
High-Bandwidth Packet Switching

on the Raw General-Purpose Architecture

by

Gleb Albertovich Chuvpilo

Submitted
to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science
in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2002

© Gleb Albertovich Chuvpilo, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor
Department of Electrical Engineering and omputer Science

August 20, 2002

Certified by
aman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by..........
Arthur C. Smith

Chairman, Department Committee on Graduate Students

tO-GHUSETYS INSTITUTE
OF TECHNOLOGY

MAY 1 2 2003

High-Bandwidth Packet Switching

on the Raw General-Purpose Architecture

by

Gleb Albertovich Chuvpilo

Submitted to the Department of Electrical Engineering and Computer Science
on August 20, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science

in Electrical Engineering and Computer Science

Abstract

One of the dictinct features of modern Internet routers is that most performance-
critical tasks, such as the switching of packets, is currently done using Application
Specific Integrated Circuits (ASICs) or custom-designed hardware. The only few
cases when off-the-shelf general-purpose processors or specialized network processors
are used are route lookup, Quality of Service (QoS), fabric scheduling, and alike,
while existing general-purpose architectures have failed to give a useful interface to
sufficient bandwidth to support high-bandwidth routing.

By using an architecture that is more general-purpose, routers can gain from
economies of scale and increased flexibility compared to special-purpose hardware.
The work presented in this thesis proposes the use of the Raw general-purpose pro-
cessor as both a network processor and switch fabric for multigigabit routing. The
Raw processor, through its tiled architecture and software-exposed on-chip network-
ing, has enough internal and external bandwidth to deal with multigigabit routing.

This thesis has three main goals. First, it proposes a single-chip router design
on the Raw general-purpose processor. We demonstrate that a 4-port edge router
running on a 250 MHz Raw processor is able to switch 3.3 million packets per second
at peak rate, which results in the throughput of 26.9 gigabits per second for 1,024-
byte packets. Second, it shows that it is possible to obtain an efficient mapping
of a dynamic communications pattern, such as the connections of the switch fabric
of a router, to a compile-time static interconnect of the Raw processor tiles, and
proposes a Rotating Crossbar design that achieves efficient routing on the Raw static
network. Third, it proposes the incorporation of computation into the communication
interconnect of the switch fabric of a router.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

Acknowledgments

First and foremost, I would like to thank my advisor, Saman Amarasinghe, for getting

me started with this research and for his constant support and valuable advice. Saman

is a great advisor, and it has been a great pleasure working with him throughout these

two years. I am very lucky, and deeply grateful, to have met him.

My thanks to all of the members of the MIT Computer Architecture Group, espe-

cially Anant Agarwal, Michal Karczmarek, Diego Puppin, Bill Thies, David Wentzlaff,

Michael Taylor, Walter Lee, Darko Marinov, Derek Bruening, Mark Stephenson, Sam

Larsen, Michael Gordon, Chris Batten, Matthew Frank, Shireen Agah, and Cornelia

Colyer - it has been very enjoyable to work with all of you.

I, nakonets, dorogiye moi mama i papa - spasibo vam ogromnoe za vsyu vashu

podderzhku i lyubov', kotorye ya chuvstvoval vsegda i vezde, kak doma, tak i za

tridevyat' zemel' ot nego. Vy - samoe dorogoe, chto u menia est'! Kak vy menia

uchili s samogo detstva, glavnoe v zhizni - sledovat' printsipu "cherez ternii - k

zvezdam!" i nikogda ne otstupat' pered trudnostyami. Vy okazalis' pravy - tak ono

i est', i teper' ya ubedilsya v etom na sobstvennom opyte! Per aspera ad astra! Ya

vas ochen' lyublyu! My vsegda budem vmeste!

Contents

1 Introduction 10

1.1 Problem Statement . 11

1.2 Thesis Overview . 12

2 An Overview of the Architecture of Internet Routers 14

2.1 R outer Basics . 14

2.2 Case Study 16

2.2.1 Router Layout: An MGR Router from BBN 17

2.2.2 Switch Fabric: Cisco 12000 GSR Backplane 19

2.2.3 Network Processor: Intel IXP1200 22

2.3 Why Not Use an ASIC? . 23

2.4 Software Routers on General-Purpose Processors 24

3 A Brief Description of the Raw processor 25

3.1 Processor Layout . 25

3.2 Raw Instruction Set Architecture . 26

3.3 Communication Mechanisms . 27

3.4 Perform ance . 29

4 An Overview of the Raw Router Architecture 30

4.1 Research Goals . 30

4.2 Partitioning of the Raw Processor . 32

4.3 Data Path Logistics . 32

4

4.4 Buffer Management .

5 Switch Fabric Design

5.1 Rotating Crossbar Algorithm

5.2 Rotating Crossbar Illustrated

5.3 Sufficiency of a Single Raw Static Network

5.4 Fairness .

5.5 Deadlock Avoidance

6 A Distributed Scheduling Algorithm for the Rotating Crossbar

6.1 Defining Configuration Space .

6.2 Minimizing Configuration Space

6.3 Phases of the Algorithm .

6.4 Designing an Automatic Compile-time Scheduler

6.5 Programming Tile Processors of the Rotating Crossbar

7 Results and Analysis

7.1 Gathering of Data

7.2 Peak Performance

7.3 Average Performance

7.4 Efficiency Study

8 Future Work

8.1 Pursuing Full Utilization of Raw

8.2 Implementing IP Route Lookup

8.3 Adding Computation on Data

8.4 Building Intelligent Routers

8.5 Scalability .

8.6 Supporting Multicast Traffic

8.7 Quality of Service

8.8 Routing in Low Earth Orbit Satellite Networks

5

34

. 34

. 35

. 36

. 36

. 37

38

38

39

40

41

42

43

. 43

. 43

. 44

. 44

48

. 48

. 48

. 49

. 49

. 50

. 50

. 50

. 50

33

9 Conclusion

6

52

List of Figures

2-1 A typical router design. 16

2-2 An outline of the MGR router (Adapted from [17]). 17

2-3 A four-way parallel crossbar switch, interconnecting multiple line cards. A

centralized scheduler connects to each line card, and determines the config-

uration of the crossbar switch for each time slot (Adapted from [12]). . 20

2-4 Intel IXP1200 network processor (Adapted from [1]). 23

3-1 The Raw Processor with 16 tile processors in a 4x4 grid. 26

3-2 The switch and tile code required for a tile-to-tile send to the South from

tile 0 to tile 4. 28

4-1 Mapping router functional elements to Raw tiles. Each of the four ports

is comprised of four elements: an Ingress Processor, a Lookup Processor, a

Crossbar Processor, and an Egress Processor. 31

5-1 Rotating Crossbar illustrated. In this configuration all of the four Ingress

Processors are sending data to Egress Processors. 37

6-1 Network connections of a crossbar tile. Each Crossbar Processor has three

incoming ("client") and three outgoing ("server") connections. 40

6-2 Phases of the Rotating Crossbar algorithm. 41

7-1 Router performance compared to the Click Router. 45

7-2 Mapping router functional elements to Raw tile numbers. 46

7

7-3 Utilization of the Raw processor on a per-tile basis. The top graph is for 64-

byte packets, and the bottom graph is for 1,024-byte packets, both plotted

for 800 clock cycles. The numbered horizontal lines correspond to Raw tile

processors. Gray color means that a tile processor is blocked on transmit,

receive, or cache miss. 47

8

List of Tables

6.1 Clients and servers of a Crossbar Processor.

9

40

Chapter 1

Introduction

The relentless growth of the Internet over the past few years has created a unique

information space and provided us with fast and cheap means of communication.

