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� Abstract The genetic analysis of longevity of Caenorhabditis elegans has yielded fundamental insights into the 

molecular mechanisms of aging in animals. Recent studies suggest that interactions between C. elegans and its 

microbial environment may shape and influence aging and longevity of the host. Experimental evidence supports a 

role for bacteria in affecting longevity through distinct mechanisms---as a nutrient source, as a potential pathogen 

that induces double-edged innate immune and stress responses, and as a coevolved sensory stimulus that modulates 

neuronal pathways regulating longevity. Motivating this review is the anticipation that the molecular genetic 

dissection of the integrated host immune, stress, and neuroendocrine responses to microbes in C. elegans will shed 

light on basic insights into the cellular and organismal physiology that governs aging and longevity. 
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AGING IN A MICROBIAL ENVIRONMENT: AN OVERVIEW 

The isolation of wild strains of Caenorhabditis elegans has revealed a diversity of microbes 

in its natural environment (22). By contrast, the laboratory cultivation of C. elegans and, 

specifically, experimental assays of organismal life span, have commonly involved 

propagation on agar plates seeded with a monoaxenic culture of Escherichia coli OP50 (9). 

Three principal modes of interaction between the C. elegans and bacteria may affect the 

aging and longevity of the host organism (Figure 1). First, bacteria serve as the food source 

for C. elegans, and differences in nutritional quality and alterations in the production of 
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bacterial metabolites may influence host aging and longevity. Second, bacteria may cause 

pathogenic infection, which may contribute to mortality in aging animals. Pathogenic 

infection induces innate immune and stress responses, which might be anticipated to 

promote survival, but these host responses, and not just microbial toxicity, may also 

contribute to tissue damage and host aging. Third, neuronal responses to bacteria, detected 

as food and/or pathogen, may be integrated with endocrine signaling pathways that regulate 

organismal longevity. Here, I discuss the experimental studies in support of each of these 

mechanisms through which microbes may influence the longevity of C. elegans. I anticipate 

that understanding how microbes, innate immunity, and cellular and organismal stress 

physiology are integrated may yield fundamental insights into the molecular genetic basis of 

aging and longevity. 

<COMP: PLEASE INSERT FIGURE 1 HERE> 

Figure	
  1	
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DUAL NATURE OF BACTERIA DURING AGING OF CAENORHABDITIS ELEGANS  

The relationship between diet and longevity is an important consideration in the 

interpretation of assays of C. elegans life span that involve alterations of the bacterial food 

source. Nutrients are essential for survival, and yet dietary restriction confers well-

documented extension in life span in evolutionarily diverse species (65). C. elegans is a 

bacteriovore, and optimal laboratory growth and development of C. elegans requires live 

bacteria. Compared with the cultivation of C. elegans in the presence of bacterial food, 

growth in liquid axenic culture results in reduced rates of growth and progeny production, 

and notably, marked extension in life span (19). These observations are consistent with a 

contribution from dietary restriction due to suboptimal nutrition or perhaps the absence of 

toxic or pathogenic components of bacteria that are detrimental to life span. However, 

defining the relative contributions of these possible contributors is not straightforward, and 

additional studies have examined how changing the bacterial lawn on which C. elegans 

feeds influences life span. 

Propagation of C. elegans on heat-killed E. coli OP50 or on E. coli OP50 that has been 

treated with antibiotics to inhibit bacterial proliferation  results in an extension of the life 
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span compared with propagation on standard live E. coli OP50 (24, 27). These studies are 

consistent with extension in life span being due to the attenuation of bacterial pathogenicity 

and toxicity. Altering the agar media may also shorten life span, possibly acting through the 

induction of increased virulence of E. coli OP50 (26). However, different methods of killing 

E. coli OP50, inhibiting its proliferation, or altering the growth media may produce variable 

effects on nutritional quality. Notably, even different strains of E. coli, OP50 and HT115, 

although not causing appreciable differences in C. elegans growth and progeny production, 

may result in markedly different metabolic profiles (10). 

