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Abstract: We develop a general framework of evaluating the gain
coefficient of Stimulated Brillouin Scattering (SBS) in optical waveguides
via the overlap integral between optical and elastic eigen-modes. We show
that spatial symmetry of the optical force dictates the selection rules of the
excitable elastic modes. By applying this method to a rectangular silicon
waveguide, we demonstrate the spatial distributions of optical force and
elastic eigen-modes jointly determine the magnitude and scaling of SBS
gain coefficient in both forward and backward SBS processes. We further
apply this method to inter-modal SBS process, and demonstrate that the
coupling between distinct optical modes are necessary to excite elastic
modes with all possible symmetries.
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1. Introduction

Stimulated Brillouin Scattering (SBS) is a third-order nonlinear process with a broad range
of implications in efficient phonon generation [1, 2], optical frequency conversion [3–5], slow
light [6–9], and signal processing [10,11]. The SBS process, measured by the coupling between
optical waves and elastic waves, is recently discovered to be enhanced by orders of magnitude
in nanoscale optical waveguides [12]. Since the transverse dimensions of a nanoscale waveg-
uide are close to or smaller than the wavelengths of optical and elastic waves, both waves are
strongly confined as discrete sets of eigenmodes. Particularly strong SBS occurs, when two
optical eigenmodes resonantly couple to an elastic eigenmode [13, 14]. In general, the interfer-
ence of pump and Stokes waves generates a time-varying and spatially-dependent optical force.
On resonance, the optical force is simultaneously frequency-matched and phase-matched to an
elastic mode, and results in strong mechanical vibration in the waveguide. The associated de-
formation is unusually large for nanoscale waveguides, because of the contribution from the
surface forces and the large surface area. Such deformation in turn leads to highly efficient
scattering between the pump and Stokes photons. However, because both transverse and lon-
gitudinal waves exist in elastic waves, together with the depolarization of elastic waves at the
material boundaries [15], a large number of elastic eigenmodes with disparate spatial profiles
can be involved. It is therefore crucial to develop a theoretical framework that links the excita-
tion of individual elastic modes with the properties of pump and Stokes waves. On one hand,
this framework elucidates the contributions from individual elastic modes towards the overall
SBS nonlinearity, thereby pointing towards designing traveling-wave structures that deliber-
ately enhance or suppress SBS nonlinearity. On the other hand, this knowledge also enables
one to devise optical fields that target the generation of specific phonon modes, in the context
of efficiently transducing coherent signals between optical and acoustic domains.

Generally, the strength of SBS nonlinearity is characterized by the SBS gain. This coefficient,
in the past, has been theoretically derived from various forms of overlap integral between optical
waves and elastic waves [4, 13, 14, 16–21]. While accurate for waveguides larger than a few
microns, these treatments underestimate the SBS gain by orders of magnitude for nanoscale
waveguides [12], for a couple of reasons. First, conventional treatments are based on nonlinear
polarization current, and the associated electrostriction body forces. The calculated SBS gain
fails to capture boundary nonlinearities such as electrostriction pressure and radiation pressure
at the waveguide surfaces. The latter two nonlinearities become significant, and in some cases,
dominate in nanoscale waveguides, where the relative surface area is much larger than that
of the microscale waveguides. Second, most previous studies assume the optical modes are
linearly polarized, or simplify the elastic modes with a scalar density wave. For nanoscale
waveguides, the vectorial nature and the nontrivial spatial distribution of both optical and elastic
eigenmodes have to be fully considered.

In this article, we present a general method of calculating SBS gains via the overlap integral
between optical forces and elastic eigen-modes. Within this formalism, all three types of optical
forces are taken into account: the bulk and boundary nonlinearities are formulated as bulk and
boundary integrals over the waveguide cross-section. In addition, both the optical and elastic
modes are treated as vector fields, allowing for the most general forms of dielectric and elastic
tensors, both forward and backward launching conditions, as well as intra-modal and inter-
modal couplings. Armed with this formalism, we study the SBS process of a rectangular silicon
waveguide. We show that all the optical forces in the forward SBS configuration are transverse.
The constructive combination of electrostriction force and radiation pressure occurs for certain
elastic modes with matching symmetries, and results in large forward SBS gains. In contrast,
the optical forces in the backward SBS configuration are largely longitudinal, and the maximal
backward SBS gain among all the elastic modes approaches the gain coefficient predicted by



conventional SBS theory. We further apply this formalism to inter-modal SBS: by coupling
optical modes with distinct spatial symmetries, optical forces with all possible symmetries can
be generated, which offers a great deal of flexibility in producing elastic modes with a wide
range of spatial symmetries.

