any phase of this work. Replicating the problem

can be hard, due to race conditions that vanish in the debug build, complicated

interactions of the system with its environment, or configuration settings that nobody

realizes need to be copied over. Bryan Cantrill describes one case in which a machine

was accidentally configured as a router; when another router failed, the server would

take over, ruining performance of the other processes on the machine. Replicating

the configuration in the lab, including elements like the unreliable router and the

configuration setting making the server a router, requires significant effort and has a

high chance of failure. Once a potential fix is identified, there is no guarantee that

it will fix the observed problem; there is always a chance that while the symptoms

match, the underlying problem is entirely different, necessitating several iterations of

the process.

This difficulty prompted Sun to develop DTrace as a diagnostic tool. DTrace aims

to allow the debugging to occur in production. It does this by allowing customized

diagnostic callbacks to be inserted in a number of locations in the running Solaris ker-

nel. This necessitates careful safety work; if engineers grow used to DTrace breaking

their system (even due to their own error), they or their managers will be unwilling

to risk using it. Additionally, when not in use, DTrace must not introduce a perfor-

mance penalty. Finally, enabling DTrace should be possible without restarting the

system. DTrace accomplishes each of these goals.
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2.2.2 VProbes

Unfortunately, while DTrace is a huge step towards improved debugging, it has a few

critical limitations. It does not work with all operating systems; while it has spread

beyond Solaris, it does not run on Windows, and Linux support requires a separate

kernel module maintained separately from Linux itself. Additionally, DTrace cannot

be used to debug issues involving virtualization stacks like VMware's, nor early in

the boot sequence before the operating system has a chance to initialize it[1].

VProbes solves these problems. It is implemented within VMware's virtualiza-

tion stack, which allows it to analyze activity within the virtualization system itself.

Additionally, it is independent of kernel support, and can therefore be used at any

phase of the boot process, and with any operating system. Getting useful information

often requires customizing it for the operating system - for example, to determine

the current PID, process name, or system call in the appropriate platform-dependent

fashion. However, for common platforms like Windows and Linux, substantial work

has already been done by VMware's VProbes team; for other platforms, this work

can generally be done by a motivated user, rather than requiring complicated changes

to the VProbes infrastructure.

VProbes allow developers to define custom probes. Probes can be set as break-

points at arbitrary addresses in a VM guest's execution. VProbes also comes with a

number of predefined probes that fire at a variety well-defined times - when a net-

work packet is sent, disk 10 occurs, an interrupt fires, and so forth. The body of the

probe can perform various actions, including reading memory and doing conditional

branching. Various data structures are provided for storing data, to be read from

other probes or output to a log.

As with DTrace, a great deal of the effort goes into ensuring that probes will be

safe and cannot harm the virtual machine that they run against. This is partially

implemented through two languages, Emmett and VP. Recent probes are generally

written in Emmett, a C-like language developed by VMware for the purpose. This is

convenient when trying to probe code written in C. In addition to easing familiarity,
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Emmett syntax resembles C sufficiently that struct definitions can often be copied

directly from C source code into the Emmett source, which saves time. VP is a

simpler and lower-level language, which can be directly interpreted by the VMware

monitor. A custom compiler converts Emmett, which is relatively easy to write, to

VP, which is relatively easy to check for safety and then execute.
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Chapter 3

Goals and design

The project aims to produce an intrusion detection system that is robust against

attackers disabling it. Previous work has shown that analyzing system call traces

can be effective in detecting attacks. We hope to add to that work by being more

robust in the face of rootkits or other tools that try to disable or otherwise hide from

detection systems.

Further, we want users to be able to run the system on a production machine.

This requires that it be stable and produce acceptably low performance impact. While

that will vary from user to user, less than 10% overhead on typical workloads seems

a good rule of thumb.

In summary, the system should be difficult or impossible to disable, and should

detect standard rootkits and other attacks quickly. Safety and performance are also

necessary.

3.1 Design

VProbe Instrumentation for VM Intrusion Detection (VIVID) builds on VMware's

VProbes, which provides a tool to inspect the behavior of a virtual machine. Like

previous work, we base detection on system call traces. The software is architected as

two components - the instrumentation and the analyzer. The former is responsible

for instrumenting the guest virtual machine to gather system call information. This
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component uses VProbes to allow it to run outside of the guest, while still gathering

information from within the guest. Figure 1-2 shows the relationship between the

IDS instrumentation, the VM, and applications. The analyzer component analyzes

the data gathered, and contains the logic that decides whether a syscall sequence is

suspicious or not.

One advantage of splitting the instrumentation from the analysis component is

modularity. The split allows implementing Linux and Windows support in the in-

strumentation, various attack recognition strategies in the analysis component, and

combining them arbitrarily. The instrumentation need not change based on the at-

tack recognition strategy in use, and the analysis component can be oblivious to the

operating system or architecture. In addition, it would be possible to run several

analyzers in parallel, alerting when any of them alerted, or using some more com-

plicated scheme. We could also run the analyzers with saved data, rather than live

data; this might be useful for regression testing of analyzers or detecting additional

past exploits as better analyzers are developed.

However, the division is as strict as it is for a different reason: language. VProbes

provide limited support for string manipulation and data structures. Additionally,

by default the interpreter has relatively low limits on how much code probes can

include. As a result of these two limitations, we separate the two roles. While the

latter limitation is easily solvable and the former would be fixable with enough work,

splitting up the components seemed a much easier solution. A split allows using all the

functionality of Python or other modern languages, without needing to reimplement

it.

The instrumentation outputs data that resembles the output of strace[17]. The

instrumentation is also responsible for outputting the thread, process, and parent

process IDs corresponding to each syscall, as well as the process name (specifically,

the comm value and binary path).

The Linux instrumentation supports decoding the names and arguments of some

system calls. However, the current analysis components do not use this data, so

the Windows instrumentation outputs only system call numbers. If future analy-
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sis components were to want this information, it could be added to the Windows

instrumentation easily.

Analysis scripts use this data to build a model of what normal behavior looks like,

and search for deviations. Generally, these scripts build separate models for each

program, as different programs will have different normal behavior.

The focus of this project is on building the instrumentation, which is covered in

depth in Chapter 4. Proof-of-concept analysis modules are discussed in Chapter 5.
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Chapter 4

Instrumentation component

The data gathering component uses VProbes to gather syscall traces from the kernel.

Gatherers have been written for 32-bit and 64-bit Linux (across a wide range of

versions), and 64-bit Windows 7. The Linux gatherers share the bulk of their code;

the Windows gatherer is similar in structure and gathers similar data, but does not

share any code.

To run the gatherer, we set a probe on the syscall entry point in the kernel code.

To implement this, VProbes will set a breakpoint on that location, and when the

breakpoint triggers will run a callback that we define. The callback extracts the

system call number and arguments from the registers or stack where they are stored.

In addition, the callback is responsible for retrieving data about the currently running

process. The analysis components can use process data to associate the syscalls with

the correct per-program profile, or to sequence system calls on a per-thread basis.

When a syscall starts to execute, the breakpoint will activate, transferring execution

to our callback.

Optionally, the gatherer can decode system call names and arguments. The Linux

callback has the name and argument format for several system calls hard-coded in.

For numeric arguments, the probe will simply print the argument value. For system

calls that take strings or other types of pointers as arguments, it will print out the

referenced data. It also prints the name of the system call in use. However, the

current analysis scripts do not examine syscall arguments, so this capability was not
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implemented for the Windows gatherer.

Another optional feature is to report the return values from the system calls. As

with argument values, no current analysis scripts utilize this data, however. Conse-

quently, while support is available for Linux, it was not implemented for Windows.

Writing a gatherer requires a couple key steps. First, relevant kernel data struc-

tures storing the required information must be identified, as described in Section 4.1.

Once the relevant structures and fields are identified, we need to make the offsets of

the fields within the structures available to the Emmett script. While the general

layout changes little from version to version of a kernel, the precise offsets do vary,

so an automated mechanism to find and make available these offsets is desirable. In

Section 4.2 we discuss two techniques for finding those offsets and exposing them to

Emmett code. Finally, in Section 4.3 we address how the instrumentation is assembled

from these components.

4.1 Relevant kernel data structures

The first step in implementing the gatherer is to find where the Linux or Windows

kernel stores the data we want. While a userspace IDS would use a relatively well-

defined, clearly documented, and stable interface like system calls or reading /proc

to gather the required information, we are unable to run code from the target sys-

tem. As a result, we must directly access kernel memory. Our goal at this stage is

essentially to determine what fields we need and how we would access them if we had

full structure definitions but could not call any accessor functions. Determining the

relevant structures is a process that involves reading the source, disassembling system

call implementations, or looking at debugging symbols.

Naturally, because we are accessing memory directly instead of using a supported

kernel interface, we are vulnerable to changes in the operating systems' implementa-

tion. In practice, we have found that major rearrangements of structures (as opposed

to minor changes in offsets) are rare enough to be manageable. We surveyed changes

to the key Linux structures since April 2005. During that time about three rele-
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vant changes occurred. By limiting supported kernels to those since April 2008, we

avoided all but one of those changes; that change, to struct vfsmount, proved easy

to support. Thus, while this approach theoretically involves exposes us to the risk of

structures changing, in practice we found the risk was small.

4.1.1 Linux structures

In Linux, the key data structure is the struct taskstruct for the current process.

(In Figure 4-1 we show details of what relevant Linux structures and fields look like

on one 64-bit Linux kernel.)

