
MIT Open Access Articles

Max flows in O(nm) time, or better

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Orlin, James B. “Max Flows in O(nm) Time, or Better.” Proceedings of the 45th Annual 
ACM Symposium on Theory of Computing - STOC ’13, June 1-4, 2013, Palo Alto, California, USA 
(2013). p.765-774.

As Published: http://dx.doi.org/10.1145/2488608.2488705

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/88020

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/88020
http://creativecommons.org/licenses/by-nc-sa/4.0/


Max flows in O(nm) time, or better

James B. Orlin∗
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Abstract

In this paper, we present improved polynomial time algorithms for the max flow problem
defined on a network with n nodes and m arcs. We show how to solve the max flow problem in
O(nm) time, improving upon the best previous algorithm due to King, Rao, and Tarjan, who
solved the max flow problem in O(nm logm/(n logn) n) time. In the case that m = O(n), we

improve the running time to O(n2/ log n).
We further improve the running time in the case that U∗ = Umax/Umin is not too large,

where Umax denotes the largest finite capacity and Umin denotes the smallest non-zero capacity.
If log(U∗) = O(n1/3 log−3 n), we show how to solve the max flow problem in O(nm/ log n) steps.
In the case that log(U∗) = O(logk n) for some fixed positive integer k, we show how to solve the

max flow problem in Õ(n8/3) time. This latter algorithm relies on a subroutine for fast matrix
multiplication.

1 Introduction

Network flow problems form an important class of optimization problems and are central problems
in operations research, computer science and combinatorial optimization. A special network flow
problem, the max flow problem, has been widely investigated since the seminal research of Ford
and Fulkerson in the 1950s. The max flow problem has applications in transportation, logistics,
telecommunications, and scheduling. Numerous efficient algorithms for this problem exist including
[8] and [5]. A comprehensive discussion of such algorithms and applications can be found in [1].

We consider the max flow problem on a directed graph with n nodes, m arcs, and integer
valued arc capacities (possibly infinite), in which the largest finite capacity is bounded by U .
The fastest strongly polynomial time algorithm is due to King et al. [21]. Its running time is
O(nm logm/(n logn) n). When m = Ω(n1+ε) for any positive constant ε, the running time is O(nm).
When m = O(n log n), the running time is O(nm log n). The fastest weakly polynomial time
algorithm is due to Goldberg and Rao [16]. Their algorithm solves the max flow problem as a
sequence of O(logU) scaling phases, each of which transforms a ∆-optimal flow into a ∆/2-optimal
flow. The running time per scaling phase is O(Λm log(n2/m)), where Λ = min{n2/3,m1/2}.

Our contribution We show that the max flow problem can be solved in O(nm+m31/16 log2 n)
time. When m = O(n(16/15)−ε), this running time is O(nm). Because the algorithm by King et
al. [21] solves the max flow problem in O(nm) time for m > n1+ε , our improvement establishes
that the max flow problem can be solved in O(nm) time for all n and m.
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We also develop an O(n2/ log n) algorithm for max flow problems in which m = O(n).
Our algorithm solves the max flow problem as a sequence of improvement phases, similar to the

scaling phases in the Goldberg-Rao algorithm. We obtain a strongly polynomial time algorithm
by replacing the residual network of the ∆-improvement phase by a more compact representation.
The bottleneck operation for our algorithms is the creation of the compact representation. The
other bottleneck operation is the transformation of flows in the compact network to flows in the
residual network.

In addition, we present improved polynomial time algorithms for the max flow problem under
several different parameter settings. Let U∗ = (Umax/Umin), where Umax is the largest finite capac-
ity, and Umin is the smallest non-zero capacity. If U∗ is not too large (e.g., logU∗ = O(n1/3/ log3 n)),
then one can solve the max flow problem in strongly polynomial time by first using the Goldberg-
Rao algorithm to obtain a ∆-optimal flow for ∆ = Umin/2, and subsequently using our strongly
polynomial time algorithm to transform the ∆-optimal flow into an optimal flow. Suppose that we
let T (n,m) denote the running time to find an optimal flow starting with the ∆-optimal flow. We
rely on fast matrix multiplication, which runs in O(nω) time for ω = 2.3727. This bound is due to
Williams [24]. We show that

1. T (n,m) = O(nm/ log n) for all n and m.

2. T (n,m) = Õ(n17/12m5/8 + n1+2ω/3) = Õ(n8/3),

where Õ bounds ignore factors that are polynomial in log n.
The time to find the ∆-optimal flow is Õ(n2/3m). The time it takes to find an optimal flow

is Õ(n8/3). In the case that m = Ω(n2), this bound is a factor n1/3 faster than the best previous
strongly polynomial time max flow algorithm.

Our paper is organized as follows. In Section 2, we provide preliminary notation and definitions.
In Section 3, we describe how the max flow problem is solved as a sequence of improvement phases.
In Section 4, we describe the abundance graph and how contraction can speed up the algorithm.
In Section 5, we show how abundant directed cycles as well as some other arcs may be contracted
so as to result in a smaller max flow problem. In Section 6, we explain how nodes incident to
only abundant arcs may be “compacted”. Compaction is a concept that is new to this paper. In
Section 7, we show how to run the improvement phase for the max flow problem on the compact
network (when appropriate) rather than on the original network. We reduce the total running time
to O(nm + m31/16 log2 n), which is O(nm) time if m = O(n(16/15)−ε). The bottleneck operation
for our algorithm is the time it takes to maintain the transitive closure of the “abundance graph”.
In Section 8, we show how to solve the max flow problem in O(n2/ log n) time in the case that
m = O(n). In Section 9, we show how to speed up the algorithm further if logU∗ is not too large.

2 Preliminaries

We consider a directed graph G = (N,A) with node set N and arc set A. We let n = |N | and we
let m = |A|. Each arc (i, j) ∈ A has an associated non-negative real or infinite valued capacity uij .
We let Umax denote the maximum of the finite arc capacities. We let Umin denote the minimum of
the non-zero arc capacities.

There are two distinguished nodes in N : a source s and a sink t. A single commodity must be
routed through G from s to t. The arcs incident to s or t are referred to as external arcs. The
remaining arcs are called internal arcs. A node i is internal if i 6= s and i 6= t. To simplify notation,
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we assume without loss of generality that whenever an internal arc (i, j) is in A, arc (j, i) is also in
Apossibly with a capacity of 0. For every internal node i, we assume that (s, i) and (i, t) are in A.

To contract an arc (i, j) is to replace the nodes i and j by a single new node, referred to as the
contracted node. Any arc that was formerly incident to node i or j before contraction is incident
to the contracted node subsequently. Contraction is a standard operation in graph and network
algorithms.

A flow is a function x : A→ R+ ∪ {0} that satisfies the flow conservation constraints; that is,∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 for all i ∈ N \ {s, t}.

A flow x is called feasible if it obeys the capacity constraints, that is, xij ≤ uij for each arc
(i, j) ∈ A. We refer to xij as the flow on arc (i, j). The value of a flow x is the net flow out of
the source, which is equal to the net flow into the sink. In a max flow problem, one seeks a feasible
flow whose value is maximum.

Suppose that x is a feasible flow. For each internal node i, the residual capacity of arc (s, i) is
rsi = usi − xsi. The residual capacity of arc (i, t) is rit = uit − xit. For each internal arc (i, j) ∈ A,
rij = uij + xji − xij . The residual capacity expresses how much additional flow can be sent from i
to j, starting with the flow x. We let r[x] denote the vector of residual capacities. Often, we will
denote the residual capacities more briefly as r. The residual network is denoted G[r]. The arcs
(i, s) and (t, i) are not present in G and they also not present in G[r].

