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Abstract

We introduce a geometrical framework for double field theory in which generalized Rie-

mann and torsion tensors are defined without reference to a particular basis. This

invariant geometry provides a unifying framework for the frame-like and metric-like for-

mulations developed before. We discuss the relation to generalized geometry and give an

‘index-free’ proof of the algebraic Bianchi identity. Finally, we analyze to what extent

the generalized Riemann tensor encodes the curvatures of Riemannian geometry. We

show that it contains the conventional Ricci tensor and scalar curvature but not the full

Riemann tensor, suggesting the possibility of a further extension of this framework.
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1 Introduction

Double field theory is a framework to render the T-duality group OpD,Dq a manifest symmetry

for the low-energy effective spacetime actions of string theory. This is achieved by introduc-

ing doubled coordinates XM “ px̃i, xiq, M,N “ 1, . . . , 2D, namely by augmenting the usual

spacetime coordinates xi, i “ 1, . . . ,D, by an equal number of new ‘winding-type’ coordinates

x̃i [1–4]. The massless fields of bosonic string theory, the metric gij , the 2-form bij and the

scalar dilaton φ, are encoded by novel geometrical objects that are tensors under OpD,Dq.
A generalized metric HMN that is a symmetric OpD,Dq matrix encodes gij and bij , and an

OpD,Dq singlet d encodes the scalar dilaton φ via e´2d “ ?´ge´2φ. An OpD,Dq and gauge

invariant spacetime action for double field theory can then be written without any reference

to the original fields g, b and φ. This theory has been originally formulated in [1–4]. Earlier

important work can be found in [5–7] and further developments have been discussed in [8–30].

In this paper we aim to take the first steps towards a fully invariant formulation of the

geometry of double field theory, by which we mean a formulation that does not require the

introduction of a coordinate basis. There are two aspects to this problem. First, the notion

of manifold needs to be generalized because the gauge transformations are not given by diffeo-

morphisms of the doubled space. Second, we need to introduce invariant curvatures that are

compatible with these novel gauge symmetries and that allow us to define an invariant action.

In order to explain the first part of the problem we recall the infinitesimal gauge transfor-

mations of double field theory, which are parameterized by an OpD,Dq vector parameter ξM

and read

δξHMN “ ξP BPHMN `
`
BMξP ´ BP ξM

˘
HPN `

`
BN ξP ´ BP ξN qHMP ,

δξ
`
e´2d

˘
“ BM

`
ξMe´2d

˘
,

(1.1)

where indices are raised and lowered by the OpD,Dq invariant metric

ηMN “
˜
0 1

1 0

¸
. (1.2)

We infer from (1.1) that e´2d transforms as a scalar density and so can be treated as in ordinary

differential geometry and be used to define an invariant integration. In contrast, the gauge

transformation of the generalized metric does not take the form of a Lie derivative in the doubled

space but rather defines a generalized Lie derivative pLξ by the relation pLξHMN ” δξHMN .

These generalized Lie derivatives leave the OpD,Dq metric invariant, pLξηMN “ 0 [4]. Since we

cannot think of (1.1) as an infinitesimal general coordinate transformation, we have to define

suitably generalized coordinate transformations. A generalized notion of manifold is required

in which the transition between different coordinate patches is governed by these generalized

coordinate transformations and so that there is a well-defined constant metric (1.2). This part

of the problem has recently been addressed by us in [31] and will be briefly reviewed in sec. 2.2.

In this paper we will be mainly concerned with the second part of the problem, and thus the

present paper can be seen as a companion to [31].

The second part of the problem requires the introduction of invariant curvatures on the

generalized (doubled) manifold. This should be possible, because the action of double field
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theory can be written in a geometric Einstein-Hilbert-like form,

SDFT “
ż
dxdx̃ e´2d RpH, dq , (1.3)

where R is an OpD,Dq scalar and a gauge scalar and can thus be viewed as a generalized

curvature scalar. Similarly, the variation of (1.3) with respect to HMN gives a tensor RMN that

transforms covariantly under gauge transformations, i.e., with the generalized Lie derivative as

in (1.1), and can be viewed as a generalized Ricci tensor. It is then natural to seek an analogue

to Riemannian geometry, so that by introducing connections and invariant curvatures one can

systematically construct the Ricci tensor and curvature scalar. There indeed exist two such

formulations which have been developed in physicist terminology, i.e., defining everything with

respect to a basis and introducing ‘index-based’ objects. The first formalism was developed some

time ago by Siegel [5]. It is a frame formalism that is the analogue of the vielbein formulation

of general relativity and has been related to double field theory in [8]. The second formulation

is a metric-like formalism with Christoffel-type connections. As in general relativity, the second

formulation is related to the first by a ‘vielbein postulate’ [8, 16]. It has been developed in

a self-contained fashion in [16], using elements of one of the formulations of Jeon, Lee, and

Park [21,22], to which it reduces upon performing a (non-covariant) truncation.

