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On Model-Based RIP-1 Matrices

Piotr Indyk* Ilya Razenshteyn'

Abstract

The Restricted Isometry Property (RIP) is a fundamental property of a matrix enabling
sparse recovery [CRT06]. Informally, an m x n matrix satisfies RIP of order k in the £, norm if
|Az||, = ||z||, for any vector x that is k-sparse, i.e., that has at most k£ non-zeros. The minimal
number of rows m necessary for the property to hold has been extensively investigated, and
tight bounds are known. Motivated by signal processing models, a recent work of Baraniuk et
al [BCDHI0] has generalized this notion to the case where the support of  must belong to a
given model, i.e., a given family of supports. This more general notion is much less understood,
especially for norms other than 5.

In this paper we present tight bounds for the model-based RIP property in the £; norm. Our
bounds hold for the two most frequently investigated models: tree-sparsity and block-sparsity.
We also show implications of our results to sparse recovery problems.

1 Introduction

In recent years, a new “linear” approach for obtaining a succinct approximate representation of
n-dimensional vectors (or signals) has been discovered. For any signal x, the representation is equal
to Az, where A is an m X n matrix, or possibly a random variable chosen from some distribution
over such matrices. The vector Ax is often referred to as the measurement vector or linear sketch
of z. Although m is typically much smaller than n, the sketch Az often contains plenty of useful
information about the signal z.

A particularly useful and well-studied problem is that of stable sparse recovery. We say that
a vector x’ is k-sparse if it has at most k& non-zero coordinates. The sparse recovery problem is
typically defined as follows: for some norm parameters p and ¢ and an approximation factor C' > 0,
given Ax, recover an “approximation” vector z* such that

[z —2%, <C min
k-sparse x’

a:—x'Hq (1)

(this inequality is often referred to as £,/¢, guarantee). Sparse recovery has a tremendous number of
applications in areas such as compressive sensing of signals [CRT06, Don06|, genetic data acquisition
and analysis and data stream algorithms [Mut05], [GI10].

It is known [CRT06] that there exist matrices A and associated recovery algorithms that produce
approximations x* satisfying Equation (Il) with p = ¢ = 1l constant approximation factor C, and
sketch length

m = O(klog(n/k)) (2)
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In fact, one can prove a somewhat stronger guarantee, referred to as the ¢2/¢; guarantee.
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This result was proved by showing that there exist matrices A with m = O(klog(n/k)) rows that
satisfy the Restricted Isometry Property (RIP). Formally, we say that A is a (k,e)-RIP-p matriz, if
for every z € R™ with at most k non-zero coordinates we have

(1 =e)llzll, < [[Az], < (1 +¢)ll2]lp-

The proof of [CRT06| proceeds by showing that (i) there exist matrices with m = O(klog(n/k)) rows
that satisfy (k,e)-RIP-2 for some constant € > 0 and (ii) for such matrices there exist a polynomial
time recovery algorithm that given Ax produces x* satisfying Equation I Similar results were
obtained for RIP-1 matrices [BGIT08]. The latter matrices are closely connected to hashing-based
streaming algorithms for heavy-hitter problems, see [GI10] for an overview.

It is known that the bound on the number of measurements in Equation (2]) is asymptotically
optimal for some constant C' and p = ¢ = 1, see [BIPW10] and [FPRU10] (building on [Don06l
GG84, [Glu84l, [KasTT]). The necessity of the “extra” logarithmic factor multiplying k is quite un-
fortunate: the sketch length determines the “compression rate”, and for large n any logarithmic
factor can worsen that rate tenfold. Fortunately, a more careful modeling offers a way to overcome
the aforementioned limitation. In particular, after decades of research in signal modeling, signal
processing researchers know that not all supports (i.e., sets of non-zero coordinates) are equally
common . For example, if a signal is a function of time, large coefficients of the signal tend to occur
consecutively. This phenomenon can be exploited by searching for the best k-sparse approxima-
tion z* whose support belongs to a given “model" family of supports My, (i.e., x* is My-sparse).
Formally, we seek x* such that

z—x¥, <C- min x—1a 3
o =o'y <O min o=l )
TeM,

for some family M, of k-subsets of [n]. Clearly, the original k-sparse recovery problem corre-
sponds to the case, when My, is a family of all k-subsets of [n].

