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Abstract. The central parameter in the quantification of chemical vapor
plumes via remote sensing is the mean concentration-path length (CL)
product, which can be combined with scene geometry information to pro-
vide estimates of the absolute gas quantity present. We derive Cramer-
Rao lower bounds on the variance of an unbiased estimator of CL in
concert with other parameters of a nonlinear radiance model. These
bounds offer a guide to feasibility of CL estimation that is not dependent
on any given algorithm. In addition, the derivation of the bounds yields
great insight into the physical and phenomenological mechanisms that
control plume quantification, which we illustrate with examples represent-
ing a variety of experimental scenarios. © 2014 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.2.021109]
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1 Introduction
The remote sensing of chemical vapor plumes via hyper-
spectral imaging in the long-wave infrared (LWIR) region
has a wide variety of applications—for example, warning
of hazardous airborne chemical agents due to deliberate or
inadvertent release, regulation of industrial pollutants, or
weapons production monitoring. There is a corresponding
variety of possible sensor geometries as well as desired
analysis products, which can be divided into the categories
of detection of an anomalous gaseous plume, identification
of its constituents, and quantification of the amounts. In this
paper, we consider the problem of determining the funda-
mental performance limits of plume quantification and of
the relative importance of the various determining factors.

The central parameter in plume quantification is the mean
concentration-path length (CL) product. When combined
with information about the sensor and scene geometry, such
as instantaneous field of view and distance to the plume,
estimates of CL enable recovery of absolute gas quantity
in each pixel of a scene. For some applications, this ancillary
information may be available for single scenes from an
individual sensor. Alternatively, when the plume is viewed
from more than one aspect with multiple sensors, tomo-
graphic reconstruction algorithms enable plume quantifi-
cation from CL estimates. Additionally, CL plays a large
role as the key nonlinear parameter in the radiance signal
model through Beer’s law. This nonlinear dependence is
important when optically thick plumes are observed, and
indeed in these cases, CL estimation can play a role in
the detection and identification as well as quantification.

The goal of this paper is to obtain quantitative funda-
mental performance bounds that apply to a broad range
of sensors, system architectures, scenes, and statistical
algorithms, although we will restrict the discussion to im-
aging sensors.1–3 We will derive Cramer-Rao lower bounds

on the variance of unbiased estimators of CL in concert with
other parameters of a common nonlinear radiance model.
These bounds offer a guide to feasibility of CL estimation,
given a set of sensor system parameters that is not depen-
dent on any given algorithm. They provide a very useful
tool for both system design and assessment, as the param-
eters of any useful system must lead to sufficiently low CR
bounds. A fielded system may be evaluated on the basis of
how closely the theoretical limits are approached.

Another reason to compute CR bounds is that the deriva-
tions themselves yield great insight into the physical and
phenomenological mechanisms that control CL estimation.
There are four physical mechanisms that play a role: nonli-
nearities in the plume transmittance, spectral structure in the
background radiance, spatial variability in the background,
and the relative temperatures of the plume, atmosphere,
and background. The performance limits due to these factors
are driven by interactions between the characteristics of
the sensor, gases to be detected, and background radiance.
The complexity of this interaction means that the quality of
an estimate of CL may vary greatly within a single image.
Specific CL estimation algorithms may take advantage of
only one, or more than one, of these mechanisms, depending
on the intended application.

2 Radiance Model

2.1 Three-Layer Radiative Transfer

The choice of an appropriate radiance model for gaseous
plumes in the LWIR has been extensively studied.4,5 The
analysis of Sec. 4.1 will be carried out in the context of
the widely used radiative transfer model with three parallel
atmospheric layers orthogonal to the line of sight of the
sensor. The first layer extends from behind the plume to
the background; the second layer is the plume itself; and
the third layer is the atmosphere between the plume and the
sensor. Each layer attenuates the radiation that passes
through it as well as emits radiation on the basis of its0091-3286/2014/$25.00 © 2014 SPIE
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own content and temperature. This is illustrated in Fig. 1 for
a standoff sensor with horizontal line of sight.

