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Abstract

This research further develops the light field and lumigraph image-based rendering
methods and extends their utility. I present alternate parameterizations that permit
1) interactive rendering of moderately sampled light fields with significant, unknown
depth variation and 2) low-cost, passive autostereoscopic viewing. Using a dynamic
reparameterization, these techniques can be used to interactively render photographic
effects such as variable focus and depth-of-field within a light field. The dynamic
parameterization works independently of scene geometry and does not require actual
or approximate geometry of the scene for focusing. I explore the frequency domain and
ray-space aspects of dynamic reparameterization, and present an interactive rendering
technique that takes advantage of today's commodity rendering hardware.

Thesis Supervisor: Leonard McMillan
Title: Assistant Professor
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Chapter 1

Introduction

Traditionally, to render an image, one models a scene as geometry to some level of de-

tail and then performs a simulation which calculates how light reacts with that scene.

The quality, realism, and rendering time of the resulting image is directly related to

the modeling and simulation process. More complex modeling and simulation leads

to higher quality images; however, they also lead to longer rendering times. Even

with today's most advanced computers running today's most powerful rendering al-

gorithms, it is still fairly easy to distinguish between a synthetic photograph of a

scene and an actual photograph of that same scene.

In recent years, a new approach to computer graphics has been developing: image-

based rendering. Instead of simulating a scene using some approximate physical

model, novel images are created through the process of signal reconstruction. Starting

with a database of source images, a new image is constructed by querying the database

for information about the scene. Typically, this produces higher quality, photorealistic

imagery at much faster rates than simulation. Especially when the database of source

images is composed of a series of photographs, the output images can appear with as

high quality as the source images.

There are a variety of image-based rendering algorithms. Some algorithms require

some geometry of the scene while others try to limit the amount of a priori knowledge

of the scene. There is a wide range of flexibility in the reconstruction process as well:

some algorithms allow translation, others only allow rotation. Often, image-based
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rendering algorithms are closely related to computer vision algorithms, as computing

structure from the collection of images is one way to aid the reconstruction of a new

image, especially when translating through the scene. Another major factor in the

flexibility, speed, and quality of reconstruction is the parameterization of the database

that stores the reference images.

However, rendering is only part of the problem as there must be a image-based

modeling step to supply input to the renderer. Some rendering systems require a

coarse geometric model of the scene in addition to the images. Because of this re-

quirement, people may be forced to use fragile vision algorithms or use synthetic

models where their desire may be to use actual imagery. Some algorithms reduce

the geometry requirement by greatly increasing the size of the ray database or by

imposing restrictions on the movement of the virtual camera.

The light field [14] and lumigraph [7] rendering methods are two similar algorithms

that synthesize novel images from a database of reference images. In these systems,

rays of light are stored, indexed, and queried using a two-parallel plane parameter-

ization [8]. Novel images exhibiting view-dependent shading effects are synthesized

from this ray database by querying it for each ray needed to construct a desired view.

The two-parallel plane parameterization was chosen because it allows very quick ac-

cess and simplifies ray reconstruction when a sample is not available in the database.

In addition, the two-parallel plane parameterization has a reasonably uniform sam-

pling density that effectively covers the scene of interest. Furthermore, at very high

sampling rates, the modeling step can be ignored.

Several shortcomings of the light field and lumigraph methods are addressed in

this thesis. At low to moderate sampling rates, a light field is only suitable for storing

scenes with an approximately constant depth. A lumigraph uses depth-correction to

reconstruct scenes with greater depth variation. However, it requires an approximate

geometry of the scene which may be hard to obtain. Both systems exhibit static

focus because they only produce a single reconstruction for a given queried ray. Thus,

the pose and focal length of the desired view uniquely determine the image that is

synthesized.
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This thesis shows that a dynamic reparameterization of the light field

ray database can improve the quality and enhance the flexibility of image

reconstruction from light field representations.

My goal is to represent light fields with wide variations in depth, without requiring

geometry. This requires a more flexible parameterization of the ray database, based

on a general mathematical formulation for a planar data camera array. To render

novel views, my parameterization uses a generalized depth-correction based on focal

surfaces. Because of the additional degrees of freedom expressed in the focal surfaces,

my system interactively renders images with dynamic photographic effects, such as

depth-of-field and apparent focus. The presented dynamic reparameterization is as

efficient as the static lumigraph and light field parameterizations, but permits more

flexibility at almost no cost. To enable this additional flexibility, I do not perform

aperture filtering as presented in [14], because aperture filtering imposes a narrow

depth of field on typical scenes. I present a frequency domain analysis justifying this

departure in Chapter 6.

Furthermore, my reparameterization techniques allow the creation of directly-

viewable light fields which are passively autostereoscopic. By using a fly's-eye lens

array attached to a flat display surface, the computation for synthesizing a novel view

is solved directly by the optics of the display device. This three-dimensional display,

based on integral photography [17, 23], requires no eye-tracking or special hardware

attached to a viewer, and it can be viewed by multiple viewers simultaneously under

variable lighting conditions.

In this thesis, I first describe pertinent background information, as well as the rele-

vant previous work in this area of image-based rendering (Chapter 2). Next, I discuss

the dynamic reparameterization approach to light field processing (Chapter 3) and

explain of how the variable parameters of the system affect reconstruction of the light

field (Chapter 4). It is instructive to look at dynamic light field reparameterization

in other domains: I explore the effects of reparameterization in ray space (Chapter 5)

and in the frequency domain (Chapter 6). I then discuss various methods to render

dynamically reparameterized light fields (Chapter 7) as well as ways to display them
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in three-dimensions to multiple viewers (Chapter 8). I describe the methods used

to capture light fields as well as various particulars about my light fields (Chapter

9). Finally, I conclude with future work (Chapter 10) and various code samples for

reproducing some key figures in the thesis (Appendix A).

11



Chapter 2

Background and Previous Work

This thesis examines the sampling and reconstruction methods used in light field

rendering. Previous researchers have looked at methods to create light fields, as well

as ways to deal with the high sampling rates required for light field representation. In

this chapter, I discuss the major issues that arise when rendering from a ray database

and what previous researchers have done to avoid these problems.

In recent years, researchers have been looking at ways to create images through

the process of reconstruction. Chen and Williams were one of the first teams to

look at image-synthesis-by-image-reconstruction; their system created new views by

depth-based morphing between neighboring images [4]. However, this type of system

does not allow the user to move far from where the images were taken. McMillan

and Bishop advanced image-based rendering by posing the reconstruction process as

querying a database of rays [15]. They suggested a 5-D plenoptic function to store

and query rays of light that pass through a scene. Because the images were thought

of as individual bundles of ray, they could move through a scene with more flexibility

then previously available. However, because the system was 5-D, many more rays

than necessary were represented in regions of open space.

Soon after, Gortler, Grzeszczuk, Szeliski, and Cohen published "The Lumigraph"

[7] and Levoy and Hanrahan published "Light Field Rendering" [14]. These papers

similarly reduced the 5-D plenoptic function to a special case of 4-D. In the 4-D case,

the user can freely move around unobstructed space, as long as she doesn't pass in

12



front of any objects. This reduction of dimensions greatly increases the usability and

storage of the ray database. In addition, the 4-D ray database can be captured simply

by moving a camera along a 2-D manifold.

Researchers have been looking at the ray database model of image-based rendering

for some time, as it is a quite effective way to represent a scene. A continuous

representation of a ray database is sufficient for generating any desired ray. In such

a system, every ray is reconstructed exactly from the ray database with a simple

query. However, continuous databases are impractical or unattainable for all but

the most trivial cases. In practice, one must work with finite representations in the

form of discretely-sampled ray databases. In a finite representation, every ray is not

present in the database, so the queried ray must be approximated or reconstructed

from samples in the database.

As with any sampling of a continuous signal, the issues of choosing an appropriate

initial sampling density and defining a method for reconstructing the continuous

signal are crucial factors in effectively representing the original signal. In the context

of light fields and lumigraphs, researchers have explored various parameterizations

and methods to facilitate better sampling and rendering. Camahort, Lerios, and

Fussell used a more uniform sampling, based on rays that pass through a uniformly

subdivided sphere, for multi-resolution light field rendering [2]. For systems with

limited texture memories, Sloan, Cohen, and Gortler developed a rendering method

for high frame rates that capitalizes on caching and rendering from dynamic non-

rectangular sampling on the entrance plane [21]. For synthetic scenes, Halle looked

at rendering methods that capitalize on the redundant nature of light field data

[10]. Given a minimum depth and a maximum depth, Chai, Tong, Chan, and Shum

derived the minimum sampling rate for alias-free reconstruction with and without

depth information [3]. Holographic stereograms are closely related to light fields;

Halle explored minimum sampling rates for a 3-D light field (where the exit surface is

two dimensional, but the entrance surface is only one dimensional) in the context of

stereograms [11]. Shum and He presented a cylindrical parameterization to decrease

the dimensionality of the light field, giving up vertical parallax and the ability to
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translate into the scene [20].

The choice of a ray database parameterization also affects the reconstruction meth-

ods that are used in synthesizing desired views. It is well understood for images that

even with properly-sampled dataset, a poor reconstruction filter can introduce post-

aliasing artifacts into the result.