Our aim in this paper is to provide ‘invariant’ definitions of the generalized Riemann and

torsion tensors. While these definitions require the use of a basis of vector fields, this basis is

totally arbitrary. The tensors are manifestly independent of this choice and thus basis indepen-

dent. Our formulation does not require the use of a coordinate basis nor of a frame basis with

further constraints. Specifically, we wanted to find the analogue of the well-known definition of

the Riemann tensor in ordinary geometry:

Rpx, y, z, wq ” xp∇x∇y ´ ∇y∇x ´ ∇rx,ysqz , wy . (1.4)

In here x, y, z, w are sections on the tangent bundle of the manifold (vector fields), ∇ is a

connection and x¨ , ¨y is an inner product on the tangent bundle.1 We found such formula. With

X,Y,Z,W denoting generalized vector fields, or sections of a suitably generalized ‘tangent

bundle’ to the doubled manifold, ∇ a connection, and inner product xX,Y y “ ηMNXMY N , we

define the generalized Riemann tensor by

RpX,Y,Z,W q ” xp∇X∇Y ´ ∇Y∇X ´ ∇rX,Y sDqZ ,W y

` xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqX ,Y y

`
ÿ

A

xY,∇ZA
Xy xW,∇ZAZy .

(1.5)

Here ZA denotes an arbitrary basis of vector fields, with duals ZA such that xZA, Z
By “ δA

B .

In addition, we use the so-called D-bracket that generates generalized Lie derivatives and is the

double field theory extension of the Dorfman bracket. The first line formally coincides with the

definition of the conventional Riemann tensor in (1.4), but with the Lie bracket replaced by the

1In Riemannian geometry a more basic definition of the Riemann tensor does not use the metric. The Riemann

tensor is viewed as a linear operator Rpx, yq defined to act on vector fields as Rpx, yqz “ p∇x∇y´∇y∇x´∇rx,ysqz.

There seems to be no analogue of this metric-independent definition in a doubled geometry.
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D-bracket. This replacement is important since the Lie bracket of two generalized vectors is

not a generalized vector, while the D-bracket of two generalized vectors is a generalized vector.

Still, the first line alone fails to define a tensor. The other two lines are needed. Similarly, we

wanted to generalize the torsion tensor2

T px, y, zq “ x∇xy ´ ∇yx ´ rx, ys, zy . (1.6)

We found a generalized torsion tensor which reads

T pX,Y,Zq ” x∇XY ´ ∇YX ´ rX,Y sD , Zy ` xY,∇ZXy . (1.7)

Again, the first term formally coincides with the conventional torsion tensor, with the Lie

bracket replaced by the D-bracket, but the last term is needed to preserve the tensor character.

We may then specialize these definitions to either a coordinate or frame basis, and we will

see that the generalized Riemann and torsion tensors reduce to those previously introduced in

the metric- and frame-like formalisms. As such, this formulation provides a unifying framework

that makes manifest the equivalence of the ‘index-based’ approaches of [5, 8] and [16]. We

illustrate the strength of this formulation by giving a basis independent proof of the algebraic

Bianchi identity for the generalized Riemann tensor.

We will also comment on the relation to results in the generalized geometry developed by

Hitchin, Gualtieri and others [32–35]. In fact, the generalized torsion (1.7) is closely related to

the torsion defined by Gualtieri [34]. To the best of our knowledge, however, the generalized

Riemann tensor (1.5) has not appeared in the mathematical literature.

We use the opportunity to analyze the generalized Riemann tensor in somewhat more detail

than in [16]. In particular, we discuss a way to derive new differential Bianchi identities, in

the course of which we present some technically interesting new results. For instance, just like

in ordinary geometry, the gauge transformations of the connection can be written covariantly.