An s-t cut is a partition of the node set N into two parts, S and T , such that s ∈ S and t ∈ T .
The capacity of the cut (S, T ) is u(S, T ) =

∑
i∈S,j∈T uij . If r is the vector of residual capacities and

if (S, T ) is an s-t cut, then the residual capacity of the cut (S, T ) is r(S, T ) =
∑

i∈S,j∈T rij . The
following is the max-flow min-cut theorem of Ford and Fulkerson [11], as applied to the residual
network.

Lemma 1. (Max residual flow, min residual cut). Suppose that r is a vector of residual
capacities and (S, T ) is an s-t cut. Then r(S, T ) is an upper bound on the maximum amount of
flow that can be sent from source to sink in the residual network G[r]. Moreover, the maximum
flow with respect to r is the minimum residual capacity of an s-t cut.

We let A(j) denote the subset of arcs incident to node j. We say that A′(j) is an anti-symmetric
subset of A(j) if for every arc (i, j) ∈ A(j), either (i, j) ∈ A′(j) or (j, i) ∈ A′(j) but not both. Note
that if A′(j) is antisymmetric, then (s, j) ∈ A′(j) and (j, t) ∈ A′(j).

Lemma 2. (Anti-symmetry lemma). Suppose that A′(j) is an anti-symmetric subset of A(j)
for some internal node j. Suppose further that x is a feasible flow, and r = r[x]. Then

∑
(i,j)∈A′(j)

rij −
∑

(j,i)∈A′(j)

rji =
∑

(i,j)∈A′(j)

uij −
∑

(j,i)∈A′(j)

uji.

Proof. We note that rik = uik − xik + xki for every internal and external arc (i, k), The lemma is
true because of the following.
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∑
(i,j)∈A′(j)

(uij − rij)−
∑

(j,i)∈A′(j)

(uji − rji)

=
∑

(i,j)∈A′(j)

(xji − xij) +
∑

(j,i)∈A′(j)

(xji − xij)

=
∑

(i,j)∈A(j)

(xji − xij) = 0.

Suppose that P is a directed path in G from node i to node j, and suppose that (i, j) ∈ A.
Suppose further that |P | ≥ 2. To transfer δ units of capacity from path P to arc (i, j) is to reduce
uk` by δ of each arc (k, `) of P and to increase uij by δ.

Lemma 3. (Capacity transfer lemma). Let P be a path in G from node i to node j. Let (S, T )
be an s-t cut. Suppose that u′ is obtained from u by transferring δ units of capacity from P to arc
(i, j). Then u′(S, T ) ≤ u(S, T ).

Proof. Except in the case that i ∈ S and j ∈ T , the lemma is trivially true because u′k` ≤ uk` unless
i = k and j = `. Suppose now that i ∈ S and j ∈ T . Let ` be the first node of P that is in T , and
let k be the preceding node of P . Then u(S, T )− u′(S, T ) ≤ uk` − u′k` + uij − u′ij = δ − δ = 0.

In general, transferring capacity from paths to arcs decreases the amount of flow that can be
sent from source to sink. In essence it requires that δ units of the capacity of each of the arcs in
P be reserved for sending flow from i to j. In Section 6, we will see an important special case of
transferring capacity from a path to an arc that does not result in a decrease in the max flow.

3 Improvement phases

Our algorithm solves the max flow problem as a sequence of improvement phases. The input for an
improvement phase is a flow x, a vector r = r[x] of residual capacities, and an s-t cut (S, T ). We
typically denote the input for an improvement phase as the triple (r, S, T ). We refer to the phase
as the ∆-improvement phase, where ∆ = r(S, T ). Thus ∆ is an upper bound on the maximum
residual flow from s to t.

The output of the ∆-improvement phase is a flow x′, a vector r′ = r[x′] of residual capacities
and an s-t cut (S′, T ′) such that r′(S′, T ′) ≤ ∆/(4m).

We will run the improvement phase either on the network G or on a “compact network” de-
scribed later in this paper.

4 The abundance graph

Let (r, S, T ) be the input for an improvement phase, and let ∆ = r(S, T ). An arc (i, j) is called
∆-abundant if rij ≥ 2∆. We sometimes refer to it as abundant if ∆ is obvious from context. The
change in flow in any arc is at most ∆ during an improvement phase. Therefore, the following
lemma is true.
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Lemma 4. Suppose that (r, S, T ) is the input at the beginning of the ∆-improvement phase, where
∆ = r(S, T ). If arc (i, j) is ∆-abundant at the beginning of the ∆-improvement phase, then (i, j)
remains abundant at all subsequent improvement phases.

Abundant arcs play two roles in the speed-up of our max flow algorithm. (1) Directed cycles of
abundant arcs are “contracted” into a single node. The contracted arcs are expanded subsequent to
the algorithm identifying an optimal flow in the contracted graph. (2) A node can be “compacted”
if every incident arc is either abundant or has very small capacity. Compacted nodes are not present
in the compact network. We describe compaction in Section 6.

The abundance graph is the graph with node set N and whose arc set is the set of abundant
arcs. We denote it as Gab. By Lemma 4, once an arc becomes abundant, it remains abundant. The
abundance graph increases dynamically over time.

An arc (i, j) is in the transitive closure of Gab if there is a directed path in Gab from node i
to node j. Our algorithm maintains the transitive closure of Gab over all iterations. This may
be accomplished in O(nm) time using Italiano’s [18] algorithm for dynamically maintaining the
transitive closure of a graph.

If there is an abundant path from node i to node j, we denote it as i⇒ j. The transitive closure
algorithm maintains a path from node i to node j whenever i⇒ j. If there is more than one path,
it will maintain the first path it determines. It maintains paths implicitly by using a matrix M. If
there is a path from node i to node j in Gab, then Mij is the node that precedes j on the path in
Gab from i to j. The time it takes to reconstruct a path P from the matrix M is O(|P |).

The transitive closure algorithm is valid even if Gab contains directed cycles. However, as we will
see in Section 5, our algorithm contracts any abundant directed cycles. Contraction of abundant
cycles does not increase the time needed to maintain the dynamic transitive closure.

5 Contraction

If the abundance graph contains the internal arcs (i, j) and (j, i), then we can contract nodes i and
j into a single node, and find an optimal flow in the contracted graph. After obtaining an optimal
flow in this contracted graph, one can then expand the contracted node into their original pair of
arcs (i, j) and (j, i). The flow in the expanded graph can be made feasible by sending flow on (i, j)
or (j, i), whichever is needed in order to balance the flow in nodes i and j.

We illustrate this contraction on arcs (5, 6) and (6, 5) in Figures 1 and 2. After contraction,
the total change in flow in each arc is less than 2∆. When the node labeled 5-6 is ultimately
expanded, it is possible that the flow conservation constraints are violated for nodes 5 and 6, but
by an amount that is less than 2∆. By sending flow from 5 to 6 or from 6 to 5, the conservation
of flow constraints are reestablished.

It is also possible to contract abundant external arcs. We illustrate this type of contraction
on arcs (s, 1) and (3, t) in Figures 3 and 4. When the nodes labeled s-1 and 3-t are ultimately
expanded, it is possible that the flow conservation constraints are not satisfied at nodes 1 or 3.
Flow conservation can be reestablished by sending flow in (s, 1) and (3, t).

