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A Network Approach to Define
Modularity of Components
in Complex Products
Modularity has been defined at the product and system levels. However, little effort has
gone into defining and quantifying modularity at the component level. We consider com-
plex products as a network of components that share technical interfaces (or connections)
in order to function as a whole and define component modularity based on the lack of
connectivity among them. Building upon previous work in graph theory and social net-
work analysis, we define three measures of component modularity based on the notion of
centrality. Our measures consider how components share direct interfaces with adjacent
components, how design interfaces may propagate to nonadjacent components in the
product, and how components may act as bridges among other components through their
interfaces. We calculate and interpret all three measures of component modularity by
studying the product architecture of a large commercial aircraft engine. We illustrate the
use of these measures to test the impact of modularity on component redesign. Our results
show that the relationship between component modularity and component redesign de-
pends on the type of interfaces connecting product components. We also discuss direc-
tions for future work. �DOI: 10.1115/1.2771182�
Introduction
Previous research on product architecture has defined modular-

ty at the product and system levels �1–3�. However, little effort
as been dedicated to studying modularity at the component level
4�. Although complex products are typically considered as net-
orks of components that share interfaces to function as wholes

5–7�, no quantitative measures distinguish components based on
ow connected �or disconnected� they are with other components
n the product. The term “modularity” has been used to imply
ecoupling of building blocks, such that the more decoupled the
uilding blocks of a product or system, the more modular that
roduct or system is �1,8�. We provide an alternative notion of
odularity at the component level by examining components’ de-

ign interface patterns with those of other components within the
roduct rather than their internal configuration. More specifically,
e define measures to quantify the relative level of modularity of

omponents in complex products based on their lack of connec-
ivity with other components within the product.

Understanding architectural properties, such as component
odularity, is particularly important for established firms, which

ften fail to identify and manage novel ways in which components
ay share interfaces �9�. Managing interfaces becomes even more

ifficult when developing complex products; hence, it is critical
or managers to proactively identify those components that will
equire particular attention during the design process �10,11�.

any important design decisions depend on how the components
onnect with other components in the product, yet we still lack
ccepted measures to capture how disconnected �i.e., how modu-
ar� a component is. Do modular components require more �or
ess� attention from their design teams during their development
rocess? Are modular components easier to redesign or out-
ource? In order to answer such questions, we propose to quanti-
atively measure modularity at the component level.

1Corresponding author.
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8, 2005, Long Beach, CA.

118 / Vol. 129, NOVEMBER 2007 Copyright ©

om: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 05/12/201
The need to measure modularity has been highlighted implicitly
by Saleh �12� in his recent invitation “to contribute to the growing
field of flexibility in system design” �p. 850�. Saleh �12� laments
that “there isn’t yet a coherent set of results that demonstrates how
to embed flexibility in the design of complex engineering systems,
nor how to evaluate it and trade it against other system attributes
such as performance or cost” �p. 849, emphasis added�. Defining
and measuring modularity at the component level �as opposed to
the product or system level� represents an important step in ad-
dressing this void in the engineering design literature because it
can provide quantitative approaches to evaluate the flexibility as-
sociated with components embedded in complex products. Our
proposed definitions of component modularity therefore may
serve as starting points for a long-needed discussion about archi-
tectural properties of product components.2

Our work makes two important contributions. First, we inte-
grate the literature of product architecture, social networks, and
graph theory to define and measure modularity at the component
level based on the notion of centrality. We apply our definitions to
determine the modularity of the components of a large commer-
cial aircraft engine. Second, we illustrate how to test the impact of
component modularity on important design decisions, such as
component redesign. In particular, we show that the relationship
between component modularity and component redesign is not
trivial and depends on the type of design interface that connects
the product components. Our approach illustrates how to study the
relationship between component modularity and other important
performance or life cycle attributes of product components.

2 Literature Review
This work builds upon streams of research in both product ar-

chitecture and social networks. We also refer to graph theory,
which provides a foundation for defining properties of both prod-
ucts and social networks when they are considered as graphs of
connected nodes. We blend these research streams together by
defining and measuring three types of component modularity.

2We refer to architectural properties of product components as those determined

by the components’ patterns of interfaces with other components in the product.
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2.1 Product Architecture. The literature on product decom-
osition and product architecture begins with Alexander �13�, who
escribed the design process as involving the decomposition of
esigns into minimally coupled groups. Simon �5� elaborated fur-
her by suggesting that complex systems should be designed as
ierarchical structures consisting of “nearly decomposable sys-
ems,” such that strong interfaces occur within systems and weak
nterfaces occur across systems. This is consistent with the inde-
endence axiom of axiomatic design, which suggests the decou-
ling of functional and physical elements of a product �6�. Taking
more strategic view, Baldwin and Clark �8� argued that modu-

arity adds value by creating options that enable the evolution of
oth designs and industries.

Ulrich �1� defined the architecture of a product as the “scheme
y which the function of a product is allocated to physical com-
onents” �p. 419�. A key feature of the product architecture is the
xtent to which it is modular or integral �14�. In the engineering
esign field, significant research has focused on rules to map func-
ional models to physical components �15,16� and decomposition

ethods of complex products using graphs, trees, and matrices
17–19�. This line of research has paid particular attention to the
dentification of clusters of similarly dependent components �also
alled modules�. As for measures of modularity, most previous
ork concentrates on the product level �4�, such that existing
odularity measures consider similarity and dependency links be-

ween product components �19–22�.
As Ulrich �1� suggested, establishing the product architecture

nvolves not only the arrangement of functional elements and their
apping onto physical components but also the specification of

he interfaces among interdependent components. In order to cap-
ure the structure of product architectures in terms of component
ependencies, we use the design structure matrix �DSM� tool, a
atrix-based graphical method introduced by Steward �23� and

sed by Eppinger et al. �24� to study the interdependence between
roduct development activities. Furthermore, DSM representation
as been used to document product decomposition and team in-
erdependence �3,11,25,26� and to model the risk of design change
ropagation in complex development efforts �10,27–29�. More re-
ently, researchers have extended the use of DSM representations
f complex products to analyze their architectures at the product
evel �30,31�.

2.2 Social Networks. A social network refers to a set of ac-
ors connected by a set of ties. The actors, or “nodes,” can be
eople, groups, teams, or organizations, and the ties are social
elationships such as friendship, advice, or communication fre-
uency. Social network analysis studies the social relations among
set of actors and argues that the way an individual actor behaves
epends in large part on how that actor is tied into the larger web
f social connections �32,33�. This research also postulates that
he success or failure of societies and organizations depends on
he interactions of their internal entities �34�. Beginning in the
930s, a systematic approach to theory and research began to
merge when Moreno introduced the ideas and tools of sociom-
try �35�. In the 1940s, Bavelas �36� noted that the arrangement of
ies linking team members may have consequences for their pro-
uctivity and morale, and proposed that the relevant structural
eature to study was centrality. Since then, social network analysis
as extended into many different areas of organizational research
37�.

The work most relevant to our paper is that which focuses on
eveloping network measures to capture structural properties of
ocial systems at the individual and group levels. Of particular
elevance is work focused on developing centrality measures of
ndividual actors in social organizations �33,38,39�. Actors who
re the most important �also referred to as prominent or presti-
ious actors� are usually located in “central” locations within the
etwork. Thus, centrality measures aim to identify “the most im-
ortant” actors in a social network based on their social interac-

ions �33,38�. Although many measures of node centrality have
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been suggested, it was not until Freeman’s �38� article that clarity
about the concept and general ways to measure it converged into
three categories of centrality: degree, closeness, and betweenness.
We discuss these three categories in detail when we develop our
component modularity measures.