The first part of extracting the taskstruct is finding the per-CPU area. With

sufficiently old kernels this must be located by masking off part of Xrsp, while for

more recent kernels we can use the FSBASE or GSBASE registers to find it. Once

the per-CPU area is located, one field supplies a pointer to the current taskstruct.

The instrumentation needs access to the following information about the process:

" pid: The process ID; in the kernel, this is known as the thread group ID (tgid)

" tid: The thread ID; in the kernel, this is known as the process ID (pid)

" ppid: The pid of the process's parent

" Program identity: Some mechanism for identifying programs for the purposes

of building a profile

The PID and TID are directly available as fields on the taskstruct.

The ppid is only slightly more complicated. Unfortunately, ppid is not a field,

but the taskstruct does have a parent field which is a pointer to the parent

process's taskstruct. Thus, the instrumentation can find the ppid by reading

task->parent->tgid.

Identifying what program is running is surprisingly difficult. The simplest piece

of information to retrieve is the comm field within Linux's taskstruct. This is

the first 16 characters of the process's name, without any sort of path information.

Unfortunately, this makes it difficult to distinguish an init script (which tends to use

33



/* Offsets from Ubuntu Linux 2.6.32-41-server (x86_64) */

memmodel guest64;

struct list-head {
struct list-head *next, *prev;

};

struct qstr {
unsigned int hash;

unsigned int len;
const unsigned char *name;

};

struct dentry {
@OxOO28 struct dentry *d-parent;
@OxOO30 struct qstr dname;

}

struct path {
struct vfsmount *mnt;
struct dentry *dentry;

};

struct file {
0x0010 struct path f-path;

}

struct vfsmount { };
struct mount {

struct list_head mnt_hash;

struct mount *mnt-parent; /* fs we are mounted on

struct dentry *mnt-mountpoint; /* dentry of mountpoint */

};

struct mm-struct {
@OxO350 struct file * exe-file;

}

struct task-struct {
@OxO2bc int tgid;
@OxO2b8 int pid;
QOxO490 char comm[16];
@OxO2dO struct task-struct *parent;
@OxO290 struct mm-struct *mm;

};

struct currentthread {
@OxOOOOcbcO struct task-struct *current;

};

Figure 4-1: Key offsets frorm a Linux kernel (Ubuntu Linux 2.6.32-4 1-server (x86_64))
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string path-toascii(struct mount * mnt, struct dentry * dentry)

string ret, parent-path;

if(dentry == dentry->d-parent)

if(mnt == mnt->mnt-parent It mnt->mnt-parent == NULL)

ret =
} else {

ret = pathto-ascii(mnt->mntparent, mnt->mntmountpoint);
}

} else {
parent-path = pathto.ascii(mnt, dentry->d-parent);
sprintf (ret, "%s/%s", parent-path, get-qstrname(&dentry->d-name));

}
return ret;

}

Figure 4-2: Linux preload's path-toascii function

large numbers of execve and f ork calls) from the program it starts (which may never

use execve or f ork). For several workloads - for example, an FTP server - the

sudden appearance of execve calls can provide a strong signal that the server has

been compromised. Thus, full paths are desirable as well to let us distinguish init

scripts from daemons.

Finding the full binary path is difficult, as it is not a field on the taskstruct.

We can find a struct file identifying the binary at curthrptr O->mm->exe_file.

However, converting that to an Emmett string requires some effort. We begin by

decomposing the struct file into a struct mount and a struct dentry. Then

we recursively traverse the dentry->d.parent pointers until we reach the root of the

mountpoint, and similarly traverse the mounts to find the path to the mountpoint. At

the end we can combine these together to get the full path. The Linux instrumentation

uses the path-toascii function (Figure 4-2) and a wrapper that takes a struct

f ile to convert the exe_f ile pointer into a string that can be output to the analysis

scripts.

Note that we need both the binary path and the comm value. Shell scripts will

generally use /bin/bash for their binary path, Python scripts will typically have

/usr/bin/python2.7, and so forth. Using only the comm is insufficient because of init
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Linux Windows

Key structure taskstruct ETHREAD, EPROCESS
32-bit: syscall.call,

Breakpoint at sysenter-docall;

64-bit: system-call nt !KiSystemServiceStart

Thread ID pid Cid.UniqueThread

Process ID tgid Cid.UniqueProcess

Parent PID parent .tgid InheritedFromUniqueProcessId

Program name comm ImageFileName

Program binary mm->exe_file SeAuditProcessCreationInfo

Table 4.1: Key fields in the Linux and Windows process structures

scripts, while exef ile cannot distinguish between different interpreted programs.

4.1.2 Windows structures

On Windows, broadly equivalent structures exist (see Table 4.1), though Windows

has a more complicated hierarchy of structures than Linux does. Windows has a

process structure that's independent of its member threads, and also divides fields

between an "executive thread block" structure and a "kernel thread block" structure,

for three relevant structures: EPROCESS, ETHREAD, and KTHREAD.

We begin identifying the data we need by finding the KPCR ("Kernel Processor

Control Region"), which is located at the start of the GS segment. Following some

fields of that structure produces a pointer to the current thread's KTHREAD structure.

Because the KTHREAD is the first element of the ETHREAD structure, this also provides

us with the current ETHREAD. We can find a pointer to the corresponding process

through the Process field of the KTHREAD.

Given these, most of the key fields are straightforward field accesses:

" pid: ethread->Cid.UniqueProcess

" tid: ethread->Cid.UniqueThread

" ppid: eprocess->InheritedFromUniqueProcessId

" Program base name: eprocess->ImageFileName (Windows counterpart of comm)
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string ucs2ascii(UNICODESTRING *str) {
int i;
string ret;
// Reset the string to empty on each call --- needs to be split across two
// statements because all Emmett variables are essentially static.
ret = ""It;
for(i = 0; i < str->Length; i += 2) {

ret = ret + (string)&((char*)str->Buffer)[i];

I
return ret;

}

Figure 4-3: ucs2ascii: Convert Windows' UCS-2 strings to ASCII

As with Linux, the only complicated field is the full path to the binary. The

reason for this is different in Windows, however. On Windows, from an EPROCESS

structure, the SeAuditProcessCreationInfo.ImageFileName->Name is the path to

process binary. Unlike in Linux, which stores the path as a collection of structures

and pointers between them, Windows stores the path as a string. Consequently, no

recursive structure traversal is required to read the path out of the field.

However, the Name field is not an ASCII string; instead, like much of Windows,

it uses a UNICODESTRING, which is UCS-2-encoded. Encoding a typical path with

characters only from 7-bit ASCII into UCS-2 will result in alternating zero bytes.

This presents a problem, because Emmett uses C-style null-terminated strings. We

are fortunate, however, in that for the instrumentation, we do not actually need the

path to the binary as such - we merely need a stable identifier for each program,

though human readability is a definite advantage. Thus, we convert Windows' UCS-2

path into an Emmett string by simply copying alternating characters (see Figure 4-3).

For strings consisting of just 7-bit ASCII characters, this conversion will match what

a more reasonable Unicode library would do. For strings with other characters, this

will produce weird results; however, they will still work fine with our instrumentation

and analysis code, and hindering human readability in this rare case is acceptable.
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4.2 Accessing fields from Emmett

Once the correct structures and fields are found, a challenge remains. When the

instrumentation has the address of a structure, it needs to know the offset of each

field of interest within the structure, so that it can access the appropriate memory

and read out the data. However, kernels are not designed to make the format of

internal data structures easily accessible to third-party software. Emmett has two

main features that make this feasible: the off at* family of built-in functions, and

sparse structure definitions.

4.2.1 Finding offsets at runtime

The of f at* family of functions allows finding these offsets at run-time. Each function

scans memory from a specified address, checking for instructions that use offsets in

particular ways. Frequently, symbol files are used to find the appropriate address.

Emmett supplies three functions in this family.

The first is offatret, which finds the ret instruction in a function. It then

scans backwards to find when 1rax was loaded. Assuming that %rax was loaded

by accessing the memory at some pointer plus an offset, off atret will return the

offset in question. By passing the address of a simple accessor function like Windows'

nt!PsGetProcessImageFileName to offatret, we can find the offset of a structure

field like ETHREAD's ImageFileName.

The second is offatseg, which finds the first offset applied to the FS or GS seg-

ment registers. These registers are commonly used for thread-local state, making

them helpful for finding thread-specific structures like Linux's taskstruct or Win-

dows' ETHREAD. With a Windows guest, off atseg(&nt ! PsGetCurrentProcess) will

find the offset of the CurrentThread pointer within the KPCR structure.

