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Abstract: The Hodge numbers of generic elliptically fibered Calabi-Yau threefolds over

toric base surfaces fill out the “shield” structure previously identified by Kreuzer and

Skarke. The connectivity structure of these spaces and bounds on the Hodge numbers

are illuminated by considerations from F-theory and the minimal model program. In

particular, there is a rigorous bound on the Hodge number h21 ≤ 491 for any elliptically

fibered Calabi-Yau threefold. The threefolds with the largest known Hodge numbers are

associated with a sequence of blow-ups of toric bases beginning with the Hirzebruch surface

F12 and ending with the toric base for the F-theory model with largest known gauge group.
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1. Introduction

Since Calabi-Yau threefolds were first identified as key geometries for superstring compact-

ification to four dimensions [1], the classification of manifolds of this type has been widely

studied by string theorists and mathematicians (See [2] for an introduction to the sub-

ject.) It is still not known whether there are a finite number of distinct topological classes

of Calabi-Yau threefolds, or if the Hodge numbers of such manifolds are bounded. Toric

geometry provides a powerful tool for describing certain classes of Calabi-Yau manifolds.

Using a construction of Batyrev [3], Kreuzer and Skarke [4] produced a comprehensive list

of some 473.8 million examples of families of Calabi-Yau manifolds associated with four-

dimensional reflexive polytopes. These examples include manifolds with 30,108 distinct

pairs of Hodge numbers. Graphed on a scatter plot, these Hodge numbers take the famous

“shield” shape (Figure 1). While other classes of Calabi-Yau manifolds have since been

constructed (see for example [6, 7], [8] for a review), they give Hodge numbers that fit

within this same general shape. The boundary of the set of allowed Hodge numbers has

not yet been explained in any systematic way.

Recently, D. Morrison and the author used an alternative approach to construct a

large class of Calabi-Yau threefolds [9, 10]. Motivated by F-theory considerations, we sys-

tematically analyzed the set of surfaces that can support elliptically fibered Calabi-Yau

threefolds. These base surfaces are all connected in a complicated network through transi-

tions associated with blowing up and down points in the surface. From the mathematics of

the minimal model program, all such bases (aside from the trivial example of the Enriques

surface, which is connected in a more complicated way) can be found by blowing up a

series of points on P
2 or the Hirzebruch surfaces Fm [11, 12]. By analyzing the intersection

structure of irreducible effective divisors on the base surface, in [9] we identified specific

– 1 –



-1000 -500 0 500 1000
Χ� 2 Hh11 - h21L0

100

200

300

400

500

h11 + h21

Figure 1: The 30,108 distinct Hodge numbers of the 473.8 million Calabi-Yau threefolds identified by

Kreuzer and Skarke. Data from [5].

geometric structures (“non-Higgsable clusters” of divisors) that characterize the geometry

of elliptically fibered Calabi-Yau threefolds. In particular, in [10] we used this approach to

construct all smooth toric bases that support elliptic fibrations with section where the total

space is a Calabi-Yau threefold. There are 61,539 such toric bases. While the approach

taken in [10] is also based in toric geometry, the analysis is simplified from that of work

such as [4] by the focus on the geometry of the base. The analysis of [9] is also applicable

to a systematic analysis of non-toric bases and Calabi-Yau threefolds.

In this paper we consider the Hodge structure of generic Calabi-Yau threefolds over

the 61,539 bases constructed in [10]. We find that the Hodge numbers h11, h21 of these

manifolds are distributed throughout the “shield” region identified in [4]. The geometry

of the base surfaces connects all these Calabi-Yau manifolds into a connected web, in

accordance with the conjecture of Reid [13]. Furthermore, the structure of the bases gives a

clear geometric understanding of the outer boundary of the shield region. The top boundary

of the region of known allowed Hodge numbers roughly follows a specific trajectory of blow-

ups of the base F12 that terminates in the Calabi-Yau associated with the F-theory model

having the largest gauge group among models in this class. Although the analysis in this

paper focuses on generic elliptic fibrations over toric bases, a much larger class of elliptically

fibered Calabi-Yau manifolds can be realized by tuning Weierstrass moduli, as in F-theory

constructions, to produce singular elliptic fibrations that are then resolved. Again, though

we focus primarily here on toric bases, the methods of [9] suggest that similar results may

hold for elliptically fibered Calabi-Yau threefolds over non-toric bases.

