
Optimizing Tilera's Process ARCfVS
Scheduling via Reinforcement Learning

by

Deborah Hanus

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013

© Massachusetts Institute of Technology 2013. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

ertified by..
(-I

Accepted by...............

February 5, 2013

David Wingate
Research Scientist
Thesis Supervisor

Dennis Freeman
Chairman, Department Committee on Graduate Theses

Smart Scheduling:

2

Smart Scheduling: Optimizing Tilera's Process Scheduling

via Reinforcement Learning

by

Deborah Hanus

Submitted to the Department of Electrical Engineering and Computer Science
on February 5, 2013, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

As multicore processors become more prevalent, system complexities are increasing.
It is no longer practical for an average programmer to balance all of the system
constraints to ensure that the system will always perform optimally. One apparent
solution to managing these resources efficiently is to design a self-aware system that
utilizes machine learning to optimally manage its own resources and tune its own
parameters. Tilera is a multicore processor architecture designed to highly scalable.
The aim of the proposed project is to use reinforcement learning to develop a reward
function that will enable the Tilera's scheduler to tune its own parameters. By en-
abling the parameters to come from the system's "reward function," we aim eliminate
the burden on the programmer to produce these parameters. Our contribution to this
aim is a library of reinforcement learning functions, borrowed from Sutton and Barto
(1998) [35], and a lightweight benchmark, capable of modifying processor affinities.
When combined, these two tools should provide a sound basis for Tilera's scheduler
to tune its own parameters. Furthermore, this thesis describes how this combina-
tion may effectively be done and explores several manually tuned processor affinities.
The results of this exploration demonstrates the necessity of an autonomously-tuned
scheduler.

Thesis Supervisor: David Wingate
Title: Research Scientist

3

4

Acknowledgments

I would like to thank my advisor and mentor, David Wingate, for his wisdom, pa-

tience, and support. His incredibly positive outlook was refreshing and motivating,

even when things did not go as planned. I appreciate the time resources, and ideas

that Profs. Anant Agarwal, Josh Tenenbaum, and Alan Willsky contributed to this

project. Sharing workspace with other inference-minded grad students in the Stochas-

tic Systems Group and the Computational Cognitive Science Group made the time

I spent working twice as productive and three times as entertaining (especially on

days when cbreezy came to lab). Additionally, Hank Hoffman and Jonathan Eastep's

conversations brought me up to speed on the intricacies of the TILE64 architecture.

I appreciate the continued support and mentorship of my undergraduate research

advisors, research advisors Profs. Nancy Kanwisher and Ed Vul. Without Ed's intro-

duction to David, I may not have been able to find a Master's thesis that combined

my interests in machine learning and computer systems.

Finally, I would like to thank my friends and family for their love and support.

5

6

Contents

1 Vision 13

1.1 Why a Smart Scheduler? 13

1.2 Sum m ary . 14

2 Previous Work 17

2.1 Advances in Multicore Processing . 17

2.2 Why Reinforcement Learning? . 19

2.3 Reinforcement Learning in Systems 20

3 Tools 23

3.1 Reinforcement Learning . 23

3.1.1 Overview . 23

3.1.2 Off-policy v. On-policy learning 24

3.2 TILE64TM Architecture . 25

4 Problem Statement 27

4.1 Phase 1: Learning . 27

4.2 Challenges . 28

4.3 Phase 2: Controlling . 28

4.4 Phase 3: Scheduling . 29

4.5 Challenges . 29

5 Measuring performance 31

7

6 Results

6.1 Default .

6.2 Stripes .

6.3 Minimum Distance from DRAM

6.3.1 Strips

6.3.2 Tiles

6.4 Scattered Blocks

6.5 Streamlined Blocks

6.6 Summary .

7 Concluding Remarks

7.1 Contributions .

7.2 Future Directions .

8

33

34

35

35

36

37

37

38

39

41

41

42

.

.

.

.

.

.

.

.

List of Figures

3-1 Reinforcement learning uses the information acquired from online ob-

servations to plan an optimal set of actions. For example, this robot

uses information he observes from his state space, such as the weather,

obstacles, and potential reward, to plan an optimal set of actions to

navigate his environment [43]. 24

3-2 TILE64TM is a 64-core processor developed by Tilera, which holds

an 8x8 fully connected mesh of 64 "tiles," which contain a processor,

cache, and non-blocking router [7]. 25

4-1 An autonomous system must be able to observe the state of the system;

use a policy to decide how to act; and make then act to make the next

state of the system [6]. 29

4-2 In the operating system, the reinforcement learning algorithm will uses

the information acquired from online observations in the scheduler to

plan an optimal set of actions, its policy. 30

5-1 Schematic of one-stage of our eight-stage pipelined benchmark 31

6-1 (left) Each of the processors 64 cores will be arranged in the Default

configuration, so that the threads for each stage are scheduled by de-

fault. (right) Performance of the default configuration, measured by

runtime as the number of worker threads per stage varies. 34

9

6-2 (left) Each of the processors 64 cores will be arranged in the Stripes

configuration, so that the Stage 1 threads, execute on cores 0-7, Stage

2 on 8-15, etc. (right) Performance of the Stripes configuration, mea-

sured by runtime as the number of worker threads per stage varies. . 35

6-3 (left) Each of the processors 64 cores will be arranged in the Minimum

Distance Strips from DRAM configuration, so that the threads for

each stage are scheduled as shown. (right) Performance of the min-

imum distance configuration, measured by runtime as the number of

worker threads per stage varies. 36

6-4 (left) Each of the processors 64 cores will be arranged in the Minimum

Distance from DRAM configuration, so that the threads for each stage

are scheduled as shown. (right) Performance of the minimum distance

configuration, measured by runtime as the number of worker threads

per stage varies. 37

6-5 (left) Each of the processors 64 cores will be arranged in the Scattered

Blocks configuration, so that the threads for each stage is scheduled

as far away as possible from its adjoining stages. (right) Performance

of the default configuration, measured by runtime as the number of

worker threads per stage varies. 38

6-6 (left) Each of the processors 64 cores will be arranged in the Stream-

lined Blocks configuration, so that the threads for each stage is sched-

uled as far away as possible from its adjoining stages. (right) Perfor-

mance of the default configuration, measured by runtime as the number

of worker threads per stage varies. 39

6-7 Comparison of all CPU affinity configurations. Performance of the

default configuration, measured by runtime as the number of worker

threads per stage varies. 39

10

List of Tables

11

12

Chapter 1

Vision

1.1 Why a Smart Scheduler?

The increasing need for faster computers with intense computational powers dictates

