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Abstract— In this paper we present a state estimation method
based on an inertial measurement unit (IMU) and a planar
laser range finder suitable for use in real-time on a fixed-
wing micro air vehicle (MAV). The algorithm is capable of
maintaing accurate state estimates during aggressive flight in
unstructured 3D environments without the use of an external
positioning system. Our localization algorithm is based on an
extension of the Gaussian Particle Filter. We partition the state
according to measurement independence relationships and then
calculate a pseudo-linear update which allows us to use 20x
fewer particles than a naive implementation to achieve similar
accuracy in the state estimate. We also propose a multi-step
forward fitting method to identify the noise parameters of the
IMU and compare results with and without accurate position
measurements. Our process and measurement models integrate
naturally with an exponential coordinates representation of the
attitude uncertainty. We demonstrate our algorithms experi-
mentally on a fixed-wing vehicle flying in a challenging indoor
environment.

. INTRODUCTION
Fig. 1. Fixed wing experimental platform flying indoors lagéalg using

Developing micro air vehicles that approach the maneuvean onboard laser range scanner and inertial measurement unit.
ability and speed of birds flying through urban environments
poses a number of challenges for robotics researchers inin order to efficiently project the nonlinear laser measure-
terms of planning, control, and state estimation. Recemvent update of the vehicle position back through the state
work has demonstrated systems that can perform impressigtimate, we integrate the laser range-finder measurersent a
acrobatics [5] and other control feats [15], [16], howeverts a pseudo-measurement on a partition of the state space. The
systems are completely reliant on extremely accurate stgieuedo measurement is computed from a Gaussian Particle
estimates provided by external camera arrays. In contra§ijter (GPF) state update [13]. This technique drastically
vehicles that are capable of flight using state estimateeduces the number of particles required compared to a
computed from onboard sensor data are either confined tanilla implementation of a GPF, which in itself provides a
wide open areas without obstacles, or slow-moving hoveringarked improvement over a conventional particle filter [19]
vehicles such as quadrotors [2], [9]. Our algorithm enables realtime performance in the face of

The wide disparity between what is possible in terms othe computational limitations of the flight computer. We
agile flight with an external positioning system and whaguantitatively validate our algorithm on a dataset cotddty
has been demonstrated with onboard sensing suggests th@nually maneuvering the sensing components in a motion
state estimation from onboard sensors is indeed a sigriificagapture environment. Finally, we demonstrate the effeetiv
challenge in extending the capabilities of MAVs in real wdorl ness of our approach experimentally on a fixed wing vehicle
environments. In addition to providing good estimates opeing piloted in a challenging GPS-denied environment.
the system mean, the state estimation algorithm should alsoThe process model that accompanies the GPF measure-
accurately represent uncertainty so that control and ptgnn ment update is a based on an exponential-coordinates ex-
algorithms can be appropriately cautious around obstaclesnded Kalman filter that is driven by inertial measurements
and other state constraints [3]. We also propose a technique for estimating the uncertainty

This paper presents a state estimation method that psrameters of the IMU, namely gyro and accelerometer noise
suitable for use in real-time on a fixed wing MAV maneuvervariances, that is based on a multi-step projection of th&eno
ing through a cluttered environment. Our system leverage®smpared with smoothed state estimates. When the algorithm
an inertial measurement unit (gyros and accelerometeris)used with accurate position and orientation measuresnent
and a planar laser range finder in a filtering frameworkhe noise variances converge. When the method is used
that provides the accuracy, robustness, and computationgith inaccurate position-only measurements we still see
efficiency required to localize a MAV within a known 3D convergence, but also show that with noisier measurements,
occupancy map. the optimization is more sensitive to initialization.



