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Abstract

We present a semantic approach for compressing mobile sensor data and focus on GPS
streams. Unlike popular text-compression methods, our approach takes advantage of the
fact that agents (robotic, personal, or vehicular) perform tasks in a physical space, and
the resulting sensor stream usually contains repeated observations of the same locations,
actions, or scenes. We model this sensor stream as a Markov process with unobserved
states, and our goal is to compute the Hidden Markov Model (HMM) that maximizes the
likelihood estimation (MLE) of generating the stream. Our semantic representation and
compression system comprises of two main parts: 1) trajectory mapping and 2) trajectory
compression. The trajectory mapping stage extracts a semantic representation (topologi-
cal map) from raw sensor data. Our trajectory compression stage uses a recursive binary
search algorithm to take advantage of the information captured by our constructed map.
To improve efficiency and scalability, we utilize 2 coresets: we formalize the coreset for
1-segment and apply our system on a small k-segment coreset of the data rather than the
original data. The compressed trajectory compresses the original sensor stream and ap-
proximates its likelihood up to a provable (1 + €)-multiplicative factor for any candidate
Markov model.

We conclude with experimental results on data sets from several robots, personal smart-
phones, and taxicabs. In a robotics experiment of more than 72K points, we show that the
size of our compression is smaller by a factor of 650 when compared to the original signal,
and by factor of 170 when compared to bzip2. We additionally demonstrate the capability
of our system to automatically summarize a personal GPS stream, generate a sketch of a
city map, and merge trajectories from multiple taxicabs for a more complete map.

Thesis Supervisor: Daniela Rus
Title: Professor
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a trajectory clustering onto x-y consists only of m segments (m colors).
Left: Stream of GPS (lat,lon) points over time. Even when the object moves
in straight line segments, the input is not smooth due to GPS noise and
small movements. Top Right: Even after smoothing, the same trajectory
projected onto different segments in (lat,lon) space. This is because the
trajectory is not repeated exactly the same (e.g. different lane on a road,

small deviations in motion). Position stream shown projected onto (lat,lon)
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dimensions. Our work is in efficiently clustering these repeated line segments. 19

Left: The input is a sequence of position points, i.e. from GPS devices.
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whereas the output of the trajectory compression stage is useful for data
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Dynamic Bayesian network. In our system, our input measurements are
GPS points taken over time. Our map M is a connected directed graph
whose nodes are features defined by long corridors of space (segments).

Our output poses X are a sequence of these segments. . . . . .. ... ...

Left: Shown here is a raw GPS trajectory (blue) projected onto x-y. The
GPS drops are indicated by the black connections between points.Right:
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(a) Shows the input, which consists of n points, partitioned into k parts,
each with an initial assignment of to one of m clusters. (b) We split the
input into l_ﬂ 2-segment mean problems and we show the steps of com-
putation of one of the subproblems in (c)-(g). (c) We initialize our right
1-segment coreset in O (n) time to compute the cost for all of the n points.
(d) We update our right coreset by removing the leftmost point and we
update/initialize our left coreset by adding the leftmost point, which takes
O(1) time. We compute the cost using the coreset, which costs O(1). (e)
We update our right coreset by removing its leftmost point and we update
our left coreset by adding the next point to its right, which takes O(1) time.
We compute the cost using the coreset, which costs O(1). (f) We continue
in this manner until the right coreset is empty. Now we have n costs. (g)

Finally, we compute the partition that yields the minimumcost. . . . . . . .
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Chapter 1

Introduction

This thesis describes an efficient semantic representation and compression system for sen-
sor streams. Our system efficiently computes topological maps for mobile agents with
long-term continuous operation, when the trajectory of the agent includes repeating seg-
ments. These agents may be robots performing surveillance tasks, people performing daily
routines, or vehicles picking up passengers. A long-duration task gives the mobile agent
the opportunity to collect historical data streams from its onboard sensors (e.g. GPS units,
smart phones). This data can be useful in real-time decision making but the big challenge
is dealing with the large data volumes. This is especially challenging for mapping from
higher dimensional data, such as camera and LIDAR data.

One approach to solving the large data problem is to use text-based compression meth-
ods, more powerful batteries, better hardware, etc. Instead, we present a semantic represen-
tation and compression system that 1) quickly identifies the repeated data in the data stream
by line-fitting and clustering and thus greatly reduces the input size to an arbitrary decision
making algorithm, and 2) further losslessly compresses the repeated data using the topo-
logical map for offline storage. The process of extracting the repeated data in a data stream
is called trajectory mapping, and the process of using the topological map to compress
a trajectory is called trajectory compression. The compressed trajectory compresses the
original sensor stream and approximates its maximum likelihood up to a provable (1 + ¢)-
multiplicative factor for any candidate Markov model.

In this thesis we describe the semantic approach to mapping, present our semantic rep-
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resentation and compression system and its algorithms, show experimental results, and
present intuition for compression effectiveness for long-term operation. Abstractly, an
agent collects a sequence of location-tagged points over a long period of operation. In
subsequent visits to the same location, the recorded points are are observed and recorded
within some error parameters. Despite this uncertainty, the agent is able to identify the
segments that are repeated as it moves in the environment. Our semantic approach to
mapping is applicable for large data streams when the mobile agent has access to location
information and repeatedly travels along segments in the trajectory (although the trajectory
segments may be traversed in different order).

We present results from a series of experiments, each of which far out-perform bzip2,
an industry standard lossless text compression tool. In an outdoors robotic experiment we
compressed GPS data collected from a quadrotor robot, producing a 60-fold compression
on top of bzip2. In an indoors robotics experiment we used a ground robot with a laser
scanner, which localized to a SLAM map for global positioning. The raw data set consisting
of 72,000 points was compressed to a coreset of size 52, along with a small map (170x
smaller than just bzip2). We additionally demonstrate the capability of our system to
automatically summarize a personal GPS stream, generate a sketch of a city map, and

merge trajectories from multiple taxicabs for a more complete map.

1.1 Motivation

Driven by the near-ubiquitous availability of GPS sensors in a variety of everyday devices,
the past decade has witnessed considerable interest in the automatic inference and con-
struction of road maps from GPS traces. As shown in Figure 1-1, a point density map of a
taxicab GPS signal implies the underlying streets. However, zooming in on a portion of the
map only magnifies the noise, where we would hope to see smaller streets. Our work and
many related works address the problem of semantic representation (the map) underlying
GPS signals. Additionally motivated by the expansion of robotics into everyday life, the
problem of generating topological maps for any arbitrary or specialized setting or scope is

becoming increasingly important.
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Figure 1-1: A point density map of taxicab GPS points (projected onto lat-lon space). Hints of streets are
visible in areas where there are fewer points per area, however in denser city areas (zoomed in area), it is hard
to identify streets. Moreover, this is a raw pixel image rather than a map (graph).

The most prevalent topological maps are road maps, and it will be crucial to maintain
them for efficient and safe long-term operation of consumer autonomous vehicles. Accu-
rate road maps are crucial for travel efficiency and safety. Existing maps are mostly drawn
from geographical surveys. Such maps are updated infrequently due to the high cost of
surveys, and thus lag behind road construction substantially. This problem is most promi-
nent in developing countries, where there is often a combination of inferior survey quality
as well as booming growth. Even for developed countries, frequent road recongurations
and closures often confuse GPS navigation, and have caused fatal accidents even with ex-
perienced drivers [34]. As an alternative, OpenStreetMap (OSM) has attracted an online
community to manually draw street maps from aerial images and collected GPS traces [1].
Though less expensive, this volunteer-driven process is extremely labor intensive. It also
suffers from signicant variability in both the skill level and availability of volunteers in
dierent parts of the world.

In other settings, such as within buildings and unmapped outdoors places (e.g. parks,
stadiums, courtyards), topological maps simply do not exist, thereby limiting the opera-
tion of robots there. Our work is motivated by the difficulty of generating and updating
topological maps for arbitrary settings and scopes, in the absense of other maps.

