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Volatility of Power Grids under Real-Time Pricing

Mardavij Roozbehani,Member, IEEE,, Munther A Dahleh,Member, IEEE, and Sanjoy K Mitter,Member, IEEE

Abstract—The paper proposes a framework for modeling and
analysis of the dynamics of supply, demand, and clearing prices
in power system with real-time retail pricing and informati on
asymmetry. Real-time retail pricing is characterized by passing
on the real-time wholesale electricity prices to the end consumers,
and is shown to create a closed-loop feedback system betweenthe
physical layer and the market layer of the power system. In the
absence of a carefully designed control law, such direct feedback
between the two layers could increase volatility and lower the
system’s robustness to uncertainty in demand and generation. A
new notion of generalized price-elasticityis introduced, and it is
shown that price volatility can be characterized in terms of the
system’s maximal relative price elasticity,defined as the maximal
ratio of the generalized price-elasticity of consumers to that of the
producers. As this ratio increases, the system becomes morevolatile,
and eventually, unstable. As new demand response technologies
and distributed storage increase the price-elasticity of demand, the
architecture under examination is likely to lead to increased volatility
and possibly instability. This highlights the need for assessing
architecture systematically and in advance, in order to optimally
strike the trade-offs between volatility, economic efficiency, and
system reliability.

Index Terms—Real-Time Pricing, Volatility, Lyapunov Analysis.

I. I NTRODUCTION

T HE increasing demand for energy along with growing en-
vironmental concerns have led to a national agenda for

engineering a modern power grid with the capacity to integrate
the renewable energy resources at large scale. In this paradigm
shift, demand response and dynamic pricing are often promoted as
means of mitigating the uncertainties of the renewable generation
and improving the system’s efficiency with respect to economic
and environmental metrics. The idea is to allow the consumers
to react–in their own monetary or environmental interest–to
the wholesale market conditions, possibly the real-time prices.
However, this real-time or near real-time coupling betweensupply
and demand creates new challenges for power system operation.
The source of a most significant challenge is the information
asymmetry between the consumers and the system operators.
Indeed, real-time pricing under information asymmetry induces
additional uncertainties due to the uncertainty in consumer behav-
ior, preferences, private valuation for electricity, and consequently,
unpredictable reactions to real-time prices.

The existing body of literature on dynamic pricing in commu-
nication or transportation networks is extensive. See for instance
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[11], [6], [14] and the references therein. However, the specific
characteristics of power systems which can be attributed to
uncertainty in consumer behavior, the close coupling and real-
time interaction of economics and physics, and the reliability and
operational requirements that supply must match demand at all
times raise very unique challenges that need to be addressed.

Various forms of dynamic retail pricing of electricity havebeen
advocated in economic and engineering texts. In [5], Borenstein
et. al. study both the theoretical and the practical implications of
different dynamic pricing schemes such asCritical Peak Pricing,
Time-of-Use Pricing, andReal-Time Pricing. They argue in favor
of real-time pricing, characterized by passing on a price, that
best reflects the wholesale market prices, to the end consumers.
They conclude that real-time pricing delivers the most benefits
in the sense of reducing the peak demand and flattening the load
curve. In [10], Hogan identifies dynamic pricing, particularly real-
time pricing as a priority for implementation of demand response
in organized wholesale energy markets. Similar conclusions are
reached in a study conducted by Energy Futures Australia [8].

The appeal of dynamic retail pricing is not limited to theoretical
research and academic studies, and real-world implementations
are emerging at a rapid pace. For instance, California’s state’s
Public Utility Commission has enacted a series of new energy
regulations which set a deadline of 2011 for the state utilities to
propose a newdynamic pricingrate structure, specifically defined
as an electric rate structure that reflects the actual wholesale
market conditions, such as critical peak pricing or real-time
pricing [24]. In this paper, we show that directly linking the
consumer prices to the wholesale market prices creates a close-
loop feedback system with the Locational Marginal Prices as
the state variables. We observe that such feedback mechanisms
may increase volatility and decrease the market’s robustness to
uncertainty in demand and generation. We introduce a notionof
generalizedprice-elasticity, and show that price volatility can be
upperbounded by a function of the system’s Maximal Relative
Price-Elasticity (MRPE), defined as the maximal ratio of the
generalized price-elasticity of consumers to the generalized price-
elasticity of producers. As this ratio increases, the system may
become more volatile, eventually becoming unstable as the MRPE
exceeds one.

While the system can be stabilized and volatility can be
reduced in many different ways, e.g., via static or dynamic
controllers regulating the interaction of wholesale markets and
retail consumers, different pricing mechanisms pose different
consequences on competing factors of interest such as volatility,
operational reliability, economic efficiency, and environmental
efficiency. The intended message is that the design of a real-
time pricing mechanism must take system stability issues into
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consideration, and that successful design and implementation of
such a mechanism entails careful analysis of consumer behavior
in response to price signals, and the trade-offs between volatility,
reliability, and economic or environmental efficiency.

Prior research relevant to stability of power markets has
appeared in several papers by Alvarado [1], [3] on dynamic
modeling and stability, Watts and Alvarado [4] on the influence
of future markets on price stability, and Nutaro and Protopopescu
[15] on the impact of market clearing time and price signal
delay on power market stability. The model adopted in this
paper differs from those of [1], [3], [4], and [15] in that we
analyze the global properties of the full non-linear model as
opposed to the first-order linear differential equations examined
in these papers. In addition, the price updates in our paper
occur at discrete time intervals and are an outcome of marginal
cost pricing in the wholesale market by an Independent System
Operator (ISO), which is consistent with the current practice
in deregulated electricity markets. Furthermore, beyond stability,
we are interested in providing a characterization of the impacts
of uncertainty in consumer behavior on price volatility andthe
system’s robustness to uncertainties.

The organization of this paper is as follows. In Section II we
present some preliminary concepts and definitions. In Section III
we present a mathematical model for the dynamic evolution of
supply, demand, and clearing prices under real-time pricing. Sec-
tion IV contains the main theoretical contributions of thispaper:
characterizing volatility in terms of the market’s maximalrelative
elasticity and uncertainty in consumer behavior. In Section V
we qualitatively discuss our results, compare with some of the
results in the literature, and point to some important questions
regarding the trade-offs arising due to uncertainty in generation
and quantifying the value of information. Numerical simulations
are presented in Section VI. Finally, we offer some closing
remarks and further directions for future research in Section VII.

II. PRELIMINARIES

A. Notation

The set of positive real numbers (integers) is denoted byR+

(Z+), and nonnegative real numbers (integers) byR+ (Z+). The
class of real-valued functions with a continuousn-th derivative on
X ⊂ R is denoted byCnX. For a vectorv ∈ R

l, vk denotes thek-
th element ofv, and‖v‖p denotes the standard p-norm:‖v‖p

def
=

(∑l
i=1

|vi|
p
)1/p

. Also, we will use‖v‖ to denote any p-norm

when there is no ambiguity. The space ofR
l-valued functions

h : Z 7→ R
l of finite p-norm

‖h‖pp =

∞∑

t=−∞

‖h (t)‖pp =

∞∑

t=−∞

l∑

i=1

|hi (t)|
p

is denoted byℓp (Z) or simply ℓp when there is no ambiguity.
For a differentiable functionf : Rn 7→ R

m, we useḟ to denote
the Jacobian matrix off. Whenf is a scalar function of a single
variable, ḟ simply denotes the derivative off with respect to
its argument:ḟ (x) = df (x) /dx. Since throughout the paper

time is a discrete variable, this notation would not be confused
with derivative with respect to time. Finally, for a measurable set
X ⊂ R, µL (X) is the Lebesgue measure ofX.

B. Basic Definitions

1) Volatility:
Definition 1: Scaled Incremental Mean Volatility (IMV):

Given a signalh : Z 7→ R
l, and a functionρ : Rl 7→ R

m, the
ρ-scaled incremental mean volatilitymeasure ofh (·) is defined
as

Vρ (h) = lim
T→∞

1

T

T∑

t=0

‖ρ (h (t+ 1))− ρ (h (t))‖ (1)

where, to simplify the notation, the dependence of the measure
on the norm used in (1) is dropped from the notationVρ (h).

To quantify volatility for fast-decaying signals with zeroor
small scaled IMV, e.g., state variables of a strictly stableau-
tonomous system, we will use the notion of scaledaggregate
volatility, defined as follows.

Definition 2: Scaled Incremental Aggregate Volatility
(IAV): Given a signalh : Z 7→ R

l, and a functionρ : Rl 7→ R
m,

the ρ-scaled incremental aggregate volatilitymeasure ofh (·) is
defined as

Vρ (h) =
∞∑

t=0

‖ρ (h (t+ 1))− ρ (h (t))‖ . (2)

In particular, we will be interested in thelog-scaled incremental
volatility as a metric for quantifying volatility of price,supply, or
demand in electricity markets.