Finally, of f atstrcpy searches for calls to a specific function address, and returns

the offset used to load Xrsi for the call. This could be used to find the offset of a

string element in a structure, but is not current used by any of the gatherers. See

Figures 4-4 and 4-5 for an example.
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/* from fs/exec.c */
char *get-task comm(char *buf, struct task-struct *tsk)

{
/* buf must be at ,east sizeof(tsk->comm) in size */

task_lock(tsk);
strncpy(buf, tsk->comm, sizeof(tsk->comm));
taskunlock(tsk);

return buf;

}

(a) Source for the get-taskcomm function

VMMLoad {
int off-strncpy;

printf("gettask_ comm=%#x, strncpy=X#x\n", &gettaskcomm, &strncpy);

offstrncpy = offatstrcpy(&gettaskcomm, &strncpy);
printf ("gettask comm->strncpy=%#x\n", of f _strncpy);

}

(b) Sample Emmett script using off atstrcpy

$ vprobe -s lucid64.syms lucid64/lucid64.vmx get-taskcomm.emt

get-task-comm=Oxffffffff8ll4d7f0, strncpy=Oxffffffff8l2bd620
get-task-comm->strncpy=0x490

(c) Output

Figure 4-4: Using off atstrcpy with get-taskcomm to find the offset of the comm
field. See also Figure 4-5 for the assembled source of get _taskcomm.
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1 # vmlinux-2.6.32-41-server (Ubuntu Lucid)
Oxffffffff8114d7f 0
Oxffffffff8114d7f1
Oxffffffff8114d7f4
Oxffffffff8114d7f8
Oxffffffff8l14d7fc
Oxffffffff8114d800
Oxffffffff8114d804
Oxffffffff8114d809
Oxffffffff8114d810
Oxffffffff8114d813
Oxffffffff8114d816
Oxffffffff8114d819
Oxffffffff8114d81e
Oxffffffff8114d825
Oxffffffff8114d828
Oxffffffff8114d82d
Oxffffffff8114d832
Oxffffffff8114d835
Oxffffffff8114d83c
Oxffffffff8114d83f
Oxffffffff8114d843
Oxffffffff8114d847
Oxffffffff8114d84b
Oxffffffff8114d84c

<get-taskcomm>: push %rbp
<get-taskcomm+1>:
<get-taskcomm+4>:

<get-taskcomm+8>:
<get-task-comm+12>:

<get.taskcomm+16>:
<get-taskcomm+20>:
<get-task-comm+25>:
<get-task-comm+32>:

<get-taskcomm+35>:

<get-taskcomm+38>:
<get-task-comm+41>:
<get-task-comm+46>:

<get-taskcomm+53>:
<get-taskcomm+56>:

<get-taskcomm+61>:

<get-taskcomm+66>:
<get-taskcomm+69>:

<get-taskcomm+76>:
<get-taskcomm+79>:
<get-taskcomm+83>:

<get-taskcomm+87>:

<get-taskcomm+91>:
<get-taskcomm+92>:

mov
sub

mov
mov
mov
callq
lea
mov
mov
mov
callq
lea
mov
mov
callq
mov
callq
mov
mov
mov
mov
leaveq
retq

%rsp,%rbp
$0x20,%rsp

%rbx,-0x18(%rbp)

%r12,-OxlO(%rbp)
%r13,-0x8(%rbp)
Oxffffffff81012e40
0x614(%rsi),%rbx
%rdi,%r12

%rsi,Y.r13
%rbx,YXrdi
Oxffffffff81560cb0 <_spinlock>
Ox490(r13),Xrsi
%r12,Yrdi
$OxlO,%edx
Oxffffffff812bd620 <strncpy>
%rbx,%rdi
*Oxffffffff817e4988
%r12,%rax
-0x18(%rbp),%rbx
-OxlO(%rbp),%r12
-Ox8(%rbp),Xr13

Figure 4-5: Disassembled get-taskcomm function. Note the use of lea on line 14
to load comm into %rsi for passing to strncpy, and that the offset used with lea
(0x490) shows up in the output of the script (Figure 4-4(c) on the previous page).

40



An advantage of the of f at* functions are that they allow a single Emmett script

to be used against kernel binaries with different offset values. As a result, the VProbes

distribution comes with library code using of f at* to find the current PID and certain

other fields. However, the off at* functions require finding an appropriate accessor

to search for offsets in, and are dependent on the precise assembly code generated by

the compiler. Thus, for new gatherer code, another mechanism was desirable.

4.2.2 Encoding offsets in scripts

Emmett also supports sparse structure definitions, which allow the required offsets

to be conveniently encoded in the script itself. A sparse structure is defined like a

normal C structure, except that some of the fields can be left out. By prefixing a

field definition with an 0 and an offset, Emmett will use the specified offset instead

of computing an offset based on the preceding fields in the structure and their size.

Given a way to find offsets, this allows specifying only the relevant fields, and ignoring

the ones that a script does not need.

While this technique requires updating the script for different kernel versions, we

find it generally more convenient than using of f at* to find offsets at runtime. One

way to make those updates easy is to automatically generate files with offsets and then

use Emmett's preprocessor to incorporate the current offsets into the rest of the code.

Using sparse structures allows the Emmett compiler to perform type-checking. The

process of writing scripts is much less error prone when the compiler will distinguish

between pointer and non-pointer members, or an offset in the ETHREAD and EPROCESS

structures. The code is also much clearer when the same syntax and names can be

used as are present in the source or debugger output. Thus, while early versions of the

Linux and Windows gatherers used of f at*, later revisions exclusively use structures.

In the next two sections, we address how the Linux and Windows gatherers find

the requisite offsets.
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4.2.3 Linux gatherer: kernel module

The information we want to retrieve - the comm, pid, and so forth - are all easy

to access from kernel code. The requisite structures are all defined in various header

files, so it is simple to write C code that uses them. Parsing those header files outside

of the context of compiling C code, on the other hand, is much harder, since they

contain a variety of #if def, #def ine, and similar preprocessor directives.

Because of these constraints, the approach that we took to obtaining the required

offsets was to build a kernel module. It uses a collection of #if's to ensure source

compatibility with both 32-bit and 64-bit kernels as far back as Linux 2.6.11.

When the module is loaded into a running instance of the kernel it was compiled

for, it will generate a file /proc/vprobe-offsets. That file contains a variety of

information, formatted as a series of #defines, that is useful to the Linux gatherer.

Most of that information is a numerical offset of a field within a structure, retrieved

using a simple call to offsetof, but there are some significant exceptions.

Depending on the version and the architecture, finding the current thread storage

area and the offset of the current taskstruct within it varies greatly. As a result, the

curthrptr is printed as a complete Emmett expression selected using preprocessor

#if's. The taskstruct offset is a simple number, but the module finds it using any

of a call to offsetof, the per.cpu-var macro, or the currenttask symbol when

available.

The other somewhat difficult piece to handle is traversing mountpoints. Starting in

Linux 3.3, much of what had been in struct vf smount was moved into a new struct

mount in order to improve encapsulation. The Linux instrumentation now assumes

that all kernel versions have both structures, with pre-3.3 kernels simply having an

offset of zero between the two structures' starts. Because struct vf smount is always

allocated as part of a struct mount, converting between the two is safe (Linux itself

uses containerof to convert from a vf smount to a mount).

To use these offsets in an Emmett script such as our instrumentation, a user can

take the source for the kernel module, compile it against an appropriate set of kernel
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/* Linux offsets for kernel version 2.6.32-41-server */

memmodel guest64;

#define HAVELINUX_FILES 1
/* struct dentry */

#define __OFFDENTRY_PARENT 0x0000000000000028
#define __OFFDENTRYNAME 0x0000000000000030
/* struct file / struct path */

#define __OFFFILEPATH Ox0000000000000010
/* struct vfsmount / mount */

#define __OFF_VFSMOUNT Ox0

/* struct mm struct */

#define __OFFEXE 0x0000000000000350

/* struct task_ struct */

#define __OFF_TGID Ox000000000002bc
#define __OFF_PID 0x00000000000002b8
#define __OFF_PIDS 0x0000000000000328
#define __OFFCOMM Ox0000000000000490
#define __OFF_PARENT Ox000000000002dO

#define _ _FF_MM Ox0000000000000290

/* struct current_ thread */

#define __OFFTASK OxOOOOOOOOOOOOcbcO

#define __CURTHRPTR (GSBASE >= Ox1OOOOOOOO ? GSBASE KERNELGSBASE)

Figure 4-6: Sample /proc/vprobe-of f sets

headers, load it into an appropriate kernel, copy /proc/vprobe-offsets (which will

look like the sample in Figure 4-6) off the machine, and then #include it in their

Emmett code.

We note that the contents of /proc/vprobe-of f sets is specific to a kernel version,

architecture, and build options, but is not at all specific to a particular boot of the

kernel. Consequently, the machine being instrumented does not need to be running

the kernel module. A future improvement would be retrieve the offsets directly from

the compiled kernel module, without loading it at all.

4.2.4 Windows gatherer: pdbparse

Because the Windows gatherer was built after the Linux gatherer, from the start it

was designed to use debugging symbols. Microsoft makes symbols publicly available

for use with their debugger, and they can be downloaded separately. We have a
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script pdb2structs.py that uses the third-party pdbparse Python library[5] to ex-

tract selected fields and structures from a PDB file (Windows debugging information)

into an Emmett file containing sparse structures. We run this with an input file of

Microsoft's ntkrnlmp.pdb, downloaded from their website, to produce the requisite

offset information. Since we directly produce Emmett structures, the Windows kernel

structures can be traversed just as they would be in kernel code.

There is also room for future improvement in the Windows offset-extraction ma-

chinery, though it is much more convenient than the Linux machinery is. One option

would be to extend pdb2structs.py to handle a wider variety of types. It already

handles simple structures, arrays, and most primitive data types, but it does not sup-

port a variety of less-used types in C, such as typedefs, enums, unions, bitfields, or

nested structures. None of these are currently needed, but support could be helpful

in the future. The pdbparse library also has a printctypes script. An alternative

approach would be to adapt it to be a better fit for what we need, which might be

easier than adding more features to our current script.

4.3 Structure of instrumentation

The VProbes distribution has long included "preloads" for various operating sys-

tems, which are libraries with basic support for examining a running operating

system. The bulk of the instrumentation comes in the form of improved machin-

ery for finding field offsets and encoding them in scripts (already described in Sec-

tion 4.2.2) and enhanced preloads (which are a straightforward combination of the

structures described in Section 4.1 and the field offset work). The improved ma-

chinery and enhanced preloads are now available in the VProbes distribution, at

https://github.com/vmware/vprobe-toolkit.