that the concurrent processing capability of multicore processors not only become an

integral component of current systems research but also continue to escalate through

the future [26]. As multicore processors become more prevalent, system complexities

increase. It is no longer practical for an average programmer to balance all of the

system constraints to ensure that the system will always perform optimally. One

apparent solution to managing these resources efficiently is to design a self-aware

system that utilizes machine learning to optimally manage its own resources and

tune its own parameters [17].

Recent advances in multicore processing now enable researchers to simulate pro-

grams using thousands of cores [25]. In practice, however, not all of these cores

operate identically. Each of these cores may be running separate processes with dis-

parate loads and latencies. Manufacturing imperfections may even cause asymmetry

among the abilities and specifications in each of the cores themselves. Nonetheless,

to fully harness the scalability of multicore processors, we must develop some way to

operate all cores concurrently, so that the entire system may function optimally.

To achieve this objective, the scheduling algorithm of traditional Unix operating

systems must fulfill several competing objectives. It must have a fast process re-

13

sponse time, good throughput for background jobs, avoidance of process starvation,

reconciliation of the needs of low- and high-priority processes, and more. Optimally

tuning the parameters of a well-designed scheduler can massively speed up almost

any operating system [10].

The aim of our project is to create the tools necessary to enable the Linux scheduler

to tune its own parameters. By enabling the system's "reward function" to create

the parameters, we eliminate the burden on the programmer to produce these pa-

rameters. Additionally, the scheduler will tune its parameters based on its previous

"experiences," allowing the parameters to be more specialized than a programmer

may produce. Our contribution to this aim is a library of reinforcement learning

functions, borrowed from Sutton and Barto (1998) [35] and a lightweight benchmark,

capable of tuning processor affinities. When combined, these two tools should provide

a sound basis for Tilera's scheduler to tune its own parameters. This thesis describes

how this combination may effectively be done and explores several manually tuned

processor affinities. This exploration demonstrates the necessity of an autonomous

scheduler.

1.2 Summary

This thesis is organized in the following manner. Chapter 1 lays out the impor-

tance of our research, general aims, and the organization of the remaining chapters.

Chapter 2 provides a description of the foundational works upon which our re-

search builds. First, I discuss Tilera's development and how it relates to multicore

computing and large-scale data analysis. Next, I discuss some notable attributes of

reinforcement learning. Finally, I discuss some successful research projects using rein-

forcement learning to develop self-aware elements of the computer system. Chapter

3 discusses reinforcement learning and Tilera in more detail. Chapter 4 describes

one viable approach to developing a self-aware scheduler, given our experimentation.

Chapter 5 discusses the details of our benchmark and performance measurement.

Chapter 6 details our results and briefly discuss their implications. Finally, Chap-

14

ter 7 enumerates our contributions and discuss potential avenues, which may provide

fruitful future research.

15

16

Chapter 2

Previous Work

2.1 Advances in Multicore Processing

As computer hardware portability and processing power has increased from main-

frame to personal computer's, tablets, and even phones that are capable of producing

more than the mainframe ever could, the speed of data processing is ever-increasing.

Consequently, the amount of data that a user expects to process quickly has also in-

creased exponentially [26]. Theoretically, multicore processors, processors which are

capable of processing multiple streams of instructions in parallel, appear to pave the

path to the next frontier of data processing capabilities. In practice, however, writing

programs that actually utilize this parallel processing capability is extremely chal-

lenging. A number of recent advances in memory use, simulation, operating systems,

and architecture suggest that efficient, scalable multicore processing is feasible.

First, in the early 1990's, the MIT Carbon Research Group aimed to develop scal-

able multicore processors built from a conglomeration of single-chip processors. The

MIT Alewife machine accomplished this aim by integrating both shared memory and

user-level message passing for inter-node communications [2, 1]. Soon, the group's aim

evolved. The subsequent Reconfigurable Architecture Workstation (RAW) Project

aimed to connect multiple cores via a fully-connected mesh interconnect. The group

proved the effectiveness of the mesh and compiler technology, creating the first 16-core

processor [41, 38] and setting a standard for future multicore processors. Subsequent

17

improvements spawned the Tilera, LLC products: a line of massively parallel multi-

core chips, in which each processor sits on a separate tile, and each tile is connected

to neighboring tiles [7].

Second, advances in simulation occurred. Building a massively parallel computer

with hundreds or thousands of cores before testing potential architecture designs

would be extremely costly. Simulation enables researchers to test their designs be-

fore building them. Graphite, an open-source parallel multicore simulator, allows

exploration of the physical abilities of future multicore processors containing dozens,

hundreds, or even thousands of cores. It provides high performance for fast design

space exploration and software development for future processors. It can accelerate

simulations by utilizing many separate machines, and it can distribute the simulation

of a threaded application across a cluster of Linux machines with no modification

to the source code by providing a single, shared address space and consistent single-

process image across machines [25] .

Similarly, to work efficiently even on massively parallel systems, even operating

systems will eventually need to be redesigned for scalability. Wentzlaff, et al. (2009)

introduced FOS, a factored operating system, which uses message passing to commu-

nicate among its component servers [42]. Each operating system service is factored

into a set of communicating servers, which in aggregate constitute a system service.