The standard two-plane parameterization of a ray database has a substantial im-

pact on the choice of reconstruction filters. In the original light field system, a ray is

parameterized by a predetermined entrance plane and exit plane (also referred to as

the st and uv planes using lumigraph terminology). Figure 2-1 shows a typical sparse

sampling on the st plane and three possible exit planes, uv 1 , uv 2 , and uv3 . To recon-

struct a desired ray r which intersects the entrance plane at (s, t) and the exit plane

at (u, v), a renderer combines samples with nearby (s, t) and (u, v) values. However,

only a standard light field parameterized using exit plane uv 2 gives a satisfactory

reconstruction. This is because the plane uv 2 well approximates the geometry of the

scene, while uvl and uv 3 do not.

The original light field system addresses this reconstruction problem by aperture

filtering the ray database. This effectively blurs information in the scene that is not

near the focal surface; it is quite similar to depth-of-field in a traditional camera

with a wide aperture. In the vocabulary of signal processing, aperture filtering band-

limits the ray database with a low-pass prefilter. This removes high-frequency data

that is not reconstructed from a given sampling without aliasing. In Figure 2-1,

aperture filtering on a ray database parameterized by either the exit plane uv1 or

uv3 would store only a blurred version of the scene. Thus, any synthesized view

of the scene appears defocused, "introducing blurriness due to depth of field." [14]

No reconstruction filter is able to reconstruct the object adequately, because the

original data has been band-limited. This method breaks down in scenes which are

not sufficiently approximated by a single, fixed exit plane. In order to produce light

fields that capture the full depth range of a deep scene without noticeable defocusing,

the original light field system would require impractically large sampling rates.

Additionally, it can be difficult to create an aperture prefiltered ray database. The
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Figure 2-1: The parameterization of the exit plane, or uv plane, affects the recon-
struction of a desired ray r. Here, the light field would be best parameterized using
the uv2 exit plane.
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process of aperture prefiltering requires the high frequency data to be thrown away.

To create a prefiltered ray database of a synthetic scene, a distributed ray-tracer [5]

with a finite aperture renderer could be used to render only the spatially varying low

frequency data for each ray. Also, a standard ray tracer could be used, and many rays

could be averaged together to create a single ray. This averaging process would be

the low-pass filter. In the ray-tracing case, one is actually rendering a high-resolution

light field and then throwing away much of the data. Thus, this is effectively creating

a lossy compression scheme for high-resolution light fields. If one wanted to aperture

prefilter a light field captured with a camera system, a similar approach would likely

be taken. Or, one could open the aperture so wide that the aperture size was equal

to camera spacing. The system would have to take high resolution samples on the

entrance plane: in other words, one would have to take a "very dense spacing of

views. [Then, one] can approximate the required anti-aliasing by averaging together

some number of adjacent views, thereby creating a synthetic aperture." [14] One is

in effect using a form of lossy compression. The major drawback is that one has

to acquire much more data than one is actually able to use. In fact, Levoy and

Hanrahan did "not currently do" aperture prefiltering on their photographic light

fields because of the difficulties in capturing the extra data and the limitation due to

the small aperture sizes available for real cameras. Finally, if the camera had a very

large physical aperture of diameter d, the light field entrance plane could be sampled

every d units. However, lenses with large diameters can be very expensive, hard to

obtain, and will likely have optical distortions.

To avoid aperture prefiltering, the lumigraph system is able to reconstruct deep

scenes stored at practical sampling rates by using depth-correction. In this process,

the exit plane intersection coordinates (u, v) of each desired ray r are mapped to

new coordinates (u', v') to produce an improved ray reconstruction. This mapping

requires an approximate depth per ray, which can be efficiently stored as a polygonal

model of the scene. If the geometry correctly approximates the scene, the recon-

structed images always appear in focus. The approximate geometry requirement

imposes some constraints on the types of light fields that can be captured. Geometry
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is readily available for synthetic light fields, but acquiring geometry is difficult for

photographically-acquired ray databases.

Acquiring geometry can be difficult process. In the Lumigraph paper, the authors

describe a method that captures a light field with a hand-held video camera [7]. First,

the authors carefully calibrated the video camera for intrinsic parameters. Then, the

object to capture was placed on a special stage with markers. The camera was moved

around while filming the scene, and the markers were used to estimate the pose. A

foreground/background segmentation removed the markers and stage from the scene;

the silhouettes from the foreground and the pose estimation from each frame were

used to create a volumetric model of the object. Finally, because the camera was

not necessarily moved on a plane, the data was rebinned into a two-parallel plane

parameterization before rendering. Using this method, the authors were only able to

capture a small number of small object-centered light fields.

Both the light field and lumigraph systems are fixed-focus systems. That is, they

always produce the same result for a given geometric ray r. This is unlike a physical

lens system which exhibits different behaviors depending on the focus setting and

aperture size. In addition to proper reconstruction of a novel view, I would like to

produce photographic effects such as variable focus and depth-of-field at interactive

rendering rates. Systems have been built to render these types of lens effects using

light fields, but this work was designed only for synthetic scenes where an entire light

field is rendered for each desired image [12].

In this chapter, I have discussed previous work in light field rendering and ex-

plained the problems that often arise in systems that render from a ray database. Typ-

ically, light fields require very high sampling rates, and techniques must be developed

when capturing, sampling, and reconstructing novel images from such a database. I

have discussed what previous researchers have developed for this problem.
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Chapter 3

Focal Surface Parameterization

This chapter describes the mathematical framework of a dynamically-reparameterized-

light-field-rendering-system [13]. First, I describe a formulation for the structures

that make up the parameterization. Then, I show how the parameterization is used

to reconstruct a ray at run time.

My dynamically reparameterized light field (DRLF) parameterization of ray databases

is analogous to a two-dimensional array of pinhole cameras treated as a single optical

system with a synthetic aperture. Each constituent pinhole camera captures a fo-

cused image, and the camera array acts as a discrete aperture in the image formation

process. By using an arbitrary focal surface, one establishes correspondences between

the rays from different pinhole cameras.

In the two-parallel-plane ray database parameterization there is an entrance plane,

with parameters (s, t) and an exit plane with parameters (u, v), where each ray r is

uniquely determined by the 4-tuple (s, t, U, v).

The DRLF parameterization is best described in terms of a camera surface, a

2-D array of data cameras and images, and a focal surface (see Figure 3-1). The

camera surface C, parameterized by coordinates (s, t), is identical in function to the

entrance plane of the standard parameterization. Each data camera D,,t represents a

captured image taken from a given grid point (s, t) on the camera surface. Each D,,t

has a unique orientation and internal calibration, although I typically capture the

light field using a common orientation and intrinsic parameters for the data cameras.

18



r

(S, , v)=(S,t g)F

data cameras

camera surface C
focal surface F

Figure 3-1: My parameterization uses a camera surface C, a collection of data cameras

D,,, and a dynamic focal surface F. Each ray (s, t, u, v) intersects the focal surface

F at (f, g)F and is therefore named (s, t, f, g)F-
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Each pixel is indexed in the data camera images using image coordinates (u, v), and

each pixel (u, v) of a data camera D,,t is indexed as a ray r = (s, t, u, v). Samples

in the ray database exist for values of (s, t) where there is a data camera D8,,. The

focal surface F is a dynamic two-dimensional manifold parameterized by coordinates

(f, g)F. Because the focal surface may change dynamically, I subscript the coordinates

to describe which focal surface is being referred to. Each ray (s, t, u, v) also intersects

the focal surface F, and thus has an alternate naming (s, t, f, g)F -

Each data camera D,, also requires a mapping M jD : (f, g) F -- (u, v). This

mapping tells which data camera ray intersects the focal surface F at (f, g)F- In

other words, if (f, g)F was an image-able point on F, then the image of this point

in camera D,,,,, would lie at (u', v'), as in Figure 3-2. Given the projection mapping

PSt : (X, Y, Z) -+ (u, v) that describes how three-dimensional points are mapped

to pixels in the data camera D,,, and the mapping TF : (f, 9)F -* (X, Y, Z) that

maps points (f, 9)F on the focal surface F to three-dimensional points in space, the

mapping MFjD is easily determined, M D P,tTF. Since the focal surface is

defined at run time, TF is also known. Likewise, P,,t is known for synthetic light

fields. For captured light fields, P,, is either be assumed or calibrated using readily

available camera calibration techniques [24, 26]. Since the data cameras do not move

or change their calibration, P,,t is constant for each data camera D,t. For a dynamic

focal surface, one modifies the mapping TF, which changes the placement of the focal

surface. A static TF with a focal surface that conforms to the scene geometry gives

a depth-correction identical to the lumigraph [7].

To reconstruct a ray r from the ray database, I use a generalized depth-correction.

One first finds the intersections of r with C and F. This gives the 4-D ray coordinates

(so, to, f, g) F as in Figure 3-2. Using cameras near (so, to), say D,8 ,tl and D8",tl, one

applies M -D and I on (f,g)F, giving (u', v') and (u", v"), respectively. This

gives two rays (s', t', u", v") and (s", t", u", v") which are stored as the pixel (u', v')

in the data camera D8 ,,, and (u", v") in the data camera D5",t,. One then applies a

filter to combine the values for these two rays. In the diagram, two rays are used,

although in practice, one can use more rays with appropriate filter weights.
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(u',v')

F
C

Figure 3-2: Given a ray (s, t, f, g)p, one finds the rays (s', t', ', v') and (s", t", u", v")

in the data cameras which intersect F at the same point (f, g)F
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Chapter 4

Variable Aperture and Focus

A dynamic parameterization can be used to efficiently create images that simulate

variable focus and variable depth-of-field. The user creates focused images of moder-

ately sampled scenes with large depth variation and moderate sampling rates without

requiring or extracting geometric information. In addition, this new parameterization

gives the user significant control when creating novel images.

