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Abstract

This thesis reports the construction of a novel apparatus for experiments with ul-
tracold atoms in optical lattices: the Fermi gas microscope. Improving upon similar
designs for bosonic atoms, our Fermi gas microscope has the novel feature of being able
to achieve single-site resolved imaging of fermionic atoms in an optical lattice; specif-
ically, we use fermionic potassium-40, sympathetically cooled by bosonic sodium-23.
In this thesis, several milestones on the way to achieving single-site resolution are
described and documented. First, we have tested and mounted in place the imaging
optics necessary for achieving single-site resolution. We set up separate 3D magneto-
optical traps for capturing and cooling both 2 3Na and 40 K. These species are then
trapped simultaneously in a plugged quadrupole magnetic trap and evaporated to de-
generacy; we obtain a sodium Bose-Einstein condensate with about a million atoms
and a degenerate potassium cloud cooled to colder than 1 puK. Using magnetic trans-
port over a distance of 1 cm, we move the cold cloud of atoms into place under the
high-resolution imaging system and capture it in a hybrid magnetic and optical-dipole
trap. Further evaporation in this hybrid trap performed by lowering the optical trap
depth, and the cooled atoms are immersed in an optical lattice, the setup and calibra-
tion of which is also described here. Finally, we cool the atoms with optical molasses
beams while in the lattice, with the imaging optics collecting the fluoresence light for
high-resolution imaging. With molasses cooling set up, single-site fluoresence imaging
of bosons and fermions in the same experimental apparatus is within reach.

Thesis Supervisor: Martin W. Zwierlein
Title: Professor of Physics
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Chapter 1

Introduction

This thesis presents progress towards the construction of an experiment with ultracold

neutral atoms in an optical lattice: the so-called Fermi gas microscope. In this

chapter, we aim to introduce the reader to the field of ultracold atoms and thus place

the present work in its proper context within the field. As will be described, the

truly novel aspect of the quantum gas microscope lies in its measurement capability,

specificially the ability to measure occupancies of individual optical lattice sites. We

thus spend some time discussing the new experimental possibilities made accessible

by this single-site resolution.

1.1 Ultracold Atomic Gases as Tunable Many-Body

Systems

Our interest in ultracold atomic gases-and in this thesis, particularly ultracold gases

of fermions-stems largely from the fact that they realize a quantum many-body

system which is highly controllable. To make this claim more concrete, note that

an atomic gas at temperature T can be described roughly as consisting of several

quantum wavepackets, the spatial extent of which is on the order of the thermal de

Broglie wavelength,

AdB 
-2 

kv2lrmkBT' 11
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where m is the atom's mass. At temperatures high enough that the thermal deBroglie

wavelength is much smaller than the mean interparticle spacing in the gas, the gas

is effectively classical and well-described by Maxwell-Boltzmann statistics. However,

when the gas is cooled to temperatures such that AdB starts to be comparable to

the interparticle spacing, the classical approximation breaks down. In such cases the

quantum statistics of the atomic species manifest. Bosonic atoms are described by

a Bose-Einstein distribution and undergo a phase transition known as Bose-Einstein

condensation (BEC) at this temperature, called Tc. At a similar temperature, the

Fermi temperature TF, Fermionic species also lose their resemblance to a Maxwell-

Boltzmann gas, instead obeying Fermi-Dirac statistics. In effect, cooling the gas

brings out its quantum nature.

A natural question then arises of exacly how cold one's gas must be to see effects of

quantum statistics. The above criterion comparing the de Broglie wavelength of the

particles to their spacing immediately makes it clear that this temperature depends

on the density of the gas. To give an idea of the scales involved, the first BEC,

produced in 1995 with sodium atoms, saw a TC of 2.0 pK at a density of 1.4 x 1014

cm- 3 [7]. The first degenerate Fermi gas, produced in 1999 with around 1.2 x 106

atoms, exhibited a TF of 1.0 pK [8].

So much for realizing a quantum many-body system; let's move on to control-

lability. Interactions between atoms are most properly described by an attractive

induced-dipole potential at large separations and a hard core repulsion for short

ones. However, in an ultracold gas, where the momenta of the colliding atoms is

such that the de Broglie wavelength AdB = h/p is much larger than the range of the

interatomic potential, the interactions are captured equally well by the much simpler

contact-interaction model [29]:

V 27rh2 a,6rV(r) = rh"S(r) (1.2)

Here [t is the reduced mass of the two-atom system. Note that in this approximation,

the precise details of the interatomic potential are replaced by a single parameter, a8 ,
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known as the s-wave scattering length. The magnitude of a. indicates the strength

of the interaction, while its sign differentiates between attraction (negative) and re-

pulsion (positive). Tuning a, thus corresponds to controlling the interactions in an

atomic gas.

Feshbach resonances allow precisely this tuning capability in ultracold atomic

gases [17]. With a Feshbach resonance, one uses an external magnetic field to tune

the scattering length. Near a resonance-characterized by field B 0 and width A-the

scattering length at magnetic field B behaves as

as(B) = aBG 1 - B (1.3)
B - BO)

where aBG is the background scattering length far away from the resonance. Thus

Feshbach resonances allow control over both the magnitude and sign of the interac-

tions.

Perhaps the best demonstration that ultracold Fermi gases constitute an ideal

experimental system is the variety of phenomena which has been explored with them.

Following their observation and the advent of Feshbach resonances in Fermi gases in

2002, ultracold fermions were used to create molecular BECs and study the crossover

from molecular BECs to a Bardeen-Cooper-Schrieffer superfluid, culminating in 2005

with the demonstration of vortices in an ultracold Fermi gas, a signature of superfluid-

ity. More recent developments include the exploration of spin transport, experimental

determination of a universal equation of state for fermions at unitarity, and creation

of spin-orbit coupled systems expected to display topological order. For this thesis,

however, the most relevant experiments on Fermi gases are those conducted in optical

lattices, the subject we turn to next.

1.1.1 Fermions in Optical Lattices-Condensed Matter Sim-

ulation

Optical lattices provide a direct connection between ultracold quantum gases and

electrons in solids. Atoms in optical lattices feel a periodic potential due to the
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optical standing wave; in solids, the periodic potential arises from the ions. The

central solid-state concept of electronic band structure is thus equally applicable to

atoms in an optical lattice. Indeed, a direct observation of the band structure of an

optical lattice was achieved with ultracold fermions in 2005 [19].

However, tunability of interactions via Feshbach resonances allows one to go be-

yond the non-interacting case. With BECs of repulsive atoms, for example, experi-

ments have explored the nature of the many-body ground state across varying lattice

depths, revealing a quantum phase transition between a superfluid and Mott insulat-

ing' phase [11]. More recently this phase diagram has also been explored in fermionic

atoms with both attractive [6] and repulsive [14] interactions.

Stimulating the ultracold atoms community's interest in optical lattices with

fermions is the fact that these systems are a near-perfect realization of the Fermi-

Hubbard model [9]. This model assumes a single band, contact interactions between

particles, and nearest-neighbor tunneling. Despite its simplicity, calculation of its

ground-state properties has eluded physicists in all but a few special cases. Thus,

experimentally determining the Fermi-Hubbard ground state for given parameters

would represent the solution of a long-standing open theoretical problem by experi-

mental means.

Fermi-Hubbard physics is particularly interesting given that it might contain

the minimal ingredients for high-temperature superconductivity. Unlike conventional

superconductors, which are well described by the BCS theory, high-temperature

superconductors-such as the cuprates-are not, at this time, understood theoreti-

cally. Were such a theory known, one might be able to design materials which exhibit

superconducting behavior even up to room temperature. Such considerations make

solving the Fermi-Hubbard model an extremely technologically relevant problem.

One of the reasons that the Fermi-Hubbard model is expected to give rise to high-

temperature superfluidity lies in the nature of its ground state at half-filling: this is

one of the "special cases" described above, where it is known that the ground state is

1A Mott insulator is a material which, under ordinary band structure considerations, would be a
conductor; i.e., the highest band is not fully occupied. However, due to repulsive interactions, atoms
are localized to individual lattice sites.
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a Mott insulator with antiferromagnetic ordering. Essentially, this is a checkerboard

pattern of alternating "spin-up" and "spin-down" particles. Turning to condensed

matter, high-temperature superconductivity is seen in materials which, when un-

doped, are also Mott insulators with antiferromagnetic ordering. This seemingly sug-

gestive fact might imply that the ground state of the Fermi-Hubbard model at higher

fillings exhibits high-temperature superconductivity. It is thus no surprise that sim-

ulating the Fermi-Hubbard model is a such an active area of current research. To

date, no group has seen an antiferromagnet in an ultracold Fermi gas; its observation

would represent a major stepping-stone on the route to simulating high-temperature

superconductivity.

1.1.2 Bosonic Quantum Gas Microscopes

Prior to the advent of quantum gas microscopy, the standard methods of obtaining

data on an atomic cloud were phase-contrast and absorption imaging. In absorption

imaging, resonant light is impinged on the cloud and absorbed by atoms, creating

a "shadow picture." Phase-contrast imaging uses a far-detuned beam which is not

absorbed by the atoms but elastically scattered, with a phase shift indicative of the

atomic density [15]. By interfering scattered and unscattered light, one is able to

reconstruct an image of the phase shift imparted to the imaging beam by the atomic

cloud. While both of these methods have their advantages-phase-contrast imaging

uses a more involved setup than absorption imaging, but is nondestructive and can

resolve regions of high density that would be "blacked out" on an absorption image-

both can be used to detect one of three things: (a) the in-situ density of the atomic

cloud within the trap; (b) the momentum distribution of the cloud obtained after a

so-called time of flight; and (c) the quasimomentum distribution in a lattice.

As impressive as the results obtained with these imaging methods are, they both

suffer from a shortcoming, namely that they are both bulk techniques. As yet, neither

has been realized in an imaging system sufficient to resolve individual lattice sites in an

optical lattice. That such a system might be useful is easily seen from the discussion

of the phases of the Fermi-Hubbard model above; the distinguishing features of the
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Mott insulating and antiferromagnetic phases are intimately tied to occupancies of

individual lattice sites. Single-site resolution would be invaluable to detecting an

antiferromagnet, which, as already mentioned, is a major goal of the ultracold atom

community at the current time.2

Single-site resolution, or "quantum gas microscopy" as we will call it, was achieved

for bosonic atoms in optical lattices in 2009 at Harvard University [3] and in 2010 in

Munich [4]. Rather than using absorption or phase-contrast imaging, the microscopes

used fluoresence imaging, in which light scattered by the atoms was collected to form

the image. The distinctive feature of fluoresence imaging which allowed this to work

was that one can use fluoresence imaging while simultaneously cooling the atomic

sample, and thus pin the atoms in place on a given lattice site while several photons

are collected from each atom.

Bosonic quantum gas microscopy allowed for the direct observation of the super-

fluid to Mott insulator phase transition in the Bose-Hubbard model [2] via images

such as those shown in figure 1-1.

Figure 1-1: Post-analysis occupation images obtained with the Harvard bosonic quan-
tum gas microscope, showing clearly the shells present in a Mott insulator.

2to be fair, we should note that single-site imaging is not the only conceivable way to detect an
antiferromagnet; for example, a Bragg scattering experiment could be performed.
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1.1.3 Fermi Gas Microscopy

With the success of bosonic quantum gas microscopes, it is natural to apply the

same techniques to fermionic species. This thesis reports on the construction of just

such an experiment, the "fermionic quantum gas microscope," using fermionic 40 K

sympathetically cooled by bosonic "Na. One of the most attractive applications of

this microscope has already been discussed: exploration of the Fermi-Hubbard model

with an eye towards high-temperature superfluidity. However, many other uses exist;

we briefly touch on them now.

First, the ability to resolve structures on the length scale of a single lattice site also

allows for the creation of optical fields which vary on that same length scale. Using

the imaging system designed to achieve single-site resolution in reverse, one can thus

project an arbitrary potential in the plane of the atoms. Rather than being restricted

to square lattices, lattices of arbitrary geometry, such as triangular or Kagome lattices,

can be realized with the quantum gas microscope without any additional beams. This

even opens up the possibility of .studying, for example, quantum transport along a

thin channel connecting two reservoirs at the single lattice-site level.

Quantum gas microscopy also opens up the possibility of new cooling schemes

for atoms in optical lattices. One of the groups which achieved bosonic quantum gas

microscopy [5] used their system to further cool the gas once in an optical lattice. The

technique, known as algorithmic cooling, was demonstrated in an experiment which

converted a Mott insulator with four shells into one with only a single shell. Such

a novel cooling scheme represents further progress towards the goal of being able to

achieve lower entropy samples for use in simulation.

Turning back to many-body physics, one of the recent developments in atomic

physics has been the quest to create a system in the lab which features a topologically

non-trivial band structure. Apart from a recent experiment in a one-dimensional

system [1], as yet, no definitive observation of one of these structures has been made.

However, one feature of these systems is that they support so-called edge states, which

exist at the boundary of the lattice. With a quantum gas microscope, one might be
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able to directly observe these edge states as a starting point in investigations of

topological materials.

1.1.4 Outline of this Thesis

The rest of this thesis is organized as follows.

Chapter 2 presents some relevant theory necessary for understanding the fermionic

lattice experiment.

Chapter 3 describes the steps taken to implement sympathetic cooling of potassium-

40 via bosonic sodium-23, including the process by which we produce a sodium

Bose-Einsten condensate and use sympathetic cooling to obtain a degenerate gas

of potassium-40 atoms.