Remark 1:The notions of incremental volatility presented in
Definitions 1 and 2 accentuate the fast time scale, i.e., highfre-
quency characteristics of the signal of interest. Roughly speaking,
the scaled IMV or IAV are measures of the mean deviations of
the signal from itsmoving average. In contrast, sample variance
or CV (coefficient of variation, i.e., the ratio of standard deviation
to mean) provide a measure of the mean deviations of the
signal from its average, without necessarily emphasizing the high-
frequency characteristics. A slowly-varying signal with alarge
dynamic range may have a large sample variance or CV, but a
small IMV, and thus will be considered less volatile than a fast-
varying signal with a large scaled IMV. Since we are interested
in studying the fast dynamics of spot prices in electricity markets
and the associated stability/reliability threats, the scaled IMV and
IAV as defined above are more appropriate measures of volatility
than variance or CV.

2) Stability: The notion of stability used in this paper is the
standard notion of asymptotic stability. Consider the system

x (t+ 1) = ψ (x (t)) (3)

whereψ (·) is an arbitrary map from a domainX ⊂ R
n to R

n.
The equilibriumx̄ ∈ X of (3) is stable in the sense of Lyapunov
if all trajectories that start sufficiently close tōx remain arbitrarily
close to it, i.e., for everyε > 0, there existsδ > 0 such that

‖x (0)− x̄‖ < δ ⇒ ‖x (t)− x̄‖ < ε, ∀t ≥ 0

The equilibrium isglobally asymptotically stableif it is Lyapunov
stable and for allx (0) ∈ X : limt→∞ x (t) = x̄.
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C. Market Structure

We begin with developing an electricity market model with
three participants: 1. The suppliers, 2. The consumers, and3.
An Independent System Operator (ISO). The suppliers and the
consumers are price-taking, profit-maximizing agents. TheISO
is an independent, profit-neutral player in charge of clearing
the market, that is, matching supply and demand subject to the
network constraints with the objective of maximizing the social
welfare. Below, we describe the characteristics of the players in
more detail.

1) The Consumers and the Producers:Let D = {1, . . . , ns}
andS = {1, . . . , ns} denote the sets of consumers and producers
respectively. Each consumerj ∈ D is associated with a value
functionvj : R+ 7→ R, which can be thought of as the monetary
value that consumerj derives from consumingx units of the
resource, electricity in this case. Similarly, each producer i ∈ S,
is associated with a functionci : R+ 7→ R+ representing the
monetary cost of production of the resource.

Assumption I:For all i ∈ S, the cost functionsci (·) are in
C2(0,∞), strictly increasing, and strictly convex. For allj ∈ D,
the value functionsvj (·) are inC2(0,∞), strictly increasing, and
strictly concave.

Let dj : R+ 7→ R+, j ∈ D, and si : R+ 7→ R+, i ∈ S be
demand and supply functions mapping price to consumption and
production, respectively. In the framework adopted in thispaper,
the producers and consumers are price-taking, utility-maximizing
agents. Therefore, lettingλ be the price per unit of electricity, we
have

dj (λ) = arg max
x∈R+

vj (x)− λx, j ∈ D, (4)

= max {0, {x | v̇j (x) = λ}}

and

si (λ) = arg max
x∈R+

λx− ci (x) , i ∈ S. (5)

= max {0, {x | ċi (x) = λ}}

For the sake of convenience in notation and in order to avoid un-
necessary technicalities, unless stated otherwise, we will assume
in the remainder of this paper thatdj (λ) = v̇−1

j (λ) is the demand
function, andsi (λ) = ċ−1

i (λ) is the supply function. This can
be mathematically justified by assuming thatv̇ (0) = ∞, and
ċ (0) = 0, or thatλ ∈ [ċ (0) , v̇ (0)] .

Definition 3: The social welfareS is the aggregate benefit of
the producers and the consumers:

S =
∑

j∈D

(vj (dj)− λjdj)−
∑

i∈S

(λisi − ci (si))

If λi = λj = λ, ∀i, j, we say thatλ is a uniform market clearing
price, and in this case, we have:

S =
∑

j∈D

vj (dj)−
∑

i∈S

ci (si)

a) Heterogeneous Consumers with Uncertain Value Func-
tions: We will consider two models of heterogenous consumers
with time-varying value functions to represent the uncertainty in
consumer behavior.

– Multiplicative Perturbation Model: The uncertainty in
consumer’s value function is modeled as

ṽj (x, t) = αj (t) vo

(
x

αj (t)

)
, j ∈ D, (6)

wherevo : R+ 7→ R is a nominal value function andαj : Z+ 7→
R+ is an exogenous signal or disturbance. Given a priceλ (t) > 0,
under the multiplicative perturbation model (6) we have

dj (λ, t) = αj (t) v̇
−1
o (λ (t)) (7)

Thus, the same priceλ may induce different consumptions at
different times, depending on the type and composition of the
load.

– Additive Perturbation Model: The uncertainty in con-
sumer’s value function is modeled as

ṽj (x, t) = vo (x− uj (t)) , j ∈ D, (8)

whereuj : Z+ 7→ R+ is exogenous. Thus, given a priceλ (t) > 0,
under the additive perturbation model (8), the demand function
is

dj (λ, t) = uj (t) + v̇−1
o (λ (t)) (9)

– Aggregation of Several Consumers: The aggregate re-
sponse of several consumers (or producers) to a price signal
may be modeled as the response of a single representative agent,
although explicit formula for the utility of the representative agent
may sometimes be too complicated to find [18], [9]. For the case
of N identical consumers with value functionsvj = vo, j ∈ D,
it can be verified that the aggregate demand is equivalent to the
demand of a representative consumer with value function [18]:

v (x) = Nvo

( x
N

)
(10)

Suppose now, that the consumer behavior can be modeled via
(6)–(7). Let

ᾱ (t) =
∑N

j=1
αj (t) ,

and suppose that there exists a nominal valueᾱ0, such that

ᾱ (t) = ᾱ0 +∆ᾱ (t) = ᾱ0 (1 + δ (t))

where δ (t) = ∆ᾱ (t) /ᾱ0 satisfies|δ (t)| < 1. Define v (x) =
ᾱ0vo (x/ᾱ0) . It can be then verified that the aggregate demand
can be modeled as the response of a representative agent with
value function

ṽ (x, t) = ᾱ (t) vo

(
x

ᾱ (t)

)

= (ᾱ0 +∆ᾱ (t)) vo

(
x

ᾱ0 +∆ᾱ (t)

)

= (1 + δ (t)) v

(
x

1 + δ (t)

)
(11)
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The aggregate response is then given by

d (λ (t) , t) = (1 + δ (t)) v̇−1 (λ (t)) . (12)

Similarly, under the additive perturbation model the aggregate
behavior can be represented by

ṽ (x, t) = v (x− u (t)) (13)

d (λ (t) , t) = u (t) + v̇−1 (λ (t)) (14)

wherev (·) is given by (10) andu (t) =
∑
uj (t) . The interpre-

tation of (13) and (14) is that at any given timet, the demand
comprises of an inelastic componentu (t) which is exogenous,
and an elastic componentv̇−1 (λ (t)). Another interpretation is
that v̇−1 (λ (t)) represents the demand of those consumers who
are subject to real-time pricing, andu (t) represents the demand
of the non-participating consumers.

2) The Independent System Operator (ISO):The ISO is a non-
for-profit entity whose primary function is to optimally match sup-
ply and demand subject to network and operational constraints.
The constraints include power flow constraints (Kirchhoff’s laws),
transmission line constraints, generator capacity constraints, local
and system-wide reserve capacity requirements and possibly some
other constraints specific to the ISO [23], [21], [22]. For real-
time market operation, the constraints are linearized nearthe
steady-state operating point and the ISO optimization problem is
reduced to a convex–typically linear–optimization often referred
to as theEconomic Dispatch Problem (EDP), or the Optimal
Power Flow Problem. A set of Locational Marginal Prices (LMP)
emerge as the dual variables corresponding to the nodal power
balance constraints. These prices vary from location to location
as they represent the marginal cost of supplying electricity to a
particular location. We refer the interested reader to [20], [22],
[21], and [17] for more details. However, we emphasize that the
spatial variation in the LMPs is a consequence of congestion
in the transmission lines. When there is sufficient transmission
capacity in the network, a uniform price will materialize for the
entire system. With this observation in sight, and in order to
develop tractable models that effectively highlight the impacts of
the behavior of producers and consumers–quantified through their
cost and value functions–on system stability and price volatility,
we will make the following assumptions:

1) Resistive losses are negligible.
2) The line capacities are high enough, so, congestion will not

occur.
3) There are no generator capacity constraints.
4) The system always has sufficient reserve capacity and the

marginal cost of reserve is the same as the marginal cost
of generation.

