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Abstract. - We study polymers attached to spherical (circular) or paraboloidal (parabolic) probes
in three (two) dimensions. Both self-avoiding and random walks are examined numerically. The
behavior of a polymer of size R0 attached to the tip of a probe with radius of curvature R, differs
qualitatively for large and small values of the ratio s = R0/R. We demonstrate that the scaled
compliance (inverse force constant) S/R2

0, and scaled mean position of the polymer end-point
〈x⊥〉/R can be expressed as a function of s. Scaled compliance is anisotropic, and quite large in
the direction parallel to the surface when R0 ∼ R. The exponent γ, characterizing the number
of polymer configurations, crosses over from a value of γ1 – characteristic of a planar boundary
– at small s to one reflecting the overall shape of the probe at large s. For a spherical probe the
crossover is to an unencumbered polymer, while for a parabolic probe we cannot rule out a new
exponent.

Recent progress in single molecule manipulation [1] en-
ables direct probing of their properties. Most techniques,
from atomic force microscopy [2] and microneedles [3], to
optical [4] and magnetic [5] tweezers, have one common
feature: the investigated molecule is attached to a probe
comparable in size or larger than the molecule itself. Ac-
curate interpretation of the experimental results should
thus account for the molecule-probe interactions. Here, we
examine some properties – end-point distribution, force-
response, and number of configurations – of simple poly-
mers attached to spherical or parabolic probes.

Many properties of long polymer are independent of
their microscopic details. For example, the mean squared
end-to-end distance of a polymer in a good solvent in-
creases with the number of monomers N as R2

0 ∼ a2N2ν ,
where a is of order of a monomer size, and the exponent
ν depends only on the space dimension d [6]. This univer-
sal behavior can be explained by the correspondence be-
tween polymers in the N → ∞ limit, and thermodynamic
systems approaching the critical point of a phase transi-
tion [6,7], and is exploited in renormalization group treat-
ments of polymers [8]. Such universality also justifies the
use of self-avoiding walks (SAWs) on lattices [9] to model
long polymers. While the majority of applications are
three-dimensional (3D), studies of two-dimensional (2D)
models are important both as a theoretical test bed, and

since the effects of self-avoidance are stronger in lower di-
mensions: e.g., ν = 3/4 in 2D while ν ≈ 0.588 in 3D. (The
latter value is closer to ν = 1/2 which appears in any
d in the absence of self-avoidance.) While self-avoiding
walks provide a simple representation of a polymer, (non-
self-avoiding) random walks (RWs) [10] may capture some
characteristics of polymers in a dense melt [6]. The total
number of configurations NN of walks on a lattice scales as
NN ∼ µNNγ−1, where µ is a model-dependent connective
constant, while the exponent γ is universal and equals to
43/32 (1.157) for 2D (3D) SAWs [11], and is 1 for RWs.
The universal value of γ can be modified by introducing
geometrical restrictions [12] that are present on all length
scales: E.g., the number of SAWs attached by one end
to an infinite repulsive wall is [13] NN,wall ∼ µNNγ1−1,
where γ1 = 61/64 (0.679) for 2D [14] (3D [15]) SAWs,
and γ1 = 1/2 for RWs [16]. Similar variations occur when
a polymer is excluded from a region shaped as a planar
wedge in 2D or 3D [14,17], or a cone in 3D [18].

Since real probes usually have rounded end-points, a
short polymer (with R0 smaller than the “rounding”) will
behave as if it is in the neighborhood of an infinite flat sur-
face. However, a longer polymer will be influenced by the
overall shape of the probe and exhibit crossover to a differ-
ent asymptotic behavior. In 3D we considered three types
of shapes: spheres, semi-infinite cylinders and paraboloids.
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Fig. 1: (Color online) Self-avoiding walks attached to a repul-
sive (a) circle as in Eq. (1) or (b) parabola as in Eq. (2) (sphere
or paraboloid in 3D). The distance a0 between the upper tip of
the probe and the origin of the SAW is equal to a single lattice
spacing a and is not visible on this scale.

