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Abstract: Infrared- and collinear-safe (IRC-safe) observables have finite cross sections to

each fixed-order in perturbative QCD. Generically, ratios of IRC-safe observables are them-

selves not IRC safe and do not have a valid fixed-order expansion. Nevertheless, in this paper

we present an explicit method to calculate the cross section for a ratio observable in perturba-

tive QCD with the help of resummation. We take the IRC-safe jet angularities as an example

and consider the ratio formed from two angularities with different angular exponents. While

the ratio observable is not IRC safe, it is “Sudakov safe”, meaning that the perturbative

Sudakov factor exponentially suppresses the singular region of phase space. At leading loga-

rithmic (LL) order, the distribution is finite but has a peculiar expansion in the square root

of the strong coupling constant, a consequence of IRC unsafety. The accuracy of the LL dis-

tribution can be further improved with higher-order resummation and fixed-order matching.

Non-perturbative effects can sometimes give rise to order one changes in the distribution, but

at sufficiently high energies Q, Sudakov safety leads to non-perturbative corrections that scale

like a (fractional) power of 1/Q, as is familiar for IRC-safe observables. We demonstrate that

Monte Carlo parton showers give reliable predictions for the ratio observable, and we discuss

the prospects for computing other ratio observables using our method.
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1 Introduction

Observables are fundamental quantities that probe the structure of quantum field theories.

Ever since it was realized that quantum chromodynamics (QCD) was a perturbative gauge

theory at high energies [1, 2], numerous observables have been designed to verify and study the

jetty nature of QCD [3–14], to define jet algorithms [15–22], and to reveal the substructure

of jets themselves [23, 24]. To date, infrared and collinear (IRC) safety has been a key

guiding principle for constructing observables that can be analyzed in perturbative QCD

(and other perturbative field theories). IRC safety ensures that virtual and real diagrams
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will be consistently combined according to the KLN theorem [25, 26] to yield physical cross

sections order-by-order in perturbation theory.

The standard definition of IRC safety is simply a rule-of-thumb for determining whether

the cross section for an observable will be finite at any fixed order [27]:1

An observable is IRC safe if it is insensitive to infinitesimally soft emissions or

exactly collinear splittings.

This requirement guarantees that divergences associated with real emission of soft or collinear

particles will be canceled exactly by infrared (IR) divergences in virtual diagrams. Here, we

will focus on the jet angularities eα which are IRC safe for α > 0 [12, 13, 29]:2

eα =
1

EJ

∑
i∈J

Eiθ
α
i , (1.1)

where EJ is the total jet energy, the sum runs over all particles i in the jet with energy Ei,

and the angle θi is measured with respect to an appropriately chosen jet axis. Angularities

belong to a broad class of IRC-safe observables which are linear in the energy of each parti-

cle, symmetric under particle exchange, and weighted by positive powers of angles between

particles; this class includes thrust [3] and jet mass. While IRC safety is certainly a sufficient

condition for an observable to be finite order-by-order in the strong coupling constant αs, it is

not yet established whether more general observables might still be tractable using alternative

approaches to perturbative QCD.

In this paper, we present a case study of a non-IRC-safe observable whose cross section

can nevertheless be calculated using perturbative QCD with the help of resummation. We

consider a ratio observable formed from two different angularities measured on the same jet:

rα,β ≡
eα
eβ
, (1.2)

where rα,β ∈ [0, 1] for the choice of angular exponents α > β and jet radius R0 = 1. We will

sometimes drop the subscripts rα,β → r for readability. While rα,β is not IRC safe, it belongs

to a category of observables we call “Sudakov safe”, where the singular region of phase space

is exponentially suppressed due to Sudakov factors. We conclude from this example that the

set of observables computable in a perturbative quantum field theory is larger than just the

set of IRC-safe observables.3

1Issues with this definition of IRC safety as a precise mathematical statement has been discussed in the

literature [28].
2This definition differs from Ref. [12] where the angularities are defined in a hemisphere of the event, and

from Ref. [13] where the jet angularities are normalized with respect to the jet mass. Our definition of the jet

angularities is closer to that of Ref. [29], except we choose a different angular behavior (which agrees in the

θ → 0 limit) to simplify the resulting cross section formulae. This definition of jet angularites is appropriate

for e+e− collisions; for a hadron collider, energy and angle would be replaced by pT and R, respectively.
3Of course, there are many other observables which can be calculated with the help of non-perturbative

objects such as parton distribution functions and fragmentation functions. Here, we are referring to observables

that are finite and calculable even without considering non-perturbative effects.
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Figure 1: Summary of results from this paper. Plotted is the differential cross section for the

angularity ratio r2,1 ≡ e2/e1. The curves appear in increasing order of theoretical accuracy,

with each subsequent curve including all previous effects. “LL” is the baseline leading loga-

rithmic result (with the scaling αs log2 r ' 1) that demonstrates Sudakov safety. “LL+LO”

includes O(αs) fixed-order matching in the Log-R scheme. “MLL+LO” includes modified

leading log resummation which has running αs. “MLL+MC” is Monte Carlo resummation

which includes multiple emissions. Finally, “MLL+MC+δNP” includes an estimate of non-

perturbative corrections through a simple shape function. We note that most parton shower

Monte Carlo programs include all of these effects.

More broadly considered, ratio observables are an interesting class of observables which

have been used, for example, to reduce experimental uncertainties in the measurement of the

strong coupling constant [30–33] and probe the substructure of jets [13, 34–38]. It is therefore

imperative to know whether the distributions for ratio observables can be predicted from first

principles. As noted in Ref. [39], however, observables formed from the ratio of two IRC-safe

observables are generically themselves not IRC safe. The logic for the case of the angularity

ratio rα,β is as follows. Both eα and eβ go to zero in the region of phase space where radiation

is soft and/or collinear with respect to the jet axis, but the ratio rα,β in this region can be

arbitrary. This implies that the virtual contribution to the ratio observable would have to be

divergent for all values of rα,β in order to cancel divergences from the real emission diagrams,

but this is impossible. Of course, one can deform rα,β to make it IRC safe by, say, applying

a cut on the denominator to avoid the singular region eβ → 0. But naively, this lack of IRC

safety prevents generic ratio observables from being computed in perturbative QCD without

some kind of non-perturbative input.

The key insight of this paper is that while the angularity ratio rα,β is not IRC safe and

therefore not defined order-by-order in perturbation theory, it is well-defined in resummed

perturbative QCD when one accounts for logarithmic effects to all orders in αs. The logic

and outline of this paper is as follows, with the results summarized in Fig. 1.
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• IRC Unsafety at Fixed Order. In Sec. 2, we attempt to compute the differential

cross section for rα,β in fixed-order QCD. As expected, we find that the fixed-order cross

section is IR divergent because the ratio is sensitive to the singular region of phase space

for all values of rα,β.

• Resummed Cross Section of the Ratio. In Sec. 3, we compute the leading-

logarithmic (LL) resummed differential cross section of the ratio rα,β by marginalizing

the resummed double differential cross section of angularities:

dσ

drα,β
≡
∫
deα deβ

d2σ

deαdeβ
δ

(
rα,β −

eα
eβ

)
. (1.3)

The Sudakov factor in the double differential distribution provides exponential suppres-

sion of the singular region of phase space, resulting in a finite cross section for the ratio.

We call this feature “Sudakov safety”. We expect that this feature will generalize to a

wide class of ratio observables.

• Incorporating Higher-Order Corrections. Because the cross section for the ratio

rα,β is defined from the double differential cross section of angularities eα and eβ, the

accuracy of the cross section can be systematically improved by matching to fixed-

order or by resumming to higher logarithmic order. We discuss applications of these

corrections in Sec. 4.

• Monte Carlo Resummation of Ratios. It is well-known that Monte Carlo parton

showers formally resum IRC-safe observables to LL order. In Sec. 5, we provide strong

evidence that Monte Carlos also resum the ratio observable correctly to LL order. In

addition, the parton shower includes important multiple emission effects which arise at

next-to-leading logarithmic (NLL) order.

• Evidence for Small Non-Perturbative Corrections. Although the ratio of angu-

larities is not IRC safe, we show in Sec. 6 that the non-perturbative corrections to the

perturbative cross section are small in the high energy limit. For small values of the

energy Q the non-perturbative effects can be order one, but for Q & 100–1000 GeV

the power corrections scale like a (fractional) power of 1/Q. This is a consequence

of Sudakov safety, since the perturbative Sudakov factor exponentially suppresses the

non-perturbative region of phase space at sufficiently high energies.

For this final point, we must assume the existence of a shape function for the double differ-

ential cross section of angularities. A proof of this assumption lies beyond the scope of this

work. We conclude in Sec. 7 where we discuss the calculation of other phenomenologically

well-motivated ratio observables formed from, e.g., N -subjettiness [14, 34, 35] and energy

correlation functions [28, 36].
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Figure 2: Jets and angles defined with respect to the broadening axis b̂ defined in Eq. (2.1).

For two particles, the broadening axis coincides with the direction of the most energetic

particle. Throughout this paper, we focus on jets initiated by an energetic quark, and take

the jet radius to be R0 = 1.

2 Ratio of Angularities and IRC Unsafety

We begin this section with a brief discussion of the appropriate axis to use for defining the

jet angularities. We then describe the phase space for two different angularities eα and eβ
in order to make some general statements about the region of support relevant for the ratio.

We compute the fixed-order double differential cross section d2σ/deαdeβ and attempt to use

Eq. (1.3) to define the ratio distribution dσ/drα,β. Because the ratio observable is IRC

unsafe, the differential cross section for rα,β is not defined at fixed-order, precisely because it

is sensitive to the singular region of phase space for all values of rα,β. This will set the stage

for the resummed calculations in the remainder of the paper.

Throughout this paper, we will focus on jets initiated by an energetic quark. At lowest

non-trivial order, the jet angularities eα can be found by accounting for a single gluon emission

from that quark. The case of gluon jets would be similar, except there is an additional

complication arising because the splitting g → gg has two soft singularities, whereas q → qg

has only one soft singularity.