Indeed, we show that the infinitesimal gauge transformations of the connection components

ΓMNK can be written in terms of the generalized Riemann tensor,

δξΓMNK “ 2
`
∇M∇rNξKs ´ ∇rN∇KsξM

˘
` ξPRPMNK , (1.8)

all written with respect to a coordinate basis. Similarly, for a frame basis EA, the gauge

transformations of the spin connection components ω are written as

δωMAB “
“
∇A,∇B

‰
ξM ` RABMN ξN . (1.9)

Note that in the generalized geometric framework the right-hand side is non-zero, in contrast

to conventional Riemannian geometry, where the commutator of covariant derivatives can be

expressed in terms of the Riemann tensor. Even though there is no simple relation between the

commutator of covariant derivatives and the Riemann tensor, we find an intriguing relation for

a certain triple commutator of covariant derivatives in terms of the generalized Riemann tensor

and its covariant derivatives, see eq. (7.31) below.

2In Riemannian geometry a more basic definition does not use the metric and defines the vector field T px, yq “

∇xy ´ ∇yx ´ rx, ys.
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We finally discuss the extent to which the generalized Riemann tensor encodes the usual

curvatures of Riemannian geometry. We confirm that it contains the Ricci tensor and Ricci

scalar, but we also establish that it does not contain the full uncontracted Riemann tensor. This

implies that while the present framework is satisfactory and sufficient for the two-derivative part

of the effective action, the inclusion of higher-derivative α1 corrections requires an extension of

this geometry. We will argue in the conclusions that there are strong reasons to believe that α1

corrections are possible in double field theory so that such an extension should exist.

We believe that our results are a first step towards a properly invariant geometric framework

underlying double field theory. Needless to say, there are various gaps to be filled in order to

achieve a mathematically satisfactory formulation. One important aspect of double field theory

that should be properly accounted for is related to the need to impose the following constraint

BMBM ” ηMNBMBN “ 0 , (1.10)

with ηMN defined in (1.2), and acting on arbitrary fields and gauge parameters. In this form,

sometimes referred to as the weak constraint, it is a direct consequence of the level-matching

constraint in closed string theory. In the double field theories constructed so far, however,

a stronger form is required. Since the product of two functions satisfying (1.10) does not

necessarily satisfy (1.10), we demand that BMBM also annihilates all products of fields, thus

requiring

BMA BMB “ 0 @A,B , (1.11)

in order to have a closed algebra of functions. Thus we are restricting to a subalgebra of

functions on the doubled space. Almost certainly some version of (1.10) and (1.11) must be

part of any rigorous definition of a generalized manifold, and understanding this properly may

give insight into the geometric meaning of the level-matching constraint in string theory.3 One

consequence of this constraint is that we cannot think of a (generalized) vector field V M as a

differential operator V “ V MBM acting on this subalgebra, since this operator is unchanged

under V M Ñ V M ` λ BMχ, with λ and χ arbitrary, while such a change does affect the

generalized vector. Thus, we leave for further work a proper invariant treatment of the nature

of the ‘generalized tangent bundle,’ and we hope that our results motivate mathematicians to

further develop this geometrical framework. A first proposal on the underlying geometrical

formulation of double field theory has already appeared in the mathematical literature [36], but

it is clear that we are still lacking a complete picture.

2 Generalities of double field theory

We start by introducing some basic notions of double field theory, particularly the C and D

brackets, which are the double field theory counterparts of the Courant and Dorfman brackets

of generalized geometry and play a key role in the gauge transformations. This serves as a brief

review and also sets the notation. Then we recall the invariant definition of tensors and set the

stage for our later introduction of a torsion and Riemann tensor by showing, using our recent

results in [31], that tensors defined by means of the C and D brackets are indeed generalized

tensors under finite transformations in the sense of [31].

3See [14,29] for situations that require only relaxed versions of these constraints.

5



2.1 Generalized Lie derivatives, Courant and Dorfman brackets

A basic object in double field theory is the OpD,Dq invariant metric η defined in (1.2). For

later use we introduce an invariant notation for this metric by writing

xX,Y y “ ηMNXMY N , (2.1)

where here and in the following X, Y , Z, etc., denote vector fields on the doubled space. In

particular, we view the partial derivatives BM as a coordinate basis of vector fields and write

xBM , BN y “ ηMN . (2.2)

In general we have a natural action of vector fields on functions, f Ñ Xpfq, giving a new

function:

Xpfq ” XMBMf . (2.3)

We stress, however, that in the context of double field theory a vector field is not uniquely de-

termined by its action on functions because these satisfy the strong constraint (1.10) and (1.11).