In addition to centrality, other measures of social network
properties—such as power, constraint, range, and redundancy—
exist, but their translation to the product domain is less obvious
�33,34�. Algorithms to compute most of these structural properties
are available and have been implemented in network computer
programs such as UCINET �40�.

2.3 Graph Theory. Graph theory �41,42� has been used
widely in social network analysis �33,38,39,43� and, to a lesser
extent, in engineering design �17,18,44,45�. The most salient ben-
efits of using graph theory to study networks include, first, a com-
mon language to label and represent network properties and, sec-
ond, mathematical notions and operations with which many of
these properties can be quantified and measured �33� �p. 93�.

Before developing measures of component modularity, we must
first clarify some basic graph theoretical concepts �41,42�. A
graph is a collection of points �also called vertexes or nodes� and
lines �also called arcs, ties, linkages, or edges�. In our context, the
components of a product are represented by the nodes of a graph,
and the “connections” among these components are represented
by the edges of the graph. The degree of a node is the number of
edges incident with it. A path is a sequence of distinct, connected
nodes in a graph, and the length of a path is the number of edges
on it. In turn, a geodesic is the shortest path between two nodes,
and the geodesic distance, or simply the distance, between two
nodes is the length of their geodesic. A graph is connected if every
pair of nodes is joined by a path. A bridge is an edge whose
removal would disconnect the original graph into separate sub-
graphs. The center of a connected graph is the node �or set of
nodes� with the smallest maximum distance to all other nodes in
the graph �42� �p. 46�. A star graph consists of one node at the
center and some number of nodes, each of which is connected to
the center node and to no other node �33�. Finally, when the edges
of the graph have arrows, allowing for asymmetric as well as
symmetric relations between nodes, the graph is directed �also
called a digraph�, and the preceding definitions may be extended
easily to take the directionality of the edges into account.

3 Defining Component Modularity
The term “modularity” has received widespread attention

across various disciplines �1–3,8,21,46,47�, but, thus far, confu-
sion remains about its definition and ways to measure it �2�. In
order to measure modularity, we must clarify the various levels of
analysis on which the term can be defined, which is particularly
relevant when designing complex products due to their decompo-
sition into systems and components �5�. In Fig. 1, we show how a
product can be decomposed into several systems, which can be
decomposed further into components. Modularity, therefore, can
be defined at the product, system, and component levels.

At the product level, Ulrich �1� defined modular product archi-

Fig. 1 Hierarchical decomposition of a product
tecture as resulting from a one-to-one mapping between functional

NOVEMBER 2007, Vol. 129 / 1119

4 Terms of Use: http://asme.org/terms



e
c
l
c
a
M
w
f
m

c
c
l
c
n
c
n
o
s
p
c

c
t
w
a
p
t

t
d
n

m
c
d
i
c
c
p

n
c
c
o

p
g
r

1

Downloaded Fr
lements and physical components and including “de-coupled
omponent interfaces” �p. 423�. At the system �or subsystem�
evel, much work has focused on clustering similarly dependent
omponents together that are tightly connected inside the cluster
nd loosely connected with other clusters �4,5,16,18,22,25�.
oreover, Sosa et al. �3� defined modular systems “as those
hose design interfaces with other systems are clustered among a

ew physically adjacent systems” �p. 240�. Herein, we define and
easure modularity at the component level.
Therefore, to define component modularity, we analyze each

omponent’s network, as defined by its connections with all other
omponents in the product. Formally, we define component modu-
arity as the level of independence of a component from the other
omponents within a product. The more independent �or discon-
ected� a component is �i.e., the more “degrees of freedom” a
omponent has�, the more modular it is. We assume that compo-
ents lose design independence because of their connections with
ther components, which we call design dependencies.3 As a re-
ult, we aim to measure component modularity by considering the
atterns of a component’s design dependencies with the other
omponents in the product.

Figure 2 shows a network view of a hypothetical product de-
omposition, in which we have added component dependencies to
he hierarchical structure in Fig. 1. Figure 2 also shows the net-
ork of the most modular and least modular components in such
network based on their lack of connectivity with the other com-
onents in the product. However, we still need a way to quantify
he level of connectivity of a component within a product.4

In general terms, we operationalize component modularity as
he ratio of actual component “disconnectivity” to the maximum
isconnectivity a component could have in a product of n compo-
ents. Hence,

Component modularity

=
Actual component disconnectivity

Maximum possible component disconnectivity
�1�

This expression offers a normalized measure of component
odularity that depends on how we measure the connectivity of a

omponent within the product. Because component modularity
epends on the architecture of the product, a normalized measure
s required to be able to compare the design independence of
omponents across products. We do this based on the notion of
entrality because it is one of the most widely used concepts em-
loyed in empirical studies that involve the identification of the

3We use the expression “design dependency” to refer to a specific type of con-
ection between two components, such as the ones defined due to spatial or energy
onstraints, whereas we use the expression “design interfaces” to refer to component
onnections in a broader sense because they are typically formed by the aggregation
f design dependencies of various types.

4Note that we use the term connectivity as a property of the components of a
roduct, whereas graph theory uses the term as an attribute of the entire graph. In
raph theory, the connectivity of a graph is the minimum number of points whose

Fig. 2 Network representation of a product
emoval results in a disconnected graph �41� �p. 43�.
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most important nodes of a network �33�. Freeman �38� suggested
measuring centrality based on three unique properties shown by
the center node of a star graph: maximum number of direct con-
nections to all other nodes in the graph, minimum distance to all
other nodes in the graph, and maximum occurrence on the path of
two other nodes in the graph �33�. That is, the central node of a
star graph is directly connected to all other peripheral components,
is the closest node to all other nodes in the graph, and is the only
node that is between any two other nodes in the graph.

We assume that more central �or more connected� components
exhibit higher levels of some or all of these three distinct proper-
ties and, therefore, measure connectivity among product compo-
nents by considering either direct, indirect, or bridging connec-
tions among them. We do this because components are not only
directly connected to other components �degree connectivity� but
also indirectly connected to others because design dependencies
can potentially propagate through intermediary components and
reach other distant components �distance connectivity�, or they
can also serve as bridges by connecting two other components
�bridge connectivity�.

3.1 Design Dependencies. In order to define modularity mea-
sures for product components formally, we first capture the break-
down structure of the product into functional or physical compo-
nents, then identify the design dependencies �including types and
strength� between these components, and finally model the prod-
uct as a network of components to measure their level of
modularity.

Previous work in engineering design identifies design depen-
dencies between functional components on the basis of flows of
energy, material, and information among functional elements of
products during their concept development �6,7,48�. Other re-
searchers identify various types of design dependencies between
physical components to capture how the functionality of one
physical component depends on spatial, structural, material, en-
ergy, and information constraints of other components in the prod-
uct �3,25,30�. Still others capture design dependencies between
components based on their impact on other components as a result
of a likely change in the design of a component �10,27,29�. In
addition to distinct types of design dependencies, researchers have
used various discrete scales to document the strength of connec-
tions, which either enhance or reduce the functionality or perfor-
mance of the component, for each dependency type �3,25,29,30�.