The total time for contraction in an improvement phase is O(m). The time for expansion
of contracted cycles is also O(m). For more details on contraction and expansion of cycles, see
Goldberg and Rao [16].
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1	   2	  

3	  4	  

5	  6	  

≥	  2	  Δ	  	  

≥	  2	  Δ	  	  

Figure	  1.	  	  	  A	  residual	  network	  in	  which	  
arcs	  (5,	  6)	  and	  (6,	  5)	  are	  both	  abundant.	  

1	   2	  

3	  4	  

5	  5-‐6	  

Figure	  2.	  	  	  The	  residual	  network	  aCer	  
contracDng	  the	  arcs	  (5,	  6)	  and	  (6,	  5).	  

1	   2	  

3	  4	  

t	  s	  

≥	  2	  Δ	  	  

≥	  2	  Δ	  	  

1	  

2	  

3	  

4	  

3-‐t	  s-‐1	  

1	   2	  

3	  4	  

6	  5	  

≥	  2	  Δ	  	  ≥	  2	  Δ	  	  

≥	  2	  Δ	  	  

≥	  2	  Δ	  	  

≥	  2	  Δ	  	  

1	   2	  

3	  4	  

Figure	  	  3.	  	  	  A	  residual	  network	  in	  which	  
arcs	  (s,	  1)	  and	  (3,	  t)	  are	  both	  abundant.	  

Figure	  	  4.	  	  	  The	  residual	  network	  
aCer	  contracDng	  (s,	  1)	  and	  (3,	  t).	  

Figure	  	  5.	  	  	  Part	  of	  a	  network	  in	  which	  nodes	  
5	  and	  6	  are	  both	  strongly	  compacDble.	  	  The	  
solid	  arcs	  are	  all	  abundant.	  

Figure	  	  6.	  	  The	  subgraph	  of	  the	  strongly	  
compact	  network	  obtained	  from	  Figure	  5.	  	  
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6 The compact network

In this section, we define compact networks. We start by showing how to construct an intermediate
version of the compact network that we refer to as the “strongly compact network”. This network
is essentially the same as the residual network except that we will eliminate any node for which all
incident arcs are abundant. Subsequently, we will define the compact network and show how to
construct it.

Algorithm 1. A procedure for creating the strongly compact network Gsc = (N sc, Asc).

Step 1. Iteratively contract abundant cycles. Iteratively contract abundant external arcs. Let
(r, S, T ) denote the input after contraction.

Step 2. Let N sc be the subset of nodes incident to a non-abundant arc whose residual capacity is
positive. A node in N\N sc is referred to as strongly compactible.

Step 3. Asc = A1 ∪ A2, where A1 = {(i, j) ∈ A : i ∈ N sc and j ∈ N sc}, and A2 = {(i, j) : i ∈
N sc and j ∈ N sc and i⇒ j}. An (i, j) ∈ A1 is referred to as an original arc and its capacity
is rij . An arc (i, j) ∈ A2 is referred to as a pseudo-arc and its residual capacity is 2∆.

Algorithm 1 runs in O(m+ |Asc|) time. We can create each pseudo-arc in O(1) time because we
are maintaining the transitive closure of the abundance graph. (We will only create the compact
networks in cases in which |Asc| = O(m9/8), a bound that arises from the analysis.)

We illustrate this construction in Figures 5 and 6. In Figure 6, nodes 5 and 6 do not appear
because neither node was incident to a non-abundant arc with residual capacity. Figure 6 includes
pseudo-arcs from nodes 1 and 4 to nodes 2 and 3.

Theorem 1. Let v∗ be the max flow in the residual network G[r], and let vsc be the max flow in
the strongly compact network Gsc. Then vsc = v∗.

Proof. Consider first a flow in Gsc. This can be transformed into a flow in G[r] by replacing the
flows in pseudo-arcs of Gsc by flows on the corresponding abundant paths in G[r].

Now consider a flow x in G[r]. One can use flow decomposition (see, e.g., Ahuja et al. [1]) to
represent x as the sum of flows on paths from s to t. For each path P in the flow decomposition,
we carry out the following additional operations. Subdivide P into the union of subpaths, where
each subpath begins and ends at a node in N sc, but the other nodes of the subpath are in N\N sc.
If P ′ is a subpath of P from node i to node j, then replace the flow on the subpath P ′ by flow in
the corresponding pseudo-arc (i, j) ∈ Asc. Repeating this process yields a flow decomposition in
Gsc, which, in turn, can be expressed as a flow in Gsc.

We next describe how to obtain the ∆-compact network, which is similar to the strongly compact
network, but which may contain far fewer nodes. Our O(nm) algorithm for the max flow problem
exploits the fact that the running time to find an approximate max flow in the ∆-compact network
may be less than the time it takes to find the approximate max flow in the original network.

An arc (i, j) is said to have small capacity with respect to ∆ if rij + rji < ∆/(64m2). An arc
(i, j) is said to have medium capacity with respect to ∆ if rij ≥ ∆/(64m2) and if rij + rji < 4∆.

An internal arc (i, j) is referred to as anti-abundant if rij < 2∆ and rji ≥ 2∆. An external arc
(s, j) or (j, t) is referred to as anti-abundant if it is not abundant.

For a given node j ∈ N , vector r of residual capacities and for a subset Ã of arcs, we define the
potential function Φ(j, r, Ã) as follows.
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Φ(j, r, Ã) =
∑

(i,j)∈Ã

rij −
∑

(j,i)∈Ã

rji. (1)

Let A′(∆) denote the set of anti-abundant arcs at the ∆-improvement phase.
We say that a node j is ∆-compactible if |Φ(j, r′, A′)| < ∆/(16nm) and if j is not incident to a

medium capacity arc.

We could define the compact network after eliminating the ∆-compactible nodes. However,
it helps the analysis if we first carry out some additional preprocessing so that the compactible
nodes satisfy a stronger property. We say that node j is very ∆-compactible if it is ∆-compactible
and if every incident anti-abundant arc has capacity less than ∆/(16nm). We will create compact
networks that contain all nodes that are not very compactible.

The proof of the following lemma is immediate from our definition of the potential function Φ.

Lemma 5. Suppose that node j is ∆-compactible. Suppose further that there is no pair of anti-
abundant arcs (i, j) and (j, k) with positive residual capacity. Then j is very ∆-compactible.

In order to transform compactible nodes into very compactible nodes, we will eliminate pairs
of anti-abundant arcs (i, j) and (j, k) with positive residual capacity. To eliminate these pairs of
arcs, we will transfer residual capacities from paths to arcs or pseudo-arcs. Transferring capacity
was first described in Section 2.

We say that a path P has transferrable residual capacity if (i) |P | ≥ 2, (ii) r(P ) > 0, and (iii)
each arc of P is anti-abundant. If P is a path from node i to node j such that P has transferrable
capacity, then to transfer the residual capacity of P is to transfer r(P ) units of capacity from P
to (i, j). If arc (i, j) were not in A, we would add (i, j) as an anti-abundant pseudo-arc prior to
transferring the capacity.

In the ∆-improvement phase, prior to constructing the compact network, our algorithm itera-
tively transfers the residual capacity from paths with transferrable residual capacity. (Step 3A of
Algorithm 2). Our next lemma shows that the transfer of capacities does not affect the maximum
flow value nor does it affect the potential function. Each transfer of capacities will eliminate at
least one anti-abundant arc from the network. The transfer of capacities will continue until every
∆-compactible node becomes very ∆-compactible.