2. Calculating the SBS gain via overlap integral

We start with a general framework of calculating the SBS gain from the field profiles of both
the optical and elastic eigen-modes of a waveguide. The axial direction of the axially invariant
waveguide is designated as the x direction. In a typical SBS process, a pump wave Epei(kpx−ωpt)

and a Stokes wave Esei(ksx−ωst) generate dynamic optical forces that vary in space with a
wavevector q = kp− ks, and oscillate in time at the beat frequency Ω = ωp−ωs.

Depending on the launching conditions, SBS can be categorized into forward SBS (FSBS)
and backward SBS (BSBS). In FSBS, the pump and Stokes waves are launched in the same
direction, generating axially-invariant optical forces, which excite standing-wave elastic modes
[4]. In BSBS, the pump and Stokes waves propagate along opposite directions, generating
axially-varying optical forces, which excite traveling-wave elastic modes. Besides launching
the pump and Stokes waves into the same spatial optical mode of the waveguide, SBS can also
occur with the pump and Stokes waves belonging to disparate spatial modes, for example, by
launching into modes with different polarizations [20]. Such inter-modal SBS are important
for optical signal isolation [19–22] and Brillouin cooling of mechanical devices [23]. These
different launching conditions will be individually addressed in the later part of the article.

The optical forces that mediate SBS includes the well-known electrostriction force [23, 24],
and radiation pressure whose contribution is only recently recognized [12]. Electrostriction is
an intrinsic material nonlinearity, which arises from the tendency of materials to become com-
pressed in regions of high optical intensity. Conventionally, only the electrostriction in the form
of a body force is considered as the dominant component [13,14]. However, the discontinuities
in both optical intensities and photoelastic constants generates electrostriction pressure on ma-
terial boundaries, abundant in nanostructures. Radiation pressure is another boundary nonlin-
earity, arising from the momentum exchange of light with the material boundaries with discon-
tinuous dielectric constant [25, 26]. Radiation pressure is also radically enhanced in nanoscale
structures, exemplified in a wide variety of optomechanics applications [27–32]. In this formal-
ism, by considering the superposition of all three forms of optical forces, not only can the SBS
gain be more accurately evaluated for nanoscale waveguides, one can also take advantage of
the coherent interference between these three components, to gain new degree of freedoms of
tailoring SBS process.

This total optical force, i. e. the coherent superposition of all three components mentioned
above, can excite mechanical vibrations which enables the parametric conversion between
pump and Stokes waves. This process can be describe by the following relation [13]:

dPs

dx
= gPpPs−αsPs (1)

Here, Pp and Ps are the guided power of the pump and Stokes waves, and g is the SBS gain.
Through particle flux conservation, SBS gain is given by the following formula [12]:

g(Ω) =
ωs

2ΩPpPs
Re
〈

f,
du
dt

〉
(2)

where f is the total optical force generated by pump and Stokes waves, and u describes the
elastic deformation of the waveguide induced by f. The inner product between two vector fields



is defined as the overlap integral over the waveguide cross-section:

〈A,B〉,
∫

A∗ ·B dydz (3)

The optical power of a waveguide is given by P = vg〈E,εE〉/2, where vg is the optical group
velocity. Therefore,

g(Ω) =
2ωs

vgpvgs

Im〈f,u〉
〈Ep,εEp〉〈Es,εEs〉

(4)

To further simply Eq. (4), we consider the equation governing the elastic response ue−iΩt

under external forces fe−iΩt . We begin with the ideal case, neglecting the mechanical loss [15]:

−ρΩ
2ui =

∂

∂x j
ci jkl

∂ul

∂xk
+ fi (5)

Here ρ is the mass density, and ci jkl is the elastic tensor. ci jkl has two important properties: it
is symmetric with respect to the first two and last two indices (ci jkl = c jikl , ci jlk = ci jkl); the
interchange of the first two indices and the last two does not affect the value of ci jkl : ckli j = ci jkl
[15]. In the absence of a driving force f, the equation above becomes the eigen-equation of
elastic waves. Using the symmetry properties of ci jkl , we can show that the operator in the
left hand side of the eigen-equation is Hermitian. Therefore, the eigen-mode ume−iΩmt satisfies
orthogonality condition:

〈um,ρun〉= δmn〈um,ρum〉 (6)

When f is present, u can be decomposed in terms of eigen-modes u = ∑m bmum. Using the
orthogonality condition, we have:

bm =
〈um, f〉
〈um,ρum〉

1
Ω2

m−Ω2 (7)

We now consider the more general and practical cases, where mechanical loss is present. The
commonly encountered mechanical loss mechanisms are air damping, thermoelastic dissipa-
tion, and clamping losses [33]. The first-order effect of loss can be captured by changing Ωm
to a complex value, Ωm− iΓm/2. Assuming the mechanical quality factor Qm = Ωm/Γm is well
above 1, we have,

bm =
〈um, f〉
〈um,ρum〉

1
ΩmΓm

Γm/2
Ωm−Ω− iΓm/2

(8)