A subtle but important issue regarding the identification and
documentation of design dependencies requires determining how
to deal with dependencies that may influence the product-level
performance �also called system-level performance�, such as the
aerodynamic performance of an aircraft engine. In order to ad-
dress this issue for each component design dependency identified,
we suggest two alternate approaches that incorporate product-
level impacts into the definition of the dependency.

• First, we would treat product-level requirements as potential
external constraints on all the components of the product
and ensure that such constraints are manifest in the defini-
tion of the design dependencies of the components affected
by those constraints. For example, the clearance between
two engine components would be defined as a strong bidi-
rectional spatial design dependency between them if it af-
fects the rotor dynamic performance of the engine. Note that
using this approach depends on the definition of the types of
design dependencies that could connect any two compo-
nents �27,29�. If necessary, one could define a design depen-
dency type that exclusively captures product-level require-
ments, such as weight or fuel economy, and therefore
connect components exclusively in terms of product-level
requirements. This would be appropriate if the requirements
cannot be defined within a reasonable interpretation of stan-
dard design dependency types, such as spatial, structural,

material, energy, and information �3,25,48�.
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• Second, we would embed product-level requirements within
“virtual” physical elements of the product and treat these as
any other physical product components. This approach
would enable us to capture the impact of design dependen-
cies that propagate to nonadjacent components through such
virtual components, and their contribution to our measures
of component modularity would be taken into account, just
as the contribution of any other component in the product
would be. For example, the aerodynamic performance of an
aircraft engine is integrally associated with the secondary
airflow that circulates through it, and component design de-
pendencies throughout the engine relate to the careful man-
agement of secondary airflow. Therefore, design dependen-
cies could be defined between the engine’s actual physical
components and the secondary air, which instantiates to a
large extent the performance requirements of the engine. In
our case study, we use this second approach to validate the
implementation of the first approach.

As mentioned above, the product breakdown into components
nd the design dependencies between them define the network of
omponents to analyze. This network can be represented by a
esign dependency matrix, X. In order to keep our nomenclature
lear for the rest of this section, let X refer to the matrix of design
ependencies for any type of design dependency, which captures
he direct dependencies between components for any given design
omain. �Note that X is simply a component-based DSM associ-
ted with a dependency type.� To be consistent with Sosa et al.
3�, we maintain that X has nonzero elements, xij, if component i
epends for its functionality on component j. The value of xij
ndicates the strength of the design dependency, ranging from 0 to
max, and diagonal elements, xii, are defined as zero.

3.2 Degree Modularity. Our simplest definition of compo-
ent modularity is degree modularity M�D�, which relates nega-
ively to the number of other components with which a given
omponent has direct design dependencies. The larger the number
f components that affect or are affected by the design of compo-
ent i is, the less modular component i is.

Because the degree of a node “is the number of lines incident
ith” it �41� �p. 14�, it ranges from a minimum of 0 to a maximum
f �n−1� if there are n nodes in a graph. Since design dependen-
ies have both direction and strength, we need to extend the con-
ept of node degree to valued directed graphs to define degree
odularity.
The in-degree of a component i is equal to the number of other

omponents that i depends on for functionality, whereas out-
egree is equal to the number of other components that depend on
omponent i. Thus, we define, for a product with n components,
he in-degree modularity of component i, M�ID�i, as

M�ID�i =
Actual indegree disconnect.

Max. indegree disconnect.

=
Max. indegree disconnect. − Actual indegree connect.

Max. indegree disconnect.

�2�

ence,

M�ID�i =
xmax · �n − 1� − xi+

xmax · �n − 1�
= 1 −

xi+

xmax · �n − 1�
�3�

here xi+=� j=1,j�i
n xij and xmax is the maximum value that xij can

ake.
Similarly, the out-degree modularity of component i, M�OD�i,

an be defined as

M�OD�i = 1 −
x+i �4�
xmax · �n − 1�

ournal of Mechanical Design
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where x+1=� j=1,j�i
n xji.

The maximum degree modularity occurs when a component is
not connected to any other component in the product. Moreover,
M�ID�i and M�OD�i range over �0,1�. The minimum value of de-
gree modularity corresponds to a component that has strong de-
sign dependencies with all other �n−1� components of the prod-
uct. Hence, such a component would be highly integral. The value
of degree modularity increases linearly as the direct connectivity
of a component decreases. If there are no design dependencies
�either xi+=0 or x+i=0�, the component is completely discon-
nected from others for that design dependency direction, and the
resulting in- or out-degree modularity is equal to 1.

3.3 Distance Modularity. Although degree modularity cap-
tures how many other components are directly linked to compo-
nent i, it does not consider any indirect ties by which component
i may have design dependencies with other components in the
product network. We argue that the modularity of component i
also depends on how distant it is from all other components in the
product. Closeness centrality, from the social network theory, is
the concept we build upon. The closeness centrality of an actor
reflects how close an actor is to other actors in the network; as
Freeman �38� �p. 224� suggested, “the independence of a point is
determined by its closeness to all other points in the graph.” These
ideas were originally discussed by Bavelas �36�, but it was not
until Sabidussi �43� proposed that actor closeness should be mea-
sured as a function of geodesic distance that a simple and natural
measure of closeness emerged. We incorporate these ideas into the
product architecture domain by using the notion of distance be-
tween components, such that the more distant a component is
from the other components, the further its design dependencies
have to propagate and, thus, the more modular the component is.

Formally, we define distance modularity M�T� as proportional
to the sum of the geodesics of component i with all other compo-
nents in the product. Distance modularity, in its simplest form,
thus depends on the direction but not on the strength of the design
dependencies.

Let d�i , j� denote the geodesic distance of the design depen-
dency between component i and component j. Thus, the in-
distance modularity M�IT�i is

M�IT�i =
Actual distance disconnectivity

Maximum distance disconnectivity
=

�
j=1,j�i

n

d�i, j�

n�n − 1�
�5�

Similarly, out-distance modularity M�OT�i becomes

M�OT�i =

�
j=1,j�i

n

d�j,i�

n�n − 1�
�6�

where d�j , i� denotes the length of the shortest path of design
dependency in the other direction, and component j depends on
component i.

A high value of M�IT�i or M�OT�i means that component i is
far from the others and, therefore, more modular. The denomina-
tor of our index corresponds to the maximum distance of a dis-
connected component, so we assume that disconnected compo-
nents are n steps away from all other components in the product.
Hence, disconnected components have a distance modularity of 1.
The minimum value of distance modularity will be �1/n�, which
occurs when component i is adjacent to all other components �i.e.,
is completely integral�.

Because the expressions above do not consider the strength or
propagation decay of design dependencies, we consider an alter-
native definition of distance modularity that we called weighted

distance modularity. With this measure, we assign to each design

NOVEMBER 2007, Vol. 129 / 1121
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ependency a probability of propagating to other components,
hich is proportional to its strength. Such probabilities vary lin-

arly from 0.0 �for design dependencies of zero strength� to 1.0
for design dependencies of maximum strength�. Then, the prob-
bility of a path between two components is equal to the product
f the probabilities of the design dependencies in such a path.
inally, distance—dw�i , j�—is the number of steps �i.e., number of
omponents traversed by a design dependency� in the most prob-
ble path �instead of the shortest path� between components i and

j. As before, we assume that disconnected components are n steps
way from all other components in the product.

