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We report the demonstration of phase-locked arrays of surface-emitting distributed-feedback �DFB�
terahertz quantum-cascade lasers with single-mode operations. Carefully designed “phase sector”
locks several surface-emitting DFB laser ridges in-phase, creating tighter beam-patterns along the
phased-array direction with full width at half maximum �FWHM��10°. In addition, the phase
sector can be individually biased to provide a mechanism of frequency tuning through gain-induced
optical index change, without significantly affecting the output power levels. A tuning range of 1.5
GHz around 3.9 THz was achieved. This fine tunability could be utilized to frequency- or phase-lock
the DFB array to an external reference. © 2010 American Institute of Physics.
�doi:10.1063/1.3358134�

The best terahertz �THz� quantum-cascade lasers �QCLs�
in terms of high-temperature operation have been demon-
strated based on the metal-metal �MM� waveguides,1,2 which
provide strong mode confinement and low waveguide losses.
However, the subwavelength confinement in the vertical di-
mension results in divergent beam-patterns.3 The second-
order surface-emitting distributed feedback �DFB� laser4,5

improves the far-field beam-patterns while preserving the
benefit of MM waveguide; but due to the asymmetric dimen-
sion of light emitting area, the beam-pattern is tighter along
the grating direction and much broader in the cross direction.
In order to expand the coherent light emitting areas in both
directions, approaches such as two-dimensional photonic-
crystal structures on MM waveguides,6,7 and integrated horn
antennas8 have been developed. An ingenious solution for a
tight and symmetric beam pattern was developed recently
based on a third-order DFB structure.9 In this letter, we
present another method of generating symmetric beam pat-
terns by using phase-locked arrays of second-order DFB la-
sers. The physical separation of the DFB laser ridges reduces
the average power dissipation per effective light emitting
area, which is advantageous for continuous wave �cw� opera-
tions. Different DFB laser ridges in the array are coupled
through carefully designed phase sectors. Each laser ridge is
engineered to be locked in-phase with each other. This
phase-locked laser array has tighter beam-patterns along the
array-direction, which is orthogonal to the DFB grating di-
rection. Furthermore, independent bias of the phase sector
produces a fast and fine frequency tuning for frequency- or
phase-lock the array to an external reference.

In order to phase-lock all elements in an array, there are
four coupling schemes in integrated diode laser systems—
laser ridges are coupled through exponentially decaying
fields outside the high index dielectric core �evanescent-
wave coupled10� or through the Talbot feedback from exter-
nal reflectors �diffraction-wave coupled11� or by connecting
two ridges to one single-mode waveguide �Y-coupled12� or
through lateral propagating waves �leaky-wave coupled13�.
Among these coupling schemes, leaky-wave coupled devices

show the most robust operation.14 The evanescent-wave
coupled scheme suffers several disadvantages. First, due to
the decaying nature of evanescent waves, couplings beyond
nearest neighbors are negligible, leading to poor modal dis-
crimination between adjacent modes. Besides, evanescent-
wave coupled devices tend to favor out-of-phase mode and
therefore it is not ideal for single-lobe operations.15 The
diffraction-wave coupled scheme generally relies on external
optical feedbacks. For a MM waveguide with 50 �m width,
the reflectivity of a facet at THz can be �90%,16 which
makes sufficient feedbacks challenging. Y-coupled schemes
have been demonstrated in mid-infrared QCLs,17 but in gen-
eral, these devices show undesirable self-pulsation dynamics
between in-phase and out-of-phase modes18 due to spatial
hole burning effect.

In order to incorporate the leaky-wave coupled scheme,
couplings between laser ridges must occur through propagat-
ing waves, which, for MM waveguides, does not exist in the
lateral direction. A solution to that is as following: consider
two identical DFB lasers which lase at the same frequency
but with arbitrary phase relations. When connecting these
two lasers through a phase sector in series, standing waves
will form inside the phase sector and force the phase relation
between the two lasers to be either 0 or �. The proposed
laser arrays consist of two parts—DFB laser ridges and
phase sectors. A series of apertures are opened on the top
metal of the DFB ridges to form second-order gratings. A �
shifter is implemented in the center of the grating to achieve
single-lobe beam-patterns along the DFB direction. Tapered
ends are used to connect the DFB ridges and the phase sec-
tors �with a narrower width� in order to ensure single-lateral-
mode operations across the whole array. The DFB laser
ridges and phase sectors are electronically isolated by gaps
on the top and side metals.