2.1 Angularities with Respect to the Broadening Axis

In order to define the jet angularities eα in Eq. (1.1), we have to choose the appropriate

axis from which to measure angles. While the natural choice would seem to be the jet

momentum axis, this choice suffers from the effect of recoil for small values of α [36, 40].

That is, instead of measuring the soft radiation pattern about the hard central jet core,

recoil-sensitive observables are dominated simply by the displacement of the jet axis caused

by soft radiation.

To avoid recoil effects, we instead measure angles with respect to the broadening axis

of the jet shown in Fig. 2. The broadening axis is defined as the axis which minimizes the
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Figure 3: Allowed phase space region for the double differential cross section in the (eα, eβ)

plane. The allowed phase space is gray, lines of constant ratio rα,β ≡ eα/eβ are illustrated

by dashed lines, and the forbidden regions are white. The boundary of the lower forbidden

region has zero slope only at eβ = 0, such that rα,β = 0 is only possible at the origin.

β = 1 measure of N -subjettiness [34, 35] (which minimizes broadening [10, 11] with respect

to that axis). This corresponds to finding the axis b̂ which minimizes the scalar sum of the

momentum transverse to that axis:

min
b̂

[∑
i∈J

Eiθib̂

]
, (2.1)

where the sum runs over all particles in the jet and θib̂ is the angle from the axis b̂ to particle

i. For a jet with two constituents, the broadening axis coincides with the direction of the

most energetic particle. More generally, the broadening axis corresponds quite closely to the

direction of the hard central jet core as desired.

For consistency, we also define the jet region in Eq. (1.1) as all particles within a radius

R0 of the broadening axis (and not the momentum axis). For simplicity, we take the jet

radius to be R0 = 1 such that the angles of particles within the jet obey θi ∈ [0, 1]. When

considering the ratio of angularities rα,β in Eq. (1.2), we always take α > β which then implies

eα < eβ and rα,β ∈ [0, 1] for every jet configuration.

2.2 Allowed Phase Space

In order to find the double differential cross section d2σ/deαdeβ, it is helpful to first determine

the region in the (eα, eβ) plane over which it has support. The allowed phase space region is

summarized in Fig. 3, where dashed lines emanating from the origin correspond to constant

values of the ratio rα,β ≡ eα/eβ. As already mentioned, if α > β, then eα < eβ on the
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physical phase space, such that eβ → 0 implies eα → 0. Less obvious is that eα → 0 implies

eβ → 0, which can be understood because eα and eβ are first non-zero at the same order

in perturbation theory. So in addition to the upper boundary on eα, there must be a lower

boundary on eα (for fixed value of eβ). Because the angularities are independent observables

for α 6= β, there is no fixed constant k such that eα = keβ; this implies that that the ratio

rα,β → 0 can only be achieved as both eα and eβ approach zero. In fact, by the above

arguments, the only point in phase space with rα,β = 0 is eα = eβ = 0.4 Note that all values

rα,β ∈ [0, 1] are achievable somewhere in phase space.

For a jet with two constituents arising from the splitting q → qg, these properties can be

made concrete. The variables that describe the phase space are the energy fraction z taken by

the gluon and the splitting angle θ between the two particles. Conservation of energy requires

0 ≤ z ≤ 1, and 0 ≤ θ ≤ 1 is required for both particles to be in a jet of radius R0 = 1. Thus,

the matrix element necessarily contains the phase space restrictions

Θ(1− z)Θ(1− θ) , (2.2)

where we have implicitly assumed that z, θ > 0. In these phase space coordinates, the recoil-

free angularity eα in the soft emission limit is5

eα = zθα , (2.3)

which ranges from 0 to 1. To determine the phase space constraints on the (eα, eβ) plane, we

can simply invert Eq. (2.3) and express z and θ in terms of the angularities eα and eβ:

z = e
− β
α−β

α e
α

α−β
β , θ = e

1
α−β
α e

− 1
α−β

β . (2.4)

The phase space restrictions written in terms of eα and eβ are

Θ(1− z)Θ (1− θ) ⇒ Θ
(
eβα − eαβ

)
Θ (eβ − eα) . (2.5)

The upper boundary in Fig. 3 (eα < eβ) corresponds to the requirement that the two particles

are clustered in the jet. The lower boundary in Fig. 3 (e
α/β
β < eα) comes from energy

conservation.6

Without doing a calculation, Fig. 3 already illustrates why the ratio of two angularities is

IRC unsafe. Lines for every value of rα,β pass through the singular region of the phase space

at the origin eα = eβ = 0. There is no way that the virtual contribution to the observable

at a given order in perturbation theory can cancel the real contribution because the real

contribution is singular for all values of rα,β. We will now see this explicitly by computing

the fixed-order cross section for rα,β.

4This also implies that the lower boundary on eα has zero slope on the (eα, eβ) plane at eβ = 0.
5Strictly speaking, the recoil-free angularities at this order in perturbation theory are eα = min[z, 1− z]θα.

The definition in Eq. (2.3) is correct for z < 1/2, and since soft quarks (z → 1) have no associated singularities

in QCD, we are free to apply Eq. (2.3) to the whole range of z for the purposes of resummation. For the fixed

order corrections, this will lead to a (small) difference in the distribution. For the Pythia 8 plots in Fig. 13,

we use the full expression for the angularities.
6Because β < α, this lower boundary has 0 slope at eβ = 0, consistent with the comment made in footnote 4.
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2.3 Fixed-Order Distributions

To calculate the double differential cross section of angularities to O(αs), we will use the

q → qg QCD splitting function as representative of the matrix element for a narrow quark

jet. This only differs from the full QCD matrix element at O(αs) by non-singular terms.

The quark splitting function is

Sq(z, θ) dθ dz =
αs
π
CF

1

θ

1 + (1− z)2

z
dθ dzΘ(1− z)Θ(1− θ) , (2.6)

where CF = 4/3 is the quark color factor, z is the energy fraction of the emitted gluon, and θ

is the splitting angle between the quark and the gluon. As discussed in Sec. 2.2, the variable

z ranges from 0 to 1 and the angle θ ranges from 0 to the jet radius R0 = 1. Using the

expressions for z and θ in terms of eα and eβ from Eq. (2.4), we can simply perform a change

of variables to rewrite Eq. (2.6) in terms of eα and eβ to determine the double differential

cross section. Including the appropriate Jacobian factor, we obtain the leading order (LO)

cross section

d2σLO

deα deβ
= 2

αs
π

CF
α− β

 1

eαeβ
− e
− α
α−β

α e
β

α−β
β +

e
−α+β
α−β

α e
α+β
α−β
β

2

Θ (eβ − eα) Θ
(
eβα − eαβ

)
. (2.7)

Armed with the double differential distribution, we can attempt to calculate the dif-

ferential cross section for the ratio observable rα,β = eα/eβ using Eq. (1.3). Dropping the

subscripts rα,β → r for readability, we make the change of variables eα = reβ and integrate

the double differential cross section over eβ. The Θ-function constraints with this change of

variables becomes

Θ (eβ − eα) Θ
(
eβα − eαβ

)
⇒ Θ (1− r) Θ

(
r

β
α−β − eβ

)
. (2.8)

The differential cross section for r is then

dσLO

dr
=

∫ 1

0
deβ

∫ 1

0
deα

d2σLO

deα deβ
δ

(
r − eα

eβ

)

=

∫ r
β

α−β

0
deβ eβ

d2σLO

deα deβ

∣∣∣∣
eα=reβ

. (2.9)

Integrating, we find

dσLO

dr
= −3

2

αs
π

CF
α− β

1

r
+ 2

αs
π

CF
α− β

1

r

∫ r
β

α−β

0

deβ
eβ

, (2.10)

for 0 < r < 1. This expression manifests the IR-unsafeness of the ratio observable. Because

the singularity of the remaining integral is unregulated, the ratio observable is not defined in

fixed-order perturbation theory.
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To be able to compute the ratio observable in fixed-order perturbation theory, we need to

regulate the remaining integral somehow. The simplest prescription is to impose a lower limit

on eβ, which prohibits the denominator of the ratio observable from becoming arbitrarily

small and removes the phase space region where eα and eβ are both small but their ratio is

arbitrary. For a cut of eβ > ε, the cross section in Eq. (2.10) becomes

dσLO

dr

∣∣∣∣
eβ>ε

= −3

2

αs
π

CF
α− β

1

r
+ 2

αs
π
CF

β

(α− β)2

log r

r
− 2

αs
π

CF
α− β

log ε

r
+O(ε) . (2.11)

As this cut is lowered, the distribution becomes unbounded because of the log ε term and is

properly IR-unsafe as the cut is removed. Another possible regularization is to deform the

definition of the ratio observable to be

rδ =
eα

e1−δ
β

, (2.12)

where δ > 0. Now, the singular region is regulated by an explicit Θ-function that becomes

trivial when δ → 0. However, all of these fixes are arbitrary, and change the definition of the

observable. In the next section, we will see how to make the ratio observable well-defined by

resumming the double differential cross section.

3 Leading-Log Resummed Double Differential Distribution

While the ratio of angularities rα,β is not an IRC-safe observable, we now argue that it is a

“Sudakov safe” observable. That is, the Sudakov factor arising from the resummation of large

logarithms acts as a natural regulator for the double differential cross section d2σ/deαdeβ.

We then marginalize appropriately to determine the resummed differential cross section of

the ratio observable rα,β, which has a number of interesting and unfamiliar properties. In

particular, dσ/drα,β has a series expansion in
√
αs (not αs) and “leading logarithmic” resum-

mation for rα,β corresponds to summing a tower of terms of the form (αs log2 r)n/2 (instead of

(αs log2 r)n). We emphasize that throughout this paper, we define LL to capture the leading

logarithms L with the scaling αsL
2 ∼ 1.

3.1 The Strongly-Ordered Limit

For usual IRC-safe observables, one can perform LL resummation by considering the all-

orders cross section in the strongly-ordered limit. In this limit, there are multiple emissions

from an eikonal Wilson line, but the value of the observable is determined by the leading

emission(s). Since the double differential cross section is IRC safe, we can easily determine

the LL distribution for d2σ/deαdeβ and use Eq. (1.3) to find the ratio distribution. The

meaning of “LL” for dσ/drα,β is more subtle, and we save that discussion for Sec. 3.2.