In Section 2 we describe the Hodge structure of the generic elliptic fibrations over the

bases identified in [10]. We characterize the bounds on the region of allowed Hodge numbers

in Section 3. In Section 4 we make some brief comments on extensions of this analysis to

non-generic elliptic fibrations, non-toric bases, and non-elliptically fibered threefolds.
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Cluster gauge algebra Hcharged Possible connected clusters

(-12) e8 0 (-2, -2, -3) or below

(-8) e7 0 (-2, -3, -2) or below

(-7) e7 28 (-2, -3, -2) or below

(-6) e6 0 (-3) or below

(-5) f4 0 (-3, -2, -2) or below

(-4) so(8) 0 (-4) or below

(-3, -2, -2) g2 ⊕ su(2) 8 any cluster

(-3, -2) g2 ⊕ su(2) 8 (-8) or below

(-3) su(3) 0 (-6) or below

(-2, -3, -2) su(2)⊕ so(7)⊕ su(2) 16 (-8) or below

(-2, -3) g2 ⊕ su(2) 8 (-5) or below

(-2, -2, -3) g2 ⊕ su(2) 8 (-5) or below

(-2, -2, . . . , -2) no gauge group 0 any cluster

Table 1: Allowed clusters and connections between clusters by −1 curves in a toric surface that can be

used as the base of an elliptic fibration. For each cluster, the table indicates the resulting contribution to

the gauge algebra, the charged matter content, and the set of clusters that can follow the first cluster after a

−1 curve, where “or below” refers to the order of clusters in this table. Note that the clusters (−3,−2,−2)

and (−3,−2) are ordered; for example, a −12 can be connected by a −1 curve to the final −2 of the cluster

(−3,−2,−2) but not to the −3 curve. For clarity these clusters are listed in both directions.

2. Hodge structure

In [9, 10] we classified the 61,539 smooth toric compact complex surfaces that can support

an elliptically fibered Calabi-Yau threefold. We do not repeat the analyses of those papers

here, but follow the notation of those papers and briefly summarize some of the salient

results here. Each toric base is described by a fan associated with a closed loop of k divi-

sors D1, . . . Dk with self-intersection Di ·Di = −ni and nonvanishing intersection between

adjacent divisors Di ·Di+1 = Dk ·D1 = 1. The sequence of self-intersection numbers can

only contain specific subsequences (“clusters”) of self-intersections −2 or below. Only cer-

tain combinations of clusters can be connected by −1 curves; a list of allowed clusters and

connections appears in Table 1

The allowed toric base surfaces are all realized by blowing up a succession of points

on either P
2 or Fm,m ≤ 12. Some of the 61,539 bases are not strictly toric in that they

arise from toric bases with curves of self-intersection −9,−10, or −11 that are blown up at

non-toric points to give −12 curves, but these bases have very similar behavior to the true

toric bases and we include these in the class of toric bases for the purposes of this paper.

In [10], the toric bases were analyzed in the context of F-theory [14, 15, 12] compacti-

fications to 6 dimensions. Though the results that we describe here for elliptically fibered

Calabi-Yau manifolds are independent of the physics of F-theory, the tools and perspec-

tive provided by F-theory and the minimal model program for classification of surfaces are

very helpful in illuminating the structure of these elliptic fibrations. In the six-dimensional
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supergravity theory produced by an F-theory compactification on an elliptically fibered

Calabi-Yau threefold, gravitational anomaly cancellation relates the numbers of tensor,

vector, and hypermultiplet fields in the 6D theory through [16, 17, 18] (see [19] for a review

of 6D supergravity theories, anomalies, and F-theory compactifications).

H − V = 273 − 29T . (2.1)

For each base, the numbers of these types of fields, as well as the rank r of the gauge group

are determined from the toric data. In particular, T = k − 3, where k is the number of

curves in the fan of the base, and the number of neutral hypermultiplets is related to the

number of Weierstrass monomials, after taking proper account of automorphisms of the

base and degrees of freedom associated with −2 curves not carrying a gauge group. The

gauge group and charged matter content are determined by the set of clusters as described

in Table 1, with for example a single −12 curve corresponding to an e8 component in the

gauge algebra. The toric data also allows for a determination of the Hodge numbers h11, h21
of the generic elliptically fibered threefold X over each base B, where

h11(X) = r + T + 2 = r + k − 1 (2.2)

and

h21(X) = Hneutral − 1 = 272 + V − 29T −Hcharged . (2.3)

in terms of the fields in the corresponding supergravity model from F-theory.