Chapter 4 treats the theory of microscopy and high-resolution imaging before

describing the microscope setup in our experiment.

Chapter 5 describes our optical lattice setup, along the way discussing the trans-

port of our cold atomic gas from the initial quadrupole trap up to the substrate where

the optical lattice is set up.

Chapter 6 closes with a look at the necessary steps to be taken before single-site

imaging of fermions is achieved.
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Chapter 2

Theoretical Background

This thesis reports the construction of an experiment which cools, traps, and images

gaseous clouds of atoms. While the majority of the techniques we use to accomplish

these tasks have become standard atomic physics fare in the past several years, we

nonetheless present in this chapter a pedagogical introduction to their workings. We

first discuss magneto-optical trapping (MOT), the first stage of our experiment. Then,

we discuss the quadrupole magnetic trap, which in our experiment follows the MOT

stage. Evaporative cooling, a technique we use to cool our atoms once trapped in the

quadrupole, is treated next. We conclude by explaining the principle behind the final

stage of our experiment, the optical lattice.

2.1 Magneto-Optical Trapping

The principle behind magneto-optical trapping has been discussed in great detail in

my undergraduate thesis, among other places-see, for example, the original MOT

paper by Raab et al. [27]. Here, we present a much more qualitative and abridged

discussion. Understanding how a MOT works requires understanding what happens

to an atom when it absorbs a photon. This is the so-called dissipative component of

the force of light on atoms (the other part of the light force, the conservative part,

will play an important role in our discussion of optical lattices later).

The first key point is that when a photon is absorbed by an atom, exciting a
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transition from, say, state 1g) to le), the atom absorbs the photon's momentum as

well as its energy. Second, the probability of an atom absorbing a given photon

is maximal when the photons frequency matches the atomic transition frequency

(resonance), and is only significant for a small window (the so-called linewidth) of

photon frequencies around resonance.

Armed with this fact, we can build up to a MOT, first considering a simpler sit-

uation: Doppler cooling. Consider an atom with transition frequency wo subjected

to two counterpropagating laser beams, each with the same frequency, W, such that

w < wo. In this case, a moving atom will, in its rest frame, experience light beams

of differing frequencies, due to the Doppler effect. The copropagating beam will be

seen to have a lower frequency than in the lab frame, while the counterpropagating

beam will have a higher frequency. This brings the counterpropagating beam closer

to atomic resonance, meaning that the probability of absorbing a photon from the

counterpropagating beam is higher than that for the copropagating beam. The mo-

mentum kicks from the counterpropagating beam tend to oppose the velocity of the

atom, slowing its velocity.

Doppler cooling schemes localize atoms in momentum space but not in position.

To accomplish this, we must add a position-dependent force. In a MOT, this addi-

tional confinement comes from a combination of two effects: the beam polarizations

and an added magnetic field which varies as B = Bz, where z = 0 is the trap center.

This magnetic field splits the excited state into Zeeman sublevels, say 1-1), 10), and

1+1). The magnetic field is such that to the right of the origin, the energy of 1+1)

is higher than that of I-1), while to the left of the origin, the opposite is true. We

give the counterpropagating beams opposite circular polarizations such that the beam

traveling to the left can only excite a transition to I-1), and the beam traveling to

the right can only excite a transition to 1+1). So we have realized the exact analogue

of Doppler cooling, except in position space: an atom to the right of the origin is

more likely to absorb a photon which will push it towards the left, and vice versa.

Hence, the atoms will be trapped near the zero of the magnetic field. With six laser

beams, one can realize a 3D MOT. Figure 2-1 shows this in detail.
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Figure 2-1: (a) Ground and excited states of an atom placed in a 1-dimensional MOT
configuration. To the right of the field zero, the detuning of the laser beams from
the 1g) -* --1) transition is lower than that from the 1g) - 1+1) transition. A a-
transition is thus more likely than a a+, pushing the atom back toward the zero. In
(b), we show the coils and laser beams for creating a 3D MOT.

Because of the finite linewidth of the atomic transition, MOTs can only capture

atoms over a small range of velocities, roughly given by F/k, where k is the wavevec-

tor of the light-this capture velocity is on the order of 10 m/s. Loading techniques

are necessary to convert a hot gas of atoms into a colder gas which can be loaded into

the MOT. In our experiment we use two different loading techniques. For potassium

atoms we use a 2D MOT, a MOT in two dimensions loaded directly from hot back-

ground vapor. The atoms travel along the untrapped direction to reach the 3D MOT.

For sodium atoms, we use a Zeeman slower, which uses a counterpropagating laser

to slow atoms, with magnetic fields to compensate for the changing Doppler shifts of

the slowed atoms. As the theory behind a 2D MOT is explained in my undergrad-

uate thesis [28], and the Zeeman slower is discussed in Thomas Gersdorf's diploma

thesis [10], neither will be discussed further here.

For a particular atom, the lowest temperature achievable in a MOT is known as

the Doppler limit and is given by hP/2kB [21]. Here F, the linewidth of the cooling

transition, is the only atom-dependent parameter. For the 2 3Na D2 transition, the

linewidth is 27 x 9.8 MHz, leading to a Doppler temperature of 235 pK [31]; for "K

D 2 , the linewidth is 21r x 6.0 MHz, so the Doppler temperature is 145 piK [32]. These
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temperatures are not sufficient to achieve degeneracy at the densities achievable with

a MOT; in fact, the phase-space density in a MOT is about six orders of magnitude

greater than it is at degeneracy [15]. To reach higher phase-space densities, the

method we employ is RF-induced evaporation in a magnetic trap, which we now

discuss.

2.2 Quadrupole Magnetic Traps

Our experiment uses a quadrupole magnetic trap after the MOT stage. Using only

magnetic fields, it is possible to create a conservative atom trap for atoms in particular

internal states. Known as trappable states, these states seek low magnetic fields and

are thus trapped at a magnetic field minimum. Different types of magnetic traps

exist; one type traps atoms around a magnetic field zero, while others trap atoms at

a finite field. Our experiment uses the former type of trap, known as a quadrupole

trap. We have, however, built in the capability to run the latter type as well, although

as yet we have not needed to use it.

Invented in 1983 by David Pritchard [26] and first observed in 1985 by Migdall et

al. to trap sodium atoms [22], magnetic traps are based on two principles:

1. Zeeman effect: The energy of an atom in a given internal state varies with the

applied magnetic field magnitude. At low fields,1 the variation is linear. The

sign of the interaction is given by the magnetic moment of the atomic state, and

can be either positive or negative: positive magnetic moments imply increasing

energies with increasing magnetic field strengths, and vice versa for negative

moments.

2. Adiabatic theorem: An atom in a given state, subject to a perturbation, will

not change internal states as long as the perturbation occurs over much longer

scales than those associated with the energy differences between eigenstates

(i.e., the perturbation frequency is much lower than the Larmor frequency).

'Low compared to hyperfine splitting over magnetic moment
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The application of these principles to explain magnetic trapping is straightforward:

atoms moving around in a magnetic field while in an internal state with a positive

magnetic moment will stay in that state as long as it is protected by a sufficient

energy gap. Because these atoms maintain their internal states, the Zeeman shift

acts as an effective potential energy landscape. Since positive magnetic moments

imply lowest energies at lowest magnetic field, atoms in states with A > 0 are called

low-field seekers and can be trapped at minima of magnetic fields. 2

Quadrupole magnetic traps typically employ a pair of anti-Helmholtz coils to

create a magnetic field which, near its zero, behaves as:

B, = B'x, By = B'y, Bz = -2B'z (2.1)

Here B' is a constant that characterizes the strength of the field. Note that this

trap is not spherically symmetric: because of the Maxwell equation V - B = 0, the

gradient along the z axis is twice that along the horizontal axes. One can immediately

see from the above expression that the quadrupole magnetic field has a zero at the

origin, making it the trap minimum or center. Near the origin, the strength of the

field is given by

|BI = B' x 2 + y 2 +4z 2  (2.2)

The surfaces of constant magnetic field, which are also the surfaces of constant

energy via E = gB, are ellipsoids. One can also explicitly write out the potential if

the magnetic moment is known:

V(x, y, z) = pB' x 2 + y2 + 4z 2  (2.3)

For the atoms we use, a graph of the Zeeman energies in different hyperfine states

is shown in figure 2-2. For sodium, the trappable states are 1, -1), 12, 2), 12, 1), and

(weakly) 12, 0). Potassium, as can be seen, can be trapped in several states, among

2 Atoms with negative magnetic moments are known as high-field seekers and are attracted to

regions of high magnetic field, but cannot be trapped because it is impossible to create a magnetic

field maximum in free space
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Figure 2-2: Hyperfine structures of the ground states of (a) sodium and (b) potassium
The states are labeled with the IF, mF) quantum numbers, which are technically only
good quantum numbers at low-field. Note that potassium has an inverted hyperfine
structure.

them 17/2, -7/2) and 19/2,9/2).

For its simplicity, the quadrupole trap does suffer from a flaw: near the zero of the

trap, the energies of all of the internal atomic eigenstates approach the same value.

This represents a violation of the adiabatic theorem above, since an atom moving

sufficiently fast in a region of low magnetic field would experience a fast perturbation

and thus not be constrained to stay in its internal state. Instead, the atom might

flip to a high-field seeking state and escape the trap. Such flips are called Majorana

flops, and the region in which they are likely to occur is termed the circle of death.

One can quickly derive the extent of the circle of death by comparing the two

frequencies involved in the adiabatic theorem: the Larmor frequency, and the fre-
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quency associated with a changing magnetic field. When these two become compa-

rable, the adiabatic theorem is violated, enabling Majorana flops. This occurs when

dE/dt ~ EWL = E 2 /h or-writing E = pB'r and noting that dr/dt = v, the atomic

velocity-when r 2 = hv/(B'p). Intuitively, the scalings of the circle of death with

atomic velocity and gradient in the above formula makes sense: fast-moving atoms

experience a larger perturbation and must go to large radii to achieve large enough

energy gaps to stay adiabatic, and atoms in a larger gradient naturally have larger

energy gaps and thus have smaller circles of death.

In our experiment, we implement a commonly used solution to the Majorana

loss problem known as the optical plug. As we will see in detail in a later section,

beams of light blue-detuned from an atomic resonance repel atoms from regions of

high intensity.3 . Thus we plug the Majorana hole by focusing such a blue-detuned

laser beam at the center of the trap. A high-intensity focused beam ensures that the

trapped atoms do not approach the circle of death and thus maintain adiabaticity.

See figure 2-3.

(a) (b) (c)
V.. vo. vim

+A

Magnetic z Plug z Combined z
Quadrupole Potential Trap
Potential

Figure 2-3: Potential landscape of a plugged quadrupole trap, schematically depicted

in (a). (b) shows the magnetic and optical contributions separately, which add to

give the total landscape, shown in (c). Figure concept taken from [34].

3 We regret that the presentation of ideas in the order we have chosen might confuse the reader.

In a previous section, describing MOTs and Zeeman slowers, we discussed the effects of light on
atoms in terms of absorption and emission of photons, but now we are talking about light beams

repelling and attracting atoms; that is, acting conservatively! It turns out that light acts on atoms
both conservatively and dissipatively. We will discuss this properly in a later section, but for now
it is enough to note that for light with a frequency near that of an atomic resonance (i.e. MOT
and slower light), the dissipative effect dominates, whereas for far-detuned light, the conservative

portion of the force dominates. The plug we use is at 532 nm, far-detuned from both resonances of

all three of our atomic species (589, 671, and 767 nm)
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The conservative nature of the magnetic trap means that by itself it provides no

cooling. For cooling, we turn to rf-induced evaporation, or evaporative cooling.

2.3 Evaporative cooling

As discussed above, in a MOT one is limited in temperature-by the random nature of

Doppler cooling-to several orders of magnitude greater than necessary for degeneracy.

Rf-induced evapoartion is a technique which bridges this gap. This technique lowers

the temperature of the gas by selectively forcing high-energy atoms to leave the trap

and allowing the gas to rethermalize via collisions.

An rf pulse at a frequency WRF induces transitions between hyperfine states of an

atom if WRF matches the frequency of the transition between the two states. Because

this frequency depends on the local magnetic field, an rf pulse selectively induces

hyperfine transitions in atoms which experience a particular magnetic field. In a

magnetic trap, this is equivalent to selecting atoms at a given position and flipping

their states.

Atoms in the trap which are at the largest distances from the trap center are

the ones with the highest potential energy; in a slight abuse of terminology, these

are referred to as the hot atoms. To cool the cloud, an rf pulse resonant with

the hottest atoms is applied, flipping them into untrapped high-field seeking states.

These atoms are expelled from the trap, leaving the cloud in a non-equilibrium ve-

locity/position distribution. Through elastic collisions, this distribution relaxes to a

Maxwell-Boltzmann distribution with a slightly lower temperature than before. The

rf frequency is continuously lowered to keep expelling the hot atoms, leading to con-

tinuously lowering temperatures [16].