More difficult to interpret have been the effects of different species of bacteria on the C. 

elegans life span. Variability in nutritional content and quality and/or pathogenicity among 

bacterial species likely underlies the wide range of abilities of different species of bacteria 

to support growth and development as assessed by differences in growth rate and progeny 

production (17, 80). Propagation of C. elegans on Bacillus subtilis results in extended 

longevity compared with propagation on E. coli OP50, an observation that has been 

interpreted in terms of the relatively diminished pathogenicity of B. subtilis (26). A lack of 

difference in C. elegans growth rate or progeny production is suggestive of comparable 

nutrition, indicating that the life-span extension is not due to dietary restriction (26, 30). 

However, more subtle metabolic effects from differences in nutritional content are difficult 

to exclude. Interestingly, a recent study has suggested that the production of nitric oxide by 

B. subtilis leads to the induction of stress-activated signaling pathways, which may 

contribute to the extended life span of C. elegans when feeding on B. subtilis (30). 

Recent work has shown that C. elegans exhibits altered developmental rate and life span 

when propagated on the soil bacterium Comamonas DA1877 (51). The persistence of the 

effect on developmental rate even when Comamonas is diluted with E. coli has been 

interpreted in terms of a likely bacterial signal that can modulate development. The 

shortened life span of C. elegans on Comamonas relative to E. coli OP50, which is also 

observed on killed bacterial species, is not observed upon diluting the Comamonas with E. 

coli, raising the possibility that differences in nutritional content or pathogenicity underlie 

the observed difference in C. elegans life span on the respective bacterial species (51). 

The bacterial lawn represents a genetically modifiable nutritional source that has been 

utilized to explore nutritional determinants of longevity. Mutants of E. coli OP50 have been 
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isolated that are deficient in specific metabolites that lead to altered metabolism. For 

example, recent genetic analysis determined that increased folate biosynthesis contributes to 

a shortened life span of C. elegans (90). Importantly, changes in life span were found in the 

absence of differences in growth or development of C. elegans or changes in intestinal 

bacterial proliferation, which might suggest altered bacterial pathogenicity. Notably, the 

effect of the drug metformin on C. elegans life span has also recently been shown to result 

from drug-induced alterations in bacterial folate metabolism (11). 

Complexities in the analysis of the contribution of bacterial molecules to C. elegans life 

span are illustrated by the characterization of the mechanism by which coenzyme Q affects 

C. elegans longevity. E. coli deficient in coenzyme Q were shown to confer an extension in 

life span relative to wild-type E. coli (44). Subsequent characterization revealed that E. coli  

that not only lacked coenzyme Q but were also deficient in respiration resulted in an 

extended life span without apparent alteration of the nutritional content of the bacterial food 

(73). More recently, respiration-deficient bacteria have been shown to accumulate in the 

intestines of aging worms to a delayed extent, suggesting that what initially appeared to be a 

consequence of the lack of a single nutrient may have exerted effects on C. elegans life span 

through alterations in bacterial fitness and ability to proliferate in the C. elegans intestine 

(28). These data illustrate challenges in decoupling experimental effects on nutritional and 

pathogenic properties of bacteria in studies of C. elegans longevity. 

The strongest evidence for a role for bacterial pathogenesis in the mortality of aging C. 

elegans has come from direct observations of intestinal accumulation of ostensibly 

nonpathogenic E. coli OP50 in aging animals. The pattern of intestinal accumulation of E. 

coli OP50 observed in aging animals (24) is similar to what is observed in younger C. 

elegans larvae and C. elegans adults that are infected with highly pathogenic bacteria, such 

as Pseudomonas aeruginosa PA14 (38, 83). These similarities suggest a comparable course 

of bacterial proliferation and alteration in the intestinal epithelia, albeit one with different 

kinetics. Most compelling have been studies of electron microscopy of aging adults 

propagated on E. coli OP50, which have revealed intestinal accumulation punctuated by 

variable regions of bacterial packing and adjacent intestinal distension and tissue 

morphology consistent with local catastrophic pathogenic events (33, 57). These 

observations strongly suggest bacterial infection and proliferation within the intestine of 
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aging adults, particularly toward the end of life, and further point to a role for bacteria in 

terminal events of at least some aging animals. 

How do the animals die? The terminal events in life-span assays, or even pathogenesis 

assays with more virulent bacteria, are not well understood. Increased density of bacteria 

may also lead to a high local concentration of secreted bacterial toxins. Tissue damage may 

also result from by-products of the host immune response to bacteria. The preceding 

accumulation of bacteria and localized areas of bacterial packing suggests the possibility of 

direct invasion and translocation by bacteria, with imaging providing evidence of 

intracellular invasion of C. elegans intestinal cells by pathogenic bacteria (38, 39). 