The 7524 distinct Hodge number combinations for the elliptically fibered Calabi-Yau

threefolds over the 61,539 toric bases are plotted in Figure 2. These Hodge numbers exhibit

the same “shield” pattern seen in the Kreuzer and Skarke data. In fact, the Hodge data

from toric bases is a proper subset of the set of Hodge numbers from the Kreuzer and Skarke

list. It is not surprising that the generic elliptic fibrations over toric bases all appear in the

Kreuzer and Skarke list. What is perhaps more surprising is that the smaller list from the

set of toric bases extends through the same general range of Hodge numbers realized on

the larger list, and in particular contains all of the larger combinations of Hodge numbers

near the upper limits of the range found by Kreuzer and Skarke. The list of threefolds from

toric bases does not extend as close to the origin, however, in the region of small Hodge

numbers. Note that while the Hodge number pairs appearing in the Kreuzer and Skarke

list are invariant under mirror symmetry, which exchanges h11, h21, the Hodge numbers

for fibrations over toric bases do not have this symmetry. In many cases there are several

distinct families of Calabi-Yau manifolds in Kreuzer and Skarke’s list that have a given

set of Hodge numbers. The fibration structure of these manifolds can be analyzed, for

example by using the PALP software package [20], to identify which toric hypersurface

model corresponds to a fibration over a given toric base.

As mentioned above, all 61,539 of the Calabi-Yau threefolds constructed in this fashion

are connected through extremal transitions associated with blowing up and down points

on the base. In F-theory these transitions are associated with tensionless string transitions

[21, 12]. The number of blow-ups from P
2, or one less than the number of blow-ups from Fm

corresponds to the number of tensor multiplets T in the corresponding F-theory model. The
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Figure 2: The 7524 distinct Hodge number pairs for generic elliptically fibered Calabi-Yau threefolds over

toric bases (dark/blue data points). Plot axes are Hodge numbers h11, h21. Kreuzer-Skarke Hodge pairs

are shown in background in light gray for comparison.

parameter T = k−3 is useful in characterizing the complexity of the base. The models with

T = 0, 1 are P2 and the Hirzebruch surfaces, and all lie on the left-hand side of the diagram,

ranging from F0,F1, and F2, which all have Hodge numbers (h11, h21) = (3, 243), and P
2

with Hodge numbers (2, 272) to F12 with Hodge numbers (11, 491). As more points are

blown up, T increases, as does the rank of the gauge group, so h11 monotonically increases.

At the same time, h21 monotonically decreases along any blow-up sequence. The change

in h21 denotes the number of free parameters that must be tuned in the Weierstrass model

over a given base to effect a blow-up. Note that the monotonic increase in h11 and decrease

in h21 is true for any sequence of blow-up operations on the base, whether or not the base

is toric.

3. Bounds

The shape of the upper bound on Hodge numbers in the “shield” configuration has been

noted in previous work, but, as far as the author of this paper knows, never explained.
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From the point of view of elliptic fibrations over toric bases, however, the upper boundary

on allowed Hodge numbers has a simple and relatively clear interpretation.

We begin by considering the elliptically fibered Calabi-Yau threefolds with the largest

values of h21. Since h21 decreases with any blow-up of the base (toric or not), the largest

values of this parameter will appear for bases with a minimal value of T . These are the

Hirzebruch surfaces Fm, which (except for F1) do not contain −1 curves that can be further

blown down. From (2.3) it is clear that the largest value of h21 will appear when the gauge

group is largest. This occurs for the base F12, where the Hodge numbers associated with the

corresponding Calabi-Yau threefold are (11, 491), since the non-Higgsable gauge algebra in

the corresponding 6D F-theory model is e8 with V = 248, and there is no charged matter.

This gives a rigorous bound h21 ≤ 491 for any Calabi-Yau threefold that admits an elliptic

fibration (independent of whether the base is toric). Indeed, (11, 491) is the Hodge number

pair with the largest value of h21 in both the toric base and Kreuzer-Skarke lists, suggesting

that this bound may hold even outside the class of elliptically fibered Calabi-Yau threefolds.

Going to the other corner of the allowed region, we consider threefolds with the largest

values of h11. As described in [10], the largest value of T arising from a threefold associated

with a toric base is T = 193. The associated 6D gravity theory has a gauge algebra

containing 17 e8 summands, 16 f4 summands, and 32 g2 ⊕ su(2) summands, and was

originally identified in [22, 23]. The chain of self-intersections of the divisors in the toric

base is essentially 16 repeated copies of the pattern

. . . ,−12,−1,−2,−2,−3,−1,−5,−1,−3,−2,−2,−1,−12, . . . (3.1)

with a 0 self-intersection curve connecting to the two ends. The actual toric base has −11’s

in the next-to-last positions on each side that must be blown up at additional non-toric

points, as discussed in [10]. We denote this sequence by the shorthand

(−12//−11//(−12)13//−11//−12, 0) (3.2)

where the double slash denotes a connection between the adjacent curves by the sequence

of curves connecting the two −12’s in the pattern (3.1), and (−12)13 indicates 13 12’s

connected by 12 copies of this pattern. The Hodge numbers associated with the generic

threefold over this surface are (491, 11), so this Calabi-Yau manifold should be related to

the generic threefold over F12 by mirror symmetry, as noted in [22]. The maximum value

of h11 = 491 is compatible with mirror symmetry and the bound h21 ≤ 491 given above

for elliptically fibered Calabi-Yau threefolds.