We first need to determine the region of phase space that contributes in the strongly-

ordered limit. This is best understood in (log 1/θ, log 1/z) space, where θ and z are the

– 9 –



++

1
Α

log 1
eΑ

1
Β

log 1
eΒ

log
1

Θ

log 1
eΒ

log 1
eΑ

log
1

z

(a)

++

++

1
Α

log 1
eΑ

1
Β

log 1
eΒ

log
1

Θ

log 1
eΒ

log 1
eΑ

log
1

z

(b)

Figure 4: Phase space for strongly-ordered emissions in the (log 1/θ, log 1/z) plane. Left: a

single emission dominates the value of both eα and eβ. Right: one emission dominates the

value of eα in blue, while a second emission dominates the value of eβ in red. In both cases,

further emissions are forbidden in the gray region below the solid black line, and the area of

the gray forbidden region determines the Sudakov factor. The singular region of phase space

is up and to the right.

emission angle and energy fraction, respectively.7 At LL order, we can ignore subleading

terms in the splitting functions, and treat emissions as having uniform probability in the

(log 1/θ, log 1/z) plane. This phase space is illustrated in Fig. 4, where constant values of

angularity eα correspond to straight lines

log
1

eα
= log

1

z
+ α log

1

θ
, (3.1)

and the singular region extends up and to the right. In the strongly-ordered limit, a single

leading emission determines the value of the angularity eα.

For the double differential cross section, a single emission may or may not determine both

eα and eβ simultaneously. In general, there are two possibilities for the leading emission(s):

either there is a single emission which determines the value of both eα and eβ (shown in

Fig. 4a), or there is one emission that dominates the value of eα and a different emission that

dominates eβ (shown in Fig. 4b). Both possibilities contribute at LL order. This is shown

visually in Fig. 4, where the dominant emissions (denoted by the crosses) fix the values of eα
and eβ, such that no emissions can occur below the solid black line. Additional emissions can

then fill out the region above the solid black line, toward the singular region at infinity, but

at LL order, these subdominant emissions do not modify the value of the angularities.

7We thank Gavin Salam for helpful discussions on the LL resummation.
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Given this phase space, we can easily determine the Sudakov factor in the strongly-ordered

limit. The Sudakov factor is just the probability that there were no emissions between two

given scales. The observation of eα and eβ introduces explicit scales and defines the area of

phase space in which emissions are forbidden. The area of the gray forbidden region under

the solid black line happens to be the same for both cases considered in Fig. 4:

Area =
1

2

(
1

β
log2 eβ +

1

α− β
log2 eβ

eα

)
. (3.2)

Restoring the quark color factor and strong coupling constant and then exponentiating, the

Sudakov factor at LL is

∆(eα, eβ) = e
−αs

π
CF

(
1
β

log2 eβ+ 1
α−β log2 eα

eβ

)
. (3.3)

From the Sudakov factor, we can determine the resummed double differential cross section

by differentiating with respect to eα and eβ:

d2σLL

deα deβ
=

∂

∂eα

∂

∂eβ
∆(eα, eβ)

=

(
2αs
π

CF
α− β

1

eαeβ
+

4α2
s

π2

C2
F

β(α− β)2

1

eαeβ
log

eβ
eα

log
eβα
eαβ

)
∆(eα, eβ). (3.4)

The double differential cross section is defined on the physical phase space region from

Eq. (2.5) with eβ > eα, eβα > eαβ . Note that the Sudakov factor suppresses the singular

region of phase space at eα → 0, eβ → 0. As a cross check of this calculation, we can inte-

grate over one of the angularities (making sure to impose the proper phase space constraints)

to reproduce the LL cross section for the other angularity:

dσLL

deα
=

∫ e
β/α
α

eα

deβ
d2σLL

deα deβ
= −2

αs
π

CF
α

log eα
eα

e−
αs
π

CF
α

log2 eα ,

dσLL

deβ
=

∫ eβ

e
α/β
β

deα
d2σLL

deα deβ
= −2

αs
π

CF
β

log eβ
eβ

e
−αs

π

CF
β

log2 eβ , (3.5)

which is indeed correct.8

Finally, from the resummed double differential cross section, we can determine the dif-

ferential cross section for the ratio observable rα,β = eα/eβ using Eq. (1.3). Dropping the

subscripts rα,β → r for clarity,

dσLL

dr
=

√
αsCFβ

α− β
1

r

(
1− 2

αs
π

CF
α− β

log2 r

)(
erf

[ √
αsCFβ√
π(α− β)

log r

]
+ 1

)
e
−αs

π

CF
α−β log2 r

− 2
αs
π

CF
α− β

log r

r
e
−αs

π
CF

α
(α−β)2

log2 r
, (3.6)

8The area under a curve of constant eα is 1
2α

log2 eα, so the Sudakov factor is ∆(eα) = e−
αs
π
CF
α

log2 eα .

Eq. (3.5) comes from differentiating ∆(eα).
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Figure 5: LL differential cross section for the ratio observable rα,β ≡ eα/eβ from Eq. (3.6).

Left: numerator fixed to α = 2 (thrust measure), and denominator sweeping over β. Right:

α = 1 (broadening measure), sweeping β. In both cases, the β = 0 curves give the LL

differential cross section for the angularity with the corresponding α, i.e. rα,0 = eα.

where the error function erf(x) is

erf(x) =
2√
π

∫ x

0
dt e−t

2
. (3.7)

Because of the Sudakov regularization of the double differential cross section, the ratio dis-

tribution is well-defined and finite (i.e. it is Sudakov safe).

In Figs. 5a and 5b, we plot the cross section of the ratio observable rα,β, taking a fixed

coupling αs = 0.12. In Fig. 5a, we set the numerator to α = 2 (thrust) and scan over β = 1.5,

1.0, 0.5, to 0. In Fig. 5b, we set the numerator to α = 1 (recoil-free broadening) and scan

over β = 0.75, 0.5, 0.25, to 0.

Two limits of the ratio distribution can be easily understood. As β → α, the cross section

for the ratio approaches a δ-function located at r = 1. As β → 0, eβ → 1, so the cross section

for the ratio should degenerate to the cross section for eα itself. This behavior can be seen

from Eq. (3.6) directly. With α fixed and taking β → 0, all terms with error functions have

a coefficient proportional to a positive power of β, and so vanish in the β → 0 limit. This

leaves the last term of the cross section which has a non-zero limit:

dσLL

dr

∣∣∣∣
β→0

= −2
αs
π

CF
α

log r

r
e−

αs
π

CF
α

log2 r =
dσ

deα
. (3.8)

3.2 The Meaning of “Leading Log”

We have argued that the ratio rα,β is a Sudakov safe observable. Unlike an IRC-safe observ-

able, it is not defined order-by-order in perturbation theory, so it is therefore interesting to
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ask how the cross section for the ratio behaves in the small αs limit. Expanding Eq. (3.6),

we find
dσLL

dr
=
√
αs

√
CFβ

α− β
1

r
+O(αs) . (3.9)

Because the expansion starts at O(
√
αs), there is not a proper Taylor expansion in αs. This

is not surprising as the fixed-order cross section for the ratio observable does not exist.9

This then raises the question as to the formal accuracy of Eq. (3.6) and the meaning

of “LL” for an IRC-unsafe observable. For an ordinary IRC-safe observable, LL order is

defined through the logarithms that appear in the cumulative distribution. Given the double

cumulative distribution Σ(eα, eβ), its logarithm has the expansion

log Σ(eα, eβ) = αsL
2 + αsL+ αs +O(α2

s) , (3.12)

where L is the logarithm of eα or eβ. Here, LL order includes all terms in log Σ at order αsL
2 ∼

1, all of which are captured in the strongly-ordered limit.10 Because the ratio observable is

IRC-unsafe, though, all values of r ∈ [0, 1] are sensitive to the singular region, and there is no

simple correspondence between the singular region of phase space and the existence of large

logarithms as there is with IRC-safe observables.

To figure out which logarithms have been resummed in Eq. (3.6), we first find the cumu-

lative distribution Σ(r) for the ratio observable:

Σ(r) =

∫ r

0
dr
dσ

dr
=
√
αs

√
CFβ

α− β
log r

(
1 + erf

[ √
αsCFβ√
π(α− β)

log r

])
e
−αs

π

CF
α−β log2 r

+ e
−αs

π
CF

α
(α−β)2

log2 r
. (3.13)

The expansion of the logarithm of the cumulative distribution in αs is

log Σ(r) =
√
αs

√
CFβ

α− β
log r − αs

2π
CF

2α− (4− π)β

(α− β)2
log2 r +O(α3/2

s ) . (3.14)

Every term in this expansion is of the form (αs log2 r)n/2, where n is a positive integer. So just

as for ordinary IRC-safe observables, LL resummation means that we capture leading terms

9The fact that the differential cross section is proportional to
√
αs is reminiscent of the anomalous dimension

of fragmentation functions for Mellin moment j → 1 [27, 41–45], corresponding to the hadron multiplicity. In

that case, for j 6= 1, there is a sensible Taylor expansion in αs of the anomalous dimension:

γ (j, αs) =
αsCA
π

1

j − 1
+O(α2

s) , (3.10)

which, however, does not exist at j = 1. The entire series must be resummed and the Taylor expansion which

is valid for j 6= 1 must be analytically continued outside of its radius of convergence. It follows that the

anomalous dimension at j = 1 is

γ (j = 1, αs) =

√
αsCA

2π
, (3.11)

which is not reproduced by any finite-order expansion of Eq. (3.10).
10An alternative definition of LL includes the leading terms with the scaling αsL ∼ 1. These are captured

in the MLL procedure of App. B which includes running αs.
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Figure 6: Cross section for the ratio observable rα,β = eα/eβ at LL+LO using the Log-R

matching procedure in App. A. Shown are α = 2 (left) and α = 1 (right), sweeping over

β. Because the ratio distribution is dominated by the Sudakov peak, there are only small

changes in going from LL to LL+LO.

in the limit αsL
2 ∼ 1 where L = log r, albeit starting at O(

√
αs). Note that LL resummation

captures logarithms of r in the r → 0 region. While finite values of r are also sensitive to the

singular region of phase space, those effects are subleading in the logarithmic power counting.