Il. PROBLEM STATEMENT Since the error is parameterized ythe covariance can be

Assuming the MAV to be a rigid body and neglectingtracked in &3 x 3 matrix X, . The covariance can be thought
higher-order effects such as propeller speed and timengry Of as cones of uncertainty surrounding the body frame axes
airflow over the vehicle, the state of a MAV is given by itsdefined by the columns ak. A sketch of this uncertainty is
position and orientation and the associated linear andlangushown in figurd P for the covariance (in degrees):

velocities. For control purposes it is convenient to repnés 32 0 0

the velocities in body coordinates. Thus the goal of the s~ o0 5 o (5)
N . " T X

filter is to estimate the quantities w! vl R AT | 0 0 152

T . . .
wherew, = [p ¢ ] is th? angular velocity in body Thjs choice of coordinates for the filter error is desirable
coordinatesp, = [« v w | is the linear velocity in since fundamentally rigid body orientation, denoted mathe
body coordinatesR is the rigid body orientation rotation matically as the special orthogonal group (SO3), has three
matrix, andA = [ A, A, A, ]T is the translation degrees of freedom. While any three-element representation
vector from the origin in global coordinates to the originis provably singular for some orientation, more commonly-
of the body frame, expressed in global coordinates. used parameterizations (i.e., quaternions or rotatiomicea)

We assume a set of inertial measurements consisting wfll have constraints between the elements of the reprasent
3-axis acceleration, 3-axis angular rate measurements, dion. Thus a linearized filter covariance over the paranseter
exteroceptive measurements consisting of planar lasgerarwill not be full rank. Numerical errors pose the constant
scans. Further, we assume we have access to a 3D maptuokat of creating negative eigenvalues, and thus causing
the environment represented as an occupancy grid. the estimator to diverge. Furthermore, an efficient liresati
measurement update as is commonly-used in Gaussian filters

l. IMU P ROCESSMODEL does not respect the constraints and thus does not map onto

Our state estimation algorithm uses an Extended Kalma03. A renormalization scheme could be used after every
Filter (EKF) to estimate a Gaussian distribution over syste update, but at any given time the representation can be
states. The EKF process model is based on a discrete tinagbitrarily poor [20].
nonlinear discrete transition function: As we will see, the attitude uncertainty representation
is agnostic to the actual underlying orientation integnati
Tep1 = [, ue, wy) @ and tracking. Quaternions and rotation matrices are easy to
wherez; is the system state vectar; is the input vector to update based on usingin the estimator state vectar.
the system, andv, is a random disturbance drawn from a
normal distributionV (0, Q). The EKF tracks the state at time
t as a Gaussian distribution with meapand covariance,.
These first two moments are propagated forward according
to:

ferr = f(pe;ue, 0) (2

Sip1 = AtEtAtT + WtQWtT (3 ’ \“

wherej; andX denote predicted quantities before a measure-
ment update has occurred, andandV; are the appropriate

partial derivatives off.
A. Exponential Coordinates Attitude Uncertainty \

We track orientation uncertainty in perturbation rotasion
in the body frame. If the true orientation is given by the
rotation matrixR, we can writeR = RR(x) whereR is the
estimated orientation an#(y) = X" is the error rotation
matrix. y € ®* is the perturbation rotation about the bodyFig. 2. This figure shows the uncertainty representationoytexes. We

axes. We use thé symbol to the right of a vector to denote see that high variance on the z axis perturbation maps inge laotions for

: ; . the x and y bases. In our implementation we use a Forward-Lefthddy),
the skew symmetric matrix formed as: East-North-Up (global) (FLU, ENU) coordinate system as aggad to the

traditional aerospace frame of Forward-Right-Down, Ndttst-Down.

. 0 —x3 X2
X'=1 x3 0 -xi (4) .
—X2 X1 0 B. Process Equations
Taking the matrix exponential of a skew symmetric matrix |he equations of motion for a rigid body are given by:
returns a rotation matrix corresponding to a rotation gf Wy = JH(—wp x Jwp + 1) (6)

about the axis defined by where x is referred to as the o T_
exponential coordinates of rotation. v = _wl; X+ g+ ap (7)

In our expression for the true orientatio®(y) post R Ruwy, (8)
multiplies R which puts the perturbations in the body frame. A = Ruwp, 9)



wherer, is the torque applied to the body anglis the accel- IV. LASERMEASUREMENTUPDATE
eration in body coordinates. Since the IMU provides aceurat
measurements ab, anda;, we follow the commonly-used ) !
technique of omittingu;, from the state, neglecting equationmomentS of the nonlinear dynamics through our IMU equa-