3.4 Bridge Modularity. A third way to measure modularity is
o focus on those components that lie in the dependency path of
wo components. These components may control the design de-
endency flow because the design dependencies could propagate
hrough them. In this sense, they can be considered bridges, or
onduits that transmit design dependencies through the product
etwork. The more a component bridges between other compo-
ents, the less modular it is; that is, components may lose modu-
arity as their bridging position increases. As a result, we define
ridge modularity of component i based on the number of times it
ppears in the path between two other components.

The social network theory describes centrality in terms of the
rokerage position of social actors and call it betweenness central-
ty. Bavelas �36� and Shaw �49� both suggested that actors located
n many geodesics are central to the network, and Anthonisse �50�
nd Freeman �39� were the first to quantify the actor’s between-
ess indices.

We assume that components lying on the most geodesics are
hose bridging the most components and, therefore, are the least

odular. This assumption makes sense in the product domain if a
esign dependency between two components propagates through
minimum number of parts �i.e., the geodesic�. Therefore, we

alculate the ratio of all geodesics between components a and b
hat contain component i �ndab�i�� to the total number of geode-
ics between a and b �ndab�. This comparison yields a measure of
ow much component i bridges between components a and b.
Note that in complex products, some components may be con-
ected by many geodesics; therefore, an intermediary component
ight lie on more than one geodesic between a given pair of

omponents.� Summing over all pairs of components a and b in
he product gives us a measure of the bridging potential of com-
onent i.

Fig. 3 Hypothetical four-componen
components
Our measure of bridge modularity M�B� then takes the form
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M�B�i =
Actual bridge disconnectivity

Maximum bridge disconnectivity

= 1 −

�
i�a,i�b,a�b

ndab�i�/ndab

��n − 1��n − 2��
�7�

The maximum bridge disconnectivity occurs when a compo-
nent does not bridge any other pair of components because it is
not on any of the �n−2��n−1� maximum possible paths between
the other �n−1� components �not including component i�. In con-
trast, a component reaches a minimum bridge modularity of 0
only when it is at the center of a star-shaped configuration with
bidirectional ties to all peripheral components �39�. The fewer
geodesics are on which component i appears, the higher the value
of M�B�i is and the more modular component i is.

We consider the proposed measures of component modularity
complementary to each other because they emphasize related but
distinct features of the patterns of design dependencies between
product components. In order to illustrate this, Fig. 3 shows the
product schematic and network representation of a hypothetical
product with four �physical or functional� components. For sim-
plicity, we assume that all design dependencies shown are of the
same type �e.g., spatial or material� and that dependencies repre-
sented in the figure by thick edges are twice as strong as thin-
edged design dependencies. Some dependencies are directional
�or asymmetric� because empirical evidence shows that design
dependencies may occur from one component to another, but not
vice versa �3,29�. Figure 3 also shows the corresponding design
dependency matrix and the modularity measures for each
component.

As for degree modularity, Fig. 3 shows that because all four
components have the same amount of direct inward dependencies
�i.e., in-degree=2�, they are equally modular from an in-degree
perspective. However, component 1 is the least modular from an
out-degree perspective because all other components depend on it.
In general, degree modularity only takes into account the effects
of immediate neighbors and neglects the connections beyond
those adjacent components. Because design dependencies are not
necessarily symmetric �3,29�, we define in-degree and out-degree
modularity. The lower the component connectivity, the more
modular the component is because it is more independent of its
adjacent components. Distance modularity, however, captures the

roduct and modularity measures of
t p
effect of indirect design dependencies �due to design propagation�
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y quantifying the distance to all other components in the product.
herefore, the farther apart a component is, the more modular it

s. Similar to degree modularity, we must distinguish between
n-distance and out-distance modularity to take into account the
irection of propagation of design dependencies. For example,
ig. 3 shows that component 4 is the most in-distance modular
omponent because it is six steps away from being reached by all
ther components. �We use the term “six steps” to refer to the sum
f the geodesic distance between component 4 and the other three
roduct components. Hence, component 4 can be reached in one
tep by component 1, in three steps by component 2, and in two
teps by component 3. To obtain our standardized distance modu-
arity measure, we divide by 12, the maximum total distance of a
omponent in a product with four components, which occurs only
f a component is disconnected from all other components and is
our steps away from each of them.� From an out-distance per-
pective, component 2 is the most modular because it can reach all
ther components in six steps, more than any other component in
he product. We also determined weighted distance modularity

easures assuming probabilities of 1.0 for strong design depen-
encies and probabilities of 0.5 for weak design dependencies,
nd the results are identical to the ones shown in Fig. 3 because
he most probable paths coincide with the geodesics. Finally,
ridge modularity is based on the component’s role in bridging
ther components such that the fewer bridging roles a component
lays, the more modular it is. This measure assumes binary design
ependencies. Our example from Fig. 3 shows that both compo-
ents 2 and 4 are highly bridge modular because they do not lie on
he geodesic of any two other pairs of components. In contrast,
omponent 1 lies on five out of the six possible geodesics between
he other three components, which makes it the least bridge modu-
ar component.

Although defining these component modularity measures is im-
ortant to advance our understanding of product architectures,
ome crucial questions remain to be answered: Can we assume
hat various design dependencies are independent of one another?

hat relative weight should each design dependency receive? Are
odular components less likely to fail than less modular compo-

ents? Are they more or less likely to be redesigned? In the next
wo sections, we illustrate how we address such important ques-
ions empirically.

Measuring Component Modularity in a Complex
roduct
This section illustrates how to compute and use component

Fig. 4 PW4098 commercial aircraft engine studied
odularity measures in a complex product, such as a large com-
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mercial aircraft engine. First, we discuss how component modu-
larity measures correlate across various design dependencies.
Then, in the next section, we discuss the link between component
modularity and component redesign.

4.1 Data. We apply our network approach to analyze the
modularity of the components of a large commercial aircraft en-
gine, the Pratt & Whitney PW4098. According to our interviews
with systems architects at the research site, the engine is decom-
posed into eight systems, each of which is further decomposed
into five to ten components, for a total of 54 components. We
show the hierarchical decomposition of the engine in Fig. 4. Be-
cause this was the third engine derived from the same basic sys-
tem design, the product decomposition into systems and compo-
nents was well understood by our informants and corresponded
with the level of granularity used to establish the organizational
structure that designed each of the 54 components.

After documenting the general decomposition of the product,
we identify the network of design dependencies among the 54
components of the engine. We distinguish five types of design
dependencies to define the design interfaces of the physical com-
ponents �Table 1�. In addition, we use a five-point scale to capture
the level of criticality of each dependency for the overall function-
ality of the component in question �Table 2�. Although we discuss
these metrics at length in Sosa et al. �3�, it is important to empha-
size that this scale enables us to capture both positive and negative
design dependencies. That is, our informants can identify depen-
dencies between components that either enable or hinder the com-
ponent’s functionality �29�. For the purposes of our analysis, we
consider three levels of criticality, indifferent �0�, weak �−1, +1�,
and strong �−2, +2�, because we assume that negative component
interactions indicate equally important design dependencies to be
addressed as positive ones. This assumption is consistent with our
observations during the data collection. For example, we deter-
mined that the outer air seals and transition ducts �OAS-Duct� of
the low-pressure turbine �LPT� impose a strong, one-directional,
negative energy dependency on the LPT blades, driven by geom-
etry and clearances between the components, which make it dif-
ficult for the blades to maintain an adequate vibration margin. On
the other hand, the blades of the high-pressure turbine �HPT� have
a strong, positive, bidirectional material codependency with the
HPT vanes, driven by proper inlet and exit gas flow conditions

Table 1 Types of design dependency

Dependency Description

Spatial Functional requirement related to physical adjacency for
alignment, orientation, serviceability, assembly, or
weight.