A prototypical example of a sparsity model is block sparsity [EM09]. Here the signal is divided
into blocks of size b, and the non-zero coefficients belong to at most k/b blocks. This model is
particularly useful for bursty time signals, where the “activity” occurs during a limited time period,
and is therefore contained in a few blocks. Another example is tree sparsity [RCB01] which models
the structure of wavelet coefficients. Here the non-zero coefficients form a rooted subtree in a full
binary tree defined over the CoordinatesE. For many such scenarios the size of the family My, is
much smaller than (Z), which in principle makes it possible to recover an approximation from fewer
measurements.

An elegant and very general model-based sparse recovery scheme was recently provided in a
seminal work of Baraniuk et al [BCDHI10|. The scheme has the property that, for any “compu-
tationally tractable” family of supports of “small" size, it guarantees a near-optimal sketch length
m = O(k), i.e., without any logarithmic factors. This is achieved by showing the existence of ma-
trices A satisfying the model-based variant of RIP. Formally, we say that A satisfies e-Mp-RIP-p
if

(1= o)llelly < [zl < (1+ )l (4)

for any Mj-sparse vector x € R”.

2See Section [ for formal definitions of the two models.



In [BCDHIO0| it was shown that there exist matrices with m = O(k) rows that satisfy e- M-
RIP-2 as long as (i) either My is the block-sparse model and b = Q(logn) or (ii) My is the
tree-sparse model. This property can be then used to give an efficient algorithm that, given Ax,
finds x* satisfying a variant of the guarantee of Equation Bl However, the guarantees offered
in [BCDHI10|, when phrased in the ¢;/¢; framework, results in a super-constant approximation
factor C = ©(y/logn) [IP11]. The question of whether this bound can be improved has attracted
considerable attention in signal processing and streaming communities. In particular, one of the
problemﬁ listed in the Bertinoro workshop open problem list [B1111] asks whether there exist
matrices A with m = O(k) rows that provide the ¢;/¢; guarantee for the tree-sparse model with
some constant approximation factor C.

Our results In this paper we make a substantial progress on this question. In particular:

1. For both block-sparse and tree-sparse models, we show that there exist m x n matrices A that
provide the ¢; /¢; guarantee for some constant approximation factor C, such that the number
of measurements improves over the bound of Equation Pl for a wide range of parameters k
and b. In particular we show that for the block-sparse model we can achieve m = O(k - (1 +
logy(n/k))). This improves over the O(klog(n/k)) bound of Equation Bl for any b = w(1).
In particular, if b = n®®) we obtain m = O(k). For the tree-sparse model we achieve m =
O(klog(n/k)/loglog(n/k)) aslong as k = w(logn). This also improves over the O(klog(n/k))
bound of Equation 2L

We note, however, that our results are not accompanied by efficient recovery algorithms.
Instead, we show the existence of model-based RIP-1 matrices with the given number of rows.
This implies that Ax contains enough information to recover the desired approximation x*
(see Appendix [A] for more details).

2. We complement the aforementioned results by showing that the measurement bounds achiev-
able for a matrix satisfying block-sparse or tree-sparse RIP-1 property cannot be improved
(i.e., our upper bounds are tight). This provides strong evidence that the number of measure-
ments required for sparse recovery itself cannot be O(k).

Our results show a significant difference between the model-based RIP-1 and RIP-2 matrices.
For the ¢ norm, the original paper [BCDHI10] shows that the number of measurements is fully
determined by the cardinality of the model. Specifically, their proof proceeds by applying the union
bound over all elements of M}, on top of the Johnson—Lindenstrauss-type concentration inequality.
This leads to a measurement bound of m = O(k + log | My|), which is O(k) for the tree-sparse or
block-sparse models. In contrast, in case of the £; norm we obtain an upper bound with a very
different dependence on |Mp|: namely, if |[My| > n/k, then we are able to achieve
o

klog(n/k)
08 Tog M

m =0

Moreover, our lower bounds show that this bound is tight for the block- and the tree-sparse cases.

3See Question 15: Sparse Recovery for Tree Models. The question was posed by the first author.