We will see in Sec. 5 that there are also logarithms of (1− r) which show up beyond LL.

4 Higher-Order Corrections

To increase the accuracy of our LL calculation in Eq. (3.6), we would like to include both

fixed-order corrections and higher-order resummation. Because the fixed-order cross section

for the ratio observable does not exist, though, we cannot use standard matching methods.

That said, in the same way as the LL resummation proceeded in Sec. 3.1, we can perform the

matching procedure on the double differential cross section d2σ/deαdeβ and then marginalize

using Eq. (1.3) to define the ratio cross section dσ/drα,β. Because the Sudakov factor provides

a natural cut-off of the singular region of phase space, the ratio observable will still have a

finite cross section as higher-order effects are included, as long as the matching procedure

does not affect the Sudakov-suppressed region of phase space.

As discussed in Sec. 3.2, it is not entirely straightforward to define the accuracy of a

non-IRC-safe distribution. For this reason, we will subsequently refer to the accuracy of

a calculation for dσ/drα,β in terms of the accuracy of the double differential distribution

d2σ/deαdeβ. For illustrative purposes, we show how to include LO fixed-order information

and some effects beyond LL, leaving more accurate calculations to future work. Throughout

this paper, LO means O(αs) fixed-order corrections.
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Figure 7: Cross section for the ratio observable rα,β = eα/eβ with MLL resummation

described in App. B. This is shown for quark jets with energy Q = 500 GeV (to set the scale

for αs), with α = 2 (left) and α = 1 (right), sweeping over β. Because MLL includes the

effects of running αs, there are larger changes in the cross section than for the fixed-order

corrections in Fig. 6.

To incorporate fixed-order corrections at LO, we use the Log-R matching procedure [46]

in App. A, effectively merging Eq. (2.7) with Eq. (3.6) to obtain an LL+LO distribution.

We show the final results in Fig. 6, which compares the LL cross section of the ratio observ-

able to the LL+LO distribution obtained after fixed-order corrections are incorporated into

d2σ/deαdeβ. In general, the effect of matching is quite small over the entire range of rα,β.

This is expected because the integral defining the ratio observable rα,β is dominated by the

Sudakov peak region where fixed-order corrections are small. Nevertheless, matching does

formally increase the accuracy of the cross section for the ratio observable.

In addition to including fixed-order corrections, the double differential cross section can

be resummed to higher orders as well. In App. B, we compute the modified leading logarithmic

(MLL, as in, e.g., Ref. [47]) Sudakov factor for eα and eβ. MLL resummation includes one-

loop running of αs and subleading terms in the splitting function, resumming logarithmically

enhanced terms of the form αnsL
m, where m ≥ n. However, MLL is not fully accurate at NLL

order because there are effects that arise at the same formal order in the logarithmic counting

that are not included (namely, multiple emissions and two-loop running coupling). Because

of the inclusion of a running coupling, we expect that MLL is significantly more accurate

than LL resummation, especially for the ratio observable rα,β. We compare the MLL cross

section to the LL cross section for jets of energy Q = 500 GeV in Fig. 7, where the running

coupling effects suppress the cross section at small values of the ratio rα,β.

Finally, the accuracy of the ratio distribution can be further improved by combining fixed-

order corrections with higher-order resummation. In Fig. 8, we improve the MLL resummation
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Figure 8: Cross section for the ratio observable rα,β = eα/eβ with both MLL resummation

and LO fixed-order matching (MLL+LO). Shown are α = 2 (left) and α = 1 (right), sweeping

over β. Because the ratio distribution is dominated by the Sudakov peak, there are only small

changes in going from MLL to MLL+LO. The effect of matching grows as β decreases because

the Sudakov peak moves to larger values of the angularities where the fixed-order contribution

becomes more important.

by using the full splitting function in Eq. (B.3) (instead of just the average splitting function

in Eq. (B.4)) to achieve LO matching. This is formally the same accuracy as applying the

Log-R matching procedure to the MLL distribution. The effect of matching in going from

MLL to MLL+LO is small (and comparable to going from LL to LL+LO in Fig. 6). That

said, the matching becomes a larger effect as β gets small. This is because the Sudakov peak

of the double differential cross section moves to larger values of eα and eβ as β gets small,

and enters a regime in which the fixed-order contribution becomes a significant part of the

cross section.

5 Monte Carlo vs. Analytic Resummation

Parton shower Monte Carlo programs are ubiquitous tools for predicting the outcome of

particle collisions, so it is important to know whether the parton shower can accurately

determine the distribution of the ratio observable rα,β. It is well-known that the parton shower

formally provides LL resummation of IRC-safe observables [27], but strictly speaking, these

arguments assume that the observable in question is well-defined at each order in perturbation

theory. Because the ratio observable is not IRC safe, one might worry whether or not the

parton shower could reproduce the LL expression in Eq. (3.6). In this section, we argue

that parton showers not only achieve LL (and even MLL) accuracy, but they also include the
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important effect of multiple emissions (formally appearing at NLL order) which is particularly

relevant near rα,β = 1.

To study resummation in a Monte Carlo context, we have written a program that resums

the leading logarithms of any angularity through a simplified parton shower. Compared to

a full-blown Monte Carlo program, our simplified shower only treats emissions from a single

quark jet and does not include effects like energy-momentum conservation or color coherence

which are beyond LL order. Crucially, the shower does allow for multiple emissions within

a single jet. We have two versions of the simplified shower: “LL+MC” which uses fixed

αs = 0.12 and only the leading terms in the splitting function, and “MLL+MC” which

includes one-loop running αs and subleading terms in the splitting function (i.e. the same

effects included in MLL in Sec. 4). Because the full splitting functions are used for MLL+MC,

it contains all of the physics of MLL+LO from Sec. 4.

We can take the evolution variable of our shower to be any angularity eα for arbitrary

α > 0. For the LL+MC shower, the probability that no emission has occurred between two

scales eiα and efα is given by the ratio of Sudakov factors

∆(efα)

∆(eiα)
= e
−αs

π

CF
α

(
log2 efα−log2 eiα

)
, (5.1)

where this expression is for fixed αs and efα < eiα. By construction, a parton shower that

distributes emissions according to Eq. (5.1) will have LL accuracy for eα, and if the parton

shower also distributes emissions in energy and angle according to the QCD splitting functions,

then it will have LL accuracy for the other angularities eβ with β 6= α. We have checked that

our final results are robust to the choice of evolution variable, but for concreteness, we take

α = 1 for our MC studies, corresponding to recoil-free broadening or kT .11

The structure of our LL+MC shower is as follows:

1. Given an initial scale eiα, determine the scale of the next splitting efα . To do this,

let R ∈ [0, 1] be a random number and set it equal to the ratio of Sudakov factors in

Eq. (5.1). Invert the expression to find the scale of the next emission:

efα = e
−
(

log2 eiα− π
αs

α
CF

logR
)1/2

. (5.2)

2. From the emission scale efα, determine the phase space variables z and θ. From Eq. (2.3),

we have the constraint efα = zθα.12 With a random number R ∈ [0, 1], the phase space

variables are

z =
(
efα

)R
, θ =

(
efα

) 1−R
α
. (5.3)

11The LL+MC results are independent of the evolution variable. However, the MLL+MC results depend

on the evolution variable because it fixes the scale at which αs is evaluated. Using the angularity with α = 1

for evolution is consistent with analytic resummation procedures, such as we discuss in App. B.
12As discussed in footnote 5, this choice is fine for quark jets and only differs from the exact answer by

non-singular terms. A more sophisticated shower would be needed to address g → gg splittings.
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This kinematic map generates phase space that is flat in log 1/θ and log 1/z, and there-

fore distributes events according to the most singular terms of the splitting function in

Eq. (2.6).

3. With the phase space coordinates z and θ, compute the contribution of the current

emission to any observable of interest. To LL accuracy, we do not need to include

correlations between different emissions; only correlations between each emission and

the hard jet core are necessary at this order.

4. Set the current scale efα equal to the new initial scale eiα and go to step 1. Continue the

Monte Carlo until the starting scale eiα falls below some stopping scale xend.

This LL+MC procedure is guaranteed to resum the leading logarithms from gluon emission

off of a quark jet for arbitrary IRC-safe observables.

For the MLL+MC shower, we use the Sudakov veto method (see Ref. [48] for an example)

to account for running αs and subleading terms in the splitting function. For the MLL+MC

shower, we follow steps 1 and 2 of the LL+MC shower, taking a large, fixed value of αs which

we denote as α̂s ∼ 0.5. Once an emission scale and phase space point have been chosen,

the running coupling and subleading terms in the splitting function can be included by veto.

We note that, for sufficiently large α̂s, the probability of an emission using the most singular

terms of the splitting function is larger than that using the full splitting function on all of

phase space:

2
α̂s
π
CF

1

θ

1

z
≥ 2

αs(kT )

π
CF

1

θ

1 + (1− z)2

z
, (5.4)

where kT is the energy scale of the emission. Therefore, the running coupling and full splitting

functions can be included in the Monte Carlo by vetoing emissions if the ratio of the two

probabilities is less than a random number R ∈ [0, 1]. That is, an emission is vetoed if

αs(kT )

α̂s

1 + (1− z)2

2
< R ∈ [0, 1] . (5.5)

For emissions that are accepted, we can then compute the contribution of that emission to

any observable of interest. The shower terminates when the scale kT of an emission falls

below a low, but still perturbative, scale µ. We set µ = 1 GeV in all of the following plots of

the MLL+MC distributions.