Figure 1�b� shows the surface losses versus eigenfre-
quencies of the fundamental lateral modes from a finite-
element three-dimensional simulation of a three-ridge
surface-emitting DFB array. By choosing a proper phase sec-
tor length, the desired in-phase mode will have the lowest
surface loss and therefore will be the lasing mode. The trans-
verse magnetic fields for the in-phase, out-of-phase, and ad-a�Electronic mail: wilt_kao@mit.edu.
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jacent modes are shown on Fig. 1�c�. The in-phase mode
has single-lobe, while out-of-phase mode has dual-lobe far-
field beam-patterns along the array direction �shown in the
insets in Fig. 1�b��. The proper length �s� of the phase sector
is determined by the so called “resonance condition” in
Ref. 14,

s = m
�ps

2
, �1�

where �ps is the wavelength along the propagating direction
inside the phase sector and m is an integer number. The laser
array is operated in the in-phase/out-of-phase mode when m
is odd/even.

The THz QCL gain medium, labeled as FL183S grown
by molecular-beam epitaxy �wafer VA0094� was first Cu–Cu
thermal bonded with a n+ GaAs receptor wafer, annealed,
and substrate-removed to expose the 10 �m thick QCL
structure. The highly doped top contact layer was then etched
away. The grating was defined by using image reversal pho-
toresist AZ5214 and a lift-off process �Ta/Au, 25/350 nm�.

To obtain outward sloped sidewalls for biasing the laser
ridge from the side, the same special wet-etching techniques
described in Ref. 4 was used to define laser ridges and phase
sectors. A 300-nm-thick SiO2 was blanketedly deposited as
the electric isolation layer, followed by a buffered oxide etch
to open the top of ridges. The bonding pad and the metal on
sidewalls were defined by another lift-off process �Ta/Au,
25/500 nm� using negative photoresist NR71–3000P �Futur-
rex, Inc.�. The wafer was further lapped down and the bot-
tom electric contact �Ta/Au 25/250 nm� was deposited. The
devices were then cleaved, die sawed into smaller subchips,
In/Au die-bonded to a copper chip carrier, wire bonded, and
then mounted to a pulsed tube cryorefrigerator, where the
L-I-V characterizes of the devices were measured at a tem-
perature of 10 K in pulse mode using a He-cooled Ge:Ga
photodetector. Unfortunately, due to contamination in metal
layers, the lasing threshold of the DFB devices �Jth� in-
creased to �800 from 550 A /cm2 of simple Fabry–Perot
devices fabricated using similar wet etching. As a result, the
highest pulsed operation temperature is only �30 K, and no
cw operation can be achieved with the DFB arrays.

Figure 2 shows pulsed I-V curves from a single ridge
DFB laser and an array of six ridges. The scaled I-V curve of
single ridge device matches well with the measurement from
a six-ridge DFB array, indicating the uniformity of devices
and bias conditions. The L-I measurements in the inset also
show similar behaviors for both devices. The device emits
�1 mW pulsed power at 10 K. The length of individual
ridge is �500 �m and the distance between adjacent ridges
is 100 �m.