Structural Functional requirement related to transferring loads or
containment.

Material Functional requirement related to transferring airflow, oil,
fuel, or water.

Energy Functional requirement related to transferring heat,
vibration, electric, or noise energy.

Information Functional requirement related to transferring signals or
controls.

Table 2 Level of criticality of design dependencies

Measure Description

�+2� Dependency is necessary for functionality.
�+1� Dependency is beneficial but not absolutely necessary for

functionality.
�0� Dependency does not affect functionality.
�−1� Dependency causes negative effects but does not prevent

functionality.
�−2� Dependency must be prevented to achieve functionality.
NOVEMBER 2007, Vol. 129 / 1123
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hat optimize the aerodynamic efficiency of the airfoils. These
esign dependencies are considered equally critical for the cogni-
ant design teams, even though the former hinders component
unctionality whereas the latter enables it.

Regarding the impact of engine-level requirements on design
ependencies, these requirements were managed by six additional
integration” teams that were not in charge of the design of any
hysical engine component but, instead, were responsible for ar-
as such as aerodynamics and rotor dynamics of the engine �see
osa et al. �11� for details�. An important responsibility of these

eams was to identify and help manage design dependencies
mong components that could have an impact on engine perfor-
ance. For example, when studying the energy dependencies be-

ween the components of the fan system, we found that the reduc-
ion of noise produced by the fan blades �a system-level
equirement� drives the airfoil and platform design of both fan
lades and fan exit guide vanes, resulting in a strong, bidirectional
nergy dependency between these components. Another example
merges from the establishment of the clearance between the tips

ig. 5 Ego network for MC-oil pump component „spatial de-
ign dependencies…

ig. 6 Ego network for EC-air system „spatial design

Table 3 Descriptive statis

Spatial Structural

Mean SD Mean SD

. In-degree 0.85 0.09 0.91 0.07

. Out-degree 0.85 0.08 0.91 0.06

. In-distance 0.04 0.01 0.05 0.01

. Out-distance 0.04 0.01 0.05 0.01

. Bridge 0.97 0.03 0.97 0.04
ependencies…
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of the HPT blades and the HPT blade outer air seals �BOAS�, a
symmetrical, strong, spatial dependency that must also be man-
aged for optimum engine aerodynamic performance.

In general, engine-level requirements were cascaded down into
components and, in turn, to their design dependencies of various
types; therefore, we did not need to define an additional design
dependency type to capture engine-level requirements exclusively.
However, we note the additional challenge posed by the aerody-
namic requirements of the engine. Although these requirements
were also passed on to the component interface level, the second-
ary air team �responsible for managing all secondary airflow to
optimize engine aerodynamic performance� would take the per-
spective of “owing the air” passing through the engine to manage
some of these requirements. In this case, because the air is a
physical element that passes through the engine, we consider it as
a physical component of the engine and define design dependen-
cies with it, which enables us to evaluate its additional impact on
the modularity of the 54 physical engine components in terms of
their connections with the secondary airflow circulating in the
engine. However, we must be cautious in doing so because we
risk double counting the aerodynamic requirements already cap-
tured in the design dependencies between actual engine compo-
nents. In order to test the robustness of our results, we completed
our analyses with secondary airflow both included and excluded
from the network of components. The results we obtained after
including the secondary airflow as a virtual component largely
coincide with our main analysis with only the 54 physical engine
components and do not change the analytical results in any sig-
nificant way.

4.2 Modularity of Engine Components. In this section, we
calculate and interpret the modularity measures for the engine
components. Our measures follow the definitions provided previ-
ously. �As for distance modularity, we only report measures based
on our original definitions, yet our results are consistent when
using weighted distance modularity because of the high correla-
tion between these two sets of measures.� Descriptive statistics are
shown in Table 3. Note that distance modularity measures exhibit
larger coefficients of variation both within and across design de-
pendency types,5 which indicates that these measures are more
sensitive to small changes in product configurations than are de-
gree and bridge modularity measures.

In order to illustrate the variation in component network con-
figurations associated with low and high component modularity,
in Figs. 5 and 6, we exhibit the “ego” network of components with
low and high modularity scores for spatial design dependencies,6

namely, the mechanical component �MC�-oil pump and the exter-
nal control �EC�-air system. Nodes with the same color indicate
that such components belong to the same system and arrows in-
dicate the dependencies’ directionality. In Fig. 5, the edges’ thick-
ness indicates dependency strength. In Fig. 6, we do not distin-
guish the strength of dependencies nor include node labels to

5The coefficient of variation of a random variable is a unitless measure of vari-
ability equal to the standard deviation divided by the mean.

6The ego network of component i only shows the other components it directly

s of modularity measures

Material Energy Information

ean SD Mean SD Mean SD

.89 0.07 0.95 0.05 0.97 0.07

.89 0.08 0.95 0.04 0.97 0.05

.10 0.12 0.37 0.39 0.83 0.22

.10 0.18 0.37 0.16 0.83 0.18

.97 0.05 0.97 0.04 0.9999 0.0005
tic

M

0
0
0
0
0

shares dependencies with as well as the dependencies among them.
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aintain the clarity of the diagram.
When examining the direct spatial dependencies of each prod-

ct component, we find that the oil pump component �which be-
ongs to the MC system� is the most modular component from an
n-degree perspective because it has only two direct �strong� spa-
ial dependencies—with the gearbox and external tube compo-
ents �see Fig. 5�. From an out-degree perspective, the oil pump is
ess modular because there are six other components with strong
patial dependencies on it. Distance modularity scores provide
dditional insights about the oil pump; both in- and out-distance
odularity scores have close to average values, indicating that

patial dependencies from many other nonadjacent components
an reach �or be reached by� the oil pump through intermediary
omponents �see Table 3�. For the engine studied, all components
re spatially connected and can reach �or be reached by� each
ther components through a finite number of intermediary com-
onents. In particular, the oil pump can reach all other compo-
ents in 120 steps and can be reached by all other components in
35 steps, whereas the most modular component from a spatial
istance point of view can reach all other components in 183 steps
nd can be reached by all others in 173 steps. Finally, in examin-
ng the spatial bridge modularity scores, we find that the oil pump
s the fourth most modular component and, therefore, appears on
ery few geodesics that link any two other components. More
pecifically, the oil pump is only on 0.923 geodesics between any
wo given components. �To determine this number, we first calcu-
ate the fraction of geodesics between any two other components
hat contain the oil pump. Then, we sum this fraction for all pairs
f components excluding the oil pump, which results in 0.923
38,39�.�

Figure 6 shows the ego network of the EC-air system compo-
ent �which belongs to the externals and controls—EC—system�,
highly integral component according to its many direct and in-

irect spatial dependencies with other components. This compo-
ent is the least modular from an out-degree �spatial� perspective,
s it has 22 adjacent components that spatially depend on it �19
trong dependencies� and is more modular from an in-degree per-
pective because it �spatially� depends directly on 20 other com-
onents �16 strong dependencies�. Distance and bridge modularity
easures provide similar results; the EC-air system and EC exter-

al tubes rank as the least modular components from distance and
ridge perspectives for spatial dependencies.