Now, we consider the shape of the upper boundary of the shield region, which in

Figure 2 describes the maximum value of h21 that can be realized as a function of h11. For

threefolds over toric bases, the sequence of extreme values along this curve are determined

in a simple way by the sequence of blow-ups, starting from the base F12, that maximize the

increase in h11 as h21 decreases, culminating in the base (3.2). In the F-theory picture, this

trajectory is followed by increasing the dimension of the gauge group (minus the number

of charged matter fields) as quickly as possible when blowing up points on the base. In

situations not involving an increase in the gauge group or change in matter content, a
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blow-up on the base trades 29 neutral hypermultiplet moduli for one tensor multiplet, as

can be seen from (2.1). For example, blowing up one, two, three, or four toric points on

the base F12 cannot produce a new gauge group or matter and must lead to changes in the

Hodge numbers of ∆h11 = +1,∆h21 = −29. Some of the configurations in the sequence

of toric bases realized by blowing up points on F12 are listed in Table 1, along with the

resulting Hodge numbers. For the first four blow-ups, there is no way to increase the gauge

group, so h21 drops by 29 for each blow-up and h11 increases by one. The first three pairs

of Hodge numbers (11, 491), (12, 462), and (13, 433) in this sequence have the largest values

of h21 not only in the toric base data set but also in the Kreuzer and Skarke data set

(Figure 3). This explains the slope of −29 of the outer curve of the bounding region at the

tip. Note that there are two distinct toric constructions in the Kreuzer and Skarke data

set with Hodge numbers (12, 462), and four with (13, 433). Using PALP, it is easy to check

that, for example, one of the (12, 462) cases corresponds to a non-generic elliptic fibration

over F12 as expected. On the fifth blow-up, it is possible to produce a base associated with

a gauge group g2 ⊕ su(2) and non-Higgsable matter. This gives a threefold with Hodge

numbers (19, 355). At this point the slope of the bounding curve becomes less steep, as

further gauge groups can be added with additional blow-ups.

From the threefold with Hodge numbers (13, 433) there is a chain of threefolds over

toric bases that roughly follows the upper boundary of the region of allowed Hodge numbers

in the Kreuzer-Skarke database between h11 = 13 and h11 = 150. The bases associated

with these threefolds are realized by further blow-ups of F12 that maximize the size of

the gauge group (with matter subtracted). Note that in this range the threefolds with

toric bases are not uniformly at the absolute boundary of the allowed region. The Kreuzer-

Skarke database includes some Hodge pairs that are slightly above those realized by generic

threefolds over toric bases in this region. For example, the Kreuzer-Skarke data includes

a threefold with Hodge numbers (14, 416) though no toric base gives a generic threefold

with these Hodge numbers (though (416, 14) does appear in the toric base data, which is

not mirror symmetric). We return to this example in Section 4.1

Near the region of the central peak in the “shield,” the data from generic threefolds over

toric bases again contains all the Hodge pairs realized in the Kreuzer-Skarke database (see

Figure 4). In particular, for h11 > 160 and h21 > 180, all the points on the upper boundary

of the region are realized by the sequence of blow-ups of F12 mentioned above. Part of this

sequence of bases is given in Table 2, where two separate sequences of blow-ups connect

the bases with T = 60, 65, 75 and T = 60, 64, 75. Note that the bases in the sequence

with T = 64, 75, 86, 97 are connected in order by combinations of 11 blow-ups at each

stage. When, for example, the point at the intersection of the −10 and following −1 curves

is blown up in the base with T = 75, the sequence becomes −11,−1,−2,−2,−2,−3, . . ..

As discussed in [9] this base does not support an elliptic fibration, the point between the

−2 and −3 curves leaves the Kodaira classification and must be blown up, leading to

further blow-ups. In the toric language this is easy to see from the dual polytope to the

toric fan, as discussed in [10]; the additional blow-ups are along curves where sections

f ∈ −4K, g ∈ −6K must vanish to degrees 4, 6 once the first blow up is performed. The

“point” of the central peak is associated with Hodge numbers (251, 251). The associated
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Figure 3: The “tip” of the shield region containing known Calabi-Yau threefold Hodge numbers with

large h21. Large (blue) dots represent generic threefolds over toric bases, small (gray) dots are from