Several simplifying assumptions are made to arrive at
expressions for the at-sensor radiance in the absence
and presence of the chemical plume. The atmosphere and
plume are assumed free of aerosols and particulate matter,
so that scattering may be neglected throughout. The thick-
ness of the plume layer and the distance between the
plume and background are assumed to be small enough
so that the atmospheric transmittance in these layers may
be neglected. The plume and atmosphere are each assumed
homogeneous in both temperature and composition. Finally,
downwelling radiance from both plume and atmosphere are
neglected.

With these assumptions, the at-sensor radiance in the
absence of plume, as a function of wavelength, is given
by the radiative transfer theory6 to be

LoffðλÞ ¼ ½1 − τaðλÞ�Bðλ; TaÞ þ τaðλÞLbðλÞ; (1)

where the two terms represent atmospheric radiance and
background radiance modulated by the atmosphere. In
Eq. (1), τaðλÞ is defined to be the atmospheric transmittance,
Ta is the temperature of the atmosphere, LbðλÞ is the
background radiance, and Bðλ; TÞ is the Planck function
evaluated at wavelength λ and temperature T

Bðλ; TÞ ¼ 2 hc2

λ5
1

e
hc
λkT − 1

; (2)

with h and k denoting the Planck and Boltzmann constants.
The presence of a plume has two effects: it absorbs part of

the radiation emitted by the background and it emits its own
radiation. The resulting radiance is subsequently attenuated
by transmission through the atmosphere and is given by

LonðλÞ ¼ ½1 − τaðλÞ�Bðλ; TaÞ þ τaðλÞτpðλÞLbðλÞ
þ τaðλÞ½1 − τpðλÞ�Bðλ; TpÞ; (3)

where τpðλÞ is the plume transmittance and Tp its temper-
ature. In Eq. (3), the three terms represent the at-sensor
radiance due to the atmosphere, the background radiance
as modulated by the plume and atmosphere, and the plume
radiance as modulated by the atmosphere.

In practice, the spectra are observed at only a finite set of
sample points fλigNband

i¼1 after convolution with the sensor
point spread function gðλÞ. The operation of convolution
does not in general commute with that of taking products

of spectrally varying functions, but it does commute to a
very good approximation if one of the functions is spectrally
smooth or if the functions are uncorrelated with each other.7

We will assume that the plume gases are uncorrelated with
those of the atmosphere, which allows us to represent the
smoothed and sampled form of Eq. (3) by

Lon ¼ ð1 − τaÞ⊙BðTaÞ þ τa⊙τp⊙Lb

þ τa⊙ð1 − τpÞ⊙BðTpÞ þ n; (4)

where a bold symbol, e.g., f , represents a vector with
components fi ¼ f � gðλiÞ, and the Hadamard product is
denoted by ⊙. In Eq. (4), we have also added a noise com-
ponent n, which represents all sources of sensor noise.

The form of the radiance expressions [Eqs. (1) and (3)]
elucidate the physical origins of the various contributions,
but are not the most convenient for further processing.
The alternative mathematically equivalent form

½Lon−ð1−τaÞBðTaÞ�⊙τ−1a ¼BðTpÞþτp⊙½Lb−BðTpÞ�þ ñ;

(5)

is referred to as the atmospherically compensated form.8 All
dependence on the atmosphere is isolated on the left hand
side, while the right hand side depends only on the plume
and background properties. The compensated noise term
is given by ñ ¼ n∕τa.