As an initial test of our shower, we first verify that the differential cross sections for

the individual angularities eα agree with the analytic expression for the LL resummation in

Eq. (3.5). Overall, the agreement in Fig. 9 is quite good, though as the angular exponent

α decreases, there is a greater discrepancy between the parton shower and the analytic ex-

pression. This discrepancy can be attributed to the effect of multiple emissions. Because the

shower allows an arbitrary number of emissions to contribute to the observable eα, the region

near eα ' 0 is suppressed beyond the näıve LL Sudakov factor. The multiple emissions effect

formally begins at α2
sL

2 order in the resummation, and becomes more pronounced as the
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Figure 9: Left: Comparing the distribution of angularities eα between the LL resummed

distribution in Eq. (3.5) (dashed) and the LL+MC shower with fixed αs (solid). The distri-

butions agree to LL accuracy, but because LL+MC includes the effect of multiple emissions,

there are differences become apparent at small values of the angular exponent α. Right: Com-

paring the distribution of angularities eα from the LL+MC to MLL+MC showers. Because

of the running coupling, the MLL+MC is suppressed at small values of eα with respect to

LL+MC.

angular exponent exponent α decreases. Because this multiple emission effect is physical, we

expect the MC result to be a better estimate of the true distribution of angularities than the

LL result. We also compare the distribution of angularities from the LL+MC shower to the

MLL+MC shower. Because of the running coupling, the MLL+MC distributions are further

suppressed with respect to LL+MC at small values of eα. Note that our toy Monte Carlo

does not attempt to conserve energy/momentum, so the distributions have an (unphysical)

finite cross section at eα = 1.

With good agreement established between the parton shower and the analytic formulas

for the angularities eα, we now consider the distribution of the ratio observable rα,β. In

Fig. 10, we compare the parton shower resummation to the analytic expression in Eq. (3.6).

There is very good agreement between the two methods at small values of rα,β, which, from

the discussion in Sec. 3, is where we expect the LL resummation for the ratio observable to

be accurate.

Near rα,β = 1, though, there are dramatic differences between the LL and LL+MC curves,

due to the effect of multiple emissions. For the ratio of eα to eβ to equal 1, there must be a

single emission with arbitrary energy fraction and splitting angle equal to θ = 1. The effect

of any subsequent emissions would be to reduce the value of rα,β. The parton shower includes

the effect of subsequent emissions on the value of the ratio, and up to cutoff effects, there
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Figure 10: Comparing the distribution of the ratio rα,β ≡ eα/eβ between the analytic LL

formula in Eq. (3.6) (dashed) and the LL+MC shower with fixed αs (solid). Shown are α = 2

(left) and α = 1 (right), sweeping over β. At small values of rα,β there is good agreement be-

tween the two methods, but LL+MC includes multiple emissions which dramatically changes

the shape of the distribution near rα,β = 1.

is zero probability for there to be no emissions after the first one. Thus, the fact that the

ratio observable distribution vanishes at rα,β = 1 is physical. As discussed earlier, multiple

emissions effects arise strictly beyond LL order. An emission which results in rα,β = 1 is

necessarily a wide-angle emission, implying that the multiple emissions effect is at least one

collinear logarithm down from LL order.13 That said, accounting for multiple emissions is

crucial for obtaining the qualitatively correct distributions.

Another qualitatively important effect is running αs, already seen in the difference be-

tween the LL and MLL curves in Fig. 7. In our MLL+MC shower, we include both running

αs and subleading terms in the splitting function. We compare the LL+MC and MLL+MC

showers in Fig. 11, where the additional Sudakov suppression from the running coupling is

apparent. While not fully accurate to NLL level, the MLL+MC shower does include three

key effects that show up at this order—running αs, subleading terms in the splitting function,

and multiple emissions—and should give a good description of the qualitiative behavior of

the ratio observable. We stress that most publicly-available Monte Carlo programs include

all of these effects by default. Fig. 11 illustrates the necessity of higher-order resummation

for the accuracy of the distributions.

13Also, instead of being a log r effect, this is a log(1− r) effect.
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Figure 11: Comparing the distribution of the ratio rα,β ≡ eα/eβ between the LL+MC shower

with fixed αs (dashed) and the MLL+MC shower with running αs (solid). Shown are α = 2

(left) and α = 1 (right), sweeping over β. Running αs increases the Sudakov suppression,

pushing the distributions away from rα,β = 0. Because of multiple emissions, the Sudakov

supression is even more enhanced than in the MLL results from Fig. 7.

6 Sensitivity to Non-Perturbative Physics

Thus far, our discussion has focused on perturbatively calculable aspects of the ratio ob-

servable, where Sudakov safety ensures sensible resummed distributions. We now turn to the

important question of non-perturbative effects. Given a hard scattering at an energy Q, these

effects can potentially be order one. Here we show that at sufficiently high energies, non-

perturbative corrections scale like Λ/Q to some positive (possibly fractional) power, where

Λ ' 0.5 GeV is a characteristic non-perturbative scale. As long as these corrections fall suf-

ficiently fast with respect to Q, then one can say that perturbatively calculated distributions

will be robust to non-perturbative corrections.

To prove that non-perturbative effects are suppressed by inverse powers of the energy

Q requires the existence of a factorization theorem. To date, all such factorization theorems

are formulated for IRC-safe observables where fixed-order cross sections exist. Because the

ratio observable is not IRC safe, though, one might worry that it is not only sensitive to

non-perturbative physics, but in such a way that the corrections are independent of the

energy Q of the jet. If this were to be the case, then even at arbitrarily high energies,

non-perturbative effects could not be neglected for an accurate description of the observable.

As of yet, though, no factorization theorem exists to provide a definitive answer for how

non-perturbative corrections will affect the ratio observable.14

14We suspect that the right strategy is to prove a factorization theorem for the double differential cross

section and then project onto the ratio rα,β appropriately.
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Nevertheless, we will use some simple quantitative assumptions to argue that non-pertur-

bative corrections to the ratio distribution will be small.15 The strategy of our argument is to

break up the integral in Eq. (1.3)—which defines the cross section of the ratio observable from

the double differential cross section—into two pieces. For one piece, the non-perturbative

effects manifest themselves as corrections to the perturbative cross section suppressed by

(fractional) powers of 1/Q. This follows from the assumption that the double differential

cross section has a valid operator product expansion (OPE) in this region of phase space.

The second piece is the direct contribution to the cross section from the non-perturbative

region. At sufficiently high energies, we argue that the contribution from this region to the

cross section of the ratio observable is exponentially suppressed, as a consequence of Sudakov

safety. These observations provide strong evidence that the ratio distribution has only power-

suppressed dependence on non-perturbative physics at sufficiently high energies.

6.1 The Shape Function

We first review how non-perturbative physics affects IRC-safe observables like the jet angu-

larities. There are many strategies to gain a quantitative understanding of non-perturbative

effects [49–56], with perhaps the most general method being the shape function [57, 58]. The

shape function encodes non-perturbative physics contributions to an observable and is inde-

pendent of the energy scale at which the observable is evaluated. To find the cumulative

distribution of an IRC-safe observable, one convolves the perturbative cumulative distribu-

tion with the shape function. For recoil-free angularities eα or other additive observables,

this takes the form16

Σ(eα) =

∫ eαQ

0
dε f(ε) Σpert

(
eα −

ε

Q

)
, (6.1)

where f(ε) is the shape function (generically different for each observable) and Q is the energy

of the jet. The differential cross section for eα can then be computed by differentiating the

cumulative distribution.

The shape function only has support in an energy range of order the QCD scale Λ.

For values of eα such that eαQ � Λ, the OPE is valid and the cumulative distribution can

therefore be expanded in derivatives of the perturbative cumulative distribution (see Eq. (6.4)

below). The precise scaling of the power corrections depends on whether the observable is

most sensitive to non-perturbative energies or angles. When a non-perturbative emission

contributes to the angularity eα, this means that either the energy fraction z or the splitting

angle θ (or both) is non-perturbative:

z, θ .
Λ

Q
. (6.2)

For values of the angular exponent α > 1, the angularities are most sensitive to the non-

perturbative energy. Because eα = zθα with one emission, the power correction scales as

15We thank Iain Stewart, Duff Neill, and Gavin Salam for extensive discussions of these points.
16This form of the convolution is only valid for angularities with α > 1. To get the correct scaling of the

power corrections in Eq. (6.3) for α ≤ 1, the form of the shape function and convolution is different.

– 22 –



Λ/Q. For α < 1, the angularities are most sensitive to the non-perturbative splitting angle,

and so it is expected that the power corrections scale as (Λ/Q)α [28, 59].17 When α = 1, the

angularities are equally sensitive to the angle and the energy of the emission; this introduces

an extra logarithm in the power corrections which then scale like (Λ/Q) log Λ/Q. All of these

scalings can be nicely packaged in the formula18

δαNP =

Λ
Q −

(
Λ
Q

)α
α− 1

. (6.3)

It should be stressed that Eq. (6.3) has not been derived from any model of non-perturbative

physics, but merely encodes the expected scaling with Λ/Q of the non-perturbative corrections

as a function of α.

For values of eα such that eαQ� Λ, we have the expansion19

ΣOPE(eα) = Σpert (eα) + c1δ
α
NP

∂

∂eα
Σpert (eα) +O

(
(δαNP)2

)
, (6.4)

where c1 is a constant. For example, angularities with α > 1, where α = 2 − a in standard

language, have the well-known expansion [50, 56]

ΣOPE(eα) = Σpert (eα) +
1

α− 1

Ω1

Q

∂

∂eα
Σpert (eα) +O

(
Λ2

Q2

)
, (6.5)

where Ω1 ' Λ is a universal (observable-independent) constant.20 For values of eα such that

eαQ . Λ, the OPE is no longer valid and the entire shape function must be used to deter-

mine the effect of non-perturbative physics. Note, however, that both the non-perturbative

corrections in the OPE regime as well as the range of eα over which the full shape function

must be used decrease as (fractional) powers of Λ/Q, formally vanishing at arbitrarily high

energies. This property is a consequence of IRC safety and guarantees that the angularities

can be reliably computed in perturbative QCD.