Variability in the magnitude and patterns of bacterial packing may contribute to the 

stochastic nature of deaths of isogenic populations of C. elegans observed in life-span 

assays (33). Such variation might result from, or be the cause of, variability in host 

antimicrobial and stress responses. The variability in stress responses and bacterial 

accumulation in populations of C. elegans suggests that differential susceptibility to 

bacterial infection may contribute substantially to the observed variation in life span among 

isogenic populations of C. elegans (69, 74, 94). 

BACTERIAL INDUCTION OF IMMUNE AND STRESS SIGNALING DURING AGING 
OF CAENORHABDITIS ELEGANS 

Host Defense of Caenorhabditis elegans 

Multiple facets of C. elegans anatomy and physiology contribute to host defense against 

pathogenic microbes. C. elegans relies on its cuticle to serve as a mechanical barrier to 

infection and a pharyngeal grinder to disrupt ingested bacteria. Stress-activated innate 

immunity regulates local responses to bacterial infection in the intestine and hypodermis 

(41, 53, 62, 67), whereas the C. elegans nervous system facilitates the recognition and 

behavioral avoidance of pathogenic bacteria (66, 70, 79, 96). 

A forward genetic approach to identify genes required for resistance of C. elegans to 

pathogenic P. aeruginosa led to the identification and characterization of a conserved PMK-

1 p38 mitogen-activated protein kinase (MAPK) pathway that is required for C. elegans 

survival during intestinal infection with P. aeruginosa and other bacterial pathogens (41). 

The p38 MAPK pathway is a central mediator of innate immunity in mammals (20), and 
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thus identification of its role in C. elegans pathogen resistance suggests an ancient role for 

this pathway in evolutionarily diverse hosts. Gene expression analysis suggests that the 

PMK-1 pathway regulates C-type lectins and other putative antimicrobial genes (87). The 

PMK-1 pathway has also been shown to function in the hypodermis, where PMK-1 

regulates the expression of antifungal peptides in response to infection by the fungus 

Drechmeria coniospora (67). Interestingly, a different MAPK signaling pathway, 

converging on the ERK[**AU: Necessary to define this acronym?**]-like MAPK MPK-

1, regulates a protective tissue swelling response to the natural pathogen Microbacterium 

nematophilum, which adheres to the cuticle of the perianal region of C. elegans (62). 

The PMK-1 MAPK functions downstream of NSY-1 (72), the C. elegans ortholog of the 

ASK1 MAPKKK that is involved in diverse stress-activated and immune signaling 

processes in mammals (54), as well as the Toll-interleukin-1 receptor (TIR-1) domain 

protein (18, 46), an ortholog of mammalian SARM, which functions in neuronal 

degeneration with less clear roles in the regulation of immune responses of mammals (12, 

42, 64). Toll-like receptors, which have a pivotal role in innate immunity of mammals and 

Drosophila, do not appear to function in intestinal or hypodermal innate immunity of C. 

elegans (68). The mechanisms involved in activating the PMK-1 pathway in response to 

infection remain enigmatic. The activation of the PMK-1 pathway in response to pore-

forming toxins in the intestine (36) and laser-mediated wounding in the epidermis (67) 

raises the possibility that host-derived molecules released upon intestinal cell damage may 

be involved. Damage-associated host molecules have been implicated in the activation of 

mammalian innate immune and inflammatory signaling pathways (84). The possibility that 

tissue damage may activate PMK-1 also raises the possibility that the function of the PMK-

1 pathway in conferring resistance to infection may be related to stress adaptation and 

tissue-repair activities, and not solely to the mounting of an antimicrobial response. 

The characterization of P. aeruginosa exotoxin A and E. coli Shiga-like toxin, both of 

which function by ADP-ribosylation of C. elegans elongation factor 2 (EF2) revealed that 

the PMK-1 pathway can be activated by the inhibition of host translation (16, 21, 56). These 

observations, motivated in part by mechanisms of plant surveillance and defense against 

pathogen-derived effectors (50), have led to the hypothesis that the inhibition of host 

translation of C. elegans may be detected as a pathogen-triggered event, leading to the 
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activation of innate immunity. These studies illustrate how pathogen-derived effectors may 

not only induce host innate immunity but also trigger stress-activated adaptive responses. 