Under the first two assumptions, the network parameters be-
come irrelevant in the supply-demand optimal matching problem.
The third and fourth assumptions are made in the interest of
keeping the development in this paper focused. They could,
otherwise, be relaxed at the expense of a somewhat more involved
technical analysis. The last assumption also implies that we do not
differentiate between actual generation and reserve. A thorough
investigation of the effects of network constraints and reserve

capacity markets, whether they are stabilizing or destabilizing,
does not fall within the scope of this paper. The interested readers
may consult [3], [17] for an analysis of dynamic pricing in
electricity networks with transmission line and generatorcapacity
constraints.

Under the above assumptions, the following problem charac-
terizes the ISO’s optimization problem:

max
∑

j∈D

vj(dj)−
∑

i∈S

ci(si)

s.t.
∑

j∈D

dj =
∑

i∈S

si

(15)

The following lemma which is adopted from [12], provides the
justification for defining the LMPs as the Lagrangian multipliers
corresponding to the balance constraint(s).

Lemma 1:Let d∗ =
[
d∗1, · · · , d

∗

nd

]
, and s∗ =

[
s∗1, · · · , s

∗

ns

]

where d∗j , j ∈ D and s∗i , i ∈ S, solve (15). There exists
a price λ∗ ∈ (0,∞) , such thatd∗ and s∗ solve (4) and (5).
Furthermore,λ∗ is the Lagrangian multiplier corresponding to
the balance constraint in (15).

Proof: The proof is based on Lagrangian duality and is
omitted for brevity. The proof in [12] would be applicable here
with some minor adjustments.

The implication of Lemma 1 is that by defining the market
price to be the vector of Lagrangian multiplier corresponding to
the balance constraints, the system operator creates a competitive
environment in which, the collective selfish behavior of the
participants results in a system-wide optimal condition.

a) Real-Time System Operation and Market Clearing:
Consider the case of real-time market operation and assume that
price-sensitive retail consumers do not bid in the real-time market.
In other words, they do not provide their value functions to the
system operator (or any intermediary entity in charge of real-
time pricing). Though, they may adjust their consumption in
response to a price signal, which is assumed in this paper, to
be the wholesale market clearing price. In this case, the demand
is assumed to be inelastic over eachshort pricing interval, and
supply is matched to demand. Therefore, (15) reduces to meeting
the fixed demand at minimum cost:

min
∑

i∈S

ci(si)

s.t.
∑

i∈S

si =
∑

j∈D

d̂j

(16)

whered̂j is the predicted demand of consumerj for the next time
period. We assume that the system operator solves (16) and sets
the price to the marginal cost of production at the minimum cost
solution. The discrepancy between scheduled generation (which is
equal to the predicted demand) and actual demand is compensated
through reserves with the same marginal costs. Thus, we willnot
include reserve parameters and equations explicitly in themodel.
More details regarding a dynamic extensions of this model are
presented in the next Subsection.
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Fig. 1. Exanté Priced Supply/Demand Feedback

III. D YNAMIC MODELS OFSUPPLY-DEMAND UNDER

INFORMATION ASYMMETRY

In this section, we develop dynamical system models for the
interaction of wholesale supply and retail demand in electricity
markets with information asymmetry. In this context, “asymmetry
of information” refers to the architecture of the information layer
of the market, in which, the market operator has full information
about the cost of supplying the resource (e.g., through the offers
of the producers), but has no information aboutvaluationof the
resource by the demand side.

The real-time market is cleared at discrete time intervals and
the prices are calculated and announced for each interval1. The
practice of defining the clearing price corresponding to each
pricing interval based on the predicted demand at the beginning
of the interval is called exanté pricing. As opposed to this, ex-
post pricing refers to the practice of defining the clearing price
for each pricing interval based on the materialized consumption
at the end of the interval. In ex-post pricing the demand is subject
to some price uncertainty as the actual price will be revealed after
consumption has materialized. In exanté pricing without ex-post
adjustments, the entity in charge of real-time pricing faces the
price uncertainty2, as it will have to reimburse the generators
based on the actual marginal cost of production, while it can
charge the demand only based on the exanté price. We will present
dynamic market models for both pricing schemes. These models
are consistent with the current practice of marginal cost pricing
in wholesale electricity markets, with the additional feature that
the retail consumers adjust their usage based on the real-time
wholesale market price.

A. Price Dynamics under Exanté Pricing

Letλ (t) denote the exanté price corresponding to the consump-
tion of one unit of electricity in the time interval[t, t+ 1] . Let
d (t) =

∑
j∈Ddj (t) be the actual aggregate consumption during

1In most regions of the United States, such as New England, California, or
PJM, the real-time market is operated in five-minute intervals.

2In this paper we combine the role of the ISO and that of an entity in charge
of real-time pricing in the retail market. Whether in practice this will be the case
or not, has no influence on the intended message and the results that we deliver.

this interval:

d (t) =
∑

j∈D

dj (t) =
∑

j∈D

v−1

j (λ (t)) . (17)

Since vj (·) is known only to consumerj, at time t, only an
estimate ofd (t) is available to the ISO, based on which, the price
λ (t) is calculated. The priceλ (t) is therefore, the marginal cost
of predicted supply to meet the predicted demand for the timein-
terval[t, t+1]. We assume that the ISO’s predicted demand/supply
for each time interval ahead is based on the actual demand at the
previous intervals:̂st+1 = d̂ (t+ 1) = φ (d (t) , · · · , d (t− T )) ,
T ∈ Z. The following equations describe the dynamics of the
market:

∑

i∈S

ċ−1

i (λ (t+ 1)) = ŝ (t+ 1) = d̂ (t+ 1) (18)

d̂ (t+ 1) = φ (d (t) , · · · , d (t− T )) (19)

∑

j∈D

v̇−1

j (λ (t− k)) = d (t− k) , ∀k ≤ T (20)

where (20) follows from (17), andλ (t+ 1) in (18) is the
Lagrangian multiplier associated with the balance constraint
in optimization problem (16) solved at timet + 1, i.e., with∑

j∈D d̂j = d̂ (t+ 1) .
The prediction step (19) may be carried through by resorting

to linear auto-regressive models, in which case, we will have:

φ (d (t) , · · · , d (t− T )) =

T∑

k=0

αkd (t− k) , αk ∈ R. (21)

Whenφ (·) is of the form (21), equations (18)−(20) result in:

∑

i∈S

ċ−1

i (λ (t+ 1)) =

T∑

k=0

αk

∑

j∈D

v̇−1

j (λ (t− k)) (22)

Some of the popular forecasting models currently in use by the
system operators are variations of thepersistence modelwhich
corresponds to the special case where the predicted demand for
the next time step is assumed to be equal to the demand at the
previous time step, i.e.,φ (d (t) , · · · , d (t− T )) = d (t). In this
case, equations (18)−(20) result in:

∑

i∈S

ċ−1

i (λ (t+ 1)) =
∑

j∈D

v̇−1

j (λ (t)) . (23)

If all the producers can be aggregated into one representative
producer agent with a convex cost functionc (·) , and all the
consumers can be aggregated into one representative consumer
agent with a concave value functionv (·) , then (22) and (23)
reduce, respectively, to :

λ (t+ 1) = ċ

(∑T

k=0
αkv̇

−1 (λ (t− k))

)
(24)

and
λ (t+ 1) = ċ

(
v̇−1 (λ (t))

)
. (25)

More details on the construction of the representative agent
mode can be found in [18].
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Fig. 2. Ex-post Priced Supply/Demand Feedback

B. Price Dynamics under Ex-post Pricing

Under ex-post pricing, the price charged for consumption of
one unit of electricity during the interval[t, t+ 1] is declared at
time t+1, when the total consumption has materialized. In order
to decide on the amount to consume during each time interval
ahead, a prediction of the ex-post price is needed. We assume
that λ̂j (t+ 1) , consumerj’s predicted price, is a function of the
ex-post prices of the previous intervals. Therefore,

λ̂j (t+ 1) = φj (λ (t) , · · · , λ (t− T )) (26)

d (t+ 1) =
∑

j∈D

v̇−1

j

(
λ̂j (t+ 1)

)
(27)

∑

i∈S

ċ−1

i (λ (t+ 1)) = d (t+ 1) (28)

By combining (26)−(28) we obtain:
∑

i∈S

ċ−1

i (λ (t+ 1)) =
∑

j∈D

v̇−1

j (φj (λ (t) , · · · , λ (t− T ))) (29)

It is observed that when the consumers use the per-
sistence model for predicting future prices, i.e., when
φj (λ (t) , · · · , λ (t− T )) = λ (t) , ∀j, then the price dynamics
(29) becomes identical to the case with exanté pricing (23), with
the difference that the price uncertainty and the associated risks
are bore by the consumer. In general, however, the price dynamics
would depend on how each individual consumer predicts the
ex-post price. This additional layer of dependency on consumer
behavior suggests that more complicated market outcomes with
multiple, possibly inefficient equilibria could materialize in ex-
post-priced retail markets.