6.2 Non-Perturbative Effects on the Ratio Observable

We will now use similar shape function arguments to study the effect of non-perturbative

physics on the ratio observable. Our key assumption is that there exists a shape function

for the double cumulative distribution of angularities eα and eβ, which presumably encodes

17This would only be true for the recoil-free angularities measured about the broadening axis. For recoil-

sensitive angularities measured about the jet axis, the power corrections for α < 1 would have an extra factor

of log Λ/Q.
18This form is perhaps a bit unrealistic since it has a finite α→ 0 limit. Instead, one probably expects large

(unbounded) non-perturbative corrections as α approaches zero since the strict α = 0 limit is IRC unsafe.
19Using the form of the shape function from Ref. [58] introduces boundary terms which depend on a fac-

torization scale defining the separation of the perturbative and non-perturbative regions. The expression of

Eq. (6.4), which has no boundary terms, follows from an MS shape function as formulated in Ref. [60].
20Strictly speaking, the universality of Ω1 is only true if angularities are measured in the E-scheme. See

Refs. [61, 62].
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non-perturbative correlations between eα and eβ. Given a shape function f(ε1, ε2), the non-

perturbative effects would be included by convolution:21

Σ(eα, eβ) =

∫ eαQ

0
dε1

∫ eβQ

0
dε2 f(ε1, ε2) Σpert

(
eα −

ε1
Q
, eβ −

ε2
Q

)
. (6.6)

For eα and eβ sufficiently large such that eαQ � Λ and eβQ � Λ, the OPE is appropriate.

The double cumulative distribution can be written in the OPE regime as

ΣOPE(eα, eβ) = Σpert(eα, eβ) + c1,0δ
α
NP

∂

∂eα
Σpert(eα, eβ) + c0,1δ

β
NP

∂

∂eβ
Σpert(eα, eβ)

+O
(

(δαNP)2 ,
(
δβNP

)2
)
, (6.7)

where the constants c1,0 and c0,1 depend on the corresponding observables. In App. C, we

discuss the simple relationship of these coefficients to the power corrections of the individ-

ual angularities. For α > β, one generically expects the δβNP term to dominate the power

correction at large Q (see Table 1 below).

Assuming that Eq. (6.6) is valid, the double differential cross section d2σ/deαdeβ can

be found by differentiating Σ(eα, eβ) with respect to eα and eβ. Then, the differential cross

section for the ratio observable dσ/drα,β can be computed by marginalizing according to

Eq. (1.3), automatically accounting for non-perturbative effects from the shape function

f(ε1, ε2). Concretely,

dσ

dr
=

∫ 1

0
deβ eβ

(
∂

∂eα

∂

∂eβ
Σ(eα, eβ)

)∣∣∣∣
eα=reβ

. (6.8)

Here, we leave the phase space boundaries implicit in the double differential cross section

such that eβ is integrated over its entire range. We emphasize again that the only assumption

we have made thus far is that the shape function f(ε1, ε2) describes the dominant power

corrections.

We now study Eq. (6.8) to argue that the non-perturbative corrections to the cross section

for the ratio observable are suppressed by (fractional) powers of Λ/Q for sufficiently large Q.

We can break this integral into two parts: one part in which the OPE expansion is valid and

another where the full shape function must be used:

dσ

dr
=

∫ 1

η/Q
deβ eβ

(
∂

∂eα

∂

∂eβ
ΣOPE(eα, eβ)

)∣∣∣∣
eα=reβ

+

∫ η/Q

0
deβ eβ

(
∂

∂eα

∂

∂eβ
Σ(eα, eβ)

)∣∣∣∣
eα=reβ

. (6.9)

Here, η is a fixed energy scale above which the OPE is valid: Q � η � Λ. From Eq. (6.7),

it is clear that the contribution from the first line to the differential cross section of r (the

21As discussed in footnote 16, this form of the convolution would only be valid for α, β > 1. The form of the

convolution must be different if α or β is less than 1 for the power corrections to have the scaling in Eq. (6.3).
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“OPE” contribution) has only power-suppressed dependence on non-perturbative physics.

Because there is an explicit non-zero lower bound of this integral, one can think of this term

as corresponding to the IRC-safe modification of rα,β in Eq. (2.11). Like with an ordinary

IRC-safe observable, this term has a valid Taylor expansion in αs.

The second line in Eq. (6.9) probes the non-perturbative region directly and so its con-

tribution to the cross section is more subtle. From Sudakov safety, however, we know that

the perturbative double cumulative distribution is exponentially suppressed at small values

of eβ due to the Sudakov factor. Regardless of the shape function f(ε1, ε2), the second line

of Eq. (6.9) will be exponentially suppressed at sufficiently high energies Q. Because this

suppression requires the existence of the Sudakov factor, there is not a valid Taylor series

in αs here. As αs → 0 and the Sudakov factor weakens, the contribution from the singular

region becomes important over an increasingly large energy range. Indeed, if one tries to per-

form an expansion in αs, the non-perturbative corrections will have an essential singularity

in αs. At exactly αs = 0, the Sudakov factor provides no suppression and the contribution

from the singular region dominates the observable, rendering the perturbative calculation

irrelevant. For any finite value of αs, though, the Sudakov factor exponentially suppresses

any non-perturbative effects in the second term in Eq. (6.9).

Of course, for a fixed value of Q, one can always find a value of r where the physics is

entirely non-perturbative (just as one can always find a value of the angularity eα . δαNP

where non-perturbative effects dominate). But for a fixed value of r (or a fixed value of eα),

Sudakov safety ensures that one can always go to a high enough energy Q such that the OPE

expansion dominates the non-perturbative description.

We can estimate the energy scale QSud above which Sudakov safety controls non-pertur-

bative effects. To do this, we will compare the relative size of the two terms from Eq. (6.9).

This requires knowledge of the shape function describing the non-perturbative physics; how-

ever, all we want to show is that the perturbative Sudakov factor is sufficient to exponentially

damp the contribution from the term integrated over the region eβ ∈ [0, η/Q]. Thus, we will

study the ratio of the two terms computed with the perturbative LL double differential cross

section, as defined in Eq. (3.4). We find∫ η/Q
0 deβ eβ

(
∂
∂eα

∂
∂eβ

ΣLL(eα, eβ)
)∣∣∣
eα=reβ∫ r β

α−β

η/Q deβ eβ

(
∂
∂eα

∂
∂eβ

ΣLL(eα, eβ)
)∣∣∣
eα=reβ

=
π
√
β

2
√
αs
√
CF

(
log r

β
α−β − log η

Q

) +O(α0
s) .

(6.10)

Assuming that log r ' 0, the ratio is small when

Q� η e
π
√
β

2
√
αs
√
CF ≡ QSud . (6.11)

For values of energy Q � QSud, the contribution from the non-perturbative region is expo-

nentially suppressed by the perturbative Sudakov factor and the non-perturbative corrections

are dominantly described by the OPE.
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The form of QSud in Eq. (6.11) manifests the essential singularity in αs mentioned earlier.

As αs → 0, the energy scale QSud becomes arbitrarily large, but for finite αs, QSud can take

on reasonable values. Because the LL expression has fixed αs and does not include multiple

emissions, the resulting estimate for QSud is somewhat conservative. For β = 1, αs = 0.12,

and energy scale η = 5 GeV, QSud is approximately 250 GeV. Nevertheless, we must assume

that the LL expression dominates at sufficiently small values of eβ to guarantee that this

contribution is exponentially suppressed at high energies. In the numerical estimates below,

we find that Sudakov safety is effective typically at QSud ' 100–1000 GeV depending on the

choice of α and β.

6.3 Numerical Analysis

To test the suppression of non-perturbative physics on the ratio observable, we implement

a simple shape function which just shifts each of the angularities by an amount δαNP from

Eq. (6.3). That is, for eα � δαNP and eβ � δβNP, we take the effect of this shape function on

the perturbative cumulative double distribution to be

Σ (eα, eβ) = Σpert
(
eα − δαNP, eβ − δ

β
NP

)
. (6.12)

A more realistic shape function would be a full distribution that accounts for correlations be-

tween eα and eβ, but Eq. (6.12) is sufficient to understand the scaling of the non-perturbative

effects with Q.

For an accurate modeling of higher-order physics not included in our LL analysis, we

generate the perturbative distribution with our MLL+MC parton shower from Sec. 5. In

particular, one-loop running of αs is needed to make sure the scaling with energy is realistic.

We terminate the Monte Carlo when the scale of an emission falls below 1 GeV and we set

the scale of non-perturbative physics to be Λ = 0.5 GeV. At the end of the shower, an amount

δαNP is added to the perturbative value of the angularity eα to account for non-perturbative

physics.

We show the effects of adding non-perturbative corrections in Fig. 12, plotting two dif-

ferent jet energies, Q = 500 GeV and Q = 5000 GeV. Because the scaling of the power

corrections in Eq. (6.3) depends on the angular exponents, the different ratio curves rα,β are

sensitive to different power corrections. Overall the non-perturbative corrections to the ratio

are small and decrease significantly as the energy of the jet increases.

As a cross check of our analysis, we can study the effect of non-perturbative physics in a

full Monte Carlo simulation by observing the sensitivity of the cross section to hadronization.

We generate e+e− → qq̄ events simulated with Pythia 8.165 [48, 63] at center-of-mass

energies of 1 and 10 TeV with hadronization turned on and off.22 To analyze the jets, we

cluster jets with the e+e− anti-kT algorithm [22] with FastJet 3.0.3 [64] with a fat jet radius

R0 = 1.5. We analyze only the hardest jet in the event, requiring that the cosine of the angle

22The quarks that are produced are only u, d, or s, so mass effects should be minimal. Apart from the

turning hadronization on and off, we use the default Pythia 8 settings.
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Figure 12: Convolving the MLL+MC results for the ratio rα,β in Sec. 5 with the toy shape

function in Eq. (6.12) with Λ = 0.5 GeV. Shown are Q = 500 GeV (top row) and Q = 5000

GeV (bottom row), with either α = 2 (left column) or α = 1 (right column), sweeping β. As

expected, the non-perturbative corrections fall off at sufficiently high energies. In these plots,

“MC” refers to the MLL+MC shower.

between the jet axis and the initiating hard parton be greater than 0.9. In keeping with the

discussion in Sec. 2.1, we only include particles that lie within an angle R0 = 1.0 from the

broadening axis of the hardest jet. The energy of the jets is required to be in the range of

Q ∈ [450, 550] GeV for the 1 TeV sample and Q ∈ [4500, 5500] GeV for the 10 TeV sample.