Pathogen Resistance and Longevity 

Ever since the initial characterization of mutants with enhanced susceptibility to pathogenic 

bacteria, the wild-type survival of such mutants on nonpathogenic E. coli OP50 has served 

as an important control to ensure that mutants were defective specifically in resistance to 

pathogenic bacteria and not short-lived from a generally diminished fitness. Mutants in the 

PMK-1 pathway have been shown to exhibit comparable longevity to wild-type C. elegans 

in life-span assays on E. coli OP50 (41, 87). But the evidence that infection, and in turn, 

activated immunity may contribute to longevity, demonstrates that the interpretation is not 

straight forward. That is, perhaps mutants deficient in innate immunity might be anticipated 

to have a shortened life span, as nonpathogenic E. coli makes an increasing contribution to 

mortality in aging animals. Correspondingly, mutants with enhanced resistance to 

pathogenic bacteria may exhibit life-span extension on E. coli. 

The daf-2 mutant carries a reduction-of-function mutation in an insulin-like receptor that 

confers a dramatic increase in life span that is dependent on the function of the Forkhead 

family transcription factor DAF-16 (40, 43, 48, 63). Notably, the daf-2 mutant also exhibits 

a markedly enhanced resistance to pathogenic bacteria that is mediated by DAF-16 (26). 

The genomic expression profiling analysis of DAF-16 has identified several classes of 

transcriptional targets, including genes involved in detoxification and putative antimicrobial 

factors (55, 61). These data suggest that DAF-16 may promote longevity in part through the 

increased expression of host defense factors. Interestingly, although the pmk-1 mutation has 

little or no effect on the life span of wild-type C. elegans, mutations in the PMK-1 pathway 

have a marked effect on the longevity of the daf-2 mutant (87), which is also consistent with 

the idea that the life-span extension of the daf-2 mutant may in part be due to enhanced 

pathogen resistance. The PMK-1 pathway is also required for the activation of the 

transcription factor SKN-1 (37), and skn-1 mutations also suppress the extended life span of 

daf-2 mutants independent of DAF-16 (88). Roles for the PMK-1 p38 MAPK pathway and 

SKN-1 in mediating resistance to oxidative stress suggest that attributing the life span--

altering effects of mutations in the PMK-1 pathway solely to changes in innate immunity 

may represent an oversimplification. 
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The enhanced pathogen resistance of daf-2 mutants has also been utilized to identify 

additional DAF-16 cofactors that function in longevity, such as SMK-1 (92). The 

characterization of the daf-2 mutant survival on pathogenic and relatively nonpathogenic 

bacteria is consistent with overlapping roles in pathogen resistance and extended longevity 

for DAF-16. The heat-shock factor HSF-1 has also been shown to mediate the life-span 

extension of daf-2 mutants (24), and hsf-1 mutants show markedly shortened longevity and 

compromised resistance to various stressors, including infection by pathogenic bacteria 

(81). 

Mutants defective in germ-line proliferation have been shown to have extended longevity 

through mechanisms that depend on DAF-16 functioning principally in the intestine (35, 47, 

49). Consistent with the effects of increased DAF-16 on pathogen resistance in daf-2 

mutants, germ line--deficient mutants also exhibit marked resistance to pathogenic bacteria. 

However, sterile mutants that are not defective in germ-line proliferation, although reported 

to not exhibit life-span extension on nonpathogenic bacteria, have been shown to exhibit 

resistance to pathogenic bacteria (59). The killing of C. elegans by some bacteria pathogens, 

such as Staphylococcus aureus and Enterococcus faecalis (25), is greatly facilitated by the 

matricidal hatching of progeny during pathogenesis assays, and sterile mutants exhibit 

dramatic resistance to killing by these gram-positive pathogens. But independent of the 

effects on matricidal bagging, sterile mutants (with intact germ-line proliferation) have been 

reported to have enhanced resistance to killing by pathogenic bacteria, surprisingly also 

through DAF-16-dependent mechanisms (59). The molecular mechanisms underlying the 

effects of reproduction on pathogen resistance, particularly the contribution that is 

independent of germ-line proliferation, remain to be elucidated. 