Inspired by Internet service design, these servers provide traditional kernel services,

rather than Internet Services and replace traditional kernel data structures with fac-

tored, spatially distributed structures. Furthermore, FOS replaces time sharing with

space sharing, so that FOS's servers must process on distinct cores and by doing so

do not contend with user applications for implicit resources.

In the same vein as these advances, we the constant feedback provided by the

huge number of operations performed in a massively parallel system seems to cre-

ate the perfect scenario to engage a learning algorithm. Applying learning to these

systems enables the machine to "learn" from its mistakes to constantly improve its

performance.

18

2.2 Why Reinforcement Learning?

Reinforcement learning, as described by Sutton and Barto (1998), fuses three tradi-

tions from various fields [35, 14]. The first is the "law of effect" from the trial-and-error

tradition in psychology, which states that "responses that produce a satisfying effect

in a particular situation become more likely to occur again in that situation, and re-

sponses that produce a discomforting effect become less likely to occur again in that

situation [15]." The second is optimal control theory in engineering, a mathematical

optimization method for deriving control policies [9]. The third is secondary rein-

forcement tradition in learning as in classical conditioning [28]. The last is the use

of decaying stimulus traces in such works as Hull's (1952) concept of a goal gradient

[18] and Wagner's (1981) model of conditioning [40]. This combination has inspired

artificial intelligence researchers to create computer algorithms that learn a policy

that maximizes the agent's long term reward by performing a task.

Notably, reinforcement learning does not characterize a learning method, but in-

stead characterizes a learning problem. Reinforcement learning differs from super-

vised learning, the learning studied statistical pattern recognition and artificial neural

networks. Supervised learning models a learning method - learning from examples

provided by a knowledgable external supervisor. But what happens if there is no

supervisor knowledgable enough to select adequate training examples? If we have a

good characterization of the learning problem, like that provided by reinforcement

learning, perhaps the system can learn independently[35]. Furthermore, reinforce-

ment learning characterizes two challenges better than other branches of machine

learning.

First, reinforcement learning uniquely approaches the trade-off between explo-

ration vs. exploitation, which is often introduced in the context of the N-armed ban-

dit. This introduction poses the problem as an "N-armed bandit," or slot-machine,

with N-levers, each of which when pulled provides a reward, ranging from 0 to 100

units. The agent wants to develop a policy to maximize its reward. At one extreme,

if the agent's policy entails only exploration, the agent will test each lever. In the case

19

where many levers exist (e.g, 1000) and only a few (e.g., 5) provide a non-zero reward,

the "only exploration" policy will be extremely inefficient. At the other extreme, an

agent may choose a policy that employs only exploitation. In this case, the agent

would select one lever and continuously exploit that lever without trying any of the

other levers, while those levers may produce a greater reward. The optimal policy

will likely find a balance between exploration and exploitation.

Second, reinforcement learning characterizes the holistic learning problem instead

of simply modeling one method of learning, so it may provide us with insights of

a more organic type of learning - perhaps demonstrating how real agents in the

universe learn to optimize reward. Indeed, in the last 30 years, considerable research

suggests that real biological systems, human and animal neurons, utilize a type of

reinforcement learning in synapse formation, or Hebbian Learning [20, 21, 22, 23, 29,

31].

Given that we aim to control a large system, given organic data, without antici-

pating all possible training examples, the potential ubiquity of reinforcement learning

is a great asset, and seems the best form of learning to use for this problem.

2.3 Reinforcement Learning in Systems

Reinforcement learning is a branch of machine learning that has been applied to a

number of fields for many years. These algorithms are particularly useful when used

in high-data contexts, so the policy can be most efficiently tuned [35]. Efficiently uti-

lizing CPU-time in multicore systems has been a major challenge since these systems

were developed. Only recently, a number of research groups have employed reinforce-

ment learning to transform standard operating system components, integral to the

system's appropriate operation, into "self-aware" components.

First, Hoffman, et al. (2010) utilized this approach on the software level when they

presented Application Heartbeats, a framework to enable adaptive computer systems.

It provides a simple, standard programming interface that applications can use to

indicate their performance and system software (and hardware) can use to query an

20

applications performance. An adaptive software showed the broad applicability of the

interface, and an external resource scheduler demonstrated the use of the interface

by assigning cores to an application to maintain a designated performance goal [17].

Since Application Heartbeats was introduced, several applications have utilized these

"heartbeats" to monitor their state. It has been used in multiple learning-based

applications to monitor performance [3, 34, 33, 32].

Second, race conditions can arise whenever multiple processes execute using a

shared data structure. The standard method of ameliorating this challenge is to

use locks that allow only one process access to the protected structure at any given

time. Eastep, et al. (2010) introduced an open-source self-aware synchronization

library for multicores and asymmetric multicores called Smartlocks [13]. This is

a spin-lock library that adapts its internal implementation during execution using

heuristics and machine learning to optimize the locks' for a user-defined goal (e.g.

performance, optimization), using a novel form of adaptation designed for asymmetric

multicores. Their results were encouraging: Smartlocks significantly outperformed

conventional and reactive locks for asymmetries among multiple cores [13]. This use

of reinforcement learning to develop a self-tuning spin-lock builds upon a larger body

of literature, describing reactive algorithms for spin-locks [4, 30, 16].

Similarly, Eastep, et al. (2011) developed Smart Data structures, a family of mul-

ticore data structures, which leverage online learning to optimize their performance.

Their design augmented the Flat Combining Queue, Skiplist, and Pairing Heap data

structures with an efficient Reinforcement Learning engine that balances complex

trade-offs online to auto-tune data structure performance. They demonstrate signifi-

cant improvements in data structure throughput over the already surprising efficiency

of Flat Combining and greater improvements over the best known algorithms prior

to Flat Combining, in the face of varied and dynamic system load [12].