Inserting Eq. (8) into Eq. (4), we can see that the total SBS gain is the sum of SBS gains of
individual elastic modes.

g(Ω) = ∑
m

Gm
(Γm/2)2

(Ω−Ωm)2 +(Γm/2)2 (9)

The SBS gain of a single elastic mode has a Lorentian shape and a peak value:

Gm =
2ω

ΩmΓmvgpvgs

|〈f,um〉|2

〈Ep,εEp〉〈Es,εEs〉〈um,ρum〉
(10)

where we have used the fact that Ω� ωp,ωs and ωp ≈ ωs = ω .
Equation (10) provides a general method to calculate the SBS gain of a waveguide with arbi-

trary cross-section. For example, with the finite element method, one can numerically calculate



the pump and Stokes optical modes at a given ω and the elastic modes at the phase-matching
wavevector q = kp− ks. The SBS of each elastic mode can then be calculated by taking the
overlap integral between the derived optical forces and the elastic displacement. Here, body
forces are integrated over the waveguide cross-section, while pressures are integrated over the
waveguide boundaries. Overall, Eq. (10) shows that the SBS gain is determined by the fre-
quency ratio, the mechanical loss factor, the optical group velocities, and the overlap integral
between optical forces and elastic eigen-modes. In addition, Eq. (10) provides a convenient way
to separate the effects of various optical forces. Specifically, the overlap integral is the linear
sum of all optical forces:

〈f,um〉= ∑
n
〈fn,um〉 (11)

The amplitudes of individual overlap integrals determine the maximal potential contribution
from each form of optical forces, while their relative phases produce the interference effect.

A key step of applying Eq. (10) is to calculate optical forces from pump and Stokes waves.
Electrostriction forces are derived from electrostriction tensor. The instantaneous electrostric-
tion tensor is given by:

σi j =−
1
2

ε0n4 pi jklEkEl (12)

where n is the refractive index, and pi jkl is the photoelastic tensor [34]. In a waveguide sys-
tem, the total electric field is given by (Epei(kpx−ωpt) + Esei(ksx−ωst))/2 + c.c. Inserting this
expression to Eq. (12), and filtering out the components with frequency Ω, we arrive at the
time-harmonic electrostriction tensor σi jei(qx−Ωt):

σi j =−
1
4

ε0n4 pi jkl(EpkE∗sl +EplE∗sk) (13)

Since common materials used in integrated photonics have either cubic crystalline lattice (e.g.
silicon) or are isotropic (e.g. silica glass), and most waveguide structures are fabricated to be
aligned with the principal axes of the material, we consider the crystal structure of the waveg-
uide material to be symmetric with respect to planes x = 0, y = 0, and z = 0. Therefore, pi jkl is
zero if it contains odd number of a certain component. In the contracted notation, Eq. (13) can
be written as:

σxx
σyy
σzz
σyz
σxz
σxy

=−1
2

ε0n4


p11 p12 p13
p12 p22 p23
p13 p23 p33

p44
p55

p66




EpxE∗sx
EpyE∗sy
EpzE∗sz

EpyE∗sz +EpzE∗sy
EpxE∗sz +EpzE∗sx
EpxE∗sy +EpyE∗sx

 (14)

Electrostriction force is given by the divergence of electrostriction tensor. In a system consisting
of domains of homogeneous materials, electrostriction forces can exist inside each material
(electrostriction body force) and on the interfaces (electrostriction pressure). Electrostriction
body force is expressed as fESei(qx−Ωt):

f ES
x = −iqσxx−∂yσxy−∂zσxz

f ES
y = −iqσxy−∂yσyy−∂zσyz (15)

f ES
z = −iqσxz−∂yσzy−∂zσzz

Electrostriction pressure on the interface between material 1 and 2 is given by FESei(qx−Ωt)



(normal vector n points from 1 to 2):

FES
i = (σ1i j−σ2i j)n j (16)

With a particular choice of phase, an optical mode of the waveguide, Eei(kx−ωt), can be ex-
pressed as an imaginary-valued Ex and real-valued Ey, Ez. From Eq. (14), we can see that σxx,
σyy, σzz, and σyz are real while σxy and σxz are imaginary. From Eq. (15) and Eq. (16), we can
also see that for both electrostriction body force and electrostriction pressure, the transverse
component is real while the longitudinal component is imaginary.