Our work draws inspiration from computational geometry shape-fitting algorithms be-

cause mobile agents typically move in straight segments. For example, indoors, people
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Figure 1-2: Lefr: Input points, shown in (lat,lon,time). Left Middle: Segment clustering, fitting k segments
to the input points to minimize error. Right Middle: Trajectory clustering, fitting k& segments to the input
points to minimize error, with the additional constraint that we may only use m different segments (indicated
by the mn colors). Right In other words, the projection of a trajectory clustering onto x-y consists only of m
segments (m colors).

and robots will follow straight hallways. Outdoors, mobile agents will follow sidewalks or
roads. Counter to the case of the traveling salesperson, many applications require mobile
agents to visit and revisit locations, resulting in segments that repeat themselves, which
lend themselves well to clustering approaches. Additionally, it is known that the additive
noise of GPS points is Gaussian [33], which allows us to model the error of our result-
ing representation of the sensor stream and define the maximum likelihood of a candidate
solution based on the input.

We focus on detecting and clustering these repeated segments, called trajectory cluster-
ing and then using that representation for trajectory compression. Although both trajectory
clustering and segment clustering compute a sequence of segments from a sensor stream,
they are different in the following way: Segment clustering (also called the k-segment prob-
lem) is the problem of optimally partitioning a sequence into k segments to minimize some
fitting cost function. Trajectory clustering similarly partitions a sequence into k& segments
while minimizing some cost function but has the additional constraint that the k segments,
projected onto the space, consists of only m segments, where m < k. This is called the

(k,m)-segment mean problem (defined in Section 4.1). The difference between between
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Figure 1-3: Left: Stream of GPS (lat,lon) points over time. Even when the object moves in straight line
segments, the input is not smooth due to GPS noise and small movements. Top Right: Even after smoothing,
the same trajectory projected onto different segments in (lat,lon) space. This is because the trajectory is not
repeated exactly the same (e.g. different lane on a road, small deviations in motion). Position stream shown
projected onto (lat,lon) dimensions. Our work is in efficiently clustering these repeated line segments.

trajectory clustering and segment clustering is illustrated in Figure 1-2, and motivation for

this problem is shown in Figure 1-3.

1.2 Main Contributions

The main contributions of this work are as follows:

1. Trajectory mapping: Linear-time algorithm for (k, m)-segments mean problem in
the number of input points with local optimum guarantees. See Figure 1-3 for intu-

ition on the trajectory clustering problem.

2. Trajectory compression: Novel technique for reducing the redundant information

in a trajectory, by utilizing information in a topological map.

3. A practical system-level implementation of both above modules, which takes as in-
put a sequence of timestamped position points from an agent and produces as output

a graph (map) and a compressed trajectory of the agent (see Figure 1-4).
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Figure 1-4: Lefi: The input is a sequence of position points, i.e. from GPS devices. Right: The output is a
graph (map) that captures with error parameters the movement of an agent in its environment, i.e. a taxicab
in Singapore.

4. Building- and city-scale experimental results for constant frequency position streams

(i.e. (lat,Jon,time) points).

1.3 Applications

The semantic representation that our system produces is useful for building topological
maps in the absence of other maps or for real-time decision making in a variety of mobile
applications, including updating maps, incident reporting and monitoring for patrolling,
building tours, automated escorts, travel anomalies, road closure detection, and prediction
and pattern recognition.

Surveillance and patrolling: For example, a security robot patrolling a museum at
night logs locations, actions, and events within a known floor plan. In addition, this robot
needs to act in realtime on the incoming sensor streams, relying on the interpretations of
historical events. Typically the mobile agent first processes these streams online for deci-
sion making using our semantic compression algorithm, then employs lossless compression
techniques for data logging. To revisit and reprocess historical data, the log is first decom-
pressed back into its semantic (losslessly) or original raw form (lossy with bounded error)
(See Figure 2-1).

Building and updating topological maps: In an unknown environment, for example
parks or indoors, where topological maps are not available, generating a map automatically

from a raw position stream in the absence of suitable maps is a first step to life-long opera-
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tion in the area (for robotic and non-robotic agents alike). In known environments, such as
cities, the network topology is constantly changing and the ability to automatically detect
network changes (e.g. permanent or temporary road closures, new roads) would help in
city planning and traffic control.

Prediction and pattern recognition By running machine learning algorithms on the
semantic data (segment popularity, velocity), engineers and city planners may learn for
example cluster speeds of drivers and aggregate uses of land for different parts of the day

or year.

1.4 Relation to SLAM

Our trajectory clustering algorithm may be seen as a Dynamic Bayesian Network (DBN)
for SLAM applications (see Figure 3-1). Unlike most existing SLAM methods, our al-
gorithm clearly defines an objective function, provably converges to a local minimum,
and provides provable and configurable error bounds. Additionally, many existing SLAM
methods take as input rich sensor data and produce dense representations using heuris-
tic methods that are computationally expensive (polynomial time). Our algorithm instead
takes as input simple (x,y) points and produces a small representation (sparse topological
map) in linear time. Our system has the additional capability to tweak the error parameters
to produce a larger (more precise) or smaller (less precise) topological map. Our system
may additionally be layered on top of other SLAM algorithms for compression purposes.
For example, in our indoors experiment (where GPS is not available), we use instead a
position stream localized using a SLAM algorithm. Traditionally, the map produced by
SLAM is used for planning and navigation of robots; the uses for our map is broader: real-
time decision making and trajectory compression (offline storage of the input stream). For

more information on the relation of our work to SLAM, see Section 3.4.
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1.5 Extension to higher dimensions

In this work, our discussion and experiments focus on R? space for GPS and general (x,y)
position streams. However, our methods are generalizable to signals of any integer d > 0
dimensional signal, including high-dimensional data, such as camera and LIDAR signals.
Applications such as compression, denoising, activity recognition, road matching, and map
generation become especially challenging for existing methods on higher dimensional data.
Our algorithms are suitable for handling such large streaming data and can be run in parallel

on networks or clouds.

1.6 Organization

Chapter 2 introduces the semantic representation and compression system, and Chapter 3
discusses the related work for each part of the system. Chapter 4 defines the problems
formally. The system is comprised of preprocessing steps (Chapter 5) and the 2 major
subcomponents: the trajectory mapping (Chapter 6) and the trajectory compression (Chap-

ter 7). The results for our system are discussed in Chapter 8. We conclude in Chapter 9.
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Chapter 2

Semantic representation and

compression system overview

The main problem we address in this thesis is efficient signal compression by exploiting
the semantic structure within the signal. Our system thus both extracts the semantic repre-
sentation and computes a compressed signal as output. We call the problem of extracting
the semantic representation trajectory mapping because we essentially produce a map of
the agent’s world from its observations. We call the problem of compressing the signal
using the semantic representation trajectory compression. Additionally, we perform some
preprocessing steps to the original input for computational speedup or to clean the data.
The power of our system is that it is based on computational geometry and shape fitting al-
gorithms, rather than string compression algorithms that seem to be less natural for sensor
data from moving agents.

In this chapter, we present a system (Figure 2-1) for learning and compressing structure
of the mobile agent’s motion patterns (as a sequence of states) from its sensor signals. The
system is composed of three separate modules: (i) Preprocessing, (ii) Trajectory Mapping,
and (iii) Trajectory Compression. The result is a small sequence of points and a weighted
directed graph (the map). We first give a non-formal description of these modules, with

more details in Section 6.
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Figure 2-1: Semantic representation and compression system. The output of the trajectory clustering & map
stage is useful for real-time decision making, whereas the output of the trajectory compression stage is useful
for data logging.

2.1 Preprocessing

Coreset construction [16]: In order to apply the above algorithms on scalable data, we do
not run them directly on the original input points. Instead, we apply them on a coreset of
the original points. A coreset for HMM is a small set of points which is also a semantic
compression of the original points in a way that running modules (ii) and (iii) as mentioned
above on the coreset of the input stream of points, instead of the original points would
produce approximately the same result.

Data patcher: In cases where there are large gaps in the input stream (as is common
with GPS streams) and we have access to an existing topological map of the environment,
we may patch the gaps of the input data by applying Hidden Markov map matching [25] to
the input stream. The map matching algorithm gives a possible and plausible sequence of
segments (i.e. streets) for each gap, which can be interpolated and inserted into the original

sequence. See Figure 5-1 for an example.
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2.2 Trajectory mapping

This module computes a map (graph) and a trajectory that consists of nodes on the map
that maximizes the likelihood estimation of the input stream to some error parameters.

First, we perform trajectory clustering on the input, solving what we call the (k,m)-
segment mean problem (see Algorithm 1 and see Section 4.1 for definitions). This algo-
rithm is a partial map maker that gets a sequence of n GPS points (lat, lon, time) from a
mobile agent that travels over a path of size k& < n on an (unknown) map that consists of
m < k disconnected linear (geometric) segments on the plane. The algorithm outputs a
set of m segments labeled from 1 to m, that approximates, together with a sequence of k
integers between 1 to m which are the approximated path.