Figure 3 shows the measured far-field beam-patterns
along the array direction �x-direction� for different laser ar-
rays. It is clear that all array devices show phase-locking
behaviors. Both double-ridge arrays have identical laser
ridges but different phase sectors lengths �different m num-
bers in Eq. �1��. They emit at almost identical frequency but
are locked in different spatial modes. This demonstrates that
the laser array can be operated in either in-phase or out-of-
phase mode by choosing different resonance conditions
which is a signature of leaky-wave coupled scheme. The

FIG. 1. �Color online� �a� Diagram of a three-ridge surface-emitting DFB
array. �b� Computed surface losses vs eigenfrequencies from three-
dimensional finite-element method simulations on the same array. For the
particular length of the phase sector used in the simulation, the in-phase
mode �a� has the lowest surface loss. Adjacent mode �b� and out-of-phase
mode �c� are also labeled. The insets show the far-field beam-patterns along
the array direction for in-phase and out-of-phase modes. �c� Computed
transverse magnetic fields for different spatial modes and their correspond-
ing H-field magnitude diagrams along x direction.

FIG. 2. �Color online� Pulsed I-V curves from a single ridge DFB laser
�solid line, near bottom� and a six-ridge DFB array �solid line, near top�. The
scaled I-V curve of the single-ridge device �dotted line� is also shown. The
Jth of six-ridge device is 815 A /cm2 as compared with 810 A /cm2 of the
single-ridge device. The emission spectra from the six-ridge device are
single-mode at all biases. The scanning electron microscope �SEM� picture
of a similar array device is also shown in the inset. The main laser ridges
and the phase sectors have different bonding pads �labeled as A and B in the
picture, respectively�.
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six-ridge array is operated in the in-phase mode and its far-
field beam-pattern shows a single central lobe with FWHM
�10°, which agrees well with the simulation. Due to a fab-
rication error, the � shifter was implemented too small and
thus failed to achieve the desired single-lobe beam-patterns
along the DFB direction �y-direction�. Even though these
devices showed dual-lobe beam-patterns in the DFB direc-
tion �y�, it does not affect the working principle of the phase
sectors and also the demonstration of phase-locking along
the array direction �x�.

In addition, the phase sector can be individually biased
to provide another frequency tuning mechanism through
gain-induced optical index change, without significantly af-
fecting the output power levels. For a gain medium with
60 cm−1 peak gain at 3.8 and 1 THz Lorentzian linewidth,
about 0.4%–0.6% change in optical index can be achieved,
assuming 10% of field energy resides in the phase sector.
This will induce �0.05% change in frequency �correspond-
ing to �1.9 GHz�. Figure 4 shows the measured frequency
shift in the emission from a seven-ridge laser array versus
different phase sector biases. A tuning range of 1.5 GHz out
of 3.9 THz ��0.04%� was observed. This fine and fast
�compare to temperature tuning� tunability is desirable for
frequency- or phase-locking applications.

In summary, we report the phase-locked array imple-
mented in THz QCLs. The phase-locking is achieved through
phase sectors between laser ridges. Up to six laser ridges are
locked in-phase with single-lobe far-field beam-pattern
�FWHM�10°� along the array direction. The laser array can

be further modified to enable biasing individual lasers and
thus control the amplitude of the wave front across laser
arrays, obtaining beam-steering capability. Even though the
phase-locked arrays are demonstrated with surface-emitting
lasers, the same coupling method can be applied to other
types of MM waveguide lasers, such as the third-order DFB
lasers,9 for additional functionality.
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FIG. 3. �Color online� Far-field �20 cm� beam-patterns along array direction
�x� �solid circles� and simple point source simulation using measured emis-
sion frequencies ��127.5 cm−1� and the distance �100 �m� between ridges
�solid line� for different laser arrays. For single-ridge device, the simulated
curve is the diffraction pattern of a single slit with the width of ridge. From
top to bottom: single-ridge laser, a double-ridge array operated in the out-
of-phase mode, another double-ridge array operated in the in-phase mode,
and the six-ridge array �as shown in Fig. 2�. The THz emission image from
the six-ridge array taken by the microbolometer camera used in Ref. 19 is
shown in the inset. The one-dimensional beam-pattern was measured along
the dotted line.

FIG. 4. �Color online� Frequency shift of the emission from a seven-ridge
array vs dc biases on the phase sectors. Pulsed L-I-V measurements of main
laser ridges �inset� and a closer look of the phase sectors �SEM picture�.
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