Remark 2:Equation (28) assumes that the generators were
dispatched optimally, which is ideal but unlikely in practice.
In this paper, we do not model the intricacies arising from the
discrepancy between exanté dispatch (which is the actual dispatch
schedule based on prediction, and hence, not necessarily optimal)
and ex-post dispatch (which characterizes how the generators
should have been ideally dispatched). Although the settlement
of these discrepancies is important in practice, such details can
be safely ignored without affecting the core of our framework.

Remark 3: It is also possible to consider dynamic models aris-
ing from exanté pricing complemented with ex-post adjustments,
see for instance [19].

C. Demand Dynamics under Exanté or Ex-post Pricing

We could alternatively write dynamical system equations for
the evolution of demand. Under exanté pricing we will have:

v̇j (dj (t+ 1)) = ċi (si (t)) ∀i ∈ S, j ∈ D (30)

∑

i∈S

si (t) = φ
(∑

j∈D
dj (t) , · · · ,

∑
j∈D

dj (t− T )
)
,

(31)

whereas, under ex-post pricing we will have:

v̇j (dj (t+ 1)) = φj (ċi (si (t)) , · · · , ċi (si (t− T ))) (32)

∑

i∈S

si (t) =
∑

j∈D

dj (t) . (33)

Assuming representative agent models, (30)−(31) and (32)−(33)
reduce, respectively, to

v̇ (d (t+ 1)) = ċ (φ (d (t) , · · · , d (t− T ))) (34)

and
v̇ (d (t+ 1)) = φ (ċ (d (t)) , · · · , ċ (d (t− T ))) . (35)

Under the persistence model for prediction we have:

v̇ (d (t+ 1)) = ċ (d (t)) (36)

In the sequel, we will develop a theoretical framework that
is convenient for analysis of dynamical systems described by
implicit equations. Such systems arise in many applications which
incorporate real-time optimization in a feedback loop, several
instances of which were developed in this section. As we will
see, this framework is extremely useful for studying the dynamics
of electricity markets, robustness to disturbances, pricestability,
and volatility under real-time pricing.

IV. T HEORETICAL FRAMEWORK

A. Stability Analysis

In this section we present several stability criteria basedon
Lyapunov techniques and examine stability properties of the
clearing price dynamics formulated in Section III.

Theorem 1:Let S be a discrete-time dynamical system de-
scribed by the state-space equation

S : x (t+ 1) = ψ (x (t))

x0 ∈ X0 ⊂ R+

(37)

for some functionψ : R+ 7→ R+. Then,S is stable if there exists
a pair of continuously differentiable functionsf, g : R+ 7→ R+

satisfying
g (x (t+ 1)) = f (x (t)) (38)
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and

(i) : θ∗ = inf
{
θ |

∣∣∣ḟ (x)
∣∣∣ ≤ θ |ġ (x)| , ∀x

}
≤ 1 (39)

(ii ) : µL({x | ḟ (x) = ġ (x)}) = 0 (40)

and either:

(iii ) : ġ (x) ≥ 0, ∀x, and lim
x→∞

{f (x)− g (x)} < 0 (41)

or

(iii )′ : ġ (x) ≤ 0, ∀x, and lim
x→∞

{f (x) − g (x)} > 0 (42)

Before we proceed with proving Theorem 1, we present the
following lemma, which will be used several times in this paper.

Lemma 2:Let X be a subset ofR. Suppose that there exists a
continuously differentiable functionf : X 7→ R, a continuously
differentiable monotonic functiong : X 7→ R, and a constant
θ ∈ [0,∞) satisfying

∣∣∣ḟ (x)
∣∣∣ ≤ θ |ġ (x)| , ∀x ∈ X (43)

Then
|f (x)− f (y)| ≤ θ |g (x) − g (y)| , ∀x, y∈X (44)

Furthermore, if (40) is satisfied, then

|f (x)− f (y)| < |g (x)− g (y)| , ∀x, y∈X, x 6= y (45)

Proof: We have

∀x, y∈X, x 6= y :

|f (x)− f (y)|≤

∣∣∣∣
∫ x

y

∣∣∣ḟ (τ)
∣∣∣ dτ

∣∣∣∣

≤θ

∣∣∣∣
∫ x

y

|ġ (τ)| dτ

∣∣∣∣ = θ |g (x) − g (y)| (46)

where the inequality in (46) follows from (43) and the subsequent
equality follows from (41). Proof of (45) is similar, exceptthat
under the assumptions of the lemma, the non-strict inequality in
(46) can be replaced with a strict inequality.

We will now present the proof of Theorem 1.
of Theorem 1:The key idea of the proof is that the function

V (x) = |f (x)− g (x)| (47)

is strictly monotonically decreasing along the trajectories of (37).
From Lemma 1 we have:

V (x (t+ 1))− V (x (t))

= |f (x (t+ 1))− g (x (t+ 1))| − |f (x (t))− g (x (t))|

= |f (x (t+ 1))− f (x (t))| − |g (x (t+ 1))− g (x (t))|

< 0. (48)

Therefore,{V (x (t))} is a strictly decreasing bounded sequence
and converges to a limitc ≥ 0. We show thatc > 0 is not possible.
Note that the sequence{x (t)} is bounded from below since the

domain ofψ is R+. Furthermore, as long asf (x (t)) < g (x (t)) ,
the sequence{g (x (t))} decreases strictly. Therefore, (41) implies
that

∀x0 : ∃ M ∈ R, N ∈ Z+ : g (x (t)) ≤M, ∀t ≥ N. (49)

It follows from (49), monotonicity and continuity ofg (·) that the
sequence{x (t)} is bounded from above too (similar arguments
prove boundedness of{x (t)} when (42) holds). Hence, either
limt→∞ x (t) = 0, or {x (t)} has a subsequence{x (ti)} which
converges to a limitx∗ ∈ R+. In the latter case we have

lim
t→∞

V (x (t))=lim
i→∞

V (x (ti))=
∣∣∣ lim
i→∞

{f (x (ti))− g (x (ti))}
∣∣∣

= |f (x∗)− g (x∗)|

If g (x∗) = g (ψ (x∗)) thenc = |f (x∗)− g (ψ (x∗))| = 0 (due to

(38)). If g (x∗) 6= g (ψ (x∗)) then

∃δ, ε > 0, s.t. |g (ψ (x))− g (x)| ≥ ε, ∀x ∈ B (x∗, δ)

Define a functionτ : B (x∗, δ) 7→ R+ according to

τ : x 7→
|f (ψ (x))− f (x)|

|g (ψ (x))− g (x)|

Then it follows from 48 thatτ (x) < 1 for all x ∈ B (x∗, δ).
Furthermore, the function is continuous over the compact set
B (x∗, δ) and achieves its supremumτ , whereτ < 1. Sincex (ti)
converges tox∗, there exists̃t ∈ N, such thatx (t) ∈ B (x∗, δ) .
Then

V (x (t+ 1))− τV (x (t))

= |f (x (t+ 1))− f (x (t))| − τ |g (x (t+ 1))− g (x (t))|

≤ 0, ∀t ≥ t̃

Sinceτ < 1, this proves thatc = 0. Finally,

lim
t→∞

f (x (t)) = lim
t→∞

g (x (t)) = g (x∗)

x∗ = g−1( lim
t→∞

f (x (t))) = lim
t→∞

g−1 ◦ f (x (t)) = lim
t→∞

x (t)

This completes the proof of convergence for all initial conditions.
Proof of Lyapunov stability is based on standard arguments in
proving stability of nonlinear systems (see, e.g., [13]), while using
the same Lyapunov function defined in (47).

Remark 4:The monotonicity conditions in (41) or (42) in
Theorem 1 can be relaxed at the expense of more involved
technicalities in both the statement of the theorem and its proof.
As we will see, these assumptions are naturally satisfied in
applications of interest to this paper. Therefore, we will not bother
with the technicalities of removing the condition.

There are situations in which a natural decomposition of
discrete-time dynamical systems via functionsf andg satisfying
(38) is readily available. This is often the case for applications that
involve optimization in a feedback loop, many instances of which
appeared in section III. For instance, for the price dynamics (25),
we haveψ = ċ ◦ v̇−1, and the decomposition is obtained with
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g = ċ−1, andf = v̇−1. However,f and g obtained in this way
may not readily satisfy (39). We present the following corollaries.