This chapter describes the effects that the variable aperture (Section 4.1) and

variable focal surface (Section 4.2) have on the image synthesis. In addition, I explore

some approaches that I took to create a system that has multiple planes of focus

(Section 4.3).

4.1 Variable Aperture

In a traditional camera, the aperture controls the amount of light that enters the

optical system. It also influences the depth-of-field present in the images. With

smaller apertures, more of the scene appears in focus; larger apertures produce images

with a narrow range of focus. In my system synthetic apertures are simulated not to

affect exposure, but to control the amount of depth-of-field present in an image.

A depth-of-field-effect can be created by combining rays from several cameras on

the camera surface. In Figure 4-1, the two rays r' and r" are to be reconstructed. In

this example, the extent of the synthetic apertures A' and A" is four data cameras.
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A'

desired camera

-...... virtual
.. object

.... .......

A"t

C F

Figure 4-1: The synthetic aperture system places the aperture at the center of each

desired ray. Thus the ray r' uses the aperture A' while r" uses A".

The synthetic apertures are centered at the intersections of r' and r" with the camera

surface C. Then, the ray database samples are recalled by applying MF-D for all

(s, t) such that D,,t lies within the aperture. These samples are combined to create a

single reconstructed ray.

Note that r' intersects F near the surface of the virtual object, whereas r" does

not. The synthetic aperture reconstruction causes r' to appear in focus, while r" does

not. The size of the synthetic aperture affects the amount of depth of field.

It is important to note that this model is not necessarily equivalent to an aperture

attached to the desired camera. For example, if the desired camera is rotated, the

effective aperture remains parallel to the camera surface. Modeling the aperture on

the camera surface instead of the desired camera makes the ray reconstruction more

efficient and still produces an effect similar to depth-of-field (See Figure 4-2). A more

realistic and complete lens model is given in [12], although this is significantly less

efficient to render and impractical for captured light fields.

My system does not equally weight the queried samples that fall within the syn-
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Figure 4-2: By changing the aperture function, the user controls the amount of depth
of field.
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thetic aperture. Using a dynamic filter that controls the weighting, I improve the

frequency response of the reconstruction. Figure 4-3 illustrates various attempts to

reconstruct the pink dotted ray r = (so, to, f, g) F. I use a two-dimensional function

w(x, y) to describe the point-spread function of the synthetic aperture. Typically w

has a maximum at w(O, 0) and is bounded by a square of width 6. The filter is defined

such that w(x, y) = 0 whenever x < -6/2, x > 6/2, y -6/2, or y J/2. The

filters should also be designed so that the sum of sample weights add up to 1. That

i=L-6/2j ii 6 /2 J w(x + i,y + j) =1 for all (x, y).

The aperture weighting on the ray r = (SO, to, f, 9)F is determined as follows.

The center of each aperture filter is translated to the point (so, to). Then, for each

camera D,, that is inside the aperture, I construct a ray (s, t, f, g)F and then calculate

(s, t, u, v) using the appropriate mapping MFjD. Then each ray (s, t, u, v) is weighted

by w(s - so, t - to) and all weighted rays within the aperture are summed together.

One could also use the aperture function w(x, y) as a basis function at each sample to

reconstruct the continuous light field, although this is not computationally efficient

(this type of reasoning is covered in [7]).

The dynamically reparameterized light field system can use arbitrarily large syn-

thetic apertures. The size of the aperture is only limited to the extent to which

there are cameras on the camera surface. With sufficiently large apertures, one can

"see through objects," as in Figure 4-5. One problem with making large apertures

occurs when the aperture function falls outside the populated region of the camera

surface. When this occurs, the weighted samples do not add up to one. This creates

a vignetting effect where the image darkens when using samples near the edges of

the camera surface. For example, compare Figure 4-4a with no vignetting to Figure

4-4b. In Figure 4-4b, the desired camera was near the edge of the light field, so the

penguin appears dimmed. This can be solved by either adding more data cameras

to the camera surface or by reweighting the samples on a pixel by pixel basis so the

weights always add up to one.
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C
Figure 4-3: By changing the shape of the aperture filter, the user controls the amount
of depth-of-field. In this figure, filter w, reconstructs r by combining 6 rays, W2

combines 4 rays, andW3 combines 2.
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(a) (b)

Figure 4-4: A vignetting
a light field.

effect can occur when using large apertures near the edge of

Figure 4-5: By using a very large aperture, one can "see through objects.".
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4.2 Variable Focus

Photographers using cameras do not only change the depth-of-field, but they vary

what is in focus. Using dynamic parameterization, it is possible to create the same

effect at run-time by modifying the focal surface. As before, a ray r is defined

by its intersections with the camera surface C and focal surface F and are writ-

ten (so, to, f, g)F. The mapping MF,'D tells which ray (s, t, u, v) in the data camera

D,,t approximates (so, to, f, g)F -

When the focal surface is changed to F', the same ray r now intersects a different

focal surface at a different point (f', g')F. This gives a new coordinate (so, to, f', g')F'

for the ray r. The new mapping MF'jD gives a pixel (u', v') for each camera D,,

within the aperture.

In Figure 4-8, there are three focal surfaces, F1, F2 , and F3 . Note that any single

ray r is reconstructed using different sample pixels, depending on which focal surface

is used. For example, if the focal surface F, is used, then the rays (s', t', u' , v' ) and

(s", t", u", v") are used in the reconstruction.

Note that this selection is a dynamic operation. In the light field and lumigraph

systems, the querying the ray r would always resolve to the same reconstructed sam-

ple. As shown in Figure 4-6, one can effectively control which part of the scene is

in focus by simply moving the focal surface. If the camera surface is too sparsely

sampled, then the out-of-focus objects appear aliased, as with the object in the lower

image of Figure 4-6. This aliasing is analyzed in Section 6. The focal surface does

not have to be perpendicular to the viewing direction, as one can see in Figure 4-7.

Many scenes can not be entirely focused with a single focal plane. As in Figure

4-8, the focal surfaces do not have to be planar. One could create a focal surface

out of a parameterized surface patch that passes through key points in a scene, a

polygonal model, or a depth map. Analogous to depth-corrected lumigraphs, this

would insure that all visible surfaces are in focus. But, in reality, these depth maps

would be hard and/or expensive to obtain with captured data sets. However, using

a system similar to the dynamically reparameterized light field, a non-planar focal
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Figure 4-6: By varying the focal surface, one controls what appears in focus.
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Figure 4-7: I have placed a focal plane that is not parallel to the image plane. In this
case, the plane passes through part of the tree, the front rock, and the leftmost rock
on the island. The plane of focus is seen intersecting with the water in a line.

30



r

C F, F2  3

Figure 4-8: By changing the focal surfaces, I dynamically control which samples in
each data camera contribute to the reconstructed ray.

surface could be modified dynamically until a satisfactory image is produced.

4.3 Multiple Focal Surfaces and Apertures

In general, we would like to have more than just the points near a single surface

in clear focus. One solution is to use multiple focal surfaces. The approach is not

available to real cameras. In a real lens system, only one continuous plane is in focus

at one time. However, since the system is not confined by physical optics, it can have

two or more distinct regions that are in focus. For example, in Figure 4-9, the red bull

in front and the monitors in back are in focus, yet the objects in between, such as the

yellow fish and the blue animal, are out of focus. Using a DRLF parameterization,

one chooses an aperture and focal surface on a per region or per pixel basis. Multiple

apertures would be useful to help reduce vignetting near the edges of the camera

surfaces. If the aperture passes near the edge of the camera surface, then one could
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Figure 4-9: I use two focal surfaces to make the front and back objects in focus, while

those in the middle are blurry.

reduce its size so that it remains inside the boundary.

Using a real camera, this is done by first taking a set of pictures with different

planes of focus, and then taking the best parts of each image and compositing them

together as a post-process [18]. I now present a method that uses a ray-tracer-

based dynamically-reparameterized-light-field-renderer to produce a similar result by

expanding the ray-database-query-method.

Since a ray r intersects each focal surface F at a unique (f, g)F', some scoring

scheme is needed to pick which focal surface to use. One approach is to pick the

focal surface which makes the picture look most focused, which means the system

needs to pick the focal surface which is closest to the actual object being looked at.

By augmenting each focal surface with some scoring O(f, g) F, which is the likelihood
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F1  F2  F3  F4

03

Object

01

Figure 4-10: To find the best focal plane, I calculate a score at each intersection and
take the focal plane with the best score. If the scoring system is good, the best score
is the one nearest the surface one is looking at.

a visible object is near (f, g)F, one can calculate o- for each focal surface, and have

the system pick the focal point with the best score o-. In Figure 4-10, -2 would

have the best score since it is closest to the object. Note that an individual score

U(f, g)F is independent of the view direction; however, the set of scores compared

for a particular ray r is dependent on the view direction. Therefore, although the

scoring data is developed without view dependence, view dependent information is

still extracted from it.