Kreuzer-Skarke list. Dots connected with a solid line represent the line of toric bases connected by blow-up

transitions closest to the shield boundary. Dotted line and mid-size (red) dot represents a threefold realized

by tuning a Weierstrass model over the toric base corresponding to Hodge numbers (13, 433). (Many other

Hodge pairs from the Kreuzer-Skarke list can be realized in a similar fashion by tuning Weierstrass moduli,

though only one example is depicted.)

toric base has self-intersections (−12// − 11//(−12)7 , 0, 6), and, as for F12, the next few

blow ups cannot increase the gauge group so decrease h21 by 29 while increasing h11 by

1. It is interesting to note that these apparently very different geometric steps — blowing

up 11 points simultaneously in the bases with Hodge numbers (164, 254), . . . , (222, 252),

and blowing down single curves in the bases with Hodge numbers (252, 222), . . . , (254, 164)

— are dual through mirror symmetry1. Understanding the relationship between these

transitions may give some new insights into mirror symmetry.

Continuing down the chain, after several blow-ups the gradient again becomes less

steep, leading to a final sequence of bases carrying elliptically fibered threefolds with max-

imal values of h11. Again, the sequence is the mirror image of the initial descent with

gradient −29, and involves 11 blow ups at each of the final steps.

1Though as mentioned above the toric base data does not necessarily give mirror symmetric Calabi-Yau

constructions, the corresponding geometries in the Kreuzer and Skarke database can be identified from the

Hodge numbers and polytope sizes, and are mirror symmetric.
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T curve self-intersection numbers h11, h21
1 (-12, 0, 12, 0) (11, 491)

2 (-12, -1, -1, 11, 0) (12, 462)

3 (-12, -1, -2, -1, 10, 0) (13, 433)

4 (-12, -1, -2, -2, -1, 9, 0) (14, 404)

5 (-12, -1, -2, -2, -2, -1, 8, 0) (15, 375)

6 (-12, -1, -2, -2, -3, -1, -2, 8, 0) (19, 355)
...

...
...

60 (−8,−1,−2,−3,−1,−5,−1,−3,−2,−2,−1,−11//124 , 0, 6) (159, 255)

64 (9//11//124 , 0, 6) (164, 254)

65 (−8,−1,−2,−3,−2,−1,−8,−1,−2,−3,−1,−5, (176, 254)

−1,−3,−2,−2,−1, (−12)5 , 0, 6)

75 (−10// − 11//(−12)5 , 0, 6) (193, 253)

86 (−11// − 11//(−12)6 , 0, 6) (222, 252)

97 (−12// − 11//(−12)7 , 0, 6) (251, 251)

98 (−12// − 11//(−12)7,−1,−1, 5) (252, 222)

99 (−12// − 11//(−12)7 ,−1,−2,−1, 4) (253, 193)

100 (−12// − 11//(−12)7 ,−1,−2,−2,−1, 3) (254, 164)
...

...
...

171 (−11// − 11//(−12)11// − 11// − 11, 0) (433, 13)

182 (−12// − 11//(−12)12// − 11// − 11, 0) (462, 12)

193 (−12// − 11//(−12)13// − 11// − 12, 0) (491, 11)

Table 2: Some of the toric bases that arise in the sequence of blow-ups from F12 to the maximal model with

T = 193, and the Hodge numbers of the generic elliptically fibered Calabi-Yau threefold over these bases.

This sequence of threefolds runs along the upper boundary of the “shield” region of known Calabi-Yau

threefold Hodge numbers.

4. Extensions

4.1 Tuning models over toric bases

The threefolds we have considered here are the generic Weierstrass models over each toric

base. This gives only a very small fraction of the full set of threefolds that can be realized

as elliptic fibrations over toric bases. As has been widely studied in the context of F-

theory, by tuning the Weierstrass coefficients over any given base the degree of vanishing

of the discriminant over given curves can be enhanced. This produces a singular elliptic

fibration that must be resolved to get a smooth Calabi-Yau. In the F-theory picture, these

singularities in the discriminant locus give rise to nonabelian gauge group factors in the

6D supergravity theory that can be identified through the Kodaira classification and the

Tate algorithm [24, 12, 25, 26, 27]. In [10] we gave an explicit description of the basis of

monomials for Weierstrass models over any of the 61,539 toric bases. In general, from the

F-theory point of view tuning monomials to get a higher degree of vanishing of f, g over a
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Figure 4: The region around the central point of the “shield” region of known allowed Hodge numbers

for Calabi-Yau threefolds. Large (blue) dots represent generic threefolds over toric bases, small (gray) dots

are from Kreuzer-Skarke list. Dots connected with a solid line represent the line of toric bases connected

by blow-up transitions closest to the shield boundary.

given curve will also give rise to charged matter fields associated with the intersection of

that curve with other curves and with the rest of the discriminant locus [25, 28, 29].