The rapid increase of available bandwidth was mainly instigated by the innovation of

link technologies, especially the development of optical carriers, while as the routers

that power the Internet have become a bottleneck in the rocketing use of the World

Wide Web. With the advent of gigabit networking [18], sophisticated new distributed

router designs have emerged to meet the resulting technical challenges in ways that

allow Internet Service Providers (ISPs) to quickly scale up their networks and bring

new services to market. [3]

One of the dictinct features of modern Internet routers is that most performance-

critical tasks, such as the switching of packets, is currently done using Application

Specific Integrated Circuits (ASICs) or custom-designed hardware. The only few

cases when off-the-shelf general-purpose processors or specialized network processors

are used are route lookup, Quality of Service (QoS), fabric scheduling, and alike,

while existing general-purpose architectures have failed to give a useful interface to

sufficient bandwidth to support high-bandwidth routing.

By using an architecture that is more general-purpose, routers can gain from

economies of scale and increased flexibility compared to special-purpose hardware.

The work presented in this thesis proposes the use of the Raw general-purpose pro-

cessor [21] as both a network processor and switch fabric for multigigabit routing. The

10

Raw processor, through its tiled architecture and software-exposed on-chip network-

ing, has enough internal and external bandwidth to deal with multigigabit routing.

1.1 Problem Statement

This thesis has three main goals. First, it proposes a single-chip router design on the

Raw general-purpose processor. We demonstrate that a 4-port edge router running

on a 250 MHz Raw processor is able to switch 3.3 million packets per second (Mpps)

at peak rate, which results in the throughput of 26.9 gigabits per second (Gbps) for

1,024-byte packets. Second, it shows that it is possible to obtain an efficient mapping

of a dynamic communication pattern, such as the connections of the switch fabric

of a router, to a compile-time static interconnect of the Raw processor tiles, and

proposes a Rotating Crossbar design that achieves efficient routing on the Raw static

network. Third, it proposes the incorporation of computation into the communication

interconnect of the switch fabric of a router. The addition of computation is motivated

by two reasons: a growing need for routers to operate on the data payload of packets

to provide extended services, such as encryption, and the fact that the addition of

computation to the switch fabric removes the difficulty of bringing data near to a

computational resource that is able to compute on it.

The contributions of this thesis include:

" A router design on the Raw general-purpose processor that achieves 26.9 Gbps

performance;

" A Rotating Crossbar design as an efficient mapping of a dynamic communication

pattern to a compile-time static interconnect;

" A distributed scheduling algorithm for the Rotating Crossbar;

* A minimization procedure on the configuration space of the Rotating Crossbar.

11

1.2 Thesis Overview

The roadmap to the thesis looks as follows: Chapter 2 describes the foundations

of routing and examines typical architectures of existing Internet routers. In this

chapter we will take a look at a case study of an MGR router from BBN, a Cisco

12000 Gigabit Switch Router backplane, and a network processor called IXP1200

manufactured by Intel. Chapter 3 then describes the Raw general-purpose processor

on which our router is built, including its Instruction Set Architecture, communication

mechanisms, and performance.

The next chapters examine the Raw Router architecture and a complete router

configuration. Chapter 4 presents the chosen partitioning of the Raw processor, the

path that the packets take through the router, and other general issues, such as buffer

management. Chapter 5 moves from general descriptions to specifics, describing the

design of the router's switch fabric and the Rotating Crossbar algorithm. Several sec-

tions show the properties of this algorithm, including fairness and absence of possible

deadlocks.

Chapter 6 introduces a distributed scheduling algorithm for the Rotating Crossbar,

and explains how the constraints on the memory system of the Raw processor influence

on the implementation, and show a minimization of the configuration space made in

order to fit the code in a tile's local instruction memory. This chapter also describes

the timing of the algorithm at run-time, as well as the programming techniques used

on the Crossbar Processors.

Chapter 7 describes the results of our work - the peak and aggregate performance

of the Raw Router compared to the Click router, which is another router implemented

on a general-purpose processor. The chapter shows that we have achieved the goal

of building a multigigabit router on Raw. This chapter also studies the efficiency of

the current implementation and explains the utilization of the Raw processor on a

per-tile basis. The analysis also suggests a general approach to obtain the maximum

utilization of the router.

Chapter 8 decribes the future improvements that we are planning to add to the

12

existing router, including new designs pursuing full utilization of the Raw processor,

the implementation of the IP route lookup on Raw, the issues of scalability and

support of multicast traffic in the switch fabric, flow prioritization to deploy Quality

of Service, as well as the application of the current router layout for routing in low

earch orbit satellite systems.

Finally, Chapter 9 concludes the thesis.

13

Chapter 2

An Overview of the Architecture

of Internet Routers

This chapter describes the foundations of routing and examines typical architectures

of existing Internet routers. In this chapter we will take a look at a case study of

an MGR router from BBN, a Cisco 12000 Gigabit Switch Router backplane, and a

network processor called IXP1200 manufactured by Intel. The point that we would

like to make is that most performance-critical tasks, such as the switching of packets

in the fabric connecting different network ports of a modern high-performance router

is currently done using ASICs or custom-designed hardware. The only few cases

when off-the-shelf general-purpose processors or specialized network processors are

used are route lookup, Quality of Service (QoS), fabric scheduling, and alike, while

existing general-purpose architectures have failed to give a useful interface to sufficient

bandwidth to support multigigabit routing.

2.1 Router Basics

A high-performance router generally consist of four major components shown in Fig-

ure 2-1: a network processor, a set of forwarding engines, a set of interfaces, and a

switch fabric. [3]

The Network Processor is used to calculate the best path from packet source

14

to destination. The knowledge about best paths becomes available through sharing

information about network conditions with neighboring routers. In most cases route

processing is centralized to reduce system complexity, because the timing of routing

table updates is independent of packet forwarding. Common routing protocols that

network processors implement are Border Gateway Protocol (BGP), Open Shortest

Path First (OSPF), and Routing Information Protocol (RIP).

The next element is a set of Forwarding Engines. The forwarding engines are

responsible for deciding to which output line card to forward each packet. To do that,

a forwarding engine consults a local copy of the routing table, which is a summary of

all routing tables in the system. This database contains the mapping of destination

IP addresses to output interface numbers where the packets with these destinations

should be forwarded. The amount of route lookups is proportional to the aggregate

traffic serviced by a router, which is why frequently forwarding engines are designed

in a distributed manner. Traditional implementations of routing tables use a version

of Patricia trees [15] with modifications for longest prefix matching.

The next component is a set of Interfaces with respective Memory Systems

typically located on interfaces. The memory system buffers incoming packets to ab-

sorb bursts and temporary congestion, both of which result from the use of the bursty

Transmission Control Protocol (TCP). The buffer space is needed as a temporary

waiting area where packets queue up for transmission when there is contention for

output interfaces. The memory system of an interface must be prepared to buffer up

to bandwidth x delay worth of data that is said to be "in flight" in a pipe between a

sender and a receiver. Thus, for each gigabit of bandwidth, assuming a cross-country

round-trip time of 100 ms, an interface requires 12.5 megabytes of buffer space.

Finally, all of the components have a common rendez-vous point, which is called

the Switch Fabric. The function of the switch fabric is to allow the transmission of

packets from incoming interfaces to outgoing interfaces, as well as enable interfaces to

query route information from forwarding engines and permit the network processor

to update local copies of the routing table on each of the forwardng engines.

15

Network
Processor

Forwarding ---
Engine

Forwarding ---rac

Engie Itrace -

22se SSwitch
Fabric

Forwarding--
Engine Interface --

Forwarding Interface
Engine--

Figure 2-1: A typical router design.