Crucial to the success of forced evaporation is the fact that the cloud must rether-

malize quickly after high-energy atoms are expelled. If this were not the case, the

radiofrequency knife described above would not change the clouds temperature; it

would only cut away high-energy atoms. Indeed, in such a case the cloud would not

properly have a temperature, since temperature requires equilibration. At the risk of

34



overemphasizing, we state again: simply getting rid of high-energy atoms is NOT the

same as cooling! Cooling only occurs when, after the high-energy atoms leave, the

rest of the cloud exchanges energy via collisions to achieve an approximately equilib-

rium distribution of velocities characterized by a lower temperature value than it had

before the high-energy atoms were ejected.

The above seemingly minor fact has had immense consequences for the design of

our experiment. Remember, our goal is to build an experiment to study degenerate

fermions, namely potassium-40 and (later) lithium-6. However, a gas of fermionic

atoms all in the same internal state tend to avoid each other. The reason for this

is that fermionic atoms in the same internal state ("spin-polarized") cannot undergo

s-wave collisions, i.e. collisions in which the relative wavefunction is symmetric. They

can only undergo collisions in which the relative wavefunction is antisymmetric, of

which the lowest-energy ones have p-wave symmetry. Unfortunately, the temperature

at which p-wave collisions are largely suppressed is much higher than degeneracy

temperatures 4 . Thus, we added bosonic sodium to our experiment. Sodium and

potassium have scattering properties favorable enough to allow the use of sodium

as a sympathetic coolant for potassium, which, as later chapters describe, is exactly

what we do in our setup.

2.3.1 Dressed State Picture of RF-Evaporation

A slightly different picture of rf-induced evaporation is given in terms of dressed

states. In the dressed state picture, the effect of turning on a radiofrequency field

is considered not simply as inducing spin-flip transitions but rather as an additional

term in the Hamiltonian. In this picture it is thus the eigenstates of the Hamiltonian

which are modified; rather than the original IF, mF) eigenstates, with the addition of

the rf field the eigenstates get "dressed" by the rf photons to become IF, mF; n), where

4Why is this? For a quick estimate, the energy associated with p-wave collisions between atoms
a distance ro apart is h2/mro, since the relative angular momentum between the two atoms is h.
The value of ro is set by the interaction potential between the two atoms, and is about one to two
orders of magnitude larger than the Bohr radius [32]. So p-wave scattering freezes out below several
hundred microKelvin.
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n refers to the number of rf photons present. However, since an rf photon can induce a

transition between IF, mF) states, the stationary states are actually superpositions of

IF, mF; n) states differing by one in their photon content: IF, mF; n) +F', m' ; n - ).

As figure 2-4 shows, this leads to the familiar "avoided crossing" effect in quantum

mechanics. The adiabatic potential in this case is no longer simply proportional to

the magnetic field, but exhibits an avioded crossing where the local magnetic field

gives Larmor frequencies resonant with the applied rf.

The essential feature of forced evaporation-expelling high-energy atoms from the

trap-is viewed in the dressed state picture as a modification of the potential itself so

that atoms at large radii naturally spill out of the trap. See again figure 2-4, which

illustrates this "lowering the walls" effect graphically. In this picture, applying rf fields

of varying power corresponds to introducing avoided crossing gaps of different heights:

the higher the rf power, the larger the energy gap. This in turn controls which atoms

actually escape the trap: atoms moving fast through the avoided crossing region will

not necessarily follow the adiabatic potential that would let them escape. A larger

gap will allow faster atoms to be adiabatic, leading to greater trap loss. For more on

the dressed state picture of evaporation, including a more in-depth discussion on the

adiabaticity condition, see [16].

2.4 Optical Dipole Traps and Lattices

In general, optical fields act on atoms in both dissipative and conservative ways. So

far in this chapter we have mainly considered the effect of the dissipative interaction,

that is, radiation pressure from photon absorption/emission. This process is at work

in Doppler cooling, optical molasses, and MOTs. However, for understanding optical

dipole traps and optical lattices, it is the conservative portion of the light force which

comes into play. Before understanding in depth how the conservative force arises, we

first state the essential result of this section: Inhomogenous beams of light can either

trap or repel atoms. Beams which are red-detuned from atomic resonance attract

atoms, while blue-detuned beams repel them. This process is conservative; it does
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not change the energy of the atom.

The essence of this result can be understood independently of a particular model

for the atom, classical or quantum. An atom in a light beam of frequency w takes on

a dipole moment proportional to the electric field: d(w) = a(w)E(w). The frequency-

dependent constant of proportionality is known as the polarizability. We average over

the fast oscillations of the electromagnetic wave to get that the energy is proportional

to

U(r) oc -(d- E(f)) (2.4)

Performing some algebra (and noting that a(w) = a*(-w)) yields that

U(r) oc -Re o(w)IE(r')2 1, (2.5)

arriving at the simple fact that the dipole potential is proportional to the square of

the electric field, or the light intensity.

The dipole potential expression is obviously only the conservative part of the story;

all of the cooling phenomena we discussed in previous sections were consequences of

the dissipative part of the interaction. The relevant parameter of the dissipative

interaction is the photon scattering rate, which we calculate by equating the classical

expression for the power lost to radiation to the photon scattering rate times the

photon energy hw:

=S (d. E) _< -Im a(w)IE(rI'l. (2.6)
hw

Optical lattices and dipole traps operate in the frequency regime where photon

scattering is of negligible importance compared to the dipole force. To see the emer-

gence of this regime we need an expression for the polarizability versus frequency.

The simplest way to arrive at such an expression is to model the atom as a classical,

Lorentzian electron-on-a-spring. Fortunately, it turns out that the fully quantum re-

sult (in the limit of low saturation) gives the same result, which can be easily derived:

F)W=
a(w) = 67r6cc 3 2 0w-~3 w) (2.7)

37



Here wo is the natural transition frequency of the atom and F is the natural damping

rate of the atom.

Inserting this a(w) into the above expressions for potential and scattering rate

yield

U(r) oc ( + WO I() (2.8)

Fs,(r) M c - + I (2.9)
O WO - W WO + W)

Neglecting the 1/(wo + W) terms in the case of large detunings A =w - wo, we get

the simplified formulas

U(i) oc -I(r)Foc0 Ic -rI(-I (2.10)

So we see that while both the dipole potential and the scattering rate decrease with

detuning, the dipole potential scales as 1/A and the scattering rate scales as 1/A 2.

In the case of large detunings, the scattering rate is much less than the frequencies

associated with the dipole potential and can be safely ignored. Such is the case for

optical lattices and dipole traps used in our experiment, which are operated at 1064

nm.

Another consequence of the above expressions is the way in which the sign of the

dipole potential depends on the frequency (wavelength) of the light. If the light is

red-detuned, i.e. with a longer wavelength than the atomic transition, the potential

will be attractive; if it is blue-detuned, the potential will be repulsive. For example,

the plug laser we described earlier to prevent Majorana losses in quadrupole magnetic

traps is a blue-detuned (532 nm) laser.

One can now easily see how optical dipole traps (ODTs) and lattices are created.

In Gaussian ODT's, a red-detuned Gaussian light beam traps the atoms at the beam

waist and center, the point of highest intensity. In an optical lattice, a standing

wave of light with alternating intensity maxima and minima gives rise to a periodic

potential with a period half the size of the light wavelength. Optical lattices along

orthogonal lattices can be combined to give rise to 2-dimensional and 3-dimensional
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structures. Although several lattice geometries (Kagome, triangular, honeycomb) can

be realized, in this thesis we exclusively deal with square lattices.
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Figure 2-4: A schematic representation of the dressed state picture of RF evaporation.
In (a), we show the Zeeman effect on two hyperfine states of sodium: the trappable
IF = 2 , mF = 2) state and the untrapped IF = 1, mF = 1) state. In the absence of
any RF, atoms initially in 12, 2) stay in this state (neglecting Majorana flops) and
the blue curve forms a potential landscape for the atoms. When RF at frequency

WRF turned on, but we do not yet take into account the coupling between levels, the
eigenstates become as shown in (b): eigenstates have to be labelled not only by their
F and mF values, but also the number of RF photons in the system. At a radius

ro, the curves intersect, as the RF was resonant with the Larmor transition at this
radius. When we take into account the coupling between states, an avoided crossing
opens up at ro, as shown in (c). The lower curve now forms the potential for the
atoms, allowing energetic atoms to spill out over the hill and escape the trap. In (d),
as the RF frequency is increased, the avoided crossing moves closer to the trap zero,
allowing further atoms to escape the trap.
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Chapter 3

A degenerate gas of potassium-40

atoms

This chapter describes the process we use to create a cold gas of potassium-40 atoms.

An essential step in this process is sympathetic cooling via forced evaporation of

sodium-23 in a magnetic trap. This chapter thus begins with a description of our

sodium cooling and trapping schemes, culminating in the creation of a Bose-Einstein

condensate. After describing our sodium system, we turn to potassium, picking up

from the 2D-MOT stage, which was described in my undergraduate thesis [28].

3.1 Creating a Sodium BEC

To create a sodium BEC, we begin with a Zeeman-slower loaded MOT. Then, we

capture cooled atoms from the MOT in a quadrupole magnetic trap created by the

same coils-and thus in the same place-as the MOT. Since this trap is centered on a

position 12 mm away from the microscope field of view center, we perform magnetic

transport from the original quadrupole trap into another one concentric with the

microscope1 . We plug the Majorana hole in this trap with a 532 nm laser beam and

evaporate to get a BEC. In the following sections we expand upon this overview.

'See figure 3-1 for a picture of our chamber; for a more thorough discussion, the reader is referred
to Thomas Gersdorf's diploma thesis [10]
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Figure 3-1: CAD drawing of the main chamber of our experiment's vacuum system.
The purple ball represents the 3D-MOT position, loaded by a Zeeman slower for
sodium and 2D-MOT for potassium (neither shown in this picture). The blue atoms
directly to the left of the MOT represent atoms in the quadrupole trap centered under
the microscope. It is in this quadrupole which we achieve sodium BEC and potassium
degeneracy. Subsequently, the atoms are transported upwards under the microscope,
the subject of later chapters. Figure created by Thomas Gersdorf.

3.1.1 Sodium Laser System and MOT

The internal structure of the sodium-23 D2 line (589 nm) is shown in figure 3-2. As is

standard, we cool and trap with light resonant with the cycling IF = 2) -+ IF' = 3)

transition. The possibility of an excitation into a state other than IF' = 3, m -3)

necessitates the use of repumping light on the IF = 1) -+ |F' = 2) transition. For

Zeeman slowing, both cooling and repumping frequencies are needed, with both of

these red-detuned by 1 GHz to be resonant with hot atoms in the sodium oven.

Figure 3-2 indicates all of the frequencies necessary for cooling and trapping sodium.

To generate the above frequencies, we built a laser system based on a solid-state
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Figure 3-2: Sodium D2 line (589 nm) structure. Frequency separations are taken
from [31]

589 nm source. This source consists of a Raman fiber amplifier (VRFA-SF from

MPB Communications Inc.) operating at 1178 nm, seeded by an 1178 nm grating-

stabilized diode laser (Toptica DL Pro) and pumped by an included Ytterbium fiber

laser. Following amplification, the 1178 nm light is frequency-doubled in an SHG

crystal to yield light at the correct sodium D2 wavelength, 589 nm. We run the laser

at an operating power of 1.3 W.

After the SHG crystal, we use acousto-optic modulators (AOMs) and electo-optic

modulators (EOMs) to obtain the necessary light frequencies. AOMs shift the fre-

quency of a laser beam via Bragg diffraction off a transverse sound wave, while EOMs

use the electo-optic or Pockels effect to add sidebands to a beam2 . In addition to these

2A treatment of the detailed workings of AOMs and EOMs can be found in almost any thesis in
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tools, we use waveplates and polarization cubes to split light into multiple beams.
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Figure 3-3: Sodium laser system, figure adapted from [?]

Our laser system is shown schematically in figure 3-3. We lock the master laser

(Toptica DL Pro) to a frequency such that the SHG output is 170 MHz red-detuned

AMO physics, including my undergraduate thesis [28]
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from the D2 crossover frequency, the average of the 3S 1 / 2 IF = 1) -a IF' = 3) and the

3S 3/ 2 IF = 2) - IF' = 3) transition frequencies. This lock is achieved by applying

feedback to the grating piezo in the DL Pro, using an error signal generated by four-

wave mixing spectroscopy on a sodium vapor cell [23].

With the master laser stabilized, we use AOMs and EOMs to generate the required

frequencies of light for magneto-optical trapping, Zeeman slowing, F=1 pumping or

repumping (IF = 1) -- F' = 2), F=2 pumping and imaging (IF = 2) -- IF' = 3)),

and molasses (both IF = 1) - F' = 2 and IF = 2) - F' = 3)3. The beams are

coupled into polarization-maintaining fibers (ThorLabs P3-630PM-FC-5) and sent to

the experiment table.

Note that the slower beam contains both cooling and repumping frequencies, while

for the MOT, separate fibers are used for cooling light and repumping light. This

separation is essential, because for sodium we chose to implement a particular MOT

variant called the DarkSPOT [18]. In a DarkSPOT, a circular spot (made, in our

case, with electrical tape on an optical flat) is placed in the repumper beam path

and imaged onto the MOT position, creating a region in the center of the trap where

atoms are predominantly in the IF = 1) state. In this state, atoms are dark to the

MOT light. This has two effects which increase the trapped atom number: it reduces

radiation trapping, which contributes an effective repulsive force between the atoms;

and it reduces collisions between ground and excited-state atoms which lead to atom

loss. As a historical note, when the DarkSPOT was invented in 1992, it allowed

for almost an order of magnitude increase in trapped atom density over the original

"bright" MOT [18].