Corollary 1: Consider the system (37) and suppose that con-
tinuously differentiable functionsf, g : R+ 7→ R+ satisfying
(38) and (40)−(42) are given. Then, the system is stable if there
exist θ ≤ 1 and a strictly monotonic, continuously differentiable
function ρ : R+ 7→ R satisfying

∣∣∣ρ̇ (f (x)) ḟ (x)
∣∣∣ ≤ θ |ρ̇ (g (x)) ġ (x)|

for all x ∈ R+.

Proof: If f and g satisfy (38), then so doρ ◦ f and ρ ◦ g
for anyρ ∈ C1(0,∞). Furthermore, under the assumptions of the
corollary,ρ◦f andρ◦g satisfy (39)−(42). The result then follows
from Theorem 1.

Corollary 2: Market Stability I: The system (25) is stable
if there exists a strictly monotonic, continuously differentiable
function ρ : R+ 7→ R satisfying

∣∣∣∣ρ̇
(
v̇−1 (λ)

) ∂v̇−1 (λ)

∂λ

∣∣∣∣ ≤ θ

∣∣∣∣ρ̇
(
ċ−1 (λ)

) ∂ċ−1 (λ)

∂λ

∣∣∣∣ (50)

for all λ ∈ R+.

Similarly, the system (36) is stable if

|ρ̇ (ċ (x)) c̈ (x)| ≤ θ |ρ̇ (v̇ (x)) v̈ (x)| (51)

for all x ∈ R+.
Proof: The statements follow from Corollary 1 withf = v̇−1

and g = ċ−1 for (50), andf = ċ and g = v̇ for (51), and the
fact that under Assumption I, all of the conditions requiredin
Corollary 1 are satisfied.

Remark 5:By taking ρ (·) to be the identity function in (50)
and (51), we obtain the following sufficient criteria for stability
of (25) or (36):

|c̈ (x)| ≤ θ |v̈ (x)| (52)

or ∣∣∣∣
∂v̇−1 (λ)

∂λ

∣∣∣∣ ≤ θ

∣∣∣∣
∂ċ−1 (λ)

∂λ

∣∣∣∣ (53)

Although these conditions are very simple, they are generally
harder to satisfy globally for typical supply and demand functions.

In the economics literature,elasticity is defined as a measure
of how one variable responds to a change in another variable.In
particular,price-elasticity of demandis defined as the percentage
change in the quantity demanded, resulting from one percentage
change in the price, and is used as a measure of responsiveness,
or sensitivity of demand to variations in the price.Price-elasticity
of supplyis defined analogously. In this paper, we generalize the
standard definitions of elasticity as follows.

Definition 4: Generalized Elasticity: The quantity

ǫp
D (λ, l) =

(
λ

v̇−1 (λ)

)l
∂v̇−1 (λ)

∂λ
, l ≥ 0

is the generalized price-elasticity of demand at priceλ. Similarly,

ǫp
S (λ, l) =

(
λ

ċ−1 (λ)

)l
∂ċ−1 (λ)

∂λ
, l ≥ 0

is the generalized price-elasticity of supply at priceλ. Note that
these notions depend on the exponentl. For l = 1, we obtain
the standard notions of elasticity. We define themarket’s relative
generalized price-elasticityas the ratio of the generalized price-
elasticities:

ǫp
rel (λ, l) =

ǫp
D (λ, l)

ǫp
S (λ, l)

. (54)

Themarket’s maximal relative price-elasticity(MRPE) is defined
as

θ∗ (l) = sup
λ∈R+

∣∣ǫp
rel (λ, l)

∣∣ . (55)

The notions of generalized demand-elasticity of price and gener-
alized supply-elasticity of price are defined analogously:

ǫd
p (x, l) = xl

v̈ (x)

v̇ (x)l
, ǫs

p (x) = xl
c̈ (x)

ċ (x)l

When l = 1, these notions coincide with the Arrow-Pratt
coefficient of Risk Aversion (RA) [2], [16], and we will adopt
the same jargon in this paper. The market’srelative generalized
risk aversion factoris defined as:

ǫRA
rel (x, l) =

ǫs
p (x, l)

ǫd
p (x, l)

=
c̈ (x)

v̈ (x)

(
v̇ (x)

ċ (x)

)l

Finally, themarket’s maximal relative risk-aversion(MRRA) is
defined as

η∗ (l) = sup
x∈R+

∣∣∣ǫRA
rel (x, l)

∣∣∣ . (56)

With a slight abuse of notation, whenl = 1, we write ǫp
D (λ)

instead ofǫp
D (λ, 1) , andθ∗ instead ofθ∗ (1), etc.

The following corollary relates the market’s stability to the mar-
ket’s relative price-elasticityǫp

rel (λ, l), and relative risk-aversion
ǫRA

rel (x, l) .
Corollary 3: Market Stability II: The system (23) is stable

if the market’s MRPE is less than one for somel ≥ 0, that is:

∃l ≥ 0 : θ∗ (l) = sup
λ

∣∣ǫp
rel (λ, l)

∣∣ < 1
(57)

The system (36) is stable if the market’s MRRA is less than one
for somek ≥ 0, that is:

∃l ≥ 0 : η∗ (l) = sup
x

∣∣∣ǫRA
rel (x, l)

∣∣∣ < 1 (58)

Proof: The results are obtained by applying Corollary 2,
criteria (50) and (51), withρ (z) = log (z) for l = 1, and
ρ (z) = z−l+1 for l 6= 1.

When the cost and value functions are explicitly available,
conditions (51) or (58) are more convenient to check, whereas,
when explicit expressions are available for the supply and demand
functions, it is more convenient to work with (50) or (57).

Example 1:Consider (25) withc (x) = xβ , and v (x) =

(x− u)
1/α

, whereα, β > 1 and u ≥ 0 is a constant. First,
consider theu = 0 case. Then, we have

λ (t+ 1) = β (αλ (t))
αβ−α

1−α

v̇ (x) = α−1x
1−α
α , v̈ (x) = (1− α)α−2x

1−2α
α

ċ (x) = βxβ−1, c̈ (x) = β (β − 1)xβ−2
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It can be verified that there cannot exists a constantθ ∈ [0,∞) for
which (52) is satisfied for allx ∈ R+ (equivalently,θ∗ (0) = ∞).
However, by invoking (58) withk = 1, we have:

η∗ =
|c̈ (x)|

|v̈ (x)|

|v̇ (x)|

|ċ (x)|
=

(β − 1)

(α− 1)α−1
< 1

Hence, the system is stable if

β < 2− α−1

It can be shown that the condition is also necessary and the system
diverges forβ > 2 − α−1. Moreover, invoking (57) withl = 1
yields exactly the same result, though, this need not be the case
in general. Consider now the same system withα = β = 2 and
u > 0. Simulations show that the system is not stable in the
asymptotic sense foru < 1/4. The following table summarizes
the results of our analysis.

Table I

u = 0.25 u = 0.3 u = 0.5
θ∗ (1) = 2 2 2

θ∗ (1.5) = 1 0.872 0.595
θ∗ (2) = 1.299 0.988 0.459

Thus, whenu = 1/4, the system is at least marginally stable.
Furthermore, the above analysis highlights the importanceof the
notion of generalized elasticity introduced earlier (cf. Definition
4), asθ∗ (1) (which is associated with the traditional notion of
price elasticity) can be greater than one while the system isstable
and it’s stability may be proven using the MRPE for somel ≥ 0.

The preceding analysis is based on applying the results of
Theorem 1 and Corollary 3 to systems of the form (23) (or (36)),
which correspond to the persistence prediction model, whether
it is demand prediction by the ISO in the exanté pricing case,
or price prediction by the consumers in the ex-post pricing case.
In the next section, we present a theorem that is applicable to
analysis under the generic prediction models (26) and (19).

B. Invariance Analysis

When functions of the form (26) or (19) are used for prediction
of price or demand, the underlying dynamical system is no longer
a scalar system. An immediate extension of Theorem 1 in its
full generality to the multidimensional case, while possible, raises
further complexities in both the proof and the application of the
theorem. In what follows we take the middle way: we present a
theorem that exploits the structure of the dynamical systemthat
arises from autoregressive prediction models to both make the
extension possible and to simplify the analysis.