2.2 Case Study

As we mentioned earlier, here we will examine and compare typical architectures of

existing Internet routers: an MGR router made by BBN, the backplane of a Cisco

12000 Gigabit Switch Router, and IXP1200 - a network processor from Intel. They

all exemplify successful engineering efforts in making high-performance routers. The

MGR router was one earliest multigigabit routers built, and it was a research effort

based on the Butterfly switching matrix, funded by ARPA, with Craig Partridge

was involved. MGR forwards up to 32 million packets per second depending on

configuration. The Cisco 12000 Gigabit Switch Router is a crosspoint switch and

router available with 4, 8 and 12 slots. It supports IP over SONET as well as ATM

and connects directly into fiber infrastructure with OC-3 or OC-12 speeds, later on

OC-48. During development it was known as the BFR (Big Fast Router). Finally,

1XP1200 and its successor Castine are the flagship network processors of the Intel

Internet Exchange Architecture.

16

Switch

Input Packets padt Packet Processor Output

P k- Packets Pakss Heades k P ets

FFUUPa"UOutput eaesinput
-~~ jet. rocessorPcktPaktPacetProests

Line Card Line Card

Reply Fito T S U

Req FiF FSU
Forwarding Engine

Figure 2-2: An outline of the MGR router (Adapted from [17]).

2.2.1 Router Layout: An MGR Router from BBN

This section describes a router designed by BBN and called MGR [17]. This router

achieves up to 32 million packet per second forwarding rates with 50 Gbps of full-

duplex backplane capacity.

An outline of the MGR router is shown in Figure 2-2. It consists of multiple line

cards each supporting one or more network interfaces, and forwarding engine cards,

all plugged into a high speed switch. When a packet arrives at a line card, its header

is removed and passed through the switch to a forwarding engine. The remainder

of the packet remains on the inbound line card. The forwarding engine reads the

header to determine how to forward the packet and then updates the header and

sends the updated header and its forwarding instructions back to the inbound line

card. The inbound line card integrates the new header with the rest of the packet,

and sends the entire packet to the outbound line card for transmission. Not shown in

Figure 2-2 but an important piece of the router is a network processor that provides

basic management functions such as link up/down management and generation of

forwarding engine routing tables for the router.

The Forwarding Engines. When a line card receives a new packet, it sends the

17

packet header to a forwarding engine. The forwarding engine then determines how

the packet should be routed. At the heart of each forwarding engine is a 415 MHz

Digital Equipment Corporation Alpha 21164 processor, which is a 64-bit, 32 -register,

super-scalar RISC processor.

The Switch. The MGR uses a 15-port switch to move data between function

cards. The switch is a point-to-point switch. The major limitation to a point-to-point

switch is that it does not support the one-to-many transfers required for multicasting.

Multicast packets in the MGR router are copied multiple times, once to each outbound

line card. The MGR switch is an input-queued switch in which each input keeps a

separate FIFO and bids separately for each output. Keeping track of traffic for each

output separately means the switch does not suffer Head-of-Line blocking and it has

been shown by simulation and more recently proven that such a switch can achieve

100% throughput. The key design choice in this style of switch is its allocation

algorithm - how one arbitrates among the various bids. The MGR arbitration seeks

to maximize throughput, at the expense of predictable latency.

Line Card Design. A line card in the MGR can have up to sixteen interfaces on

it. However, the total bandwidth of all interfaces on a single card should not exceed

approximately 2.5 Gbps. The difference between the 2.5 Gbps and the 3.3 Gbps

switch rate is to provide enough switch bandwidth to transfer packet headers to and

from the forwarding engines. The 2.5 Gbps rate is sufficient to support one OC-48c

(2.4 Gbps) SONET interface, four OC-12c (622 Mbps) SONET interfaces or three

HIPPI (800 Mbps) interfaces on one card. It is also more than enough to support

sixteen 100 Mbps Ethernet or FDDI interfaces.

The Network Processor. The network processor is a commercial PC mother-

board with a PCI interface. This motherboard uses a 21064 Alpha processor clocked

at 233 MHz. The Alpha processor was chosen for ease of compatibility with the for-

warding engines. The motherboard is attached to a PCI bridge which gives it access

to all function cards and also to a set of registers on the switch allocator board. The

processor runs the 1.1 NetBSD release of UNIX, which is a freely available version of

UNIX based on the 4.4 BSD software release.

18

Managing Routing and Forwarding Tables. Routing information in the

MGR is managed jointly by the network processor and the forwarding engines. All

routing protocols are implemented on the network processor, which is responsible for

keeping complete routing information. From its routing information, the network

processor builds a forwarding table for each forwarding engine. These forwarding

tables may be all the same, or there may be different forwarding tables for different

forwarding engines. One advantage of having the network processor build the tables

is that while the network processor needs complete routing information such as hop

counts and who each route was learned from, the tables for the forwarding engines

need simply indicate the next hop. As a result, the forwarding tables for the for-

warding engines are much smaller than the routing table maintained by the network

processor.

2.2.2 Switch Fabric: Cisco 12000 GSR Backplane

In this section we will focus on the switched backplane developed for the Cisco 12000

Series Gigabit Switch Routers (GSR) [12, 4, 3]. This router has a high-performance

switched backplane architecture capable of switching 16 ports simultaneously, each

with a line rate of 2.4 Gbps. The backplane uses a number of new technologies that

enable a parallel, compact design providing high throughput for both unicast and

multicast traffic. Integrated support for priorities on the backplane allows the router

to provide distinguished qualities of service for multimedia applications. Figure 2-3

shows the structure of a typical crossbar switch.

Why Fixed Length Packets. Packets may be transferred across the switched

backplane in small fixed sized units, or as variable length packets. There are sig-

nificant disadvantages against using variable length packets, and so the highest-

performance routers segment variable length packets into fixed sized units, or "cells",

before transferring them across the backplane. The cells are reassembled back into

variable length packets at the output before being transmitted on the outgoing line.

Let's examine the choice between using fixed, and variable length packets, as shown

in [12].

19

Figure 2-3: A four-way parallel crossbar switch, interconnecting multiple line cards. A
centralized scheduler connects to each line card, and determines the configuration of the
crossbar switch for each time slot (Adapted from [12]).

There are no problems if we use fixed size cells - the timing of the switch fabric

is just a sequence of fixed size time slots. The scheduling algorithm allocates all of

the resources of the switch fabric at the beginning of every time slot, and there is

no need to keep track of when each and every data transfer ends, which make the

hardware simple and faste. However, with variable length packets things are getting

much more complicated, especially for the scheduler - it must do a lot of bookkeeping

to keep track of available and unavailable outputs. It often needs to decide whether

to allocate an idle output or wait for a busy one to become free, in order to both

minimize starvation and maximize aggregate throughput.

It is shown that using fixed length packets ("cells") allows up to 100% of the switch

bandwidth to be used for transferring cells. If variable lentgh packets are used, the

system throughput is limited to approximately 60%. [12]

Why Virtual Output Queueing. Even though a crossbar switch is always

internally non-blocking, there are three other types of blocking that can limit its per-

formance [12]. The first type of blocking is called head-of-line (HOL) blocking; the

other two are input-blocking and output-blocking. HOL-blocking can significantly re-

20

duce the performance of a crossbar switch, wasting approximately 40% of the switch

bandwidth . Fortunately, there is a solution for this problem called virtual output

queueing, that eliminates HOL-blocking entirely and makes 100% of the switch band-

width available for transferring packets.

The other types of blocking, input- and output-blocking, are present in all crossbar

switches. They arise because of contention for access to the crossbar: each input line

and each output line of a crossbar can only transport one cell at a time. If multiple

cells wish to access a line simultaneously, only one will gain access while the others will

be queued. Input- and output-blocking do not reduce the throughput of a crossbar

switch. Instead, they increase the delay of individual packets through the system,

and perhaps more importantly make the delay random and unpredictable.