[0, and treating the IMU measurements as inputs to the filtfons of motion, it is not well-suited to Integrating Iase.r
" : : measurements from unstructured 3D environments. Using
For the quantities used in equatioh 2 we have

such sensors directly in an EKF requires the extraction and

While the EKF is effective for propagating the first two

. correspondence of features such as corners, and line seg-
z=[w x A] (10)
ments from the sensor measurements, an error prone process
u= [ Ugyro  Uaccel ] (11)  that limits the applicability of the algorithms to enviroents
w = [ Wayro wacce|] (12) with specific structure [7]. In contrast Monte-Carlo tech-

nigues are widely used in laser-based localization algost
Combining this state representation with equatidh$ 7-9. because they allow for the lidar range measurements model
to be used directly in the measurement function [19].

0p While particle filters are efficient enough for effective
fe(ze,up,w) = | R (13) use in localizing a 2D mobile robot, they require too many
A particles to be used for the estimation of a 3D MAV. For-
—wp X vy + RTG + guiaccel tunately,_ we can obtain the best aspects of both aIgoriFhms,
_ Rul (14) and a significant speedup can be realized by employing a
Rf}i’ro hybrid filter that uses an IMU-driven EKF process model
’ with pseudo-measurements computed from Gaussian Patrticle
Taking the appropriate partial derivatives we get: Filter (GPF) laser measurement updates [13].
oty _ [ (RT9)" 0] (15) A. Gaussian Particle Filters
%x, In its standard form, the GPF maintains a Gaussian distri-
I9X _ [ 0 —wp 0 ] (16) bution over the state space given a measurement histony give
O by P(x¢|z0.t) = N(x¢; e, X¢). However, at each iteration
0A ~[R —Ro) 0] 17) of the filter, particles are used to incorporate nonlinear
or b process and measurement models. To comp\ite 1 |2o.¢)
M
for a continuous dynamics linearization of: a set of sampleq;”};2, is drawn from N (u,, %) and
the samples are then propagated through the process model
—w) (RTg)" 0 f(x¢,up, wy). To perform the measurement update the sam-
A — of _ Ob —oh 0 (18) ples are weighted according to the measurement model
Ox R _Rq’ij 0 w? = P(z]2"). The updated Gaussian at the end of an
iteration of the filter is then obtained as the weighted mean
and for the input vector we have: and covariance of the samples
06 TM @) 0)
% = [ ’Ug\ g[ ] (19) /’Lt+1 = J=1 (Jt) ! (27)
ox e .
ou - [ 0 ] (20) > ij=1 wf@(xgj) - Mt—O—l)(I)E,J) - Mt+1)T (28)
A t+1 = :
A (4)
% =[0 0] (21) Wt
“ By, Assuming the underlying system is linear-Gaussian, the filt
W— of | 8y 29 is shown to approximate the true distribution arbitrarilgliwv
<7 9r g@ ‘ (22) with a large number of samples. The GPF filter differs from
Em a standard particle filter by maintaining a unimodal Gaussia

distribution over the posterior state instead of the aabjtr
V\(ﬁossibly multi-modal) distribution represented by the afe
particles in a conventional particle filter.
A straightforward implementation of the GPF for state
estimation using a laser on a MAV is impractical and

While more sophisticated approximations could be used,
construct the discrete quantities for the filigrA;, and W;
using Euler integration:

e, u, 0) = ze + fo(we, us, 0)dt (23) inefficient for two reasons:
Ap =T+ Acdt (24 1) IMU dynamics are well-approximated by linearization
Wy = Wedt. (25) as evidenced by the widespread use of EKFs in GPS-
i ) IMU state estimation.Thus, a particle process model
We integrate the attitude separately as adds significant computational burden and sampling
A error, without significantly improving the estimate of
Riy1 = RiR(ugyo) (26) the posterior density.