Lemma 6. Let (S, T ) be an s-t cut in G with r(S, T ) ≤ ∆ and let A′ = A′(∆). Suppose that path
P is a path from node i to node j with transferrable residual capacity. Let r′ be obtained from r by
transferring δ units of residual capacity from path P to arc (i, j). Then Φ(k, r′, A′) = Φ(k, r, A′)
for each k ∈ N , and r′(S, T ) = r(S, T ).

Proof. We first consider the statement Φ(k, r′, A′) = Φ(k, r, A′) for each k ∈ N . In transferring δ
units of residual capacity from a path P , every arc of the path is anti-abundant. Accordingly, if
is neither the first nor last node of P , then any decrease in residual capacity into k is matched by
a decrease in residual capacity out of k. The statement is also easily verified for the first and last
nodes of P .

We now consider the statement r′(S, T ) = r(S, T ). This statement is trivially true if |P | = 1.
Assume that |P | ≥ 2, and let P = i1, i2, . . . , ik. The lemma is clearly true in the case that every
node of P is in S or if every node of P is in T . So, we consider the case in which at least one node
of P is in S and at least one node of P is in T . Since the reversal of each arc of P is abundant,
and since r(S, T ) ≤ ∆, there must be an index ` ∈ [1, k − 1] such that (a) ij ∈ S for j ≤ `, and (b)
ij ∈ T for j > `. Under these circumstances, one can easily verify that r′(S, T ) = r(S, T ).
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We say that a node j is ∆-critical if it is not very ∆-compactible. The set of nodes in the
∆-compact network are the ∆-critical nodes. We next bound the total number of nodes in compact
networks over all improvement phases.

Theorem 2. The total number of ∆-critical nodes over all improvement phases is O(m).

Proof. Let ∆k denote the parameter for the k-th improvement phase. Our improvement algorithm
ensures that for each k, ∆k+1 ≤ ∆k/(4m).

We first consider nodes in compact networks that are incident to arcs of medium capacity. Let
r denote the residual capacities after Step 1 of Algorithm 1 at Improvement Phase k. Let r′ denote
the residual capacities at the beginning of Phase k+ 4. If (i, j) or (j, i) is of medium capacity with
respect to ∆k, then ∆k/(64m2) ≤ rij + rji ≤ 4∆k. Then r′ij + r′ji = rij + rji > 4∆k+3. It follows
that each arc is of medium capacity for at most four improvement phases. And the total number
of medium arcs over all improvement phases is O(m).

We next consider the remaining ∆-critical nodes, which we refer to as ∆-special nodes. If node
j is ∆-special, then |Φ(j, r, A′)| ≥ ∆/(16nm) and there are no medium capacity arcs incident to j.

We claim the following: if node j is ∆-special, then within four more improvement phases, node
j will be on an abundant directed cycle, and will thus be contracted. If the claim is true, then we
will have shown that the number of ∆-special nodes over all improvement phases is O(n), which will
complete the proof that the total number of ∆-critical nodes is O(m). (We assume that m ≥ n.)

Suppose that node j is ∆-special. Let A′(j) be the set of arcs arcs incident to node j that are
anti-abundant at Phase k. Let A′′(j) consist of arc (s, j) plus all of the arcs directed out of node
j that are neither abundant nor anti-abundant at Phase k. (All of these arcs have small capacity
with respect to ∆k). Then A′(j)∪A′′(j) is an anti-symmetric subset of A(j). By Lemma 2 and by
Lemma 6, Φ(j, r, A′(j) ∪A′′(j)) = Φ(j, r′, A′(j) ∪A′′(j)). Therefore,

|Φ(j, r′, A′(j))| ≥|Φ(j, r, A′(j))| − |Φ(j, r, A′′(j))| (2)

− |Φ(j, r′, A′′(j))| (3)

≥∆k/(16nm)− 2n∆k/(64m2) (4)

≥∆k/(32nm) > 4n∆k+4. (5)

Inequality (4) relies on the fact that there at most n arcs in A′′(j), each with capacity less than
∆k/(64m2). Since A′(j) has fewer than 2n arcs, inequality (5) implies that there must be an arc
a ∈ A′(j) such that r′a ≥ 2∆k+4. Since the reversal of arc a is also abundant, it follows that arc a
and its reversal is an abundant cycle, and thus arc a would be contracted.

We next show how to create the ∆-compact network Gc = (N c, Ac). The node set N c is the set
of ∆-critical nodes. To obtain the arc set Ac, one first transfers capacities on paths whose arcs are
anti-abundant.

Algorithm 2. A procedure for creating the ∆-compact network Gc = (N c, Ac).

Step 1. Iteratively contract abundant cycles. Iteratively contract abundant external arcs.

Step 2. Let N c be the set of ∆-critical nodes.

Step 3A. If there is a ∆-compactible node with an entering anti-abundant arc and a leaving
anti-abundant arc, find a path P with transferrable residual capacity such that the first and
last nodes of P are in N c and every other node of P is in N\N c. (Such a path will exist).
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Transfer the residual capacity from this path to a pseudo-arc. Continue finding paths with
transferrable residual capacity until there is no ∆-compactible node with an entering anti-
abundant arc and a leaving anti-abundant arc. (In Section B, we will show how to implement
Step 3A efficiently using dynamic trees.)

Step 3B. Let r′ denote the residual capacities of arcs and pseudo-arcs after Step 3A. Let Ac =
A1 ∪A2, where A1 = {(i, j) : i ∈ N c , j ∈ N c, and r′ij > 0}, and A2 = {(i, j) : i ∈ N c and j ∈
N c and i⇒ j}. An arc (i, j) ∈ A1 has capacity r′ij . An arc in A2 is referred to as a pseudo-arc
and has residual capacity 2∆.

Theorem 3. Let v∗ be the max flow in the residual network G[r], and let v′ be the max flow in the
∆-compact network Gc . Then v′ ≤ v∗ < v′ + ∆/8m.

Proof. Contracting abundant cycles or abundant external arcs does not affect the max flow value,
nor does it increase the number of arcs.

We now consider Step 3A. Lemma 6 shows that transferring flow from transferrable paths to
pseudo-arcs does not affect the value of the max flow, nor does it affect the potential function Φ.

We now consider Step 3B. If the only arcs incident to the ∆-compactible nodes were abundant
arcs, then by Theorem 1, the max flow in Gc would be the same as the max flow in G[r]. However,
in creating Gc, we also eliminate all small capacity arcs incident to ∆-compactible nodes as well
as the anti-abundant arcs incident to the ∆-compactible nodes after the transfer of capacity from
paths. There are at most m arcs with small capacity, and the sum of their capacities is less than
m(∆/(64m2)) = ∆/(64m). The total capacity of anti-abundant arcs incident to ∆-compactible
nodes after Step 3A is less than n∆/(16nm) = ∆/(16m). We conclude that v′ ≤ v∗ ≤ v′ +
∆/(64m) + ∆/(16m) < v′ + ∆/(8m).

Theorem 3 establishes that the transformation used to create the ∆-compact network decreases
the maximum amount of flow by at most ∆/(8m).

7 Maximum flows in O(nm) time

In this section, we show that for m < n1.06, the running time for our max flow algorithm is O(nm),
and the bottleneck is due to the maintenance of the transitive closure of Gab. The algorithm below

The procedure improve-approx-2 finds an approximately optimal flow in an improvement phase
by considering three different cases. Let c denote the number of ∆-critical nodes. (i) If c > m9/16,
then the procedure finds a ∆′-optimal solution on G[r], where ∆′ = ∆/(4m). (ii) If m1/3 ≤
c < m9/16, then the procedure finds a ∆′/2-optimal solution on Gc, and transforms this into a
∆′-optimal solution on G[r]. If c < m1/3, then the procedure first chooses a parameter Γ, where
Γ < ∆′. It then determines an optimal flow on what is referred to as the “(∆,Γ)-compact network”,
and transforms this flow into a Γ-optimal flow for G.