We introduce the coreset for 2-segment mean, which is the key component that allows
us to efficiently compute in linear time a local optimal k-partitioning of the input, with
the constraint that their projection onto Euclidean space consists of only m segments. See
Section 6.2 for more details.

Here, we also perform paramester estimation on k and m by binary searching the
parameter spaces in a nested manner. For a given m, there is an optimal k. See Algorithms
3 and 4 for more details.

Finally, the map construction step turns the m disconnected segments of the (k,m)-
segment mean into a connected map, and the path into a valid path. It first connects every
two segments that are consecutive on the path of the agent to turn the map into a set of
connected segments. Each state corresponds to 2 nodes and an edge on the map. Each
unique state transition adds an extra edge to the map. This trajectory map is the semantic

representation of the agent’s world.

2.3 Trajectory compression

We may further apply several lossless compression techniques for logging purposes. Our
system applies a binary recursive trajectory compression of the compressed path against

the map. For example, if the only (or shortest) path from segment a in the map to segment
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f is through segments b, ¢, d, e, then we can compress the sub-sequence (a, b, ¢, d, ¢, f) into

(a, f). If there are other paths from a to f, then we subdivide the problem and try again

(See Algorithm 6). We call the recursively compressed output the compressed trajectory.
We may further apply state-of-the-art string compression algorithms such as bzip2 on

the recursively compressed path (which we call the semantic+bzip2 output).

2.4 Additional features

¢ Supports streaming computation (through application of the k-segment coreset [16]).

o Supports parallel computation of trajectory mapping. The trajectory clustering al-
gorithm may be run on up to g machines (see Section 6.3.3), and the parameter
estimation algorithm can be run on logz(n) machines (one machine for each set of

(k, m) parameters), and their results may be combined in a MapReduce manner.

e Supports extension to multi-agent systems. The map of multiple users may be com-
bined to form a single map representing all users. For example, the map from the
first agent merged with the map of the second agent will yield a more complete map
of the multi-agent system’s environment. Our system may then compress the data

from all the users as a single trajectory or as individual trajectories.
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Chapter 3

Related Work

3.1 Coreset for k-segment mean

A coreset is a small semantic compression (data structure) of an original signal P, such that
every k-segment or (k, m)-segment has the same cost with respect to the original signal as
to the coreset, up to (1 + ¢)-multiplicative error, for a given € > 0 and arbitrary constants
k and m (refer to Section 4.1 for definitions). Coresets provide shorter running time and
allow for streaming and parallel computing. This coreset is a smart compression of the
input signal that can be constructed in O(n log n) time [16].

We use this result to reduce our input from size O (n) to O (?k;) to more efficiently solve
the trajectory clustering problem below, where € is our error parameter. Our trajectory
clustering solution additionally supports streaming, as a property of this coreset.

In our work, we additionally formalize and implement the 1-segment coreset, which
solves the 2-segment mean problem optimally and efficiently. We use this result to obtain
a parallelizable linear-time trajectory clustering algorithm. We demonstrate our results for
extracting trajectory clusters from GPS traces. However, the results are more general and

applicable to other types of sensors.
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3.2 Trajectory clustering

3.21 (k, m)-segment mean

Signal or trajectory clustering is significantly harder than segment clustering (lime simpli-
fication). In signal clustering, we wish to cluster sets of traces-points from arbitrary time
intervals, which is more computationally challenging than clustering consecutive points in
time as in line simplification.

Our previous work uses the coreset from [16] and shows how to apply it for comput-
ing a local minima for the (k,m)-segment mean problem (see Section 4.1 for definition)
and compressing signals. In [16], an algorithm for computing maps (albeit disconnected)
was also suggested; however, it uses dynarﬁic programming and takes cubic time in 7,
as compared to our improved linear time algorithm. The previous work presented small
preliminary experimental results, but larger experiments were practically intractable. This
thesis improves the efficiency of the algorithm and implementation allowing for more scal-

able experiments.

3.2.2 Map inference

Due to the availability of GPS sensors in a variety of everyday devices, GPS trace-data
is becoming increasingly abundant. One potential use of this wealth of data is to infer,
and update, the geometry and connectivity of road maps, using what are known as map
generation or map inference algorithms. These algorithms offer a tremendous advantage
when no existing road map data is present rather than incur the expense of a complete
road survey, GPS trace-data can be used to generate entirely new sections of the road map
at a fraction of the cost. Road map inference can also be valuable in cases where a road
map is already available. Here, they may not only help to increase the accuracy of drawn
road maps, but also help to detect new road construction and dynamically adapt to road
closures—useful features for digital road maps being used for in-car navigation. A recent
survey of the existing literature [8] identified trace merging algorithms as a category of

map inference algorithms.
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Trace merging algorithms generally accumulate traces into a growing road network,
where each addition meets the location and bearing constraints of existing roads so far. A
post-processing phase removes relatively unsupported road findings. Representative algo-
rithms in this class include [12] and [26], and similar methods include [37] and [13].

Our approach is similar to the trace merging algorithms in the literature, however cur-
rent methods are heuristic and do not have defined optimization functions. Additionally,
these methods do not use the results as a method of compression for the original trajec-
tory. Experiments using controlled GPS traces in known environments (such as road maps)
are common. By contrast, we address the more general problem of generating topological
maps for arbitrary settings and scopes, which may or may not have available ground truth

information.

3.2.3 Other techniques

Our approach to signal compression builds on line simplification. Line simplification is a
common approach to compressing and denoising continuous signals and has already been
well studied for purposes such as cartography [17] and digital graphics [6].

There exists a body of signal clustering work [14, 22, 36] whose goal is to translate a
time signal into a map of commonly traversed paths. In particular, Sacharidis et al. [15]
process GPS streams online to generate common motion paths and identify “hot” paths.
However, the majority of this previous work either present an algorithm without defining
any optimization problem, or present quality functions based on a ad-hoc tuning variables
whose meaning are not clear. Furthermore, these works do not preserve the temporal in-
formation in the original data. No current work in trajectory clustering uses the results as a
method of compression for the original input trajectory.

In general, the classes of existing solutions may be characterized by at least one of the

following:

e No optimization problem is defined, i.e. no criteria or objective function.
e Optimization problem is defined, but there are no local minimum guarantees.
e No streaming/parallel support and practically cannot run on large datasets.
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We propose a solution with properties of all three: optimization problem defined with

local mimimum guarantees, streaming/parallel support, and practical for large datasets.

3.3 Trajectory compression

There is an increasing number of rapidly growing repositories capturing the movement of
people in space-time. Movement trajectory compression becomes an obvious necessity
for coping with such growing data volumes. [24] examines algorithms for compressing
GPS trajectories, including Douglas-Peucker Algorithm, Bellman’s Algorithm, STTrace
Algorithm and Opening Window Algorithms, and compares them empirically.

[20], [29] address trajectory compression under network constraints by applying map
matching algorithms. In our work, we similarly explore trajectory compression under net-
work constraints; however, our system does not require that it be given the network struc-

ture (map), since it is capable of extracting out the network structure (map) from raw data.

3.3.1 Text-based compression

Current common practice for compressing sensor streams is simply applying popular text-
based compression algorithms on the data stream, like bzip2. Bzip2 is the standard used
by Robot Operating System (ROS) libraries [3]. Lossless compression reduces bits by
identifying and eliminating statistical redundancy and is possible because most real-world
data has statistical redundancy. Lossy compression reduces bits by identifying marginally
important information and removing it.

Bzip2, which we use for comparison, is a free and open source implementation of
the Burrows-Wheeler algorithm [11] and is a lossless data compression algorithm. Bzip2
incorporates many well-studied compression ideas [18, 7, 19] and is the only supported
compression format for ROS .bag files, commonly used for storing location data in robotic
applications [3].

As used in our system, compression algorithms can be layered on top of one another, as
long as the redundancy eliminated by the different algorithms is different. We layer bzip2

on top of our algorithm to achieve further non-lossy compression.
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3.3.2 Hidden Markov map matching

The problem of matching measured latitude/longitude points to roads is very important
for mobile agents. Map matching has been extensively studied, implemented, tested, and
adapted for a wide number of applications [25, 35, 10, 2, 27]. Hidden Markov map match-
ing uses a Hidden Markov Model (HMM) to find the most likely route through a given map
or network. The route is represented by a time-stamped contiguous sequence of edges on
the map. The HMM elegantly accounts for measurement noise and the topology of the net-
work. Hidden Markov map matching also employs A*, a heuristic shortest path algorithm,
to reproduce parts of the route that are only implied by a sparse data input.