The instrumentation itself is quite simple, especially for Windows. It uses a

preload to find the current program and thread process information, retrieves the

system call number from %rax, and prints out the accumulated data. The source is

shown in Figure 4-7.

44



memmodel guest64;

void
handle-syscall(string source, int syscall-num) {

string comm, binary-path;

KTHREAD *thread;

int tid, pid, ppid;
int print;

comm = curprocname (;
tid = curtido;
pid = curpidO;
ppid = curppid(;
thread = curthrptr(;

binary-path = ucs2ascii(thread-image-file (thread));
printf ("t=d/p=Xd/pp=%d (Ms # %s): %d(... );\n",

tid, pid, ppid, comm, binary-path, syscall-num);

}

GUEST: ENTER: nt! KiSystemServiceStart

{
syscall-num = RAX;
handle-syscall("KiSystemService", syscallnum);

}

Figure 4-7: Windows strace-like implementation
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For the proof-of-concept analysis work described in Chapter 5, the data supplied

by the Windows instrumentation is sufficient. The Linux instrumentation was devel-

oped earlier, before determining precisely what data we wanted, so is consequently

able to print more data with an associated increase in complexity.

The principal additions to the Linux module are:

Decoding syscalls. The Linux module can be configured to identify the name and

arguments of certain syscalls. In this mode the resemblance to strace is par-

ticularly strong, although it does decoding for only about a dozen syscalls, and

argument decoding is limited to printing arguments as numbers or strings as

appropriate (no strace-style decoding of open's flags parameter is done, for

example).

Syscall filtering. The Linux module can be configured to only report a relatively

small number of particularly important syscalls. Since a significant portion of

the performance cost is due to formatting and outputting syscall information,

this can provide a significant performance improvement.

Binary path printing. Printing of the binary path can be disabled, which provides

a significant performance boost.

Return tracing. In addition to reporting the syscalls, the Linux module can also

report the return values. It takes some work on the analysis module's part to

match calls and returns, but the Linux module can output the raw data.

Support for both 32-bit and 64-bit Linux. Unlike the Windows version, which

was developed for Windows 7 64-bit only, the Linux version supports both

32-bit and 64-bit variants. While the bulk of the code is shared, there is

an architecture-specific component that contains information about the syscall

numbers, calling convention, and correct kernel functions to hook (for example,

system-call vs. syscall-call and sysenter-docall).

The differences, as well as increased commenting, make the Linux version sub-

stantially larger, at about 250 lines instead of 25 lines for the Windows code shown
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in Figure 4-7.

4.4 Performance

One concern for security software such as anti-virus software or an intrusion detection

system is the performance overhead that it entails. We analyze the performance

impact from two perspectives: in Section 4.4.1. we examine how different workloads

impact the performance, while in Section 4.4.2 we consider the cost of different parts

of the instrumentation and optimizations we could make to improve the performance.

4.4.1 Different workloads

Since VProbes primarily causes a slowdown when the probe triggers, we would expect

the performance to depend largely on how often system calls occur: in a workload

involving many system calls, we expect performance to suffer relatively heavily; in a

largely computational workload, however, we expect performance to be roughly the

same as without the instrumentation.

To measure the performance overhead of the instrumentation, we ran an Apache

httpd instance in a VM and ran ab[2] on the host to measure how long it took to make

a large number of requests to the server. The VM had two virtual CPU's and ran

under VMware Workstation, while the host was a Dell Precision T3400 workstation.

We tested with several different file sizes and both static and dynamic content to

get a sense of how different syscall patterns might affect performance. We expected

that large file sizes would require substantially fewer syscalls per unit time than

small files, because more time will be spent streaming the response from disk to the

network, and comparatively less time will be spent doing short reads or connection

setup and teardown. Similarly, we expected dynamic content to require fewer syscalls

per unit time, because more time will be spent parsing and executing the content.

Consequently, we would expect small static files to have high overhead from the

instrumentation, and large files or dynamic content to have lower overhead.

For each file size and source, we ran ab several times in a row, discarding the first
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run from our results. The number of times we had ab download each file depended

on the file size; we aimed to have each run of ab take several seconds, and varied the

number of repetitions appropriately - from 500 repetitions for dynamic content or

large files up to 50,000 for a tiny file. For this test, we used a version of the Linux

instrumentation that printed about a dozen syscalls and decoded their arguments.

We found that for small static files (a couple hundred or thousand bytes), per-

formance was prohibitive. (Indeed, VProbes automatically disables probe fires when

they are causing excessively high overhead; this check triggered with particularly

small files.) Larger files were more reasonable: a 13KB file had roughly 5% overhead

compared to an uninstrumented server, and 20KB or larger files had overhead well

under 1%. We also considered a common web application - MediaWiki - to see

how dynamic sites compared. An 11KB page saw about 13% overhead, while a 62KB

page saw 3% overhead.

4.4.2 Optimization opportunities

Our current instrumentation is entirely unoptimized. We wanted to get a better sense

of what portions of the instrumentation are slow. In order to make the performance

overhead more apparent, we enabled printing of all system calls and used a moderately

sized file to ensure that the performance overhead was readily apparent but that the

probe still executed.

As before, we did our tests using ab on the same host against Apache httpd in

a VM. For this test, we used a standardized 10KB file that we downloaded 10,000

times for each run. To perform the experiment, we systematically removed parts of

the instrumentation to see how much time each part required.

We tested four variants of the instrumentation. First, we tested without VProbes

running at all. Second, we tested setting the breakpoint we use, but without running

any code when the breakpoint triggered. Third, we ran the full instrumentation

code except for computing the path to the executing binary. Finally, we ran the full

instrumentation, including finding the binary path.

With no instrumentation, we found that our test took 4.7 seconds on average.
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Figure 4-8: Performance of instrumentation variants

With the full instrumentation, it took about 14.4 seconds. Of the 9.7 second increase

between no instrumentation and full instrumentation, it appeared that setting the

breakpoint accounted for about 28% of the overhead and computing the path to the

binary is about 42%. (See Figure 4-8.) The remaining 30% of the overhead came

from the core instrumentation - loading the system call number from a register;

finding pid, comm, and other fields; and formatting the data for output. With 70% of

the runtime cost apparently due to processing the breakpoint and finding the binary

path, optimizing either could have large payoffs.

For breakpoint processing, VProbes supplies two ways to trigger probes. VProbes

allows setting a breakpoint at an arbitrary guest address, as we currently do. It

also supports a limited selection of "static probes", which allows triggering probes on

events such as on page faults, changing CR3, or exiting hardware virtualization. This

latter type of probe is much faster; if one of these probe points can be used instead

of the current breakpoint, it might mostly eliminate the 28% of cost that comes from

the breakpoint.

For the second, we gather much more data than is necessary. Simply retrieving

the base name of the binary would supply interpreter names like bash or python2.7,
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or the program name for compiled languages. This is substantially faster than finding

the full path, and with the comm value is likely sufficient. However, because finding

even the first dentry requires traversing a large number of pointers, this is still fairly

slow. An alternative, and likely more fruitful technique, would be to print the binary

path much less often. For example, we could store a list of all current->mm or

current->mm->exe_f ile values we have seen. Normally, we could display only the

address, and only print the full path when we see a new value. Because the mm value

is directly available from the current taskstruct with no extra pointer loads, this

should be quite fast, and VProbes provides a "bag" structure that allows quick lookup

of integer keys.

Overall, the instrumentation performance is already likely acceptable for some use

cases, and several large optimization opportunities still remain.
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Chapter 5

Analysis component

The instrumentation component produces a stream of system calls and information

about the program making the system calls. The analysis component takes one such

list from normal behavior and a stream from current behavior and must turn that

into a signal "probably uncompromised" or "probably compromised". In a production

IDS, another system would take this information and take some appropriate action,

such as firewalling the machine, pausing it, or notifying an administrator.

There is ample academic literature on how to use system call records to determine

whether a system is compromised. For a description of many relevant articles, see

Section 2.1.1. Because of this ample history, our focus was on developing the in-

strumentation, with our analysis component work primarily done to ensure that the

instrumentation component was producing sufficient data that included all necessary

information to detect attacks.

We developed two different analysis modules for this work. The first uses a simple

whitelist, while another uses sequence time-delay embedding, or stide [19].

5.1 W hitelist

The first module is a simple whitelist, which builds a list of all system calls used in

normal operations, and assumes that new system calls are a sign of a compromise.

While simple, this analyzer can detect some attacks. We installed a proftpd
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server that was vulnerable to the buffer overflow described in CVE-2010-4221, and

attacked it using the Metasploit Project's exploit [8]. Under normal operation, a

FTP server has a simple syscall pattern: it mostly just opens, reads, writes, and

closes files. An attack, however, will often use execve. Since the FTP daemon does

not normally use execve, it will not show up on the whitelist, and the analyzer will

immediately trigger.

For this module, we do not analyze the arguments to the system calls or the relative

ordering of system calls. This approach has the advantage of being relatively simple

to understand and write (making it an excellent first check on the instrumentation

producing useful data). Additionally, it has a low false positive rate, since the profile

is simple enough that building a complete "normal" profile is manageable. However,

it is effectively useless for a large class of legitimate workloads. For example, a

typical web server running CGI scripts will routinely be forking and executing new

programs, which will blind a whitelist-based system to any attack whose payload

involves compromising the web server and then executing malicious commands.