The third case is needed for the following reason. The running time for creating the compact
network is at least m logm steps at each improvement phase. We will show that because of the
third case, the number of improvement phases is O(m2/3). This implies that the total time for
creating the compact networks is O(m5/3 logm) plus the time needed to maintain the transitive
closure of the abundance graph.

The (∆,Γ)-compact network is created in the same way as the ∆-compact network with the
following exception. For a node j to be (∆,Γ)-critical, it is incident to an arc (i, j) such that
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(i) Γ/(64m2) < rij + rji < 4∆ or (ii) |Φ(j, r, A′)| ≥ Γ/(16nm). As before, abundance and anti-
abundance are still defined with respect to ∆.

The following procedure transforms a ∆-optimal solution into a ∆/(4m)-optimal solution.

Procedure improve-approx-2(r, S, T );
01. ∆ := r(S, T );
02. let c be the number of ∆-critical nodes;
03. if c > m9/16 then find a ∆/(4m)-optimal flow
04 on the residual network G[r];
05. else, if m1/3 ≤ c < m9/16 then
06. let G′ denote ∆-compact network;
07. find a ∆/(8m)-optimal flow x′ on G′;
08. transform the flow x′ into a ∆/(4m)-optimal
09 flow x∗ on G[r];
10. else, if c < m1/3 then
11. choose the minimum value Γ such that
12 the number of nodes in the (∆,Γ)-compact
13. network is less than 2m1/3;
14. let G′ denote (∆,Γ)-compact network;
15. find an optimal flow x′ on G′;
16. transform the flow x′ into a Γ-optimal
17 flow x∗ on G[r];

In the following lemma, when we refer to the time to find flows in improve-approx-2, we are
referring steps 3, 4, 7, and 15. We are not referring to the time to create the compact networks.

Lemma 7. Let c be the number of ∆-critical nodes for the procedure improve-approx-2. If c ≥ m1/3,
then the running time of the flow subroutine is O(cm15/16 log2 n). If c < m1/3, then the running
time of the flow subroutine is O(cm2/3).

Proof. If c > m9/16, then the running time per improvement phase is O(m3/2 log2 n). Multiplying
the running time by c/m9/16 shows that the running time is O(cm15/16 log2 n). If m1/3 ≤ c ≤ m9/16,
then the number of arcs in the compact network is O(c2). And the running time for determining an
approximate max flow on the compact network using the Goldberg-Rao algorithm is O(c8/3 log n),
which is O(cm15/16 log n). Finally, if c < m1/3, then an optimal flow is determined in O(c3) time;
and in this case c3 = O(cm2/3).

Lemma 8. The number of improvement phases is O(m2/3).

Proof. By Theorem 2, the number of nodes in compact networks is O(m) over all improvement
phases. Therefore, there are O(m2/3) improvement phases in which c ≥ m1/3.

We next bound the number of improvement phases in which c < m1/3. Suppose that in the k-th
improvement phase, the parameters are ∆k and Γk. Suppose further that there is a subsequent
improvement phase. By Steps 16 and 17, ∆k+1 ≤ Γk.

By our rule for choosing Γk, the number of (∆k,Γk/2)-critical nodes is greater than 2m1/3 (see
Step 13). Accordingly, at least one of the following two statements are true. (1) There are at least
m1/3 arcs with medium capacity with respect to Γk/2, or (2) there are at least m1/3 nodes that are
(∆k,Γk/2)-critical and are not incident to an arc that is medium capacity with respect to Γk/2.
Consider the first statement. Any arc that is medium capacity with respect to Γk/2 will become
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abundant or anti-abundant within 4 additional improvement phases. Thus the first statement can
be true for O(m2/3) improvement phases.

Consider now the second statement. Suppose that node j is (∆k,Γk/2)-critical but is not
incident to an arc that is medium capacity with respect to Γk/2. A similar argument to the one in
the proof of Theorem 2 shows that node k will be contracted within four more improvement phases.
This shows that the second statement is valid for O(m2/3) improvement phases, completing the
proof of the lemma.

Theorem 4. For m = O(n16/15−ε), the max flow problem is solvable in O(nm) time by iteratively
calling the procedure improve-approx-2.

Proof. We first consider the time spent in flow operations; i.e., Steps 3, 4, 7, and 15 of procedure
improve-approx-2. The total number of ∆-critical nodes over all improvement phases is O(m). By
Lemma 7, the time to find the flows is O(m31/16 log2 n) over all phases.

By Lemma 8, the number of improvement phases is O(m2/3).
The remaining operations to consider are the following: (1) the time to contract abundant cycles

and to expand them; (2) the time to create the abundant pseudo-arcs of the compact networks;
(3) the time to transform flows in abundant pseudo-arcs of the compact networks into flows on
paths in the original network; (4) the time to transfer capacities from paths of anti-abundant arcs
to pseudo-arcs of the compact networks, and (5) the time to transform flows in the non-abundant
pseudo-arcs of the compact networks into flows on paths in the original network.

We have already stated that the time to contract abundant cycles and expand them is O(m)
per improvement phase, which is O(m5/3) time in total.

We now consider (2). If c is the number of nodes of the compact network, then the time to
create the abundant pseudo-arcs is O(c2) plus the time required to maintain the transitive closure
of Gab. The bottleneck is the time for the dynamic transitive closure, which is O(nm) in total using
the algorithm of Italiano [18].

We now consider (3). Let x′ denote the flow in the compact network. In principle, we could
just convert x′ to a spanning tree flow. However, in order to use our definition of abundant arc, we
need to ensure that flows do not change by more than ∆ in an improvement phase. So, instead we
modify only the flows in the pseudo-arcs.

We transform x′ by iteratively sending flow around (undirected) cycles consisting of pseudo-
arcs. We continue until there is no cycle of pseudo-arcs with positive flow. The resulting flow x′′

has at most c pseudo-arcs that have positive flow. This “cycle canceling” approach can be carried
out in O(c2 log n) steps using the dynamic tree data structure as described in Goldberg and Tarjan
[17]. The term c2 in the time bound refers to a bound on the number of pseudo-arcs.

After the previous steps, there are at most c pseudo-arcs. If (i, j) is an abundant pseudo-arc, its
corresponding path of abundant arcs can be determined in O(n) time from the matrix M. Thus, the
positive components of x′′ corresponding to abundant pseudo-arcs can be transformed into flows
on paths in O(nc) time. Since there are O(m) critical nodes over all phases, the running time over
all phases for these transformations is O(nm), which is the same time bound as for maintaining
the transitive closure.

We establish in Appendix B that the time for transferring capacities and creating non-abundant
pseudo-arcs is O(m log n) per improvement phase, and O(m5/3 log n) in total. We establish in
Appendix C that the time for transforming flows in non-abundant pseudo-arcs into flows on paths
is O(m log n) per improvement phase, and O(m5/3 log n) in total.
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8 A speedup for sparse networks

In this section, we describe how to solve the max flow problem in O(n2/ log n) time when m = O(n).
In this case, the number of ∆-critical nodes in all iterations is O(n). In order to achieve the
O(n2/ log n) running time, we need to create a compact network with c nodes in O(cn/ log n) time.
We also need to transform the flow in the compact network into a flow in the residual network
in O(cn/ log n) time. This latter problem is less straightforward than the problem of creating the
compact networks.