The spectral transmittance function, τpðλÞ, of a plume
with M gas species can be modeled using Beer’s law

τpðλÞ ¼ exp

"
−
XNgas

m¼1

γmαmðλÞ
#
: (6)

The function αmðλÞ, which is known as the absorption
coefficient spectrum, is unique for each gaseous chemical
and can be used as a spectral fingerprint. The quantity γm
is the CL parameter and is the product of two terms: the
length l along the sensor boresight that represents the
depth of the cloud and the average concentration Cm along
that path. For simplicity, we will work with the approxima-
tion for the smoothed and sampled transmittance9

τp ≃ exp

 
−
XNgas

m¼1

γmαm

!
: (7)

We note that the analysis below does not depend on
Eq. (7) in any essential way and could be extended to
a more accurate band model for τp.

10

2.2 Analysis Assumptions

Given the radiance model [Eq. (5)], the CL estimation prob-
lem may be cast in the following form. The observed data are
the radiances of the on- and off-plume pixels, Lon and Loff .
From this data, the CL parameters fγigNgas

i¼1 must be esti-
mated, with nuisance parameters Tp, Ta, Lb, τa, in the pres-
ence of measurement noise n. The gas signatures fαigNgas

i¼1 are
obtained from a library.11

The goal of this paper is to compute performance bounds
on CL estimators. To this end, we make several simplifying
assumptions that are realistic but also optimistic, in the sense

on ( )λL

off ( )λL

( )τ λa

( )τ λa

( )τ λa

( )λbL

( )λbL

( )λaL

( )λaL

( )τ λp

( ) ( , )ε λ λp pB T

Layer 1Layer 2Layer 3

Fig. 1 Three-layer side-looking radiative transfer radiance signal
model for standoff chemical agent detection.
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that they lead to improved performance. First, we will work
with only a single gas species in the plume. Second, we will
assume that the segmentation problem of the hyperspectral
image into the plume and background components has been
accomplished without error. Third, we will assume that the
atmospheric radiance and transmittance are constant over
the entire image and have been estimated without error either
via ancillary measurements or by in-scene estimation, using
the background pixels. Fourth, we will take the sensor noise
n to be mean-zero multivariate Gaussian and independent
from pixel to pixel. Finally, we assume that the background
radiance Lb is spectrally slowly varying as compared to the
gas signatures. This final assumption allows us to represent
Lb by the low-order subspace model.

Lb ¼ Wc; (8)

where W is an Nband × Nbasis matrix of basis functions and
c is an Nbasis-dimensional vector of expansion coefficients.
In the examples below, we will use a B-spline expansion,
although other choices would be equally valid.

These assumptions allow us to cast the radiance model in
a form that is more amenable to analysis of the CL estimation
problem. The raw data may now be taken to be the compen-
sated radiances.

LðcompÞ ¼ ½L − ð1 − τaÞ⊙BðTaÞ�⊙τ−1a : (9)

With Eq. (8), our simplified radiance model is

LðcompÞ
on ¼ Wcþ ð1 − e−γαÞ⊙½BðTpÞ −Wc� þ ñ: (10)

With Eq. (10), the CL estimation problem is to estimate
the parameter γ, with nuisance parameters Tp and c.

3 Physical Mechanisms for CL Estimation
The radiance model [Eq. (10)] becomes nonidentifiable in
the important limit of an optically thin plume and spectrally
flat background of temperature Tb, given by Lb ¼ BðTbÞ.
The significance of this limit is that the LWIR spectra of
many natural backgrounds are quite smooth, as compared
to those of chemical vapors, and can therefore be approxi-
mated as blackbodies. Indeed, this approximation forms
the basis for many gas detection algorithms.12 Due to this
nonidentifiability, the reliable recovery of the CL parameter
can be problematic, and we must identify and exploit physi-
cal mechanisms that avoid this situation, which we accom-
plish by careful analysis of the radiance model.