Our techniques Our lower bounds are obtained by relating RIP-1 matrices to novel combina-
torial /geometric structures we call generalized expanders. Specifically, it is known |[BGIT08| that
any binary 0-1 matrix A that satisfies (k,e)-RIP-1 is an adjacency matrix of an unbalanced (k,¢)-
expander (see Section [2 for the formal definition). The notion of a generalized expander can be
viewed as extending the notion of expansion to matrices that are not binary. Formally, we define it
as follows.

Definition 1 (Generalized expander). Let A be an mxn real matriz. We say that A is a generalized
(k,e)-expander, if all A’s columns have ¢1-norm at most 1 + ¢, and for every S C [n] with |S| < k
we have
max |a;;| > |S]- (1 —e¢).
> max oyl > I8 (1-2)

1€[m]

Observe that the notion coincides with the standard notion of expansion for binary 0-1 matrices
(after a proper scaling).

In this paper we show that any (not necessarily binary) RIP-1 matrix is also a generalized
expander. We then use this fact to show that any RIP-1 matrix can be sparsified by replacing most
of its entries by 0. This in turn lets us use counting arguments to lower bound the number of rows
of such matrix.

Our upper bounds are obtained by constructing low-degree expander-like graphs. However, we
only require that the expansion holds for the sets from the given model M. This allows us to
reduce the number of the right nodes of the graph, which corresponds to reducing the number of
rows in its adjacency matrix.

2 Definitions

In this section we provide the definitions we will use throughout the text.

Definition 2 (Expander). Let G = (U,V, E) with [U| = n, |V| =m, E C U xV be a bipartite
graph such that all vertices from U have the same degree d. Then we say that G is a (k,€)-expander,
if for every S C U with |S| < k we have

[{veV]|3ues (uv) e E}| > (1-¢e)dS|
Definition 3 (Model). Let us call any non-empty subset
M CEp={AC[n]||A] =k}
a model.

In particular, ¥ is a model as well.

Definition 4 (Block-sparse model). Suppose that b,k € [n]. Moreover, b divides both k and n. Let
us partition our universe [n] into n/b disjoint blocks By, Ba, ..., By of size b. We consider the
following block-sparse model: By, consists of all unions of k/b blocks.

Definition 5 (Tree-sparse model). Suppose that k € [n] and n = 2" —1, where h is a non-negative
integer. Let us identify the elements of [n] with the vertices of a full binary tree of depth h. Then,
tree-sparse model Ty consists of all subtrees of size k that contain the root of the full binary tree.



Definition 6 (Model-sparse vector/set). Let My C X be any model. We say that a set S C [n] is
M-sparse, if S lies within a set from My. Moreover, let us call a vector x € R™ Mj-sparse, if its
support is a My-sparse set.

It is straightforward to generalize the notions of RIP-p matrix, expanders and generalized ex-
panders to the case of Mj-sparse vectors and sets. Let us call the corresponding objects e-My-RIP-p
matriz, e-Mp-expander and generalized e-Mp-expander, respectively. Clearly, the initial definitions
correspond to the case of ¥j-sparse vectors and sets.

Our two main objects of interest are By ;- and Ti-RIP-1 matrices.

3 Sparsification of RIP-1 matrices

In this section we show that any n xm matrix, which is (k, €)-RIP-1, can be sparsified after removing
(1—9(1))n columns (Theorem[Il). Then we state an obvious generalization of this fact (Theorem [2)),
which will be useful for proving lower bounds on the number of rows for By, ;- and 7T;-RIP-1 matrices.

Theorem 1. Let A be any m x n matriz, which is (k,e)-RIP-1. Then there exists an m x §(n)
matriz B which is (k,O(g))-RIP-1, has at most O(m/k) non-zero entries per column and can be
obtained from A by removing some columns and then setting some entries to zero.

We prove this theorem via the sequence of lemmas. First we prove that for every matrix A there
exists a +1-vector = such that ||Az[|; is small.

Lemma 1. Let A be any m x k matriz. Then there ezists a vector x € {—1, 1}k such that

1/2

Azl < > [ Doal| - ()

i€lm] \Jje€[k]

Proof. Let us use a probabilistic argument. Namely, let us sample all coordinates x; independently
and uniformly at random from {—1,1}. Then

9 1/2
E[||Az|i] = Z E Z a;ijzil| < Z E Z a;jT; =
i€[m] JEK] i€[m] S
1/2 1/2
Z Z a5 - Z Z az;
i€[m] jElk] i€[m] \Jj€Ek]
Thus, there exists a vector z € {—1,1}" that satisfies (F). O

As a trivial corollary we have the following statement.