The ability to reproduce information from a map using this algorithm lends itself well to
compression and, as a side effect, may reduce the noise in the sensor signal [9, 21]. Hidden
Markov map matching is a key component to our trajectory compression algorithm. We
additionally use HMM map matching to patch gaps within GPS signals in our preprocessing
step, where a prior map is available.

While map matching algorithms assume that the map is given, and uses HMM only for
detecting the path, our trajectory mapping module is the first that estimates the map from

the input data, which can then be used to compress the trajectory.

3.4 SLAM

Simultaneous localization and mapping (SLAM) is a technique usually used in robotics to
build up a map within an unknown environment (without a priori knowledge), or to update a
map within a known environment (with a priori knowledge from a given map), while at the
same time keeping track of their current location. Mapping is the problem of integrating the
information gathered with the robot’s sensors into a given representation. Central aspects
in mapping are the representatton of the environment and the interpretation of sensor data.
Localization is the problem of estimating the pose of the robot relative to a map. All that is
given are measurements z;.; and controls u,.;, and the output is a map M and the posterior
over the poses z1.; [30, 31].

Our trajectory clustering algorithm may be seen as a Dynamic Bayesian Network (DBN)
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for SLAM applications (see Figure 3-1). The input measurements are GPS points taken
over time and no control inputs are required. Our map M is a connected directed graph
whose nodes are features defined by long corridors of space (segments), rather than vi-
sual or pose features. Respectively, our output poses X are a sequence of these segments.
The output poses are conditioned on the agent position (GPS point readings), as well as
on the map, which constrains the free space of the agent. The map is also conditioned on
the agent position (GPS point readings). The output poses affect the map by adjusting the
segment locations, and the map affects the output poses by providing the limited set of seg-
ment choices, and thus we perform simultaneously localization and mapping to yield our k

output poses and our map of size O(m2).

Figure 3-1: Dynamic Bayesian network. In our system, our input measurements are GPS points taken over
time. Our map M is a connected directed graph whose nodes are features defined by long corridors of space
(segments). Our output poses X are a sequence of these segments.

Whereas SLAM methods typically do not have defined objective functions or local min-
imum guarantees, our objective function is defined as the (k, m)-segment mean problem
(see Section 4.1) and our algorithm will provably reach a local minimum (see Chapter 6).

Our work is a type of topological SLAM [32], which are SLAM methods whose un-
derlying map representation is a topological map. Topological maps are concise and often
sparse maps that represent an environment as a graph, whose vertices are interesting places
and whose edges represent the paths between them. The advantages of topological maps
are their computational efficiency, their reduced memory requirements, and their lack of
dependence on metric positioning.

Whereas existing topological SLAM methods use local sensor information (e.g. cam-
era) to simultaneously map and localize heuristically, our work uses globally positioned

sensor information (e.g. GPS) to produce topological maps with provable and configurable
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error bounds, while localizing the points to the map. Our map is then used for real-time
decision algorithms or for compressing the original input (trajectory compression).

Note that since our SLAM algorithm takes only globally positioned data as input (e.g.
GPS), we may layer our system on top of another SLAM implementation that takes in local

sensor input and produces globally positioned data.
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Chapter 4

Problem Statement

4.1 Definitions

Definition 4.1.1 (Signal) A signal P = {p,,--- ,p:,} in R? is a set of n points in R?,

where each point p, € P is assigned an integer timestamp t.
Definition 4.1.2 (Segment) A segment X = (z1, z2) in R? is two points in R4

Let 7(P, X) > 0 be the fitting cost for a segment X and a signal P. Suppose that X
fits to P in time by associating the endpoints of the X with the endpoints of P (p;, and
Dt,)- We call the sum of the time-wise Euclidean distances between X and P the fitting
cost. Since the P may contain more points than X (two, by definition), we first interpolate
within the endpoints of X for the additional points in P in order to compute the fitting cost.
Note that our fitting cost is different from Euclidean distance (though we make use of it),

which does not consider time by itself. More generally:

Definition 4.1.3 (Fitting cost) For an integer k > 1, a k-segment in R? is a piecewise
linear function f : R — R of k linear segments. The fitting cost of f for a given signal P

in R? is the sum of squared distances to its k segments,

(P f) = IF ) —pill*.

pEP

Here, ||z — y|| is the Euclidean distance between the = and y in R%.
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Definition 4.1.4 (k-segment mean) For an integer k > 1, a k-segment in R? is a piece-
wise linear function f : R — R? of k linear segments. The k-segment mean f* of P

minimizes the fitting cost T(P, f) over every possible k-segment f.

To deal with compressed signals, we need a more robust definition of discrete se-
quences, where we might assign higher weights for more important points, and even nega-

tive weights for points that should be far from the segments.

Definition 4.1.5 (Weighted signal) A weighted signal (C, w) is a pair of a signal C, and
a weight function w : C — R. The weighted error from (C,w) to f : R? — R is

’Tw(C, f) = Z We - ”f(t) - Ct”2 .

ceC

Given a signal P, a coreset C for P approximates its fitting cost to any k-segment up

to (1 + £)-multiplicative factor, as formally defined below.

Definition 4.1.6 ((k, c)-coreset) Let k > 1 be an integer and € > 0. A weighted sub-
sequence (C,w) is a (k,&)-coreset for a sequence P if for every k-segment f in R? we

have

(1—e)r (P, f) < (C, f) < (1 +e)7(P, f).

Definition 4.1.7 ((k, m)-segment mean) For a pair of integers k > m > 1, a (k,m)-
segment is a k-segment f in R® whose projection {f(t) | t € R} is a set of only m segments
in R%. Given a sequence P in RY, the (k,m)-segment mean f* of P minimizes 7(P, f)

among every possible (k,m)-segment f in R%,

Definition 4.1.8 ((k, m)-segment map) A (k,m)-segment map is a directed graph G that
encodes the m segments as well as the k — 1 historically valid transitions between the
segments. Let M, be the set of start points and M, is the set of end points in R? for the
m segments. The vertices are V := {v :v € M,Uv € M,}. Let { K} be the sequence
of start points and {K;} is the set of end points for the k segments and i = [t...t,). The

edgesare E := {e:e € mUe € (K, Kou1)) }-
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Definition 4.1.9 (Trajectory compression) Let Q = (q1,¢2, -+ ,qn) be a path on an Eu-
clidean graph G. Let path(p, q) denote the shortest path between two nodes p,q in G,
where ties are broken according to lexicographical order on the coordinates of the ver-
tices. A compression of @ is a sequence T = (py,p2, -+ ,Pm) Of nodes in G such that

concatenating the shortest path between consecutive pairs in T yields @, i.e.

(91,92, , @) = ((path(p1, p2), path(p2, p3), - - , Path(Pm—1,Pm))-

That is, a compression is efficient if m < n.

4.2 Problem definitions

We now define more formally the problems that we need to solve for each module of the
system.

The trajectory mapping module approximates the trajectories of the agent by linear
segments and attaches for every observation a segment. In general, the segments are not
connected and the list of states does not describe continuous trajectory. This module addi-
tionally aims to solve this problem by turning the segments into a map of connected seg-
ments, and finding a continuous (connected) path on this map that maximizes the likelihood
of generating the observations. Here, the likelihood is defined using distances between seg-

ments as defined in [25]; see reference for more details and motivation.

Problem 4.2.1 (Trajectory mapping) Given a signal P in R? (observations), and a pair
of integers k,m > 1, compute a graph (state machine, Hidden Markov Model) and a path
(Markov chain) that maximizes the likelihood of generating the observations, among every

path of length k that consists of m states ((k, m)-segment mean).

The next challenge is to compress the string that represents the path. Note that, since
this string represents a path on a map, we can do more than usual string-compression algo-

rithms; see example in Figure 2-1.