Immunosenescence and Aging 
The potentially dynamic nature of the immune response to microbial pathogens during the 

aging process may influence how host defense contributes to longevity. A decline in 

immune function, known as immunosenescence, has been principally associated with the 

thymic involution and the adaptive immune response in vertebrates (76), although recent 

studies have explored how aging affects the human innate immune response (77). Aging in 

Drosophila has been associated with a decline in pathogen-inducible antimicrobial peptide 

expression but also with a slight increase in the constitutive expression of antimicrobial 
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peptides (95). The age-dependent dynamic behavior of innate immune signaling pathways 

has remained poorly understood in all species. 

The characterization of host defense and innate immune signaling in C. elegans has 

focused primarily on larval stage animals and young adults, raising the question of how the 

aging process might influence immune signaling. The systematic study of age-dependent 

pathogen susceptibility revealed a decline in pathogen resistance (45, 94), establishing that 

innate immunosenescence occurs in C. elegans. Genetic analysis of host defense pathways 

during aging revealed that PMK-1 expression decreases dramatically in aging adults (94). 

The decline in PMK-1 activity may influence antibacterial activity, contributing to 

increased intraluminal bacterial proliferation as well as increased cellular responses to 

intestinal damage during infection. The decline in PMK-1 activity in aging animals provides 

an explanation for the aforementioned lack of diminished longevity of mutants lacking 

PMK-1 activity that might be otherwise anticipated to protect against infection. 

Immunosenescence in C. elegans may contribute to mortality in aging animals through a 

spiraling process in which a decline in PMK-1 activity promotes increased bacterial 

proliferation and toxicity, which further contributes to tissue aging and damage that may, in 

turn, further precipitate a decline in PMK-1-mediated defenses. Whether other pathways 

mediating immunity and host resistance to bacterial infection can compensate for the 

decline in PMK-1 in pathogen resistance in aging animals remains to be determined.  

Stress and Tolerance in Aging and Longevity 
The microbial induction of immunity, even as it declines with advancing age, and other 

stress signaling pathways in aging animals may modulate aging and longevity. The 

enhanced pathogen resistance and longevity of daf-2 mutants suggest that the activation of 

pathways promoting pathogen and stress resistance may promote longevity, but the 

activation of host immune responses has been increasingly recognized as a potentially 

double-edged sword. The host response may involve the release of immune mediators that 

might be toxic not only to the pathogen but also to host cells. The term “tolerance” has been 

used to describe host mechanisms to help protect against the potentially detrimental 

consequences of its own immune response (5, 58). The implication is that bacterial 

pathogenesis in aging animals may function not only to damage host epithelia directly but 
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also to trigger host responses that, although countering pathogenic bacteria, may contribute 

to tissue damage and aging. 

The production of reactive oxygen species by NADPH-dependent dual oxidase functions 

as a component of innate immunity in the intestinal mucosa of Drosophila and immune 

tissues of mammals (6). The C. elegans dual oxidase homolog BLI-3 has been proposed to 

play a similar role in host mucosal defense (14), also inducing the activation of SKN-1 to 

protect the host against the release of reactive oxygen species (34). BLI-3 is known to be 

expressed in the hypodermis, where BLI-3 is required for collagen cross-links that are 

essential for cuticle integrity (85). Further work may determine whether BLI-3 is expressed 

in the intestine, where a role in defense against intestinal bacterial infection might be 

anticipated, or exerts effects through its activity in the hypodermis. Reactive oxygen species 

may have distinct effects on host-microbe interactions through their functions in immune 

effector activities and signaling and induce the activation of stress pathways mediating 

tolerance. 

We have recently shown that the maintenance of endoplasmic reticulum (ER) protein-

folding homeostasis has an unanticipated role in tolerance of the C. elegans innate immune 

response (71). The unfolded protein response (UPR) is a conserved signaling mechanism 

that functions in response to the accumulation of misfolded proteins in the ER (91). The 

UPR was principally identified through studies utilizing toxins such as tunicamycin, which 

blocks ER protein glycosylation, but genetic studies have implicated critical physiological 

roles for UPR signaling in organismal development and physiology (91). Infection of C. 

elegans with P. aeruginosa or intoxication of C. elegans with bacteria that express pore-

forming toxins results in the marked induction of protein-folding stress in the ER (7, 71). 