The counterpropagating beams required for a MOT are typically produced in one

of two ways: separate beam paths or a single retro-reflected beam. In our case, the

limitations imposed by our chamber force us to use retroreflection for the bottom

beam, but the horizontal beams are separate. We show a schematic representation of

one of the MOT beam paths on the experiment table in figure 3-4. After the fiber, the

3The molasses light is used for fluoresence imaging through the microscope, which will be de-
scribed in a later chapter.
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beams are collimated, passed through polarization cubes to produce a defined linear

polarization, and then telescoped to a size of ~3 cm. Finally, the beams pass through

a quarter waveplate to become circularly polarized. The powers in each beam are ~10

mW, as is the dark SPOT repumper.

Polarizing
Beamsplitter

Fiber Half Quarter PtsuFber-PM) Waveplate Waveplate MT
(589 nm) (589 nm) LiW

Polarizing
Beamsplitter

Dichroic Half Waveplate
(780 nm)

PM
Fiber

Quarter
Waveplate

j(671 nm)

To Vacuum
Chamber

Figure 3-4: Beam paths for the sodium and potassium MOT on the experiment table,
shown for one arm only. Other arms have essentially the same setup.

To generate the magnetic field gradient for the MOT, we pass 37 Amps through the

MOT coils in our experiment. These coils were designed to produce a radial gradient

of 0.145 G/A/cm and an axial gradient of twice that, 0.290 G/A/cm. Measurements

showed that these actual factors are 0.16 G/A/cm (radial) and 0.32 G/A/cm (axial).

Thus, 37 Amps corresponds to a gradient of 10.7 G/cm (radial) and 21.4 G/cm (axial).

Figure 3-5 shows a picture of the sodium DarkSPOT in action. After loading

the MOT for a total of 4 seconds, the MOT contains on the order of 10 9 atoms at

around 300paK, near the Doppler temperature of sodium, 253AK. Temperatures are

determined by time-of-flight imaging: we turn the MOT beams and magnetic fields

off, allow the cloud to expand, and take an absorption image. We extract the slope of
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Figure 3-5: Sodium Dark SPOT, containing about a billion atoms at 300pIK

the cloud-size versus expansion time curve, yielding an average velocity and thus, a

temperature. Note that this method of extracting slopes is necessary for a MOT, but

not in the subsequent magnetic traps. There we can simply assume an infinitesimal

initial cloud size and extract a velocity from a single time-of-flight shot. In a MOT,

however, this overestimates the slope due to the MOT's initial size.

3.2 Sodium Optical Pumping

After the MOT, we cool sodium atoms evaporatively in a magnetic trap. As noted in

chapter 2, our magnetic trap traps atoms at a field minimum. Thus, to magnetically

trap sodium atoms, they must be in a state whose energy increases with increasing

magnetic field. Figure 3-6 shows a plot of the energies of the sodium ground state

manifold versus magnetic field, the so-called Zeeman shift, repeated from Ch. 2. As

the plot shows, the candidates for trappable states are |2, 2), 12, 1), 12, 0), or 1, -1).

We rule out 12, 0) because it is only weakly trappable at low magnetic fields. Similarly,

we rule out 12, 1) because hyperfine-changing collisions can turn a pair of 12, 1) atoms

into one 12,1) and one 11, 1) atom, the latter of which can then escape the trap. So

only 12, 2) and 1, -1) are possibilities for trapping and evaporative cooling.

We need to keep in mind, however, that in this particular experiment we are

interested in sodium not only for its own sake, but also for sympathetic cooling

of potassium. Looking at figure 3-6 again, the trappable states of potassium are

19/2,9/2) and 17/2, -7/2). Again looking at spin-exchange collisions, we see that we

can perform sympathetic cooling either with Nall, -1) and K17/2, -7/2) or NaI2, 2)

47



23Na 12,2)
12, 1)>

12, 0>

12,-2)

N

W-4

11,0>
Il>

0 100 200
Magnetic Field (G)

0 100
Magnetic Field (G)

Figure 3-6: Figure repeated from chapter 2, showing the hyperfine states of sodium-23
and potassium-40 in a magnetic field.

and K19/2, 9/2). We tried both of these approaches, and while we were able to

cool sodium to BEC in both the 1, -1) and 12, 2) states, we were never able to

successfully magnetically trap potassium in 17/2, -7/2). Possibly this is due to a spin-

exchange collision in which 17/2, -7/2) transforms into 19/2, -9/2) and 19/2, -5/2) or

19/2, -7/2) and 19/2, -7/2), possible due to potassium's inverted hyperfine structure.

Regardless of the cause, we ended up pursuing the NaJ2, 2) and K19/2, 9/2) cooling

strategy, which we will now describe.

In a Dark SPOT, the sodium atoms are predominantly in the IF = 1) state. In

between switching off the MOT and switching on the magnetic trap, we thus needed

to optically pump the sodium atoms into the IF = 2, mF = 2) state. We accomplish

this with a combination of two optical frequencies. The first is light resonant with the
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IF = 1) -+ IF = 2) transition to pump atoms from the IF = 1) to IF = 2) manifold.

The second is resonant with IF = 2) - IF = 2) and circularly polarized with o-+

helicity (we apply a bias field during pumping to have a defined quantization axis).

In this way, the 12, 2) state is dark to the pumping light, minimizing cloud heating

during pumping. Pumping powers we use are on the order of a milliWatt for both

frequencies, and are turned on for a total of 700 ps.

3.3 Sodium Magnetic Trapping, Transport, and

Evaporation

With the sodium atoms pumped into the 12, 2) state, we abruptly turn on the MOT

coils once again to create a quadrupole magnetic trap. We allow the atoms 100

ms to thermalize, and then perform a "state cleanup" in which we lower the axial

gradient to 7.7 G/cm for a total of 300 ms. At this gradient, only the 12, 2) state is

supported against gravity; any residual 12, 1), 12, 0) or 1, -1) atoms fall out. After

raising the gradient again, we then transport the atoms from the MOT position to

their final horizontal position under the microscope, 12 mm away. This is done by

by simultaneously ramping down the currents in the MOT coils and ramping up the

currents in the coils centered on the microscope position (called "curvature coils" for

historical reasons). Over 300 ms, the currents are simultaneously ramped in a cubic

spline pattern, chosen so that the slopes of the curves at both endpoints are zero. At

the end of this time, the current in the MOT coils is zero. Over the next 300 ms,

we ramp up the current in the curvature coils to its final value and allow the atoms

another 400 ms to thermalize. With this current, the magtrap gradient is B'.iai = 330

G/cm (B3adia = 165 G/cm). After transport, we have as many as 700 million atoms

at a temperature of about 500 pK. This corresponds to a phase-space density (PSD)

of about 10-6, where phase space density is defined as nAdB, n being the number

density and A the thermal deBroglie wavelength. At the threshold for Bose-Einstein

condensation, the PSD is 1, so we are initially six orders of magnitude away.
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To plug the Majorana hole in this quadrupole trap, we use a 10 W laser at a

wavelength of 532 nm (Spectra-Physics Millenia Pro)4 . This laser is focused to a

waist of 50 pm at the center of the quadrupole. The beam path for the plug is

exceedingly simple: the output beam from the laser is periscoped onto a breadboard

on the experimental table, is passed through a telescope to expand, and then is

focused by a lens immediately before it enters the vacuum chamber. This beam

path has the drawback that it requires us to shut off the plug with a shutter rather

than an AOM, which would be much faster. Unfortunately, this makes thermometry

in the quadrupole quite difficult, especially as the cloud gets close to condensation.

Initially we had tried to use an AOM; however, thermal lensing distorted the beam

shape so drastically that the plug was ineffective. Without the AOM, the beam shape

is properly Gaussian, and at 10 W the only lensing symptom we notice is a slight

increase in beam waist. In addition, only one element of the beam path is on a

movable mount, the mirror we use for everyday alignment. An in situ picture of the

plugged trap is shown in figure 3-7.

Figure 3-7: In-situ image of the quadrupole trap with plug, showing the region of low
density evacuated by the repulsive plug laser.

After the atoms thermalize in the plugged trap, we begin RF evaporation. The

applied RF field causes transitions between the 12, 2) and untrapped 1, 1) state. We

evaporate in two stages: first, at the initial gradient, we evaporate for 6s, ramping the

4 Since the atoms spend such a short time in the MOT quadrupole trap, we do not bother to plug
it.
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RF frequency from 2100 MHz to 1794 MHz with a series of linear stages approximating

an exponential curve. To see the efficiency of this evaporation process, we plot a curve

of PSD vs. atom number in figure 3-8. We generated this plot with MATLAB using

code which is given in Appendix B. The plot (on a log-log scale) is linear, indicating a

power-law scaling between the two quantities. We found that the maximum exponent,

or log-log slope, we were able to achieve during this stage of evaporation was -2.2.

After the first stage of evaporation, we end up with around 120 million atoms at a

temperature of 100 pK, corresponding to a PSD ot 10-3.

-4 4

-2.5p 2
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0) -. slope: -2.25
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7.6 7.8 8.0 8.2 8.4 8.6

Iog(N)

Figure 3-8: Plot showing the increase in phase-space density at the expense of atom
number which occurs during the first stage of our rf-evaporation of sodium. We begin
with about 500 million atoms at a phase-space density of about 10-, and end the
first stage of evaporation with about 120 million atoms at a PSD of about 10-2.5.

At this point in the evaporation, the lifetime of the cloud in the plugged trap is on

the order of 10s, indicating three-body losses caused by too high a density of atoms

in the trap. To solve this problem, we decompress the trap by a factor of 2/3 over the

course of 200 ms (to keep the plug aligned, we use offset fields and vary the current

as the decompression progresses). From this point, we continue evaporation, taking

5 seconds to ramp the frequency from 1792 MHz to around 1773 MHz. This yields a
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Bose-Einstein condensate, as shown in the sequence of pictures in figure 3-9. Using

this method, we have been able to produce BECs with as many as 2 million atoms.

Figure 3-9: Sequence of evaporation leading up to a sodium BEC of F = 2 atoms.

3.4 Potassium MOT

With a sodium BEC in hand, we now turn to the trapping of potassium atoms. For

potassium, we use a bright MOT, which has been used in previous experiments by

our group in which sodium-potassium sympathetic cooling was achieved. The first

step in this process is building the laser system, which was completed by Thomas

Gersdorf and is described in detail in his Diploma Thesis [10]. In brief, a master

diode laser (Radiant Dyes Narrowdiode) is stabilized to the potassium D2 crossover

frequency; then, light is split off, frequency-shifted with AOMs, and amplified by slave

lasers and tapered amplifiers. To carry the light to the experiment table, we use a

polarization-maintaining fiber manifold with four inputs and four outputs (although

we only use two of the inputs). This allows us to combine MOT and repumper light

on the laser table. On the experiment table, the optics are much the same as they are

for sodium; the sodium and potassium light is combined using dichroic filters from

Semrock.

In contrast to the sodium MOT, the potassium MOT is loaded by a 2D MOT,
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described in my undergraduate thesis. This 2D MOT performs extremely well com-

pared to traditional Zeeman slowers; we achieve a loading time of about 2 seconds,

as shown in figure 3-10.

Figure 3-10: Oscilloscope trace showing the signal from a photodiode monitoring the

potassium 3D MOT fluoresence. The horizontal spacing on the trace is 1 second,
giving a loading time of a little over 2 seconds.

3.5 Sympathetic Cooling

While it is possible to capture sodium and potassium together in a dual-species MOT,

this suffers from the possibility of light-assisted collisions. Instead, we use a scheme

developed earlier by our group [24], which avoids a dual MOT. In this scheme, we

first trap sodium in a MOT, pump it into 12,2), then trap it in the quadrupole and

perform state cleanup. Then, we lower the gradient to the initial MOT value, turn

on the potassium beams, and load the potassium MOT. In this way, sodium is kept

in the magnetic trap while potassium is loaded in the MOT. After K MOT loading,

we then pump potassium into 19/2, 9/2) for 500 ps and capture both sodium and

potassium in the magnetic trap. During this pumping time, the sodium expands

freely, but because of the low gradient it was held in, the expansion is small enough

that atom losses are negligible.

After sodium and potassium are caught in the MOT quadrupole trap, they are

transported to the curvature trap in the same way as described above. We then

evaporate, expelling hot sodium atoms. With this evaporation, we find that we
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are able to get potassium to around 1 [K. We say "around" because determining

the temperature precisely for this cloud is impractical; since we use a plugged trap,

accurate fits of the cloud shape to Fermi-Dirac distributions are difficult. Thus, the

temperature is determined largely by the temperature of the sodium cloud being

used to sympathetically cool the potassium. Assuming these two clouds equilibrate

quickly, they should be at roughly the same temperature.
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Chapter 4

Single-site resolved imaging system

This chapter describes the novel feature of our experiment, the microscope optics

capable of resolving fluoresence from single optical lattice sites. High resolution re-

quires a high numerical aperture optical system, a relationship we describe in the

first section of this chapter. Like the bosonic quantum gas microscope developed in

Markus Greiner's group at Harvard [3], our microscope uses a lens placed extremely

close (10 pm.) to the atoms in the optical lattice to achieve high numerical aperture.