We assign each system call to a calling program's profile based on the combination

of the comm value (or Windows equivalent) and the full binary path. As we describe in

Section 4.1.1, both are needed to produce a good profile. We need comm to distinguish

multiple programs written in the same interpreted language from each other, as the

binary path will just be the path to the interpreter. For this analysis module, the full

binary path is particularly critical - it allows us to distinguish a server like proftpd

from its init script. Since we look at only a single system call at a time, we want to

be able to trigger when an FTP server makes an execve call, which means that the

server must use a different profile than the init script.

We used the whitelist-based analyzer primarily to verify that the instrumentation

was generating enough data to be usable. We tested this using a vulnerable Debian

i386 system with proftpd 1.3.3a. To generate a normal profile, we instrumented the

virtual machine, rebooted it, and let it run for an several minutes to generate enough

data. We then attacked it using Metasploit's proftp.telnetiac exploit, using a

payload that ran a shell command. Because the exploit forks and proftpd does not,
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the whitelist analyzer detected the exploit successfully.

For an additional test, we also installed Tomcat on the same machine and used a

similar exploit. This test demonstrated why simply whitelisting system calls is not a

usable mechanism to detect attackers - even in normal operation the Tomcat Java

process makes execve and clone calls, which we had been depending on to identify

an attacker.

5.2 Sequence time-delay embedding (stide)

A more powerful mechanism commonly used in the academic intrusion detection

literature is sequence time-delay embedding, or stide. In this technique, a program's

profile consists of all n-tuples of consecutive system calls. For example, with n = 3

and a syscall sequence of open, read, write, read, write, close, the 3-tuples would be

(open, read, write), (read, write, read), (write, read, write), and (read, write, close).

To scan a trace for an intrusion, the analyzer checks for tuples that are not found in

the training data. If enough such tuples are found in some sliding window, then an

intrusion is likely. The length of the tuples, size of the sliding window, and threshold

of how many tuples are required to trigger the system can all be tuned to achieve an

acceptable level of false positives and negatives.

We tried testing stide with both the proftpd and Tomcat exploits mentioned

above, after training stide with a short trace from normal operation. When we tested

it with new traces from when the servers were operating as normal and while being

exploited, however, it detected an attack in both cases. We were unable to get stide

to ignore traces from normal behavior while still alerting on traces from a sample

attack - that is, to reduce false positives to a reasonable level without drastically

reducing the correct positives. However, there are several approaches that we have

not adequately explored.

There is a wide range of tweaks we could try making to the parameters, and some

opportunities to refine our stide implementation. We might consider excluding some

system calls from the tuples, if they are incredibly common and seem to merely bloat
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the set of tuples we see. Additionally, because there are so many syscalls and tuples

are several syscalls in length, stide needs much more input data, so it might work

substantially better with, for example, several days of production data rather than

tens of minutes of lab data.

The biggest untapped opportunity may come from the thread ID outputted by

the instrumentation. Right now, we entirely ignore the process and thread IDs

while building profiles, and build our sequences entirely by looking at the time-

ordered sequences of system calls made by one program name. This results in a

less-deterministic set of sequences, since multiple threads or instances of a program

will be interleaved in a mostly-random fashion. One refinement would be to build

our n-tuples on a per-thread basis, but add each n-tuple to a single profile for each

program.
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Chapter 6

Conclusion & future work

We developed VIVID, a novel proof-of-concept host-based intrusion detection system.

Unlike most prior host-based IDSes, we avoid an agent on the machine being protected

by instead running our agent on a virtual machine host. This design allows our system

to resist attacks that might attempt to disable an on-machine agent or subvert its

ability to detect, report, or block attackers. By running the agent outside the machine

being protected we benefit from a smaller trusted codebase of the virtual machine

monitor rather than requiring that the entire guest operating system be secure, while

simultaneously being able to more closely examine the machine being protected than

a network-based IDS can.

Our system successfully shows that building the necessary instrumentation on

top of a common, unmodified virtualization product, VMware Workstation or ESX,

is now entirely feasible. Depending on the workload, our system operates with an

acceptable performance overhead. We also developed two proof-of-concept analysis

modules to use the data our instrumentation produces, and verified that VIVID can

successfully detect some attacks.

6.1 Future Work

There is much room for future work, including many opportunities that have been

mentioned in previous chapters. We summarize some of the major possibilities again
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here.

On the instrumentation front, the system provides the required data. However, the

Linux module (Section 4.2.3) should be converted to use debugging symbols directly

(as with the Windows support using pdbparse), rather than needing to run the kernel

to extract the needed offsets. Additionally, we could optimize the instrumentation,

as described in Section 4.4.

The analysis component has extensive room for improvement, as it was not the

focus of our work. In Section 5.2 we discuss several ways to improve our stide im-

plementation. Beyond stide, academic literature includes many additional techniques

for discerning attacks amongst a stream of system calls, and we could also try imple-

menting more of those.

Finally, more real-world trials would be informative. One option is finding more

real or custom-built malware to test our system against in the lab. We could also

install a honeypot, expose it to the Internet, and examine the attacks targeted against

it. Finally, we could install the system on production servers and refine its usability

in a real-world environment.
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Appendix A

Selected code

In this section we include some of the code developed for the instrumentation com-

ponent. The scripts for extracting offsets and the preloads have been released for

others to use at https: //github. com/vmware/vprobe-toolkit. The analysis code,

not being particularly novel, is not included here.

A.1 Windows instrumentation

A.1.1 pdbparse: extracting offsets

The Windows instrumentation involves pdb2structs.py, a Python script that uses

the pdbparse[5] library to extract offsets from Windows debugging symbols files (.pdb

files).

pdb2structs.py

#!/usr/bin/python

# pdb2structs.py

# A utility that extracts structures from a .pdb file (Windows debugging

# information).

# pdb2structs.py accepts a .pdb file (Windows debugging information) and a list

# of structure fields, and outputs an Emmett file that defines requested
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# structures and fields within the structures. A user can request all fields in

# a structure, or select just a handful of them. The generated file will use

# the proper offsets to make an Emmett sparse structure.

# See also extractVmkTypes.py for a similar script to find VMkernel offsets.

# Usage: pdb2structs.py debuginfo.pdb < fieLds-needed.txt

# Examples:

# - Extract all members of the UNICODE_STRING structure:

# echo '_UNICLDESTRING.*' / pdb2structs.py ntkrnlmp.pdb

# - Extract the CurrentThread pointer offset from the KPRCB structure:

# echo '_KPRCB.Current Thread' | pdb2structs.py ntkrnlmp.pdb

# - Extract the Tcb, Pcb, and ImageFileName from the ETHREAD and EPROCESS

# printf '_ETREAD. Tcb\nEPROCESS.Pcb\nEPROCESS.ImageFileName' \

# | pdb2structs.py ntkrnlmp.pdb

# (To extract fields from multiple structures and/or multiple fields from one

# structure, just put one entry per line.)

# TODO:

# * Add support for typedefs, enums, unions, and bitfields

# * Add support for dumping all types in a .pdb file, and loading them back as

# an Emmett type database

# * Correctly handle nested structs --- struct-in-union-in-struct gets

# gets flattened to a struct, and Emmett won't handle it because it has non-

# monotonic offsets

# examples/print-ctypes.py in the pdbparse distribution may be helpful, as a

# starting ground for a replacement for this script, or for guidance on how to

# use pdbparse.

# Re todo 3: It appears that print-ctypes.py interprets the existence of

# structures and unions under certain circumstances (see
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# member_list_fromoffset_map). We could probably just have multiple members

# with the safe offset (given an Emmett change to eliminate the "Non-monotonic

# offset for field" error), or also imagine structs and unions not in the .pdb

# file.

# Modifying printctypes.py to print Emmett type definitions also looks pretty

# doable. It seems somewhat plausible that the upstream maintainer would accept

# a patch to making hooking in an Emmett theme easy (or even ship with the

# Emmett theme), if we wanted to pursue that. (He's accepted other third-party

# patches without much hassling.)

import collections

import sys

import pdbparse

primitiveTypes = {

"VOID": "void",

"CHAR": "char",

"SHORT": "short",

"LONG": "long",

"QUAD": "long long",

}

def canonicalizeType(typeRef):

"""Convert a type from pdbparse into an Emmett type

@param typeRef: a string or pdbparse structure representing the type

@return: a (typeName, prefix, suffix) describing the type for Emmett

prefix =

suffix =

if type(typeRef) == str:

assert typeRef.startswith("T_"), \

"Primitive types should start with T_; got "%s'" ' (typeRef, )

typeRef = typeRef [2:]
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if typeRef.startswith("64P"):

prefix = "*"

typeRef = typeRef[3:]

if typeRef . startswith("U"):

unsigned = True

typeRef = typeRef[1:]

else:

unsigned = False

assert typeRef in primitiveTypes, "Unknown primitive type %s" % (typeRef, )

typeName = primitiveTypes[typeRef]

if unsigned: typeName = "unsigned %s" ' (typeName, )

else:

if typeRef.leaf.type == 'LFPOINTER':

typeName, prefix, suffix = canonicalizeType(typeRef .utype)

prefix = "*" + prefix

elif typeRef.leaf-type == 'LFARRAY':

typeName, prefix, suffix = canonicalizeType(typeRef .element-type)

if suffix != "":

raise NotImplementedError, \

"Multi-dimensional arrays are not currently supported."

suffix = "[Ud]" % (typeRef.size, )

elif typeRef.leaf-type == 'LFSTRUCTURE':

typeName = "struct 's" % (typeRef.name, )

elif typeRef.leaf.type == 'LF-MODIFIER':

typeName, prefix, suffix = canonicalizeType(typeRef.modifiedtype)

if typeRef.modifier['const']: typeName = "const 's" ' (typeName, )

else:

raise NotImplementedError, "Unknown leaf type %s" ' (typeRef.leaf -type, )

return typeName, prefix, suffix

def dictifySubstructs(substructs):

"""Convert a sequence of structures to a dictionary

@param substructs: a sequence of structures

@return: a dictionary with the same values, keyed by name
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ret = {}

for struct in substructs:

ret[struct.name] = struct

return ret

def formatFieldspec(fieldspec):

"""Format a single field of a structure

@param fieldspec: pdbparse's description of the field to be formatted

@return: string representation of the desired field

fieldOffset = fieldspec.offset

fieldType, fieldPrefix, fieldSuffix = canonicalizeType(fieldspec.index)

fieldName = fieldspec.name

return " @OxX03x %-19s %lsss;" ' C

fieldOffset, fieldType, fieldPrefix, fieldName, fieldSuffix,

)

def formatStruct(structInfo, fields):

"""Format the structure provided with the given fields.