Problem 4.2.2 (Trajectory compression) Given a map (graph) and a path on the map,

compute a representation that uses the minimum amount of memory.
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Problem 4.2.3 (Semantic representation and compression system) Our system integrates
trajectory clustering and trajectory compression. It takes as input a signal P and produces
a map M and a sequence of segments k', such that k' < k, such that the intermediate

(k, m)-segment mean may be recovered losslessly.
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Chapter 5

Preprocessing

This chapter details the algorithms in the Preprocessing block of the system (see Figure
2-1). The algorithms in the Preprocessing block are optional but useful for some types
of inputs. For computation speedup (and applications which may afford a larger error
parameters), we reduce the input data from 7 points to 0(5) points using the coreset of
k-segments, where ¢ is the error parameter. For choppy signals as is common with GPS
(and where an existing map is available), we may use the map to patch the input signal with

plausible intermediate trajectories.

5.1 Coreset for k-segments

In order to deal with large dataset of points, we use the (k, €)-coreset from [16] (see Section
4.1), and observe that it approximates the log-likelihood of every (k, m)-segment mean of

at most k states.

Theorem 5.1.1 ([16]) Let P be a set of n observations, and let € > 0, k > 1 be constants.
Let (C,w) be the output of a call to CORESET(P, k,¢). Then (C,w) is a (k, €)-coreset for

P, with high probability, and its construction time is O(n log n)

Proof: See [16] for the full algorithm pseudocode and proof. a
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Figure 5-1: Left: Shown here is a raw GPS trajectory (blue) projected onto x-y. The GPS drops are indicated
by the black connections between points.Right: Using the map of Massachuetts, we performed map matching
to guess what roads the agent took between GPS signal gaps, and these data patches are shown in red. As
shown, data patching, eliminates most of the black connections.

5.2 Data patcher

Since some of our experiments use GPS data, which is prone to signal drops and thereby
gaps in the input stream, we introduce a preprocessing step to patch gaps in the GPS data
stream by using map matching. We used a HMM-based map matching implementation,
detailed in [25], which takes as input a sequence of GPS points and a map.

Algorithm: The output is the most likely sequence of edges (i.e. streets) traversed on
the map. When a map is available and there are large gaps in the input stream, we apply this
map matching algorithm on our input stream to generate the most likely sequence of edges
missed during the signal outage for each gap, which we convert into sequences of points
to patch our original sequence. Figure 5-1 demonstrates an example of the effectiveness of
data patching in cleaning up signal discontinuities.

Analysis: The complexity of the map matching algorithm is O (n - |V - || E|

), since

its subcomponents Viterbi and A* require O(n - [|V|*) and O(|| E|

), respectively. n is
the length of the input, ||V|| is the number of nodes in our map, and || E|| is the number of

edges in our map. See Chapter 7 for more details on the map matching algorithm.
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Chapter 6
Trajectory mapping

In this Chapter, we suggest algorithms for the problems defined in Chapter 4 relevant to the
(k,m)-segment mean and (k, m)-segment map, which forms the first half of our semantic
compression system after the initial preprocessing (see the Trajectory clustering and map
block in Figure 2-1). First, we give an overview of the (k,m)-segment mean problem
and our Expectation-Maximization (EM) algorithm. Then, we formulate the coreset for 1-
segment mean (linear regression), which enables a linear-time implementation of the (k,m)-
segment mean algorithm. We explain the parameter estimation algorithm, and finally, we

discuss the map construction step.

6.1 (k, m)-segment mean algorithm

For constructing the (k,m)-segment mean (see Definition 4.1.7), we suggest a novel algo-
rithm that converges to a local minimum, since it has the properties of an EM (Expecta-
tion Maximization) algorithm. Each iteration of our EM algorithm takes O(n) time, an
improvement over the naive dynamic programming approach in the literature that takes
O(n?) time [16]. Additionally, our algorithm is parallelizable.

Expectation-Maximization: In the partitioning (expectation) step, we compute the best
k-segment mean, given that is projection is a particular m clusters. In the clustering (max-
imization) step, we compute the best m clusters, given the k-segment and the assignments

to their respective clusters.
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The bottleneck of the computation occurs in the partitioning (expectation) step, where
in order to find the globally optimal k-segment mean with a particular set of m clusters, the
exhaustive dynamic programming solution requires O(n3) [16]. This algorithm quickly
becomes impractical for even moderately sized datasets.

Our (k, m)-segment mean algorithm still takes a dynamic programming approach: we
split the computation into |—§-| 2-segment mean problems (see Figure 6-1), which we show
we can compute in linear time using what we call the 1-segment coreset (refer to Section
6.2 for more details). We additionally show that we can compute all [g] subproblems
simultaneously using O(l) operations, since all of the subproblems are independent, and
in O(n) time. This simultaneous computation lends itself well to parallelism. Since the
I—g] subproblems only update half of the partitions (each 2-segment mean updates one
partition, see Figure 6-1), we may similarly split the computation into a different set of [%1
2-segment mean problems, which we distinquish as shifting the odd and even partitions.
See Algorithm 1 for the pseudocode.

Algorithm 1: km_seg EM(k, m, input)

/* Initial partition of input into k partitions */
1 partition < DOUGLAS_PEUCKER (input, k)
/* Initial clustering of k partitions to m types */
2 cluster +— LEAST_SQUARES(partition)
/* Initial error compared to input * /
3 cost <~ GET_COST(partition, clusters, input)
4 lim + Inf
/* Expectation-Maximization x/
5 while cost < lim do
/+* Expectation step x/
6 | partition < SHIFT_EVEN_PARTS(partition, clusters)
/* Expectation step */

partition <— SHIFT_ODD_PARTS(partition, clusters)

clusters < LEAST_SQUARES(partition) /+ Maximization step */
lim <+ cost /+* Update limit =/
10 cost <~ GET_COST(partition, clusters, points) /+ Update cost =*/
11 return (partition, clusters, cost)

Theorem 6.1.1 Let P be a signal inR?, and ieng > 1, k > m > 1 be integers. For every 1,

1 < ¢ < dgna, let S; denote the m segments that are computed during the ith iteration within
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the EM loop of KM_SEG_EM(P, k, m), which solves the (k, m)-segment mean problem.
Then

a) Foreveryi, 1 < i < igq, we have

Z DiSt(p, S,) < Z Dist(p, Si—l)-

pEP peEP
b) The running time of this algorithm is O (nmiend) time.

Proof:

a) See Algorithm 1 for the EM-(k, m)-segment mean algorithm. The estimation (partition)

step performs a 2-step process to adjust the partitions to reduce the cost when possible.

The algorithm first shifts the [ﬂ even partitions, such that all shifts may occur indepen-

dently; then, the algorithm does the same to the [£] odd partitions. The maximization

(cluster) step computes the spline efficiently using least squares, yielding the best m

segments.

The KM_SEG_EM algorithm converges to a local minimum in the style of an EM algo-

rithm. At each iteration, we perform an estimation step and a maximization step. In the

estimation (partitioning) step, we shift the partitions if and only if it reduces the overall

cost (fitting cost). In the maximization (clustering) step, we compute new segements

if and only if they reduce the overall cost. We repeat the estimation and maximiza-

tion steps until convergence. The algorithm terminates when neither step produces a

lower cost. Since the cost is monotonically decreasing in each iteration, we guarantee

convergence to a local optimum.

b) Each iteration of the EM algorithm requires O(nm) for the partitioning (expectation)

(see Section 6.3), O(nm) for the clustering (maximization) (see [16]), and O(n) for

the cost computation. Thus, the overall cost is O (nmz’end) , where 1,4 is the number of

iterations until termination.

42



6.2 Optimal algorithm for 2-segment mean

In this section, we present an efficient optimal algorithm for the 2-segment mean, which
is a specific case of the k-segment mean problem (See Chapter 4.1 for definition). Our
algorithm is linear-time and constant-space using a constant size 1-coreset (with € = 0,
sce Chapter 4.1 for definitions). We first give an informal overview for our approach.
Then, we formalize the 1-coreset, present the optimal algorithm for 2-segment mean, and
prove its complexity bounds. In the next section, we present the improved partitioning
algorithm (estimation step) of the trajectory clustering algorithm, using the 2-segment mean
algorithm.

Note that in this Section we are careful to include d, the dimensionality of the input, in
our complexity analysis. For the rest of the thesis, we assume it to be a constant (2, in this

work).