Given light-fields, but no information about the geometry of the scene, it is pos-

sible to estimate these scores from the image data alone. I have chosen to avoid

computer vision techniques that require deriving correspondences to discover the ac-

tual geometry of the scene, as these algorithms have difficulties dealing with ambigu-

ities that are not relevant to generating synthetic images. For example, flat regions

without texture can be troublesome to a correspondence-based vision system, and for
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C C

Figure 4-11: Creating a radiance function from a light field. If the radiance function
is near an object, then the function is smooth. If the radiance function is not near
an object, it varies greatly.

these regions it is hard to find an exact depth. However, when making images from

a light field, picking the wrong depth near the same flat region would not matter,

because the region would still look in focus. Therefore, a scoring system that takes

advantage of this extra freedom is desired. And, because only the original images are

available as input, a scoring system where scores are easily created from these input

images is required.

One approach is to choose the locations on the focal surfaces that approximate

radiance functions. Whereas one usually uses light-fields to construct images, it is

also possible to use them to generate radiance functions. The collection of rays in

the ray database that intersect at (f, g)F is the discretized radiance function of the

point (f, g)F- If the point lies on an object and is not occluded by other objects, the

radiance function is smooth, as in the left side of Figure 4-11. However, if the point

is not near an actual object, then the radiance function is not smooth, as in the right

side of Figure 4-11.

To measure smoothness, one looks for a lack of high frequencies in the radiance

function. High frequencies in a radiance function identify 1) a point on a extremely

specular surface, 2) an occlusions in the space between a point and a camera, or
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3) a point in empty space. Thus, by identifying the regions where the there are no

high frequencies in the radiance function, we know the point must be near a surface.

Because of their high frequency content, we might miss areas that are actually on a

surface but have an occluder in the way.

Figure 4-12 shows a few examples of what these radiance functions look like. Each

radiance image in column 4-12a and 4-12c has a resolution equal to sampling rate

of the camera surface. Thus, since these light fields each have 16x16 cameras on

the camera surface, the radiance images have a resolution of 16x16. Traveling down

the column shows different radiance images formed at different depths along a single

ray. The ray to be traversed is represented by the black circle, so that pixel stays

constant. The third image from the top is the best depth estimate for the radiance

image because it varies smoothly. To the left of each radiance image is a color cubes

showing the distribution of color in each radiance image immediately to its left. The

third distribution image from the top has the lowest variance, and is therefore the

best choice.

Because calculating the radiance function is a slow process, the scores are found

at discrete points on each focal surface as a preprocessing step. This allows the use of

expensive algorithms to setup the scores on the focal surfaces. Then, when rendering,

the prerecorded scores for each focal surface intersection are accessed and compared.

To find the best focal surface for a ray, an algorithm must first obtain intersections

and scores for each focal surface. Since this is linear in the number of focal surfaces, I

would like to keep the number of focal surfaces small. However, the radiance functions

are highly local, and small changes in the focal surface position gives large changes in

the score. Nevertheless, the accuracy needed in placing the focal surfaces is not very

high. That is, often it is unnecessary to find the exact surface that makes the object in

perfect focus; we just need to find a surface that is close to the object. Therefore, the

scores are calculated by sampling the radiance functions for a large number of planes,

and then 'squashing' the scores down into a smaller set of planes using some function

A(oa, . . . , oj+m). For example, in Figure 4-13, the radiance scores for 16 planes are

calculated. Then, using some combining function A, the scores from these 16 planes
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(a) (b) (c) (d)

Figure 4-12: (a,c) Radiance Images at different depths along a single ray. The circled
pixel stays constant in each image, because that ray is constant. The third image

from the top is the best depth for the radiance image. (b,d) Color cubes showing
the distribution of color in each radiance image immediately to its left. The third
distribution image from the top has the lowest variance, and is therefore the best
choice.
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01 02 03 04 F5 06 07 08 09 010 011 012 C13 014 015 016

X(a 1,G2,a3,a4) X(o 5,a6,o7,o8) X(o 9,o10,a1 1,012) X(a 13,o14,a15,a 16)

Figure 4-13: I compute scores on many focal surfaces, and then combine them to a
smaller set of focal surfaces, so the run-time algorithm has less scores to compare.

are combined into new scores on four planes. These four planes and their scores are

used as focal surfaces at run time. I chose to use the maximizing function, that is,

A(oi, . . . , -i+m) = max(i, ... ., o-i+). Other non-linear or linear weighting functions

might provide better results.

Figure 4-14 shows two visualizations of the scores on the front and back focal

planes used to create the image in Figure 4-9. The closer to white, the better the

score o, which means objects are likely to be located near that plane. Figure 4-15b

is another example that was created using 8 focal planes combined down to 4.
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(a) (b)

Figure 4-14: Visualizations of the o- scores used on the front (a) and back (b) focal
planes for the picture in Figure 4-9. The closer to white, the better the score o-, which
means objects are likely to be located near that plane.

(a) (b)

Figure 4-15: (a) Using the standard light field parameterization, only one fixed plane
is in focus. Using the smallest aperture available, this would be the best picture

I could create. (b) By using 4 focal planes (originally 8 focal planes with scores

compressed down to 4), I clearly do better than the image in (a). Especially note the

hills in the background and the rock in the foreground.
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Chapter 5

Ray-Space Analysis of Dynamic

Reparameterization

It is instructive to consider the effects of dynamic reparameterization on light fields

when viewed from ray space [14, 7] and, in particular, within epipolar plane images

(EPIs) [1]. The chapter discusses how dynamic reparameterization transforms the

ray space representations of a light field (Section 5.1). In addition, I explore the ray

space diagram of a single point feature (Section 5.2). Finally, I present and discuss

actual imagery of ray space diagrams created from photographic light fields (Section

5.3).

5.1 Interpreting the Epipolar Image

It is well-known that 3-1D structures of an observed scene are directly related to

features within particular light field slices. These light field slices, called epipolar

plane images (EPIs) [1], are defined by planes through a line of cameras. The two-

parallel plane (2PP) parameterization is particularly suitable for analysis under this

regime as shown by [8]. A dynamically reparameterized light field system can also be

analyzed in ray space, especially when the focal surface is planar and parallel to the

camera surface. In this analysis, I consider a 2-D subspace of rays corresponding to

fixed values of t and g on a dynamic focal plane F. When the focal surface is parallel
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to the camera surface, the sf slice is identical to an EPI.

A dynamically reparameterized 2-D light field of four point features is shown in

Figure 5-la. The dotted point is a point at infinity. A light field parameterized

with the focal plane F1 has a sfi ray-space slice similar to Figure 5-1b. Each point

feature in geometric space corresponds to a linear feature in ray space, where the

slope of the line indicates the relative depth of the point. Vertical features in the slice

represent points on the focal plane; features with positive slopes represent points that

are further away and negative slopes represent points that are closer. Points infinitely

far away have a slope of 1 (for example, the dashed line). Although not shown in the

figure, variation in color along the line in ray space represents the view-dependent

radiance of the point. If the same set of rays is reparameterized using a new focal

plane F2 that is parallel to the original F1 plane, the sf 2 slice shown in Figure 5-1c

results. These two slices are related by a shear transformation along the dashed line.

If the focal plane is oriented such that it is not parallel with the camera surface,

as with F3, then the sf slice is transformed non-linearly, as shown in Figure 5-1d.

However, each horizontal line of constant s in Figure 5-1d is a linearly transformed

(i.e. scaled and shifted) version of the corresponding horizontal line of constant s in

Figure 5-1b. In summary, dynamic reparameterization of light fields amounts to a

simple transformation of ray space. When the focal surface remains perpendicular to

the camera surface but its position is changing, this results in a shear transformation

of ray space.

Changing the focal-plane position thus affects which ray-space features are axis-

aligned. This allows the use of a separable, axis-aligned reconstruction filters in

conjunction with the focal plane to select which features are properly reconstructed.

Equivalently, one interprets focal plane changes as aligning the reconstruction filter

to a particular feature slope, while keeping the ray space parameterization constant.

Under the interpretation that a focal plane shears ray space and keeps recon-

struction filters axis aligned, the aperture filtering methods described in Chapter 4

amount to varying the extent of the reconstruction filters along the s dimension. In

Figure 5-le, the dashed horizontal lines depict the s extent of three different aperture
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Figure 5-1: (a) A light field of four points, with 3 different focal planes. (b,c,d) sf
slices using the three focal planes, F1, F2 and F3. (e) Three aperture filters drawn on
the ray space of (b) (f) Line images constructed using the aperture filters of (e). (g)
Line images constructed using the aperture filters of (e), but the ray space diagram
of (c)
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filters (I assume they are infinitely thin in the fi dimension). Figure 5-if shows three

line images constructed from the EPI of Figure 5-1e. As expected, the line image

constructed from the widest aperture filter has the most depth-of-field. Varying the

extent of the aperture filter has the effect of "blurring" features located far from the

focal plane while features located near on the focal plane are relatively sharp. In ad-

dition, the filter reduces the amount of view-dependent radiance for features aligned

with the filter. When the ray space is sheared to produce the parameterization of

Figure 5-1c and the same three filters are used the images of Figure 5-1g are produced.

5.2 Constructing the Epipolar Image

Arbitrary ray-space images (similar to Figure 5-1) of a single point can be constructed

as follows. Beginning with the diagram of Figure 5-2. Let P be a point feature that

lies at a position (PX, P,) in the 2-D world coordinate system. The focal surface F is

defined by a point FO and a unit direction vector Fd. Likewise, the camera surface C

is defined by a point So and a unit direction vector Sd. I would like to find a relation

between s and f so that I can plot the curve for P in the EPI domain.