The background model [Eq. (8)] accommodates the
flat background scenario by the choice of coefficients
c ¼ cðTbÞ such that WcðTbÞ ≃ BðTbÞ. The radiance model
becomes

LðcompÞ
on ¼ BðTbÞ þ γðTp − TbÞα⊙Ḃþ ñ; (11)

where ḂðTÞ ¼ dB∕dT. Clearly, only the product
γðTp − TbÞ may be estimated from Eq. (11), so the only
way that γ may be recovered is with the use of ancillary
data that yields Tp (under our assumptions, Tb may be esti-
mated from the off-plume pixels in this scenario).
This assumption underlies many CL estimation algorithms
that have been proposed.7,13,14 Indeed, if the plume can be

assumed to be in thermal equilibrium with the atmosphere,
then estimating Tp ¼ Ta from the image is quite feasible
from atmospheric compensation algorithms. However, there
are many situations in which this assumption does not hold
and other mechanisms for recovering CL must be exploited.

Examining Eq. (10) reveals three additional mechanisms
in addition to ancillary measurement of Tp that enable iden-
tifiability. The first is the nonlinearity of Beer’s law [Eq. (7)].
The intuition behind this approach can be observed by
expanding the exponential past the first order, with a flat
background.

LðcompÞ
on ¼BðTbÞþðTp−TbÞ

�
γα−

γ2

2
α⊙α

�
⊙Ḃþ ñ: (12)

Linear regression on Eq. (12) will recover separate esti-
mates of γðTp − TbÞ and γ2ðTp − TbÞ, allowing γ and
Tp − Tb to be separated. A similar result is obtained with
orthogonal background suppression.15 Nonlinear regression
accomplishes the same task without the need to explicitly
expand the exponential.3,9,16

A second mechanism for identifiability of Eq. (10) is
the existence of a spectrally structured, i.e., nongraybody,
background in an on-plume pixel. This mechanism applies
even with a thin plume, so the nonlinearity of Beer’s law
need not be exploited. The radiance model with a structured
background is

LðcompÞ ¼ Wcþ γα⊙½BðTpÞ −Wc� þ ñ: (13)

The existence of the structured background Wc in
Eq. (13) allows recovery of all parameters γ, Tp, and c
by nonlinear regression, in principle. However, this approach
depends on sufficient overlap in the spectral structures of the
gas signature α and the background Wc.

The previous mechanisms for CL estimation can operate
with a single pixel. A fourth approach7 relies on the exploi-
tation of spatial structure in a scene and enables CL estima-
tion even in the flat background, thin plume limit with no
prior knowledge of Tp. The crucial ingredient is spatial
variation of the background radiance, which is manifested
as spatial variation of background temperature Tb ¼ TbðxÞ
in the flat background limit, where x represents a position
in the image. The radiance model is

LðcompÞðxÞ ¼ BðTb; xÞ þ γ½Tp − TbðxÞ�α⊙Ḃþ ñðxÞ: (14)

From Eq. (14), independent estimates of

uðxÞ ¼ TbðxÞ vðxÞ ¼ γ½Tp − TbðxÞ� (15)

may be estimated. If TbðxÞ varies with x, then the linear rela-
tionship exhibited in Eq. (15) allows the recovery of γ as the
slope. A crucial assumption on which this approach rests is
that γ is constant over the region of application, in which
sufficient background radiance variability occurs.

Each of the various mechanisms that have been identified
as enabling CL estimation may be present in a given scene,
individually or in concert, to a greater or lesser degree
depending on the local environment, plume composition,
and sensor. A crucial question for sensor and system design,
and for analysis of potential system utility, is the potential
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performance limits of CL estimation algorithms. This ques-
tion will be addressed in the next section through the use of
Cramer-Rao lower bounds on the variance of estimators for
CL. These bounds provide limits of performance that include
all physical mechanisms present in the radiance model
[Eq. (10)], but are independent of the specific algorithm
that may be employed. The bounds therefore provide
a guide to the potential noise-limited performance, and spe-
cific algorithms may be evaluated on the basis of how closely
they approach the bounds.