We also studied 2D versions of these geometries, since in
lower dimension the effects of the probe are stronger. Fig-
ure 1 depicts two examples of 2D probes whose surfaces
are described by

(x⊥ + a0 + R)2 + x2
‖ = R2, (1)

x⊥ + Cx2
‖ = −a0. (2)

Equation (1) defines a circle of radius R, and Eq. (2) a
parabola with curvature 2C = 1/R at its tip. Note that
at length scales not exceeding R the tip of the parabola
is similar to the sphere of the same radius. We model the
polymer attached to the probe by a RW or SAW which
begins at the origin of coordinates, at a small distance a0

away from the nearest point of the probe surface. The
3D generalization of these surfaces are a sphere and a
paraboloid. The axis x⊥ is perpendicular to the surface
near the origin, while x‖ is parallel to it: In 3D x‖ spans
the 2D plane parallel to the surface, and x2

‖ in Eqs. (1),

(2) should be replaced by, say, x2
2 + x2

3. We may expect
that very long polymers will see the sphere as a point-
like obstacle weakly influencing their behavior, while the
cylinder will resemble a semi-infinite excluded line with
a larger influence. In either case no length scale should
remain visible to long polymers. Paraboloids and parabo-
las present a slightly more complicated problem: Their
width increases as the square-root of the distance from
their tip, thus presenting an additional (varying) length
scale. The presence of such a sublinearly widening bound-
ary is thought to be insufficient to modify the asymptotic
behavior: From the perspective of renormalization group,
rescaling of all dimensions by a factor of λ will increase C
by only λ1/2, i.e. make the shape approach a semi-infinite
line, and possibly behave as such. Nevertheless, we find
that the excluded shape results in interesting effects [19]
at finite N . In this paper we present some results per-
taining to circles (spheres) and parabolas (paraboloids)
in 2D (3D). Additional properties and geometries will be

described elsewhere [20].
Our numerical simulations were performed on a square

(cubic) lattice in 2D (3D) with lattice constant a. The
probe positions were also discretized and thus rough on
the same scale. (For R ≫ a we expect discretization ef-
fects to be negligible.) We further assume that a0 = a
does not play a role in the behavior of the polymer. Re-
sults were obtained using standard MC procedures: the
samples of SAWs were generated using dimerization [21]
and pivoting [22] algorithms, while RWs were either gener-
ated randomly, or the end-point distributions were found
by solving the diffusion equation with the probe surface
as an absorbing boundary.

In the absence of an external force the probability dis-
tribution of the end-to-end vector is the ratio between the
number of spatial configurations NN (~r) terminating at the
position ~r and the total number of different configurations
NN of the walk: P (~r) = NN (~r)/NN . For the probes de-
picted in Fig. 1 the mean position 〈x⊥〉 of the endpoint of
the polymer will be along the x⊥ axis. When the lattice
constant is significantly shorter than all other scales of the
problem, the probability density P (~r)/ad of the end-point
position no longer explicitly depends on a and N , and
only depends on the polymer size R0 and the characteristic
length R of the probe [6]. Consequently, 〈x⊥〉 which has
dimensions of length must behave as RΦ(R0/R), where
Φ is a dimensionless function of the variable s = R0/R.
(This argument applies to both spheres and paraboloids.
However, the function Φ will be different in each case.)
Figure 2 depicts Φ(s) calculated for SAWs near a sphere
and a paraboloid in 3D. The results for several values of
R and a large range of N nicely collapse, confirming our
scaling assumption. For s ≪ 1 the polymer does not “feel”
the curvature of the surface, and the result should be in-
dependent of R. This requires that Φ(s) ∼ s for small
s. Indeed, the insets depict the expected linear small-s
behavior. Moreover, the slopes obtained for the sphere
and parabola coincide, because in this range they are in-
dependent of the shape of the probe. (The factor 2 in the
relation C = 1/2R does is not influence these graphs be-
cause both axes include C as a prefactor.) Similar small-s
behavior was obtained for SAWs in 2D and for RWs in
both 2D and 3D.