Third, another use of reinforcement learning in computer systems was demon-

strated by the Consensus Object, a decision engine informed by reinforcement learn-

ing. This object employed reinforcement learning to coordinate the behavior and

interactions of several independent adaptive applications called services. It worked

21

by first gathering information, analyzing the runtime impact of services in the system.

Then given their decision policies and the performance goals of the system, the Con-

sensus Object can halt or resume the services behavior. They found their modified

system was highly adaptable and performed well in many diverse conditions [39].

Fourth, Ipek et al. (2008) used reinforcement learning in schedulers proposed

a self-optimizing memory controller to efficiently utilize off-chip DRAM bandwidth.

This is a critical issue in designing cost-effective, high-performance chip multiproces-

sors (CMPs). Conventional memory controllers deliver relatively low performance in

part because they often employ fixed access scheduling policies designed for average-

case application behavior. As a result, they cannot learn and optimize the long-term

performance impact of their scheduling decisions, and cannot adapt their schedul-

ing policies to dynamic workload behavior. The self-optimizing memory controller

observes the system state and estimates the long-term performance impact of each

action it can take, enabling it to optimize its scheduling policy dynamically and max-

imize long-term performance. They showed that their memory controller improved

the performance of a set of parallel applications run on a 4-core CMP, and it improved

DRAM bandwidth utilization by 22% compared to a state-of-the-art controller [19].

Finally, Most self-aware systems require the learning algorithm to run on a sep-

arate process thread, sharing the same resources as the process of interest. The

associated context switching creates a high overhead. Recently, Lau, et al (2011)

proposed an alternative way to Partner Cores. The authors propose that a system be

designed so that each high-power main core is paired with low-power partner core.

The self-aware runtime code can run on the partner core, freeing the main core to

work only on the process of interest. The partner cores are optimized for energy

efciency and size, allowing allows the self-aware algorithms to be run inexpensively,

more easily producing a net positive effect [24]

The results of the aforementioned foundational work are extremely encouraging.

My research builds upon these findings in order to optimize CPU (Central Processor

Unit) utilization in the process scheduler on the Tilera architecture.

22

Chapter 3

Tools

I aimed to build on the encouraging results of previous work using Reinforcement

Learning to provide computer systems with the necessary instructions to better man-

age themselves, given some feed back. To develop a self-aware process scheduler by

applying reinforcement learning to TILE64"'s process scheduling, I researched avail-

able reinforcement learning functions, implemented a library of reinforcement learning

functions, and wrote a lightweight benchmark that sets CPU affinities. Here, I review

the tools I used, reinforcement learning and Tilera's TILE64TM processor, in more

detail.

3.1 Reinforcement Learning

3.1.1 Overview

Reinforcement learning allows an agent to learn and plan by interacting with its

environment. Our scheduler also need this ability to plan and learn, suggesting that

reinforcement learning may be an optimal tool to solve this problem. The classical

formalization of this specialized machine learning technique is that given (a) a state

space, (b) an action space, (c) a reward function, and (d) model information, it will

find a policy, a mapping from states to actions, such that a reward-based metric is

maximized [35, 43].

23

observations

*0_
actions

Apos MAqU P" *ei" Ose*' W

too" 12M ~ ' 4P

Figure 3-1: Reinforcement learning uses the information acquired from online obser-

vations to plan an optimal set of actions. For example, this robot uses information he

observes from his state space, such as the weather, obstacles, and potential reward,
to plan an optimal set of actions to navigate his environment [43].

Figure 3-1 demonstrates a basic example of an agent (e.g. robot) that makes

observations of a model of its environment. The relevant observations it makes (e.g.

location, obstacles) make up elements of his state. This reward function uses this

state information to dictate the potential reward. Reinforcement learning enables the

robot to develop a policy, which maps any possible state (e.g. vector of [location,

obstacles]) to a reward-metric maximizing action.

3.1.2 Off-policy v. On-policy learning

To fully characterize the potential capabilities of reinforcement learning, it is necessary

to differentiate between on-policy and off-policy learning. On-policy methods consider

the reward resulting from every possible sequence of states from the start state to the

goal, and after evaluating all possible options, it produces an optimal fixed policy, 7r

- a series of state-action pairs the agent can traverse to maximize its reward. The

agent behaves according to 7r, and while doing so it computes the value function, Q,

for 7r. In contrast, in an off-policy method, the agent behaves according to 7r, but

actually computes the value function for 7r* - that is, it learns about the optimal

value function, Q*, (and therefore, the optimal policy) while behaving according to a

24

different policy 7r. Off-policy learning acts based on the perhaps suboptimal policy,

7r,evaluates the potential reward of all possible state-action pairs from the current

state and then selects the one that produces the highest reward for the optimal policy,

7r*. This means that the off-policy learning acts based on only local information. On

one hand, this iterative state-action selection is what enables reinforcement to create

policies to control real-world systems, because in the real world it is nearly always

impossible to see the future. On the other hand, because off-policy methods choose

the next state based on local information, it become more likely that the algorithm

may not converge to a workable policy. Although there have been several attempts

to remedy this problem of potential non-convergence, one of the most common is

function approximation [5, 11, 37].

3.2 TILE64TM Architecture

Figure 3-2 TILE64TM is a 64-core processor developed by Tilera, which holds an 8x8

fully connected mesh of 64 "tiles," containing a processor, cache, and non-blocking
router [7].

TILE 64 is a 64-core processor, which runs Linux, developed by Tilera. This

processor consists of is an 8x8 mesh of 64 tiles, where each tile contains a general

purpose processor, cache, and a non-blocking router, used to communicate with the

25

other tiles on the processor [7]. Learning algorithms are often most useful in high-data

contexts, because the algorithm needs many training examples with which to learn

the appropriate behavior. The communication among so many tiles provides an ideal

environment to test the effectiveness of learning in improving scheduling efficiency.