Thus, we cannot introduce vector fields as in ordinary differential geometry, and currently we

do not know how to define generalized vectors in an invariant or geometric fashion. Below we

will define generalized vectors by their (generalized) coordinate transformations, leaving their

proper invariant treatment for future work, but we stress that once generalized vectors are

given, higher tensors can be defined completely invariantly, as we will discuss below.

Let us now turn to the generalized Lie derivatives that govern the gauge transformations of

double field theory as in (1.1) and are compatible with the metric (2.1). The generalized Lie

derivative is defined on an OpD,Dq tensor V M
N as

pLξV
M

N “ ξKBKV M
N `

`
BMξK ´ BKξM

˘
V K

N `
`
BNξK ´ BKξN

˘
V M

K , (2.4)

and similarly for tensors in arbitrary representations of OpD,Dq. Here the OpD,Dq indices

are raised and lowered with the metric η. It is thus easy to see that η is indeed invariant

under generalized Lie derivatives, pLξη “ 0. We refer to OpD,Dq tensors transforming with

the generalized Lie derivative under gauge transformations as generalized tensors. Note that

the scalar product (2.1) of two generalized vectors is then a generalized scalar. Moreover, the

partial derivative of a scalar is a generalized vector [8].

The generalized Lie derivatives form an algebra that in turn defines the C-bracket, which is

an OpD,Dq invariant extension of the Courant bracket in generalized geometry. We have4

“ pLX , pLY

‰
“ pLrX,Y sC , (2.5)

where the C-bracket reads

rX,Y sC “ rX,Y s ´ 1

2
XM

~BY M ` 1

2
YM

~BXM . (2.6)

Here r , s denotes the usual Lie bracket of vector fields,

rX,Y sM “ XNBNY M ´ Y NBNXM , (2.7)

4We note that here we view pLX as an abstract operator. Viewing it as a field variation, thus acting on fields

first, leads to a different sign on the right-hand side of this relation.
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and ~B is a short-hand notation for the partial derivative with an index raised by the metric.

Thus, in components, the C-bracket reads

rX,Y sKC “ rX,Y sK ´ 1

2
XMBKY M ` 1

2
YMBKXM . (2.8)

Because of the strong constraint the C-bracket acting on functions gives the same as the Lie

bracket

rX,Y sCf “ rX,Y s f . (2.9)

The C-bracket of two generalized vectors is also a generalized vector [8].

Another useful bracket, the D-bracket, can be defined directly through the generalized Lie

derivative and turns out to be an OpD,Dq covariant extension of the Dorfman bracket in

generalized geometry. We define “
X,Y

‰
D

” pLXY . (2.10)

Although this is not antisymmetric we continue referring to it as a bracket. It differs from the

C-bracket by a generalized vector, so it is also a generalized vector:

rX,Y sD “ rX,Y sC ` 1

2
~B xX,Y y . (2.11)

Its component expression is therefore

rX,Y sKD “ rX,Y sK ` YMBKXM . (2.12)

Before we continue we introduce an index-free notation that shall be useful later. In the

following we will write all tensor equations ‘invariantly’ by introducing an arbitrary basis tZAu,
A “ 1, . . . , 2D, that will later be specified to a coordinate basis, ZM “ BM , or to a frame

basis with additional constraints, ZA “ EA, and accordingly the index A will acquire different

interpretations. For the moment, however, we keep the basis completely generic. With respect

to this basis tZAu and its dual tZAu we have for the components of the metric (2.1)

xZA, Z
By “ δA

B , xZA, ZBy ” GAB . (2.13)

We stress that the metric GAB will in general be X-dependent and it reduces to the constant

OpD,Dq metric only for the coordinate basis. Under a change of basis Z Ñ Z̃ we have

Z̃A “ ΛA
BZB , Z̃A “ pΛ´1qBAZB , (2.14)

where Λ is an arbitrary, generally X-dependent, GLp2Dq matrix. Note that this transformation

leaves the natural pairing in the first equation of (2.13) invariant. Accordingly, all definitions

to be discussed in the following will be manifestly invariant under a change of basis and in this

sense be basis independent. For instance, with respect to this general basis we can then write

for the D-bracket (2.11)

rX,Y sD “ rX,Y sC ` 1

2

ÿ

A

pZA xX,Y yqZA , (2.15)

which is manifestly invariant under (2.14) and reduces to (2.11) when using a coordinate basis.