For large s, the behavior of Φ(s) depends on the space
dimension, and the type of walk used to model the poly-
mer, as well as on the type of the probe. The behavior
near a sphere is the simplest: For SAWs the scaling func-
tion in top Fig. 2 approaches a constant, i.e. 〈x⊥〉 stops
increasing. We find a similar behavior for a RW [20]. Both
cases are consistent with the fact that the mean distance
between the origin and the endpoint of a SAW or RW that
starts near an excluded point in 3D is finite [23]. The sit-
uation is different in 2D: We find [20] that the presence
of the excluded circle causes a logarithmic divergence of
Φ for RWs, similar to the behavior in the presence of an
excluded point [23, 24] (since the RW keeps returning to
the origin). The behavior of 2D SAWs in the presence of
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Fig. 2: (Color online) The scaling function for the mean end-
point position of 3D SAW with N ranging from 16 to 16384 for
a sphere (top panel) with R from 12 to 192 lattice constants (see
legend); and a paraboloid (bottom panel) with C between 0.01
and 0.08 inverse lattice constants (see legend). The insets show
the behavior for small values of (top) aNν/R and (bottom)
CaNν . Error bars are smaller than the size of the symbols.

an excluded point is less clear, and arguments for both
diverging Φ [25, 26] and convergence to a constant [27]
have been advanced. Our results [20] were unable to dis-
tinguish between convergence to a constant and a slower-
than-logarithmic divergence.

The behavior of a polymer near a parabola or paraboloid
deserves more careful examination. Even the presence of a
semi-infinite excluded line has severe effects on the mean
position of the end-point. In 2D that point moves away
from the starting point as aNν for both RWs and SAWs.
Clearly 〈x⊥〉 ∼ R0 (i.e. Φ(s) ∼ s) is as far away as the
end-point is likely to go and therefore, unsurprisingly, we
get the same result for a parabola [20]. The separation of
the end-point in 3D is more striking: For the semi-infinite
line the mean position of the end-point of a RW moves
away a distance aN1/2/ lnN [23]. This result is barely
distinguishable from the maximal conceivable separation

aN1/2 and our results for the parabolic probe closely fol-
low this prediction. More interestingly, the mean posi-
tion of an end-point of SAWs attached to the tip of a
semi-infinite line in 3D is reported to increase as aNσ

with σ ≈ 0.4 [23, 28, 29]. If we assume that this result
is also valid for a paraboloid we must have Φ(s) ∼ sα,
with α = σ/ν. The high-s end of the data depicted in the
Fig. 2(b) can be fitted with α ≈ 0.71 which is close to the
value 0.68 obtained in the simulations of polymers near a
semi-infinite line [23].

Force-displacement characteristics are quite relevant to
experiments. The necessary information to obtain such
relations is contained in the details of the end-point prob-
ability distribution P (~r). This distribution plays the role
of the Boltzmann weight in this ensemble, since the energy
is constant and each configuration has the same probabil-
ity. When a force ~f is applied to the end-point of the
polymer, the probability distribution is shifted by a corre-
sponding Boltzmann weight, such that the mean position
of the end-point of the walk is obtained by

〈~r〉~f =

∫

~r P (~r)e
~f ·~r/kBT dd~r

∫

P (~r)e~f ·~r/kBT dd~r
. (3)

The probability P (~r) in the presence of a repulsive probe
is not isotropic, and therefore the position of the end-point
is not necessarily directed along the force. However, since
the system is symmetric with respect to x⊥, by expanding
Eq. (3) to the first order in ~f · ~r/kBT , we find

〈~r〉~f = (〈x⊥〉 + S⊥f⊥)x̂⊥ + S‖f‖x̂‖ , (4)

where 〈〉 without the subscript ~f denotes the averages in
the absence of external force, and the compliances S⊥,‖

(inverse force constants) are given by the variance of the
end-point position with zero force, i.e. S⊥ = var(x⊥)/kBT
and S‖ = var(x‖)/kBT . Such linear response is only valid
for small forces, i.e. when f ≪ kBT/R0. This require-
ment corresponds to force-induced displacements that are
smaller than R0. The large force regime is not considered
in this work, but may be treatable by using the concept
of blobs [6]. Should the experimental setup make it nec-
essary, these results could be extended to probes attached
to both ends of the polymer.