2) The IMU filter maintains additional states to trackPlugging in the identity matrix fo€, the above equations
velocity and IMU biases, however the laser measurezan be solved foR;

ments are only a function of the position and orienta- _ . =,  co T/ ome  omsT _1am
tion, parameterized byA and x in our formulation. Bt =8 - RO TH(CTE(CT)T 4 Re) TN (37)

In fact, most of the orientation information in the R, = (S —Sm gmym )~ _gm (38)

measurement exists in the plane of the laser contained - -

. P e (39)
5

To address the first issue we only use the GPF to perforwmhere we make use of the matrix inversion lemma between
the measurement update, and instead of propagating saequations 38 and 89.

ples through the measurement function, we sample directly Using R; we can now solve for the Kalman gain that
from the prior distribution returned by the EKF after thewould have produced the same change between our prior
process stepN(ji,%). To address the second issue abovand posterior covariance using equafioh 34 and then recover
we explicitly partition the state according to independencthe actual measurement that would have produced the same
relationships in the measurement function. We perform ehange in the mean of prior vs. posterior distributions:
standard GPF measurement update on the partitioned state m=1' m —ms —m

and use this to compute a pseudo-measurement which is then z= K™ (" — ") + g (40)

used to update the full state. A Kalman gain for the entire state can then be computed

i usingR; andz;, and a standard Kalman measurement update
B. Partitioned State Update 9. “ P

performed.
The state is partitioned as, The posterior distribution quantities” ' andx™ ' are
o readily available from the GPF measurement update on the
Ty = [ Tyt Ty ]7 (29)  measurement part of the state vector. Naively one might

where z;" € R* is the part of the state that affects theijos ee\t/gtlauzc;tguzsﬁgtigrr.l:Boma_fg tgivig\ljéele;;v erja(:];ﬁ;/gg
measurement, and} € R"~* is independent from the 9 o e g
we care aboutR; and z;, are obviously sensitive to the
measurement. More formally we assume our measureme . ! .
. Iference between the prior and posterior mean and covari-
function has the form . e .
ance. With a finite number of samples there will be some

2= h(z",v1), (30) error between the distribution described by the sample set
N _ o {x,’g”(’)}Jle and the Gaussian prior. This error will carry over
permitting the independence factorization to the weighted sample set which approximates the posterior

We can compensate by using the mean and covariance of the
prior sample distribution instead of our analytic expressi

for ;" and¥7". In practice, this substitution makes an enor-
mous difference, particularly with low numbers of partgle

P(z|2l, ™) = P(z]|z™). (31)

We can similarly partition the covariance

$(m*)  §(mp) (which is highly desirable in a real-time application).
= alom) ) (32) Finally, we note that the solutions fdt, and z, hinge on
2 2 the invertibility of C"* which is a proxy for the invertibility

To perform the measurement update we draw sampl@§ our measurement functioh in equatio 3D with respect

mAM  from N(a™.5™). The samples are weighted © %" It can be difficult to knowa priori if the measurement
= 1 (", X). P g iy well conditioned or invertible. If it is not (i.e., if the

with the measurement function in equatiod 31. From thes - i
weighted samples we can compute an updatefor” | : measurement does not actually contain information about
# : . ) "
z¢) using the conventional GPF weighted mean and covarp me piece va;") the'.q theRt matrix may not _be positive-
ance as in equatiors127 ahd] 28. The key idea is to th&(?ﬁm_te, leading to af|Ite_r divergence. Thus it is necessary
use the GPF update on the state variables that affect {Reactice to per.form.an eigenvalue decomposnmullgrand :
measurement to propagate a Kalman update to the rest Bt any negatlve e_ngenvalues to a large C‘?”Staf“ (implying
the state no information gain along the corresponding eigenvector)

To perform a Kalman measurement update we need d then_ reconstruct the_ mat_rix. This step a!so protects
know the measurement value, the covariance of the e algorlthm from negative eigenvalues entering through
measuremenk, and the observation matrig'. Firstly, we sampling errors.
setC as a selector matrix for the measurement part of the. | aser Localization

state The likelihood evaluation proceeds according to standard

techniques used in 2D localization. We blur the a 3D
occupancy map stored as an OctoMap [21] using a Gaussian
kernel around occupied cells. To perform particle measure-
Km=3ymcm™mTems, o™t + R)~! (34) ment updates we project the current scan intp the map using
W= g K™z — O™ (35) the sampled patrticle state, and_su_m the Iog-l_lkellhood of _t_h

¢ ¢ b t reached cells before exponentiating to obtain a probgbilit
o= - KmOm)RR (36)  with which to weight the particles.