The lack of antisymmetry of the D-bracket is then expressed by

rX,Y sD “ ´rY,XsD `
ÿ

A

pZA xX,Y yqZA , (2.16)
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or with the help of the inner product as

xrX,Y sD , Zy “ ´xrY,XsD , Zy ` Z xX,Y y . (2.17)

In the following we will use the Einstein summation convention also for basis indices A,B, . . .

and define for the gradient vector acting on a general function f ,

∇f “ ~Bf “ pZA fqZA . (2.18)

We close this section by collecting some further properties of the C- and D-brackets. Just

like the C-bracket in (2.9), the D-bracket acts on scalars as the Lie bracket

rX,Y sDf “ rX,Y s f . (2.19)

Moreover, the D-bracket satisfies the (modified) Jacobi identity

“
X,

“
Y,Z

‰
D

‰
D

´
““
X,Y

‰
D
, Z

‰
D

´
“
Y,

“
X,Z

‰
D

‰
D

“ 0 , (2.20)

while for the C-bracket, we have the C-Jacobiator JC :

JCpX,Y,Zq ”
cycÿ

X,Y,Z

r rX,Y sC , ZsC “ 1

6
~B

cycÿ

X,Y,Z

xrX,Y sC , Zy , (2.21)

using eqn. (8.29) from [2]. Here, the sum denotes the cyclic sum with unit strength (i.e., three

terms with coefficient one).

According to (2.10) the generalized Lie derivative pLX acts on generalized vectors via the

D-bracket. Since it also leaves the OpD,Dq invariant metric invariant and XxY,Zy “ pLXxY,Zy
we have for any vector fields X,Y,Z

X xY,Zy “ xrX,Y sD, Zy ` xY, rX,ZsDy . (2.22)

In terms of the C-bracket it then follows from (2.15) that

X xY,Zy “ xrX,Y sC , Zy ` xY, rX,ZsCy ` 1

2
Z xX,Y y ` 1

2
Y xX,Zy , (2.23)

which will be useful below.

2.2 Finite gauge transformations and invariant tensors

Let us briefly recall the invariant ‘index-free’ definition of tensors. A tensor is a multi-linear

map from vectors and their duals to a function (scalar). Since by means of the metric (2.1) we

can always identify a dual vector with a vector, in the following we will restrict ourselves to

multi-linear maps of vectors only. For a tensor T of rank n we can then scale out a function

multiplying any of the n vector entries, i.e.,

T pA1, . . . , fAp, . . . , Anq “ fT pA1, . . . , Ap, . . . , Anq , (2.24)

8



and similarly for all other arguments. The usual ‘component’ form of a tensor (with ‘curved

indices’ in physicists notation) is then obtained by evaluating the tensor with respect to the

coordinate basis BM ,

TM1...Mn “ T pBM1
, . . . , BMnq . (2.25)

By its multi-linearity, the action of T on arbitrary vectors can be written in terms of components

as follows

T pA1, . . . , Anq “ AM1

1 ¨ ¨ ¨AMn
n T pBM1

, . . . , BMnq “ AM1

1 ¨ ¨ ¨AMn
n TM1...Mn . (2.26)

Next we will show that a tensor thus defined coincides with a ‘generalized tensor’ in the

nomenclature of [31]. There we introduced ‘generalized coordinate’ transformations X Ñ X 1

and defined a generalized vector AM as transforming according to

A1
M pX 1q “ FM

NAN pXq , (2.27)

where the matrix F is defined by

FM
N ” 1

2

´ BXP

BX 1M

BX 1
P

BXN
` BX 1

M

BXP

BXN

BX 1P

¯
, (2.28)

and the indices on coordinates are raised and lowered with ηMN . We take this to be the

definition of a generalized vector since, as mentioned above, currently we do not know of an

invariant ‘intrinsic’ definition. An arbitrary OpD,Dq tensor T transforms as

T 1
M1...Mn

pX 1q “ FM1

N1 ¨ ¨ ¨FMn

Nn TN1...NnpXq . (2.29)

For an infinitesimal transformation X 1 “ X ´ ξpXq, we can expand F to first order in ξ and

confirm that this transformation leads to the generalized Lie derivative (2.4). Thus, our current

definition of a generalized tensor is the proper extension of our previous infinitesimal definition.