Since the variance of the position of end-point has
dimensions of squared length, it can be expressed as
R2

0Φ⊥,‖(R0/R). Consequently, the ratio between the vari-
ance and R2

0 should only depend on s = R0/R, and not
separately on R or N . The scaling functions Φ⊥,‖(s) will
be different for spheres and paraboloids and will depend
on space dimension. Figure 3 demonstrates nice collapse
of data obtained for different values of R or C and a large
range of N . For small s we note that all the curves ap-
proach a constant indicating that, as expected, the com-
pliance is proportional to R2

0. There are no differences be-
tween the spherical and paraboloidal probes in this limit
since the polymer behaves as if it is near an infinite plane.
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Fig. 3: (Color online) The scaling function for the linear re-
sponse to force of a three-dimensional SAW near a sphere (top
panel) with R from 12 to 192 lattice constants (see legend)
and near a paraboloid (bottom panel) with C between 0.01
and 0.08 inverse lattice constants (see legend), for N ranging
from 16 to 16384. Open (full) symbols indicate response to a
perpendicular (lateral) force. Error bars are smaller than the
size of the symbols.

We note a significant difference between the lateral and
perpendicular compliances - the former is almost thrice
the latter, i.e. it is easier to displace the end-point of
the polymer parallel to the plane. For large values of
s the differences between the two compliances disappear
in the case of a sphere, since it no longer influences the
polymer. However, quantitative differences persist for the
paraboloid, since the presence of the probe is strongly felt
for any R0 as already noted in measurements of the mean
position of the end-point.

Both for spheres and paraboloids, Φ interpolates be-
tween the expected small-s and the very-large-s limits.
Less expected is the non-monotonic behavior of Φ‖(s): the
function has a maximum for s of order unity, i.e. when
the size of the polymer becomes comparable with the typ-
ical length-scale of the probe. This feature persists for

x‖
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−40

−20
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Fig. 4: Probability distribution of the endpoint of a 3D SAW
with N = 512 near a sphere of radius R = 12a. The contour
plot shows a cut through x3 = 0. Darker color indicates higher
probability density. Contour lines are equally spaced on linear
scale. Raggedness of the lines is a consequence of discreteness
of the lattice.

SAWs in 2D and is equally pronounced for RWs both in
2D and in 3D [20]. It should be noted that for any value of
R0, the variance of the position of the end point is of the
order of R2

0. That variance (and consequently, the compli-
ance constant) remains a monotonically increasing func-
tion of R0. However, the prefactor for lateral fluctuations
becomes somewhat larger when R0 is of the same order
as the probe. To understand this effect we examine the
probability density of the end-point of a SAW attached to
a sphere. Figure 4 depicts a cut through the three dimen-
sional probability for x3 = 0. This contour plot presents
a case when the size of the polymer is comparable with
the radius of the sphere. The strong distortion caused by
the sphere (the probability density appears to “hug” the
sphere) enhances the probabilities at large values of |x‖|
at the expense of areas close to x‖ = 0, partly explaining
the larger variance.

Interesting insights into the statistical mechanics of
polymers can be obtained from a direct study of their free
energy, which is proportional to the logarithm of the par-
tition function Z. The configuration part of Z is simply
the number of possible states of the polymer in the pres-
ence of the probe; its dependence on N exhibits interest-
ing crossovers. We will use the sphere to demonstrate the
general trends. While the exponentially increasing part of
the number of states (µN ) is unaffected by the presence
of the probes, the power law dependence of the number of
states on N is modified. We know that for R0 ≪ R the
sphere’s surface is indistinguishable from an infinite plane,
and therefore NN,sphere ∼ µNNγ1−1, as expected for a
walk near a wall [14–16]. Consequently, NN,sphere/NN ∼
Nγ1−γ . On the other hand, when R0 ≫ R, the behavior is
expected to match that of a walk near an excluded point.
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Since the ratio between NN and the number of walks with
excluded point remains finite, we expect NN,sphere/NN to
approach a constant. The crossover between two behav-
iors appears when R0 ∼ R, and an appropriate scaling
assumption is

NN,sphere

NN
=

(

R

a

)

γ1−γ

ν

Ψ

(

aNν

R

)

. (5)