26

Chapter 4

Problem Statement

4.1 Phase 1: Learning

The process scheduler of an operating system must fulfill several competing objectives.

It must respond quickly, have good throughput for background jobs, avoid process

starvation, reconcile the needs of low- and high-priority processes, and more [10].

Because developing a scheduling algorithm that fulfills all of these objectives is a

daunting task for most programmers, we aim to create the tools for a scheduler to

be able to "learn on the job" from its failures and successes. To this aim, I created

a python library of the reinforcement learning functions presented in Reinforcement

Learning: An Introduction [35] and improvements to those basic algorithms found in

our research [36].

Given a state-action pair and a reward function, each of these algorithms should

return a policy. To use these functions appropriately, however, we are faced with the

challenge of determining what an effective state space is, what corresponding actions

they should have, and how they should be rewarded. There are many factors that can

affect scheduling efficiency, such as the distance between cores, information recently

used by neighboring threads, and cache coherence.

27

4.2 Challenges

1. What is the most effective state space? In an operating system, there are

a multitude of characteristics which compose the "state of the system." In order

to design an effective reward function, we will need to select a subset of these

states that are most likely to affect the variables that we choose to control.

The state should contain the factors that most efficiently predict our goal. De-

spite the diverse array of potentially contributing factors, we can only include a

few of these in our state to avoid suffering from the curse of dimensionality. As

the number of our dataset's dimensions increases, our measure of distance and

performance become effectively meaningless (See review Parsons, 2004 [27]).

Continuing to explore potential states to create an optimal state space would

be an important component of future work.

2. What is the best reward function? We anticipate the first great challenge

in our project to be developing the reward function that we will use to facilitate

the scheduler's learning. We will keep the reward function running on a thread

in the background as the scheduler performs actions online.

4.3 Phase 2: Controlling

For an autonomous system to control itself, it must have some way of observing its

own state, so that it can utilize that information from the policy to decide the most

appropriate action to maximize its reward. We represent this, using the Observe-

Decide-Act control loop (ODA) (Figure 4-1). This ODA cycle differs from that

of a non-autonomous system, because a non-autonomous system depends on the pro-

grammer to observe the state and decide how she should program the system to act.

Figure 4-1 was adapted from [6]

28

Policy

Decide

System System's
status Observe Act New Status

Figure 4-1: An autonomous system must be able to observe the state of the system;

use a policy to decide how to act; and make then act to make the next state of the
system [6].

4.4 Phase 3: Scheduling

Our aim is to tune processor affinities and arbitrarily set variables in the scheduler

and use our reward function to tune these parameters to enable the scheduler to

perform more optimally. To do this we must develop an interface over which the

reinforcement learning and the scheduler can communicate (Figure 4-2).

4.5 Challenges

1. How will the reward function interact with the scheduler?

To use the reinforcement learning to modify processor affinities, we must develop

an interface over which the process thread running the reinforcement algorithm

and the scheduler will be able to communicate. To create this interface, the

reinforcement learning algorithm runs on a background thread, adjusting the

affinity of each process thread to a given processor. This is a vital element of

future work.

2. How will we benchmark the system's performance?

We benchmark the system's performance, using an pipelined benchmark, mod-

29

System State

Online teamningSceur
algorithmSceur

Policy

Figure 4-2: In the operating system, the reinforcement learning algorithm will uses

the information acquired from online observations in the scheduler to plan an optimal
set of actions, its policy.

eled after the Ferret package of PARSEC, a well-established computer bench-

mark for computer architecture [8]. This benchmark consists of an 8-stage

pipeline. Each stage has a workpile and some number of worker threads, which

perform "work" by "processing" an image. To "process" each image, the worker

thread must increment 256*256 counters.

In the results, I plot the benchmark's performance as we modify the number of

threads per stage.

30

Chapter 5

Measuring performance

We measured performance using a benchmark based of off the Ferret package of

the PARSEC benchmark suite [8]. The Ferret package measures performance by

pipelining the processing of several images. In each stage of the pipeline, a different

part of the image processing is performed. Our benchmark imitates this behavior and

can set processor affinity, so that certain threads run on certain processors.

Incoming
Workpile

get work

t work

X worker
threads

Stage N

Outgoing
Workpile

put work

eJt wJ

Figure 5-1: Schematic of one-stage of our eight-stage pipelined benchmark

In our benchmark, each of the eight stages of our benchmark contains eight of the

31

.4
4 P

pA

II
a'
II
a'
a I
a'
a'
a I
'I
a'a'

Stage N-i

ork~

Aa,
* a
I,
I I
ii
I,
i a
* a
I,
a,
a a
v

Stage N+1

64 available processing tiles on which the threads in that stage may execute. Each

stage of the pipeline "does work" by incrementing a 256*256 counter. This benchmark

has N stages, where we chose N = 8. To understand the details of our benchmark,

it is useful to discuss some of our data structures and terminology.

" Stage: A sequence of processes, including getting work from the incoming work

pile, doing the work, and putting that work on the outgoing work pile. The

first stage creates the work and each of the worker threads, because it has no

incoming work pile. The final stage has no outgoing work pile, so it finalizes

each image and frees the corresponding data structures.

" Work Pile: There are N - 1 work piles shared by each pair of stages (because

the first stage has no incoming pile and the last stage has no outgoing pile).

Each work pile can hold a certain amount of work. It can be accessed by the

functions "get work" and "put work."

" Worker Threads: Each stage of our eight-stage pipeline contains a certain

number of worker threads, M, which access the work piles and do work. We

implemented these using pthreads.

In the next section, we discuss the results that we obtained using this benchmark.

32

Chapter 6

Results

All of the reported results show an 8-stage pipelined benchmark. Each of the eight

stages contain eight of the 64 available processing tiles on which the threads in that

stage may execute. Each stage of the pipeline "does work" by incrementing a 256*256

counter. We found that its performance scaled with the amount of work it was given,

so all of these results were collected, using 5,000 units of work.