We then measure the recoil-free angularities for various values of the angular exponent α of

the jets in the sample. The Pythia 8 results are shown in Fig. 13, which agree qualitatively

with our MLL+MC study in Fig. 12.

Finally, we can study the energy dependence of the non-perturbative corrections directly.
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Figure 13: Effect of hadronization on the ratio rα,β as simulated in Pythia 8.165. The

sample consists of the hardest jet from e+e− → qq̄ events found by the anti-kT algorithm,

keeping all particles that lie within a radius R0 = 1.0 of the broadening axis. Shown are jets

that lie in the energy range Q = [450, 550] GeV (top row) and Q = [4500, 5500] GeV (bottom

row), with either α = 2 (left column) or α = 1 (right column), sweeping β. The dashed

(solid) curves are the distribution at parton (hadron) level. These results qualitatively agree

with the MLL+MC analysis in Fig. 12.

To do this, we compare moments of the distribution of the ratio observable with and without

the inclusion of a shape function. The moments of the ratio observable are defined as

〈rn〉 =
1

σ

∫ 1

0
dr rn

dσ

dr
. (6.13)

In our analysis, we will focus on the mean µ = 〈r〉 and the variance σ2 = 〈r2〉 − 〈r〉2. These

combinations of moments provide a probe into power corrections at different orders in Λ/Q.
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Figure 14: Energy dependence of the non-perturbative corrections to the mean µ = 〈r〉 and

the variance σ2 = 〈r2〉−〈r〉2 of the MLL+MC ratio distribution. Shown is difference between

the value with and without the inclusion of the shape function as a function of the energy Q

of the jet, with α = 2 (left) and α = 1 (right), sweeping β. The scale of non-perturbative

physics is set to Λ = 0.5 GeV. The sharp dips correspond to places where the non-perturbative

corrections are accidentally small. The power corrections to µ and σ2 indeed scale like a power

of Λ/Q (i.e. linear dependence on a log-log plot).

For additive IRC-safe observables like thrust, it was noted in Ref. [65] that while the mean

value of thrust receives power corrections starting at order Λ/Q, the variance of the thrust

distribution first receives power corrections at order Λ2/Q2. This is a consequence of the form

of the leading power corrections to thrust.23 In contrast, the ratio observable is not additive,

so we do not expect µ or σ2 to have dramatically different dependence on Λ/Q.

We illustrate the energy dependence of the non-perturbative corrections in Fig. 14. Here,

we plot the difference of the means ∆µ and variances ∆σ2 between the MLL+MC distributions

with and without the inclusion of the shape function as a function of the jet energy. As shown

in Table 1, all of the differences fall like a (fractional) power of Λ/Q at very high energies,

as expected from our earlier arguments. Unlike for observables like thrust, non-perturbative

23For the simple shape function we use here, the mean value of angularities eα is shifted by δαNP, while the

variance is unchanged because the shape function merely translates the angularity distribution. For a more

complicated shape function, the variance will indeed receive corrections beginning at (δαNP)2 order. In addition,

there exists power corrections suppressed by αs starting at αsδ
α
NP.
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α = 2 α = 1

β = 1.5 β = 1.0 β = 0.5 β = 0.75 β = 0.5 β = 0.25

γ∆µ — 0.86 0.53 0.64 0.50 0.33

γ∆σ2 1.15 1.10 0.58 0.50 — 0.35

Table 1: Scaling exponent of the (Λ/Q)γ power correction to the mean µ and variance σ2,

estimated from the large Q behavior of the curves in Fig. 14. Omitted entries correspond to

ambiguous situations where there a sharp dip in the corresponding curve due to an accidental

cancellation. We see that the exponent γ roughly follows the scaling of δβNP (and not δαNP),

as expected from the discussion below Eq. (6.7).

corrections to the variance do not typically scale away more quickly with Q than corrections

to the mean, so the power corrections to the ratio observable do not manifest themselves as

simple translations of the cross section by an amount Λ/Q. Depending on the choice of α

and β, corrections to the mean and variance are less than 10% for Q & 100–1000 GeV. Taken

together, the observations made in this section are strong evidence that the non-perturbative

corrections to the ratio observable are small and decrease as inverse powers of energy. This

behavior, familiar from IRC-safe observables, follows from Sudakov safety.

7 Conclusions

By explicitly computing the LL resummed double differential cross section of two angularities

and marginalizing, we have shown that the cross section of the ratio rα,β ≡ eα/eβ is well-

defined in perturbative QCD. This is in spite of the fact that the ratio is not IRC safe and so

is undefined at any fixed-order in αs. Instead, the ratio observable is “Sudakov safe”, where

logartihmic resummation suppresses the singular regions of phase space. We have found that

Monte Carlo parton showers resum the leading logarithms of the ratio cross section correctly,

while also incorporating the important effect of multiple emissions which first arise at NLL

order. Multiple emissions enhance the Sudakov suppression as rα,β → 0 and suppress the

cross section near rα,β = 1. The accuracy of the cross section of the ratio observable can be

systematically improved by computing the double differential cross section to higher orders

in resummed perturbation theory and matching to fixed-order results.

Because the ratio observable rα,β is not IRC safe, one has to check that non-perturbative

corrections vanish sufficiently fast as the energy increases. After all, even though we are able

to compute the differential cross section of rα,β in resummed perturbation theory, this result

would be meaningless if non-perturbative physics dominated at arbitrarily high energies. By

assuming the existence of a shape function for the double differential cross section of angu-

larities for incorporating non-perturbative physics, we have shown that, at sufficiently high

energies, the corrections decrease as inverse powers of the energy of the jet. This follows

from Sudakov safety, where potentially large non-perturbative effects are exponentially sup-
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pressed at high energies because of the perturbative Sudakov factor. We conjecture that any

observable that has a Sudakov factor that suppresses the non-perturbative regime is Sudakov

safe and can be computed reliably in resummed perturbation theory. We leave a proof of a

factorization theorem for the double differential cross section for later work.

We chose to study the ratio of angularities because of their simplicity, but we antici-

pate extending the discussion and considerations here to more phenomenologically motivated

ratio-type observables. Dimensionless ratios are ubiquitous in the study of jet substructure,

including N -subjettiness [34, 35], energy correlation function ratios [36], planar flow [13, 37],

and angular correlation and structure functions [38]. These interesting ratio observables are

more complicated to study than the angularities, though, since they typically involve the

ratio of two observables that are first non-zero at different orders in perturbation theory.

This results in complicated phase space considerations and relatively high-order calculations

to determine the leading contributions to the observable. To date, most studies of ratios

observables rely on Monte Carlo predictions, so it is crucial to understand analytically to

what extent these predictions can be trusted.

As an example, we will outline the calculation of the ratio of N -subjettiness jet observ-

ables τ
(β)
2,1 = τ

(β)
2 /τ

(β)
1 for arbitrary values of β. N -subjettiness τ

(β)
N is defined as

τ
(β)
N =

∑
i

pT i min
{
Rβ1,i, R

β
2,i, . . . , R

β
N,i

}
, (7.1)

where the sum runs over all particles in the jet and RA,i is the distance from axis A to particle

i.24 With a cut on the mass of a jet, τ
(β)
2,1 is IRC safe. A calculation of τ

(2)
2,1 at fixed mass

for boosted Z bosons was presented in Ref. [66]. We are interested, however, in determining

the double differential cross section of τ
(β)
1 and τ

(β)
2 with no mass cut, especially since this

variable was measured by the ATLAS experiment in Ref. [67].25

At fixed-order in perturbation theory, computing the double differential cross section

requires an O(α2
s) matrix element because the observable τ

(β)
2 is first non-zero for a jet with

three constituents. While this calculation would be more challenging than the analysis of

angularities presented here, it is in principle straightforward. The lowest-order distribution

for planar flow (at fixed mass)—another observable that is first non-zero at O(α2
s)—was

presented in Ref. [37].

To obtain the resummed double differential cross section presents different challenges.

Ideally, a resummation analysis would resum up through NLL order for sufficient accuracy;

however, even the LL resummation would be interesting. In the case of angularities, we found

that there were two possible phase space regions which contributed to the LL distribution:

when one emission dominated both angularities and when two different emissions set the two

angularities. For the case of N -subjettiness, the phase space regions that contribute at LL

24There are various ways to choose subjet axes, including minimizing τ
(β)
N over all possible axes directions.

25Ultimately, we would like to understand the behavior of τ
(β)
3,2 which is relevant for boosted top identification.

In that case, a cut on the jet mass does not regulate the denominator τ
(β)
2 , as pointed out in Ref. [39].
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to the double differential distribution are more complicated. Possible phase space regions

include:

1. One emission dominating τ
(β)
1 ; a second emission dominating τ

(β)
2 . This emission can

come from the hard jet or off of the emission that dominates τ
(β)
1 .

2. One emission dominating τ
(β)
1 ; two separate emissions dominating τ

(β)
2 .

Thus, to compute the LL (or MLL) resummed double differential distribution of τ
(β)
1 and τ

(β)
2

requires the consideration of up to three emissions in the jet. Of course, restricting the phase

space (i.e. with a cut on τ
(β)
1 ) simplifies the emission structure, but for phenomenology, we

would like to compute the cross section for arbitrary values of τ
(β)
1 and τ

(β)
2 .