The matrix F has various useful properties that are not manifest from its definition but that

have been proved in [31]. First, due to the strong constraint (1.10), (1.11), a transformation by

F is actually compatible with the transformation of BM according to the chain rule,

B1
M “ FM

NBN . (2.30)

Second, F P OpD,Dq, i.e., a transformation by F is compatible with the metric (2.1),

xV,W y “ xFV,FW y , (2.31)

which implies in components

ηMN “ ηKL
FK

M
FL

N . (2.32)

With these relations it then immediately follows that a tensor defined abstractly leads to a

component tensor that is a generalized tensor in the sense of (2.29): from the multi-linearity of

a tensor together with (2.25) and (2.30) we infer

T 1
M1...Mn

“ T pB1
M1

, . . . , B1
Mn

q “ T pFM1

N1BN1
, . . . ,FMn

NnBNnq

“ FM1

N1 ¨ ¨ ¨FMn

Nn T pBN1
, . . . , BNnq “ FM1

N1 ¨ ¨ ¨FMn

Nn TN1...Nn .
(2.33)
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Alternatively, using (2.32) and the transformation (2.27) of a generalized vector, we can read

off the transformation of a generalized tensor from the right-hand side of (2.26), using that the

geometric (invariant) left-hand side is unchanged under coordinate transformations. In total,

we can introduce generalized tensors in an ‘intrinsic’ index-free fashion, if we take generalized

vectors as given.

We close this section by showing that the C- and D-brackets introduced above are well-

defined brackets of generalized vectors, i.e., given two generalized vectors they produce a gener-

alized vector. Since there is no intrinsic definition of generalized vectors we have to verify that,

say, the C-bracket transforms correctly under generalized coordinate transformations. To this

end it is convenient to employ an alternative form of the finite gauge transformations, which is

simply given by the exponential of the generalized Lie derivative,

A1
M pXq “ pexp pLξqAM pXq . (2.34)

It has been shown in [31] that, at least up to and including quartic order in ξ, this agrees with

(2.27) for a suitably defined generalized coordinate transformationX 1M “ XM ´ξMpXq`Opξ2q.
This form of the finite gauge transformations is more convenient due to the following invariance

property of the C-bracket [8]

pLξ

“
X,Y

‰
C

“
“ pLξX,Y

‰
C

`
“
X, pLξY

‰
C
. (2.35)

Indeed, it is then easy to see that

e
pLξ

“
X,Y

‰
C

“
“
e

pLξX, e
pLξY

‰
C
, (2.36)

so that the C-bracket indeed transforms as a generalized vector. It is also easy to see that

the D-bracket transforms as a generalized vector. We first note from (2.11) that the D-bracket

differs from the C-bracket by the partial derivative of a scalar. From (2.30) it follows that

the partial derivative of a scalar transforms like a vector. Thus, the D-bracket transforms also

like a vector. In the next section we turn to the definition of Riemann and torsion tensors,

which will be tensors in the invariant sense recalled above and which will be written in terms

of the C- and D-bracket. From the foregoing discussion it is then clear that these tensors are

generalized tensors in the sense above and, therefore, that all actions build with these curvatures

are invariant under finite gauge transformations.

3 Invariant geometry of double field theory

In this section we define the Riemann and torsion tensors appearing in double field theory

along the lines of an invariant approach reviewed above. This means that we may freely

choose to evaluate these objects with respect to a coordinate (holonomic) basis or with respect

to an arbitrary (anholonomic) frame. This invariant formulation therefore provides a unified

description of a ‘metric-like’ and ‘frame-like’ formalism.

3.1 Covariant derivatives

We start by introducing covariant derivatives or connections in the usual invariant fashion.

One defines a connection ∇ as a bilinear operator that, given two vector fields X,Y , provides
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a third:

pX,Y q Ñ ∇XY , (3.1)

where bilinear means that for constants a, b and functions f, g on the manifold we have

∇XpaY1 ` bY2q “ a∇XY1 ` b∇XY2 ,

∇fX1`gX2
Y “ f ∇X1

Y ` g∇X2
Y .