Unlike the Harvard system, however, all of our optics are placed outside the vacuum

chamber. We describe these optics in section 2. In section 3, we discuss the alignment

of the microscope objective and its mounting system using Fizeau interfermetry. Fi-

nally, the transport of atoms from the curvature trap to their final position under the

microscope is discussed.

4.1 Imaging system resolution

In general, the resolution of an imaging system is deterined by its numerical aperture,

a measure of the amount of light collected by the system. For an imaging system

which can collect all of the light rays in a cone of half-angle 0, working in a medium

of refractive index n, the numerical aperture (NA) is defined as NA = n sin 9. A

system with a given numerical aperture can resolve features with sizes D larger than

roughly
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0.61A
D = .(4.1)

NA

Here A is the wavelength of the light used for imaging. Because we work in a

vacuum chamber, the refractive index for our experiments is n = 1. Hereafter we will

consider only this case.

It is instructive to derive eq. 4.1 using standard Fourier optics methods. Consider

the imaging system shown below, which images plane 0 onto plane I using lenses

which have focal lengths fi and f2, respectively. To see the effects of finite numerical

aperture, we place an artificial aperture in front of the first imaging lens. In real

imaging systems, this aperture does not have to be a physical aperture, but can

simply represent the finite size of the lens.

Pane 0 Aperture 
Focal length f , Focal length f2

Plane0 [)PlanetI
II I IL

Figure 4-1: A two-lens imaging system

Imagine a point source at the center of plane 0 which emits a spherical wave of

the form h(x, y, z) oc exp(-ikr)/r. Here the origin coincides with the point source,

and k = 27/A is the magnitude of the wavevector of the imaging light. Assuming a

paraxial system, with captured rays nearly horizontal, we expand the wavefunction

to lowest order in x and y, yielding a function proportional to exp(-ikz), as expected

for rays propagating primarily in the z-direction. Typically one drops this factor and

instead works with the function u(x, y, z) = h(x, y, z)/ exp(-ikz), which in our case

is
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z

After the aperture, the function is multiplied by a characteristic function p(x, y)

to become

u (XY, fl) =p(Xy) exp ((-ik/2fi)(x2 + y 2)) (43)
fi

The effect of the lens (which we assume to be ideal, i.e. aberration-free) is to

multiply the wavefront by exp ik/2fi(x2 + y2 ), effectively removing the wavefront

curvature to produce u2 (x, y,Z):

p(x, y) (4
U2(X, y, fl) = (4.4)

fi

Next, the wave propagates between the two lenses. We could analyze in detail

the effect of this propagation; however, we note that as long as the distance between

the lenses is smaller than a 2 /A, where a is a rough measure of the transverse extent

of the wavefront, the beam will not diffract much and will have the same functional

form when it reaches the second lens. As a is set by the aperture, on the centimeter

scale, the length a 2 /A will usually be on the scale of 100 meters and can safely be

ignored for our optical systems.

After passing through the second lens, then, the wavefront has the form

u3 (x, y, z) = f' exp ((ik/2f 2)(X2 + y 2 )) (4.5)
fi

To arrive at the distribution which is cast on the image plane, we need an equation

for the propagation of a wave in free space by a distance d. Invoking the Huygens-

Fresnel principle, which treats each point on a wavefront as a source of spherical

waves, this equation1 is

'A more thorough derivation can be found on most books which treat Fourier optics, including
a beginning graduate-level text by Haus [13]. In essence, Haus' derivation expresses the input field
distribution as a sum of plane waves and then propagates each one through free space by multiplying
by a simple exponential factor. At the end, the inverse Fourier transform is taken to arrive back at
a position-space representation.
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u(x, y) = exp (-ikd) uo(xo, yo) exp ((-ik /2z)((x - x) 2 + (y - yo) 2 ))dxodyo

(4.6)

Plugging the expression in 4.5 into the above equation, we arrive at

uI(x, y) = exp (( )(X2 _ y2 )) p(oyo) exp ( )((xoX + yyo)), (4.7)Aff 2  2f J f2f

showing that apart from an overall curvature, the impulse response of our imaging

system is given by the Fourier transform of the aperture function p(x, y). From this

one can immediately see that larger apertures give higher resolutions: the wider p(x,y)

is, the narrower will be its Fourier transform. However, to quantitatively arrive at the

numerical aperture relation, we take p(x, y) to be a circular aperture with completely

absorbing walls, that is, p(x, y) = 1 inside the aperture radius D/2 and vanishing

otherwise. In this case, the Fourier transform is an Airy disk which can be expressed

in terms of Bessel functions:

ui (X, y) = U(0, 0) 2J(rDp/Af 2) 2 2 2
7rDp/Af 2  = +(

This function, plotted in figure 4-2, is peaked at the origin and drops to zero at a

radius p, = 1.22Af 2/D [30]. Using the small-angle approximation, D is related to the

system's numerical aperture by D = 2fiNA. So the point source is blurred to a radius

of p, = 0.61Af 2 /f 1 NA. To relate this to the system's resolution, we use a heuristic

known as Rayleigh's criterion, which considers two points resolvable if the Airy disk

produced by the first is centered on the zero of the Airy disk produced by the second.

In our system, this means that the two points are resolvable if their images are more

than p, apart from each other. Because the magnification is f2/fl, the requirement

is that points in the object plane are separated by a distance of 0.61A/NA or more,

which is the relation we had hoped to derive at the beginning of this section2

2 Note that we have implicitly assumed spatially incoherent imaging in this section, as we did
not worry about interference between Airy disks. In practice, because we use fluoresence imaging,
which consists of light spontaneously emitted from atoms, the assumption of incoherent imaging is
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Figure 4-2: Plot of the function Ji(x)/x, which is the form of an Airy Disk created
by an imaging system with finite resolution.

For fun (and a bit of perspective), let us use the formula we have just derived to

calculate the resolution of some of the imaging systems, other than the microscope,

which we use in our experiment. These systems are representative of the imaging

systems used in current ultracold gas experiments and will serve as a good contrast

to the microscope. We have four imaging systems: two for imaging the magnetic

trap in which we evaporate (1 cm under the microscope) and two for imaging the

cloud after it's moved to the substrate. The magnetic trap imaging paths use a 2-

inch diameter, 300 mm focal length lens as the first lens in the imaging system. This

corresponds to a numerical aperture of about 0.085, or a resolution of about 4 microns

for sodium (A = 589 nm) and 5.5 microns for potassium (A = 767 nm). For imaging

under the substrate, the first lenses are the lattice collimation lenses, which are 200

mm focal-length lenses 1 inch in diameter. Here the numerical aperture is 0.051,

meaning the resolution is about 7 microns for sodium and 9 microns for potassium.

We should note, however, that because we are not using diffraction-limited optics for

these imaging paths, the numbers quoted above are only ideal resolutions, and due

to aberrations the actual resolutions of the systems will be poorer3

justified.
3Equivalently, the lenses used in these setups are not ideal, so they do not simply act on the

beam by multiplying with the phase factor we used earlier.
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4.2 Microscope Optics

In this section, we describe our solution for achieving an imaging system that can

resolve single lattice sites (on the order of 0.5 micron). This solution is similar, but

not identical, to the one used in the Harvard bosonic quantum gas microscope. At the

heart of the system is a commercial objective lens from Edmund Optics, the 20X EO

M Plan HR Inf inity-Corrected Objective. This lens is a compound lens designed

to achieve aberration-free performance when used to image a plane exactly one focal

length away (i.e. Inf inity-Corrected, in the configuration described in the previous

section) Keeping the results of the previous section in mind, this lens can be modeled

as an ideal thin lens with a focal length of 10 mm combined with an aperture of

diameter 11 mm. This leads to the NA value stated on the lens specification sheet,

0.6.

A numerical aperture of 0.6 yields a resolution of essentially A, where A is the

imaging wavelength. For all three of the species we plan to use in the experiment,

this is not quite enough to resolve single sites: sites are separated by 532 nm, whereas

the transitions we image on have wavelengths of 589 nm, 767 nm, and 671 nm. To

increase the resolution past this threshold, we play the following trick (see figure 4-3):

in-between the microscope objective and the atoms, we place a fused silica hemi-

sphere, with the hemisphere centered on the atoms' position. In actuality, of course,

the atoms are about 10 microns below the center of the hemisphere, but for an under-

standing of how the hemisphere enhances numerical aperture, it is helpful to idealize

the atoms as lying an infinitesimal distance off-center. Consider, as in figure 4-3(b),

the extremal rays from the atoms which is captured by the lens. In the absence of the

hemisphere, it is these rays which determine the system's numerical aperture. Adding

the hemisphere (figure 4-3(c)) produces no refraction at the curved surface because

it's centered on the atoms, but at the flat surface, causes a refraction of the rays

according to Snell's law. This is shown more clearly in figure 4-3(d), which makes

it clear that the extremal ray in the presence of the hemisphere is at a much larger

angle than in its absence. Since the hemisphere increases the sine of the extremal
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Figure 4-3: An image showing how the placement of a hemisphere enhances the
effective numerical aperture of the imaging system. The sine of the maximal angle
is increased by the refractive index ratios, thus increasing the numerical aperture by
the same factor. See text for details.
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ray's angle by the index of refraction of the fused silica, the numerical aperture is

also increased by this factor, nFS 1.46. Thus the combined hemisphere-objective

system has an ideal NA of 0.876, leading to resolutions of 400 nm (Na), 450 nm (Li),

and 525 nm (K).

The argument presented above is admittedly less than rigorous. For example,

it does not indicate exactly how far away from the hemisphere the atoms can be

for the system to still achieve sufficient resolution. This is an especially important

question as atoms trapped close to surfaces might feel unwanted potentials due to this

proximity. To answer this question precisely, we use a ray-tracing software (Lambda

Research Corporation's OSLO® software). With the results of the simulation, and

the experiences of our colleagues who have built quantum gas microscopes [3], we

decide to place the atoms 10pim from the surface of the hemisphere. At this distance,

however, we will need to insert a phase correction plate into the imaging path to

correct for aberrations [25].

4.2.1 Experimental Realization

Our realization of the imaging system described above is shown in figure 4-4. As can

be seen, the hemisphere consists of a curved element optically contacted to a vacuum

window which features a super-polished substrate on the vacuum side. The atoms to

be imaged will be trapped 10 lim from the surface of the substrate.

Why a super-polished substrate and optical contacting of the hemisphere? Ex-

perimentally, the construction of our imaging system, in addition to the requirements

described above, needs to also enable the collection of several photons from each atom.

This is necessary to accurately reconstruct each atom's Airy disk; in the face of losses

due to inevitable reflections at interfaces, background noise on the camera CCD, the

finite quantum efficiency (80%) of our camera, and the small solid angle (about 26%

of the full 47r steradians) of the imaging system, this requirement is all the more strin-

gent. Even ignoring the first two effects, the above two numbers imply that we only

capture, at most, 20% of the photons emitted by the fluorescing atoms. For a sense

of scale, other quantum gas microscopes collect about a thousand photons per atom
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Figure 4-4: Our realization of the system depicted schematically before. The hemi-
sphere is a combination of a curved surface, the glass comprising the vacuum bucket
window, and a super-polished substrate from ATFilms. Figure not to scale.

when single-site imaging ([3] and [33]). The upshot of this is that any scattering

of imaging light, e.g. that due to Rayleigh scattering via imperfections on a glass

surface of standard optical quality, must be minimized. So, we use a super-polished

substrate with surface roughness of approximately an Angstrom. Further details of

the substrate, as well as information on the optical contacting process, are given in

Thomas Gersdorf's diploma thesis [10].

We built a prototype imaging system and tested it in a couple of ways. First,

nanospheres of diameter less than 100 nm were imaged to determine the point-spread

function of the system, a test which showed that our system was indeed diffraction-

limited. Second, Fizeau interferometry was performed to determine the distortion of

the wavefront produced by passage through the objective. The distortion we saw was

less than A/4. For more information on these tests, the reader is again referred to

Thomas Gersdorf's diploma thesis [10].

4.3 Objective Alignment and Mounting

To align the objective properly with respect to the hemisphere, we used a homemade

Fizeau interferometer, schematically illustrated in figure 4-5. In this interferometer, a

plane wave created by a reference flat is interfered with the beam created by passing a
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plane wave through the objective and capturing its reflection (a lens is used to image

the objective aperture onto the camera). When the objective is mounted correctly,

rays which pass through it (the spherical wave) and hit the hemisphere do so at

normal incidence. Upon reflection and a second pass through the objective, they

once again form a plane wave, which upon interference with the reference plane wave

should reveal straight fringes.

Collimating Beamsplitter
Lens

Fiber

Reference Flat

Imaging Lens
Microscope
Objective

CCD Camera

Hemisphere

Figure 4-5: A schematic of the Fizeau interferometer used to align the microscope
objective.

Pictures of the interference fringes we obtained with the objective placed in the

correct position are shown in figure 4-6. To ensure that the horizontal fringes are

produced by the reflection off the curved hemisphere surface (and not the flat super-

polished substrate) we block half of the beam on top of the objective aperture. Rays

which reflect off the curved surface still make it to the camera, as they are incident

and reflected on the same side of the beam. Rays which reflect off a flat surface,
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however, do not make it back, as they are either blocked on incidence or reflection.