For the Hodge numbers of the smooth resolved Calabi-Yau, the effect of tuning Weier-

strass moduli to enhance the vanishing of the discriminant locus over certain curves de-

creases h21. The appearance of gauge groups in the corresponding F-theory model increases

h11, and the appearance of matter decreases h21 further. Thus, for each of the 61,539 generic

Calabi-Yau threefolds discussed in the main part of this paper there is a large family of

additional threefolds with larger h11 and smaller h21. Anomaly cancellation conditions

in 6D supergravity strongly constrain the combinations of gauge groups and matter con-

tent that can be realized for F-theory models associated with elliptic fibrations over any

given base [30, 31, 32]. In particular, the number of moduli available in h21 provides a

bound on the complexity of the models that can be realized over any given base through

(2.3). In [33], it was conjectured that by tuning Weierstrass moduli any combination of

gauge groups over specific divisors and matter content compatible with anomaly cancella-

tion conditions could be realized in F-theory, up to the limit imposed by the number of

degrees of freedom in neutral hypermultiplets (h21). We are not aware of any exceptions

to this conjecture at this time. A systematic study of F-theory models produced by tuning

Weierstrass coefficients in this way to produce SU(N) gauge groups was carried out over
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Hirzebruch bases Fm,m = 0, 1, 2 in [33], and over P
2 in [34]. A systematic analysis of the

T = 0 6D supergravity theories corresponding to models over P2 with SU(N) gauge groups

was carried out in [35], and the possible matter representations compatible with anomaly

cancellation were identified in this case. In general, there is no systematic classification of

codimension two singularities in F-theory models corresponding to different matter repre-

sentations [34, 36, 37]. Braun has systematically identified some 100,000 toric hypersurface

Calabi-Yau threefolds in the Kreuzer-Skarke database that are elliptic fibrations over P
2

[38]. These include many of the SU(N) models studied in [35, 34], as well as a wide range

of other models.

In principle, it should be possible to systematically construct a tremendous number of

different elliptically fibered Calabi-Yau threefolds by tuning Weierstrass moduli to achieve

different F-theory models over the 61,539 toric bases. The Hodge numbers of these three-

folds can easily be computed through (2.2) and (2.3). It is possible that many of these

threefolds will not have a construction through the Batyrev method and will not be con-

tained in the Kreuzer-Skarke database. On the other hand, because of the Hodge number

structure and reduction in h21 when tuning moduli, these models are likely to lie within

the shield region.

A full exploration of Calabi-Yau threefolds associated with these tuned Weierstrass

models is left for future work, but we mention a few specific examples here. In [33] we

carried out an explicit construction of F-theory models on Fm for small values of m with

SU(N) gauge groups on the divisor Σ having self-intersection Σ · Σ = −m, and explicitly

computed the degrees of freedom used in this construction. The simplest class of cases

are SU(N) models on F2. Tuning the Weierstrass model to realize this gauge group on Σ

requires fixing N2−1 moduli, and from anomaly considerations there must be 2N charged

hypermultiplets in the fundamental representation of SU(N). The Hodge numbers for the

resolved elliptically fibered threefolds in these cases are then (2+N, 242−N2). While most

of these Hodge pairs do not appear in the spectrum associated with toric bases, they appear

in the Kreuzer-Skarke data up to N = 15, which is precisely the upper limit expected from

anomaly conditions [33]. It is natural to expect that these models in the Kreuzer-Skarke

database are the resolved elliptic fibrations over F2 with enhanced gauge symmetry in the

F-theory picture, since the Hodge numbers are relatively sparse in that region. In fact,

(4, 238) (the N = 2 case) is the point with h11 = 4 having the largest value of h21, and

(5, 233) (the N = 3 case) has the largest h21 for h11 = 5 aside from the (5, 251) point

associated with F3. Direct computation with PALP confirms that, for example, the unique

example with Hodge numbers (4, 238) is a tuned Weierstrass model over the base F2.

Another simple class of tuned Weierstrass models with SU(N) gauge groups are those

associated with elliptic fibrations over P
2, where the SU(N) is realized over a degree

one curve. These models were constructed from the supergravity and F-theory points

of view in [35, 34]. The corresponding resolved Calabi-Yau threefolds have (h11, h21) =

(1 + N, 271 − N(45 − N)/2) for N ≥ 3, and (3, 231) for N = 2. These Hodge numbers

appear in the Kreuzer-Skarke database for N from 2 up to the maximum expected of

24. These models were identified in the Kreuzer-Skarke data by Braun [39], who has

explicitly analyzed the corresponding toric models and determined that many of them have
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a fibration structure matching precisely with the resolved Calabi-Yau manifolds associated

with enhanced symmetry on P
2 bases.