C=1[1I Ouny . (33)

A measurement update ari* would proceed as:



An interesting question is the appropriate partitioning ofjrowth in covariance without position updates. The error on
the state vector for the updates described in the previotise smoothed estimate (with position updates), on the other
section. The use of planar LIDARs to localize in the plandand, must be bounded (even if the smoothing occurs with
is ubiquitous, suggesting that when working in 3D, laseincorrect noise parameters) since the system is observable
range scans should at least contain information aboutghe Additionally, by projecting the noise forward over mulépl
plane andy (orientation about the yaw axis of the vehicle).steps, the parameters we identify will be suitable for use in
However, in general, a planar slice of a 3D environmenplanning algorithms that require open-loop predictionp [3
may contain some information about the full orientation, buand the parameters will work with intermittent measurement
populating the 6D pose space parameterizeg bndA with  functions as may be the case for laser localization in sparse
particles may produce limited extra information relatige t environments.
the computational cost incurred, especially because tieetdi  Using the linearized dynamics from the EKF we can
formulation for our filter based on exponential coordinategroject the filter covariance forwary steps by repeatedly
is capable of inferring attitude from accurate positiag4) applying equationsl3 3. Neglecting the error on the smoothed
measurements. We investigate different choicesaférin  estimate, we obtain the expression:

our experiments. . N .
P E [($t+N — &) (Le4N — $t))T] =N (43)

V. IDENTIFYING THE PROCESSNOISE PARAMETERS N-1
. . . T
Due to the symmetry of the inertial sensors in the IMU, we =Y GinQGl, n (44)
assume the process noise covariagces a diagonal matrix i=0

populated as whereG; v = [[*LV " A, W,. This is an important quantity

[ qgyrol3 0 41 for our nois id’erftﬁcation algorithm because it maps the
Q= 0 accells (41)  noise at each time step onto the state vector at time\.

, , .. We can see that for identifying characteristics of the psece
and gaccel and qgyro are the parameters we wish to identify.ngise 4, must be neutrally stable anid; must have full
Two issues lead to difficulty with finding these valuescolymn rank. 14, is highly unstable, th&, y will be overly
First, the way the noise projects onto the state changggnsitive to the noise values for smalli, whereas if4, is
with the time-varyingV, matrix such that the) matrix  pighly stable s, v will be dominated by larger values of
cannot be recovered in closed form simply by summing thgnq thus the forward projection offers little benefit. Hoeev
outer product of sampled error. More importantly we cannghany rohotic systems, including our IMU dynamics, exhibit
depend on the availability of ground truth measurementzg,pl:,roximate|y neutrally stable behavior.
of the measured quantities, since even accurate posigjonin’ g, neutrally stable systems, a& gets large we expect
systems do note directly measure acceleration and angu@tr >> T,. We can then divide up the datasat to get
rate. Further, the behavior of the sensor may be different; _ T/N samples from prediction distributions obtained

under actual flight conditions due to vibration and loadingyy, syptracting the state at timtgng = iN + N — 1 from
effects and thus the values obtained in a static test may gk state at timepegin = i N for i € [0, M — 1]. This gives

hold. L ) us M samplesy; = ¢, — Tp,q, drawn from distributions
Nonetheless it is desirable that the model parameters, aRg St N) = P4, |24,..). We have a joint likelihood
I begin; end|“” Lbegin/ *

especially the process noise parameters, be accurate. kfction for our data given the parameters(@fas:
planning purposes we must be able to predict distributions
over future states to guarantee safe trajectories. Withan t
context of state estimation and Monte-Carlo localizatias, P(Ylzo,Q) = H P(zin+n-1]zin, Q). (45)
we describe in sectidn IVAC, it is important that an accurate i=0

covariance of the state estimate be maintained when sen$de would like to maximize this probability for which we
data is sparse or absent, such that the state estimate caruge the log-likelihood function,