Initially, we expected that there would be a hand-coded optimal configuration

which performs better than the default configuration. In our exploration of hand-

coded configurations, we found that our hand-coded configurations were often out-

performed by the default. We expect that this is because our hand-coded configura-

tions do not dynamically utilize all possible cores. By using reinforcement learning

to tune the scheduling affinity, thus allowing dynamic allocation, it may be possible

for the reinforcement learning to outperform the default configuration. We leave this

to future work.

Here, we investigate the TILE64 processors performance given a range of hand-

coded configurations. In the first several sections of this chapter, I discuss our motiva-

tion for choosing each individual configuration and my findings. In the final section,

I compare and discuss these results with respect to one another.

33

6.1 Default

When we run our benchmark using the default processor affinity, meaning that the

processor dynamically allocates which threads are allowed to run on which processor.

The y-axis shows the benchmark's runtime. The x-axis varies the number of worker

threads in each stage. For example, when there is one worker per stage, there are 8

total workers (one per stage), performing work within the pipeline, and when there

are 28 workers per stage, there are 224 total threads working over all of the eight

stages.

25

E

20

15

10

Default Performance (5K units of work)

0 5 10 krg
Workers/Stage

Figure 6-1: (left) Each of the processors 64 cores will be arranged in the Default
configuration, so that the threads for each stage are scheduled by default. (right)
Performance of the default configuration, measured by runtime as the number of
worker threads per stage varies.

The default configuration is unique among our configurations in that any of the

work can be scheduled on any of the available 64 tiles. Taking full advantage of this

processing power is important to create an optimally efficient scheduling.

34

20 25 30

.. -

......

................

6.2 Stripes

Stripes - Performance (5K units of work)

20
E

10 -...

01 5 -10 1 20 25 3
Mrkers/tage

Figure 6-2: (left) Each of the processors 64 cores will be arranged in the Stripes

configuration, so that the Stage 1 threads, execute on cores 0-7, Stage 2 on 8-15, etc.

(right) Performance of the Stripes configuration, measured by runtime as the number

of worker threads per stage varies.

Here we aimed to best the default implementation, by making it easy for the

workers in each phase of the pipeline to pass their completed work to the next stage

of the pipeline. To make the passing of work easier, we put each stage of the pipeline

in sequence. Interestingly, in this configuration, the processors' performance was

actually worse than default, with Stripes best performances at 10s and default's best

performance at 5s per stage. We expect that is because each stage had only eight

tiles on which to perform their work rather than sixty-four. Thus, we expect this

pattern of decreased performance to repeat through many of our other hand-coded

configurations.

6.3 Minimum Distance from DRAM

Next, it seemed that minimizing the distance between the Dynamic Random Access

Memory (DRAM) and the first and last stage, where most of the memory reads and

35

writes occur, may enhance the processor's performance. We tried this in a 8 tile by 1

tile strip configuration (analogous to the "Stripes" configuration) and in tile-by-tile

configuration, assigning the eight stages to 8 blocks of 2 tiles by 4 tiles. Minimizing

this distance did not have the effect that we expected, as this was the worst performing

of the configurations we explored.

6.3.1 Strips

We minimized the distance from the DRAM, using an eight 8 tile by 1 tile strip.

We found that this configuration's performance curve behaved more like that of the

"Stripes" configuration, although its overall performance was significantly more de-

pressed. The strips configuration's best performance was 12s, while the stripes con-

figuration best was 10s.

Minimum Distance strips - Performance (5K units of work)

26

....- -.. -.-- -.--- -. .- -- ..- -.

200 0 1 0 2

E

16

14

12

100- 0 5 10 15 20 25 30
fbrkers/Stage

Figure 6-3: (left) Each of the processors 64 cores will be arranged in the Minimum
Distance Strips from DRAM configuration, so that the threads for each stage are
scheduled as shown. (right) Performance of the minimum distance configuration,
measured by runtime as the number of worker threads per stage varies.

36

6.3.2 Tiles

We minimized the distance from the DRAM on a tile-by-tile basis, assigning the

eight stages to 8 blocks of 2 tiles by 4 tiles. We found this to be the worst-performing

configuration, never performing better than an average of 14 seconds.

26

241

22

.920

16

14

Minimum Distance - Performance (5K units of work)

12 0 15
Wrkers/Stage

20 25 30

Figure 6-4: (left) Each of the processors 64 cores will be arranged in the Minimum
Distance from DRAM configuration, so that the threads for each stage are scheduled
as shown. (right) Performance of the minimum distance configuration, measured by
runtime as the number of worker threads per stage varies.

We expect this poor performance results from costly switching between tiles lo-

cated far from one another. For example, if one of the Stage 1 cores needs to switch

one of its threads to another core, it would not be able to move it to a neighboring

core, but would be forced to switch to a core a minimum of 4 cores away. This switch

takes a lot of time relative to other operations, and so it is extremely costly.

6.4 Scattered Blocks

By manually coding the Scattered Blocks configuration, we aimed to create a pes-

simally performing configuration. We were surprised to find that this configuration

actually performed quite a bit better than several of our other configurations.

37

...

..

........

.

..

...........

.................

We expect that it performed better than the tile-by-tile Minimum Distance from

DRAM configurations, because it was less costly for workers within a single stage to

switch their work to a neighboring tile than to switch to a tile that is at least four tiles

away. We expect that it performed worse than Stripes because of the time required

to switch between stages that were positioned on opposite sides of the chip.

Scattered Blocks - Performance (5K units of work)
28

1220
E

14: .

12......

0~ 5 10 15 20 25
Workers/Stage

Figure 6-5: (left) Each of the processors 64 cores will be arranged in the Scattered

Blocks configuration, so that the threads for each stage is scheduled as far away as

possible from its adjoining stages. (right) Performance of the default configuration,
measured by runtime as the number of worker threads per stage varies.