There is a simple fix to the HOL-blocking problem known as virtual output queue-

ing (VOQ), first proposed in [19]. At each input, a separate FIFO queue is maintained

for each output. After a forwarding decision has been made, an arriving cell is placed

in the queue corresponding to its outgoing port. At the beginning of each time slot,

a centralized scheduling algorithm examines the contents of all the input queues, and

finds a conflict-free match between inputs and outputs.

It is shown that if VOQs are used, instead of the conventional FIFO queues, then

HOL blocking can be eliminated entirely. This raises the system throughput from

60% to 100%. [12]

Crossbar Scheduling Algorithm. The Cisco 12000 GSR Backplane uses the

iSLIP scheduling algorithm [13],which attempts to quickly converge on a conflict-free

match in multiple iterations, where each iteration consists of three steps. All inputs

and outputs are initially unmatched and only those inputs and outputs not matched

at the end of one iteration are eligible for matching in the next. The three steps

of each iteration operate in parallel on each output and input. The steps of each

iteration are:

1. Request. Each input sends a request to every output for which it has a queued

cell.

21

2. Grant. If an output receives any requests, it chooses the one that appears next

in a fixed, round-robin schedule starting from the highest priority element. The

output notifies each input whether or not its request was granted.

3. Accept. If an input receives a grant, it accepts the one that appears next in

a fixed, roundrobin schedule starting from the highest priority element. The

pointer to the highest priority element of the round-robin schedule is incre-

mented (modulo N) to one location beyond the accepted output. The pointer to

the highest priority element at the corresponding output is incremented (mod-

ulo N) to one location beyond the granted input. The pointers are only updated

after the first iteration.

By considering only unmatched inputs and outputs, each iteration matches inputs

and outputs that were not matched during earlier iterations. It is shown that if a

single scheduler is used to schedule both unicast and multicast traffic, then: (a) the

scheduling decisions can be made at greater speed, and (b) the relative priority of

unciast and multicast traffic can be maintained, preventing either type of traffic from

starving the other. Also, if multicast traffic is queued separately, then the crossbar

may be used to replicate cells, rather than wasting precious memory bandwidth at

the input, and if the crossbar implements fanout-splitting for multicast packets, then

the system throughput can be increased by 40%. [12]

2.2.3 Network Processor: Intel IXP1200

In this section we will take a look at the current flagship network processors of the

Intel Internet Exchange Architecture - IXP1200 and Castine 1 [1]. Intel IXP1200 is

shown in Figure 2-4. This processor runs at 232 MHz and forwards packets at the

rate of 3.5 Mpps. It has a 2K control store in each of the 6 microengines, each of

which is a RISC microprocessor. In order to keep the microengine pipeline busy, the

microprocessor needs to run in a multi-threading mode.

'The material of this section is taken from Matthew Adiletta's talk on Intel network processors
given at the MIT Laboratory for Computer Science, April 2002

22

Figure 2-4: Intel IXP1200 network processor (Adapted from [1]).

Intel Castine will be a 3rd Generation Network Processor to come out from Intel.

It will have 16 microengines, each running at 1.4 GHz (over 23,100 Mips). It will

have an Integrated 700 MHz XScale Control Plane Processor, a 10+ Gbps full duplex

Media Interface, 50 Gbps packet memory bandwidth, 30 million packets per second

L4 forwarding, 60 million enqueue/dequeue operations per second, and advanced

hardware support for queueing, traffic shaping, SARing, and policing.

2.3 Why Not Use an ASIC?

The MGR uses an off-the-shelf processor to make forwarding decisions, which is often

the case for many contemporary Internet routers. One can ask whether there is any

reason not to use an ASIC for that purpose, and implement a forwarding engine and

a network processor in a more cost effective way. Indeed, the IPv4 specification has

been around for quite a while, and it is very stable. So what is a problem with an

ASIC?

23

The answer to this question depends on the specific location where the router

might be deployed. If a router is targeted at a corporate LAN, then an ASIC may be

a good solution. However, ISPs often require their equipment to be flexible and easily

upgradable - for instance, ready to work with IPv6 - which is why a programmable

non-ASIC approach in building IP routers wins.

2.4 Software Routers on General-Purpose Proces-

sors

Another approach was explored in the Click Router [14, 10]. The idea was to build

a software router running on a general-purpose architecture that would be flexible,

configurable, and cheap. Unfortunately, conventional general-purpose processors do

not provide enough of input/output bandwidth to carry out multigigabit routing,

which is why most fast routers nowadays work on special-purpose processors.

24

Chapter 3

A Brief Description of the Raw

processor

This chapter describes the Raw general-purpose processor on which our router is

built, including its Instruction Set Architecture, communication mechanisms, and

performance. The Raw processor is a general purpose processor designed to take

advantage of Moore's Law - the availability of large quantities of fast transistors.

3.1 Processor Layout

The general organization of the Raw Processor (Figure 3-1) is as a chip multipro-

cessor with multiple fine grain, first class, register mapped communication networks.

The processor contains 16 tiles in a 4x4 mesh grid. A tile consists of a tile processor,

memory, two dynamic network routers, two static switch crossbars and a static switch

processor. Tiles are connected to each of their four nearest neighbors by two sets of

static network interconnect and two sets of dynamic network interconnect. The Raw

instruction set architecture works together with this parallel architecture by exposing

both the computational and communication resources up to the software. By expos-

ing the communication delays up to the software, compilers can do better jobs at

compiling because they are able to explicitly manage wire delay and spatially map

computation appropriately. This is in sharp contrast to approaches of other instruc-

25

RawpP

RaIMEM

DMEM

SME M'

SWITCH

Figure 3-1: The Raw Processor with 16 tile processors in a 4x4 grid.

tion sets, which effectively mask wire delay. Because communication delay is exposed

up to the software, this allows for larger scaling of functional units where conventional

superscalar processors would break down because these wire delays would exist, but

would have no way to be managed by software. The Raw project is examining larger

configurations and hence Raw Processors can be seamlessly connected to build fabrics

of up to 1,024 tiles.

3.2 Raw Instruction Set Architecture

Each Raw chip has 16 tile processors, one in each tile. A tile processor is a 32-bit

8-stage pipelined MIPS-like processor. Each tile processor contains a fully pipelined

two-stage integer multiplier, and a pipelined four-stage single precision floating point

unit. The tile processor's instruction set is roughly equivalent to that of a R4000 with

a few additions for communication applications, such as bit level extraction, masking

and population related operations. The tile processor uses static branch prediction

instead of delay slots. It has no branch penalty for properly predicted branches and

a three-cycle penalty for mispredicted branches. The tile processor is also tightly

26

integrated with its corresponding communication resources. Each network is directly

mapped into the register space. Network registers can be used as both a source and

destination for instructions.

The Raw processor has 2,048 kilobytes of SRAM on-chip, with each tile having

8,192 words (32-bit word) of local instruction memory, and 8,192 words (64-bit word)

of switch memory. A tile has a 8,192 word (32-bit word), 2-way set-associative, 3

cycle latency data cache with 32-byte lines. The cache uses a two-element bypassing

write buffer to defer stores until after the tag has been checked. The memory can be

in two modes, cached and uncached, and it can do 16 parallel accesses, one access per

tile. There is no cache coherence support in the Raw processor.

3.3 Communication Mechanisms

The main communication mechanism in the Raw Processor is the static switch net-

work. The code sequence shown in Figure 3-2 takes five cycles to execute. In the first

cycle, tile 0 executes the OR instruction, and the value arrives at switch 0. On the

second cycle, switch 0 transmits the value to switch 4. On the third cycle, switch 4

transmits the value to the processor. On the fourth cycle, the value enters the decode

stage of the processor. On the fifth cycle, the AND instruction is executed. Since two

of those cycles were spent performing useful computation, the send-to-use latency is

three cycles.