To determine the abundant pseudo-arcs, we need to determine all nodes of Gab reachable from
the c critical nodes. A standard implementation of a graph search algorithm takes O(cm) time. We
need to obtain a factor log n improvement in running time. An algorithm due to Blelloch et al. [4]
can determine the transitive closure in O(n2 + nm/ log n) time. Perhaps ideas from this paper can
lead to the required factor log n improvement. Instead, we obtain the improvement by relying on a
technique developed by Gabow and Tarjan [12] in the context of a set union data structure. They
represented subsets of a ground set S for which |S| = .3 log n using integers in the range [0, n1/3].
They also create tables in O(n) time so that operation on subsets of S takes O(1) steps using table
lookup. Our approach relies on the same framework. Here, we assume that S = {1, 2, 3, ...,K},
where K = b(log n)/3c. We assume that every element i ∈ S has an associated value ai.

Our algorithm relies (in principle) on six tables, each of which can be created in O(n) time.
The tables permit each of the following operations to be carried out in O(1) steps for subsets S
and T of S.

1. (Union.) W := S ∪ T .
2. (Intersection.) W := S ∩ T .
3. (Set difference.) W := S\T .
4. (Subset sum.) w :=

∑
i∈S ai.

5. (First element.) First(S) is the first element of S.
If S = ∅, then First(S) = ∅.

6. (Is an element of.) Element(S, x) = TRUE if x ∈ S;
otherwise, Element(S, x) = FALSE.

We suppose without loss of generality that the node set S is {1, 2, 3, ...,K}. We next show how
to determine in O(m) steps the set of pairs {i, j : i ∈ S, j ∈ N, and i ⇒ j}. We assume that the
arc set Aab has no directed cycles, or equivalently that we have already contracted the abundant
directed cycles.

For each j ∈ V , we let F (j) = {k ∈ S : k ⇒ j}. For each k ∈ F (j), our algorithm will (im-
plicitly) identify an abundant path Pk(j). We let F (i, j) = {k ∈ S : (i, j) ∈ Pk(j)}. Our algorithm
adapts the standard graph search algorithm so that it can identify paths from the subset S. After
the sets F (·)andF (·, ·) are determined with respect to the set S, one can add the O(cK) abundant
pseudo-arcs from S to other nodes in the compact network in O(cK) = O(c log n) time. We will
ultimately run the procedure forward-search on c/ log n different subsets of nodes of the compact
network.

Procedure forward-search;
01. Initialize;
02. for each i ∈ S, F (i) := {i};
03. for each j ∈ N\S, F (j) := ∅;
04. for each (i, j) ∈ A, F (i, j) := ∅;
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05. scan nodes of N in topological order;
06. for each node i and for each arc (i, j) do
07. F (i, j) := F (i)\F (j);
08. F (j) := F (i) ∪ F (j);

Procedure forward-search is run to determine the abundant pseudo-arcs of the ∆-compact net-
work (or the (∆,Γ)-compact network). One can easily verify that the algorithm correctly identifies
the sets F (·) and F (·, ·) in O(m) steps.

Subsequent to creating the compact network, the algorithm determines flows in the arcs of the
compact network (Steps 7 or 15 of improve-approx-2). Let Q denote the set of abundant pseudo-
arcs in the compact network. Thus |Q| = O(c2). Consider the flow on these pseudo-arcs. As in
the proof of Theorem 4, the algorithm then converts the flow on the arcs of Q into a spanning tree
flow on at most c− 1 arcs by sending flow around cycles.

Let y be the vector of flows on the pseudo-arcs of Q after this post-processing. Let K =
b(log n)/3c. We next transform y into a flow in the residual network in three stages.

1. In the first stage, there is a node i ∈ N that is incident to at least K pseudo-arcs with positive
flow in y.

2. In the second stage, one uses a greedy algorithm to determine K independent arcs of Q with
positive flow. (A set of arcs is independent if no two arcs have a node in common.)

3. In the third stage, the greedy algorithm fails to determine K independent arcs.

Consider the first of these stages. Let i be a node incident to at least K abundant pseudo-arcs
with positive flow. Let W (i) = {j : yij > 0}. Using a graph search algorithm, determine a tree
T ⊆ Gab directed out of node i and containing all nodes j such that i⇒ j. Thus W (i) ⊆ T . Then
convert the flows yik for k ∈W (i) into flows y′ for G, by finding the unique flow y′ in T such that
(i) for each k ∈ W , the flow into node k is yik, and (ii) the flow out of node i is

∑
k∈W (i) yik. The

time to carry out this procedure for node i is O(m). Subsequent to carrying out this procedure on
all arcs directed out of node i or directed into node i, we set yij = 0 and yji = 0 for all j.

We now consider the second stage. Assume for now that we have transformed flows for all nodes
i that are incident to at least K pseudo-arcs with positive flow in y.

In this case, we use a greedy algorithm to determine K independent pseudo-arcs of Q with
positive flow. The greedy algorithm runs in O(m) time. If the greedy algorithm fails to find K
independent arcs, our procedure moves on to the third stage.

We consider the case in which the greedy algorithm succeeded in obtaining K independent arcs
with positive flow. We first relabel the nodes, so that the K pseudo-arcs are (i,K + i) for i = 1 to
K. Our algorithm will take advantage of this labeling scheme.

As before, for each j ∈ V , we let F (j) = {k ∈ [1,K] : k ⇒ j}. For each k ∈ F (j), we will
(implicitly) identify an abundant path Pk(j). We let F (i, j) = {k ∈ S : (i, j) ∈ Pk(j)}. We first
use procedure forward-search to determine F (·) and F (·, ·).

We now define sets B(i, j) and B(j) as follows: B(i, j) = {k ∈ [1,K] : (i, j) ∈ Pk(K + k)};
B(j) = {k ∈ [1,K] : j ∈ Pk(K + k)}. The procedure that determines B(i, j) and B(j) relies on the
following recurrence relations.

1. The arc (i, j) is on path Pk(K + k) if and only if j ∈ Pk(K + k) and (i, j) ∈ Pk(j).

2. If i ∈ Pk(K + k), then i = K + k or else there is some arc (i, j) that is on path Pk(K + k).
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We will determine B(i, j) and B(j) in Steps 1 to 8 of procedure backward-search. Step 9 of
backward-search transforms the flows on the K pseudo-arcs into flows on abundant paths.

Procedure backward-search;
01. Initialize;
02. for each j ∈ [1,K], B(j) := {j +K};
03. for each j ∈ N\[1,K], B(j) := ∅;
04. for each (i, j) ∈ Gab, B(i, j) := ∅;
05. scan nodes of Gab in reverse topological order;
06. for each node i and for each arc (i, j) do
07. B(i, j) := B(j) ∩ F (i, j);
08. B(i) := B(i) ∪B(i, j);
09. for all (i, j) ∈ Gab, do y′ij := y′ij +

∑
k∈B(i,j) yk,k+K

10. for k = 1 to K do yk,k+K := 0;

We note that Step 9 takes O(m) time because it consists of m calls of the subset sum operation,
each on a subset of [1,K].

We have now completed the first two stages. Eventually, there is an iteration in which no
node is incident to K arcs with positive flow with respect to y, and the greedy algorithm fails to
determine K independent arcs of Q with positive flow. But since each node of Q is incident to
fewer than K arcs with positive flow, and since the greedy algorithm failed, it follows that that
there are fewer than 2K2 arcs with positive flow. These final arcs can be transformed one at a time
in O(nK2) = O(n log2 n) = O(cn/ log n) time.