Corollary 1. Let A be any m X k matriz that preserves (up to 1+¢) £1-norms of all vectors. Then

1/2

DD > (1—¢)k.

i€[m] \Jje€[k]



The next lemma shows that every (k,e)-RIP-1 matrix is a generalized (k, O(g))-expander. This
is a generalization of a theorem from [BGIT08|.

Lemma 2. Let A be any m X n matriz, which is (k,e)-RIP-1. Then, A is a generalized (k,3¢)-
expander.

Proof. For the proof we need the following lemma.

Lemma 3. For any y € RF

o = e < (1 5 ) Cloks = Dol )
Proof. Clearly, if y = 0, then the desired inequality is trivial. Otherwise, by homogenity we can
assume that [|y||1 = 1. If ||y||lcc = 1, then ||y|]]2 = 1, and both sides of (@) are equal to zero. So,
we can assume that [|y||e < 1. Suppose that ||y||cc =t for some t € (0;1). If 1/n >t>1/(n+1)
(thus, n = [1/t — 1]) for some positive integer n, then, clearly, ||y|l2 < nt2 — nt)2. One can
check using elementary analysis that for every ¢ € (0;1)

1yl _ 1t L

1
1 —1lyll2 _1—\/[%—1U2+(1—{%—1U)2_ NG

(equality is attained on ¢ = 1/2). This concludes the proof. O

Let S C [n] be any subset of size at most k. For any i € [m] let us denote y; = (a;;);jes € R®.
We have

>l > (1+55) & Il — 5+ Sl Oy e

ic[m]

<1 + %) (1—2¢)|S| — % -(I1+¢)|S| (by Corollary Il and RIP-1)

= (1-(1+v2))s|.

So, A is a generalized (k, (1 4+ v/2)¢)-expander. Since 1 4 v/2 < 3, this concludes the proof.

Finally, we prove Theorem [

Proof of Theorem[1. By Lemmal[2 A is a generalized (k, 3¢)-expander. Let us partition [n] into n/k
disjoint sets of size k arbitrarily: [n] = S;1US;U...US, ;. Now for every i € [m] and every S;
let us zero out all the entries a;; for j € S; except one with the largest absolute value. Let A’ be
the resulting matrix. Since A is a generalized (k, 3¢)-expander, we know that the (vector) ¢; norm
of the difference A — A’ is at most 3en. Thus, each column of A — A’ has the ¢; norm of at most
3e on the average. The number of non-zero entries in A’is at most mn/k, so a column has at most
m/k non-zero entries on the average. Thus, by Markov inequality there is a set of n/3 columns such
that we have moved each of them by at most 9¢ and each of them contains at most 3m/k non-zero
entries. We define a matrix B that consists of these columns. Since we have modified each of these
columns by at most 9¢ and A is (k,¢)-RIP-1 we have that B is (k, 10e)-RIP-1. O



The following theorem is a straightforward generalization of Theorem [l It can be proved via
literally the same argument.

Theorem 2. Suppose that a model My, C Xy, has the following properties:
o for somel <k all sets from ¥; are My-sparse;

e there exists a partition of an Q(1)-fraction of [n] into disjoint subsets of size Q(k) such that
each of these subsets is M-sparse.

Then if A is an m x n matriz which is e-My-RIP-1 for some sufficiently small € > 0, there exists
an m x Q(n) matriz B which is (I,0(¢))-RIP-1, has at most O(m/k) non-zero entries per column
and can be obtained from A by removing some columns and then setting some entries to zero.

4 Lower bounds for model-based RIP-1 matrices

In this section we prove lower bounds on the number of rows for By, ;- and 7;-RIP-1 matrices.
This is done using the following general theorem.

Theorem 3. If a model My, C ¥ satisfies the statement of Theorem[d and A is an m X n matrix
which is e-M,-RIP-1 for some sufficiently small € > 0, then

The proof is a combination of Theorem [2]and a counting argument similar to one used in [Nac10].
First, we need the following standard geometric fact.