In the limit of short walks we expect Ψ(s → 0) ∼
s(γ1−γ)/ν, eliminating the dependence on R, while for
s → ∞ the function should approach a constant. We
verified this scaling behavior numerically for both SAWs
and RWs in 3D and 2D, by examining spheres (circles)
with several radii and a wide range of N . For small s
we obtained power law dependencies differing only by few
percent from the known values. E.g., for 3D SAWs near a
sphere we found (γ1 − γ)/ν ≈ −0.81, while the expected
value is -0.78 [6, 11, 15]. We obtained reasonable data
collapse for all cases [20] confirming the scaling form in
Eq. (5). (The 2D case of RWs is slightly different since
the fraction of walks not returning to the vicinity of the
origin decreases as 1/ lnN , thus introducing a slight cor-
rection.)

For a semi-infinite cylinder or rectangle of width 2W
one can modify Eq. (5) to read

NN,W

NN
=

(

W

a

)

γ1−γ

ν

Ψ

(

aNν

W

)

. (6)

As in the case is a sphere, for small s we expect Ψ ∼
s(γ1−γ)/ν, eliminating the dependence on W . In the limit
of large N we expect the behavior near a semi-infinite line.
The latter has been extensively studied: In general, the
number of states of a walk attached to the tip of a semi-
infinite line increases as µNNγline−1. In 3D the presence
of the semi-infinite line does not influence the number of
states, i.e. γline for SAWs coincides with γ of unrestricted
walks [29]. (For RWs there is a logarithmic correction
[23].) In 2D the presence of the line has a more significant
effect and γline = 76/64 for SAWs [14,17], and γline = 3/4
for a RW [23]. Consequently, for a rectangular/cylindrical
probe at large s we must assume that Ψ ∼ s(γline−γ)/ν,
leading to the large-N dependence

NN,W

NN
≈

(

W

a

)

γ1−γline
ν

Nγline−γ . (7)

Our numerical results confirmed this type of behavior for
RWs and SAWs, both for rectangles in 2D and for cylin-
ders in 3D [20].

The number of states of a polymer near a parabola
(paraboloid) presents a more challenging problem. At
length scales shorter than the curvature R = 1/2C of
the tip we find results indistinguishable from the behavior
near a sphere. However, for large N curvature is no longer
the relevant length scale since the parabola keeps widen-
ing. At every length scale we may think of the parabola

Table 1: Exponent γpar near a parabolic probe: numerical es-
timates vs. lower and upper bounds

2D parabola 3D paraboloid

num. lower upper num. lower upper
RW 0.70 0.63 0.75 0.82 0.75 1.00
SAW 1.14 1.07 1.19 0.99 0.92 1.16

(paraboloid) as bounded from inside by a cylinder of
width W = a and from outside by a cylinder of width
W =

√

aNν/C. These two geometries provide upper and
lower bounds on the number of states of the polymer near
a parabola (paraboloid) NN,par. If NN,par/NN ∼ Nγpar−γ

then (γline + γ1)/2 ≤ γpar ≤ γline. Our numerical stud-
ies of NN,par produced rather low quality data collapse,
and Table 1 presents our estimates for the exponent γpar,
for RW/SAW in 2D/3D. The few percent statistical errors
of each of those estimates is probably smaller than the
possible systematic error. All our results were within the
exact bound on the exponent also presented in Table 1.
(The bounds were calculated from the values of γ that
are either known exactly or with high numerical accuracy,
and therefore the uncertainties are smaller than the last
included digit.) Our range of lengths was insufficient to
ascertain if these are true power laws, or crossover effects.

In summary, we have demonstrated the strong influ-
ence of repulsive probes on the properties of a polymer.
Our results regarding the force constants demonstrate sig-
nificant differences between lateral and perpendicular re-
sponses, and an unexpected non-monotonic dependence
of the coefficient of the former. In single molecule ex-
periments the applied forces range between 0.1pN and
1000pN, and the weak deformation regime is usually at
the low end of this range. Most of the measurements in-
volve perpendicular forces, although measurements of lat-
eral forces also exist [30]. As the experimental techniques
become more refined our results will become more rele-
vant, making it worthwhile to examine additional geome-
tries. Further study is needed to understand the behavior
of the number of states near a parabola (or paraboloid)
to distinguish between possible crossover effects and new
exponents.
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