4 Algorithm Performance Limits

4.1 Cramer-Rao Bounds

The compensated radiance model for a single pixel [Eq. (5)]
has the form

LðcompÞðθÞ ¼ μðθÞ þ ñ; (16)

where the parameter vector θ ¼ ðTp; γ; cÞ, and
μðθÞ ¼ BðTpÞ þ τpðγÞ⊙½Wc − BðTpÞ� þ ñ: (17)

We model the sensor noise term ñ ¼ n∕τa as a zero
mean Gaussian random vector. Below, we will estimate
the covariance Cñ of this vector from the observed data.
We will further approximate this covariance as indepen-
dent of the parameter vector θ, so the Fisher information
matrix is given by

IðθÞi;j ¼
�
∂μ
∂θi

�
T
C−1
ñ

�
∂μ
∂θj

�
; (18)

and the Cramer-Rao lower bound for the covariance Cθ̂ of
any estimator θ̂ for θ is17

Cθ̂ − I−1ðθÞ ≥ 0; (19)

where the meaning of the inequality is that the matrix on
the LHS is positive definite. In particular, the variances of
the parameter estimates are bounded below by

Varðθ̂iÞ ≥ ½I−1ðθÞ�i;i: (20)

The case of multiple pixels requires a model for spatial
variation of the radiance. We will adopt a spatial temperature
gradient imposed on a spatially invariant background of
smooth, but otherwise arbitrary, emissivity. This situation
can be incorporated into the linear model [Eq. (8)] by adding
a spatial gradient to the coefficients c.

cðxÞ ¼ cð0Þ þ δxcð1Þ; (21)

where x indexes the position in the image along the direction
parallel to the temperature gradient. In order to obtain the
interpretation δ ¼ ∂Tb∕∂x, we choose cð1Þ to be the least
squares solution to

BðTbÞ⊙ðWcð1ÞÞ ¼ ḂðTbÞ⊙ðWcð0ÞÞ; (22)

which results in the following linear relationship between
cð1Þ and cð0Þ.

cð1Þ ¼ Acð0Þ

A ¼ ðWTWÞ−1WT

��
ḂðTbÞ
BðTbÞ

⊗ 1ðNpixÞ
�
⊙W

�
:

The compensated radiance LðNpix;compÞ of Npix pixels
may be arranged as the columns of an Nband × Npix matrix,
given by

LðNpix;compÞðθÞ ¼ μðNpixÞðθÞ þ ñðNpixÞ; (23)

where

μðNpixÞðθÞ¼BðTpÞ⊗1ðNpixÞ þ½τpðγÞ⊗1ðNpixÞ�⊙fðW⊗ IðNpixÞÞ
× ½cð0Þ⊗1ðNpixÞ þðδAcð0ÞÞ⊗x�−BðTpÞ⊗1ðNpixÞg:

(24)

In Eq. (24), x is the vector of x-coordinates of the pixels
included, and 1ðNpixÞ is the Npix-component vector with each
component equal to unity. When analyzing the model with
spatial dependence, we augment the parameter vector
θðNpixÞ ¼ ðTp; γ; c; δÞ to include the background temperature
gradient δ. The noise is taken to be independent across
pixels.

We may compute the Cramer-Rao bound [Eq. (19)] with
knowledge of the sensor noise covariance Cñ and the partial
derivatives.

∂μðNpixÞ

∂Tp
¼ fḂðTbÞ⊙½1 − τpðγÞ�g ⊗ 1ðNpixÞ

∂μðNpixÞ

∂γ
¼ τ̇pðγÞ⊙½Wcð0Þ −BðTpÞ�⊗ 1ðNpixÞ

þ ½τ̇pðγÞ⊙Wcð1Þ�⊗ ðδxÞ

∂μðNpixÞ

∂cð0Þi

¼ ½τpðγÞ ⊗ 1ðNpixÞ�⊙ðWi ⊗ 1ðNpixÞ þ δWAi ⊗ xÞ

∂μðNpixÞ

∂δ
¼ ½τpðγÞ⊙ðWcð1ÞÞ� ⊗ x;

where, for a matrix M, the notation Mi refers to the i’th col-
umn. We may estimate the noise covariance in a variety of
ways. A sensor noise model18,19 may be employed based on
the characteristics of the instrument components and scene
under test. For existing sensors, the noise covariance may be
estimated from a scene, ideally by the placement of a black-
body calibration target within the sensor field of view.2