Radiation pressure is derived from Maxwell Stress Tensor (MST). For a dielectric system
(µ = 1) without free charges (ρ = 0,J = 0), radiation pressure is localized where the gradient
of ε is nonzero [35, 36]. For a system consisting of homogeneous materials, radiation pressure
only exists on the interfaces. The electric part of instantaneous MST is:

Ti j = ε0ε(EiE j−
1
2

δi jE2) (17)

The instantaneous pressure on the interface between material 1 and 2 is:

FRP
i = (T2i j−T1i j)n j (18)

By decomposing the electric field into its normal and tangential components with respect to the
dielectric interface E = Enn+Et t, and using the boundary condition ε1E1n = ε2E2n = Dn and
E1t = E2t = Et , we can show that:

FRP =−1
2

ε0E2
t (ε2− ε1)n+

1
2

ε
−1
0 D2

n(ε
−1
2 − ε

−1
1 )n (19)

Inserting the total electric field (Epei(kpx−ωpt)+Esei(ksx−ωst))/2+ c.c to the expression above,
and filtering out the components with frequency Ω, we can get the time-harmonic radiation
pressure FRPei(qx−Ωt):

FRP =−1
2

ε0EptE∗st(ε2− ε1)n+
1
2

ε
−1
0 DpnD∗sn(ε

−1
2 − ε

−1
1 )n (20)

Equation (20) shows that radiation pressure is always in the normal direction. For axially in-
variant waveguide, this also means radiation pressure is transverse and real.

Combining Eq. (10) with the calculation of optical forces, we are ready to numerically
explore the SBS nonlinearity of nanoscale waveguides. Before that, it is instructive to com-
pare Eq. (10) with the conventional BSBS gain [14]. We can show that Eq. (10) converges to
the conventional BSBS gain under the plane-wave approximation for both optical and elas-
tic modes. Specifically, consider the coupling between two counter propagating optical plane-
waves through an elastic plane-wave. The optical plane-wave is linearly polarized in y direction.
The elastic plane-wave is purely longitudinal traveling at velocity VL. Under this setup, nonzero
optical forces include the longitudinal electrostriction body force, and the transverse compo-
nents of electrostriction pressure and radiation pressure. Only the longitudinal electrostriction
body force contributes nonzero overlap integral:

f ES
x =−iqσxx =

1
2

iqε0n4 p12E2
y (21)



Inserting this expression into Eq. (10), and using the fact that Ω = qVL and q = 2k, we arrive at:

G0 =
ω2n7 p2

12
c3ρVLΓ

1
A

(22)

where A is the cross-sectional area of the waveguide. This is exactly the conventional BSBS
gain. For waveguides with transverse dimension much greater than the free-space wavelength
of light, the plane-wave approximation is valid, and Eq. (10) converges to G0. For nanoscale
waveguides, Eq. (10) can deviate from G0 significantly because of the vectorial nature of optical
and elastic modes, nontrivial mode profiles, as well as the enhanced boundary nonlinearities.

3. Rectangular silicon waveguide: intra-modal coupling

Intra-modal process is concerned with the configuration where the pump and the Stokes waves
are launched into the same spatial optical mode of the waveguide. In this section, we apply the
general formalism to study the intra-modal SBS process of a silicon waveguide suspended in
air. Silicon waveguides are of particular interest, because they can be fabricated from standard
SOI platforms. A suspended silicon waveguide can provide tight optical confinement through
the large refractive index contrast and nearly perfect elastic confinement through the dramatic
impedance mismatch with air. In addition, since radiation pressure is proportional to the differ-
ence of dielectric constants across waveguide boundaries and electrostriction force is quadratic
over refractive index, both kinds of optical forces are significantly enhanced in high index con-
trast structures such as silicon waveguides. Here, we consider a silicon waveguide with a rectan-
gular cross-section of a by 0.9a (Fig. 1(a) insert). For silicon, we use refractive index n = 3.5,
Young’s modulus E = 170× 109 Pa, Poisson’s ratio ν = 0.28, and density ρ = 2329kg/m2.
In addition, we assume that the [100], [010], and [001] symmetry direction of this crystalline
silicon coincide with the x, y, and z axis respectively. Under this orientation, the photo-elastic
tensor pi jkl in the contracted notation is [p11, p12, p44] = [−0.09,0.017,−0.051] [37]. The struc-
ture has two symmetry planes y = 0 and z = 0. Both optical modes and elastic modes are either
even or odd with respect to these planes.