Theorem 2:Let x : Z+ → R, be a real-valued sequence
satisfying a state-space equation of the form:

g (x (t+ 1))=f (x (t) , x (t− 1) , · · · , x (t− n)) (59)

(x (0) , ..., x (n))∈X0 ⊂ R
n+1,

for some continuously differentiable functionf : Rn+1 7→ R,
and a continuously differentiable monotonic functiong : R 7→ R

which satisfy
∣∣∣∣
∂

∂yk
f (y)

∣∣∣∣ ≤ θk

∣∣∣ġ (yk)
∣∣∣ , ∀y ∈ R

n+1 (60)

where
n∑

k=1

θk ≤ 1 (61)

Then, there exists a constantγ0 ≥ 0, which depends only on the
first n+ 1 initial statesx (n) , ..., x (0), such that the set

Ω0={x ∈ R | ∃z ∈ R
n : |g (x)− f (x, z)| ≤ γ0} (62)

is invariant under (59), i.e.,

x (T − n) , ..., x (T ) ∈ Ω0 ⇒ x (t) ∈ Ω0, ∀t > T

Furthermore, when (61) holds with strict inequality, theg-scaled
IAV of x is bounded from above:

Vg (x) =

∞∑

t=1

|g (x (t+ 1))− g (x (t))| ≤
γ0

1−
n∑

k=1

θk

(63)

Proof: For simplicity and convenience in notation, we prove
the theorem for then = 1 case. The proof for the general case is
entirely analogous. Define the functionV : R2 7→ R+ according
to

V (x, z) = |g (x)− f (x, z)| (64)

Let
γ0 = V (x (1) , x (0)) + |g (x (1))− g (x (0))| (65)

To prove thatΩ0 is invariant under (59), it is sufficient to show
that

V (x (T + 1) , x (T )) ≤ γ0, ∀T ∈ Z+ (66)

To simplify the notation, define∆ft = f (x (t+ 1) , x (t)) −
f (x (t) , x (t− 1)) , and∆gt = g (x (t+ 1))−g (x (t)) .We have:

V (x (t+ 1) , x (t))− V (x (t) , x (t− 1))

= |g (x (t+ 1))− f (x (t+ 1) , x (t))|

− |g (x (t))− f (x (t) , x (t− 1))|

= |f (x (t) , x (t− 1))− f (x (t+ 1) , x (t))|

− |g (x (t))− g (x (t+ 1))|

≤ |f (x (t) , x (t− 1))− f (x (t) , x (t))|

+ |f (x (t) , x (t))− f (x (t+ 1) , x (t))| − |∆gt|

≤ θ2 |∆gt−1|+ (θ1 − 1) |∆gt| (67)

where the first inequality is obtained by applying the triangular
inequality, and (67) follows from (60) and Lemma 2. By summing
up both sides of (67) fromt = 0 to t = T we obtain:

V (x (T + 1) , x (T )) ≤ V (x (1) , x (0))

+ (θ1 + θ2 − 1)

T∑

t=1

|∆gt|+ θ2 (|∆g0| − |∆gT |) (68)
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The inequality (66) then follows from (68) and (61). When (61)
holds with strict inequality, (63) follows from (68) and nonnega-
tivity of V (x (T + 1) , x (T )) for all T ∈ Z. This completes the
proof.

It follows from the proof of Theorem 2 that when the initial
conditions are close to the equilibrium of (59), it is sufficient to
satisfy conditions (60)–(61) only locally, over a properlydefined
subset ofRn+1. This is summarized in the following corollary.

Corollary 4: Let x : Z+ → R, be a real-valued sequence
satisfying (59), wheref and g are continuously differentiable
functions. Let

Ω̃0={(x, z) ∈ R× R
n : |g (x)− f (x, z)| ≤ γ0}

whereγ0 is given in (64)–(65). If
∣∣∣∣
∂

∂yk
f (y)

∣∣∣∣ ≤ θk

∣∣∣ġ (yk)
∣∣∣ , ∀y ∈ Ω̃0

whereθk ’s satisfy (61), theñΩ0 is invariant under (59). Further-
more, when (61) holds with strict inequality, and the initialization
vector x0 = [x (n) , . . . , x (0)] is an element of̃Ω0, then (63)
holds.

Theorem 2 and Corollary 4 can be applied to analysis of market
dynamics under the generic autoregressive prediction models that
were presented in Section III. This includes the generic dynamical
system models that were developed for price dynamics under
exanté or ex-post pricing ((18)–(20) and (29)), as well as the
aggregate demand dynamical systems (34) and (35). The sets
Ω0 or Ω̃0 being invariant implies that the difference between the
predicted demand and the actual supply (possibly scaled by some
monotonic function, e.g.,log (·)) remains bounded.

1) Analysis of Market Dynamics under Generic Autoregressive
Prediction Models:In this section we examine the impact of lin-
ear autoregressive prediction models on market stability.Consider
the model (24), repeated here for convenience:

ċ−1 (λ (t+ 1)) =
∑n

k=0
αkv̇

−1 (λ (t− k))

We apply Theorem 2 (alternatively Corollary 4) with

g (λ) = ρ
(
ċ−1 (λ)

)
(69)

and
f (λt, . . . , λt−n) = ρ

(∑n

k=0
αkv̇

−1 (λt−k)
)

(70)

We examine (69)−(70) with ρ (z) = log (z) andρ (z) = z−l+1,
l 6= 1. Conditions (60)−(61) then imply that the following
conditions are sufficient (for somek ≥ 0):

∣∣∣∣∣∣∣∣∣

αk
∂v̇−1 (λ)

∂λ

∣∣∣∣
λ=λt−k[∑n

j=0
αj v̇

−1 (λt−j)
]l

∣∣∣∣∣∣∣∣∣

≤ θk
∣∣ǫp

S (λt−k, l)
∣∣ (71)

n∑

k=1

θk ≤ 1 (72)

Conditions (71)–(72) are complicated and in general demand
numerical computation for verification. However, examination of

(71) near equilibrium is informative. Suppose that (24) converges
to an equilibrium pricēλ. Letting λt = λt−1 = · · · = λt−n = λ̄,
we observe that the following condition is implied by (71)–(72):

∃l ≥ 0 :
∣∣∣
∑n

k=1
ak

∣∣∣
∣∣ǫp

D

(
λ̄, l

)∣∣ ≤
∣∣ǫp

S

(
λ̄, l

)∣∣
∣∣∣
∑n

k=1
ak

∣∣∣
l

(73)

whereǫp
D

(
λ̄, l

)
and ǫp

D

(
λ̄, l

)
are generalized elasticities as de-

fined in Definition 4, evaluated at the equilibrium. It can be
shown that (73) is equivalent toǫp

rel

(
λ̄, 1

)
≤ 1, independently

of l. Furthermore, for a large class of cost and value functions,
namely power functions of the formc (x) = xβ andv (x) = x1/α,
α, β ≥ 1, the equilibrium relative elasticityθ

(
λ̄
)
= ǫp

rel

(
λ̄, 1

)
is

independent of the autoregressive coefficientsak, k = 1, .., n.
Thus, if the closed-loop market is unstable under the persistent
prediction model (a1 = 1, ak = 0, k 6= 1), then global stability
cannot be verified for any linear auto-regressive model of the form
(24) using (71)–(72). Although this analysis is based on sufficient
criteria, it suggests that it may be difficult to globally stabilize
these systems via linear autoregressive prediction. Indeed, exten-
sive simulations show that such models will not globally stabilize
an unstable market, unless the MRPE is very close to one. For
values ofθ∗ > 1.05 global stabilization could not be achieved
in our simulations. Local stabilization is, however, possible for
moderate values ofθ∗, namely,θ∗ / 3.

2) Analysis of Dynamics of Markets with Exogenous Inputs:

Theorem 3:Let x : Z+ → R andu : Z+ → R be real-valued
sequences which satisfy a state-space equation of the form:

g (x (t+ 1))=f (x (t) , u (t)) , u (t) ∈ U (74)

x (0)∈X0 ⊂ R

for some continuously differentiable functionf : R2 → R and
a continuously differentiable monotonic functiong : R → R

satisfying
∣∣∣∣
∂

∂u
f (x, u)

∣∣∣∣ ≤ 1, ∀x ∈ R, u ∈ U (75)

and ∣∣∣∣
∂

∂x
f (x, u)

∣∣∣∣ ≤ θ
∣∣∣ġ (x)

∣∣∣ , ∀x ∈ R, u ∈ U, (76)

where
U = {u ∈ R : |u| ≤ κ}

andκ ∈ (0,∞) , andθ ∈ [0, 1). Define

ζκ (θ) = κ
1 + θ

1− θ
. (77)

Then, the set

Ω (θ)=
{
x :

∣∣∣ |f (x, ν) − g (x)| − |ν|
∣∣∣ ≤ ζκ (θ) , ∀ν ∈ U

}
(78)

is invariant under (74). Furthermore, theg-scaled IMV of x is
bounded from above:

Vg (x) = lim
T→∞

1

T

T∑

t=1

|g (x (t+ 1))− g (x (t))| ≤
2κ

1− θ
(79)
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Proof: Define

V (x) = sup
ν∈U

{∣∣∣ |f (x, ν) − g (x)| − |ν|
∣∣∣
}
− ζκ (θ) .

It is sufficient to show that there existsτ ≥ 0, such that:

V (x (t+ 1))− τV (x (t)) ≤ 0, ∀t ∈ Z+.