Theorem 4. Let vy, v, ...,v, € R? be a set of d-dimensional vectors such that
o for every i € [n] we have ||v;||; < 1.1;
o for every i # j € [n] we have ||v; — vj]|1 > 0.9.

Then, n < 49,

Proof. Denote B(z,r) the ball in ¢1-metric with center x and radius r. Consider the balls B; =
B(v;,0.45). On the one hand, these balls are disjoint, on the other hand, they lie within B(0, 1.55).
Thus, if we consider the balls’ volumes we see that

155\
< (=2) <4
= <0.45> <

The next theorem shows a tradeoff between m and column sparsity for any RIP-1 matrix. Its
variant was proved in [Nacl0|, but we present here the proof for the sake of completeness.

O

Theorem 5 (|[Nacl0|). Let A be an m x n matriz, which is (k,e)-RIP-1 for some sufficiently small
€ > 0. Moreover, suppose that every column of A has at most s non-zero entries. Then

s (22) =0 (e (7))



Proof. We need a lemma from [Nacl0], which is proved by a standard probabilistic argument.
Lemma 4. There exists a set X CR"™ of k/2-sparse vectors such that

o log|X| = Q(klog(n/k));

e cvery vector from X has a unit £1-norm;

e all pairwise {1-distances between the elements of X are at least 1.

Now let us see how A acts on the elements of X. Clearly, for every € X the vector Ax is
sk-sparse. By pigeonhole principle we have that for some S C [m] with |S| < sk there exists a
subset X’ C X with

x> Pl ")
(sk)
such that for every x € X’ the support of Az lies within S.
On the other hand, since A is (k,e)-RIP-1 one can easily see that the set {Azx}, .y (which lies
in the sk-dimensional subspace) has the following properties:

e cvery vector from the set has #1-norm at most 1 + ¢;
e all pairwise distances are at least 1 — .

Since this set lies in the sk-dimensional subspace by Theorem [ its cardinality is bounded by 4%
(provided that ¢ is sufficiently small). Thus, we have by plugging this bound into (7))

92k log(n/k))
(%)

Now by using a standard estimate (:}g) < 20(sklog(m/sk)) e have the desired statement. O

< 4SI€

Now we can finish the proof of Theorem [3]

Proof of Theorem[3. By Theorem 2] we can get an m x Q(n) matrix A with column sparsity s =
O(m/k) and which is (I, O(e))-RIP-1. Then applying Theorem Bl we have slog(m/sl) = Q(log(n/l)).
Since, s = O(m/k) we get the desired bound

Next we apply Theorem [3 to By, ;- and 7-RIP-1 matrices.

Theorem 6. For any k > 2b and sufficiently small ¢ > 0 if A is an m X n matrix which is
e-Bip-RIP-1, then m = Q(k - (1 + logy(n/k))).

Proof. Clearly, By, satisfies the conditions of Theorem 2 for | = k/b. Thus, by Theorem [3 we have
m = Q(k-logy(n/k)) .

At the same time, the lower bound (k) is obvious. Combining them together we get the desired
result. O



Theorem 7. Let A be an m x n matriz which is e-Tp-RIP-1. Then, if € is sufficiently small and
k =w(logn),

m—q (5. Jos®/k)
log log(n/k)

Proof. The next Lemma shows that for any k¥ = w(logn) the model 7}, satisfies the first condition
of Theorem 2 with | = Q(k/log(n/k)).

Lemma 5. Let S C [n] be a subset of the full binary tree. Then there exists a subtree that contains
both S and the root with at most O(|S|log(n/|S|)) vertices.

Proof. Let T be a subtree that consists of log |S| levels of the full binary tree that are closest to the
root. Let 7" be a subtree that is a union of 7" and paths from the root to all the elements of |S|. It
is not hard to see that |77\ T'| < |S|log(n/|S|). As a result we get

|| < 7| + 18| log(n/|S]) < O(|S]log(n/|S])).
O

The second condition of Theorem 2] is satisfied as well (here we use that k = w(logn)). Thus,

applying Theorem [3] we have
m=Q|(k- 7log(n/k‘) .
log log(n/k)

5 Upper bounds for model-based RIP-1 matrices

In this section we complement the lower bounds by upper bounds.
We use the following obvious modification of a theorem from [BGIT08|.