(3.2)

Moreover we must also have

∇X fY “ XpfqY ` f∇XY . (3.3)

We also write

∇Xf ” Xpfq “ XMBMf . (3.4)

In that way we can make (3.3) look like a derivation:

∇X fY “ p∇XfqY ` f∇XY . (3.5)

We require that the metric is compatible with the connection ∇,

∇XxY,Zy “ X xY,Zy “ x∇XY,Zy ` xY,∇XZy . (3.6)

Next, we extend the covariant derivative to arbitrary tensors. Consider a p-tensor K that,

given p vector entries, gives a function (number) KpX1,X2, ¨ ¨ ¨ ,Xpq. Its covariant derivative

∇K is defined as a p ` 1 tensor:

∇KpX1,X2, ¨ ¨ ¨ ,Xp,W q ” ∇WKpX1,X2, ¨ ¨ ¨ ,Xpq , (3.7)

where the ∇W action on K gives a p-tensor defined by

p∇WKqpX1,X2, . . . ,Xpq ” W ¨ KpX1,X2, . . . ,Xpq

´ K p∇WX1,X2, . . . ,Xpq

´ K pX1,∇WX2, . . . ,Xpq
...

´ K pX1,X2, . . . ,∇WXpq .

(3.8)

A useful subcase arises when the p-tensor K is defined via an inner product and a vector K

that is a function of p ´ 1 vectors:

KpX1,X2, . . . ,Xp´1 ,Xpq “ xKpX1,X2, . . . ,Xp´1q ,Xpy . (3.9)

Then

∇WKpX1,X2, . . . ,Xp´1 ,Xpq “ x∇WKpX1,X2, . . . ,Xp´1q ,Xpy

´ xK p∇WX1,X2, . . . Xp´1q,Xpy
...

´ xK pX1,X2, . . . ,∇WXp´1q,Xpy ,

(3.10)
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where we used (3.6) to cancel two terms with ∇WXp in the inner product. We see that the

inner product remains as a spectator.

The Lie bracket (2.7) of two vectors is another vector (but not a generalized vector), that

can be defined by the action on a function as follows

∇rX,Y sf “ rX,Y spfq ” XpY pfqq ´ Y pXpfqq . (3.11)

Using our nabla notation for the action on functions we can write the above as

∇rX,Y sf “ ∇Xp∇Y fq ´ ∇Y p∇Xfq “ r∇X ,∇Y sf , (3.12)

and therefore for functions

r∇X ,∇Y s f “ ∇rX,Y sf . (3.13)

We also note the property

rfX, Y s “ f rX,Y s ´ p∇Y fqX , (3.14)

which by the various linearity and scaling properties implies that:

∇rfX,Y s “ f ∇rX,Y s ´ p∇Y fq∇X .

∇rX,gY s “ g∇rX,Y s ` p∇Xgq∇Y .
(3.15)

Next, we compute the scaling properties of the C- and D-brackets under X Ñ fX, which

will be needed later to verify tensor properties. We compute with the help of (2.6)

xrfX, Y sC , Zy “ fxrX,Y sC , Zy ´ p∇Y fqxX,Zy ` 1

2
p∇ZfqxX,Y y . (3.16)

We also have the following scaling:

∇rfX,Y sC “ f∇rX,Y sC ´ p∇Y fq∇X ` 1

2
xX,Y y∇∇f , (3.17)

where again ∇f is the vector with components BMf so that

∇∇f “ pBMf q∇BM . (3.18)

For the D-bracket we have

∇rfX,Y sD “ f∇rX,Y sD ´ p∇Y fq∇X ` xX,Y y∇∇f ,

∇rX,gY sD “ g∇rX,Y sD ` p∇Xgq∇Y .
(3.19)

As we can see, compared to the Lie bracket (3.14), only the first input of the D-bracket scales

differently. We also have

xrfX, Y sD , Zy “ fxrX,Y sD , Zy ´ p∇Y fqxX,Zy ` p∇ZfqxX,Y y ,

xrX, gY sD , Zy “ gxrX,Y sD , Zy ` p∇XgqxY,Zy .
(3.20)

Another rescaling property is

∇rX,Y sCfZ “ f∇rX,Y sCZ ` p∇rX,Y sfqZ ,

∇rX,Y sDfZ “ f∇rX,Y sDZ ` p∇rX,Y sfqZ ,
(3.21)

which scale like the Lie bracket, since the action of the C- and D-bracket on functions is the

same as that of the Lie bracket.
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3.2 Generalized torsion

We now aim to define a generalized torsion tensor. Before doing so let us first recall the torsion

tensor of conventional differential geometry. Using lowercase letters to denote vector fields

T px, yq ” ∇xy ´ ∇yx ´ rx , ys . (3.22)

Here T px, yq is itself a vector. We will find it convenient to define a torsion tensor with three

inputs using the inner product:

T px, y, zq ” xT px, yq, zy “ x∇xy ´ ∇yx ´ rx , ys, zy . (3.23)

It is straightforward to prove the scaling (tensorial) property T pfx, yq “ fT px, yq,

T pfx, yq “ ∇fxy ´ ∇yfx ´ rfx , ys

“ f∇xy ´ pf∇yx ` p∇yfqxq ´ pf rx , ys ´ p∇yfqxq

“ f T px, yq .