4.3 Correlation Analysis. The preceding examples illustrate
ow the measures work for a particular component for a particular
esign dependency type. We next study how these measures relate
o each other both within and across design dependency types.

Table 4 Partial correlation coeffic

Spatial

1 2 3

. In-degree 1.0

. Out-degree 0.770a 1.0

. In-distance 0.812a 0.686a 1.0

. Out-distance 0.629a 0.832a 0.798a

. Bridge 0.734a 0.842a 0.624a

Material

1 2 3 4 1

. In-degree 1.0 1.0

. Out-degree 0.833a 1.0 0.688a

. In-distance 0.247 0.211 1.0 0.519a

. Out-distance 0.302b 0.309b 0.691a 1.0 0.168

. Bridge 0.791a 0.833a 0.131 0.171 0.614a

Correlation significant at the 0.01 level �two tailed�.
Correlation significant at the 0.05 level �two tailed�.
herefore, we perform two correlation analyses. First, we analyze
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the extent to which modularity measures differ from one another
within each design dependency type �Table 4�. This is important
because if correlations are high between component modularity
metrics for all dependency types, we might be able to use only a
subset of the component modularity metrics. Second, we study the
extent to which modularity measures help us highlight the differ-
ences �and similarities� between design dependency types �Table
5�. This is also important because this can provide empirical evi-
dence to justify the identification and use of all five design depen-
dency types separately.

Table 4 shows the partial linear correlation coefficients among
all measures for each design dependency. We find significantly
positive correlation coefficients among all measures of component
modularity for spatial, structural, and information design depen-
dencies. That is, within spatial, structural, and information design
dependency domains, our modularity measures greatly coincide in
their assessments of component modularity. Correlation coeffi-
cients are less significant for material and energy design depen-
dencies, particularly with respect to several of the distance modu-
larity measures. For example, within the material domain, the
variation of in-distance modularity is not strongly associated with
the variation of �in- or out-� degree modularity nor with that of
bridge modularity. Similarly, within the energy domain, the varia-
tion of out-distance modularity is not strongly associated with the
variation of in-degree modularity or of bridge modularity. Be-
cause distance modularity captures how components are con-
nected not only with neighboring components but also with all
other components in the product, this result suggests that material
and energy design change propagations would follow paths that
are not strongly associated with direct dependencies, which, in
turn, are better captured by degree and bridge modularity mea-
sures. Before discussing the implications of these results for the
engine we studied, let us consider the second correlation analysis.

Table 5 shows the partial correlation coefficients among the five
design dependencies for all measures of component modularity. In
general, the results show a significantly strong correlation be-
tween spatial and structural component modularity �for all mea-
sures of modularity�, whereas material, energy, and information
dependencies evince weaker and/or less significant correlation co-
efficients, particularly for distance and bridge modularity mea-
sures. This finding provides important empirical evidence that the
modularity of a component should not be based on only one type
of design dependency.

Additional empirical evidence from our study is consistent with
the results of these correlation analyses. In our case study, many
materials and energy design dependencies did not necessarily cor-

ts between modularity measures

Structural

4 1 2 3 4

1.0
0.536a 1.0
0.802a 0.552a 1.0

1.0 0.585a 0.821a 0.721a 1.0
.681a 0.766a 0.808a 0.658a 0.687a

Energy Information

2 3 4 1 2 3 4

1.0
1.0 0.846a 1.0
.409a 1.0 0.572a 0.556a 1.0
.338b 0.233 1.0 0.451a 0.702a 0.606a 1.0
.673a 0.455a 0.155 0.858a 0.829a 0.354a 0.299b
ien

0

0
0
0

respond with other types of design dependencies. For example,
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he design of many MC of the oil system depend on many other
omponents for the material transfer of oil. However, their design
s less dependent on other components for spatial, structural, and
nergy requirements. In addition, material and energy dependen-
ies may be more subjective and difficult to identify than struc-
ural and spatial dependencies. For example, blade design depends
n pressure profiles of gases flowing from the vanes �material
ependency�, and these are less likely to be considered as design
ependencies than the required clearance between them �spatial
ependency�. In other cases, many design dependencies are uni-
irectional; for example, blade designs for vibration margin �an
ndesired energy dependency� depend on the number of upstream
anes, but not vice versa. These empirical observations are con-
istent with the observed lack of significant correlations across
easures for energy and material dependencies �Table 4� and

cross dependency types for distance modularity measures �Table
�.

The Relation Between Component Modularity and
omponent Redesign
In the previous section, we performed a descriptive analysis of

he three proposed measures of component modularity. Yet, what
an these measures be used for? In addition to using these mea-
ures to rank components according to their level of disconnectiv-
ty within the product, we can also use them to enhance our
nderstanding of performance-related attributes of product com-
onents. We can do this by theorizing and testing the relationships
etween component modularity and component design decisions.
his is important for managers and engineers when making deci-
ions about product components that depend on their connectivity
ith other components within the product. Some of these deci-

ions include component engineering outsourcing, mitigation of
omponent obsolescence, and component redesign �10,12�. We
se our modularity measures in this section to build a new under-
tanding of how component modularity impacts component rede-
ign decisions. In this context, we define component redesign as
he percentage of actual novel design content relative to the design
f the component included in the previous version of the product.

Previous work in engineering design has studied design
hanges in complex products �10,27,29,51�. Yet, the link between
odularity and redesign is not well understood �52�. We formulate

wo important but conflicting hypotheses that link component
odularity and component redesign based on the assumption that

esign changes propagate across components as a result of their
onnectivity through various types of design dependencies �53�.

Table 5 Partial correlation coeffic

In-degree

1 2 3

. Spatial 1.0

. Structural 0.751a 1.0

. Material 0.527a 0.218 1.0

. Energy 0.617a 0.564a 0.208

. Information 0.620a 0.415a 0.194

In-distance

1 2 3 4 1

. Spatial 1.0 1.0

. Structural 0.836a 1.0 0.844a

. Material 0.274b 0.114 1.0 −0.011

. Energy 0.188 0.131 0.205 1.0 0.422a

. Information 0.501a 0.359a 0.134 0.183 0.669a

Correlation significant at the 0.01 level �two tailed�.
Correlation significant at the 0.05 level �two tailed�.
imilar to previous work in engineering design �27,52�, we dis-
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tinguish between initiated and emergent design changes, which
result in planned and unplanned redesigns, respectively.

An important implication of design change propagation is un-
planned redesign or design rework �54�. Because components are
connected through various types of design dependencies, design
changes in one component are likely to propagate to other com-
ponents in the product. As a result, a component that depends
�directly or indirectly� on many other components or one in the
midst of many other components is more likely to be in need of
redesign to accommodate unforeseen design changes �or greater
design changes than those planned� in �or required by� other com-
ponents �10,53,54�. That is, the more inward interfaces a compo-
nent has, the higher is the likelihood that unforeseen changes in
other components will carry over onto it �52�. Hence, we formu-
late our hypothesis related to unplanned redesign as follows.

H1: Components with low in-degree, in-distance, and bridge
modularity levels are more likely to exhibit higher levels of (un-
planned) redesign due to impact from changes in other compo-
nents.