A resummed calculation like the one sketched above would shed significant light on the

performance of N -subjettiness as a discrimination observable and provide new insight into

other powerful observables that could be constructed. A full NLL calculation may require

developing new tools for resummation. For example, because of the numerous phase space

constraints in the double differential cross section, the use of soft-collinear effective theory [68–

72] for resummation would require identifying modes in regions of the phase space that have

not yet been studied in detail (see, e.g., SCET+ of Ref. [73] as a first step in this direction). In

addition, the ratio observable would receive contributions from many such regions, and some

kind of interpolation would be needed to obtain the ratio cross section. As ratio observables

are becoming more widely used in studies of jets at the Large Hadron Collider [67, 74–78],

it is important to further develop the analysis of double differential cross sections and ratio

observables. This will put ratio observables on a firm theoretical footing and provide robust

predictions which can be compared to the growing experimental results.
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A Matching Fixed-Order to Resummation

In this appendix, we introduce a procedure for matching the fixed-order double differential

cross section to the LL resummed double differential cross section. The method we consider

is based on Log-R matching [46], and is the natural generalization to double differential

distributions of the known results for their single differential counterparts. The matched

double differential cross section also allows for a systematic improvement in the accuracy of

the cross section for the ratio rα,β, by including fixed-order corrections to the resummed cross

section to any order in αs.
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The Log-R matching procedure requires exponentiating the fixed-order cumulative distri-

bution and eliminating double counting of the logarithms that occur in both the resummation

and the fixed-order expression. To do this, we must first compute the fixed-order cumula-

tive distribution Σ(eα, eβ) from Eq. (2.7) on the physical phase space region of eβ > eα and

eβα > eαβ . We find

ΣLO(eα, eβ) =

∫ eα

0
de′α

∫ eβ

0
deβ

d2σ

deα deβ

= 1− αs
π
CF

{
7

4β
+

3

2

log eβ
β

+
log2 eβ
β

− 2

α
eα +

e2
α

4α
− 2(α− β)

αβ
e
− β
α−β

α e
α

α−β
β

+
α− β
4αβ

e
− 2β
α−β

α e
2α
α−β
β +

log2 eα
eβ

α− β

}
Θ
(
eβα − eαβ

)
Θ (eβ − eα) . (A.1)

Similarly, the resummed cumulative distribution is just the Sudakov factor from Eq. (3.3):

∆(eα, eβ) = e
−αs

π
CF

(
1
β

log2 eβ+ 1
α−β log2 eα

eβ

)
Θ
(
eβα − eαβ

)
Θ (eβ − eα) . (A.2)

Defining R1 via

ΣLO(eα, eβ) = 1− αs
π
CFR1 , (A.3)

the LL resummed matched to O(αs) fixed-order double cumulative distribution is then

ΣLL+LO = e−
αs
π
CFR1 . (A.4)

This cumulative distribution has the correct limits: as eα, eβ → 0, it reduces to the Sudakov

factor; as eα, eβ → 1, the fixed-order distribution dominates. The double differential cross

section that follows is just the double derivative of Eq. (A.4). We find

d2σLL+LO

deα deβ
=

∂

∂eα

∂

∂eβ
e−

αs
π
CFR1 (A.5)

=
2αs
π

CF
α− β

 1

eαeβ
− e
− α
α−β

α e
β

α−β
β +

e
−α+β
α−β

α e
α+β
α−β
β

2

 e−
αs
π
CFR1

+ 4
α2
s

π2
C2
F


 1

α
−
e

α
α−β
β e

− α
α−β

α

α
+
e

2α
α−β
β e

−α+β
α−β

α

4α
−

log eα
eβ

(α− β)eα
− eα

4α


×

−e
α+β
α−β
β e

− 2β
α−β

α

4β
+
e

β
α−β
β e

− β
α−β

α

β
+

log eα
eβ

(α− β)eβ
− 3

4βeβ
−

log eβ
βeβ


 e−αsπ CFR1 ,

which is defined on the physical phase space eβ > eα, eβα > eαβ . The differential cross section

for the ratio observable rα,β can then be computed by marginalizing according to Eq. (1.3):

dσLL+LO

dr
=

∫ r
β

α−β

0
deβ eβ

d2σLL+LO

deα deβ

∣∣∣∣
eα=reβ

. (A.6)
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Results from this LL+LO distribution are shown in Fig. 6.

B Modified Leading Logarithmic Resummation

In this appendix, we compute the MLL Sudakov factor for the double differential cross section

of angularities eα and eβ. To do this, we need the expression for the one-loop running coupling

and the subleading terms in the splitting function. The running coupling is

αs(µ) =
αs(Q)

1 + αs(Q)β0 log µ
Q

, (B.1)

where αs(Q) is the coupling evaluated at the scale Q and β0 is the coefficient of the one-loop

β-function:

β0 =
11CA − 2nF

6π
. (B.2)

For 5 flavors of quarks (nF = 5), β0 = 23
6π . The quark splitting function is

Pq(z) = CF
1 + (1− z)2

z
. (B.3)

To MLL accuracy, we can replace the non-singular component of the splitting function by its

average on z ∈ [0, 1] which gives

Pq(z)
MLL = CF

(
2

z
− 3

2

)
. (B.4)

In the language used in this paper, using the averaged splitting function of Eq. (B.4) gives

MLL accuracy, while using the full splitting function from Eq. (B.3) gives MLL+LO accuracy.

To compute the MLL Sudakov factor, we follow a similar procedure to that used in

Sec. 3.1 for the LL Sudakov. The value of the exponent in the Sudakov factor is found by

integrating over the same region as defined in Fig. 4, albeit with non-trivial dependence on z

and θ. To MLL accuracy, this is

R(eα, eβ) =
CF
π

∫ 1

0

dθ

θ

∫ 1

0
dz Pq(z)

MLL αs(zθQ)
[
Θ
(
zθβ − eβ

)
+ Θ

(
eβ − zθβ

)
Θ (zθα − eα)

]
=
CF
π

[∫ 1

e
1/β
β

dθ

θ

∫ 1

eβ/θβ
dz

(
2

z
− 3

2

)
αs(Q)

1 + αs(Q)β0 log zθ

+

∫ 1(
eα
eβ

) 1
α−β

dθ

θ

∫ eβ/θ
β

eα/θα
dz

(
2

z
− 3

2

)
αs(Q)

1 + αs(Q)β0 log zθ

 . (B.5)

Note that we evaluate the coupling at the scale defined by the relative transverse momentum

of the emitted gluon, kT = zθQ. Keeping all terms of the form αnsL
m where L is the logarithm
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of eα or eβ with n ≤ m, we find

R(eα, eβ) =
CF
πβ0

[
− 2

αsβ0

β

β − 1
U

(
1 + αsβ0

log eβ
β

)
+

2

αsβ0

1

α− 1
U (1 + αsβ0 log eα)

+
2

αsβ0

α− β
(α− 1)(β − 1)

U

(
1 + αsβ0

log e1−β
α eα−1

β

α− β

)

+
3

2
log

(
1 + αsβ0

log eβ
β

)]
, (B.6)

where αs ≡ αs(Q) and the function U(x) is the logarithm of the inverse of the Lambert

W -function: U(x) = x log x. The MLL Sudakov factor for eα and eβ is thus

∆(eα, eβ)MLL = e−R(eα,eβ) . (B.7)

It is easy to check that the terms at αsL
2 order in Eq. (B.7) agree with the LL expression for

the Sudakov factor as computed in Eq. (3.3) in the β0 → 0 limit.

While it might appear that the MLL Sudakov is singular for α or β equal to 1, Eq. (B.6)

has a finite limit in each case. For α = 1, Eq. (B.6) becomes

R(e1, eβ) =
CF
πβ0

{
2

1− β
log

e1

eβ
− 2

αsβ0

1

1− β
(1 + αsβ0 log eβ) log (1 + αsβ0 log e1)

+
2

αsβ0

β

1− β

(
1 + αsβ0

log eβ
β

)
log

(
1 + αsβ0

log eβ
β

)
+

3

2
log

(
1 + αsβ0

log eβ
β

)}
. (B.8)

For β = 1, Eq. (B.6) becomes

R(eα, e1) =
CF
πβ0

{
2

αsβ0

1

α− 1
(1 + αsβ0 log eα) log (1 + αsβ0 log eα)

− 2

αsβ0

α

α− 1

(
1 + αsβ0

log eα
α

)
log (1 + αsβ0 log e1)

− 2

α− 1
log eα + 2

α

α− 1
log e1 +

3

2
log (1 + αsβ0 log e1)

}
. (B.9)

The double differential cross section of eα and eβ and the cross section for the ratio observable

can be found from the Sudakov factor as described in Sec. 3.

Results for the MLL distribution are shown in Fig. 7. Because MLL includes some sub-

leading terms in the splitting function, this distribution formally includes all logarithmically-

enhanced terms of LL+LO in App. A. The MLL+LO distributions shown in Fig. 8 uses the

full splitting functions, and includes all of the physics of LL+LO.
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C Power Corrections to the Double Cumulative Distribution

In this appendix, we relate the leading power corrections of the double cumulative distribution

of angularities to those of a single angularity. In the OPE region, the power corrections to

the double cumulative distribution are

ΣOPE(eα, eβ) = Σpert(eα, eβ) + c1,0δ
α
NP

∂

∂eα
Σpert(eα, eβ) + c0,1δ

β
NP

∂

∂eβ
Σpert(eα, eβ)

+O
(

(δαNP)2 ,
(
δβNP

)2
)
, (C.1)

while the power corrections to the single cumulative distribution are

ΣOPE(eα) = Σpert (eα) + c1δ
α
NP

∂

∂eα
Σpert (eα) +O

(
(δαNP)2

)
. (C.2)

Integrating out the angularity eβ in the double cumulative distribution necessarily results in

the single cumulative distribution. To integrate out eβ, we set eβ = 1:

Σ(eα) = Σ(eα, eβ)|eβ=1 . (C.3)

Applying this to Eq. (C.1) and associating terms at Λ/Q order, we find

ΣOPE(eα, 1) = Σpert(eα, 1) + c1,0δ
α
NP

∂

∂eα
Σpert(eα, 1) + c0,1δ

β
NP

∂

∂eβ
Σpert(eα, eβ)

∣∣∣∣
eβ=1

= Σpert (eα) + c1δ
α
NP

∂

∂eα
Σpert (eα) . (C.4)

We assume that the double differential cross section vanishes when either eα or eβ equal 1,

which implies that
∂

∂eβ
Σpert(eα, eβ)

∣∣∣∣
eβ=1

= 0 . (C.5)

Then, to first order in δαNP, c1,0 = c1. A similar result holds for eβ. Correlations between the

power corrections of the different angularities first arise at higher orders in powers of Λ/Q.
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