Finally, we can use the appearance of enhanced symmetry with tuning of moduli

to explain some of the points in the Kreuzer-Skarke database that lie slightly above the

trajectory of generic threefolds over toric bases described in the previous section. While

in general tuning moduli leads to a decrease in h21 that keeps the Hodge data below this

curve, near the boundary there are cases when tuning a small gauge group gives a larger

value of h21. One place where such configurations are easy to identify is in the regions

where the gradient of the shield boundary is steepest. This occurs, for example, near the

point (11, 491) associated with the F12 base, where the gradient is −29. Tuning a gauge

group on the +12 curve on F12 produces large amounts of charged matter, and cannot

give points near the boundary. There are also no single blow-ups of F12 that can be

tuned to give models with enhanced gauge symmetry and large h21. Blowing up F12 twice,

however, gives the toric base described by the sequence of curves with self-intersections

(−12,−1,−2,−1, 10, 0); the generic threefold over this base has Hodge numbers (13, 433).

A gauge group SU(2) on the second −1 curve in the F-theory picture can be shown to

have 10 fundamental matter representations, so that the resolved Calabi-Yau has Hodge

numbers (14, 416). This is precisely the first point observed above in the Kreuzer-Skarke

data that lies above the trajectory of maximal blow-ups of F12 roughly outlining the upper

boundary of the Hodge shield, as shown in Figure 3.

All of the tuned models just described involve gauge groups on toric divisors on the

bases in the F-theory picture. There are also more complicated ways of tuning a gauge

group. For example, as analyzed in [35, 34] for elliptic fibrations over the base P
2, gauge

groups can be tuned over a divisor described by a degree b curve in the base. As b in-

creases, the possible matter representations become more exotic, and the complexity of

the corresponding resolved Calabi-Yau threefolds grows. For example, for b = 2 the

most generic model with an SU(N) gauge group has 48 − 4N fundamental and 6 anti-

symmetric representations. The Hodge numbers for the corresponding threefolds will be

(1+N, 271+2N2−45N). Again, these numbers appear in the Kreuzer-Skarke database for

N from 3 up to (and beyond) the expected bound of 12. Because this is a fairly populated

region, without further analysis it is unclear whether the corresponding Calabi-Yau’s are

the associated elliptic fibrations; it would be interesting to understand these and related

models further. In general the Calabi-Yau threefolds arising from tuning gauge groups over

non-toric divisors may have no convenient toric description, and may not appear in the

Kreuzer-Skarke list. As another example, from anomaly analysis it seems that there should

be a 6D model possible over P
2 with gauge group SU(4), 64 fundamental matter fields,

and one matter field in the 20 “box” representation [35]. No F-theory model is known

for this type of matter representation, which would correspond to an exotic codimension

two singularity on a singular divisor of degree b = 4. An F-theory model of this type

would correspond to a resolved Calabi-Yau with Hodge numbers smaller than any that

appear in the Kreuzer-Skarke database — the smallest Hodge numbers that appear there

are (14, 14). So either this model cannot be realized in F-theory, or it is a representative

of a class of Calabi-Yau threefolds not in the Kreuzer-Skarke list. In addition to exotic
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matter representations for nonabelian gauge groups, it is also possible to tune the generic

Weierstrass model over a given base to get extra sections in the elliptic fibration enhancing

the rank of the Mordell-Weil group. In the F-theory picture this produces additional U(1)

gauge group factors that contribute to h11 [12]. Since these factors are nonlocal, they are

more difficult to describe in F-theory (and less constrained by 6D anomalies [40]), though

some classes of elliptic fibrations with extra sections can be characterized systematically

[41, 37, 42]. We have not considered elliptic fibrations with multiple sections here, but

these would provide an important direction for systematically expanding on this work.

4.2 Non-toric bases

While we have focused in this paper on toric bases, a similar analysis can be carried out

for non-toric bases. Some of the results described above provide bounds on elliptically

fibered Calabi-Yau threefolds independent of whether the base is toric, such as the upper

bound h21 ≤ 491 and the identification of the possible Hodge number combinations for

large h21 > 400. More work would be needed, however, beyond the analysis of Weierstrass

tunings discussed in the previous section, to produce a complete list of Hodge pairs possible

for elliptically fibered Calabi-Yau threefolds including non-toric bases. The analysis of [9]

places constraints on the kinds of clusters that can appear and their connection structure

even on non-toric bases. This leads to bounds on the gauge groups allowed in F-theory

models and constrains the set of allowed possibilities. A simple example of a class of non-

toric bases that is explored in [10] corresponds to bases containing a number n of −4 curves

and no other curves of self-intersection −3 or less. In the F-theory context these correspond

to gravity theories with gauge group SO(8)n and no matter. Simple constraints on possible

configurations bound n ≤ 20, and a stronger bound closer to n ≤ 12 is probably possible.