Induction is dependent on PMK-1 MAPK, suggesting that ER stress does not arise from the 

direct toxic effects of the bacteria but through the bacterial induction of the PMK-1-

dependent host response to infection and intoxication. Genetic analysis further established a 

requirement for intact IRE-1-XBP-1-dependent UPR signaling for C. elegans to tolerate its 

own innate immune response to infection with P. aeruginosa during larval development 

(71). These data establish a key physiological role for the UPR in balancing the host 

response to microbial pathogenesis. Because the UPR signaling has been shown to be 

required for longevity of daf-2 mutants (32), establishing a key role for UPR-dependent 
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stress pathways in the maintenance of longevity, these data provide a clear mechanism by 

which microbial pathogens may induce cellular stress responses that may modulate the 

longevity of the host. 

Transcriptional profiling of C. elegans mutants with altered resistance to killing by 

bacterial pathogens has identified a nematode-specific class of genes, known as the abu 

gene family, which is differentially regulated in a number of different mutants, including 

ced-1 (31) and octr-1 (82). The abu genes were originally identified as genes that were 

upregulated in mutants deficient in xbp-1 and that caused lethality when inactivated in an 

xbp-1 mutant (89). However, the physiological role for the abu genes, which have been 

proposed to mediate the protective effects downstream of ced-1 and octr-1 mutants by 

acting in the ER (31, 82), remains unclear. Further study of the roles of the abu genes may 

provide insights and validation of the role of the abu genes in innate immunity and their 

proposed regulatory pathways. 

The induction of host immune and stress responses by bacterial infection provides an 

opportunity to dissect how microbes may modulate host pathways involved in the regulation 

of life span. Much of the preceding discussion has focused on microbial induction of host 

immune and stress responses, but as alluded to in the prior section, such interactions need 

not involve infection, as demonstrated by the recent observation that bacterially derived 

nitric oxide may also modulate host stress physiology and longevity (30). 

MICROBIAL MODULATION OF THE NEURONAL PATHWAYS THAT REGULATE 
LONGEVITY 

Much of this review focuses on interactions between host intestinal cells and bacteria. 

However, interactions between the C. elegans nervous system and the microbial 

environment may also influence host aging and longevity. A role for the nervous system in 

the regulation of aging and longevity has been established through site-of-action studies for 

the DAF-2 insulin-like receptor (2, 93), the requirement for SKN-1 in the ASI neuron pair 

in mediating life-span extension caused by dietary restriction (8), and the analysis of the 

effects of genetic alteration or laser ablation of specific sensory neurons on C. elegans life 

span (1, 3). 
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Multiple C. elegans behaviors are modulated by the presence of bacterial food, including 

reproductive egg laying (86), feeding behavior (4), the dauer developmental decision (23), 

aerotaxis behavior (13, 15, 29), nutritional state--dependent locomotion (75), and pathogen 

avoidance behavior (66, 70, 96). Many of the corresponding signaling mechanisms, such as 

the DAF-7/TGFβ pathway and the neurotransmitter serotonin, are also implicated in the 

regulation of organismal longevity (60, 78), illustrating how bacterial modulation of C. 

elegans neuronal and endocrine signaling pathways may also affect life span. 

The C. elegans nervous system can mediate discrimination and choice between bacteria 

That differ in nutritional quality and in pathogenicity (66, 96). How such considerations 

might be shown to influence longevity is illustrated in work that focused on the difference 

in longevity between E. coli OP50 and HT115 strains. Genetic studies suggested the 

NMUR-1 neuromedin receptor mediates differential neuronal responses induced by 

differences in the lipopolysaccharide (LPS) structure of the respective E. coli strains (52). 

Further studies identifying the sensory mechanisms involved in the discrimination of LPS 

structure may allow potential contributions from metabolic differences arising from the 

diets on the respective E. coli strains to be defined. The intersection of sensory responses to 

microbes and the neuronal signaling pathways that regulate aging and longevity represents a 

fertile area for future investigation, particularly given the emerging appreciation of the 

diverse effects that commensal bacteria can have on host physiology. 
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