The static network is controlled by a simple six-stage switch processor which

configures a tile's static network crossbar on a per cycle basis. The Raw static network

is flow-controlled and stalls when data is not available. The static network relies

on compile time knowledge so that it can be programmed with appropriate control

instructions and routes. The name static network is somewhat of a misnomer because

it is very programmable. The static switch network has a completely independent

instruction stream and is able to take simple branches. Thus, it is very well suited for

compile-time known communication patterns and is able to handle these without the

need for headers, which are found in dynamic networks. Each tile contains one switch

27

Tile
Processor 0

$Ssti2
or $csto,$O,$S $sto4csto

Static
Switch 0

route $csto->$cso2

Tile
Processor 4

and $5,$5,$cst12 $C ti
$Csto

Static

route $cN12->$csti2
Si~

Figure 3-2: The switch and tile code required for a tile-to-tile send to the South from tile
0 to tile 4.

processor but two switch networks. The one switch processor can control the crossbar

on each of five directions (North, South, East, West, and into the tile processor) for

each switch network independently.

The dynamic networks on Raw are there to assist communication patterns that

cannot be determined easily at compile time. Examples of this are external asyn-

chronous interrupts and cache misses. Each tile has two identical dynamic networks.

The dynamic network is a wormhole routed [5], two-stage pipelined, dimension-

ordered network. The dynamic network uses header words to dynamically route

messages on a two-dimensional mesh network. Messages on this network can vary

in length from only the header up to 32 words including the header. Nearest neigh-

bor ALU-to-ALU communication on the dynamic network takes between 15 and 30

28

cycles.

3.4 Performance

The Raw Processor Prototype is fabricated on IBM's SA-27E, 6 layer metal copper

0.15M process. The Raw Processor is expected to operate at 250 MHz, and have 3.6

GOPS/GFLOPS of peak performance. It has 230 Gbps of bisection bandwidth and

201 Gbps of external chip bandwidth. Access to this off-chip bandwidth is provided

through the Raw Processor's networks. To connect off-chip, the native internal net-

works are multiplexed through 1080 signal input/output pins. More information on

the Raw microarchitecture can be found in the Raw Processor Specification. [20]

29

Chapter 4

An Overview of the Raw Router

Architecture

This and the following chapters examine the Raw Router architecture and a complete

router configuration. This chapter presents the chosen partitioning of the Raw pro-

cessor, the path that the packets take through the router, and other general issues,

such as buffer management.

4.1 Research Goals

The goal of this research was to design a multigigabit single-chip router solution using

the Raw Processor and devise a switching algorithm for it. Some assumptions and

practical considerations have influenced the design of this router. First of all, the goal

of this design was to build an edge router or a scalable switch fabric of a core router,

but not a complete core router. Many of the ideas presented here can be leveraged

to build core routers, but considerations, such as limited internal buffer space and

complex IP routing lookups require more analysis. Another design point is that this

design is for a 4-input and 4-output router, and larger configurations are still to be

explored in the future.

30

TRoung Table
pnMenJ

11
Routing Table

In Memory

Roting Table

Out 3

Out 1

lOut 2 2L
Routing Table

In Memory

Figure 4-1: Mapping router functional elements to Raw tiles. Each of the four ports is
comprised of four elements: an Ingress Processor, a Lookup Processor, a Crossbar Processor,
and an Egress Processor.

31

In 0

In 3

Lookup Egress I Egress Lookup I
i Processor Processor

PORT 0 .- PORT 1

Ingress Crossbar Crossbar Ingress
Processor Processor Processor

OTATING CROSS

Ingress Crossbar Crossbar Ingress
Processor Processor Processor Processor

PORT 3 PORT 2

Lookup Egress Egress Lookup
Processor Processor Processor Processor

-- - -- -- - II--- - -

In 2

In 2

Out
0

4.2 Partitioning of the Raw Processor

The ability to carry out complex communication patterns quickly and efficiently is

critical to implement a high-bandwidth router. The ability to statically orchestrate

the computation and communication on the Raw processor's software-exposed par-

allel tiles and software-controlled static communication networks makes this general-

purpose processor well suited for such an implementation. Thus, the first task in

designing a router on Raw is to partition the router components and map them on

to the Raw tiles. This mapping should balance the computation load between the 16

tile processors of Raw. More importantly, the mapping has to efficiently support the

communication patterns of the router.

Figure 4-1 shows graphically the mapping that was chosen. Each of the four ports

uses four tiles. An Ingress Processor is used to stream in and buffer data coming

from the line card, as well as to perform the necessary processing of the IP header,

including the checksum computation and decrement of the "Time to Live" field. This

tile is also used for fragmentation of IP packets if their size exceeds the internal tile-

to-tile data transfer block on the Raw chip. A Lookup Processor is necessary for

accessing the routing table in the off-chip memory. Crossbar Processors form a

Rotating Crossbar and they are utilized to transfer data between ports. An Egress

Processor is used to perform the reassembly of large IP packets fragmented by the

Ingress Processor, babysit the output line, and stream data to the output line card.

The architecture of the Raw processor lends itself to straightforward replication of

the port four times resulting in a 4 x 4 IP router.

4.3 Data Path Logistics

The path that data travels through this router is as follows. First data streams in

on the static network from an off-chip input line card. The IP header, but not the

data payload, of this packet is sent over the static network to the Lookup Processor

to do classification and route decision making. While the routing decision is being

32

made, the rest of the data payload streams into the local data memory of the Ingress

Processor. After the routing decision is made, the packet is sent into the Rotating

Crossbar, which is implemented over the static network of the Raw processor. This

data transfer may take multiple phases on the crossbar and hence a packet may be

fragmented as it travels across the Rotating Crossbar. After the Rotating Crossbar

has been traversed, the Egress Processor buffers the packet in its internal data memory

until all of the fragments are available. Then it streams the completed IP packet to

its output port, which is connected to an output line card.

4.4 Buffer Management

Practical design considerations that hinder and shape this design include the fact that

each tile's data cache only has one port. Thus accessing a tile's data cache requires

tile processor cycles, since there is no built-in Direct Memory Access engine from the

networks into the data cache. For example, buffering data on a tile's local memory

requires two processor cycles per word. Also, code running throughout this design

is carefully unrolled, because even though there is no branch penalty for predicted

branches, a branch still uses one cycle to execute on the tile processor.

This design is rather conservative with regards to computational resources, and it

leaves room to grow and hence possibilities of using this same basic design for a core

router. One of the challenges of this design is the aggravation of problem of packet

queueing when doing core routing. This design assumes that there is large amount

of buffering on the input and output external to the Raw Processor. This needs to

be done because the maximum internal storage of the Raw Processor prototype is 2

megabytes. While this is a large amount for a single processor, the bandwidth-delay

product for multigigabit flows is two to three orders of magnitude larger. There-

fore in this design prototype, first-in-first-out delivery is implemented, with dropping

assumed to be occurring externally to the Raw chip.

33

Chapter 5

Switch Fabric Design

This chapter moves from general descriptions to specifics, describing the design of the

router's switch fabric and the Rotating Crossbar algorithm. Several sections show the

properties of this algorithm, including fairness and absence of possible deadlocks.

5.1 Rotating Crossbar Algorithm

A part of the problem was to design an algorithm that would allow the use of the

fast static networks to do dynamic routing.

It has been shown that Raw was suitable for streaming and ILP applications with

patterns defined at compile time [11, 8], but the approaches to building dynamic ap-

plications were still to be researched. Several techniques were created and analyzed

[2, 22], but unfortunately most of them either led to underutilization of the Raw

processor, an unbalanced load distribution across the tiles, or to complicated con-

figuration analysis in order to determine and avoid possible deadlocks of the static

networks.