Since half of the interference fringes survived when we blocked half the beam, the

reflection in question was from the curved surface. So, the fringes shown imply a

correct alignment of the microscope objective. Once the microscope was aligned in

(a) (b)

Figure 4-6: (a) Fringes obtained with the Fizeau interferometry setup without half-
blocking the beam, and (b) a proof that these fringes arise from the curved surface
by blocking half the beam.

place, a permanent mount was installed. This mount, designed by Matt Nichols, is

a stainless steel assembly shaped like a plus-sign, with four holes to mount on the

vacuum bucket windows. An early mockup design, not the final one used, is shown

in 4-7(a). This initial design called for screwing the microscope objective into the

stainless steel directly. In the final design, however, we instead screwed the objective

into a ThorLabs CP02 cage plate which was then glued onto metal pieces on the plus

sign mount, as shown in 4-7(b).
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Vacuum Bucket
Window

(b)

Figure 4-7: (a) An early design of the microscope mount, showing the plus-sign shape.
(b) Note, however, that in the final design, we did not screw the microscop objective
into the plus sign, as suggested by this drawing. Figure created by Thomas Gersdorf.
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Chapter 5

Optical Lattice

This chapter describes the (still in progress) setup and calibration of the optical lattice

in which we eventually trap the degenerate potassium atoms. This setup is the heart

of our experiment; we aim to study the physics of strongly-interacting fermions in a

lattice potential. We give an overview of our setup in section 1. Section 2 describes

the optics we use to create the lattice. In section 3, we describe how we transport

atoms up to the lattice position and evaporate to BEC, leading into section 4, which

closes with a look at the method we used to calibrate the lattice. We emphasize that

the lattice setup is still a work in progress, and information contained about the setup

in this thesis will likely become outdated very soon!

5.1 Overview of the Optical Lattice Setup

Ideally, the goal of our experiment is to create a single 2-dimensional layer of atoms

in a planar optical lattice, 10 microns under the super-polished substrate described

in the previous chapter. This setup is depicted in figure 5-1. As this setup is created

with 1064 nm light, the lattice spacing will be 532 nm.

To create the lattice, we shine in three separate 1064-nm beams, two to create the

horizontal square lattice and one for the vertical or z-lattice. The horizontal lattice

beams will not be perfectly horizontal, but will bounce off of the substrate at a 100

angle. With this bouncing configuration, the horizontal lattice beams already create
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Figure 5-1: Idealization of the 2d-layer of the optical lattice underneath the micro-
scope. Figure created by Thomas Gersdorf.

a vertical lattice with a spacing A, given by A/ sin(100 ) ~ 3pm. Antinodes (potential

minima) of this vertical lattice will exist 1.5, 4.5, 7.5, 10.5 Pm away from the substrate.

As discussed, we'd like the atoms to be about 10 pm from the substrate for imaging,

so we use the 10.5 Mm layer. We will develop techniques to load atoms into a single

layer of the lattice, or load into multiple layers and then slice away undesired layers.

For initial tests of the imaging system, the vertical lattice created by the two

bouncing beams will be sufficient. The third z-lattice beam, to be added later, will

create a 532-nm vertical lattice, which, combined with the 3 jim lattice, will push

us further into the 2D regime. Essentially, the creation of a 2D gas requires strong

confinement along one direction, effectively freezing the dynamics along that axis. To

be a little more precise, a gas is said to be in the two-dimensional regime when all

of the relevant energy scales-such as the chemical potential /L and the temperature

kBT-are much lower than the energy scale associated with confinement in the tight

direction: hw. For a deep lattice potential of the form Vo cos(kx), a simple Taylor

expansion shows that trap frequencies scale as kv/V. Adding the third lattice beam

increases both of these values, thus increasing the relevant trap frequency as well. At

the time of this writing, only the two horizontal lattice beams have been set up; as

noted above, these should be sufficient for single-atom imaging.

We realize this setup with two 1064 nm beams focused to an ellipse with waists
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of - 25pm and 100gm. This asymmetry is due to the angle of incidence: a circular

focus would cause a severely distorted beam on the substrate. With our aspect ratio,

the beam hits the substrate in a more circular pattern. In theory, the beams can

reach up to 50W power. We can thus calculate the expected value of V for both

sodium and potassium. This calculation is carried out in Appendix A. The results:

for sodium, the lattice depth is about 40 pK, or 100 times the recoil energy, per Watt

of laser power; for potassium, it is about 100 pK, or about 450 recoils, per Watt.

5.2 Lattice Implementation

The coherent laser which forms the basis for our optical lattice is the Mephisto from

InnoLight. Light from the Mephisto is split into three beams and coupled into optical

fibers which seed Nufern NuAMP Amplifiers. These amplifiers, which require between

50 and 200 mW of seed power, are in theory capable of 50W power output; each one

forms one axis of our optical lattice. So far, only two amplifiers have set up. The

third will eventually be the vertical lattice, but as described above only two axes are

currently functional.

The optics for both the x- and y- horizontal axes are virtually identical after

each respective amplifier. Their function, besides the obvious isolation, is essentially

threefold:

" Shaping the beam before the final lens which focuses it into the chamber so

that the focused beam has the right waists. We use standard Gaussian optics

to calculate the pre-lens waists: w(z) = WOV1+ (Z/ZR) 2 , with ZR = rwO/A the

Rayleigh range [13]. A spherical telescope followed by a cylindrical telescope

accomplishes the beam shaping. In order to avoid thermal lensing, we used very

thin fused silica lenses with long focal lengths (see drawing).

" Power control. We use an AOM (IntraAction DTD-274HA6, dissassembled into

two separate AOMs) to accomplish power control. As described in a later sec-

tion, we measure a small amount of the power after the AOM and feedback on
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the RF power into the AOM to achieve intensity stabilization. The particular

AOM we used has an active area on the order of several square millimeters,

which we found was necessary to prevent prohibitive thermal lensing. Unfortu-

nately, this has the drawback of reducing the response time of the AOM, which

may limit the modulation frequencies we can achieve.

9 Frequency shifting. We want to create a potential landscape for our atoms

which varies as Vo(sin 2(kx) + sin2 (ky)). If both x- and y-lattice beams had

exactly the same frequency, the potential would be corrupted slightly by an

interference term. To see this, note that in the case of same frequencies and

identical polarizations, the electric field felt by the atoms would go as

E = Eo[sin(kx - wt) + sin(kx + wt) + sin(ky + wt) + sin(ky - ot)] (5.1)

The squared magnitude of this field, whose average determines the intensity,

would then have the form

IEl2 oc cos2 (wt)[sin2 (kx) + sin2 (ky) + 2sin(kx) sin(ky)] (5.2)

To avoid the unwanted sin(kx) sin(ky) term, we use lattice beams of slightly

different frequencies, say o' and w. In this case, the interference term above

is multiplied by cos(wt) cos(w't), which oscillates at the frequency o - o'. In

our case, we use the +1st order of the AOM (driven at 40 MHz) for one of the

lattice arms and the -1st order for the other, so the oscillation is at 80 MHz,

well above trap frequencies and thus negligible1 .

After the beam shaping optics, the beam is sent into the vacuum chamber. On

both lattice arms, the large collimated beam is incident on a mirror held by a very

stable Polaris mount from ThorLabs. This mirror is the one used for daily alignment,

and is placed right before the 250mm lens which focuses the beam into the chamber.

'This was obvious to all of my labmates, who understood it without going through the math.
Since I had to work through it to understand, I included the formulas in this thesis, even though
they will likely prove superfluous for most readers.
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The final (fixed) mirror mounts in the lattice setup are, for three of the viewports,

mounted directly on the vacuum chamber. These mounts were custom-machined to

be screwed onto the chamber for added stability. On the retroreflection viewports,

the mounts also hold the collimation lenses (250 mm focal length) and retroreflection

mirrors. Pictures of the mounts, along with CAD drawings for the retroreflections,

are shown in figure 5-2.

It remains to be seen whether mounting the lattice mirrors directly to the chamber

is a good idea. With this setup, the position of the lattice is determined by the position

of the chamber. The microscope objective, mounted via the plus-sign mount to the

top bucket window, is also referenced to the chamber position. Thus, vibrations of the

chamber, induced by, e.g., magnetic coil switch-on and switch-off, should not affect

the relative position of the lattice and the microscope, as long as these vibrations are

common-mode. Certainly for stability, it seems as though the mounts perform their

job well; as of a couple weeks into working with the lattice, the retroreflection mirrors

have never needed to be realigned after their original alignment (the retroreflection

system is an imaging system, so alignment of the retroreflection mirrors is independent

of the input beam alignment). Only the input-side mirrors, which are not fixed to

the chamber, have needed to be touched on a daily basis.

5.2.1 Intensity Stabilization

It is important to stabilize the intensity of the beams used for the optical lattice and,

eventually, the dipole trap. Fluctuations in the intensity translate to fluctuations

in the potential landscape, which can cause unwanted heating of the atoms in the

trap if the fluctuations are at a low enough frequency that the atoms can follow. To

actively stabilize our beam power, we measure a small portion of the intensity on a

photodiode and feedback on the AOM power.

The system we designed for stabilization is based on one used in the quantum

gas microscope at Harvard and documented in the Ph.D. thesis of Amy Peng [25].

One challenge which our particular system must be able to solve is stabilizing the

intensity over several orders of magnitude. To do this, we use a logarithmic photodi-
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(a) (b)

(C) (d)
Figure 5-2: Mounts for the lattice mirrors. (a) Y-axis retroreflection, (b) Y-axis input,
(c) X-axis retroreflection, (d) CAD drawing of the X-axis retroreflection. The X-axis
input side is not shown as it is not a custom mount.

ode; specifically, we connect a standard silicon photodiode (BPX65 from Centronic)

to a logarithmic amplifier (AD8304 from Analog Devices, used with the evaluation

board). Following advice from the group of Selim Jochim, we cut the cap off of the

photodiode to avoid instability due to possible etaloning that occurs when the cap is

on. The AD8304 works across a range of 160 dB, or eight orders of magnitude, in
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photodiode current. It is particularly ideal for this application because it provides

an adaptive bias voltage for the for the photodiode, reducing dark current. With

the amplifier configured in its default configuration, the buffered output voltage is

VLOG = VY 1og10 (POPT/Pz), with Vy at 200 mV/decade and Pz 110 picoWatts. We

feed the output of this voltage to a homebuilt loop filter.

R1
R2

B R3

A R4

Differential Amplifier

Inputs:
A - Photodiode
B - Setpoint

R16
+ R

RI

Rf

Error Monitor

Component Values
R1 - 330k R9 - 12k R17- 12k

7 R2 - 56k R10- 10k D1. D2, D3 - 1N41
R3 - 56k R11-10k ICs - OP270
R4 - 330k R12-12k
R5 - 56k R13- 100k POT
R6 - 180k R14 - 100k POT
R7- 150 R15-5k
R8- 1M R16-43k
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0R10 D 3

t rpR14
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Figure 5-3: Schematic of the P1 Circuit designed for stabilization.

The loop filter schematic is shown in figure 5-3. The signal from the logarithmic

amplifier and the setpoint from our computer are both fed into a differential amplifier,

which outputs a voltage proportional to the difference between those two values. The

signal from the differential amplifier is then fed into the loop filter, a standard filter

which acts primarily as an integrator but rolls off to a proportional gain at low

frequencies. With our element values, the PI corner frequency of the filter is at 200

Hz. The overall gain of this filter is determined by a potentiometer at the input; this

is the only controllable value in the circuit. After the loop filter, the signal is rectified

and passed into a voltage limiter, the final block of the circuit. These last two blocks

are necessary for protecting the exponential amplifier, described in a later paragraph.

The voltage-limiting block of the circuit is based on a passive clamp circuit rather

than the active clamp circuit normally used (see, for example, [25]). The reason for

this is simple: the low-noise op-amp we have used (OP270) can only tolerate 1.5V
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between its inverting and non-inverting terminals. In normal applications, this is not

a problem, as feedback forces the two terminals to have the same voltage. However,

in an active clamp, there is no feedback when the input voltage is below the clamp

value, causing a large voltage between the two input terminals. Thus, we use a passive

clamp instead; this requires a final buffer to decrease the output impedance.

The output of the PI filter is fed into an exponential amplifier (Analog Devices

ADL5330, also with evaluation board). This amplifier controls the RF power arriving

at the AOM, which in turn controls the power in the diffracted order, the lattice beam.

The ADL5330 can only handle input voltages of up to 1.4V, making the output limit

in the PI circuit necessary.

In a test setup, the circuit described above was able to lock to signals of up to

30 kHz in frequency, with the main limit being the AOM rise time (to test this, we

moved the beam on the AOM closer to the transducer, and observed an improvement

in locking). However, we have yet to test this circuit on the actual lattice setup; since

that beam is much larger than the beam we used in our test setup, it is possible that

the circuit will not lock at such high frequencies.

5.3 A Sodium Condensate under the Microscope

Lattice calibration via the Kapitza-Dirac technique we describe in the next section

requires atoms to be trapped in the lattice potential. When last we left our atoms in

Ch. 3, though, they were still about a centimeter away from the lattice position.

Several ideas were discussed for moving the atomic cloud up to the final lattice

position. The obvious solution was just to move the zero of the magnetic field up to

the substrate by adding a vertical offset field. This was initially rejected, however,

because while the cloud moved up, there would be no plug, leading to Majorana

losses. Instead, we came up with (and tried) several other possibilities:

* One possibility which initially seemed attractive was to use a slightly misaligned

1064 nm beam (which would eventually be the vertical lattice beam) in con-

junction with the magnetic gradient as a hybrid trap. Moving the zero of the
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hybrid trap would bring the atoms up to the substrate. This idea was never

tried because we worried that even a shallow z-lattice might inhibit transport.