M-—1

can be properly distributed to obtain measurements when =
they become available. WY | N log |3 + 4TS v 46
While we do not have access to ground truth acceleration (Yo, @) 2 Z g%l + v Ry (46)

. . ) . i=0
and angular rate with which to estimate the noise parameters S d N imizing f
we can post-process data using a Kalman smoothing algl('_)tom an intuitive standpoint we are optimizing for the

fithm to obtain a state histor — [ 20 &1 ... &p parameters that would produce the observed drift away from
with the error associated with each smoothed state estimdfi¢ Smoothed estimate given by the samples .
given by We setup and solve the optimization using standard nonlin-

. . T ear programming techniques. Specifically we use the interio

Li=F [(xt — @) (@ — ) ] (42) poinE[) m%thod im?olementqed in Miltlab to )éolve for the maxi-
The key idea in our approach is in projecting the processium likelihood values 0fgyro and gaccet These new values
noise forward over multiple time steps such that the processe then used to obtain the Kalman smoothed trajectory, and
noise dominates the error in the smoothed estimate, thtlse process is repeated until convergence.
allowing us to treat the smoothed estimate as ground truth. To identify the noise parameters of the IMU we flew
This works because the IMU process equations are neutratiyr experimental vehicle (described below) outdoors with
stable and thus the perturbing noise results in unboundedliow cost uBlox GPS unit. We also collected a dataset in



TABLE |
NOISE PARAMETER VALUES

Optimal IMU Noise Parameters vs. Lookahead Time

@
Source Gyro Noise (deg/s) Accelerometer Noise (p) §’ 0.4
Vicon Optimization 0.35 0.0042 e
GPS Optimization 0.34 0.0182 502
Manufacturer 0.2 0.005 o
0 ‘ i j
Orientation Error 0 5 10 15 20
4
3 .
2 5 0.02 K/ —
£2 i
g g 0.01
o
L e —
1 . —— . . ;
‘ ‘ ‘ ‘ 0 5 10 15 20
00 5 10 15 20 Optimization Lookahead time (seconds)
Time (s)
Position Error Fig. 4. This figure shows values fggyro andgaccei0Obtained by optimizing
401 equatior4b for different lookahead times (valuesh\dfscaled by sampling
vicon A frequency) for both GPS and vicon. For small time the optimals&oi
30}| = = = vicon—predicted ‘ parameters obtained with GPS are dominated by the error inntbetsed

gps

sicted estimatesI';, but we see for largeV consistent values are reached. The
= = = gps—predictel

vicon dataset is less susceptible to this issue. It is intEng to note that
as lookahead time increases fewer “samples” are availabie &alataset
of fixed size, and thus the computed noise values have highanca,
implying some optimal lookahead window to identify the paramsete

20t

Meters

10

0 5 10 15 20 noise parameters.

V1.

Our experimental platform consists of a custom built
fixed-wing vehicle carrying a payload of a Hokuyo UTM-
30LX laser rangefinder, a Microstrain 3DM-GX3-25 IMU,
and a 1.6GHz Intel Atom base flight computer. We con-
a high accuracy indoor motion capture system. Optimizeducted a number of flight tests in the indoor environment
noise parameters for a lookahead time of 20 seconds akown in Figure[5(a). While we did not have access to
shown in tabld]l with the manufacturer specified values foany sort of ground truth state estimates, we were able to
comparison. test our algorithms on real flight data. The accuracy of