In this paper, we estimate Cñ from a measured scene from
the Telops FIRST sensor2 that contains broad regions of
homogeneous sky background. Since there is little spatial
variation in such regions, subtracting the local mean radiance
from a sample of such pixels gives an estimate of the sen-
sor noise.

4.2 Results

We will illustrate the utility of the CR bounds in Sec. 4.2.1
with a series of examples based on simulated, idealized
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background materials. In Sec. 4.2.2, we will expand our
analysis to include measured emissivities of a variety of
naturally occurring materials. Throughout, we choose the
columns of the model matrix W from Eq. (8) to consist of
a basis of linear B-splines, with the dimension Nbasis ¼ 24
chosen so that the natural emissivities considered can be
well approximated.

4.2.1 Simulated background emissivities

Our first example will be a scene with a spatially constant
blackbody background at constant temperature Tb, chosen
to be 294 K. The radiance model [Eq. (10)] is employed
with background coefficients c chosen to obeyWc ≃ BðTbÞ.
Figure 2(a) displays the square root of the Cramer-Rao lower
bound on the variance of the CL estimate,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðγ̂Þp

, as
a function of plume temperature, Tp, and CL, γ. Two
cuts through this surface at two different constant plume

temperatures are shown in Fig. 2(b). Recalling Eq. (11),
the radiance model becomes nonidentifiable in the thin-
plume limit, which is manifested by an exploding CR
bound. The bound also blows up as the plume temperature
approaches that of the background, so there is no thermal
contrast between the two. This behavior, too, is expected
from Eq. (10) as the plume becomes invisible in this
limit. Another notable feature is the minimum in the
bound that occurs at moderate values of CL, for fixed Tp.
CL estimation performance degrades as the plume becomes
opaque. In this limit, no background radiance reaches the
sensor, the plume spectral signature is washed out into
that of a blackbody at the plume temperature, and differences
in plume strength are no longer visible.

Ancillary measurement of plume temperature is necessary
in order to estimate CL in the thin plume, flat background
limit. This case is presented in Fig. 3, in which perfect
knowledge of Tp is assumed. The plume gas species and
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Fig. 2 Cramer-Rao lower bounds on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðγ̂Þp

for sulfur hexafluoride (SF6) with a blackbody background (a), along with two cuts (b) at constant
plume temperatures of 296 and 302 K.
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Fig. 3 Cramer-Rao lower bounds on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðγ̂Þp

for SF6 with a blackbody background, with ancillary measurement of plume temperature (a), along
with two cuts (b) at constant plume temperatures of 296 and 302 K.
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background temperature are the same as in Fig. 2. It is evi-
dent that the additional information from the ancillary meas-
urement eliminates the singularity in the bound in the thin
plume limit and enables more accurate CL estimation at
low and moderate plume strengths. As the plume strength
increases, however, the nonlinearity of Beer’s law becomes
more important, and the additional information that knowl-
edge of Tp imparts is not as great. In the limit of an opaque
plume, of course, the ancillary measurement is of no value.