A second implication of design change propagation pertains to
the allocation of design changes among various components in a
product. In complex products, managers and engineers need to
choose which components to redesign to fulfill the functional re-
quirements of the new product and/or adapt to planned changes in
adjacent components. While doing so, engineers probably rede-
sign those components that are less likely to impact the others.
That is, components with fewer outward design dependencies on
other components in the product are better candidates to be rede-
signed. This is consistent with the argument of Baldwin and Clark
�8�, who suggested that modularity fosters innovation because it
decouples design teams to work on independent modules. Hence,
we formulate our hypothesis regarding planned redesign as fol-
lows.

H2: Components with high out-degree and out-distance modu-
larity levels are more likely to exhibit higher levels of (planned)
redesign.

In order to test our hypotheses with our data, we needed to
capture the levels of planned and unplanned redesigns of each of
the 54 engine components. We were able to capture only the
former by asking design teams to “provide an estimate of the level
of redesign required for your parts or system for the PW4098, as
a percentage of the prior existing engine design.” Although we did
not explicitly ask for it, we believe the answers to our question
mostly capture planned redesign rather than unplanned redesign
�i.e., design effort that adapts the component to a new product�
because the engineers’ estimates of the percentage of redesign

ts between design dependencies

Out-degree

4 1 2 3 4

1.0
0.674a 1.0
0.779a 0.443a 1.0

1.0 0.565a 0.392a 0.315b 1.0
.711a 0.570a 0.080 0.359a 0.604a

Out-distance Bridge

2 3 4 1 2 3 4

1.0
1.0 0.741a 1.0
.102 1.0 0.733a 0.402a 1.0

.469a
−0.090 1.0 0.537a 0.431a 0.559a 1.0

.487a 0.021 0.189 0.132 −0.044 0.035 0.249
ien

0

−0
0
0

were normalized by a common reference point �previous engine
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odel� and their knowledge of what it takes—and, in this case,
hat actually took—to adapt the parts to the new configuration

foreseen and planned changes�. In the derivative engine studied,
ery little unplanned redesign of major significance occurred or
as required. During follow-up interviews to validate our data,
e identified two important sources of unplanned redesign that
appened during development after the initial detail designs were
eleased to make the first development parts. Still, the estimates of
he percentage of redesign of the components involved did not
hange because of the nature of the rework; the parts were rede-
igned already and had to be done over �i.e., the amount of work
erformed was much higher, but not much more percentage of
edesign of these components occurred�.

Because our component redesign data only capture planned re-
esign, we can test only our second hypothesis �H2�. To do so, we
stimate the multivariate nonlinear model specified below. Our
ependent variable is a fraction; so, estimating an ordinary least
quares �OLS� linear model may be problematic because the pre-
icted values from an OLS regression are never guaranteed to fall
ithin the unit interval, which can result in biased coefficient

stimates. In addition, the coefficient of a linear model assumes
hat the effect of a predictor variable is constant across all levels
f the dependent variable, which again may not be accurate. There
re several ways to address these issues. A common solution is to
stimate a linear model for the log-odd ratio of the dependent
ariable, though this involves adjusting observations on extreme
alues �55� �p. 402�. A better alternative, proposed by Papke and
ooldridge �56�, does not require any data adjustment. We esti-
ate our models with such a procedure in STATA-SE 9 using gen-

ralized linear models �GLMs� with family �binomial�, link
logit�, and robust standard errors. Note that we estimate the
odel adjusting standard errors for intragroup correlation using

he cluster procedure implemented in STATA to take into account
hat components were architected into eight systems, which sug-
ests that observations within a given system may not be indepen-
ent. To test the robustness of our results, we estimated linear and
emilog functional forms and obtained analogous results to the
nes presented herein,

E�component redesign of component i�x�

= G��0 + �spatial�spatial modularity of component i�

+ �structural�structural modularity of component i�

+ �material�material modularity of component i�

+ �energy�energy modularity of component i�

+ �info�information modularity of component i�� �8�
Component redesign is the dependent variable of interest whose

ariation we want to explain with component modularity mea-
ures for all five types of design dependencies. G�·� is the logistic
unction and �’s are the partial effects that indicate the strength of
he impact of each type of component modularity on the depen-
ent variable �see Papke and Wooldridge �56� for details�. Be-
ause there are five proposed metrics of component modularity,
ach emphasizing a distinct aspect of it, we estimate our model for
ach measure and thereby test whether the proposed modularity
easures for each design dependency have a significant relation-

hip with component redesign. The results of our regression
nalysis are shown in Table 6, with GLM estimates for each
odel. To assess the goodness of fit of our models, we follow the

ecommendation provided by Papke and Wooldridge �56� �p. 629�
nd estimate the models’ coefficient of multiple determination,7
2.

7R2=1−SSE/SST=1−��yi− ŷi�2 /��yi− ȳi�2, where yi is the observed dependent
ariable, ȳi is the mean of the dependent variable over the 54 observations, and ŷi is
he predicted value of the dependent variable obtained from our regression models.
his index estimates the proportion of the total variation in the dependent variable
hat is explained by the regression model.
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Models 1–5 estimate component redesign using various com-
ponent modularity types. Not surprisingly, Models 1, 3, and 5
exhibit the least explanatory power �i.e., lowest R2�, consistent
with the empirical observation that our dependent variable cap-
tures planned redesign. Model 2 shows higher explanatory power,
but Model 4 offers the best goodness of fit to our data �i.e., highest
R2�. As a result, we concentrate our discussion on Model 4.

Model 4 includes significant coefficients for spatial and struc-
tural dependencies. The significantly positive spatial coefficient
indicates that the more modular components �from an out-distance
perspective� in the spatial domain are the more likely to exhibit
higher levels of redesign. That is, components that are less likely
to transmit spatial dependency to others �because they are more
distant to other components� are more likely to exhibit higher
levels of redesign, consistent with our second hypothesis �H2�.
Interestingly, Model 4 also shows that structural out-distance
modularity negatively impacts component redesign, which ap-
pears �at least at first� not to support H2 because it indicates that
components that are more likely to transmit forces and loads to
other components �i.e., less modular from a structural out-distance
viewpoint� are more likely to exhibit higher levels of redesign.
Finding such opposite effects for component redesign when mea-
suring modularity based on the same criteria �out-distance modu-
larity� is an apparent paradox.

However, the results do not conflict if we distinguish between
desired and undesired design propagation. Generally, spatial de-
pendencies refer to linkages that can disrupt the design of other
components if they propagate through. As a result, we expect
engineers to avoid redesigning components that are tightly inte-
grated with other components. This is consistent with Baldwin
and Clark’s �8� view of modularity, which emphasizes decoupling
of components �i.e., modularization� to avoid disruption and en-
courage innovation within modules. However, there is an alterna-
tive view of the effects of modularity and innovation that relates
to performance maximization �1,31�. This view postulates that
integrality is necessary to better fulfill functional requirements.
That is, to meet the new functional requirements of the engine,
some dependencies are more likely to be propagated intentionally
across components. According to our results, these desired depen-
dency propagations are more likely to correspond to structural
dependencies in our case study. In order to understand these re-
sults, we must put them in the context of the development of this

Table 6 Effects of component modularity on component rede-
sign „N=54….