The camera surface is described using the function

So + SSd = S,

The focal surface is described using the function

Fo + f Fd= Ff

Thus, given varying values of s, S. plots out the camera surface in world coordinates.

Likewise, given varying values of f, Ff plots out the focal surface in world coordinates.

For sake of construction, let s be the domain and f be the range. Thus, we wish

to express values of f in terms of s. Given a value of s, find some point S.. Then

construct a ray which passes from the point S, on the camera surface through the

point P that intersects the focal surface at some point Ff. This ray is shown as the
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Figure 5-2: Calculating the (s, f) pair for a point P in space. The focal surface is
defined by a point Fo and a direction Fd. Likewise, the camera surface is defined by
a point So and a direction Sd.

dotted line in Figure 5-2. The equation for this ray is

S,+ a(P - Ss) = Ff

This gives the final relation between s and f as

SO + SSd + a(P - So - SSd) = Fo + fFd

Because So, Sd, FO, and Fd are direction or position vectors, the above equation

is a system of two equations, with three unknown scalars, s, f, and a. This lets me

solve for f in terms of s, and likewise I solve for s in terms of f. The two equations

in the system are

aP,+Sox(1 -a) +sSX(1 -a) = Fox+fFdx

aPy+Soy(1 -a) +sSy(1 -a) = Foy+fFy
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Solving the above system of equations for f in terms of s gives:

Fox(Py - Soy - SSdy) - Foy(Px - SOx - SSdx) + Px(Soy + sSdy) - Py(Sox + sS&)

Fdy (Px - SOx - sSdx) - F& (Py - SOy - sSdy)

(5.1)

Solving for s in terms of f gives:

S (Fox + f Fdx)(Py - Soy) + (Foy + f Fy)(Sx - Px) + PxSOy - Py SOx (5.2)
Fox Sdy - FoySdx + f Fdx Sy - f Fy Sdx - PSdy + Py Sdx

If we take the common case where Fd and Sd are parallel and both point along

the s-axis, then Fdy = Sdy = 0, Fdx = Sdx = 1 and we can reduce equation (5.1) to

the linear form:

Fox(Py - Soy) - Foy(Px - Sox - s) + PxSoy - Py(Sox + s) (53)
-(PY - SoY)

5.3 Real Epipolar Imagery

Looking at epipolar images made from real imagery is also instructive. By taking a

horizontal line of rectified images from a ray database (varying s, keeping t constant)

it is possible to construct such an EPI. Three of these images are shown in Figure

5-3a. The green, blue, and red lines represent values of constant v which are used to

create the three EPIs of Figures 5-3b-d.

In Figure 5-4, I show the effect of shearing the epipolar images using the example

EPI imagery from Figure 5-3d. In Figure 5-4a, I reproduce Figure 5-3d. In this

EPI, the focal plane lies at infinity. Thus, features infinitely far away would appear

as vertical lines in the EPI. Because the scene had a finite depth of a few meters,

there are no vertical lines in the EPI. When the focal plane is moved to pass through

features in the scene, the EPIs are effectively sheared so that other features appear

vertical. Figures 5-4b and 5-4c show the shears that would make the red and yellow

features in focus when using an vertically aligned reconstuction filter.
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(a)

(b)

(C)

(d)

Figure 5-3: (a) Three sample images taken from a line of images of a ray database

(constant t, varying s). The green, blue and red lines represent the constant lines

of v for making epipolar images. (b,c,d) Epipolar images represented by the green,
blue, and red lines.
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(a)

(b)

(c)

Figure 5-4: (a) The EPI of Figure 5-3d; the focal plane is placed at infinity. (b)
Same EPI, sheared so that the focal plane passes through the red feature. (c) Same
EPI, sheared so that the focal plane passes through the yellow feature.
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Chapter 6

Fourier Domain Analysis of

Dynamic Reparameterization

This chapter discusses the relationship between dynamic reparameterization and alias-

ing. When discussing aliasing, it is useful to look at the frequency domain transform

of the system. I will discuss how to apply Fourier analysis to light fields. Then, I

describe how my reparameterization compares with other approaches to limit aliasing

within a light field.

Ray space transformations have other effects on the reconstruction process. Since

shears arbitrarily modify the relative sampling frequencies between dimensions in ray

space, they present considerable difficulties when attempting to band-limit the source

signal. Furthermore, any attempt to band-limit the sampled function based on any

particular parameterization severely limits the fidelity of the reconstructed signals

from the light field.

In this section, I analyze the frequency-domain dual of a dynamically reparame-

terized light field. Whereas in Chapter 5 I interpreted dynamic reparameterization as

ray space shearing, in this chapter I interpret the ray space as fixed (using dimensions

s and u) and instead shear the reconstruction filters.

Consider an 'ideal' continuous light field of a single linear feature with a Gaussian

cross section in the u direction located slightly off the u plane as shown in the EPI

of Figure 6-la. In the frequency domain, this su slice has the power spectrum shown
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in white Figure 6-1b (ignore the red box for now). Any sampling of this light field

generates copies of this spectrum as shown in Figure 6-1c (ignore the blue box for

now). Typical light fields have a higher sampling density on the data camera images

than on the camera surface, and this example reflects this convention by repeating the

spectrum at different rates in each dimension. Attempting to reconstruct this signal

with a separable reconstruction filter under the original parameterization as shown

by the blue box in Figure 6-1c results in an image that exhibits considerable post-

aliasing, because of the high-frequency leakage from the other copies. This quality

degradation shows up as ghosting in the reconstructed image, where multiple copies

of a feature can be faintly seen. Note that this ghosting is a form of post-aliasing;

the original sampling process has not lost any information.

One method for remedying this problem is to apply an aggressive band-limiting

prefilter to the continuous signal before sampling. This approach is approximated by

the aperture-filtering step described in [14]. When the resulting band-limited light

field is sampled using the prefilter of Figure 6-1a (shown as the red box), the power

spectrum shown in Figure 6-1d results. This signal can be reconstructed exactly with

an ideal separable reconstruction filter as indicated by the blue box in Figure 6-1d.

However, the resulting EPI, shown in Figure 6-le, contains only the low-frequency

portion of the original signal energy, giving a blurry image.

Dynamic reparameterization allows many equally valid reconstructions of the light

field. The shear transformation of ray-space effectively allows for the application of

reconstruction filters that would be non-separable in the original parameterization.

Thus, using dynamic reparameterization, the spectrum of the single point can be

recovered exactly using the filter indicated by the blue box in Figure 6-1f.

Issues are more complicated in the case when multiple point features are repre-

sented in the light field, as shown in the su slice in Figure 6-2a. The power spectrum

of this signal is shown in Figure 6-2b. After sampling, multiple copies of the original

signal's spectrum interact, causing a form of pre-aliasing that cannot be undone by

processing. Dynamic reparameterizations allows for a single feature from the spec-

trum to be extracted, as shown by the two different filters overlaid on Figure 6-2c.
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(b)(a)

(c) (d)

(e) (f)

Figure 6-1: (a) su slice of a single feature. (b) Frequency domain power spectrum of
(a). Aperture prefilter drawn in red. (c) Power spectrum after typical sampling. Tra-
ditional reconstruction filter shown in blue. (d) Power spectrum of sampled data after
prefilter of (b). Traditional reconstruction filter shown in blue. (e) In space domain,
the result of (d) is a blurred version of (a). (f) By using alternative reconstruction
function filter, I accurately reconstruct (a).
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However, some residual energy from the other points is also captured, and appears in

the reconstructed image as ghosting (see Figure 6-2e, where the blue filter was used

in reconstruction).

One method for reducing this artifact is to increase the size of the synthetic aper-

ture. In the frequency domain, this reduces the width of the reconstruction filters as

shown in Figure 6-2d. Using this approach, one can reduce, in the limit, the contribu-

tion of spurious features to a small fraction of the total extracted signal energy. The

part that cannot be extracted is the result of the pre-aliasing. By choosing sufficiently

wide reconstruction apertures (or narrow in the frequency domain), the effect of the

pre-aliasing can be made imperceptible (below the quantization threshold). Figure

6-2f is reconstructed by using a wider aperture than that in Figure 6-2e. Note that

the aliasing in Figure 6-2f has less energy and is more spread out than in Figure 6-2e.

In addition, the well-constructed feature has lost some view dependence, because it

has also been filtered along its long dimension.

This leads to a general trade-off that must be considered when working with mod-

erately sampled light fields. I either 1) apply prefiltering at the cost of limiting the

range of images that can be synthesized from the light field and endure the blurring

and attenuation artifacts that are unavoidable in deep scenes or 2) accept some alias-

ing artifacts in exchange for greater flexibility in image generation. The visibility of

aliasing artifacts can be effectively limited by selecting appropriate apertures for a

given desired image.
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(b)(a)

(c) (d)

(e) (f)

Figure 6-2: (a) su slice of two features. (b) Frequency domain power spectrum of

the features. (c) Frequency domain power spectrum, colored boxes represent possi-

ble reconstruction filters. (d) Wide aperture reconstruction corresponds to thinner

green box. (e) Result of small aperture reconstruction. (f) Result of large aperture

reconstruction.

51

.. . ................



Chapter 7

Rendering

This chapter describes three methods for efficiently rendering dynamically reparame-

terized light fields (Sections 7.1, 7.2, and 7.3). In addition, I describe how to use the

focal surface as an navigation aid in Section 7.4; this shows how focus is a powerful

cue for selecting a particular depth in the scene.