To simplify the notation, define∆ft = f (x (t+ 1) , u (t+ 1))−
f (x (t) , u (t)) , and∆gt = g (x (t+ 1))− g (x (t)) . Then

V (x (t+ 1))− τV (x (t))

= sup
ν∈U

{∣∣∣ |f (x (t+ 1) , ν)− g (x (t+ 1))| − |ν|
∣∣∣
}

− τ sup
ν∈U

{∣∣∣ |f (x (t) , ν)− g (x (t))| − |ν|
∣∣∣
}

+ ζκ (θ) (τ − 1)

≤ sup
ν∈U

{∣∣∣ |f (x (t+ 1) , ν)− f (x (t) , u (t))| − |ν|
∣∣∣
}

− τ |∆gt|+ τκ+ ζκ (θ) (τ − 1) (80)

≤ sup
ν∈U

|f (x (t+ 1) , ν)− f (x (t) , ν)|

+ sup
ν∈U

{∣∣∣ |f (x (t) , ν)− f (x (t) , u (t))| − |ν|
∣∣∣
}

− τ |∆gt|+ τκ+ ζκ (θ) (τ − 1) (81)

≤ (θ − τ) |∆gt|+ (1 + τ) κ+ ζκ (θ) (τ − 1) (82)

where (80) follows from the choice ofν = u (t) and |u (t)| ≤ κ,
(81) follows from the triangular inequality, and (82) follows from
(75)–(76) and Lemma 2. The desired result follows from the fact
that the right-hand side of (82) will be non-positive forτ = θ,
and ζκ (θ) defined in (77). To prove (79), letτ = 1 in (82) to
obtain

V (x (t+ 1))− V (x (t)) ≤ (θ − 1) |∆gt|+ 2κ (83)

Summing both sides of (83) over allt = 0, 1, .., T results in:

V (x (T + 1)) ≤ V (x (0)) + (θ − 1)
T∑

t=1

|∆gt|+ 2Tκ (84)

It follows from (84) and non-negativity ofV (x (T + 1))+ ζκ (θ)
that

(1− θ)

T∑

t=1

|∆gt| ≤ 2Tκ+ V (x (0)) + ζκ (θ) . (85)

The desired result (79) then follows immediately from (84) by
dividing by T and taking the limit asT → ∞.

The following corollary is a local variant of Theorem 3, and
is useful for scenarios in which, there exists no positive number
θ < 1 such that (76) is satisfied for allx ∈ R, whereas it might
be possible to satisfy the inequality locally over a subset that
containsΩ (θ).

Corollary 5: Let x : Z+ → R andu : Z+ → R be real-valued
sequences satisfying (74). Forθ < 1, define:

θ̃∗ = inf

{
θ̃ :

∣∣∣∣
∂

∂x
f (x, u)

∣∣∣∣ ≤ θ̃

∣∣∣∣
∂

∂x
g (x)

∣∣∣∣ ,

∀x ∈ Ω (θ) , u ∈ U

}

whereΩ (θ) is given in (78). ThenΩ
(
θ̃∗
)

is invariant under (74)
if

θ̃∗ ≤ θ.

Furthermore, (79) holds withθ = θ̃∗.
Consider equation (74) or (59). When the functionsg andf are

ρ-scaled supply and demand functions, the minimalθ satisfying
(76) or (60) will be the MRPE associated with the market models
(74) or (59). Wheng and f are ρ-scaled marginal value and
marginal cost functions respectively, the minimalθ satisfying the
inequalities will be the MRRA associated with (74) or (59). In the
remainder of this section, we consider applications of Theorem
3 to the two time-varying models of consumer behavior (14) and
(12).

a) Multiplicative Perturbation: Consider the multiplicative
perturbation model (12). Under this model, the market dynamics
is given by

ċ−1 (λ (t+ 1)) =

(
1 +

1

2
δ (t)

)
v̇−1 (λ (t)) , δ (t) ∈ [−κ, κ]

(86)
where the1/2 factor in front of δ (t) is simply a scaling factor.
We invoke Theorem 3 with

g (λ) = log
(
ċ−1 (λ)

)
(87)

and

f (λ, δ) = log (1 + δ/2) v̇−1 (λ)

= log (1 + δ/2) + log
(
v̇−1 (λ)

)
.

It can be verified that (75) and (76) are satisfied as long asκ ≤ 1
andθ∗ < 1, whereθ∗ is the MRPE defined in (55). Furthermore,
ζκ (θ

∗) is the upperbound on the size of the invariant set, where
ζκ (·) is defined in (77). In particular asθ∗ → 1, small perturba-
tions may induce extremely large fluctuations as measured bylog-
scaled IMV of supply. The theoretical upperbound is1/ (1− θ∗) .
When Corollary 5 is applicable, the size of the invariant setcan
be characterized byζκ(θ̃∗), whereθ̃∗ is the market’s local relative
price-elasticity. Furthermore, volatility can be characterized byθ̃∗

as well.
b) Additive Perturbation:Under the additive perturbation

model (14), the market dynamics can be written as

ċ−1 (λ (t+ 1)) = u0 +
1

2
u (t) + v̇−1 (λ (t)) , u (t) ∈ [−κ, κ]

(88)
whereu0 ≥ 1 is a shifting factor, andκ ≤ u0, so that the demand
is always at leastu0/2. We invoke Theorem 3 with (87) and

f (λ, u) = log

(
u0 +

1

2
u+ v̇−1 (λ)

)
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Then, under the above assumptions, (75) is satisfied. In a similar
fashion to previous analyzes, (76) can be related to the market’s
relative price-elasticity. In this case, the price-elasticity of demand
turns out to be:

ǫD (λ) =
∂f (λ, u)

∂λ
=

λ

u0 + u/2 + v̇−1 (λ)

∂v̇−1 (λ)

∂λ

The larger the minimum of the inelastic component (i.e.,u0 −
κ/2), the smaller the price-elasticity of the overall demand will
be. Under the assumptions made above, there is always a nonzero
minimal demandumin (t) = u0/2. Therefore, it is sufficient to
verify (76) overλ ≥ ċ (u0/2) instead of allλ > 0. In conclusion,
(76) reduces to:
∣∣∣∣
∂v̇−1 (λ) /∂λ

u0/2 + v̇−1 (λ)

∣∣∣∣ ≤ θ

∣∣∣∣
∂ċ−1 (λ) /∂λ

ċ−1 (λ)

∣∣∣∣ , ∀λ ≥ ċ (u0/2) (89)

Let θ̃∗ be the minimalθ satisfying (89). Similar to the case with
multiplicative uncertainty, in this case too, the upperbound on the
size of the invariant set is given byζκ(θ̃∗), whereζκ (·) is given
in (77). Moreover, thelog-scaled IMV of supply is upperbounded
by u0/(1− θ̃∗).

The analysis reconfirms the intuition that participation ofa
small portion of the population in real-time pricing will not have
a severe destabilizing effect on the system, as satisfying (89) for
larger values ofu0 is easier. System stability concerns should
arise when a large portion of the population is exposed to real-
time pricing.

Remark 6: It can be proven that whenu (t) is a periodic
function with periodT and (76) is satisfied, then all solutions
of (88) converge to a periodic trajectory with periodT.

C. Volatility

The following corollaries follow from Theorems 2 and 3, and
explicitly relate the market’s MRPE and MRRA to volatility.

Corollary 6: Volatility I: Let θ∗ < 1 andη∗ < 1 be the MRPE
and MRRA associated with the market model (74). Then, there
exists a constantC, depending on the size of the disturbances
only, such that thelog-scaled IMV of supply is upperbounded by
C/ (1− θ∗) , i.e.,

lim
T→∞

1

T

T∑

t=1

∣∣log
(
ċ−1 (λ (t+ 1))

)
− log

(
ċ−1 (λ (t))

)∣∣ ≤ C

1− θ∗

(90)
And the log-scaled IMV of price is upperbounded by
C/ (1− η∗) , i.e.,

lim
T→∞

1

T

T∑

t=1

|log (λ (t+ 1))− log (λ (t))| ≤
C

1− η∗
(91)

Corollary 7: Volatility II: Let θ∗ < 1 and η∗ < 1 be the
MRPE and MRRA associated with the market model (59) with
linear autoregressive prediction. Then, there exists a constant
C such that thelog-scaled IAV of supply is upperbounded by
C/ (1− θ∗) , i.e.,

∞∑

t=1

∣∣log
(
ċ−1 (λ (t+ 1))

)
− log

(
ċ−1 (λ (t))

)∣∣ ≤ C

1− θ∗
(92)

And thelog-scaled IAV of price is upperbounded byC/ (1− η∗) ,
i.e.,

∞∑

t=1

|log (λ (t+ 1))− log (λ (t))| ≤
C

1− η∗
(93)

Remark 7:Generalized versions of the above corollaries can
be formulated based onθ∗ (l) and η∗ (l) , in which case the
scalings of the signals need to be defined accordingly: letting
ρl (x) = x−l+1 for l 6= 1, the ρl-scaled IMV of supply and price
will be upperbounded byC/ (1− θ∗ (l)) and C/ (1− η∗ (l))
respectively. Furthermore, when the prices remain bounded within
an invariant set, e.g., when the conditions of Corollary 4 or
Corollary 5 hold, one can replaceθ∗ (l) and η∗ (l) with local
relative elasticity ratios̃θ∗ (l) and η̃∗ (l) .