Oparam structInfo: pdbparse's representation of a single structure

@param fields: requested fields (as strings with just the fieldname)

@return: string representation of the desired structure

name = structInfo.name

substructs = dictifySubstructs(structInfo.fieldlist.substructs)

if '*' in fields:

fields = [struct.name for struct in structInfo.fieldlist.substructs]

fieldSpecs = [formatFieldspec(substructs[field]) for field in fields]

return "struct %s {\ns\n};\n" ' (name, "\n".join(fieldSpecs), )

def formatStructs(pdbfile, fields):

"""Format the requested structures from a given .pdb file.
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Oparam pdbfile: name of .pdb file

@param fields: requested fields (as struct.field strings)

@return: string representation of the desired structures

pdb = pdbparse.parse(pdbfile)

structs = collections.defaultdict(list)

for fieldspec in fields:

struct, dot, field = fieldspec.strip(O.partition('. )

if field == "":

if struct not in structs:

structs[struct] = list()

else:

structs[struct].append(field)

pdbStructs = pdb.STREAMTPI.structures

structSpecs = [

formatStruct (pdbStructs [structName], structFields)

for structName, structFields in structs.items()

I

return "\n\n".join(structSpecs)

if -_name__ == '-_main__':

if len(sys.argv) != 2:

print "Usage: %s debuginfo.pdb < fields-needed.txt" % (sys.argv[0], )

sys.exit(1)

print formatStructs(sys.argv[1], sys.stdin.readlines()
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win7-amd64-offsets .emt: Example output

struct _ETHREAD {

QOxOOO struct _KTHREAD

@Ox3b8 struct _CLIENTID

struct _UNICODESTRING {

@OxOOO unsigned short

@0x002 unsigned short

QOxOO8 unsigned short

struct _KPCR {

@Ox18O struct _KPRCB

};

struct _KPRCB {

@OxOO8 struct _KTHREAD

struct _KTHREAD {

@Ox21O struct _KPROCESS

Length;

MaximumLength;

*Buffer;

Prcb;

*CurrentThread;

*Process;

struct _EPROCESS {

QOxOOO struct _KPROCESS Pcb;

QOx290 void *InheritedFromUniqueProcessId;

QOx390 struct _SEAUDITPROCESSCREATIONINFO SeAuditProcessCreationInfo;

@Ox2eO unsigned char ImageFileName[15];
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struct _OBJECTNAMEINFORMATION {

QOxOOO struct _UNICODESTRING Name;

};

struct _SEAUDITPROCESSCREATIONINFO {

@OxOOO struct _OBJECTNAMEINFORMATION *ImageFileName;

struct _CLIENTID {

cOxOOO void

OxOO8 void

*UniqueProcess;

*UniqueThread;

struct _KPROCESS {

A.1.2 Preload

The Windows preload adds a handful of additional utility functions to the structures

generated by pdb2structs.py.

win7-amd64-preload.emt: Example output

* This also requires that win7-amd64-offsets.emt exists. It can be generated

* with

* ./pdb2structs.py ntkrnlmp.pdb < win7-structs.txt > win7-amd64-offsets.emt

* (where ntkrnimp.pdb is obtained from your Windows install).

*

* This preload does not use guest symbols. However, users considering setting

* breakpoints or otherwise using guest symbols should be aware that Win7 uses
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* ASLR for the kernel, so rebooting the guest requires getting fresh symbols.

memmodel guest64;

#include "win7-amd64-offsets. emt"

typedef struct _UNICODESTRING UNICODESTRING;

typedef struct _EPROCESS EPROCESS;

typedef struct _ETHREAD ETHREAD;

typedef struct _KTHREAD KTHREAD;

typedef struct _KPCR KPCR;

* ucs2ascii --

* Convert a UCS2 string containing only ASCII characters to an ASCII emmett

* string

string ucs2ascii(UNICODESTRING *str) {

int i;

string ret;

/* reset the string to empty on each call (PR 707389) */

ret = "

for(i = 0; i < str->Length; i += 2) {

ret = ret + (string)&((char*)str->Buffer)[i];

}

return ret;

}

* guestload --

* guestloadstr --

* Wrappers around getguest* that return 0 for reads of the null page.

int

guestload(int *addr) {
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return addr < (1 << 12) ? 0 : *addr;

}

long

guestloadlong(long *addr) {

return addr < (1 << 12) ? 0 : *addr;

}

string

guestloadstr(char *addr) {

return addr < (1 << 12) ? "<NULL>" : (string)addr;

}

* Initialize offsets.

int calcPcbOffset() {

struct _EPROCESS *null-process = 0;

int pcbOffset;

pcbOffset = (int)(&null-process->Pcb);

return pcbOffset;

I

int calcTcbOffset() {

struct _ETHREAD *null-thread = 0;

int tcbOffset;

tcbOffset = (int)(&null-thread->Tcb);

return tcbOffset;

I

VMMLoad

{

pcbOffset = calcPcbOffseto;

if(pcbOffset != 0) {

printf("Warning: Pcb is not at the start of the _EPROCESS structure.\n"
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"This may break curprocptr() and related primitives.\n");

}

tcbOffset = calcTcbOffset(;

if(tcbOffset != 0) {

printf("Warning: Tcb is not at the start of the _ETHREAD structure.\n"

"This may break curethrptr() and related primitives.\n");

}

}

KPCR *

kpcr() {

return (struct KPCR*) GSBASE >= OxO0000000 ? GSBASE KERNELGSBASE;

}

KTHREAD *

curthrptr() {

return kpcr(->Prcb.CurrentThread;

}

ETHREAD *

curethrptr() {

/* This assumes that ETHREAD.Tcb remains at offset 0. */

return (ETHREAD*)kpcr()->Prcb.CurrentThread;

}

EPROCESS *

curprocptr() {

/* This assumes that EPROCESS.Pcb remains at offset 0. */

return (EPROCESS*) curthrptr O->Process;

}

* curprocname --

* curpid

* curtid --

* curppid --
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* Return the current name and pid/tid/ppid of the current process.

string

curprocname () {

return (string)curprocptr()->ImageFileName;

}

int

curpid C) {

return curethrptro->Cid.UniqueProcess;

}

int

curtid () {

return curethrptr()->Cid.UniqueThread;

}

long

curppid C) {

return curprocptr()->InheritedFromUniqueProcessId;

}

UNICODESTRING *

threadimage-file (KTHREAD *thread)

{

/* This assumes that EPROCESS.Pcb remains at offset 0. */

return &((EPRCESS*)thread->Process)->SeAuditProcessCreationInfo

.ImageFileName->Name;

}

A.1.3 Instrumentation proper

The instrumentation itself is available in Figure 4-7 in Section 4.3.
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A.2 Linux instrumentation

The Linux instrumentation involves a Linux kernel module and associated Emmett

library that help accessing kernel data structures, and Emmett code that uses said

library to generate a list of system calls.

A.2.1 Kernel module

The Linux instrumentation uses a custom Linux module (described in Section 4.2.3)

to assemble the required offsets and corresponding data structures.

vprobe-offsets.c: The kernel module itself

* vprobe-offset.c --- Module to dump offsets of fields from taskstruct and

* the current task_struct.

#include <Linux/module.h>

#incLude <Linux/kernel. h>

#include <Linux/init.h>

#inc lude < inux/mount .h>

#include <linux/f s. h>

#include <iinux/proc-fs.h>

#include <Zinux/seq-fie.h>

#include <Zinux/sched.h>

#incLude <I inux/version. h>

#if LINUX_ VERSION_CODE >= KERNELVERSION(2, 6, 33)

#include <generated/utsrelease.h>

#elif LINUXIVERSION_ CODE >= KERNEL_ VERSION (2, 6, 18)

#include <Linux/utsrelease.h>

#else

/* Prior to 2.6.18, version.h has the UTS_RELEASE definition */

#endif

#if LINUX VERSION_CODE < KERNELVERSION(2, 6, 11)

#error "vprobe-offsets module is not supported on kernels earlier than 2.6.11"

#endif
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* Depending on the kernel version, curthrptr gets a pointer to either the,

* thread-info, the pda or the per cpu area for each cpu.

* taskoffset contains the offset to where the current taskstruct is stored

* in the curthrptr area.