As in the lumigraph and light field systems, I construct a desired image by query-

ing rays from the ray database. Given arbitrary cameras, camera surfaces, and focal

surfaces, one can ray-trace the desired image. If the desired camera, data cameras,

camera surface, and focal surface are all planar, then a texture mapping approach can

be used similar to that proposed by the lumigraph system. I extend the texture map-

ping method using multi-texturing for rendering with arbitrary non-negative aperture

filters, including bilinear and higher order filters.

7.1 Standard Ray Tracing

I first describe a ray tracing method for synthesizing an image from a dynamically

reparameterized light field. Given a bundle of rays from the center of projection

and through each pixel of a desired image. We desire to calculate the geometry of

each of these rays, and then calculate the color value that each one is assigned when

reconstructing using the dynamically reparameterized light field.

The intersection techniques are those used in standard ray tracing. In the following
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description, a ray r = (s, t, U, v) has a color c(r) = c(s, t, u, v). Likewise, a pixel (x, y)

in the desired image has a color c(x, y). Let K be the desired pinhole camera with a

center of projection o and pixels (x, y) on its image plane. Let w(x, y) be the aperture

weighting function, where 6 is the width of the aperture.

Initialize the frame buffer to black

For each pixel (x,y) in desired camera K

r := the ray through o and (X, y)

Intersect r with C to get (s', t')

Intersect r with F to get (f, g)F

Rc := a polygon on C defined by {(s' 16/2, t'+ h /2)}

For each data camera D8 , within RC

(u,v) M:=M D(fg)f

weight w(s' - s, t' - t)

c(x, y) c(x, y) + weight * c(s, t, u, v)

7.2 Memory Coherent Ray Tracing

Next, I will describe a memory coherent ray tracing method that can take advantage

of standard texture mapping hardware. Instead of rendering pixel by pixel in the

desired image, in this approach one renders the contribution of each data camera

sequentially. This causes each pixel in the desired image to be overwritten many

times, but means the system only has to page in each desired camera image once. I

use the same notation as in the previous section.
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Initialize the frame buffer to black

For each data camera D,,

Rc:= a polygon on C def ined by {(s t 6/2, t t 6/2)}

RK projection of Rc onto the desired image plane

For each pixel (x,y) within RK

r := the ray through o and (x, y)

Intersect r with C to get (s', t')

Intersect r with F to get (f,g)F

(uv):= MFD(fg)f

weight w(s' - s,t' - t)

c(x, y) c(x, y) + weight * c(s, t, u, v)

7.3 Texture Mapping

Although the ray tracing method is simple to understand and easy to implement, there

are more efficient methods for rendering when the camera surface, image surface, and

focal surface are planar. I have extended the lumigraph texture mapping approach

[7] to support dynamic reparameterization. This technique renders the contribution

of each data camera D,,t using multi-texturing and an accumulation buffer [9]. This

method works with arbitrary non-negative aperture weighting functions.

Multi-texturing, supported by Microsoft Direct3D 7's texture stages [16], allows a

single polygon to have multiple textures and multiple projective texture coordinates.

At each pixel, two sets of texture coordinates are calculated, and then two texels

are accessed. The two texels are then multiplied, and this result is stored in the

frame buffer. The frame buffer is written using the Direct3D alpha mode "source

+ destination," which makes the frame buffer act as a 8-bit, full-color accumulation

buffer.

My rendering technique is illustrated in Figure 7-1. For each camera D,,, a

rectangular polygon RC is created on the camera surface with coordinates {(s t
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RR3.M

Figure 7-1: Projection matrices and planar homographies allow me
image using texture mapping on standard PC rasterizing hardware.

6/2, t ± 6/2)}. I then project this polygon on to the desired camera K's image plane

using a projection matrix PC-+K, giving a polygon R K. This polygon R K represents

the region of the image plane which uses samples from data camera D,,t. That is,

only pixels inside polygon R K use texture from data camera D,,t.

The polygon R K is then projected onto the focal plane F using a planar homog-

raphy HK-F, a 3x3 matrix which changes one projective 2-D basis to another. This

projection is done from the desired camera K's point of view. The resulting polygon

R lies on the focal plane F. Finally, the mapping MF-D is used to calculate the

(u, v) pixel values for the polygon. This gives a polygon R,, which represents the

(u, v) texture coordinates for polygon R t.

Many of these operations can be composed into a single matrix, which takes

polygon RC directly to texture coordinates RD. This matrix MC-*D can be written

as MC-D -MF+DK-+FCK-

This process gives the correct rays (s, t, u, v), but the appropriate weights from

the aperture filter are still required. Because we draw a polygon with the shape of
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the aperture filter, one must simply modulate the texture D,,t with the aperture filter

texture A. For D,, the projective texture coordinates R?, are used; for the aperture

filter A, the texture coordinates {(±6/2, +6/2)} are used.

Initialize the frame buffer to black

For each data camera Dt

RC :=polygon on C def ined by {(s J/2, t 6/2)}

R D =MFjDHPR
, := t M ~DK-->F 'C->K RC t

Render RC using...

texture D,,t

projective texture coordinates Rf,

modulated by aperture texture A

Accumulate rendered polygon into frame buffer

Using this method, it is possible to render dynamically reparameterized light fields

in real-time using readily available PC graphics cards that support multi-texturing.

Frame rate decreases linearly with the number of data cameras that fit inside the

aperture functions, so narrow apertures render faster. Vignetting, where the edge of

the reconstructed images fade to black, occurs near the edges of the camera surface

when using wide filters. An example of vignetting can be seen in Figure 4-4.

7.4 Using the Focal Surface as a User Interface

In typical light field representations, there is no explicit depth information. This

makes it difficult to navigate about an object using a keyboard or mouse. For example,

it can be hard to rotate the camera about an object when the system doesn't know

where the object is located in space. Camera centered navigation is considerably

simpler to use. I have found the focal surface can be used to help navigate about an

object in the light field. When the focal surface is moved so that a particular pixel

p belonging to that object is in focus, one can find the 3-D position P of p using the
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equation P = HK-PP. Once the effective 3-D position of the object is known, it is

simple to rotate (or some other transformation) relative to that point.
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Chapter 8

Autostereoscopic Light Fields

My flexible reparameterization framework allows for other useful reorganizations of

light fields. One interesting reparameterization permits direct viewing of a light field.

The directly-viewed light field is similar to an integral or lenticular photograph. In

integral photography, a large array of small lenslets, usually packed in a hexagonal

grid, is used to capture and display an autostereoscopic image [17, 23]. Traditionally,

two identical lens arrays are used to capture and display the image: this requires

difficult calibration and complicated optical transfer techniques [25]. Furthermore,

the viewing range of the resulting integral photograph mimics the configuration of the

capture system. Holographic stereograms [11] also can present directly-viewed light

fields, although the equipment and precision required to create holograph stereograms

can be prohibitive. Using dynamic reparameterizations, it is possible to capture a

scene using light field capture hardware, reparameterize it, and create novel 3-D

displays that can be viewed with few restrictions. This makes it much easier to

create integral photographs: a light field is much easier to collect and a variety of

integral photographs can be created from the same light field.

In an integral photograph, a single lenslet acts as a view-dependent pixel, as seen

in Figure 8-1. For each lenslet, the focal length of the lens is equal to the thickness

of the lens array. A reparameterized light field image is placed behind the lens array,

such that a subset of the ray database lies behind each lenslet. When the lenslet is

viewed from a particular direction, the entire lenslet takes on the color of a single
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point in the image. To predict which color is seen from a particular direction, I use

a paraxial lens approximation [221. I draw a line parallel to the viewing direction

which passes through the principle point of the lenslet. This line intersects the image

behind the lenslet at some point; this point determines the view-dependent color.

If the viewing direction is too steep, then the intersection point might fall under a

neighboring lenslet. This causes a repeating "zoning" pattern which can be eliminated

by limiting the viewing range or by embedding blockers in the lens array [17].

Since each lenslet acts as a view-dependent pixel, the entire lens array acts as a

view-dependent, autostereoscopic image. The complete lens array system is shown

in Figure 8-4. Underneath each lenslet is a view of the object from a virtual camera

located at each lenslet's principal point.

To create the autostereoscopic image from a dynamically reparameterized light

field, I position a model of the lens array into the light field scene. This is analo-

gous to positioning a desired camera to take a standard image. Then an array of

tiny sub-images is created, each the size of a lenslet. Each sub-image is generated

using a dynamically-reparameterized-light-field-system, with the focal surface passing

through the object of interest. Each sub-image is taken from the principal point of

a lenslet, with the image plane parallel to the flat face of the lens array. The sub-

images are then composited together to create a large image, as in Figure 8-3, which

can be placed under the lens array. When viewed with the lens array, one would see

an autostereoscopic version of the scene shown in Figure 8-2.

The placement and orientation of the lens array determines if the viewed light

field appears in front or behind the display. If the lens array is placed in front of the

object, then the object appears behind the display. Because the lens array image is

rendered from a light field and not directly from an integral camera, I place the lens

array image behind the captured object, and the object appears to float in front of

the display.

59



image

F

virtual pinhole

Figure 8-1: Each lenslet in the lens array acts as a view-dependent pixel.

Figure 8-2: A autostereoscopic reparameterized version of this scene is shown in

Figure 8-3.
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Figure 8-3: An autostereoscopic image that can be viewed with a hexagonal lens
array.