9 Further improvements

The analysis of the previous section extends to the case in which m′ = O(n), where m′ is the
number of arcs with finite capacity. If m′ = O(n), the bottleneck operations are the creation of the
abundant pseudo-arcs and the transformation of flows on these arcs to flows on paths in G[r]. Each
of these two bottleneck operations runs in O(nm/ log n) time. In this section, we will show how to
solve the max flow problem faster in this case when m > n1.58. Our approach relies on using fast
matrix multiplication to create the compact networks and modify the flows.

The special case of m′ = O(n) arises in a variety of situations. Of special note is the case that
one can efficiently obtain a ∆-optimal spanning tree flow for some ∆ ≤ Umin/2. In such a case, the
non spanning tree arcs are at their upper or lower bound. That is, only the spanning tree arcs can
have a flow between 0 and 2∆. All other arcs either have no capacity or are abundant.

Recall that U∗ = Umax/Umin. If logU∗ = O(n1/3−ε), then the Goldberg-Rao algorithm de-
termines a (Umin/2)-optimal flow x′ in O(n2/3m log(n2/m) logU∗) = O(n1−εm log(n2/m)) time.
The solution x′ can be converted into a basic feasible solution x′′ with the same flow value in
O(m log n) additional steps using dynamic trees (see, e.g., Goldberg and Tarjan [17]). Thus, if
logU∗ = O(n1/3−ε), then the max flow problem is solvable in O(nm/ log n) time.

If m = O(n4/3) and if logU∗ = O(n1−ε/m1/2), then then the Goldberg-Rao algorithm deter-
mines a (Umin/2)-optimal flow x′ in O(m1/2m log n logU∗) = O(n1−εm log n) time. In this case, it
can determine an optimal flow in O(nm/ log n) time.

If m′ = O(n), fast matrix multiplication can be used to obtain the transitive closure in O(nω)
time, where ω = 2.3727. This running time was developed by Williams [24]. In the case that
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m′ = O(n), using fast matrix multiplication, improve-approx-3 solves the max flow problem in
O(T (n,m)) time, where

T (n,m) =


O(nm/ log n) if m ≤ n2ω/3,
Õ(n1+2ω/3) if n2ω/3 ≤ m ≤ n(16ω/15)−2/3,
Õ(n17/12m5/8) if n(16ω/15)−2/3 ≤ m ≤ n2.

We note that n1+2ω/3 = O(n2.582), and that for m = O(n2), n17/12m5/8 = O(n8/3).

In the following algorithm, we let α = lognm, and we let β = (2 + 3α)/8. The value β was
selected so as to minimize the running time. We apply the following procedure if m > n2ω/3, and
if the number of non-abundant arcs is O(n).

Procedure improve-approx-3(r, S, T )
01. ∆ := r(S, T );
02. let c be the number of ∆-critical nodes;
03. if c ≥ nβ then find a ∆/(4m)-optimal solution
04. on the residual network G[r];
05. else, if nω/3 < c < nβ then
06. find a ∆/(8m)-optimal flow x′ on the
07. ∆-compact network;
08. transform x′ into a ∆/(4m)-optimal flow x′′ on
09. the residual network G[r];
10. else, if c < nω/3 then
11. choose Γ minimal so that the number of
12. (∆,Γ)-critical nodes is less than 2nω/3;
13. find an optimal flow x′ on the
14. (∆,Γ)-compact network;
15. transform x′ into a Γ-optimal flow x′′ on
16. the residual network G[r];

In the following theorem, we use Õ notation, which ignores terms that are polynomial in log n.

Theorem 5. Suppose that m′ = O(n) and that the max flow problem is solved by iteratively calling
improve-approx-3. Then the running time is Õ(n1+2ω/3 + n17/12m5/8), which is Õ(n5/3).

Proof. We first consider all phases in which c ≥ nβ. In this case, the running time per phase is
Õ(n2/3m) = Õ(nα+2/3). By Theorem 2 , the number of these phases is O(n/nβ). Thus the total
running time of these phases is Õ(nα−β+5/3).

We next consider phases in which nω/3 < c < nβ. During these phases, we find the ∆-optimal
solution on the compact network in O(c8/3) time, and we determine the compact network using
fast matrix multiplication in O(nω) time. The number of these phases is O(n/nω/3), and so the
worst case running time for the fast matrix multiplication over all of these phases is O(n1+2ω/3).
We next consider the running time due to the flow subroutines only. The worst case running time
for the flow subroutines over all phases with nω/3 ≤ c ≤ nβ occurs when c = nβ. This running time
is Õ((n/nβ)n8β/3) = Õ(n1+5β/3).
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If we balance the running times of the flow procedures in these phases with those of the phases
in which c ≥ nβ , we let β = 1/4 + 3α/8. Then the total running time of the flow subroutines is
Õ(n(17/12)+(5α/8)) = Õ(n17/12m5/8).

Finally, we consider phases in which c < nω/3. In these phases, the bottleneck operation is
the fast matrix multiplication, which takes O(nω) time. The number of these phases is O(n/nω/3).
Thus, the total running time of these phases is O(n1+2ω/3). We conclude that the running time over
all phases is Õ(n1+2ω/3 +n17/12m5/8). For α ≤ 16ω/15− 2/3, the first term dominates. Otherwise,
the second term dominates.
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A Times of max flow algorithms

In Table 1, we summarize the ruining time of the polynomial algorithms for solving the max flow
problem with n nodes and m arcs. This table is essentially the same as the one provided in [16].
Those algorithms whose running times are a function of U assume integral capacities whose values
are bounded by U = Umax.

B Transferring residual capacities from paths

In this section, we show how to transfer flow from paths whose arcs are anti-abundant. In the
subsequent section, we will show how transform the flow in these arcs of the compact network into
a flow in the residual network.
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Table 1: Polynomial algorithms for the max flow problem

# Due to Year Running Time

1 Ford & Fulkerson [11] 1956 O(nmU)
2 Edmonds and Karp [10] 1972 O(nm2)
3 Dinic [9] 1970 O(n2m)
4 Karzanov [19] 1974 O(n3)
5 Cherkasky [7] 1977 O(n2

√
m)

6 Malhotra, Kumar & Maheshwari [22] 1977 O(n3)

7 Galil [14] 1980 O(n5/3m2/3)
8 Galil & Naaman [15] 1980 O(nm log2 n)
9 Sleator & Tarjan [23] 1983 O(nm log n)
10 Gabow [13] 1985 O(nm logU)
11 Goldberg & Tarjan [17] 1988 O(nm log(n2/m))
12 Ahuja & Orlin [2] 1989 O(nm+ n2 logU)

13 Ahuja, Orlin & Tarjan [3] 1989 O(nm log(n
√
U/(m+ 2))

14 King, Rao & Tarjan [20] 1992 O(nm+ n2+ε)
15 King, Rao & Tarjan [21] 1994 O(nm logm/nlogn n)

16 Cheriyan, Hagerup & Mehlhorn [6] 1996 O(n3/ log n)

17 Goldberg & Rao [16] 1998 O(min{n2/3,m1/2}m log(n2/m) logU)
18 Orlin [this paper] 2012 O(nm)
19 Orlin [this paper] 2012 O(n2/ log n) if m = O(n)

The algorithm for creating the pseudo-arcs is a variant of flow decomposition. (See, for example,
[1].) Our variant of flow decomposition transforms residual capacities on paths into residual capacity
on pseudo-arcs. In order to create the pseudo-arcs sufficiently quickly, we rely on the dynamic trees
data structure, which was developed by Sleator and Tarjan [23].