Theorem 8 (IBGIT08|). If a graph G = (U,V, E) is an e-My-expander for some model My, C Xy,
then the normalized (by a factor of d, where d is the degree of all vertices from U ) adjacency matriz

of G (which size is |V| x |U|) is an O(e)-My-RIP-1 matriz.

Thus, it is sufficient to build M-expanders with as small m as possible. We use the standard
probabilistic argument to show the existence of such graphs. Namely, for every vertex u € U we
sample a subset of [m] of size d (d and m have to be carefully chosen). Then, we connect u and
all the vertices from this subset. All sets we sample are uniform (among all d-subsets of [m]) and
independent.

We use the following tail inequality, which can be proved using Chernoff bound (and whose
slight variant is proved and used in [BMRV02]).

Lemma 6 ([BMRVO02|). There exist constants C > 1 and 6 > 0 such that, whenever m > Cdt/e,
one has for any T C U with |T| =t
5m>—£dt

PrH{UEV!ﬂuGT(u,v)GE}!<(1—a)dt]g<5.%



For the proof see Appendix (Section [Bl).
For a model My, C X denote #(My,t) the number of My-sparse sets of size ¢ (for t € [k]). We
use the following simple estimate.

el #en <min{iaal- (5). (1)}

Now if we combine this Lemma with the standard estimate () < (eu/v)", we get the following

bound.

Lemma 7.

t

Vt e [k] #(My,t) < min {!Mk\ : <$>t (@)t} ®)

Now we combine these estimates, Lemma [6] Theorem [ and the union bound to get upper
bounds for m for M-RIP-1 matrices.

Theorem 9. For any 0 < & < 1/2 and any model My, that is of size at least n/k there exists an

e-My-RIP-1 matriz with
ok lostn/)
N g2 log(k/l) )’

_ log M|
log(n/k)
The proof is in the appendix. We note that the condition |[My| > n/k is needed to make sure

that { > 1.
Now we derive corollaries for the block- and tree-sparse cases.

where

Corollary 2. For any 0 <e < 1/2 and any 1 < b < k <n there exists an e-By, p-RIP-1 matriz with

o <1<; (1 +logb(n/k:))>

g2

rows.

Proof. 1t is easy to see that

My = (Zfb’) > n/k.

Thus, we can apply Theorem [0 with | = k/b and get the required bound. O

Corollary 3. For any 0 < ¢ < 1/2 and any k = w(logn) there exists an e-Tx-RIP-1 matriz with

m:O<k~ log(n/k) >

€2 loglog(n/k)

rows.

Proof. Using a simple estimate on Catalan numbers we can see that |Tj| < 4*. Since k = w(logn),
we are in position to apply Theorem [l and get the required bound. O

10
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A RIP-1 yields sparse recovery

In this section we show improved upper bounds on the number of measurements needed to recover
good block- or tree-sparse approximations with ¢; /¢; guarantee and constant approximation factor.
This result is folklore, but we include it for completeness.

Suppose that M C X is some model. We say that an m x n matrix A is €-M,(€2)-RIP—1, if for
every x € R" such that suppx C S1 U Ss for some My-sparse sets S; and So one has

(1 =e)llzlly < [[Az]1 < (1 +¢)llz]-

Let A be any E—./\/ll(f)—RIP—l matrix for a sufficiently small € such that ||Al|; < 1+e. Algorithm/[I]
(whose running time is exponential in n) given y = Az for some x € R" recovers a vector z* € R”
such that

o =21 <B+0())- ~ min Iz — 2']|1. (9)
2’ is My-sparse

Note that the optimization problem within the for-loop can be easily reduced to a linear program.

Algorithm 1 Model-based sparse recovery
Input: y = Ax for some z € R"
Output: a good My-approximation x* of x
x* <0
for S C [n] is an My-sparse set do
T aIgnlinsupp z'CS Hy - A$l‘|1
if [ly — Az, < |y — Az"|} then
¥ T
end if
end for
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Now let us prove that the resulting vector z* satisfies ([@). Denote zaq, an My-sparse vector that
minimizes ||z — za, ||1. Now we have

e = 2"l < flz = 2mll + lleam, — 2"l < le = zag ]l + (1 + O(@) |A(zpg, —27)]h <
<z =zl + 1+ 0E@)([[A(x = zag )l + [[ Az — 27)]1) <
<2+ 0@z —zpmli + A+ 0@)[[A(z — 21 <
<2+ 0@z —zpmli + A+ 0E)A( — zm) Il < B+ O@) |z — zpn -