6.5 Streamlined Blocks

Given that we expected the Scattered Blocks to be pessimal, we were surprised to

find that its performance was the third best overall. To further explore why this

might be, we developed the Streamlined Blocks configuration, which draws upon

both the physical adjacency of adjacent stages of the Stripes configuration and the

block configuration of the Scattered Blocks. We expect this to perform similarly

to the Stripes configuration, and it does. In fact, we find the Streamlined Blocks

configuration appears to be functionally equivalent to the Stripes configuration.

38

Streamlined Blocks - Performance (5K units of work)

0 5 10 15
VWrimfsm~ag

20 25 30

Figure 6-6: (left) Each of the processors 64 cores will be arranged in the Streamlined
Blocks configuration, so that the threads for each stage is scheduled as far away as
possible from its adjoining stages. (right) Performance of the default configuration,
measured by runtime as the number of worker threads per stage varies.

6.6 Summary

2

-IL

4)
E

10

Performance (5K units of work)r I I I
Default

-- Stripes

5 .--- ----------. -------.. -. -.. . Minim um Dist Strips
Minimum Dist Tiles
Scattered Blocks
Streamlined Blocks

- --- ------------------

0 5 10 15
Workers/Stage

20 25

Figure 6-7: Comparison of all CPU affinity configurations. Performance of the default

configuration, measured by runtime as the number of worker threads per stage varies.

Figure 6-7 shows each configuration discussed in our results on one plot for conve-

39

26

24

22

20

1is

16

14

12

............

...........

..

..

.

................

...........

.

..........

.............

..................

nient comparison. There are several lessons that we can take from this information.

* Determining an optimal scheduling manually is extraordinarily difficult for a

human programmer, meaning that it is important to make the scheduling com-

pletely autonomous. Reinforcement learning seems like a promising venue

through which we can improve this scheduling.

* Fully utilizing all available cores offers an important opportunity to improve

scheduling efficiency. Our manually set affinities did not allow dynamic load

balancing among all 64 cores, but only among the eight cores within a given

stage, resulting in decreased performance.

" Switching among non-neighboring cores is significantly more costly than switch-

ing among neighboring cores. As long as the cores are able to balance their load

among neighboring cores, they appear to perform quite well.

" Notably, this cost of balancing among cores appears to outweigh the actual

configuration of the blocks. This is shown by the fact that Stripes and Stream-

lined Blocks appear to be completely equivalent to one another, despite differing

physical arrangements.

40

Chapter 7

Concluding Remarks

7.1 Contributions

In summary, my thesis makes the following contributions:

" Implemented a Python library of reinforcement learning algorithms, as de-

scribed in Sutton & Barto (1998) [35].

" Implemented a lightweight pipelined benchmark to run on Tilera, modeled after

the Ferret package of PARSEC [8].

" Determined a plausibly appropriate learning algorithm: Gradient Temporal Dif-

ference Algorithm [36].

" Demonstrated that it is extraordinarily difficult for humans to determine what

scheduling will be fastest, thus confirming the need for an autonomous schedul-

ing system.

" Demonstrated a significant difference between the performance of different schedul-

ing policies, suggesting that there is space for machine learning to improve

scheduling policies.

41

7.2 Future Directions

When asking a question that is large enough to be interesting, one of the largest

difficulties is scoping the problem, such that it can be finished in a limited time. As

my research draws to a close, there still exist several interesting and compelling ways

in which this research could be extended.

* Use Reinforcement Learning to Tune Processor Affinities. In this

thesis, we have set forth many of the tools necessary to create a smart scheduler,

a library of reinforcement learning algorithms, and a benchmark that can set

processor affinities. Combining these to create a autonomous process scheduler

would be an exciting future addition to this work.

" Continue Exploring State Variables. Even a simple modern computer

has a nearly infinite number of potential state variables. These state variables

range from local process thread configuration to installed programs, running

programs, processor type, operating system, pixels on the computer monitor,

and even external entropy caused by the computer's storage room. Did we

choose the best of these variables to represent the state of the processor? We

identified a subset of state variables that give us information we need to im-

prove scheduling; however, there may exist another subset of state variables

that better represent the information necessary to predict a maximally optimal

scheduling.

" Choosing an Appropriate Policy We chose to use the Gradient Temporal

Difference (GTD) algorithm for two reasons:

1. As a Temporal Difference algorithm, GTD allows the scheduling policy to

be updated on each iteration of the algorithm.

2. The textbook Temporal Difference algorithm does not guarantee conver-

gence. The GTD algorithm uses gradient descent to guarantee that it will

converge to a locally optimal policy.

42

As we determine the most applicable state space, we may also find that another

policy may serve may perform better. This is another area that would be rich

for future additions.

43

44

Bibliography

[1] A. Agarwal, R. Bianchini, D. Chaiken, F.T. Chong, K.L. Johnson, D. Kranz,
J.D. Kubiatowicz, B.H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife
Machine. Proceedings of the IEEE, 87(3):430-444, 1999.

[2] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara,
B.H. Lim, G. Maa, and D. Nussbaum. The mit alewife machine: A large-scale
distributed memory multiprocessor. Scalable shared memory multiprocessors,
pages 239-262, 1991.

[3] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoffmann. Using code
perforation to improve performance, reduce energy consumption, and respond to
failures. 2009.

[4] T.E. Anderson. The performance of spin lock alternatives for shared-money mul-
tiprocessors. Parallel and Distributed Systems, IEEE Transactions on, 1(1):6-16,
1990.

[5] L. Baird et al. Residual algorithms: Reinforcement learning with function ap-
proximation. In Machine Learning International Wokshop, pages 30-37. Morgan
Kaufmann Publishers, Inc., 1995.

[6] D.B. Bartolini. Adaptive process scheduling through applications performance
monitoring. PhD thesis, University of Illinois, 2011.