The optimization on the vicon dataset converges quicklpur state estimates are validated qualitatively by looking
and consistently. However, when the optimization is pemt the accurate reconstruction of the 3D environment by
formed on the GPS dataset the optimization is more sensitiveprojecting the laser points using our state estimateg. On
to initial conditions and window size. The vicon systemsuch 3D point cloud is shown in Figuré 5(b). To get a better
measures attitude directly, thus the smoothed attitude deel for the experiments, we invite the interested reader to
timate is dominated by the actual measurement. With thdéew the videos of the experiment available on our website:
GPS dataset, attitude must be inferred from position ugdatettp: 77 groups. csai . mt.edu/rrg/icral2-agile-flight
which means the attitude estimate will be more strongly To quantify the error of the state estimator, we aggresgivel
correlated with the IMU noise, thus making it more difficultmaneuvered the sensing payload in a high accuracy vicon
find the underlying noise parameter. Additionally, the GP$otion capture studio. While the motion of the sensing
measurements are subject to time-varying bias which is npayload will certainly be very different when the vehicle is
modeled in our filter. Nonetheless, the optimization foiovic flying, the data allows us to evaluate our algorithms with a
and GPS converge to nearly identical values for the gyrground truth comparison. These ground truth state estgnate
noise at at 20 second window. The relative sensitivity to thallow us to evaluate the properties of our state estimation
window size for the GPS optimization can be seen in figuralgorithm. Results for different number of particles and
4 different partitions of the state vector are summarized in

The noise parameters in talfle | were used to generate thigure [6. We can see that by not partitioning the state
predicted error lines in figufd 3. We can see that the predlictend performing standard GPF updates we incur significant
error for GPS and vicon are very close for orientatiorcomputational cost in terms of number of particles to adhiev
as we would expect from the tabular values. In positiorthe same level of accuracy. This increase in the number of
the deviation is also small which is surprising given thearticles is to be expected given that we are using particles

EXPERIMENTAL RESULTS
Fig. 3. This figure shows the predicted normed error and theahnbrmed
deviation from the smoothed estimates as a function of lod@lttene
for the optimization run on both the vicon and GPS datasetsh \ttie
optimized values we can accurately predict uncertainty fh kestimation
and planning purposes.

large difference in optimized accelerometer noise vallibs.
reason for this is that the positional uncertainty is laygel
function of angular uncertainty resulting in the gravitycter
being misinterpreted as lateral acceleration. This higité
another difficulty in teasing apart the relative affect oé th with linear velocities up t®m/s, and angular rates of up to

to capture the same correlations that are well captured
analytically by the Kalman pseudo-measurement update.
The experiments demonstrate the ability of our algorithm

to maintain accurate state estimates in the face of fasbmoti


http://groups.csail.mit.edu/rrg/icra12-agile-flight

@ (b)

Fig. 5. A picture of the indoor space (a) where we flew our fixadgawehicle. The space is roughly 12 meters by 20 meters and ehicle flies
between 6 and 10 m/s, thus aggressive maneuvering and tigitimdus required to stay airborne. The trajectory flown by Wedicle is shown by the
red, green, and blue axes in (b). The quality of the statenastis is evident in the (height colored) point cloud renderdg the state estimates of our
algorithm. The floor and ceiling were cropped for visual ¢iari
360 degrees per second. While a naive implementation sefeady state behavior of a linear time invariant system and
the GPF measurement update correctly estimates the state thus unsuitable for the time varying system that results
of the vehicle with a sufficient number of particles, thefrom linearizing a nonlinear system [14]. More recent work
required number of particles is dramatically larger than fooptimizes the likelihood of a ground-truth projection oeth
the partitioned state version. The naive GPF implememtaticstate over the noise parameters but thus requires the system
would not be able to run in realtime on board the vehiclée fitted with a sensor capable of providing ground-truth
given the computation power available. for training. [1]. Our algorithm does not require the use of
additional sensors, or external ground truth.
VIl. RELATED WORK Laser rangefinders combined with particle filter based

State estimation using Kalman filtering techniques ha®calization is widely used in ground robotic systems [19].
been extensively studied for vehicles flying outdoors where/hile planar lidars are commonly used to estimate motion
GPS is available. A relevant example of such a state esti the 2D plane, they have also proved useful for localizatio
mation scheme developed by Kingston et al. [12] involvei 3D environments. Prior work in our group [2], as well as
two Kalman filters where roll and pitch are determined bythers [18], [6] leveraged a 2D laser rangefinder to perform
a filter driven by gyro readings as system inputs while th6€LAM from a quadrotor in GPS-denied environments. The
accelerometer measurements are treated as a measuremesgysfems employ 2D scan-matching algorithms to estimate
the gravity vector, assuming unaccelerated flight. A sdéparathe position and heading, and redirect a few of the beams
filter estimates position and yaw using GPS measurementi® a laser scan to estimate the height. While the systems