" Another idea, based on a recent paper from CNRS [20], was to create a 2D

gas by combining an RF field with a plugged-trap to create a so-called RF-

dressed trap. This idea was particularly attractive because it would already

give us a 2D gas which we could then load into one layer of the vertical lattice,

eliminating the need for slicing procedures. We spent a few days trying this idea

but soon realized that using microwave hyperfine transitions, trappable clouds

would have been exceedingly small in size, probably unsuitable for Fermi gases.

" A third idea, which we spent about a week trying to implement, was to use

a time-averaged orbiting potential trap, or a TOP trap [15]. In a TOP trap,

a rotating bias field is added to a quadrupole trap to move the Majorana-hole

faster than the atoms can follow; in effect, it spreads out the Majorana hole into

a so-called ring of death. With the TOP trap, the plug would be unnecessary,

and since the circle of death is two-dimensional, the cloud could be moved up

all the way to the surface without any Majorana losses. Because the high-

frequency rotating field necessary in a TOP trap would lead to eddy currents in

metallic chambers, TOP traps are usually implemented in chambers with glass

walls. Unfortunately, our own chamber was metallic, as when the experiment

was first conceived there were no plans to build a TOP. We nevertheless thought

to try it, and spent a while setting up additional coils to create the necessary

fields. Again, we saw trapping only of tiny clouds. When we measured the

fields produced with RF-tomography (see figure 5-4 for details), the reason was

apparent: as we suspected, the eddy currents in our chamber greatly reduced

the fields inside, making the TOP trap unfeasible.

" Lastly, a Ioffe-Pritchard trap [15] was considered. The coils in our experiment

(see [10]) are designed to produce, in addition to a quadrupole magnetic trap,

a harmonic Ioffe-Pritchard trap. As this trap has no magnetic field zero, it

possesses no Majorana hole and thus would have no need of a plug. Initial
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tests of the Ioffe-Pritchard trap in our experiment yielded surprising results; it

is possible that an electrical short is present somewhere in the coils. We only

made brief attempts at getting this trap to work, however, and it is still possible

that it will be used in the future.

Figure 5-4: We used RF tomography to calibrate the TOP trap fields. Sodium
atoms in the 11, -1) state (remember that this is the only trappable state in the F=1
manifold) were transferred via an RF pulse into states in the F=2 manifold. The
pulse was kept short so that only resonant pulses would transfer atoms; then, the
F=2 atoms were imaged. The picture above shows three rings, due to transitions
from 11, -1) into 12, 0), 12, 1), and 12, 2).

After all of these failures, we decided to try the simple, initially rejected, approach

of moving the cloud up to the surface simply by shifting the zero of the quadrupole

trap. To our surprise, we found that the atoms did not all escape from the trap via

Majorana losses; in fact, we could even transport a sodium BEC to the surface and

still have atoms (although they were of course no longer in a BEC due to heating).

After experimenting with different transport speeds, we settled on a two-stage moving

scheme: first, over the course of 50 ms, we move the atoms 98 percent of the way

up using a cubic spline ramp; then, over the course of 20 ms, we perform a linear

ramp to the final position. We found the two-stage movement necessary to prevent

atoms from sloshing up to the substrate and thus being ejected from the trap. It is

possible, however, that with current stabilization, this two-stage movement will not

be necessary. The movement up to the surface can be seen in figure 5-5. A picture of

the cloud from two different axes is shown in figure 5-6. To center the atoms under

the substrate, we apply horizontal bias fields.
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Figure 5-5: A sequence of images showing the final states of our movement of the
cloud under the surface. The fact that there are two clouds is an artifact of the
bounce imaging.

(a) (b)

Figure 5-6: Pictures of sodium atoms under the microscope, taken (a) along the
vertical axis with the microscope objective and (b) via an imaging beam bouncing off
of the substrate. The two clouds seen in (b) are an artifact of this bounce imaging:
their intersection represents the substrate surface itself.

With the atoms in position under the microscope, we turn on the optical lattice

beams, allowing the atoms to become trapped by the optical potentials. Then, we

move the magnetic zero back down to sit 98% of the way from the initial trap to the

substrate. In this way we create a hybrid trap where the radial confinement along

the beam is optical and the axial confinement is largely magnetic. Atoms in one axis

of the hybrid trap can be seen in figure 5-7.

Figure 5-7: Picture of the atoms held in a hybrid trap with one lattice arm and the
magnetic field, viewed along the orthogonal axis with bounce imaging.
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With the atoms held in the hybrid trap, we perform an evaporation by lower-

ing the beam intensity, allowing the hot atoms to escape. However, we block the

retroreflection along one of the lattice axes to promote thermalization (in a truly

one-dimensional situation, there is no thermalization). Our evaporation is done over

4 seconds. We use an exponential ramp with time constants of 1 and 1.5 seconds for

the x- and y-axes, respectively. After this evaporation, we end up with a BEC in the

hybrid trap. Representative pictures of the BEC can be seen in figure 5-8.

Figure 5-8: A few pictures of a the sodium BEC created under the microscope via
evaporation.

5.4 Lattice Depth Calibration

To calibrate our lattice depth, we use the standard technique of calibration via the

Kapitza-Dirac effect. This is essentially diffraction: just as light incident on a periodic

structure (diffraction grating) splits into multiple orders, so does the wavefunction of

electrons or atoms which feel the periodic potential of an optical lattice. To under-

stand this phenomenon a bit more quantitatively and to see how it is used for lattice

depth measurement, we imagine a condensate of atoms2 initially in a zero-momentum

state (of course, the atoms are not really in a plane wave, but such an assumption

simplifies the math greatly):

II(t = 0)) = 10) (5.3)

2 0r just a single atom, really; the Kapitza-Dirac effect is single-particle physics.
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If we then switch on a lattice for a short time, the atoms will evolve according to the

Hamiltonian
p2 V0

H + -sin k: (5.4)
2m 2

So after a time t, the atoms will be in a state

iI'(t)) - eiVot/2r sin k+p 2 /2m 10) (5.5)

The Kapitza-Dirac regime is defined by switching on the lattice for times which are

short compared to the time associated with the recoil energy. For sodium, this time

is about 130 p s, while for potassium, it is about 220 p s. In this regime, the atoms

do not move, so we can neglect the momentum term in the Hamiltonian. Thus

e(t)) = iVot/2hsinU 1 0) , (5.6)

which can be transformed, using a Bessel function identity, into

00 
V

q f(t)) -0 J ( 0 k. 10) ,(5.7)

or,

|IF ) = E Jn t Innk) , (5.8)

Thus, the application of a short lattice burst has the effect of splitting the condensate

into discrete momentum states. The occupation of the nth momentum state is given

by

P(p=rnhk) = Jn (5.9)(2h

Thus, by measuring the occupation of the momentum states for a variety of pulse

times and lattice depths, and fitting the resulting occupations to a Bessel function,

the lattice depth can be determined. In particular, the zero-momentum occupation

vanishes at a time to such that Voto = 4.8096h. With this method, it is not necessary

to know anything about the beam waist or position; the momentum occupation gives

all the information. In fact, Kapitza-Dirac can be used to align and focus a lattice
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properly by maximizing calculated lattice depth.

To perform Kapitza-Dirac calibration in our experiment, we create a sodium BEC

in the hybrid trap under the microscope, using for the optical confinement whichever

lattice we are not currently calibrating. At the end of the evaporation, we pulse on

the other lattice for 4 ps, well in the Kaptiza-Dirac regime. Rather than varying

the pulse time, we vary the lattice depth to avoid leaving the Kapitza-Dirac regime.

An example of the resulting pictures is shown in figure 5-9. We find that the lattice

depths for sodium are 1.1 mK in the y-direction and 700 piK in the x-direction. These

numbers are a little lower than expected; we are currently trying to figure out why.

However, even with these values, it should be possible to pin the atoms during imaging

and thus take single-site resolved images.

Figure 5-9: Kapitza-Dirac calibration of our optical lattice.
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Chapter 6

Outlook

In the work described by this thesis, significant progress towards a quantum gas

microscope for fermionic atoms has been achieved: magneto-optical traps for both

'OK and 23Na have been realized; RF-forced evaporation in a plugged quadrupole trap

has led to degenerate gases of both atomic species; via magnetic transport, these gases

have been moved into position for high-resolution imaging; optics for high-resolution

imaging have been set up; an optical lattice has been set up and calibrated; and optics

for fluoresence imaging of 23Na via sub-Doppler cooling have been assembled.

There is still significant work to be done before the experiment is completed, i.e.,

before it begins to produce results. First, while a condensate of sodium atoms exists in

an optical lattice, it has yet to be imaged with single-site resolution. This will require

a working optical molasses for the sodium atoms, which has yet to be achieved. At the

time of this writing, all of the optics for the sodium molasses are in place; in principle,

all that remains for sub-Doppler cooling to be achieved is an optimization of the beam

intensities and frequencies. Also, achieving single-site imaging might require slicing,

or getting rid of atoms trapped in layers other than the one 10 microns from the

substrate. In principle, this should be possible with RF-induced spin flips in a hybrid

trap.

A second hurdle which might have to be overcome is the placement of the micro-

scope objective with respect to the hemisphere. This placement, described in chapter

4 of this thesis, was carried out in December 2012, eight months prior to the opti-
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cal lattice setup. While we hope the objective has not moved since that time, no

measurements (i.e., interferometry) have been carried out to determine whether this

is actually the case. Objective movement is quite possible given that it is only held

in place by glue. However, with our setup, it is easy to realign the objective: the

plus-sign mount can simply be removed and the objective supports can be remade.

Once both of the above challenges are solved, it will still represent the imaging

of a bosonic species in an optical lattice with single-site resolution, a feat which had

already been accomplished when construction on our experiment began. The final

step for the present apparatus will thus be imaging of fermionic potassium atoms.

However, this should not be too hard. After sodium atoms are successfully imaged,

the imaging system will have been shown to work properly, leaving only cooling and

molasses to be implemented for potassium. As we have already seen in this thesis,

sodium and potassium are remarkably well suited for sympathetic cooling; thus the

only real challenge is implementing a molasses for potassium. Once this is completed,

the apparatus described in this work will be ready to probe the rich and interesting

physics accessible with ultracold fermions in an optical lattice.
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Appendix A

Lattice Depth Calculation

This appendix derives the numerical constant of proportionality between lattice beam

power and lattice depth (in both recoil energies and temperature) for sodium and

potassium in our optical lattice. Start with the intensity of a Gaussian beam at its

focus, with waists1 wx and wy, which varies as

I(x, y) = 10e-2(X2/WX'+Y2/*?) (A. 1)

We integrate to get an expression for power, P:

P Iof e X-2x 2 e dy (A.2)

= Io7wxwY (A.3)
2

Interestingly, the power is the intensity times one half of the area of an ellipse formed

by wx and wy as semiaxes.

Now we use the formula for dipole potential derived in the main text:

Ui( 3c) 2 ( + F () (A.4)
2wo wo - W wo + W

With a 1064 lattice like the one in our experiment, the detuning is large enough that

one shouldn't use the rotating wave approximation to get rid of the w o + W term: in

'Our waists are roughly 35 and 100 microns
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the case of potassium, for example, wo is about 2.5 x 10 15Hz, while for 1064 nm, W is

1.8 x 10 15Hz. Ignoring the smaller denominator would thus lead to an error fo about

15%.

Table A lists the parameters needed to calculate the lattice depths for sodium and

potassium. Since each has both a DI and D2 transition, we must slightly modify the

formula above for dipole potential, which was derived assuming a perfect two-level

system. For linearly polarized light, this modification simply takes the form [12]:

(A.5)
7rC2 r p

Udip(r' = cZ 3  + ) I(i)
i=D1,D2 jO \WiOW Wi 0 + W

where ci is 2 for the D2 transition and 1 for D1. Using the equation above, we get

Table A. 1: Parameters for calculating dipole potentials
Element Parameter Value (Hz)
Potassium-40 [32] D1 P/27r 5.956 x 106

D2 F/27r 6.035 x 106
DI v = wo/27r 3.893 x 1014
D2 v = wo/27r 3.910 x 1014

Sodium-23 [31] DI 17/27 9.765 x 106

D2 r/27 9.795 x 106
DI v = wo/27r 5.083 x 1014
D2 v = wo/27r 5.088 x 1014

the following:

UNa(l = 7.2038 X 10- 3 7m 2sI(r)M

UK(j 1.8432 x 10- 36 m 2 sI(i)

(A.6)

(A.7)

For the peak depth we replace I() with Io and use the relationship between intensity

and power:

UNa,O = 1.3104 x 10- 28s X< p

UK,o = 3.353 x 10-28s x P

(A.8)

(A.9)
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Expressing in more natural units of pK per Watt:

UNa,O = 9.491 1iK x P/Watt

UKo = 24.29p/K x P/Watt

(A.10)

(A.11)

Were we using a dipole trap, this would be the correct depth. However, because we

use a lattice configuration, we gain a factor of four in intensity compared to power:

UNa,O = 37.964pK x P/Watt

UK,o = 97.16PK x P/Watt

(A.12)

(A.13)

Another way of expressing lattice depth is to compare it to the recoil energy,2 ER =

h 2 /2mA2 . For sodium in a 1064 nm lattice, ER is 0.368 pK, while for potassium it is

0.216 piK. This gives us

UNa,O = 103.2Ej"a x P/Watt

UKO = 449-8ERK x P/Watt

(A.14)

(A.15)

These last two equation sets are the ones we wanted. Note that since these quantities

scale inversely with beam area, these numbers can easily be scaled for beams of a

different geometry.