The second inequality is true, since A is E—M,(f)—RIP—l and both za, and z* are Mj-sparse. The
fourth inequality is true, because ||All1 < 1+ e. The fith inequality is due to the construction of
the algorithm: clearly, ||A(zx — 2*)|i < [|A(z —2zam,) |1

It is immediate to see that any e-Bgy, ,-RIP-1 matrix is z—:—BﬁZ-RIP—l. Similarly, any e-79,-RIP-1

matrix is 5—7;(2)—RIP—1. Moreover, since all the singletons are both block- and tree-sparse, we have
that these matrices have ¢1-norm at most 1 + e. Thus, plugging Corollaries 2] and [B] we get the
following result.

Theorem 10. The problem of model-based stable sparse recovery with ¢1/¢1 guarantee and a constant
approzimation factor can be solved

o with
m = O(k - (1 + log,(n/k)))

measurements for By, p,

o with

measurements for Ty, provided that k = w(logn).

B Proof of Lemma

To prove the lemma we need the following version of Chernoff bound [MR95].

Theorem 11 ([MR95]). Suppose that X1, Xo, ..., X,, are independent binary random variables.
Denote p=E[X7 + Xo+ ...+ X,|. Then for any T > 0

e’ 2
Pr[X1+X2+...+Xn2(1+T)N]§ <m> .

We can enumerate all dt outgoing from T edges arbitrarily. Then let us denote C,, the event
“u-th of these edges collides with v-th edge on the right side, where v < u”.

We would like to upper bound the probability of the event “at least edt of events C, happen”.
As shown in [BMRV02] this probability is at most

pr |5 (%) > cat].
m

Thus we can apply Theorem [Il with 7 = em/dt — 1 and p = (dt)?/m. Then, the statement of the
Lemma can be verified routinely.
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C Proof of Theorem

If we combine Lemma [6] with the union bound we see that it is sufficient to prove that

em\ —e€dt 1
<5
) <3

V1<t<I #(Mk,t)-<5-%

and

em) —edt 1
@) <a

provided that m > Cdk/e (here C and § are the constants from the statement of Lemma [l and [ is
the quantity from the statement of Theorem [d). Now let us plug (). Namely, for 1 < ¢ <[ we use
the second estimate, for [ <t < k we use the first estimate. Thus, it is left to choose d such that
we have

Vi<t<k #(Mpt)- (5.

ennt (C'k\ % 1
<t< - - —
V1<t<l (t)<t> <z (10)
ek\' (C'R\ " 1
<t < | — —
VI<t<k | M| <t> <t> < 5 (11)

for C' being sufficiently large constant. It would allow us to set m = O(dk/e).

It is straightforward to check that, whenever d > 1/e, the left-hand sides of (I0) and (1) are
log-convex. Thus, to check (I0) and (II), it sufficient to check them for t = 1,1, k.

Let us first handle (I0). For it to hold for a given 1 <t <[ it is enough to set

1=0 (g (55 +1oso0) )

For ¢ = 1 this expression is O(e~! - logy, n), for t =1 it is

log(n/1)
© (it -

Clearly, the latter bound is always larger than the former one.
Now let us handle (IIJ). Similarly, for [ <t¢ < k it is enough to set

o(t (1) o[t (- ). o

where the second step is due to the definition of I (I = log | My|/log(n/k)).
Now we will prove that for ¢ = [, k the right-hand side of (I3) is at most (I2]).
For t = [ we obviously have

[ -log(n/k) log(n/1)
Tloghft) <1og<k/1>> |

At the same time

log k log(n/1)
Fos(iyt) <log<k/z>> /
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since log k = O(l-log(n/1)). Indeed, if I > log n, then we are done. Otherwise, log(n/l) = Q(logn) =
Q(log k), and we are again done.
Now let us handle ¢t = k. Indeed,

log k

t-log(k/t) =0()

in this case. At the same time,

l-log(n/k) log(n/1)
tlog(kjt) <log<k/z>> ’

since [ - log(k/l) = O(k).
Overall, this argument shows that we can take

—o (L. pen),

and
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