6.2.1 Informal overview

First, we take advantage of the fact that we must exhaustively perform computations against
all subintervals within a time interval of size n. This added structure allows us to incre-
mentally compute costs much more efficiently than performing each computation indepen-
dently, reducing the total time complexity of the n operations from ©(n?) to ©(n), and the
amortized cost of each operation is O(1). Selecting the subinterval with the lowest cost is
the same as computing the 2-segment mean of a signal (See Section 4.1 for definition).
Second, we wish to simultaneously compute the fitting cost for a particular subinter-
val against several segments. Here, we restructure the computation to take advantage of
MATILAB'’s extensively fine-tuned libraries for matrix operations. The resulting computa-
tion requires a factor 7 fewer operations, though each operation takes O (m) longer, with
overall runtime O(d2mn). The real result is in significantly reducing the constant factor of

performing many fitting cost computation.
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6.2.2 Coreset for 1-segment mean

Definition 6.2.1 (Fitting matrix) A firting matrix D for a segment X and a signal P is a
d-by-d matrix such that T = trace(D) is the fitting cost between X and P. The fitting

matrix may be expressed as
D =(AX — P)YT(AX - P) (6.1)

Remark 6.2.2 D, defined above, is similar to ||AX — P|°. However, only the diagonal

entries affect the fitting cost.

This fitting cost computation is expensive in our (k,m)-segment mean algorithm be-
cause we must compute a new AX for every new time interval, which costs O(td) , where
t is the length of the time interval and d is the dimensionality of the input stream. The

subsequent subtraction and multiplication also requires O(td) time.

Claim 6.2.3 Suppose T = trace(D) is the fitting cost between a segment X and a signal
P for time range [t;...t2] (see Section 4.1 for definitions). We may construct A such that
AX is an interpolation of X witht = (t3 — t; + 1) parts between the two endpoints of the

segment.

For instance, for a 2-dimensional (x, y) constant-frequency signal, we have:

— - - -

1 tl xtl ytl
A= 1 " + ' , X = be by ,and P = Tatl Yn+l

. . My My

1 tz xtz ytz

where b, represents the intercept (at ;) of the y-dimension of the segment = and m,,
represents the change in y-coordinate per change in time (slope). The same applies to the

z-dimension (b, and m,), and this is generalizable to any d dimensions.

Observation 6.2.4 To solve the 2-segment mean problem, we must compute the fitting cost

for every possible 2-segment of some signal P (in order to find the 2-segment with the
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smallest fitting cost). We may order these computations in such a way that each 2-segment
differs from the previous by a point insertion to one segment and a point deletion from the

other segment.

Observe that Equation 6.1, when expanded is:
D=XTATAX - PTAX — (PTAX)T + PTP (6.2)

Claim 6.2.5 The matrices ATA, PTA, and PT P are size O(d) —by—O(d) and require only
©(1), ©(d), and ©(d?) (respectively) time and space to update for point insertions and

deletions. d is the dimensionality of the input stream. Their respective sizes are 2-by-2,

d-by-2, and d-by-d.

For example, suppose we wished to compute these matrices for time interval [¢1...85+1]
given the matrices for time interval [¢;...t] (point insertion). Then, all we need are the new
point (4,41, Yi,+1) and the time t5 + 1 to update the matrices in O(d?) time by simple

matrix operations:

1 to+1
ATA[tl...t2+1] = ATA[tl...tz] + (6.3)

to+1 (to+1)?

Tigr1 Tipra - (T2 + 1)
PTA[tl...tg-l-l] = PTA[tl...tg] + 7 ? (6.4)

Yigt1 Yoor1 - (T2 +1)

z? Tto+1 * Yto+1
PTP[t,__.zz.H] = PTP[tl___tz] + tatl farl et (6.5)

2
Lo+l * Yio41 Yior1

By similar operations, a point deletion also requires only O (d2) update time.

Claim 6.2.6 The matrix X is small and requires ©(d) time to compute. d is the dimension-

ality of the input stream. X is a 2-by-d matrix.

For d = 2, the computation of X is as follows. Given a segment with start point (1, y1)
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and end point (x5, ¥»), and time interval [t;...t5):

b b I 5%
X=|" "= (6.6)

I2—x Y2—i

Mg My tati  ta-t:

Claim 6.2.7 The computation of the fitting matrix D may be computed in O(dz) time for

point insertions and deletions, where d is the dimensionality of the input stream.

By Claim 6.2.5 and 6.2.6, ATA, PTA, PTP, and X all require just O(d2) time to
update for point insertions and deletions. The matrix multiplications shown in Equation
6.2 also requires ©(d?) time. All matrices are very small, and the resulting matrix is d-by-
d.

Definition 6.2.8 (Dynamic 1-segment coreset) (C, E, F') is a coreset for input (A, P) if
Jorall z:

D =3TATAz — PTAz — (PTA2)T + PPP=2"Cz — Ex — (Ex)T+ F (6.7

A coreset is dynamic if it supports point insertions and deletions.

Theorem 6.2.9 A dynamic 1-segment coreset (C, E, F) for input (A, P) can be computed
such that construction time is O(dzn), updates (point inserts take O(dz) time, and all

operations take O(dz) space. C,F, and E are respectively 2-by-2, d-by-2, and d-by-d.

Proof: Respectively, C = ATA, E = PTA, and F = PTP. By Claim 6.2.5, point in-
sertions and deletions take O(dz) time and space. Naturally, construction of such a coreset
for n points requires n point inserts or O(d?n) time and O(d?) space. By Claim 6.2.7,

(C, E, F) computes the fitting matrix D for any segment z. )

6.2.3 Algorithm for (2, m)-segment mean

Definition 6.2.10 ((2, m)-segment mean) For an integer m > 1, a (2, m)-segment is a 2-
segment f in R® whose projection {f(t) | t € R} is a set of at most 2 of m given segments
in R%. Given a sequence P in R% the (2, m)-segment mean f* of P minimizes 7(P, f)

among every possible (2, m)-segment f in R? for some given m segments.
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Theorem 6.2.11 Using the dynamic 1-segment coreset, we may compute the optimal (2, m)-

segment mean in O(dzmn) time and O(d2) space.

Proof: We start by constructing a dynamic 1-segment coreset for all the points and com-
puting the optimal fitting cost among a set of M segments. Then, one by one, we remove a
point from the coreset and add it to a second coreset (initially empty). With each pop and
push, we compute again the optimal fitting cost. By Claim 6.2.7, each fitting cost computa-
tion takes O (d*m) time and space (for m segments). We take the lowest fitting cost among
the n computations, for an overall computation cost of O(d2mn) time and O(dz) space.
See Algorithm 2 for the pseudocode and Figure 6-1 for graphical demonstration.

Without the coreset, each (independent) fitting cost computation would take O(d2mn)

time for an overall complexity of O(d*mn?). o

Algorithm 2: 2_seg mean(P, M)
1 n ¢ length(P)

2 MIN_cost < oo

3 coresety, +— 1_SEG_CORESET(br) /* Empty =*/
a coresetp <~ 1_SEG_CORESET(P) /* All points x/
s fori « [1..n] do
6
7
8
9

(costr,mr) < FITTING.COST(coresety,, M)
(costr, mpg) ¢ FITTING_COST(coresetr, M)
if costy, + costp < min_cost then
min_cost < costy, + costp
10 MiT,, & ML
n MiNy,y ¢ MR
12 coresety, < 1_SEG_CORESET_INSERT(coresety, P[i]) /* Push point =/
13 coresetr +— 1_SEG_CORESET_DELETE(coresetg, P[i]) /+ Pop point =/
14 return (min_cost, (Min,, , min,,))

Remark 6.2.12 Using the dynamic 1-segment coreset and the method of quadratic mini-
mization [23], we may similarly solve the general 2-segment mean problem, which gives
the optimal 2-segment solution, instead of selecting only among m options. This can also
be computed in O (dzn) time and space for point insertions and deletions. However, for the
case of inspecting a subproblem of the (k, m)-segment mean problem, we look specifically

at the case of the 2-segment mean problem where we select from m given segments.
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6.2.4 Operation reduction

For a practical implementation we wish to simultaneously perform the fitting cost com-
putation for a signal P against several given segments. Reducing the number of matrix
operations greatly decreases the constant factor of our running time, although it does not
affect the asymptotic running time. In this Section, we take advantage of MATLAB’s ex-

tensively fine-tuned libraries for matrix operations.

Observation 6.2.13 Each computation of fitting matrix D = (AX — P)T(AX — P) may
be simplified and restructured as a small dot product, which can then be incorporated into
a larger matrix multiplication. When computing fitting costs for a particular subinterval
against m different segments, this allows MATLAB to perform a single (larger) operation

instead of m (smaller) operations, which is much more efficient.