#ifdef CONFIG_X86_32

#define MEMMODEL "guest32"

#if LINUXVERSION_CODE >= KERNELVERSION(2, 6, 22)

#define curthrptr "FSBASE"

#if LINUX_ VERSION_CODE >= KERNELVERSION(2, 6, 34)

#define task-offset &currenttask

#else /* 2.6.22 to 2.6.33 */

#if LINUX_VERSIONCODE < KERNELVERSION (2, 6, 25)

#define percpu-var(var) percpu__##var

#endif

#define task-offset 8per-cpuvar(currenttask)

#endif

#elif LINUX_ VERSION_CODE >= KERNELVERSION(2, 6, 20)

/* No swapgs for i386 */

#define curthrptr "GSBASE"

#define task-offset offsetof(struct i386_pda, pcurrent)

#eise

/* FIXME: This doesn't work in user context */

#if THREADSIZE == 4096

#define curthrptr "(RSP & Oxfffff000)"

#elif THREADSIZE == 8192

#define curthrptr "(RSP & OxffffeoOO)"

#else

#error "Invalid thread size"

#endif

#define task-offset 0

#endif /* LINUXVERSIONCODE */

#else /* !X86_32 */
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#define MEMMODEL "guest64"

* This might be either GSBASE or KERNELGSBASE; testing the CPL isn't

* *quite* right, because there's a short window immediately after the

* hardware syscaLL where the right value is still in KERNELGSBASE,

* i.e. before swapgs.

#define curthrptr "(GSBASE >= 0x100000000 ? GSBASE : KERNELGSBASE)"

#if LINUX_ VERSIONCODE >= KERNEL_ VERSION(2, 6, 33)

#define taskoffset &currenttask

#e L if LINUX_ VERSIOA_ CODE >= KERNEL VERSION(2, 6, 30)

#define taskoffset &per-cpu-var(current-task)

#eise

#define taskoffset offsetof(struct x8664_pda, pcurrent)

#endif /* LINUX_ VERSION CODE */

#endif /* X86_32 */

#if LINUX VERSION_CODE >= KERNEL_VERSION(2, 6, 26)

* Linux versions back to 2.6.20 should be compatible with the

* core file-related stuff. (struct mmstruct).exe-file is new in

* 2.6.26, though. For simpLicity, just use one version everything.

#define HAVE_LINUXFILES 1

#if LINUX_VERSION_CODE >= KERNELVERSION (3, 3, 0)

struct mount {

struct list-head mnt.hash;

struct mount *mnt-parent;

struct dentry *mntmountpoint;

struct vfsmount mnt;

/* more

#define __OFF_VFSMOUNT (offsetof(struct mount, mnt))

#else

71



#define __0FF_VFSMDUNT 0

#endif

#endif

static int vprobe-offsetsshow(struct seq.file* m, void *v)

{

seq-printf (m,

"/* Linux offsets for kernel version %s */\n"

"memmodel Xs;\n"

#ifdef HAVELINUX_FILES

"\n#define HAVELINUX_FILES 1\n"

"1/* struct dentry */\n"

"#define __OFFDENTRYPARENT OxYp\n"

"#define __OFFDENTRYNAME OxYp\n"

"/* struct file / struct path */\n"

"#define __OFFFILEPATH OxYp\n"

"/* struct vfsmount / mount */\n"

"#define __OFF_VFSMOUNT OxYx\n"

"\n/* struct mmstruct */\n"

"#define __OFFEXE Oxp\n"

#endif

"\n/* struct task struct */\n"

"#define __OFF_TGID OxYp\n"

"#define __OFFPID Oxp\n"

"#define __OFFPIDS Oxp\n"

"#define __OFFCOMM OxYp\n"

"#define __OFFPARENT Oxp\n"

"#define __OFFMM Oxp\n"

"\n/* struct currentthread */\n"

"#define __OFFTASK Oxp\n"

"#define __CURTHRPTR %s\n"
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UTSRELEASE,

MEMMODEL,

#ifdef HAVELINUX FILES

(void*) offsetof(struct

(void*) offsetof(struct

(void*) offsetof(struct

(void*) __OFFVFSMOUNT,

(void*) offsetof(struct

#endif

(void*) offsetof(struct

(void*) offsetof(struct

(void*) offsetof(struct

(void*) offsetof(struct

(void*) offsetof(struct

(void*) offsetof(struct

(void*) taskoffset,

curthrptr);

dentry, dparent),

dentry, d_name),

file, f-path),

mm_struct, exefile),

taskstruct,

taskstruct,

task.struct,

taskstruct,

taskstruct,

task-struct,

tgid),

pid),

pids),

comm),

parent),

mm),

static int vprobe-offsets-open(struct inode * inode, struct file * file)

{

return single-open(file, vprobe_offsets-show, NULL);

}

static const

.open

.read

.llseek

.release

};

struct file-operations vprobeoffsets-fops = {

= vprobe-offsetsopen,

= seqread,

= seq_lseek,

= singlerelease,

static int __init vprobe-offsets-init(void)

{

#if LINUXVERSIN_CODE <= KERNELVERSION(2, 6, 24)
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struct proc-dir-entry *p;

p = create.proc.entry("vprobe-offsets", 0, NULL);

p->proc.fops = &vprobe-offsets-fops;

#eLse

proc-create('vprobe-offsets", 0, NULL, &vprobeoffsetsfops);

#endif

printk(KERNINFO "Loaded vprobe-offsets.ko");

return 0;

}

module-init(vprobe-offsets-init);

static void __exit vprobe-offsets-exit(void)

{

remove-proc.entry("vprobe-offsets", NULL);

printk(KERNINFO "Unloading vprobe-offsets.ko");

}

module-exit(vprobeoffsetsexit);

MODULELICENSE("GPL");

/proc/vprobe-offsets: Example output

/* Linux offsets for kernel version 2.6.32-41-server */

memmodel guest64;

#define HAVELINUX_FILES 1

/* struct dentry */

#define __OFFDENTRYPARENT Ox00000000000028

#define __OFFDENTRYNAME Ox0000000000000030

/* struct file / struct path */

#define __OFF_FILE_PATH Ox0000000000000010

/* struct vfsmount / mount */

#define __OFF_VFSMOUNT Ox0

/* struct mmstruct */

#define __OFFEXE Ox0000000000000350

/* struct taskstruct */
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__OFFTGID

__OFFPID

__OFFPIDS

__OFFCOMM

__OFFPARENT

__OFFMM

Ox000000000002bc

0x00000000000002b8

0x0000000000000328

0x0000000000000490

Ox000000000002dO

0x0000000000000290

/* struct current_ thread */

#define __OFF.TASK Ox000000000000cbc0

#define __CURTHRPTR (GSBASE >= 0x100000000 ? GSBASE : KERNELGSBASE)

A.2.2 Preload

The Linux preload uses the output produced by the kernel module to provide conve-

nient access to various Linux kernel data structures. On a system with the module

installed, this output is available at /proc/vprobe-off sets. It should be copied to

the host as linux-offsets.emt.

linux-processes.emt: Emmett library using the offsets

* Provides interface to get pid, process name and tid of the currently

* running process, common for both 32 and 64 bit.

*

* linux-offsets.emt

* Defines offsets of some fields in the Linux kernel data structures.

* These offsets come from the output of /proc/vprobe-offsets within

* the guest.

#include "Linux-offsets.emt"

* Structure definitions

*

* These offsets can be retrieved by looking at /proc/vprobe-offsets in the

* guest with the vprobe-offsets kernel module Loaded. The comment next
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* to each field indicates which field you want.

struct list-head {

struct list-head *next, *prev;

};

struct qstr {

unsigned int hash;

unsigned int len;

const unsigned char *name;

};

#ifdef HAVELINUX_FILES

struct dentry {

0__OFFDENTRYPARENT struct dentry *d-parent; /* dentry->& parent */

D__OFFDENTRYNAME struct qstr d_name; /* dentry->d&name */

}

struct path {

struct vfsmount *mnt;

struct dentry *dentry;

};

struct file {

0__OFFFILEPATH struct path f-path; /* file->f path */

}

struct vfsmount { };

struct mount {

struct list_head mnt_hash;

struct mount *mnt-parent; /* fs we are mounted on

struct dentry *mnt-mountpoint; /* dentry of mountpoint */
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struct mmstruct {

-__OFFEXE struct file * exe-file; /* mm-struct-exe

}

#endif

struct task-struct {

-__OFFTGID int tgid; /* tgid */

0__OFFPID int pid; /* pid */

Q__OFFCOMM char comm[16]; /* comm

__OFFPARENT struct task.struct *parent; /* parent */

#ifdef HAVELINUXFILES

D__OFFMM struct mmstruct *mm; /* mm

#endif

struct current-thread {

0__OFFTASK struct task-struct *current; /* current taskstruct */

* guestload --

* guestloadstr --

* Wrappers around getguest* that return 0 for reads of the null page.

void *

guestload(void **addr) {

return addr < (1 << 12) ? 0 : *addr;

}

string

guestloadstr(char *addr) {

return addr < (1 << 12) ? "<NULL>" : (string)addr;

}

struct task-struct *

curprocptr() {
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struct currentthread *thrptr;

thrptr = __CURTHRPTR;

return guestload(&thrptr->current);

}

string

curprocname() {

return guestloadstr(curprocptro->comm);

}

int

curtid() {

return curprocptro->pid;

}

int

curpid() {

return curprocptro->tgid;

}

int

curppid() {

return curprocptr()->parent->tgid;

}

/* File-handling related */

string get-qstr-name(struct qstr * str) {

string ret;

getgueststr(ret, str->len, str->name);

return ret;

}

#ifdef HAVELINUX_FILES

struct mount

*realmount(struct vfsmount *mnt)
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{

return (struct mount *) ((char*)mnt - __OFF_VFSMOUNT);

}

string path-toascii(struct mount * mnt, struct dentry * dentry)