We also use dynamic trees in order to transform flows on pseudo-arcs into flows on the cor-
responding paths. The dynamic trees data structure is a remarkably efficient data structure for
carrying out flow operations and other tree-based operations on a forest. Each tree of the forest
has a root node. The root node for the tree containing node i is denoted as root(i). The node that
follows node i on the path from i to root(i) is the parent of node i and it is denoted as p(i). We let
Path(i) denote the path from node i to root(i). We consider Path(i) to include both nodes and arcs.
Associated with each non-root node i is a real number denoted as value(i), which is associated with
arc (i, p(i)). In the algorithms of this section, value(i) refers to the residual capacity of (i, p(i)), and
it will be called res-cap(i) in the procedures. In the next section, it refers to the flow on (i, p(i)),
and we will call it flow(i) in these later procedures.

Dynamic trees support various operations, each with an amortized time complexity of O(log n)
per operation. That is, over a sequence of q > n consecutive operations on the dynamic trees, the
running time is O(q log n). We next list a collection of dynamic tree operations that are sufficient
for our purposes.

(i) create-tree. This operation initializes an empty dynamic tree.

(ii) link(i, j). This operation assumes that i and j belong to two different trees. It merges the
tree containing node i with the tree containing node j, lets p(i) = j, and sets the root of
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the merged tree to root(j). It sets value(j) to r′j,p(j). (In the next section, it sets value(j) to

y′j,p(j).)

(iii) cut(j). This operation breaks the dynamic tree containing node j into two trees by deleting
the arc (j, p(j)). Node j becomes the root of its tree. It lets r′j,p(j) := value(j). (In the next

section, it lets y′j,p(j) := value(j).)

(iv) add-value(i, val). Value(i) := Value(i) + val for all nodes of Path(i).

(v) find-value(i). Returns Value(i) ;

(vi) find-root(i). Returns root(i).

(viii) find-min(i). This operation finds argmin{ value(i) : i ∈ Path(i)}.

The residual capacities in the reversal of arcs of dynamic trees are also updated appropriately,
but we omit the details. The dynamic tree data structure can efficiently support other operations
as well, but the above operations are sufficient for our purposes. Initially, the residual capacities
are denoted by the vector r. As residual capacities are transferred, we let r′ denote the modified
capacities.

We say that an arc (i, j) is admissible with respect to r′ if r′ij > 0 and at most one of the nodes
i and j are in N c. All arcs in the dynamic trees of the following algorithms will be admissible. We
say that a node i is a valid initial node if i ∈ N c and if there is some admissible arc emanating from
i. A path P is admissible with respect to r′ if (i) it has positive residual capacity, (ii) its first and
last nodes are in N c, and (iii) no other node of P is in N c. OpList is an array of all links and cuts
that are carried out by the four procedures of this section that are described below. We keep track
of the links and cuts for use in the procedure transform-flows, which is presented in the next sec-
tion. OpList(k) is k-th operation on the dynamic trees data structure, as restricted to links and cuts.

The procedure find-admissible-path determines an admissible path P starting with a valid ini-
tial node. The procedure transfer-capacity transfers capacity from path P to a pseudo-arc. The
procedure prune-tree eliminates from the dynamic tree any arc (j, k) of P if r′jk became 0. The
procedure transfer-all-capacities puts it all together.

Procedure find-admissible-path(r′, i);
01. j := find-root(i);
02. while j /∈ N c\{i} do
03. select an arc (j, k) with r′jk > 0;
04. link(j, k);
05. K := K + 1;
06. OpList(K) := (“link”, j, k);
07. j := find-root(k);

Procedure transfer-capacity(r′, i);
01. p := find-min(i);
02. δ := find-value(p);
03. j := find-root(i);
04. Ac := Ac ∪ {(i, j)};
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05. r′ij := r′ij + δ;
06. add-value(i,−δ);
· · // Keep additional records of this path for later use //
07. γK := δ;
08. vK := i;
09. wK := j;

Procedure prune-tree(r′, i);
01. p := find-min(i);
02. δ := find-value(p);
03. while δ = 0 do
04. cut(p);
05. K := K + 1;
06. OpList(K) := (“cut”, p);
07. p := find-min(i);
08. δ := find-value(p);

Procedure transfer-all-capacities(r′);
· · // initialize //
01. create an empty dynamic tree;
02. K := 0; OpList := ∅;
03. γ := 0; v := ∅; w := ∅;
04. while there is a valid initial node do
05. select a valid initial node i;
06. find-admissible-path(r′, i);
07. transfer-capacity(r′, i);
08. prune-tree(r′, i);

Incidentally, it is possible that a pseudo-arc (i, j) will end up with capacity greater than 2∆ in
Step 5 of transfer-capacity because its capacity may be increased multiple times. In principle, if there
are several different paths with the same endpoints i and j, then these paths correspond to different
pseudo-arcs, each of which is non-abundant. We do treat the paths differently in Steps 7 to 9 of
transfer-capacity, where we keep additional records of each path on which capacity is transferred.
We will use the additional information in procedure transform-flows, which is described in the next
section. Accordingly, we still refer to the pseudo-arcs of Gc as non-abundant even if the capacity
created in Step 5 is more than 2∆.

Theorem 6. The procedure transfer-all-capacities creates the non-abundant arcs of the compact
network. Its running time is O(m log n) per improvement phase.

C Transforming flows

After finding a flow xc in the compact network Gc, one needs to be able to transform xc into a flow
on the residual network from which Gc was derived. In this section, we describe the transformation.

There are two issues that need to be considered. First of all, there is no efficient way of storing
all of the paths in dynamic trees that were determined using the procedure transfer-all-capacities.
That is, there is no way of storing them so that they are available for random access. Instead,
we recreate the dynamic trees sequentially using the information stored in OpList. Second, there
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may be more than one path from node i to node j that had its residual capacity transferred. We
consider these paths one at a time in the procedure transform-flows.

Let k denote the number of elements in OpList at the beginning of some iteration of procedure
transfer-capacity. The path from i to its root is uniquely determined by the k elements in OpList.
We will denote the path as Pk. In Step 8 of transfer-capacity, vk := i and in Step 9, wk := j =
root(i). There were γk units of capacity that were transferred from Pk (Step 7 of transfer-capacity).
In order to send flow on Pk in the procedure transform-flows, we recreate the dynamic trees that
were used in transfer-all-capacities.

The following procedure transforms the flows of xc into flows in the residual network from which
Gc was created. The description is limited to non-abundant pseudo-arcs of Gc. We let y denote
the flow prior to transformation. We let y′ be the flow after transformation. In this procedure, the
dynamic trees operate on the flow vector y′ rather than on the residual capacities r′.

Procedure transform-flows(xc);
01. y := xc; y′ := 0;
02. create an empty dynamic tree;
03. K := number of elements of OpList;
04. for k = 1 to K do
05. carry out the k-th operation of OpList
06. on the dynamic tree;
07. if γk > 0, then δ := min{γk, yvk,wk

};
08. if δ > 0 then do
09. add-value(vk, δ);
– // This increases by δ the flow on the arcs Pk //
10. y′vk,wk

:= y′vk,wk
− δ;

Theorem 7. The procedure transform-flows modifies the flows in the non-abundant pseudo-arcs of
Gc and a flow in the residual network from with Gc was derived. Its running time is O(m log n)
per improvement phase.
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