The following is an explanation of the Rotating Crossbar algorithm with global

knowledge, which is similar to a well-known Token Ring algorithm [7] that has been

widely used in networking. In this case, however, it is nicely applied to the domain

of router microarchitecture. The Rotating Crossbar algorithm allows to arbitrarily

connect four Ingress Processors to four Egress Processors, provided there are no con-

34

flicts for Egress Processors and Rotating Crossbar static networks, for the duration

of one quantum of routing time, which is measured by the number of 32-bit words

to be routed around the Rotating Crossbar. Fortunately, this algorithm avoids the

aforementioned undesirable features and is very efficient.

The algorithm is based on the idea of a token, which denotes the ultimate right

of a Crossbar Processor to connect its respective Ingress Processor to any of the four

Egress Processors of the Raw chip. The token starts out on one of the Crossbar

Processors, called the master tile. However, there are no slave tiles, since, if the

master tile is not sending its data, which can happen is case its incoming queue is

empty, every downstream tile has an opportunity to fill in the existing slots in the

static network, though the probability to send data is decreasing with every step

down the stream. By using a token, we can avoid starvation of Ingress Processors,

since it guarantees that each input will send at least once every four routing cycles.

It is also important to notice here that the token does not actually get passed around

the crossbar tiles. Instead, it is implemented as a synchronous counter local to each

of the Crossbar Processors.

5.2 Rotating Crossbar Illustrated

In the beginning of each routing phase all four Crossbar Processors read their re-

spective packet headers, which contain output port numbers prepared by the Ingress

Processors after route lookup. In the next phase the Crossbar Processors exchange

these headers with each other. In the following phase they stream their local data into

the Rotating Crossbar depending on current tile's privileges, which are determined

by a local copy of a global routing rule for a given combination of the master tile and

four packet headers. We pipeline the process by overlapping the processing of the

current header with the streaming of the previous packet's body into the crossbar.

After the routing of the current time quantum is over, the token is passed to the next

downstream crossbar tile, and the sequence repeats.

Figure 5-1 illustrates the idea of the Rotating Crossbar algorithm. Imagine that

35

Ingress Processors of Ports 0, 1, 2, and 3 have packets destined to Ports 2, 3, 0, and

1 respectively in their caches, and Port 0 has a token - shown is gray (see the top

of Figure 5-1). There is a full-duplex tile-to-tile connection on Raw static network

1 between neighboring Crossbar Processors, which allows to simulteneously route

data from all Ingress Processors to all Egress Processors, as shown in the botton of

Figure 5-1. Here, the light gray illustrates the clockwise transfer of data, and the

dark gray demonstrates the counterclockwise one. Port 1 needs to route data in the

counterclockwise direction because Port 0, which is situated upstream, has already

used the clockwise connection between Crossbar Processor 1 and Crossbar Processor

2. The same situation happens with Port 3 - it needs to use counterclockwise rotation

to transfer its data as well.

5.3 Sufficiency of a Single Raw Static Network

It is important to notice that Figure 5-1 shows a best-case scenario, when all ports

are able to send. However, an interesting topological property of the system is that

whenever there is no contention for output ports, a single full-duplex connection be-

tween Crossbar Processors is sufficient to provide enough of interconnect bandwidth,

and the use of the Raw second static network does not improve the performance of

the router.

5.4 Fairness

An obvious and immediate advantage of this algorithm is its natural fairness, which

eliminates the danger of starvation observed in other non-token-based algorithms.

When there is no global control over the transmission of packets, upstream crossbar

tiles can flood the static network and prevent downstream tiles from sending data.

Furthermore, there are advantageous side effects of this approach. One of them is the

ease of augmenting the functionality of the IP router with such important features

as Quality of Service, flow prioritization and traffic shaping. These additions can

36

Figure 5-1: Rotating Crossbar illustrated. In this configuration all of the four Ingress
Processors are sending data to Egress Processors.

be achieved by using a weighted round robin modification of the Rotating Crossbar

algorithm. This can be done simply by allowing different ports a weighted amount of

differing time with the token.

5.5 Deadlock Avoidance

While starvation can be overcome by using more complex macro-patterns proposed

in other algorithms, another far more dangerous problem of deadlocking the static

network is solved with this algorithm. The deadlock can occur when the data-flow

between the Crossbar Processors forms a loop, and the static networks are not sched-

uled properly. However, the described algorithm can not deadlock the static network,

because it only allows non-blocking crossbar schedules carefully generated at compile

time (see further on for more information).

37

-u-----------------------------

Lookup Egress I ress Lookup I
Processor ||Processor|

PORT 'PORT 1

I n s A Ingress I
ProesorProcessor

- - -N - - - - - - - -ATNC

Ingrs --- ges
Processorl Processor

PORT 3 ORT 2

Lookup E Eg Lou
Processor||Poe r
-- -

Chapter 6

A Distributed Scheduling

Algorithm for the Rotating

Crossbar

This chapter introduces a distributed scheduling algorithm for the Rotating Crossbar,

and explains how the constraints on the memory system of the Raw processor influence

on the implementation, and show a minimization of the configuration space made in

order to fit the code in a tile's local instruction memory. This chapter also describes

the timing of the algorithm at run-time, as well as the programming techniques used

on the Crossbar Processors.

6.1 Defining Configuration Space

In the current router layout there are four input ports sending to four output ports,

as shown in Figure 4-1. Therefore, assuming that the input queue can also be empty,

and letting the number of possible token positions be equal to the number of crossbar

tiles, the configuration space can be defined as

SPACE = |Hdro| x ... x |Hdr3 | x |Tokenl,

where |Hdro = ... = |Hdr| = 5,

and IToken| = 4,

38

which gives us SPACE = 54 x 4 = 2, 500

Thus, the necessary number of individual Crossbar Processor configurations is

equal to 2,500. However, each tile of the Raw processor has only 8,192 words of local

instruction memory and 8,192 words of switch memory, and storing the Crossbar

Processor code outside of the chip is too slow for a gigabit router. Therefore, there

are approximately 3.3 instructions left per each configuration, which is obviously not

enough. Hence there needs to be an optimization applied to the configuration space,

which would allow us to implement the router.

6.2 Minimizing Configuration Space

As an optimization of the configuration space we propose the definition given in

Table 6.1. Rather than defining the space through possible combinations of packet

headers and token owners, we change the focus to enumerating clients, or potential

incoming occupants, of a Crossbar Processor's servers - static networks connecting

a Crossbar Processor to its outgoing neighboring tiles, as shown in Figure 6-1.

The meaning of server names is the following: "out" is connection from a Cross-

bar Processor to an Egress Processor, "cwnext" and "ccwnext" are the clockwise

and counterclockwise downstream networks around the crossbar respectively. Corre-

spondingly, the meaning of the client names is: "in" is the network connecting an

Ingress Processor with a Crossbar Processor, "cwprev" and "ccwprev" are the incom-

ing networks to a Crossbar Processor from clockwise and counterclockwise neighbors.

Fortunately, not all possible configurations are used by the compile-time sched-

uler, which allows to decrease the number of distinct configurations even more. The

aforementioned minimization cuts down the number of configurations by 78 times and

creates a self-sufficient subset of 32 entries. Here, "out", "cwnext" and "ccwnext"

have the same meaning, as in the previous paragraph. There also is a specific expan-

sion number of a particular combination of clients which is necessary to keep track of

relative distances of data sources to a Crossbar Processor (the assembly code of switch

processors of the crossbar needs to be carefuly software-pipelined or loop-unrolled in

39

I -I

Egress
Processor

PORTO out

cwIext
u Ingress in Crossbar Crossbar

Processor Processor Processor

ccvyrev

cwprev ccwnext

Crossbar Crossbar
Processor PoEss9

Figure 6-1: Network connections of a crossbar tile. Each Crossbar Processor has three
incoming ("client") and three outgoing ("server") connections.

servers out, cwnext, ccwnext

clients 0, in, cwprev, ccwprev

Table 6.1: Clients and servers of a Crossbar Processor.

order to avoid the deadlock of Raw static networks), as well as a special boolean

value, which is set to TRUE in case an Ingress Processor can not send data in a given

configuration.