We categorize the fundamental optical modes in the two polarizations as Ey11 and Ez11 (Fig.
1(a)). Ey11 is even with respect to plane z= 0 and odd with respect to plane y= 0 with a large Ey
component. Ez11 has the opposite symmetries and slightly higher frequencies. We normalize the
angular frequency ω in unit of 2πc/a. Throughout the study, we assume the pump wavelength
at 1.55µm. Therefore, a different normalized frequency along the optical dispersion relation
implies a different a. For intra-modal coupling, we assume that pump and Stokes waves come
from Ey11. Since Ω/ω ≈VL/c is on the order of 10−4, pump and Stokes waves approximately
corresponds to the same waveguide mode Eei(kx−ωt). The induced optical force in intra-modal
coupling is always symmetric with respect to planes y= 0 and z= 0. Therefore, we only need to
consider elastic modes with the same spatial symmetry (Fig. 2(b)). Using a finite element solver,
we calculate the eigen-mode of the suspended waveguide with free boundary conditions (E-
modes). To illustrate the hybrid nature of E-modes, we also calculate purely longitudinal modes
(P-modes) and purely transverse modes (S-modes) by forcing uy,z = 0 or ux = 0 throughout
the waveguide. The dispersion relations indicates that E-modes are either P-mode or S-mode at
q= 0, but become a hybridized wave with both longitudinal and transverse components at q 6= 0.
At q = 0, the mirror reflection symmetry with respect to plane x = 0 is conserved . Odd (even)
modes with respect to plane x = 0 are purely longitudinal (transverse), separating E-modes into
P-modes and S-modes. At nonzero q, silicon-air boundaries hybridize the P-modes and the S-
modes, resulting in E-modes with both longitudinal and transverse movement. Similar to the
optical mode, we can choose a proper phase so that ux is imaginary while uy,z are real. Another



observation is that the dispersion relation of mode E1 quickly deviates from that of mode P1
which is the longitudinal plane wave. The modal profiles at different q indicates that mode E1
quickly evolves from a longitudinal plane wave to a surface-vibrating wave as q increases (Fig.
1(d)).

3.1. Forward SBS

In traditional optical fibers, FSBS process is extremely weak, due to the excessively long wave-
length and the vanishing frequency of the relevant elastic modes. However, waveguides with
nanoscale feature sizes can efficiently produce FSBS, for example, in photonic crystal fibers [4]
and suspended silicon waveguides [12]. The frequency of the excitable elastic modes in FSBS
is pinned by the structure, independent of the incident optical frequency. Both structures pro-
vide strong transverse phonon confinement, and these optical-phonon-like elastic modes are
automatically phase-matched to higher orders of Stokes and anti-Stokes optical waves. The
cascaded generation of such elastic modes through an optical frequency comb can enable effi-
cient phonon generation with large quantum efficiency [4].

In FSBS, Ep = Es = E and q = 0. Equation (14) can be simplified to:
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Apparently, σxy = σxz = 0. From Eq. (15) and Eq. (16), we conclude that f ES
x = FES

x = 0.
So both electrostriction force and radiation pressure in FSBS are transverse. We pick an op-
erating point at ω = 0.203(2πc/a), k = 0.75(π/a) with a = 315nm, and compute the force
distribution (Fig. 2(a)). Electrostriction body force is largely in the y direction, because Ey is
the dominant component in electric field and |p11| is about five times larger than |p12|. Elec-
trostriction pressure points inwards, and radiation pressure points outwards. Radiation pressure
is about five times greater than electrostriction pressure. The transverse nature of optical force
combined with the fact that elastic modes are either P-modes or S-modes at q = 0 indicates that
only S-modes have nonzero FSBS gains. The corresponding FSBS gains are calculated using
Qm = 1000 for all the elastic modes (Fig. 2(b)). As expected, only S-modes E2, E3, and E5
have nonzero gains. Mode E2 has the largest gain of 1.72× 104m-1W-1, which comes from a
constructive combination of electrostriction effect (0.42× 104m-1W-1) and radiation pressure
effect (0.44×104m-1W-1). Mode E5 has a total gain of 0.51×104m-1W-1, which mainly comes
from radiation pressure (0.36×104m-1W-1).

To illustrate the interplay between electrostriction and radiation pressure, we scale the waveg-
uide dimension a from 250nm to 2.5µm by raising the operating point in the optical dispersion
relation from 0.16(2πc/a) to 1.61(2πc/a), and compute the corresponding FSBS gains for
mode E2 and E5 (Fig. 2(c)). For both E2 and E5, the electrostriction-only FSBS gain scales
as 1/a2 for large a. This can be understood by a detailed analysis of Eq. (10). Under nor-
malization condition 〈E,εE〉 = 1, the electrostriction tensor scales as 1/a2. Since electrostric-
tion force is essentially the divergence of electrostriction tensor, the total electrostriction force
that apply to the right half of the waveguide scales as 1/a3. Under normalization condition
〈um,ρum〉 = 1, um scales as 1/a. So the overlap integral scales as 1/a2. Under a fixed quality
factor, the electrostriction-only FSBS gain scales as 1/a2.