Left EyeLens Array

----------------------------------------------------------------------
-------------------- ------------------

Right Eye ---- ----------------
-- --------- -------------

........... 5E - ---- ---- ------------ ---

Figure 8-4: A light field can be reparameterized into a integral photograph.
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Chapter 9

Results

In this chapter I will describe how we captured our light fields (Section 9.1), how

we calibrated out cameras (Section 9.2), and some particulars about our renderers

(Section 9.3).

9.1 Capture

The light field data sets shown in this thesis were created as follows. The tree data

set, with 256 input images, was rendered in Povray 3.1, a public-domain ray-tracer.

It is composed of 256 (16x16) images with resolutions of 320x240. For each set, I

captured either 256 (16x16) or 1024 (32x32) pictures.

I have built a light field capture system using a digital camera mounted to a

robotic motion platform. The captured data sets were acquired with an Electrim

EDC1000E CCD camera (654 x 496 with gRBG Bayer pattern) with a fixed-focal

length 16mm lens mounted on an X-Y motion platform from Arrick Robotics (30"

x 30" displacement). The 16mm lens was specially designed to reduce geometric

distortion. I used a 2x2 color interpolation filter to create a full color image from the

Bayer pattern image. Finally, I resampled the raw 256 654 x 496 images down to 327

x 248 before using them as input to the renderer, to produce better color resolution.

The EDC1000E is quite noisy, with a large percentage of hot pixels. To reduce the

effect of the hot pixels, I captured 10 dark images and then averaged them to produce
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an average dark image. This dark image was subtracted from each subsequent image

taken with the camera during the light field capture. Then, I also captured a flat field

image for each capture session. To make the flat field image, I covered the lens with

a diffusing white paper, and into the lens I shined a bulb of the same type used to

illuminate the scene. This captured an image that I could use to calibrate the color

dyes of the sensor, as well as the value between each pixel. Thus, I took this flat field

image and assigned it an arbitrary color value. Then, each pixel in every subsequent

image was scaled by the arbitrary color value divided by the value stored in the flat

field image for that pixel.

9.2 Calibration

To calibrate the camera, I originally used a Faro Arm (a sub-millimeter accurate

contact digitizer) to measure the 3-D spatial coordinates (x, y, z) of the centers of

a calibration pattern on two perpendicular planes filling the camera's field of view.

Then, I found the centroids of these dots in images and fed the 24 5-tuples (x, y, z, i, j)

into the Tsai-Lenz camera calibration algorithm [24] which reported focal length, CCD

sensor element aspect ratio, principle point, and extrinsic rotational orientation. I

ignored radial lens distortion, which was reported by calibration as less than 1 pixel

per 1000 pixels.

I have found that a strict calibration step is not necessary. A method has been

developed which allows my data to be rectified along the two translation axes. Given

that the initial images are approximately aligned to only a few degrees off-axis, only

a two-axis image rectification is required. This alignment is guaranteed by careful

orientation of the camera with the X-Y platform. The method relies on finding the

epipolar planes induced by the horizontal and vertical camera motion. The epipoles

are then rectified by a rotation to the line at infinity. The focal length is then

estimated by either measuring the scene and using similar triangles, or by modifying

the focal length using the real-time viewer until the images look undistorted. In my

experiments, it is fairly easy to recover the focal length using this method. Because
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the light fields are defined up to a scale factor, I assume that the camera spacing is

a unit length, and then the focal length is defined in these units. The principal point

is assumed to be the center of each image.

9.3 Rendering

I have developed two renderers, a real-time renderer and an off-line renderer. The

real-time renderer uses planar homographies to efficiently render by using readily

available PC rasterizers for Direct3D 7. The off-line renderer is more flexible and

permits non-planar focal and camera surfaces, as well as per pixel focal surfaces and

apertures. For the autostereoscopic images, I print at 300dpi on a Tektronics Phaser

440 dye sublimation printer and use a Fresnel Technologies #300 Hex Lens Array,

with approximately 134 lenses per square inch [6].

Figure 9-1 shows the real-time user interface. One can change many variables of

the system at run time, including camera rotation and position, focal plane location,

focal length of the camera, and aperture size. The user navigates perpendicular to

the view direction by dragging with the left mouse button. Holding down shift while

dragging vertically allows the user to translate into and out of the scene, along the

view direction. The dragging with the right button allows the user to rotate the

camera, either about the object that the user clicked on when beginning the drag

or about the eye (the user sets this in the "Rotate About..." frame). The user can

save screen shots, as well as use the current camera position to feed as input to the

autostereoscopic renderer.
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Figure 9-1: The real-time-dynamically-reparameterized-light-field-renderer allows the
user to change focal plane distance, focal length, camera position, camera rotation,
aperture size, and data camera focal length.
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Chapter 10

Future Work and Conclusion

In this thesis, I have described a new parameterization that further develops the

light field and lumigraph image-based rendering methods and extends their utility.

I have presented a dynamic parameterization that permits 1) interactive rendering

of moderately sampled light fields with significant, unknown depth variation and

2) low-cost, passive autostereoscopic viewing. Using a dynamic reparameterization,

these techniques can be used to interactively render photographic effects such as

variable focus and depth-of-field within a light field. The dynamic parameterization

works independently of scene geometry and does not require actual or approximate

geometry of the scene for focusing. I explored the frequency domain and ray-space

aspects of dynamic reparameterization, and present an interactive rendering technique

that takes advantage of today's commodity rendering hardware.

Previous light field implementations have addressed focusing problems by 1) using

scenes that were roughly planar, 2) using aperture filtering to blur the input data, or

3) using approximate geometry for depth-correction. Unfortunately, most scenes can

not be confined to a single plane, aperture filtering can not be undone or controlled

at run time, and approximate surfaces can be difficult to obtain. I have presented

a new parameterization that enables dynamic, run-time control of the sample recon-

struction. This allows the user to modify focus and depth-of-field dynamically. This

new parameterization allows light fields to capture data sets with depth, and helps

bring the graphics community closer to truly photorealistic virtual reality. In addi-
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tion, I have presented a strategy for creating directly viewable light fields. These

passive, autostereoscopic light fields can be viewed without head-mounted hardware

by multiple viewers simultaneously.

There is much future work to be done. I would like to develop an algorithm for

optimally selecting a focal plane, perhaps using auto-focus techniques as in consumer,

hand-held cameras. Currently, a human must place the focal plane manually. In

addition, I believe there is promise in using these techniques for passive depth-from-

focus or depth-from-defocus vision algorithms [19]. In the left column of Figure 10-1,

I have created two images with different focal surfaces and a large aperture. I then

apply a gradient magnitude filter to these images, which gives the output to the right.

These edge images describe where in-focus, high-frequency energy exists. The out-of-

focus regions have little high-frequency energy, whereas the regions in focus do. Since

only structure very near the focal planes are in focus, I know that the in-focus regions

identify regions where there is structure. Thus, if I convolve a high-pass filter over

these narrow depth of field images and then identify the regions with high-frequency

energy, I find the regions in space where structure exists. Then, I use the plane (or

set of planes) which gives rise to the image with the most high-frequency energy: this

plane is the auto-focus plane. Likewise, I could take the n-best planes for a multiple

focal plane rendering (see Section 4.3).

Objects with little high-frequencies, even when they are in focus, such as flat

regions with little texture, are not be detected by this process. However, objects

with little high-frequency look as good if they are out of focus as if they are in focus.

Whereas using computer vision techniques to find depth from a set of images would

have to further analyze these ambiguous regions, I do not have to delve further since

several values are good enough: I simply take the best one that I find.

I would also like to experiment with depth-from-defocus by comparing two images

with slightly different apertures. Because my system allows the user to quickly create

images with variable depth of field and focus, experimentation in this area should be

quite possible.
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Figure 10-1: I believe my techniques can be used in a depth-from-focus or depth-

from-defocus vision system. By applying a gradient magnitude filter on an image

created with a wide aperture, I can detect in-focus regions.
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Appendix A

MATLAB code for

Frequency-Domain Analysis

This section provides the MATLAB code to produce the frequency domain analysis

figures of Chapter 6. The code assumes that the EPI domain and frequency domain

is of resolution 512 by 512. Because this is graphics code that draws to MATLAB

bitmap arrays, the origin is in the upper left corner of the images. Also, I have used

x and y axis coordinates, instead of s and f coordinates. The x axis is identical to

the s axis, but the y axis points in the opposite direction as the f axis.