The presence of spectral structure in the background
emissivity, even the relatively smooth spectra typical in
the LWIR regime, can dramatically alter the prospects for
CL estimation. The interplay between the spectra of the
gas and the background plays an important role in this
case. In order to elucidate the effects, we choose a simple
piecewise linear background spectrum shown in Fig. 4,
along with the absorption spectra of sulfur hexafluoride
(SF6) and triethyl phosphate (TEP). If the background spec-
trum is flat over the support of the gas spectrum, as is the case
with SF6, then the only effect on CL estimation is a shift in
the effective background temperature if the emissivity is less
than unity. This effect is demonstrated in Fig. 5, in which
the CR bounds for γ̂ are plotted as a function of Tp and γ
for the background emissivity given in Fig. 4; the results may
be compared with those of Fig. 2(a), which assumed a black-
body background. The flat emissivity of ϵb ¼ 0.95 over
the support of the SF6 spectrum results in an effective tem-
perature shift of a few degrees. The situation is dramatically
different when the background emissivity is not flat over the
support of the gas spectrum, as is the case for TEP. In this
case, as shown in Fig. 6, the singularities in the CR bound for
γ̂ have disappeared, and the symmetry between plume tem-
peratures above and below that of the background has been
broken. It is apparent that the spectral structure in the back-
ground enables CL estimation, even in the limits of thin
plume or no plume-background temperature contrast, con-
firming the intuition from Eq. (12). Figure 7 shows two
cuts through Fig. 6(b). We observe that the CR bounds
still rise as the plume becomes opaque, as we expect,
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Fig. 6 Cramer-Rao lower bounds for CL estimation for TEP with a blackbody (a) and structured (b) background, both at temperature 295 K, as
functions of plume temperature Tp and CL.
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since the background cannot have influence when it is
obscured by the plume.

The examples presented so far all involve CL estimation
with a single on-plume pixel. We now relax this constraint
and consider the benefits available with multiple pixels,
assuming there is structure to the background that can be
exploited. We model the case of a background with constant
emissivity, but with a spatial gradient in temperature, as rep-
resented by Eq. (21). The first example we present is that of
a blackbody background with temperature gradient. We esti-
mate CL from an 8 × 8 pixel region, over which we assume
that the plume CL is constant. Figures 8 and 9 show the CR
bound for the CL estimate as a function of CL and temper-
ature gradient, with both the absence of a plume-background
temperature contrast and a contrast of 2 K at the center of the
sample region. It is apparent that the temperature gradient
enables CL estimation for arbitrarily thin plumes, eliminat-
ing the need for an ancillary plume temperature measure-
ment. A plume-background temperature contrast is seen to
be very helpful. For relatively small values of CL, the infor-
mation available from plume nonlinearities renders the gra-
dient information superfluous. For larger values of CL,
the increasing opacity of the plume impacts the variance of
the estimator, which gradient information cannot combat.

The behavior of the lower bound as a function of temper-
ature gradient and plume temperature is shown in Fig. 10.
When a spatial gradient is present, the need for a temperature
contrast between the background and the plume is elimi-
nated, although some such contrast is present due to the
effect of the gradient. However, this small residual contrast
can be quite small compared to that necessary for CL esti-
mation to be accomplished via the nonlinear effect only,
as can be seen from Fig. 9.

The effect of the spatial background variation acting in
concert with a structured background emissivity is shown
in Fig. 11. The emissivity, which is spatially constant
over the 8 × 8 region used for estimation, is the same as
that shown in Fig. 4, which has substantial overlap with
the TEP gas signature. Comparing Fig. 11(a) with the black-
body case in Fig. 10, both with CL set at 20 ppm-m, we
observe that even this modest amount of background spectral
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Fig. 9 Cramer-Rao lower bounds for CL estimation for TEP with a blackbody background with constant temperature gradient, as a function of CL
and gradient (a), with details near origin (b). The plume-background temperature contrast is 2 K.
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structure is sufficient to render both the plume-background
temperature contrast and background temperature gradient
irrelevant. When the CL is raised to 100 ppm-m in
Fig. 11(b), the plume-background temperature contrast
begins to play a role, but the background temperature gra-
dient is still overwhelmed by the other factors.