Unlike the electrostriction contributions that run parallel in different modes, the radiation-



pressure-only FSBS gain scales as 1/a6 for mode E5 and 1/a8 for mode E2. This can also be
understood from a breakdown of Eq. (10). Given the input power, the sum of average radiation
pressure on the horizontal and vertical boundaries of the rectangular waveguide is proportional
to (ng−np)/A, where ng (np) is the group (phase) index, and A is the waveguide cross-section
[26]. When the waveguide scales up, ng− np shrinks as 1/A. As a result, the sum of average
radiation pressure scales as 1/a4, and the radiation-pressure-only FSBS gain should scale as
1/a6. For mode E2, however, radiation pressures on the horizontal and vertical boundaries
generate overlap integrals with opposite signs. It is the difference rather than the sum between
the horizontal and vertical radiation pressures that determines the scaling of the gain coefficient.
A closer examination reveals that although the overlap integral from radiation pressure on the
horizontal/vertical boundaries scales as 1/a4, the net overlap integral scales as 1/a5, resulting
in the 1/a8 scaling of the radiation-pressure-only FSBS gain for mode E2.

3.2. Backward SBS

In traditional optical fibers, BSBS process is the qualitatively different from FSBS, as it is
the only configuration that allows strong photon-phonon coupling. Recent studies have demon-
strated on-chip BSBS on chalcogenide rib waveguide [5]. Compared to fiber-based BSBS, chip-
based BSBS has much larger gain coefficient and requires much smaller interaction length,
which enables a wide variety of chip scale applications such as tunable slow light [38], tunable
microwave photonic filter [39], and stimulated Brillouin lasers [40]. Unlike FSBS where elastic
modes at q = 0 are excited, BSBS generates elastic modes at q = 2k. Elastic modes traveling at
different q can be excited by varying the incident optical frequency.

In BSBS, Ep = E, Es = E∗, and q = 2k. Equation (14) can be simplified to:
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All components of σi j are nonzero, generating electrostriction force with both longitudinal
and transverse components. We pick an operating point at ω = 0.203(2πc/a), k = 0.75(π/a)
with a = 315nm, and compute the force distribution (Fig. 3(a)). Electrostriction body force
has large longitudinal component over the waveguide cross-section, which mainly comes from
the −iqσxx term in Eq. (15). The hybrid nature of optical forces combined with the fact that all
elastic modes are hybrid at nonzero q indicates that all elastic modes have nonzero BSBS gains.
We compute the corresponding BSBS gains using Qm = 1000 for all the elastic modes (Fig.
3(b)). For mode E1 and E2, electrostriction force and radiation pressure add up destructively,
resulting in small BSBS gains of 0.089×104m-1W-1 and 0.086×104m-1W-1 respectively.

To study the evolution of elastic modes at different q and its effect on BSBS gains, we vary a
from 250nm to 2.5µm and compute the corresponding BSBS gains for mode E1 (Fig. 3(c)). For
comparison, we also compute the conventional BSBS gain G0. The electrostriction-only BSBS
gain of mode E1 decays very quickly. In contrast, G0 scales as 1/a2 as required by Eq. (22).
The reason is that, although mode E1 starts as a longitudinal plane wave for q ≈ 0, it quickly
evolves into surface-vibrating wave as q increases (Fig. 1(d)). There are two ways to recover
the scaling of G0. First, we can force purely longitudinal movement by considering P-modes
in Fig. 1(b). Mode P1 is exactly the longitudinal plane wave, characterized by uniform longi-
tudinal vibrations across the waveguide cross-section and an approximately linear dispersion
relation. The electrostriction-only BSBS for mode P1 does converge to G0 (Fig. 3(c)). Second,



the dispersion curve of mode P1 intersects with the dispersion curves of many E-modes as q
increases. For a given q, the E-modes which are close to the intersection point become P1-like
with approximately uniform longitudinal vibrations across the waveguide cross-section. The
electrostriction-only BSBS gain of these E-modes should be much larger than other E-modes,
and close to that of mode P1. To verify this point, we compute the BSBS gains of a large num-
ber of E-modes. The maximal electrostriction-only BSBS gain among all the E-modes does
converge to G0 as a exceeds several microns (Fig. 3(c)).

As mentioned above, the elastic dispersion relations can be fully explored by varying the
operating point in the optical dispersion relation through phase-matching condition q = 2k
in BSBS. One unique feature about the elastic dispersion relations is the abundance of anti-
crossing between the hybridized elastic modes. The two elastic modes involved in anti-crossing
typically have disparate spatial distributions and quite different BSBS gains. These two modes
will exchange their spatial distributions and the corresponding BSBS gains when q is scanned
through the anti-cross region, as demonstrated in Fig. 3(d). Within the anti-crossing region, the
spectrum of total SBS gain can have complicated shapes because of the overlap between modes
with close eigen-frequencies. While the frequency response method in [12] can only calculate
the aggregated gain, the eigen-mode method developed here can not only separate the contri-
butions from different elastic modes, but also parameterize the gain of individual modes with
simple physical quantities.