Some models with T = 9 + n are given in [10], where the divisor structure on the base

contains a set of closed loops with alternating −1,−4 curves. The resolved Calabi-Yau

threefolds elliptically fibered over these bases will have h11 = 11+ 5n, h21 = 11− n. These

Hodge numbers appear in the Kreuzer and Skarke list for n = 3, . . . , 9. In general, many

more non-toric bases than toric bases support elliptically fibered Calabi-Yau threefolds,

and a systematic analysis of the possibilities, particularly for bases carrying large non-

Higgsable gauge groups in the F-theory picture, might expand the story presented here in

interesting directions. In general, however, it seems likely that including non-toric bases

will not produce Calabi-Yau threefolds with Hodge numbers that go significantly outside

the region spanned by the threefolds elliptically fibered over toric bases. In particular, it

seems unlikely that non-toric bases can give elliptically fibered threefolds with significantly

larger Hodge numbers than those found here. The reason that it may be difficult to realize

large Hodge numbers follows similar lines to the heuristic arguments in [10] arguing that

it is difficult to find a base associated with a T value much larger than T = 193. The basic

idea is that the only way to get large T (or large h11) is to incorporate many e8 summands

in the gauge algebra. But this requires divisors of self-intersection −12 in the base, and

such divisors can only be connected to clusters of the form −2,−2,−3. The optimal known

base (the T = 193 model in Table 2) involves a linear such chain — basically 16 copies of

the periodic sequence (3.1). Adding loops or extra branching to the network of intersecting
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irreducible effective curves does not seem to provide structure that could increase T or h11
significantly beyond the T = 193 case. Furthermore, bases at large T , like Calabi-Yau

threefolds with large h11+h21, become sparse, at least in the toric constructions known, so

it is harder to find structures that would push the bounds very far. Thus, it seems likely

that while systematically including non-toric bases will dramatically increase the range of

possible Calabi-Yau threefold constructions, this will not significantly modify the bounds

of the region of allowed Hodge numbers.

Note that both for the additional models found by tuning Weierstrass parameters on

toric bases discussed in the previous section, and for threefolds fibered over non-toric bases,

all these elliptically fibered threefolds will be connected through blowing up and blowing

down points in the bases. Thus, this very large set of threefolds are connected in a network.

4.3 Non-elliptically fibered threefolds

The fact that the number of birational equivalence classes of elliptically fibered Calabi-Yau

threefolds is finite was proven some time ago [43]. A simple argument for this conclu-

sion from the minimal model/Weierstrass picture is given in [32]. So it is not surprising

that there are bounds to the Hodge numbers possible for elliptically fibered Calabi-Yau

threefolds. While it will be interesting to further analyze the precise bounds on the ellip-

tically fibered class of spaces, the most interesting questions involve the more general set

of Calabi-Yau threefolds without the restriction to elliptic fibrations. The fact that the

boundary of the region of allowed Hodge numbers seems to be the same for the sampling of

toric hypersurface models considered by Kreuzer and Skarke and for the more constrained

set of elliptic fibrations over toric bases suggests that the bounds on Hodge numbers may

be universal and apply to non-elliptically fibered Calabi-Yau threefolds in general.

While the approach taken here does not suggest any completely general approach

to bounding the Hodge numbers for arbitrary Calabi-Yau threefolds, it does suggest one

approach which may lead to bounds at least for the set of threefolds connected by extremal

transitions. The transitions we have described here are associated with blowing up and

down points on the base of an elliptic fibration. These correspond in the threefolds to

transitions that connect manifolds of different topology in more complicated ways [12],

such as the conifold transition. It may be enlightening to consider the combinatorial

structure of how the triple intersection product and Mori cone of threefolds connected by

blow-up transitions in the base are related. This may suggest a more general set of rules

for transitions that would allow for a generalization of the bounds considered here to more

general Calabi-Yau threefolds. A related approach has recently been used to construct

novel Calabi-Yau threefolds with small Hodge numbers using conifold-type transitions [7].

4.4 Elliptically fibered Calabi-Yau fourfolds

A similar exploration of elliptically fibered Calabi-Yau fourfolds through toric 3D base

manifolds may reveal structure analogous to the “shield” pattern for Hodge numbers of

CY fourfolds. While the set of transitions between threefold bases is more complicated,

in the toric context the mathematics of Mori theory is well understood and it should be
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possible to systematically explore the space of toric threefold bases, as outlined briefly in

[10]. Work in this direction is currently underway.
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