D. Robustness and Incremental L2-Gain

Theρ-scaled incremental L2-gainof a discrete-time dynamical
system with input signalu : Z → R and output signalh : Z → R

is defined to be the minimalγ ≥ 0 such that the inequality

γ ‖ρ (u)− ρ (ū)‖
2
−
∥∥ρ (h)− ρ

(
h̄
)∥∥

2
≥ 0 (94)

is satisfied for all input/output pairs(u, h) and
(
ū, h̄

)
such that

ρ (u)− ρ (ū) ∈ ℓ2.

For systems with larger gains, it is generally expected that
relatively small deviations from a nominal input̄u would stir
relatively larger deviations from the nominal output signalh̄.
This gain can be used as a metric for assessing the robust-
ness/sensitivity of the system to arbitrary external disturbances.
It can be proven that for the market model (86) (more generally,
the market model (74) with multiplicative uncertainty), the log-
scaled incremental L2-gain from the perturbationδ (·) to the
demand is upperbounded byθ∗/ (1− θ∗) . The gain fromδ (·) to
the supply is upperbounded by1/ (1− θ∗) . These results–stated
here without proof–quantify the dependence of the closed-loop
system’s robustness, as measured by the incremental L2-gain, on
the markets maximal relative price-elasticity.

V. D ISCUSSION

Cho and Meyn [7] have investigated the problem of volatility
of power markets in a dynamic general equilibrium framework.
Their model can be viewed as a full-information model in which
the system operator has full information about the cost and value
functions of the producers and consumers. Market clearing is
instantaneous and supply and demand are matched with no time
lag. The producer’s problem is, however, subject to supply friction
or a ramp constraint, i.e., a finite bound on the rate of changeof
supply capacity. It is concluded that efficient equilibria are volatile
and volatility is attributed to the supply friction. In the formulation
of [7] the consumer’s problem is not subject to ramp constraints.
In our formulation, neither the consumer’s problem nor the
producer’s is explicitly subject to ramp constraints, yet other
factors are shown to contribute to volatility, namely, information
asymmetry and high price elasticity of demand. Interestingly,
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if we included ramp constraints in the consumer’s problem it
would have a stabilizing effect, as it would limit the consumer’s
responsiveness to price signals and reduce her elasticity.This
effect is implicitly and qualitatively captured in our framework
through the introduction of an inelastic component in the demand,
which certainly limits the rate of change in the demand, and
was shown to have a stabilizing effect. However, uncertainty
in the supply side, either in the available capacity or in the
cost, works in the reverse direction: when supply is sufficiently
volatile, a trade-off might exist and responsiveness and increased
elasticity of demand might be desirable, though this needs to be
quantified rigorously. The models developed in the paper do not
include uncertainty in generation, and this would be an interesting
direction for future research.

The above discussion leads to another interesting question:
”quantifying the value of information in closed-loop electricity
markets”. Given the heterogeneous nature of consumers and
time-varying uncertainty in their preferences, needs, andvalua-
tions for electricity, learning their value functions and predicting
their response to a price signal in real-time appears to be a
difficult problem. Suppose that the consumers provide a real-
time estimate of their inelastic and elastic consumption tothe
ISO. How valuable will this real-time information be and what
would be its impact on volatility and reliability of the system?
Given the potentially significant costs and barriers associated with
obtaining such information in real-time, quantifying the value of
information in this context seems an extremely important and
timely question with potentially significant impact the architecture
of future power grids.

VI. N UMERICAL SIMULATIONS

In this section we present the results of some numerical
simulation. For the purpose of simulations, we use the following
demand model:

D (t) = µ1d1 (t) + µ2 (1 + δ2 (t)) v̇
−1 (λ (t)) (95)

whered1 (t) is the exogenous, inelastic demand:

d1 (t) = a0 + a1 sin (t) + a2 sin (2t) + δ1 (t)

and δ1 (t) ∼ N
(
0, 0.12

)
and δ2 (t) ∼ N

(
0, 0.012

)
are random

disturbances. The parametersµ1 andµ2 are adjusted, on a case-to-
case basis, such that the average demand under real-time pricing
(i.e., whenµ2 > 0, µ1 < 1) remains nearly equal to the average
demand in the open loop market (µ2 = 0, µ1 = 1), that is:

∑N

t=1
D (t) ≈

∑N

t=1
d1 (t)

This normalization, takes out the effect of higher or lower average
demand on price and allows for a fair comparison of volatility
of prices in open-loop and closed-loop markets. The following
parameters are chosen for all simulations in this section:

a0 = 4 GW, a1 = 1 GW, a2 = 1 GW

This puts the peak of the inelastic demand at6 GW and the valley
at 2 GW, modulo the random disturbanceδ1 (t) . All simulations

are for a24 hour period and prices are updated every5 minutes.
The average demand in all simulations is approximately4 GW
per five minutes for both open-loop and closed-loop markets.The
metric for comparison in these simulation is the Relative Volatility
Ratio (RVR), defined as the ratio of thelog-scaled IAV of the
closed-loop market to thelog-scaled IAV of the open-loop market.
The results of the first simulation are summarized in Figure 3.
The prices are extremely volatile under real-time pricing (RVR
= 51.12) and the system is practically unstable.
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Fig. 3. Simulation of a market with quadratic cost functionc (x) = x3, value
function v (x) = log (x) , and demand functionD (t) given in (95) withµ1 =
0.075, µ2 = 2.

The results of the second simulation are summarized in Figure
4. Based on the chosen parameters, this market is less volatile than
the one in the first simulation, yet, volatility of demand increases
under real-time pricing (RVR=2.33). Since in this simulation the
cost is quadratic, the price (not shown) has a very similar pattern.

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Time (HR)

D
em

an
d 

(G
W

)

Demand in Open and Closed Loop Market Models

 

 

Demand (Real Time Pricing)
Demand(Open Loop Market)

Relative Volatility = 2.33

Fig. 4. Simulation of a market with quadratic cost functionc (x) = 3x2,

value functionv (x) =
√
x, and demand functionD (t) in (95) with µ1 = 0.7,

µ2 = 3× 103.

The third simulation is summarized in Figure 4. For each
value of µ1 ∈ [0, 1] (with 0.05 increments), the expected RVR
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was calculated by taking the average RVR of50 randomized
simulations. The random parameters areδ1 (t) , δ2 (t) , and the
initial conditions. The experiment was repeated for four different
value functions:v (x) = x1/a, a = 4, 4.5, 5, 5.5. It is observed
that volatility increases with decreasinga or µ1, both of which
increase the price-elasticity of demand.
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Fig. 5. Simulation of a market with quadratic cost functionc(x) = 3x2, value
functionv(x) = x1/a, and demand functionD(t) given in (95) withµ1 ∈ [0, 1],
andµ2 adjusted accordingly to keep the total demand constant. Decreasinga orµ1

increase the price-elasticity of the overall demand and hence, increase volatility.

VII. C ONCLUSIONS ANDFUTURE WORK

We investigated the effects of real-time pricing on the stability
and volatility of electricity markets, and showed that exposing the
retail consumers to the real-time wholesale market prices creates a
closed-loop feedback system which could be very volatile oreven
unstable. When the system is stable, an upper bound on volatility
and robustness to external disturbances can be characterized in
terms of the market’s relative price-elasticity, defined asthe
ratio of generalizedprice-elasticity of consumers to that of the
producers. As this ratio increases, the system may become more
volatile, eventually becoming unstable when the ratio exceeds
one. As the penetration of new demand response technologiesand
distributed storage within the power grid increases, so does the
price-elasticity of demand, and this is likely to increase volatility
and possibly destabilize the system under current market and
system operation practices. While the system can be stabilized
and volatility can be reduced in many different ways, e.g., via
static or dynamic controllers regulating the interaction of whole-
sale markets and retail consumers, different pricing mechanisms
pose different limitations on competing factors of interest. In
light of this, systematic analysis of the implications of different
pricing mechanisms, and quantifying the value of information
and characterization of the fundamental trade-offs between price
volatility and economic efficiency, as well as system reliability
and environmental efficiency are important directions of future
research. In summary, more sophisticated models of demand,a

deeper understanding of consumer behavior in response to real-
time prices, and a thorough understanding of the implications of
different market mechanisms and system architectures are needed
before real-time pricing can be implemented in large-scale.
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