4. Rectangular silicon waveguide: inter-modal coupling

In inter-modal SBS, pump and Stokes waves belong to distinct optical modes. This feature can
be exploited in several aspects. First, pump and Stokes waves can have orthogonal polariza-
tions so that they can be easily separated with a polarizing beam splitter. Second, pump and
Stokes waves can reside in optical modes with different dispersion relations. The nontrivial
phase-matching condition can be exploited in optical signal isolation and Brillouin cooling of
mechanical vibrations. More importantly, because the symmetry and spatial distribution of op-
tical forces are jointly determined by pump and Stokes waves, in inter-modal SBS, the degree of
freedoms of tailoring optical forces are essentially doubled, and the universe of excitable elas-
tic modes is significantly expanded. For the rectangular waveguide discuss above, only elastic
modes which are symmetric about planes y = 0 and z = 0 are excitable in intra-modal SBS.
Elastic modes with all other symmetries can only be excited in inter-modal SBS, where the
optical forces become anti-symmetric about a symmetry plane if pump and Stokes waves have
opposite symmetries with respect to this plane.

For instance, we consider the coupling between Ey11 (pump) and Ez11 (Stokes). The operating
point is ω = 0.203(2πc/a), kp = 0.750(π/a), ks = 0.665(π/a), and q = 0.085(π/a) with a =
315nm. Because Ey11 and Ez11 have the opposite symmetries with respect to planes y = 0 and
z = 0, the induced optical force is anti-symmetric with respect to both planes (Fig. 4(a)). Both
electrostriction body force and radiation pressure try to pull the waveguide in one diagonal and
squeeze the waveguide in the other diagonal. Electrostriction pressure has the opposite effect,
but is much weaker than the radiation pressure.

Under such optical force, elastic modes which are anti-symmetric with respect to planes
y = 0 and z = 0 (O-modes) are excited. We calculate the SBS gains of mode O1 through
O5 using Qm = 1000 for all the modes (Fig. 4(b)). Mode O1 represents a rotation around x
axis. The overlap integral is proportional to the torque. The y component and z component
of the optical forces generate torques with opposite signs, which significantly reduces the to-
tal overlap integral. Mode O1 still has a sizable SBS gains because of its small elastic fre-
quency Ω = 0.024(2πVL/a). Mode O2 represents a breathing motion along the diagonal. Its
modal profile coincides quite well with the optical force distribution. The constructive combi-



nation between electrostriction force and radiation pressure results in large gain coefficient of
1.54×104m-1W-1. Mode O3 only have small gains since it is dominantly longitudinal while the
optical forces are largely transverse. The SBS gains of mode O4, O5 and higher order modes
are close to zero mainly because the complicated mode profiles is spatially mismatched with
the optical force distribution: the rapid spatial oscillation of the elastic modes cancels out the
overlap integrals to a large extent.

5. Concluding remarks

In this article, we present a general framework of calculating the SBS gain via the overlap inte-
gral between optical forces and elastic eigen-modes. Our method improved upon the frequency
response representation of SBS gains [12]. By decomposing the frequency response into elastic
eigen-modes, we show that the SBS gain is the sum of many Lorentian components which cen-
ter at elastic eigen-frequencies. The SBS gain spectrum is completely determined by the qual-
ity factor and maximal gain of individual elastic modes. Therefore, our method is conceptually
clearer and computationally more efficient than the frequency response method. Through the
study of a silicon waveguide, we demonstrate that our method can be applied to both FSBS and
BSBS, both intra-modal and inter-modal coupling, both nanoscale and microscale waveguides.
Both analytical expressions and numerical examples show that SBS nonlinearity is tightly con-
nected to the symmetry, polarization, and spatial distributions of optical and elastic modes. The
overlap integral formula of SBS gains provides the guidelines of tailoring and optimizing SBS
nonlinearity through material selection and structural design.