This approach is representative of many IMU-based esrave demonstrated very good performance in a number
timators that assume zero acceleration and thus use tiherealistic environments, they must make relatively sgron
accelerometer reading as a direct measurement of attitudesumptions about the motion of the vehicle, and the shape
(many commercially available IMUs implement similar tech-of the environment. Namely, they require walls that aretleas
niques on board using a complementary filter). While thitocally vertical, and a mostly flat floor for height estimatio
approach has practical appeal and has been successfully uag a result, the algorithms do not extend to the aggressive
on a number of MAVS, the zero acceleration assumption dodlight regime targeted in this paper. Scherer et al. use laser
not hold for general flight maneuvering and thus the accuraggngefinders to build occupancy maps, and avoid obstacles
of the state estimate degrades quickly during aggressiwhile flying fast through obstacles [17], however they rely
flight. on accurate GPS measurements for state estimation, and do

Van der Merwe et al. use a sigma-point unscentedot focus on state estimation.
Kalman filter (UKF) for state estimation on an autonomous In addition to the laser based systems for GPS-denied
helicopter[20]. The filter utilizes another typical appthba flight, there has been a significant amount of research on
whereby the accelerometer and gyro measurements are wision based control of air vehicles. This includes bothdixe
rectly integrated to obtain position and orientation ané arwing vehicles [11], as well as larger scale helicopters [4],
thus treated as noise perturbed inputs to the filter. O(it0], [8]. While vision based approaches warrant further
filter utilizes this scheme in our process model, howevestudy, the authors do not address the challenge of agile
we use an EKF with exponential coordinates based attitudigight. This is likely to be particularly challenging for v&n
representation instead of the quaternions used by Van dsgnsors due to the induced motion blur, combined with the
Merwe et al. computational complexity of vision algorithms.

Techniques to identify the noise parameters relevant for Recently, Hesch et al. [7] developed a system that is
the Kalman filter emerged not long after the original filtersimilar in spirit to ours to localize a laser scanner and INS
however the most powerful analytical techniques assunfer localizing people walking around in indoor environment
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Fig. 6. This figure shows the percentage of trials where ther filiverged [7]
(a) and the mean velocity error verses the number of particded in the

GPF (b) for different state partitions in the measurement. Aseeted,

the more states we use in the measurement function the morelgmrtic
are required to obtain satisfactory estimates. In a naive emphtation [8]
where the full state is used in the measurement and thus a staGdRE
update performed, we require 2000 particles to get similaiopaance to [9]
a measurement update ik using only 100 particles. Thus our algorithm
yields an effective 20x speedup.

They make a number of simplifying assumptions such ddol
zero velocity updates, that are not possible for a micro aji1)
vehicle. Furthermore, they model the environment as a set
of planar structures aligned with one of 3 principle axes,
which severly limits the types of environments in which thei
approach is applicable. Our system uses a general occupanc
grid representation which provides much greater flexibilit (1
of environments. [14]

VIIl. CONCLUSION [15]

In this paper we presented a state estimation algorithm
for a fixed wing vehicle based on an IMU and laser rang&®!
scanner. Our algorithm provides a novel extension of the
Gaussian particle filter and an exponential coordinates lifil7]
earization of the IMU dynamics equations. We have demon-
strated the performance of our algorithms on two challegging)
datasets. The quantitative analysis in motion capturelglea
shows the advantages of our extensions to the Gauss‘ggﬁ
particle filter algorithm, while the accurate map generate
during the flight tests demonstrate the absolute accuracy [66]
our algorithms.

Integrating the state estimation algorithm with planningz1j
and control algorithms to perform closed-loop flight indoor
remains for future work. We are particularly interested in
using the state estimates in our previously developedagbrti
observable planning frameworks.

developed for the laser rangefinder will extend to incorfmra
additional measurement types, thereby further improvirgg t
capabilities of our system.
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