4.2.2 Measured background emissivities

An important question is whether the idealized background
emissivities used in the previous section are representative of
real materials. To address this issue, we present performance
bounds in which the background emissivities are drawn
from the ASTER library of measured spectra from real mate-
rials.20 We have chosen a sample of five materials, shown in
Fig. 12, to illustrate a range of possible behaviors. They are
ordered in the degree to which they resemble a blackbody
over the LWIR window; solid dolomite and conifer trees

are very black in this window, while coarse limestone exhib-
its some spectral structure, and arenite and conglomerate
rock have substantial spectral structures that overlap that of
TEP absorbance.

In Fig. 13, we demonstrate that the limit of an ideal black-
body is, for all practical purposes, attained by solid dolomite
over the LWIR band. The CR bounds on CL estimation with
the plume temperature assumed unknown are computed for
both SF6 (a) and TEP (b). We observe that these results are
almost identical with those of Figs. 2(a) and 6(a), which
assumed an exact blackbody background. In addition to
dolomite, there are other materials that behave similarly.

Finally, we explore the effect of a variety of natural back-
grounds in Fig. 14. We have chosen TEP for this illustration
as its relatively broad spectral support has substantial overlap
with many background spectra. In the LWIR band, conifer
trees are almost as good a blackbody as dolomite; Fig. 14(a)
shows that the CR bounds are very similar to those of
Fig 13(b), although small differences are apparent. In par-
ticular, the vertical ridge of high variance has shifted slightly
to a lower effective temperature,due to the fact that that the
trees are slightly gray, as opposed to black, and the horizontal
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Fig. 10 Cramer-Rao lower bounds for CL estimation for TEP with
a blackbody background with constant temperature gradient, as
a function of gradient and plume temperature. The CL product is
fixed at 20 ppm-m.
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Fig. 11 Cramer-Rao lower bounds for CL estimation for TEPwith the structured background emissivity of Fig. 4 and constant temperature gradient,
as a function of gradient and plume temperature. The CL is set at 20 ppm-m (a) and 100 ppm-m (b).
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ridge in the limit of small CL is slightly lower due to the
presence of some spectral structure. These differences are
more pronounced when the background is taken to be coarse
limestone, in Fig. 14(b). The presence of strong spectral
structure in the background, as in arenite, gives rise to a

very different pattern in the bounds, as seen in Fig. 14(c).
This pattern is similar to that resulting from the simulated
background of Fig. 6(b). An even more pronounced spectral
structure in the emissivity, such as with conglomerate,
results in further improvements in the CR bounds, as seen
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Fig. 13 Cramer-Rao lower bounds for CL estimation for SF6 (a) and TEP (b) with the background emissivity of solid dolomite.
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Fig. 14 Cramer-Rao lower bounds for CL estimation for TEP with background emissivities of conifer trees (a), coarse limestone (b), solid arenite
(c), and solid conglomerate (d).
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in Fig. 14(d). Between Figs. 13 and 14, we may conclude
that the two simulated background emissivities considered
in Sec. 4.2.1 are representative of the behaviors seen with
natural backgrounds, although the range of possibilities is
wide.

5 Conclusion
The mean CL is the central parameter to be estimated to
accomplish remote quantification of gaseous plumes. The
recovery of this parameter from hyperspectral data is not
a simple task, however, due to the complex, nonlinear
way it interacts with the rest of the scene, and due to the
nonidentifiability of the radiance model in the most common
limit, that of a thin plume with spectrally flat background.
The purpose of this paper was twofold: to separate the vari-
ous physical effects that may be exploited in order to esti-
mate CL and to obtain quantitative bounds on the quality
of such estimates that are independent of the specific algo-
rithms employed. These results are of great importance for
the design and assessment of both sensor systems and of esti-
mation algorithms. They enable the system designer to place
reasonable specifications on the sensor parameters, taking
into account the intended deployment scenario and gas spe-
cies of interest. The separation of the physical effects that
enable CL estimation allows the algorithm developer to
quantitatively choose which effects will be most profitable
to exploit. Finally, an operational system may be assessed
by comparing experimental quantification results with the
theoretical bounds that were derived here.
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