{

string ret, parent-path;

if (dentry == dentry->d-parent)

{

if (mnt == mnt->mnt-parent I mnt->mnt-parent == NULL)

{

ret = "";

} else {

ret = path-toascii(mnt->mnt-parent, mnt->mnt.mountpoint);

}

} else {

parent-path = path-to-ascii(mnt, dentry->d&parent);

sprintf(ret, "%s/%s", parent-path, get.qstr-name(&dentry->d&name));

}

return ret;

}

string getjfile-path(struct file * file) {

string path;

struct mount * mnt;

struct dentry * dentry;

try {

mnt = realmount(file->f_path.mnt);

dentry = file->f-path.dentry;

path = path.to.ascii(mnt, dentry);

} catch {

printf("Caught an exception:\n"

"name = %s\n"

"description = %s\n", excnameo, excdesco);

path = "<unknown>";

}
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return path;

}

#endif

A.2.3 Instrumentation proper

As described in Section 4.3, the instrumentation itself uses the Linux preload to

display information about syscalls as they are made. Unlike the Windows instrumen-

tation (Figure 4-7), the Linux instrumentation can display certain syscall names and

arguments, return values, and optionally disable printing the binary path. It uses a

small architecture-dependent stub and a larger architecture-independent shared core.

strace-linux32.emt: 32-bit stub

#incLude "strace-Linux-common.emt"

VMMLoad {

NR.open = 5;

NR-read = 3;

NRwrite = 4;

NRgetpid = 20;

NR-clone = 120;

NRfork = 2;

NRvfork = 190;

NR-execve = 11;

NR_chmod = 15;

NRexitgroup = 252;

NR-prctl = 172;

}

GUEST:ENTER:syscall-call {

before.syscall-handlercall("syscall-call");

}

GUEST:ENTER:sysenterdocall {

beforesyscall.handler.call("sysenter-docall");

}
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void

before-syscall-handler-call (string source)

{

int syscall-num, sys-argO, sys-argl, sys-arg2, sys-arg3, sys.arg4, sys-arg5;

syscall-num = RAX;

sys.argO = guestload(RSP+0);

sys-argl = guestload(RSP+4);

sys-arg2 = guestload(RSP+8);

sys-arg3 = guestload(RSP+12);

sys-arg4 = guestload(RSP+16);

sys-arg5 = guestload(RSP+20);

handle.syscall(source, syscall.num, sys-argO, sys-argl, sys-arg2,

sys-arg3, sys-arg4, sys.arg5);

}

#if TRACERETURNS

GUEST:OFFSET:syscallexit:0 {

after-.syscallhandler "syscall-exit");

}

GUEST:OFFSET:sysenter-exit:0 {

after syscall-handler("sysenter-exit");

}

#endif
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strace-linux64.emt: 64-bit stub
#include "strace-Linux-common.emt"

VMMLoad {

NR_open = 2;

NRread = 0;

NRwrite = 1;

NR-getpid = 39;

NR-clone = 56;

NRfork = 57;

NR-vfork = 58;

NRexecve = 59;

NR-chmod = 90;

NR-exit-group = 231;

NR-prctl = 157;

}

GUEST:ENTER:system-call {

int syscall-num, sys-argl, sys-arg2, sys-arg3, sys-arg4, sys-arg5, sys-arg6;

// See "ENTRY(systemrcaLL)" (in particular, 'Register setup" just above it)

// around line 608 in arch/x86/kernel/entry_64.S for the Linux 64-bit

// syscalL calling convention

syscallnum = RAX;

sys-argO = RDI;

sys-argi = RSI;

sys-arg2 = RDX;

sys-arg3 = R10;

sys-arg4 = RB;

sys-arg5 = R9;

handle-syscall("system-call", syscall-num, sysargO, sys-argi, sys-arg2,

sys.arg3, sys-arg4, sys-arg5);

}

#if TRACE_RETURNS
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GUEST:OFFSET:ret-from-sys-call:0 {

after-syscall-handler("ret-from-sys-call");

}

#endif

strace-linux-common.emt: Common core

* This VProbe script only works with Linux guests.

*

To use this script you must first copy /proc/kallsyms from the guest

to the host (which cannot be done using vmrun), and get a correct

util/Linux-module/inux-processes.emt. Once you have a local

copy run the following:

* vprobe -s locai.kallsyms <path to vmx> \

* util/linux-module/linux-processes.emt ids/strace-linux[arch].emt \

* [-DTRACE_RETURNS=val] [-DDECODESYSCALLS=val]

* [-DPRINTALLSYSCALLS=val] [-DPRINT BINARY_PATH=valj

*

* Note that setting all these options to 1 requires increasing

* vprobe.maxCodeBytes.

*

TRACERETURNS

TRACERETURNS 0

DECODE_SYSCALLS

DECODE_SYSCALLS 0

PRINTALLSYSCALLS

PRINTALLSYSCALLS 1

#ifndef PRINTBINARY_PATH
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*

*

#ifndef

#define

#endif

#ifndef

#define

#endif

#ifndef

#define
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#define PRINTBINARYPATH 1

#endif

#if ! (DECODE_SYSCALLS II PRINTALLSYSCALLS)

#warning "Neither decoding syscaLLs nor printing all syscails"

#warning "No syscalLs will be output."

#endif

* The syscall table is in arch/x86/include/asm/unistd_[archi.h

*

* In your appropriate hook file, make sure to define the following

int

NR-open,

NRread,

NR_write,

NR-getpid,

NRclone,

NRfork,

NR_vfork,

NRexecve,

NRchmod,

NR-exit-group,

NR_prctl;

void

handlesyscall(string source, int syscall-num,

int sys-argO, int sys-argl, int sys-arg2,

int sys-arg3, int sys-arg4, int sys-arg5)

{

string syscall-name, syscallargs, arg.path;

string comm, binary-path;

int tid, pid, ppid;

int print;
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// Separate from above line because of PR 707389

print PRINTALLSYSCALLS;

comm = curprocnameo;

tid = curtidO;

pid = curpidO;

ppid curppidO;

#if DECODESYSCALLS

if (syscallnum == NR.open) { // open

arg-path = guestloadstr(sys-argO);

syscall-name = "open";

sprintf(syscallargs, "Oxx=\"7s\", flags=%x, mode=%x",

sys-argO, arg-path, sys.argl, sys-arg2);

print = 1;

} else if (syscallnum == NR-read 11 syscall-num == NRwrite) {

if (syscall-num == NRlread) {

syscallname = "read";

arg-path = "<undef>";

} else {

assert(syscall-num == NRwrite);

syscall-name = "write";

arg-path = "<disabled>";

}

sprintf(syscall.args, "fd=%d, text=%s, count=%d",

sys-argO, arg-path, sys-arg2);

print = 1;

} else if (syscallnum == NR-getpid) { // getpid

syscall-name = "getpid";

sprintf(syscall.args, "[curprocptr: x]", curprocptr());

print = 1;

} else if (syscall.num == NR-clone) { // cLone

syscall-name = "clone";

sprintf(syscall-args,

"childstackbase=%x, stack-size=%x, flags=%x, arg=%x",

sys-argO, sys-argl, sys-arg2, sys-arg3);

print = 1;
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} else if (syscall_num == NRffork 11 syscallnum == NR-vfork) {

syscall-name = (syscall-num==NRffork) ? "fork" "vfork";

sprintf(syscall-args, "regs=%x", sys-argO);

print = 1;

} else if (syscall-num == NRexecve) { // execve

getgueststr(arg-path, 255, sys-argO);

syscall.name = "execve";

sprintf(syscall-args, "\"7s\", argv=Xx, envp=%x, regs=%x",

arg-path, sys-arg, sys-arg2, sys-arg3);

print = 1;

} else if (syscall.num == NR-chmod) { // chmod

getgueststr(arg-path, 255, sys-argO);

syscallname = "chmod";

sprintf(syscall.args, "path=\"%s\", mode=(octal) %o", arg-path, sys-argl);

print = 1;

} else if (syscallnum == NRexitgroup) { // exit-group

syscall-name = "exitgroup";

sprintf (syscall-args, "%d", sysargO);

print = 1;

} else if (syscall-num == NR&prctl) { // prctL

syscall-name = "prctl";

if (sys-argO == 15) { // PRSETNAME

getgueststr(argpath, 255, sysarg);

sprintf(syscallargs, "PRSETNAME, '%s'", argpath);

} else {

sprintf(syscallargs, "prctl_%d, %x, %x, %x, %x",

sys-argO, sys-argl, sys-arg2, sys-arg3, sysarg4);

}

print = 1;

} else {

#eLse // !DECODESYSCALLS

{

#endif

sprintf(syscall-name, "syscallXd", syscall-num);

syscall-args =

1; // bLock needs to have a type of int (see if statement does)
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}

if (print) {

#if defined(HAVE_-LINUX FILES) 6 PRINTBINARYPATH

binary-path = get-file-path(curprocptr()->mm->exe-file);

#else

binary-path = "<binary>";

#endif

printf("t=%d/p=%d/pp=%d (%s # %s): Xs(Xs);\n",

tid, pid, ppid, comm, binary-path, syscall-name, syscall-args);

}

}

void

after-syscallhandler(string source)

{

string comm, binary-path;

int tid, pid, ppid;

comm = curprocname (;

tid = curtido);

pid = curpidO;

ppid = curppid(;

binary-path = "<binary>";

printf("t=%d/p=%d/pp=%d (%s # %s): =%d\n",

tid, pid, ppid, comm, binary-path, getgpr(REGRAX));

}

VNMLoad { printf("Starting strace\n"); }
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