6.3 Phases of the Algorithm

The sequence of events happening in Crossbar Processors is shown in Figure 6-2. They

both are intended to facilitate the understanding of the assembly code examples given

in the following section.

40

TILE SWI
POCESSOR PROC

headers-request

headers

send rev confi

choosenewconfig
route-body

Y

TCH
ESSOR

p1

V

Figure 6-2: Phases of the Rotating Crossbar algorithm.

6.4 Designing an Automatic Compile-time Sched-

uler

In order to simplify code generation of the IP switch, we built a tool for automatic

compile-time scheduling of crossbar configurations. The idea of this scheduler is a

sequential walk starting from the master tile downstream across all crossbar tiles

and filling in reservations for inter-crossbar and crossbar-to-output static network

connections. When the reservations are fully filled with IDs of requesting crossbar

tiles, there is another simplificaion pass implemented in accordance with the afore-

mentioned space minimization. The resulting schedule is then converted to Raw

assembly by the third pass.

41

6.5 Programming Tile Processors of the Rotating

Crossbar

Each of the Raw tiles looks very much like a MIPS R4000, and the instruction sets of

these two processors are also similar. The tile processor code is programmed with the

use of software pipelining: the tile processor of the crossbar tile computes the address

into the jump table of configurations while the switch processor is routing the body

of the previous packet, then receives a confirmation from the switch processor stating

that the routing is finished, reads the new set of headers and loads the address of the

configuration into the program counter of the switch processor to immediately route

the current body.

The second Raw static network, as well as the dynamic network, have not been

used in the algorithm. As it was mentioned earlier, the addition of the second static

network to the system does not improve the performance of the router because of the

limiting factor of contention for output ports rather than insufficiency of inter-tile

bandwidth.

42

Chapter 7

Results and Analysis

This chapter describes the results of our work - the peak and aggregate performance

of the Raw Router compared to the Click router, which is another router implemented

on a general-purpose processor. The chapter shows that we have achieved the goal

of building a multigigabit router on Raw. This chapter also studies the efficiency of

the current implementation and explains the utilization of the Raw processor on a

per-tile basis. The analysis also suggests a general approach to obtain the maximum

utilization of the router.

7.1 Gathering of Data

Due to the fact that the Raw processor is not physically available yet, we have im-

plemented the router and tested it on the Raw simulator.

7.2 Peak Performance

Figure 7-1 demonstrates the peak performance compared to the Click Router. The

performance of the router built on Raw general-purpose processor is two orders of

magnitude better than the results obtained on Intel general-purpose processors mak-

ing Raw general-purpose processor a viable candidate for networking applications.

43

7.3 Average Performance

Figure 7-1 also shows the average performance compared to the Click Router. Note

that the average performance is only about 69% of the peak performance due to

the contention for output ports. It is also important to notice that these results are

observed under complete fairness of the traffic.

7.4 Efficiency Study

There are several factors which contribute to the growth of performance when using

larger packet sizes, but the most important one of them is certainly the relative

amount of time that the static network is kept busy. In order to achieve better

performance of the algorithm it is needed to decrease the processing overhead by

spending less relative time in the tile processor and more on streaming data through

the Raw processor networks. To see that this is true, let us take a look at Figure 7-3,

which shows the utilization of the Raw processor when routing 64- and 1024-byte

packets (the mapping of functional elements of the router to Raw tile numbers is

given in Figure 7-2).

When routing 64-byte (the top of Figure 7-3) and 1024-byte (the bottom of the

figure) packets, gray on tiles 4, 7, 8, and 11 means that the input ports are blocked

by the crossbar. The top graph shows that Raw utilization is considerably lower for

smaller packet sizes than for bigger packet sizes. It is possible to get close to Raw

static network bandwidth limit when routing larger packets.

44

26.9
24.7

20.1

14.4

t 7.3

25

U,
m 20CD

E. 15

2 10

5

0

64 128

Packet Size,

256

bytes

512 1024

IMPeak Throughput, Gbps

13.8

9.9

5

--0.23

Click 64 128 256

Packet Size, bytes

I Average Throughput, Gbps

Figure 7-1: Router performance compared to the Click Router.

45

30

0.23

Click

E-toCL

0.

0,

20

18

16

14

12

10

8

6

4

2

0

.16.9

512

18.6-

1024

In 0

In30

In

In 3

In 2

I2

Lookup Egress I Egress Lookup
Processor PEress Processor Processor

PORT 0 PORT 1

Ingrams Crowsbar Crowsbar Ingress
Processor Processor Processor Processor

ANG CRO

Ingress Crnasbr Crsbr* Ingress
Processor Processor Pcesr Posor

PORT 3 PORT 2

LookupEgress Egress Lou
Processor Processor Processor Presr

Out 3 Out 2

Out 0 LuA 1

0 12 3

PORT 0 .- PORT 1

4 5 6 7

TTNG C

a 9 1011

PORT 3 PORT 2

14

Out 31 1W 2

Figure 7-2: Mapping router functional elements to Raw tile numbers.

46

out O Irut I

In I

In 2

0

3

6

9

UF.,

12

3'

1 1)

800 cycles

0

2

4

7

8

11
12
13
14
15

800 cycles

Figure 7-3: Utilization of the Raw processor on a per-tile basis. The top graph is for
64-byte packets, and the bottom graph is for 1,024-byte packets, both plotted for 800 clock
cycles. The numbered horizontal lines correspond to Raw tile processors. Gray color means
that a tile processor is blocked on transmit, receive, or cache miss.

47

I

Ow INNM

I

Chapter 8

Future Work

This chapter decribes the future improvements that we are planning to add to the

existing router, including new designs pursuing full utilization of the Raw processor,

the implementation of the IP route lookup on Raw, the issues of scalability and

support of multicast traffic in the switch fabric, flow prioritization to deploy Quality

of Service, as well as the application of the current router layout for routing in low

earch orbit satellite systems.

8.1 Pursuing Full Utilization of Raw

The results obtained so far are quite promising, but the Raw processor can do better,

and there are resources to attain this goal. First of all, there is another static network

waiting to be used for routing. Secondly, while the two static networks will be busy

streaming data from inputs to outputs, the dynamic network of Raw can provide much

help for control messaging and reconfiguration to reach the optimal performance.

8.2 Implementing IP Route Lookup

The previous sections described the solution to the problem of switching, but there

still remains an issue of route lookup. We would like to look at various lookup

algorithms with the hope of being able to support enough routes to compete as a core

48

router, such as the one given in [6]. To be able to do this, one or several tiles per

input port will act as the route resolving entities. While network processors deisgned

to do route resolution are multi-threaded, the Raw architecture is not multi-threaded,

but its exposed memory system allows for the same advantages as a multi-threaded

architecture. This main advantage is the ability to get work done while the processor

is blocked on external memory accesses. On the Raw Processor, memory is simply

implemented in a message passing style over one of the dynamic networks. Typically

when accessing RAM with loads and stores, the cache is backed in a write-back

manner by main memory, which is accessed by a small state machine that generates

and receives messages on the memory dynamic network. If the programmer wants

to use the system in a non-blocking nature, dynamic messages can be created and

sent to the memory system without using the cache. Thus this provides the same

advantage of non-blocking reads that a multi-threaded network processor provides.

8.3 Adding Computation on Data

Another future implementation feature is the building of an infrastructure to provide

the ability to implement streaming based computations, such as encryption, inside of

the switch fabric as it was described earlier. This will take the form of special bits in

the headers that are exchanged around the routing ring. These bits describe to the

switch fabric what form of computation needs to be applied.