[7] S. Bell, B. Edwards, J. Amaann, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C. Miao, C.Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook.
Tile64TM processor: A 64-core soc with mesh interconnect. In International
Solid-State Circuits Conference, 2008.

[8] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th inter-
national conference on Parallel architectures and compilation techniques, pages
72-81. ACM, 2008.

[9] V. G. Boltyanskii, R. V. Gamkredeledze, E. F. Mischenko, and L. S. Pontryagin.
Mathematical theory of optimal processes. Interscience, New York, 1962.

[10] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O'Reilly, 2000.

45

[11] J. Boyan and A.W. Moore. Generalization in reinforcement learning: Safely
approximating the value function. Advances in neural information processing
systems, pages 369-376, 1995.

[12] J. Eastep, D. Wingate, and A. Agarwal. Smart data structures: A reinforcement
learning approach to multicore data structures. In ICA C 2011 Proceedings, June
2011.

[13] J. Eastep, D. Wingate, M. D. Santambrogio, and A. Agarwal. Smartlocks: Lock
acquisition scheduling for self-aware synchronization. In ICA C 2010 Proceedings,
June 2010.

[14] CR Gallistel. Reinforcement learning rs sutton and ag barto. Journal of Cognitive
Neuroscience, 11:126-129, 1999.

[15] Peter Gray. Psychology. Worth Publishers, New York, 6th e edition, 2010.

[16] P.H. Ha, M. Papatriantafilou, and P. Tsigas. Reactive spin-locks: A self-tuning
approach. In Parallel Architectures, Algorithms and Networks, 2005. ISPAN
2005. Proceedings. 8th International Symposium on, pages 6-pp. IEEE, 2005.

[17] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal.
Application heartbeats for software performance and health. Technical report,
MIT, 2010.

[18] C.L. Hull. A behavior system; an introduction to behavior theory concerning
the individual organism. 1952.

[19] E. Ipek, 0. Mutlu, J. F. Martinez, and R. Caruana. Self-optimizing memory
controllers: A reinforcement learning approach. In ISCA 2008 Proceedings, June
2008.

[20] A.H. Klopf. Brain function and adaptive systems: a heterostatic theory. Tech-
nical report, DTIC Document, 1972.

[21] A.H. Klopf. The hedonistic neuron: A theory of memory, learning, and intelli-
gence. Hemisphere Publishing Corporation, 1982.

[22] A.H. Klopf. A drive-reinforcement model of single neuron function: An alter-
native to the hebbian neuronal model. In AIP Conference Proceedings, volume
151, page 265, 1986.

[23] A.H. Klopf. A neuronal model of classical conditioning. Psychobiology, 1988.

[24] E. Lau, J.E. Miller, I. Choi, D. Yeung, S. Amarasinghe, and A. Agarwal. Mul-
ticore performance optimization using partner cores. In Proceedings of the 3rd
USENIX conference on Hot topic in parallelism (HotPar'11). USENIX Associa-
tion, Berkeley, CA, USA, pages 11-11, 2011.

46

[25] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann, C. Ce-
lio, J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for
multicores. In HPCA, pages 1-12, 2010.

[26] Gordon Moore. Cramming more components onto integrated circuits. Electron-
ics, 38(8), 1998.

[27] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:
a review. A CM SIGKDD Explorations Newsletter, 6(1):90-105, 2004.

[28] I.P. Pavlov. Conditioned reflexes: An investigation of the physiological activities
of the cerebral cortex. Oxford University Press, London, 1927.

[29] W. Schultz, P. Dayan, and P.R. Montague. A neural substrate of prediction and
reward. Science, 275(5306):1593-1599, 1997.

[30] M.L. Scott and W.N. Scherer. Scalable queue-based spin locks with timeout. In
ACM SIGPLAN Notices, volume 36 (7), pages 44-52. ACM, 2001.

[31] P. Shizgal. Neural basis of utility estimation. Current opinion in neurobiology,
7(2):198-208, 1997.

[32] F. Sironi, D.B. Bartolini, S. Campanoni, F. Cancare, H. Hoffmann, D. Sciuto,
and M.D. Santambrogio. Metronome: operating system level performance man-
agement via self-adaptive computing. In Design Automation Conference (DA C),
2012 49th A CM/EDAC/IEEE, pages 856-865. IEEE, 2012.

[33] F. Sironi and A. Cuoccio. Self-aware adaptation via implementation hot-swap
for heterogeneous computing. 2011.

[34] F. Sironi, M. Triverio, H. Hoffmann, M. Maggio, and M.D. Santambrogio. Self-
aware adaptation in fpga-based systems. In Field Programmable Logic and Ap-
plications (FPL), 2010 International Conference on, pages 187-192. IEEE, 2010.

[35] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[36] R.S. Sutton, H.R Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesviri, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th International

Conference on Machine Learning, Montreal,Canada, 2009.

[37] R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, et al. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural
information processing systems, 12(22), 2000.

[38] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
man, P. Johnson, J.W. Lee, W. Lee, et al. The raw microprocessor: A computa-
tional fabric for software circuits and general-purpose programs. Micro, IEEE,
22(2):25-35, 2002.

47

[39] M. Triverio, M. Maggio, H. Hoffmann, and M.D. Santambrogio. The consensus
object: Coordinating the behavior of independent adaptive systems. 2011.

[40] A.R. Wagner, NE Spear, and RR Miller. Sop: A model of automatic mem-
ory processing in animal behavior. Information processing in animals: Memory
mechanisms, 85:5-47, 1981.

[41] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, et al. Baring it all to software: Raw machines.
Computer, 30(9):86-93, 1997.

[42] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case for
a scalable operating system for multicores. ACM SIGOPS Operating Systems
Review, 43(2):76-85, 2009.

[43] D. Wingate. Reinforcement learning in complex systems. Presentation for
Angstrom Student Seminar, 2010.

48