Fig. 1. The guided optical and elastic modes of a rectangular silicon waveguide. Optical
frequency is in unit of 2πc/a, while elastic frequency is in unit of 2πVL/a. VL =

√
E/ρ =

8.54× 103m/s is the velocity of longitudinal elastic waves in bulk silicon. (a) Dispersion
relation of optical modes Ey11 and Ez11. (b) Dispersion relation of elastic modes which
have even symmetry with respect to planes y = 0 and z = 0. E-modes (black lines) are
the actual eigen-modes of the silicon waveguide, with silicon-air interfaces treated as free
boundaries. For comparison, the dispersion relations of purely longitudinal modes (desig-
nated as P-modes, blue curves) and purely transverse modes (designated as S-modes, red
curves) are included. They are constrained respectively with x-only displacement, and y-
z-only movements. At q = 0, E-modes manifest as either P-modes or S-modes. (c) The
displacement profiles of mode E1 through E5 at q = 0, with the peak deformation shown.
The color represents y-displacement (uy) for S-type E-modes and x-displacement (ux) for
P-type E-modes. Blue, white, and red correspond to negative, zero, and positive values re-
spectively. Mode E1 experiences a DC longitudinal offset at Ω = 0. (d) The evolution of
mode E1 as q increases. The color-map corresponds to the amplitude of displacement vec-
tor |u|2 with blue and red corresponding to zero and maximal values. (e) The dispersion
relations of O-modes (odd about both symmetry planes), EO-modes (even about y = 0 and
odd about z = 0), and OE-modes (odd about y = 0 and even about z = 0).



Fig. 2. Optical force distributions and the resultant gain coefficients of forward SBS pro-
cess. In panels (a) and (b), the width of the waveguide is a = 315nm, and the incident op-
tical waves have ω = 0.203(2πc/a), and k = 0.75(π/a). The elastic waves are generated
at q = 0. (a) The force distribution of electrostriction body force density, electrostriction
surface pressure, and radiation pressure respectively. All three types of optical forces are
transverse. (b) Calculated FSBS gains of the elastic modes, assuming a mechanical quality
factor Qm = 1000. Blue, green, and red bars represent FSBS gains under three conditions:
electrostriction-only, radiation-pressure-only, and the combined effects. Only the S-type E-
modes have non-zero gains. (c) The scaling relation of FSBS gains as the device dimension
a is varied from 0.25µm to 2.5µm, color-coded similar to panel (b). Solid and dotted curves
correspond to the gain coefficients for mode E2 and E5 respectively.



Fig. 3. Optical force distributions and the resultant gain coefficients of backward SBS pro-
cess. In panels (a) and (b), the width of the waveguide is a = 315nm, and the incident
optical waves have ω = 0.203(2πc/a), and k = 0.75(π/a). The elastic waves are gener-
ated at q = 1.5(π/a). (a) The force distribution of electrostriction body force density, elec-
trostriction surface pressure, and radiation pressure respectively. Electrostriction have both
longitudinal and transverse components. Radiation pressure are purely transverse. (b) Cal-
culated BSBS gains of the elastic modes, assuming a mechanical quality factor Qm = 1000.
Blue, green, and red bars represent BSBS gains under three conditions: electrostriction-
only, radiation-pressure-only, and the combined effects.(c) The scaling relation of BSBS
gains related to mode E1 as a is varied from 0.25µm to 2.5µm, color-coded similar to panel
(b). For comparison, gain coefficients predicted by conventional SBS theory are shown as
the solid black curve. The dotted black curve represents the electrostriction-only BSBS
gain of the constrained mode P1. Black circles represent the largest electrostriction-only
BSBS gain among all E-modes for a given a. (d) BSBS spectra near the anti-crossing be-
tween mode E4 and E5 around q = 1.66(π/a). The mechanical quality factor is assumed
to be 100. The red lines represent the total BSBS gain. The blue and green lines represent
contributions from mode E4 and E5 respectively.



Fig. 4. Optical force distributions, relevant elastic modes, and the resultant gain coef-
ficients of inter-modal SBS between Ey11 (pump) and Ez11 (Stokes). The width of the
waveguide is set to be a = 315nm. The incident optical waves have ω = 0.203(2πc/a),
with the pump-wave propagating at kp = 0.750(π/a), and the Stokes-wave propagating
at ks = 0.665(π/a). The elastic waves are generated at q = 0.085(π/a). (a) The force
distribution of electrostriction body force density, electrostriction surface pressure, and ra-
diation pressure respectively. The longitudinal forces (not shown here) are negligible, in
comparison to the transverse forces. All optical forces are anti-symmetric with respect to
planes y = 0 and z = 0, exciting elastic modes with the matching symmetry (designated
as O-modes). (b) Calculated inter-modal SBS gains, assuming a mechanical quality fac-
tor Qm = 1000. The insets illustrate the displacement profiles of mode O1 through O5 at
q = 0.085(π/a), at peak deformation. ”Jet” colormap is used to shown the amplitude of
total displacement. Blue and red correspond to zero and maximum respectively.


	1 Introduction
	2 Calculating the SBS gain via overlap integral
	3 Rectangular silicon waveguide: intra-modal coupling
	3.1 Forward SBS
	3.2 Backward SBS

	4 Rectangular silicon waveguide: inter-modal coupling
	5 Concluding remarks