8.4 Building Intelligent Routers

One more research direction that holds promise is the application of the computational

power of Raw to more intelligent routers, such as providing endpoint network users

more control over their communications. [25]

49

8.5 Scalability

The work presented here describes an architecture for a 4-input 4-output port router.

While this is a good starting point, one goal of this research is to also examine

larger configurations. The Raw architecture itself was designed to be a scalable

computational fabric, and this is the route that will be needed to be followed to build

a scalable router. Building this larger fabric of processors is as simple as gluelessly

connecting multiple Raw chips in a two dimensional mesh grid. One solution is simply

to build a larger router out of multiple of these small 4-port routers, or at least out

of multiple 4-port crossbars.

8.6 Supporting Multicast Traffic

It is becoming increasingly important for a router to support multicast traffic, and

we are planning to add this functionality to the existing Rotating Crossbar algorithm

by allowing a single Ingress Processor to send data to several Egress Processors si-

multaneously. This modification is trivial considering the ease of programmability of

the switch fabric.

8.7 Quality of Service

As mentioned earlier, we are also going to implement the prioritization of packet flows

from Ingress Processors. This is easily done by letting Ingress Processors include

priority information into the local header sent to Crossbar Processors, and adding

the arbitration code into the code running on the switch fabric.

8.8 Routing in Low Earth Orbit Satellite Networks

Several strategies have been proposed for routing in a low earth orbit (LEO) satellite

system [9, 16, 23, 24]. Some of them are based on the Internet Protocol (IP) and

50

asynchronous transfer mode (ATM) switching. However, issues like memory require-

ments of the satellites in the LEO network and the overheads involved in transmitting

packets over the network have frequently been ignored. We are planning to look at

developing an efficient solution to the routing issue in a LEO network using general-

purpose processors like Raw.

51

Chapter 9

Conclusion

The presented work shows that efficient routing can be done on the programmable

static network of the Raw general-purpose processor. The results obtained in the sim-

ulation demonstrate that a 4-port edge router running on a 250 MHz Raw processor is

able to switch 3.3 million packets per second at peak rate, which results in the through-

put of 26.9 gigabits per second for 1,024-byte packets, suggesting that it is possible to

use the Raw Processor as both a network processor and switch fabric for multigigabit

routing. Mixing computation and communication in a switch fabric lends itself to

augmenting the functionality of the router with encryption, compression, intrusion

detection, multicast routing, and other valuable features. The presented Rotating

Crossbar algorithm displays good properties, such as fairness and scalability, and al-

lows for further improvement by taking advantage of the second static network of the

Raw general-purpose processor. It is also naturally capable of accommodating the

implementation of Quality of Service. Therefore, we conclude that the Raw processor

will be further explored in order to add more of these features.

52

Bibliography

[1] Matthew Adiletta. The Intel Network Processor (IXP): Yesterday and Today,

April 2002. Presentation at the MIT LCS Computer Architecture Group.

[2] Gleb A. Chuvpilo, David Wentzlaff, and Saman Amarasinghe. Gigabit IP

Routing on Raw. In Proceedings of the 8th International Symposium on High-

Performance Computer Architecture, Workshop on Network Processors, Febru-

ary 2002.

[3] The Evolution of High-End Router Architectures: Basic Scalability and Perfor-

mance Considerations for Evaluating Large-Scale Router Designs. White Paper,

Cisco Systems, January 2001.

[4] Cisco 12000 Gigabit Switch Router. White Paper, Cisco Systems, 1997.

[5] William J. Dally. Wire-Efficient VLSI Multiprocessors Communication Net-

works. In Proceedings of the Stanford Conference on Advanced Research in VLSI.

MIT Press, 1987.

[6] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small

Forwarding Tables for Fast Routing Lookups. In ACM SIGCOMM, September

1997.

[7] Robert Donnan. IEEE Standard 802.5-1989, IEEE Standards for Local Area

Networks: Token Ring Access Method and Physical Layer Specifications. 1989.

[8] Michael Gordon, William Thies, Michal Karczmarek, Jeremy Wong, Henry

Hoffmann, David Z. Maze, and Saman Amarasinghe. A Stream Compiler for

53

Communication-Exposed Architectures. In Proceedings of the ACM Conference

on Architectural Support for Programming Languages and Operating Systems,

2002.

[9] Yukio Hashimoto and Behcet Sarikaya. Design of IP-based Routing in a LEO

Satellite Network. In 3rd International Workshop on Satellite-Based Information

Services, Mobicom'98, October 1998.

[10] Eddie Kohler. The Click modular router. PhD thesis, MIT, Cambridge, MA,

June 2000.

[11] Walter Lee, Rajeev Barua, Matthew Frank, Devabhatuni Srikrishna, Jonathan

Babb, Vivek Sarkar, and Saman Amarasinghe. Space-Time Scheduling of

Instruction-Level Parallelism on a Raw Machine. In Proceedings of the Eighth

ACM Conference on Architectural Support for Programming Languages and Op-

erating Systems, pages 46-57, San Jose, CA, October 1998.

[12] Nick McKeown. Fast Switched Backplane for a Gigabit Switched Router. Tech-

nical report, Stanford University.

[13] Nick McKeown. Scheduling Cells in an Input-Queued Switch. PhD thesis, Uni-

versity of California at Berkeley, May 1995.

[14] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The

Click Modular Router. In Proceedings of the Symposium on Operating Systems

Principles, pages 217-231, 1999.

[15] Donald Morrison. PATRICIA - Practical Algorithm to Retrieve Information

Coded in Alphanumeric. Journal of the ACM, October 1968.

[16] Paolo Narvaez, Antonio Clerget, and Walid Dabbous. Internet Routing over

LEO Satellite Constellations. In 3rd International Workshop on Satellite-Based

Information Services, Mobicom'98, October 1998.

54

[17] C. Partridge, P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham,

M. Hathaway, P. Herman, A. King, S. Kohlami, T. Ma, J. Mcallen, T. Mendez,

W. Milliken, R. Osterlind, R. Pettyjohn, J. Rokosz, J. Seeger, M. Sollins,

S. Storch, B. Tober, G. Troxel, D. Waitzman, and S. Winterble. A Fifty Gi-

gabit Per Second IP Router. In IEEE/A CM Transactions on Networking, 1997.

[18] Craig Partridge. Gigabit Networking. Addison Wesley Publishers, 1994.

[19] Y. Tamir and G. Frazier. High Performance Multiqueue Buffers for VLSI Com-

munication Switches. In Proceedings of the 15th Annual Symposium on Computer

Architecture, June 1998.

[20] Michael B. Taylor. Design Decisions in the Implementation of a Raw Architecture

Workstation. Master's thesis, Massachusetts Institute of Technology, Department

of Electrical Engineering and Computer Science, September 1999.

[21] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Wal-

ter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,

Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring It All to

Software: Raw Machines. IEEE Computer, 30(9):86-93, September 1997. Also

available as MIT-LCS-TR-709.

[22] David Wentzlaff, Gleb A. Chuvpilo, Arvind Saraf, Saman Amarasinghe, and

Anant Agarwal. RawNet: Network Processing on the Raw Processor. In Research

Abstracts of the MIT Laboratory for Computer Science, March 2002.

[23] Markus Werner. A Dynamic Routing Concept for ATM-Based Satellite Personal

Communication Networks. In IEEE Journal on Selected Areas in Communica-

tions, October 1997.

[24] Markus Werner, Cecilia Delucchi, HansJorg Vogel, Gerard Maral, and Jean-

Jacques De Ridder. ATM-Based Routing in LEO/MEO Satellite Networks with

Intersattelite Links. In IEEE Journal on Selected Areas in Communications,

January 1997.

55

[25] David Wetherall, Ulana Legedza, and John Guttag. Introducing New Internet

Services: Why and How. IEEE Network, July 1998.

56