A.1 Making the EPI

function z = MakeEpi(yO, xO, aO)

% MakeEpi takes in 3 arrays of length n, which represents n EPI
% features. For EPI feature i, the feature is centered about
% (xO(i),yO(i)) and has an angle aO(i)

% size of the EPI
height = 512;

width = 512;

z = zeros(height, width); % initialize the image buffer
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% note that we are working in a computer graphics coordinate system,

% where the origin is in the upper left. The Positive X axis points

% to the right, and positive Y axis points downward

% We can write equations for epi lines as (F*x + G*y + H = 0)

% If we don't wish to represent horizontal lines,
% we can divide by f to get (x + (G/F)*y + H/F = 0)
% This we can rewrite as (x + A*y + B = 0)

% Given a point (x0,y0) and an angle a0, we can solve for A and B as

% follows:
% (eqi:) x0 + A*y0 + B = 0
X (eq2:) x0+cos(aO) + A*(y0-sin(a0)) + B = 0

% Solving for A and B gives us
% A = cot(aO)
h B = -cot(a0)*y0-x0

A = cot(a0);

B = -cot(a0).*yO-xO;

I We also need the line perpendicular to the one above, that also

% passes through (x0,yO). We can find this by using a new angle
I b0 = a0 + pi/2. Note that we will not allow this line to be

X vertical. This gives us a line equation (C*x + y + D = 0)
X (eqi:) C*x0 + yO + D = 0
7 (eq2:) C*(x0+cos(a0+pi/2)) + y0-sin(a0+pi/2) + D = 0

% Solving for C and D gives us
7 C = tan(aO+pi/2)

7 D = -yO - x0*tan(aO+pi/2)

C = tan(a0+pi/2);
D = -y0-xO.*tan(a0+pi/2);

% A Gaussian distribution with the mean centered at 0 has the form

% P(x) = 1/(s*sqrt(2*pi)) * exp(-x^2/(2*s-2))

% for our Epi features, we will represent it at the multiplication

% of two perpendicular gaussian distributions. One gaussian will

% spread out across the line C*x+y+D=0 with a large standard deviation.
% This represents the slowly changing view dependence of the feature.

% Perpendicular to this, the other gaussian will spread out across the
% line x+A*y+B=0 with a small standard deviation. This represents the

7 boundaries of the point feature, so the epi feature is narrow in this

7 direction.
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sAB = 2;
sCD = 200;

kAB = 1/(sAB*sqrt(2*pi)); % scale factor for the AB gaussian

kCD = 1/(sCD*sqrt(2*pi)); % scale factor for the CD gaussian
eAB = 1/(2*sAB^2); % multiplier for the exponent in the AB gaussian
eCD = 1/(2*sCD^2); % multiplier for the exponent in the CD gaussian

for j=1:height

for i=1:width

tAB = i+A*j+B;

tCD = C*i+j+D;
z(j,i) = sum((kAB*exp(-tAB.^2*eAB)) .* (kCD*exp(-tCD.^2*eCD)));

end

end

A.2 Viewing the EPI

function ShowEpi(z,n)

% ShowEpi will draw the EPI stored in the array z. This function

% scales the intensity array before drawing it so that it displays

% correctly. The parameter n is the number of EPI features in the

% EPI; this helps figure out how to correctly scale the EPI;

t = ones(size(z))/n;
s = min(t,z/max(max(z)));
imshow(real(s*n));

axis equal;

A.3 Making the Filter

function F = MakeFilter( angle, y.width, x-width )
% MakeFilter will create the ideal low-pass filter for reconstruction
% in the frequency domain. The parameter angle gives the shearing angle

% of the original feature in EPI space to create the filter for. y.width

% is the width of the filter in the y dimension, and xwidth is the width
% of the filter in the x dimension

w = 512; % size of the EPI, frequency domain, and thus the filter
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h = 512;

F = zeros(h,w); % initialize the filter to all 0

% angle is in the EPI space, so rotate it by 90

% degrees to get it into the frequency domain

% coordinate system

a = pi/2 + angle;

% create corners of the rectangular filter

% the filter is sheared by 'a'

Ptl = [-y-width/2-(sin(a)*x-width/2) -x-width/2];

Pt2 = [-y-width/2+(sin(a)*x-width/2) x-width/2];

Pt3 = [y-width/2+(sin(a) *x-width/2) x-width/2];
Pt4 = [y-width/2- (sin (a) *x-width/2) -x-width/2];

% assign those corners to the Polygon structure

PolyX = [Ptl(2) Pt2(2) Pt3(2) Pt4(2)];

PolyY = [Ptl(1) Pt2(1) Pt3(1) Pt4(1)];

% translate to the center

PolyX = PolyX+w/2;
PolyY = PolyY+h/2;

% fill in the bitmap with filter values

% if inside the polygon, assign a 1
% if outside the polygon, assign a 0
% if on the polygon, assign a 0.5
[X,Y] = meshgrid(1:w,1:h);
F = inpolygon(X,Y,PolyX,PolyY);

A.4 Filtering the Frequency Domain

function ZF = FTFilter(Z,F)

ZF = Z.*fftshift(F);
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A.5 Downsampling the EPI

function out = DownsampleEpi(in, nh, nw)
%in is the array to downsample

%nh is number of times to downsample the height dimension

Y.nw is number of times to downsample the width dimension

7size(out) == size(in), but will have downsampled samples set to 0

[inh inw] = size(in);

th = in-h/nh; % there will be th samples in the height dimension

tw = in-w/nw; % there will be tw samples in the width dimension

T = zeros(nh,nw);
T(1,1) = 1;

TT = repmat(T,th,tw);

out = TT.*in;

A.6 Viewing the Frequency Domain Image

function ShowFT(Z,n)

% ShowFT will show the frequency domain image in a figure window
% Z is the frequency domain image, and n is the number of EPI
% features in the image. This function takes the magnitude of

% each complex element in the image, and rescales it so that

% it displays correctly

R = abs(fftshift(Z));
m = max(max(R));
imshow(R,[.01*m (1/n)*m]);
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A.7 Viewing the Frequency Domain Image and

Filter

function ShowFilterAndFT(Z,f,n,FilterColor)

% ShowFT will show the frequency domain image in a figure window

% along with the filter, in blue.

% Z is the frequency domain image, and n is the number of EPI

% features in the image. This function takes the magnitude of

% each complex element in the image, and rescales it so that

% it displays correctly.

% FilterColor is the [r g b] color of the filter

R = abs(fftshift(Z));
m = max(max(R));
imshow(R,[.Ol*m (1/n)*m]);

t = ones(size(Z))/n;
R = abs(fftshift(Z));
s = n*min(t,R/max(max(R)));
[h, w, d] = size(f);

FCred = ones(h,w,d);
FCgre = ones(h,w,d);

FCblu = ones(h,w,d);

for i=l:d

FCred(:,:,i) = FCred(:,:,i)*FilterColor(i,1);

FCgre(:,:,i) = FCgre(:,:,i)*FilterColor(i,2);
FCblu(:,:,i) = FCblu(:,:,i)*FilterColor(i,3);

end

C = zeros(h,w,3); % make a full color array

S = repmat(s,[1 1 d]);

C(:,:,1) = min(1,sum(f.*FCred.*(1-S)+S,3));
C(:,:,2) = min(1,sum(f.*FCgre.*(1-S)+S,3));

C(:,:,3) = min(1,sum(f.*FCblu.*(1-S)+S,3));
imshow(C);

axis equal;
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A.8 Creating the Components of the Figure 6-1

function ShowFilterAndFT(Z,f,n,FilterColor)

% ShowFT will show the frequency domain image in a figure window

% along with the filter, in blue.

% Z is the frequency domain image, and n is the number of EPI

% features in the image. This function takes the magnitude of

% each complex element in the image, and rescales it so that

X it displays correctly.

% FilterColor is the [r g b] color of the filter

R = abs(fftshift(Z));
m = max(max(R));
imshow(R,[.01*m (1/n)*m]);

t = ones(size(Z))/n;
R = abs(fftshift(Z));
s = n*min(t,R/max(max(R)));
[h, w, d] = size(f);

FCred = ones(h,w,d);

FCgre = ones(h,w,d);

FCblu = ones(h,w,d);

for i=1:d

FCred(:,:,i) = FCred(:,:,i)*FilterColor(i,1);

FCgre(:,:,i) = FCgre(:,:,i)*FilterColor(i,2);
FCblu(:,:,i) = FCblu(:,:,i)*FilterColor(i,3);

end

C = zeros(h,w,3); % make a full color array
S = repmat(s,[1 1 d]);

C(:,:,1) = min(1,sum(f.*FCred.*(1-S)+S,3));

C(:,:,2) = min(1,sum(f.*FCgre.*(1-S)+S,3));
C(:,:,3) = min(1,sum(f.*FCblu.*(1-S)+S,3));

imshow(C);

axis equal;
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A.9 Creating the Components of Figure 6-2

function ShowFilterAndFT(Z,f,n,FilterColor)

X ShowFT will show the frequency domain image in a figure window

X along with the filter, in blue.

% Z is the frequency domain image, and n is the number of EPI
% features in the image. This function takes the magnitude of

% each complex element in the image, and rescales it so that

% it displays correctly.
% FilterColor is the [r g b] color of the filter

R = abs(fftshift(Z));
m = max(max(R));
imshow(R,[.O1*m (1/n)*m]);

t = ones(size(Z))/n;
R = abs(fftshift(Z));
s = n*min(t,R/max(max(R)));
[h, w, d] = size(f);

FCred = ones(h,w,d);

FCgre = ones(h,w,d);
FCblu = ones(h,w,d);

for i=1:d

FCred(:,:,i) = FCred(:,:,i)*FilterColor(i,1);

FCgre(:,:,i) = FCgre(:,:,i)*FilterColor(i,2);
FCblu(:,:,i) = FCblu(:,:,i)*FilterColor(i,3);

end

C = zeros(h,w,3); % make a full color array

S = repmat(s, [1 1 d]);

C(:,:,1) = min(1,sum(f.*FCred.*(1-S)+S,3));

C(:,:,2) = min(1,sum(f.*FCgre.*(1-S)+S,3));
C(:,:,3) = min(1,sum(f.*FCblu.*(1-S)+S,3));

imshow(C);

axis equal;
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