Claim 6.2.14 The computation of fitting matrix D = (AX — P)T(AX — P) may be sim-
plified as a small dot product of 9 values for d = 2.

We already know that ATA, PTA, and PT P are small. For d = 2:

ail a2

ATA= (6.8)
Qg1 a2
PTA — D@11 paiz (6.9)
pba21 pagz
pTPp — P11 P12 (6.10)
P21 P22

In Equation 6.11 and 6.12, we see that by simple matrix operations, we can re-write

XTATAX and PTAX (and we ignore the non-diagonal entries).

b2ayy + 2b;mzaz + mia _
XTATAx = | =1 2 et (6.11)

2 2
- byau + Qbymyazl + mya22
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a11by + paoms, _
PTAY — PQ110; + paiz 6.12)
- pambypazzmy
In Equation 6.13, we see that the resulting fitting cost 7 = trace(D) computation can
be written as a dot product. P is the vector with coefficients relevant for the signal P. § is

the vector with coefficients relevant for the segment X. This computation requires only 1

matrix operation.

7 = trace(XTATAX — PTAX — (PTAX)T + P P)
= bﬁau + 2b,m 001 + miagz + bZau + 2b,myaor + mZazz
— 2(pa11bs + pagamg) — 2(panby + pagemy) + p11 + P2
= [011 Q21 Q22 PGl Paiz pPaz pa2 pPn P22] )
[bg + b2 2(bymg +bymy) mZ+m2 —2b, —2m, —2b, —2m, 1 1]
=p-5

(6.13)

Claim 6.2.15 Computing the fitting costs T against m different segments requires only 1

matrix operation.

Following from Theorem 6.2.11 and the matrix formulation given by Claim 6.2.14, to

compute the fitting cost of a signal P against m different segments:

T=p- [él g ... §m] (6.14)
The runtime is still ©(d?m), but with a much smaller constant factor.

Theorem 6.2.16 Using the dynamic 1-segment coreset, we may compute the optimal (2, m)-

segment mean in O (n) matrix operations.

Proof: Algorithm 2 requires n fitting cost computations, each for m segments. By Claim

6.2.15, we may perform each of the n fitting cost computations in 1 matrix operation, so
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n total matrix operations are needed. We additionally need O(n) matrix operations for the
pushes and pops and the initial coreset construction, for an overall O (n) operations.

The runtime is still ©(d?mn), but with a much smaller constant factor. O

6.3 Partitioning (expectation) step algorithm

In this section, we describe different ways of implementing the partitioning stage of the
(k, m)-segment mean algorithm, having broken the problem into fﬂ 2-segment mean
problems. The objective of the partitioning stage is to find the best partition of the input
into & parts given m possible segments to use. This is the (k, m)-segment mean problem

with the m segments held constant.

Remark 6.3.1 Finding the optimal global partitioning requires O(n®) time, using an ex-
haustive dynamic-programming approach [16]. This becomes quickly impractical even for

medium-sized datasets. We instead propose algorithms for a locally optimal solution.

First, we describe the naive algorithm, which computes fitting costs independently for
each 2-segment mean subproblem (does not use the 1-segment coreset). Second, we de-
scribe an improved version that makes use of Theorem 6.2.15 to reduce the number of
required operations and also its asymptotic runtime. Finally, we present a parallelizable
version of the partitioning algorithm, which further reduces the required operations. The
algorithms require O{n?m), O(nm), O(nm) time, respectively, and they require O(n?m),
O (n), 0 (m) operations, respectively. The first two candidate algorithms produce the ex-
act same result. The third candidate algorithm splits the input into subproblems somewhat

differently. Our system uses the parallel implementation, as shown in Figure 6-2.

6.3.1 Naive algorithm

The simplest implementation performs a linear walk through the £ — 1 2-segment mean
problems. For each subproblem, it checks whether the fitting cost would be lower if the
partition were instead anywhere else between its bounds, given that it can select from any

of m segments. This algorithm computes the fitting cost for each of the O(n) subintervals
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against each of the m segments, and shifts the partition according to the lowest cost. Con-
tinuing in this manner, this algorithm takes O(mnz) time, since each cost computation is

O(n).

6.3.2 Using 2-segment mean algorithm

This algorithm also performs a linear walk through the k£ — 1 2-segment mean problems.
Making use of Theorem 6.2.11, it computes costs for each 2-segment mean subproblem
incrementally to reduce the overall runtime to O (nm). Making use of Theorem 6.2.16, it
uses matrix operations to reduce the constant factor as well as the number of operations

from O(nm) to O(n). Please see Figure 6-1 for graphical steps of the algorithm.

6.3.3 Extension for parallelism

We observe that shifting partition lines locally at most affects its 2 neighbors. Due to this
conditional independence, note that we may shift all odd numbered partition lines without
affecting the costs of one another; the same applies to even numbered partition lines. Thus,
instead of performing a linear walk through the f%] 2-segment mean problems, we split
the computation into [£] non-overlapping 2-segment mean problems, such that the moving
partitions are all odd or all even numbered. We perform all even shifts in a single operation,
then all the odd (see Figure 6-2). For each operation, we must consider each of m segments,
so this algorithm requires O(m) operations. The runtime remains at O (nm), but may be

parallelized to O (n) Please see Figure 6-2 for graphical steps of the algorithm.

6.4 Parameter estimator

We implemented a trinary search algorithm for searching through the k& and m space. As
shown in Figure 6-3, the cost falls off exponentially as m increases. The objective of the
parameter estimation is to find the elbow of the curve. We achieve this by searching for
the point along the curve that is farthest away from a reference line defined by extreme m

(small and large). Figure 6-4 shows the results of maps generated from different m.
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P» time

Figure 6-1: (a) Shows the input, which consists of n points, partitioned into k parts, each with an initial
assignment of to one of m clusters. (b) We split the input into [ %] 2-segment mean problems and we show
the steps of computation of one of the subproblems in (¢)-(g). (c) We initialize our right 1-segment coreset
in O(n) time to compute the cost for all of the n points. (d) We update our right coreset by removing the
leftmost point and we update/initialize our left coreset by adding the leftmost point, which takes O(1) time.
We compute the cost using the coreset, which costs O(1). (e) We update our right coreset by removing its
leftmost point and we update our left coreset by adding the next point to its right, which takes O(1) time. We
compute the cost using the coreset, which costs O(1). (f) We continue in this manner until the right coreset is
empty. Now we have n costs. (g) Finally, we compute the partition that yields the minimum cost.
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Shift odd partitior{ !
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°
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Shift even partitions
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Figure 6-2: The partitioning stage of the (k,m)-segment mean algorithm consists of finding the best partition
of the input into % parts given 1 possible segments to use. Instead of a computationally expensive full search,
we shift the partition bars locally. We parallelize this process by shifting all the odd numbered partitions at
once (red), then the even partitions (blue). Here, we show the k parts of the input; the first few parts contain
points for demonstrative purposes (orange and purple). Note that the points stay in place between iterations,
but the selected segments are scaled accordingly (to the length of the partition)

Algorithm: The algorithm takes in a range of k& and m values to search through and
outputs the optimal £ and m. We perform a nested binary search, first for the parameter m,
then for the parameter k. For each m, there is an optimal & [16], so although the parameter
search is nested, the two parameters are independent. The best parameter is determined
by a density-based function [5], where we return the farthest point from a reference line
defined by the parameter extremes. The parameter search process for k£ and m are identical.
See Algorithm 3 and its helper Algorithm 4 for more details.

Analysis: The time complexity of the parameter estimator is ()(nmiend . 1og2(n)).
The (k, m)-segment mean algorithm requires O (nmz‘md) and each nested parameter search
adds a O(log(n)) factor.