Model 1,
in-degree

Model 2,
out-degree

Model 3,
in-distance

Model 4,
out-distance

Model 5,
bridge

Constant −4.706
�3.913�

1.052
�5.646�

−2.185a

�1.198�
−1.780
�1.892�

−356.453a

�195.315�
Spatial −3.193

�3.446�
5.743

�4.744�
47.912

�66.241�
244.405b

(31.919)
−6.538

�10.354�
Structural 5.281c

�2.338�
−4.811
�3.740�

−3.194
�53.412�

−156.312b

(30.137)
6.077

�5.364�
Material 3.687

�3.091�
3.078

�2.940�
0.137

�0.736�
−0.100
�1.045�

6.046
�4.022�

Energy −6.076
�7.501�

−6.612
�8.178�

0.030
�.492�

1.585
�1.431�

−4.727
�4.509�

Information 5.170
�4.302�

1.941
�6.384�

0.252
�1.245�

−1.958
�1.573�

355.676a

�198.342�
R2 0.064 0.116 0.062 0.250 0.038

ap�0.1.
bp�0.01.
cp�0.05.
Robust standard errors adjusted for the eight clusters in the system appear in paren-
theses. These values are used to determine confidence intervals around the regression
coefficients. For example, the 95% confidence interval for the estimate of the coef-
ficient for out-distance spatial modularity �Model 4� ranges from 181.846 to 306.945.
engine.
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The PW4098 was a derivative engine, which, by definition,
equired redesigning only those systems and components neces-
ary to achieve the new, higher level of performance. The main
unctional requirement driving engine performance was the in-
rease of engine thrust, which entailed the intentional transmis-
ion of greater longitudinal forces through the engine. This was
chieved, in short, by increasing fan and turbine capacity, thus
unning the high-pressure core faster and hotter. As a result, com-
onents related to bearings, fuel, oil, and airflow �with structural,
aterial, and energy transfers� had increased performance speci-
cations and were redesigned as required. On the other hand,
edesign of some components with stronger spatial dependencies
as avoided because they tend to be more disruptive and largely
ertain to “competition” for common space. These results support
he view that designers are more likely to concentrate design
hanges on components that are more distant from a spatial view-
oint yet structurally closer to many other components. For ex-
mple, the fan �a system with, on average, more than 70% rede-
ign� is structurally linked to all the cases and rotor systems of the
ngine but not spatially linked to all of them. In contrast, some
echanical load components, such as bearings and shafts, that are

patially close to many other engine components but do not im-
act others through structural dependencies exhibited less than
0% redesign.

Another component that illustrates our results well is the HPT
rst blade �25% component redesign�, which has more spatial

han structural constraints and with those spatial constraints being
ery “expensive” to change. The blade airfoil length is set by the
ngine flow path, as it is defined going through that stage in the
PT. Changing the flow path would likely cascade into changes

equired in virtually every part in the HPT, as well as potentially
he rest of the engine flow path. This proposal, therefore, is far

ore complex and extensive than forcing the blade airfoil length
o remain unchanged and dealing with the related disadvantages
f that decision. In this case, the increased speed and temperature
f the engine core increased loads on the blade, rotor, and case
tructure. The engineers, in turn, responded with improved cool-
ng configurations and reinforced structures, as appropriate. The
xial and radial clearance changes �gapping� were also minimized
or similar reasons.

These results illustrate the importance of using various compo-
ent modularity measures to capture different aspects related to
he connectivity of components in a complex product. In our case
tudy, only out-distance modularity is meaningful in studying how
ngineers allocate redesign decisions. Therefore, we finish our
iscussion with some comments about the definition of our modu-
arity measures. First, note that our three measures of component

odularity linearly depend on centrality measures. An important
dvantage of using a linear functional form to describe the rela-
ionship between modularity and centrality is that nonlinear func-
ions can be specified when regression models are estimated using
omponent modularity as predictor variables. That is, if research-
rs think that a certain component attribute depends in a nonlinear
ashion on component modularity, they can still use our measures
nd stipulate such nonlinearity in their regression model formula-
ion.

Conclusions and Future Work
This paper enhances our understanding of product architecture

oncepts by providing formal definitions and measures of modu-
arity at the component level. We take a network approach to
efine three measures of component modularity based on central-
ty measures originally developed to study social networks �38�.
ur definitions of component modularity emphasize various as-
ects of modularity relevant at the component level. Degree
odularity is negatively proportional to the number and strength

f design dependencies with adjacent components; distance
odularity is proportional to the mean distance with all other
omponents in the product; and bridge modularity is negatively
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proportional to the number of bridging positions that a component
occupies in the dependency network. We quantify and interpret
these measures for all five types of design dependencies docu-
mented for the components of a large commercial aircraft engine.
We also illustrate how to use component modularity measures to
empirically understand component performance metrics, such as
component redesign.

Using our component modularity measures we test whether re-
design efforts are concentrated on more modular components. In
our case study analysis, we find that modular components are
favored for allocating design changes that can disrupt the design
of other components, whereas integrally connected components
are favored for design changes associated with fulfilling key func-
tional requirements. Although we cannot claim the generality of
these results without completing similar studies with other types
of products in different industries, we expect to obtain analogous
findings that explain the link between component modularity and
component redesign in other complex products, such as comput-
ers, automobiles, and airplanes.

Our work also highlights the importance of considering both
dependency structure and design change as integral aspects of the
process to develop complex products �24,57�. We also illustrate
the challenges associated with doing so. We note some limitations
to our way of modeling design dependencies, one of which is that
we only address product specifications that are manifest in the
design dependencies. Another important limitation is that the net-
work of design dependencies is likely to be incomplete because
we rely on design experts to reveal them for us. In our comparison
with the communication network formed by the teams that de-
signed the 54 components of the engine studied, we find substan-
tial mismatches between design interfaces and team interactions,
possibly because many design dependencies were not known in
advance �see Sosa et al. �11� for details�. Computer-based engi-
neering tools may help future research in this area by offering
tools that facilitate the documentation of design dependencies in
complex products.

Having quantitative ways to determine the architectural posi-
tion of a component within the product is particularly relevant in
complex products comprised of many components that share in-
terfaces along various design domains. Establishing the relation-
ship between component modularity and product performance
metrics �beyond component redesign explored herein� remains an
interesting challenge for future work. Are modular components
less likely to fail than integral components? Which type of com-
ponent modularity is a better predictor of component failure? Be-
cause component modularity is based on its connectivity within a
product, the same component can have different modularity mea-
sures across products. How does component modularity affect
component sourcing and quality?

In this paper, we study component modularity for a single prod-
uct and do not explore how component modularity changes over
time. Quantitative approaches that can capture component modu-
larity easily will be useful to track these measures across several
product generations. Doing so can enhance our understanding of
how changes in the architecture of the product affect the network
properties of each component.

Although we believe that our three proposed measures of com-
ponent modularity have substantial meaning and are relatively
simple to calculate �once the network of component design inter-
faces has been documented�, we also recognize that future efforts
should develop alternative measures that capture other architec-
tural properties of components based on how they share design
interfaces. How can we combine these measures to attain an ag-
gregated measure of component modularity? How can we extend
these concepts to the system and product levels? How do archi-
tectural properties, such as component modularity, relate to the
social network properties of the organizations that develop them?
Our ongoing research efforts focus on answering some of these

questions �58�.
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Finally, this work opens new opportunities for research in the
rea of engineering design by combining product architecture rep-
esentations and social network analysis. We have benefited from
revious studies of centrality measures of social networks. Other
ocial network concepts that may also merit further research by
he engineering design community include structural equivalence,
roup cohesion, structural holes, and social influence. How can
e adapt these concepts to develop better product architectures?
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