2
1t seems natural that the A in the recoil expression should be the actual lattice separation, not

the wavelength of the light. But convention has it the other way, so in the calculations above we

use A = 1064 nm.
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Appendix B

MATLAB Code for Calculating

Atom Numbers and Phase Space

Densities

This appendix presents code we used during our evaporation of sodium and potassium

to calculate the phase space density and atom number in a cloud. It searches a given

directory for new absorption images, then converts the image file into an array of

optical density values. Fitting these to a Gaussian, it then extracts the relevant

parameters from the image.

1 function GUIPSDAtomNumber

2 % GUIPSDAtomNumber Plots the phase-space density and atom number of a
3 % cloud from an absorption image
4

5 % Create and then hide the GUI as it is being constructed.
6 f = figure('Visible','off','Position',[360,500,940,1000]);
7

8 % Set Region of interest values (crop the absorption image)
9 xmin=1;

10 ymin=50;

11 xmax=512;

12 ymax=512;

13

14 % Set Parameter Values
15 sigma0=8e-14;%*(767/589)^2 if we want Potassium
16 pixelsize=16e-6*(29/30);
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17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

offsetx=400;
offsety=720;

% Construct the components.

htroi = uicontrol('Style','text', 'String','Region of Interest'
'Position', [300+offset-x,245+offsety,100,15]);

h_xmin = uicontrol('Style','edit','String',num2str(xmin),...
'Position',

'Callback',

h-ymin = uicontrol
'Position',

'Callback',

h_xmax = uicontrol
'Position',

'Callback',

h-ymax = uicontrol
'Position',

'Callback',

[315+offset.x,225+offsety,30,18],...

{@XMinCallback});

('Style','edit','String',num2str(ymin),...

[315+offset-x,200+offsety,30,18],...

{@YMinCallback});

('Style','edit','String',num2str(xmax),...

[385+offset.x,225+offsety,30,18],...

{@XMaxCallback});

('Style','edit','String',num2str(ymax),...

[385+offset-x,200+offsety,30,18],...

{@YMaxCallback});

htxmin = uicontrol('Style','text','String','xmin',...
'Position', [280+offset-x,225+offsety,25,15]);

htymin = uicontrol('Style','text','String','ymin',...

'Position', [280+offset-x,200+offsety,25,15]);

htxmax = uicontrol('Style','text','String','xmax',...

'Position', [350+offset-x,225+offsety,32,15]);

htymax = uicontrol('Style','text','String','ymax',...
'Position', [350+offset-x,200+offsety,3 2 ,15]);

ht-params = uicontrol('Style','text','String','Parameters',...
'Position', [315+offsetx,170+offsety,60,15]);

h_mF = uicontrol('Style','edit','String',num2str(mF),...

'Position', [360+offset-x,145+offsety,30,18],...

92

kb=1.38e-23;

tof=6e-3;
mass=23*1.67e-27;

muB=9.27e-24;

mF=2;

VGrad=3.6;

Baxgrad=mF*4.2*VGrad/4.5;

planck=6.63e-34;

%set a save counter

savecount=0;

%debugging: set an update counter

updatecount=0;

foundcount=0;

newsavename =

...



64 'Callback',{@mFCallback});

65 h-grad = uicontrol('Style','edit','String',num2str(VGrad),...
66 'Position', [360+offset x,125+offsety,30,18],...

67 'Callback', {@gradCallback});

68 htof = uicontrol('Style','edit','String',num2str(tof*10^3),...
69 'Position', [360+offset x,105+offsety,30,18],...

70 'Callback',{@tofCallback});

71 ht_mF = uicontrol('Style','text','String','mF',...
72 'Position', [300+offsetx,148+offset_y,25,15]);
73 htgrad = uicontrol('Style','text','String','Grad',...
74 'Position', [300+offset-x,128+offsety,25,15]);

75 httof = uicontrol('Style','text','String','ToF (ms)',...

76 'Position', [300+offset-x,108+offsety,50,15]);

77 hresetNoSave=uicontrol('Style','pushbutton','String',...

78 'Reset Data WithOUT Saving','Position',...

79 [275+offset.x,70+offsety,150,25],'Callback',...

80 {@resetCallback));

81 hresetYesSave=uicontrol('Style','pushbutton','String',...

82 'Reset Data With Saving','Position',...

83 [275+offset-x,40+offsety,150,25],'Callback',...

84 {@saveCallback});

85 hsaveName=uicontrol('Style','edit','String','Enter Filename',...

86 'Position', [275+offsetx,10+offsety,150,25],...

87 'Callback', {@saveNameCallback});

88

89

90 % Create the data to plot.

91 AtomHistorydata = [];
92 PSDHistory-data = [];
93

94 % Set Region of Interest

95 roi = [xmin xmax ymin ymax];
96

97

98

99 % Initialize the GUI.

100 % Change units to normalized so components resize

101 % automatically.

102 set([f,.h_xmin,h_ymin, h_xmax,h_ymax,htxmin,ht_xmaxht.ymin, ...

103 htymax,htroi,htparams,h-mF,h-grad,h_tof,htjmFhtgrad,...

104 ht.tof,h_resetNoSave,h_resetYesSave], ...
105 'Units','normalized');

106 % Assign the GUI a name to appear in the window title.

107 set(f,'Name','PSD AtomNumber Analyzer')

108 % Move the GUI to the center of the screen.

109 movegui(f,'east')

110 % Make the GUI visible.
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111 set(f,'Visible','on');

112 %Create a plot in the axes.

113 subplot(4,1,1);

114 title('Most Recent Image');

115 subplot(4,1,2);
116 scatter(l:length(PSDHistorydata), loglO(PSDHistory-data));

117 title('Log PSD History');

118 subplot(4,1,3);

119 scatter(l:length(AtomHistory-data), loglO(AtomHistorydata));

120 title('Log Atom Number History');

121 subplot(4,1,4);
122 scatter(log10(AtomHistory-data),loglO(PSDHistorydata));

123 title('Log-Log Atom Number vs. PSD');

124 xlabel('Log Atom Number');

125 ylabel('Log PSD');

126

127

128 timerObject = timer('TimerFcn', {@NewFit},'ExecutionMode',...
129 'fixedSpacing','Period',1.0);
130

131 start(timerObject);

132

133 % Callbacks for GUIPSDAtomNumber.

134

135 function saveNameCallback(source,eventdata)

136 %Called when user types in the savename window

137 %set the savename

138 newsavename=get(source,'String');

139 end

140

141 function XMinCallback(source,eventdata)

142 % Called when user types in the xmin window

143 % Set the xmin value

144 xmin=str2num(get(source,'String'));

145 roi = [xmin xmax ymin ymax];
146 end

147

148 function XMaxCallback(source,eventdata)

149 % Called when user types in the xmax window

150 % Set the xmax value

151 xmax=str2num(get(source,'String'));

152 roi = [xmin xmax ymin ymax];

153 end

154

155 function YMinCallback(source,eventdata)

156 % Called when user types in the ymin window

157 % Set the ymin value
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158 ymin=str2num(get(source,'String'));

159 roi = [xmin xmax ymin ymax];

160 end

161

162 function YMaxCallback(source,eventdata)

163 % Called when user types in the ymax window

164 % Set the ymax value

165 ymax=str2num(get(source,'String'));

166 roi = [xmin xmax ymin ymax];

167 end

168

169 function mFCallback(source,eventdata)

170 %Called when user types in the mF window

171 %Note that we have to evaluate Baxgrad again

172 mF=str2num(get(source,'String'));

173 Baxgrad=mF*4.2*VGrad/4.5;;

174 end

175

176 function grad._Callback(source,eventdata)

177 %Called when user types in the mF window

178 %Note that we have to evaluate Baxgrad again

179 VGrad=str2num(get(source,'String'));

180 Baxgrad=mF*4.2*VGrad/4.5;;

181 end

182

183 function tofCallback(source,eventdata)

184 %Called when user types in the mF window

185 %Note that we have to evaluate Baxgrad again

186 tof=str2num(get(source,'String'))/10^3;

187 end

188

189 function resetCallback(source,eventdata)

190 %Called when user presses the 'Reset' button

191 %Sets all the history variables back to empty arrays

192 AtomHistory-data = [];
193 PSDHistory-data =

194

195 %PLOT 2: Plots the PSD History

196 subplot(4,1,2);

197 scatter(1:length(PSDHistorydata), log10(PSDHistorydata));

198 title('Log PSD History');

199

200 %PLOT 3: Plots the Atom Number History

201 subplot(4,1,3);
202 scatter(l:length(AtomHistorydata), log1C(AtomHistorydata));

203 title('Log Atom Number History');

204
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%PLOT 4: Plots Log of atom number versus log of PSD

subplot (4,1,4);

scatter(loglO(AtomHistory_data),loglO(PSDHistory-data));

title('Log-Log Atom Number vs. PSD');

xlabel('Log Atom Number');

ylabel('Log PSD');

end
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%PLOT 4: Plots Log of atom number versus

subplot(4,1,4);

scatter(logiC(AtomHistorydata),...

log10(PSDHistory_data));

title('Log-Log Atom Number vs. PSD');

xlabel('Log Atom Number');

ylabel('Log PSD');

arrays

Of' ));

log of PSD
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function saveCallback(source,eventdata)

%Called when user presses the 'Reset' button

%Saves the history variables, and then

%Sets all the history variables back to empty

c=clock;

timestring=strcat(num2str(c(4)),...

num2str(c(5),'%02.0f'),num2str(c(6),'%02.

if strcmpi(newsavename,'Enter Filename')

newsavename='';

end

save(strcat(newsavename,timestring,...

'AtomNumber.mat'),'AtomHistory_data');

save(strcat(newsavename,timestring,...

'PSD.mat'),'PSDHistorydata');

AtomHistory-data =

PSDHistory-data = [];

%PLOT 2: Plots the PSD History

subplot (4,1,2);

scatter(1:length(PSDHistorydata),...

loglO(PSDHistory-data));

title('Log PSD History');

%PLOT 3: Plots the Atom Number History

subplot(4,1,3);

scatter(1:length(AtomHistory_data),...
log10(AtomHistorydata));

title('Log Atom Number History');
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function NewFit(source,eventdata)

updatecount=updatecount+1;

%Find all the new fit files in the dire

newFits=dir('*.fits');

%If there are some more fits to be done

if(not(isempty(newFits)))

foundcount=foundcount+1;

%Read the image file

datfile=fitsread(newFits(1).name);

img=datfile (:, , 4);
%crop the image file

img=img(roi(3):roi(4),roi(1):roi(2));

%remove infinities, NaNs, and zeros

img(isinf(img))=0;

img(isnan(img))=0;

img(img<.005)=0.005;

img=-log(img);

%Move the image file to a 'done' fold

movefile(newFits(l).name,'done');

%Fit image with a Gaussian and

%extract atom number, temperature,

%PSD, and collision rate

[cx,cy,sx,sy,PeakOD,bg] = Gaussian2D(img);
AtomNumberdata=round(2*pi*sx*sy*PeakOD*...

pixelsize^2/sigma0);

Temperaturedata=round(((sx+sy)/2*...

pixelsize/tof)^2*mass/kb*1e9);

PSDdata= (((0.5*muB*Baxgrad)^3)*...

((planck^2/(2*pi*mass))^ (3/2))* ...
AtomNumberdata/((kb*Temperaturedata*le-9)...

^(9/2)))/32;

ColRatedata=PSDdata^(2.5/4.5)*...

(AtomNumberdata/le3)^(2/4.5);

%PLOT 1: Plots the image and displays the parameters

subplot (4,1,1);

imagesc(img, [0,1.3]);

axis([xmin xmax ymin ymax]);

axis equal;

title(strcat('Image ', num2str(foundcount),': ',

'AtomNumber=',num2str(AtomNumberdata),' ',...

'T=',num2str(Temperature_data),'nK, ', 'PSD=',...

num2str(logiC(PSD_data)),' ,colrate=',...
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num2str(ColRatedata)));

%Updates the history variables

AtomHistory-data=[AtomHistory_data AtomNumberdata];

PSDHistory-data = [PSDHistorydata PSD_data];

%PLOT 2: Plots the PSD History

subplot (4,1,2);

scatter(l:length(PSDHistorydata),...

loglO(PSDHistory-data));

title('Log PSD History');
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LogAtomNumber='.

% PLOT 4: Plots Log of atom number versus log of PSD

subplot (4,1,4);

scatter (loglO (AtomHistory-data) , log10 (PSDHistorydata));

title('Log-Log Atom Number vs. PSD');

xlabel('Log Atom Number');

ylabel ('Log PSD');
hlegl=legend('Fermi2','Fermil','3.6','2.4');

end

end

end
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%PLOT 3: Plots the Atom Number History

subplot (4,1,3);

scatter(l:length(AtomHistorydata),...

log10(AtomHistorydata));

title(strcat('Log Atom Number History:

,num2str(loglO(AtomHistory-data...

(length(AtomHistory-data))))));