Memoizer: We have implemented a data structure for saving learned (k,m)-segment
mean and the associated cost for specific (k,m) parameters. This memoizer structure allows
for quick retrieval of (k, m)-segment results if the same configuration had run previously,

which is extremely useful and practical during parameter search.
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Algorithm 3: Find_best_m(mq, my,, ko, kn, input)

/* Compute reference line for quality of m (searching

for the elbow in curve) */

/* Upper bound on cost (for smallest m) */
1 (kmo, costy) < FIND_BEST_K(my, ko, kn, input)

/* Lower bound on cost (for largest m) x/

(=]

(Kmn, cost,) < FIND_BEST_K(my, ko, ky, input)

3 Miower — Mo, COStiower €— COSLY, Muypper — M, COStypper — COSL,
/* Trinary search to find best m */
4 while mer! = Mypper do
/+* Split search space into 3 parts */
5 (Ma, my) < TRISECTION(Myguer, Mupper )
/+ Cost for 2 intermediate m values */

(kq, cost,) < FIND_BEST_K(myg, ko, kn, input)

(ks, costy) «— FIND_BEST_K(my, ko, kn, input)

dist, + NORMALIZED_DISTANCE(m,, 0st,, My, costg, M, cost,)

/* Evaluate vs reference line =/

9 disty <~ NORMALIZED_DISTANCE(my, costy, Mo, costy, My, costy,)

/+* Remove third of search space farther from elbow x/
10 if dist, > dist, then

1 | Mupper < My, COStypper + costy
12 else
13 | Miower = Ma, COStiouer + cost,

14 return (Mqypper, COStypper)

1" m ¥scost

reference line |
distance |

(] 20 40 80 80 100

Figure 6-3: Shown is a sample m vs cost curve. The parameter estimator searches for the elbow of the curve
by using a trinary search to look for the point farthest away from the reference line (red). Distances are shown
in light blue. In this example, m = 7 is located at the elbow.
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Algorithm 4: Find best _k(my, ko, k,,, input)

w N

&

10
11
12
13

—
PN

/+ Compute reference line for quality of k

for the elbow in curve)

/+ Upper bound on cost (for smallest k)

costy < KM_SEG_EM((my, ko, input)

/+* Upper bound on cost (for smallest k)

cost, < KM_SEG_EM(m,,, k,, input)

Ktower ko, COStiower = COSto, Kypper = kn, COStypper — cOSt,
/* Trinary search to find best m

while ke, ! = Kypper do

if dist, > dist, then

| Kupper ¢ Ky, COStypper — cOSty
else

} klower A kaa CO8tiower 4 COSL,
return (K, pper, COStypper )

/% Split search space into 3 parts
(ka, kp) < TRISECTION(Kjguer, Kupper)
/* Cost for 2 intermediate k values

(kq, cost,) <= KM_SEG.EM(my, k,, input)

(k‘b, COStb) — KM_SEG_EM(mo, ks, z'nput)

dist, <~ NORMALIZED_DISTANCE(k,, cost,, kg, costg, kn, cost,)

/* Evaluate vs reference line =/

dist, ¢~ NORMALIZED_DISTANCE(ks, costs, ko, costg, ky, costy,)

/* Remove third of search space farther from elbow

(searching

*/
*/

*/

W
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-:" m=50,k=139 I (, o m=102,k=287

Figure 6-4: Shown here is the full original indoors trajectory (blue) projected onto x-v, as well as the m
segments that form the map (colored segments) for several different 7. Notice the trade-off between com-
pression size and compression quality. Smaller /m yields larger errors. Our parameter estimator selected
m =19,

6.5 Map construction

Algorithm: To construct a connected map from the m states and k& — 1 transitions: We add
2m nodes V,,, = {v1, Vs, ..., Vor, } for each endpoint of the m segments. Then, we add m
edges that link the 2m endpoints. Now, to connect the graph, we add an edge to the map
for each unique transition (t;,t}) such that ¢;,¢; € V,, for 1 <i < k — 1. Adding auxiliary
edges represents traversals as legal transitions in the map. Repeated auxiliary edges are
added only once. Note that the set of consecutive edges may contain redundant pairs,
especially if the agent is performing repeated tasks. See Algorithm 5 for the psuedocode
and Figure 6-5 for an example.

Analysis: The map requires O(m + k) time to construct. The number of edges in the
resultant map is bounded by the smaller of m + k or ﬂ";—_ll (fully connected). The number
of nodes is 2m. Since m < k, the size complexity of the map is O (k) for edges and O (m)

for nodes.
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1) Trajectory clustering
(k,m)-segment mean
projected onto (x,y)

k partitions, m clusters

start

®)
ti—)x % Qée—-_ end

2) m segments
Disconnected,
directed graph

3) Map
Connected,
directed graph

¥

o0&

Figure 6-5: Shown here is an example of map construction, which is the last step of the trajectory mapping
stage. The resulting information-rich map is then used to further compress the input stream. 7Top: The
(k, m)-segment mean produced by the trajectory clustering algorithm, when projected onto x-y, consists of
m directed segments. Middle: The m directed segments (blue edges) from the (k, m)-segment mean form
part of the map, but they lie disconnected. The endpoints of the m clusters form the nodes of the graph
(purple). Bottom: By following the order of the k segments (each of which is one of the m clusters), the
transitions between one cluster to the next yields additional auxiliary edges (orange) to the graph that connect
the mn clusters. The resulting approximation of the real map is a graph with nodes (end points of the segments
(purple)) and edges (the segments (blue) and any transitions between the segments that may have occured
during the trajectory (orange)).
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Algorithm 5: Make_map(input, k, m)

/* Endpoints of segments form the set nodes */
1 nodes « clusters(:, 1] + clusters[:, 2]
/* Cluster segments are definitely part of the map */

2 edges « clusters
/* Add missing edges for each unique transition between
clusters */
for i « [1...k — 1] do
if not (partition[i], partition(i + 1)) in edges then
edges + edges + (partition[i], partition(i + 1))
return (nodes, edges)

A U A W
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Chapter 7

Trajectory compression

In this Chapter, we propose algorithms for the problems defined in Chapter 4 relevant to the
trajectory compression, which forms the second half of our semantic compression system
(see the Trajectory compression block in Figure 2-1). For compressing the input against
the map, we suggest an algorithm based on binary search and the algorithm in [25]. The
algorithm has worst case of polynomial time, but in practice (average case) usually runs in

linear time given its A* heuristics and the sparseness of the map.

7.1 Trajectory compression using map matching

Algorithm: Given a connected map generated from the (k, m)-segment mean, we apply a
HMM-based map matching algorithm [25] on the input sequence of k£ segments (2k points)
to compute the trajectory that most likely describes the moving object in time in terms of
nodes in the map. Then, using a recursive binary search, we prune out intermediate points
within the trajectory are redundant information, given the map. See Algorithm 6 for the
psuedocode.

Analysis: The time complexity of the trajectory compression algorithm is O(n - || E| -
log(n)). The map matching algorithm itself requires O (n-|| E||), since A* requires O(|| E]|),
where 7 is the length of the input and || F|| is the number of edges in our map. The addi-
tional log(n) factor comes from the recursive binary search for compressing the trajectory.

Additionally, since we only prune out intermediate nodes in the trajectory that are encoded
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Algorithm 6: Traj_compress(seq, map)

1 traj + MAP_MATCH(seq, map) / traj is a sequence of edges =/
/* seq is updated with non-noisy coordinates *x/

2 seq + GET_COORDINATES(traj)

3 if MAP_MATCH(seq, map) = MAP_MATCH([seq. first, seq.last], map) then

/+ End points capture all information (given the map)

*/
4 return (seq. first, seq.last)
5 else
/* End points do not capture enough information, so
recurse */
6 return

MAP_MATCH(seq. first_hal f, map) + MAP_MATCH(seq.last_hal f, map)

in the map (recoverable by map matching), our trajectory compression algorithm is loss-
less.

Our algorithm is always applied to the input of k£ segments rather than the original
input of size n, and our map is size O(k), so the complexity of this system component is
O(k? - log(k)).

Map matching algorithm: The trajectory compressor algorithm invokes a black box
map matching algorithm. For our system, we used a HMM-based map matching imple-
mentation, detailed in [25]. Our choice of map matching algorithm additionally allows our
system to compress trajectories that were not used to create the map. The HMM-based map
matching algorithm we selected is essentially A* search married with the Viterbi algorithm,
with the heuristic that shorter paths are the ones that agents realististically prefer. In our
semantic representation and compression system, we only use the A* and the heuristic as-
pects. However, the embedded Viterbi algorithm allows us to handle noise in the inputs, i.e.
points that do not directly correspond to nodes in the graph, by applying dynamic program-
ming to find the most likely sequence of hidden states. This is useful, for example, in long
term robot operation, where the initial sensor readings can be used to build up a map, and
the sensor streams collected thereafter may bypass the trajectory mapping stage and pass
directly to the trajectory compression stage. The Viterbi feature adds an additional factor of
O(|IV|]?) to the runtime, for an overall map matching runtime of O(n-||V'||*- || E||), where

[IV]] is the number of nodes in our map. Note that this use of our sys