(3.24)

Let us now generalize the torsion tensor (3.22). We want to change the bracket to the

C-bracket, because otherwise we do not get generalized vectors. But that actually ruins the

scaling property. This can be fixed with extra terms:

T0pX,Y,Zq ” x∇XY ´ ∇Y X ´ rX,Y sC , Zy ´ 1

2
xX,∇ZY y ` 1

2
xY,∇ZXy . (3.25)

Note the second and third terms on the right-hand side use the Z entry in a nontrivial way.

The scaling Z Ñ fZ works manifestly on both sides of the equation. The scaling X Ñ fX

requires the extra terms and uses (3.16) to show that it works. So this defines a generalized

torsion tensor. Formally, this definition agrees with that given by Gualtieri, see Def. 3 in [34].

Let us now determine the component form of the torsion tensor in a coordinate basis,

ZM “ BM . With respect to this basis we define (Christoffel) connection components via

∇BM pBN q “ ΓMN
KBK . (3.26)

A calculation then shows

T0pBM , BN , BKq “ pT0qMNK “ ΓMNK ´ ΓNMK ´ 1

2
ΓKNM ` 1

2
ΓKMN , (3.27)

in agreement with the definition given in [16].

The above torsion is based on the C-bracket. We can give an alternative, simpler torsion

tensor T using the D-bracket:

T pX,Y,Zq ” x∇XY ´ ∇YX ´ rX,Y sD , Zy ` xY,∇ZXy . (3.28)

A quick computation using (3.20) establishes the tensorial nature of this definition. A calcula-

tion shows that

TMNQ “ ΓMNQ ´ ΓNMQ ` ΓQMN . (3.29)
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To see that this agrees with (3.27) we use that the metricity condition (3.6) specialized to a

coordinate basis:

0 “ BMηNK “ x∇BM pBN q, BKy ` xBN ,∇BM pBKqy “ ΓMNK ` ΓMKN , (3.30)

from which we infer the antisymmetry of ΓMNK in its last two indices. We then see that

TMNQ “ ΓMNQ ` ΓNQM ` ΓQMN , (3.31)

and therefore T is cyclic and totally antisymmetric and agrees with (3.27). These are not so

obvious from the geometrical definition, but short calculations using (2.17) and (2.22) show

that

T pY,X,Zq “ ´ T pX,Y,Zq ` x∇ZX,Y y ` xX,∇ZY y ´ ZxX,Y y ,

T pX,Z, Y q “ ´ T pX,Y,Zq ` x∇XY,Zy ` xY,∇XZy ´ XxY,Zy .
(3.32)

Indeed, when the connection is compatible with the metric we get

T pX,Y,Zq “ ´T pY,X,Zq “ ´T pX,Z, Y q . (3.33)

For a further rewriting, we return to a general basis and use that for any vector X we have

the expansion X “ XMZM so that

xY,∇XZy “ xY,∇ZM
ZyXM “ xY,∇ZM

Zy xZM ,Xy

“
@

xY,∇ZM
ZyZM , X

D
.

(3.34)

With this result we can then write (3.28) as

T pX,Y,Zq “ xT ÒpX,Y q, Zy , (3.35)

with

T
ÒpX,Y q “ ∇XY ´ ∇YX ´ rX,Y sD ` xY,∇ZA

XyZA . (3.36)

This is the invariant form of the torsion tensor with one index raised with the OpD,Dq invariant
metric.

3.3 Generalized Riemann tensor

We now attempt to define a generalized Riemann tensor. As a first try, we take the standard

invariant definition (1.4) of Riemannian geometry and replace the Lie bracket by either the

Courant bracket or Dorfman bracket:

RpX,Y qZ ” p∇X∇Y ´ ∇Y ∇X ´ ∇rX,Y sC qZ ? ,

RpX,Y qZ ” p∇X∇Y ´ ∇Y ∇X ´ ∇rX,Y sDqZ ?
(3.37)

Recalling that both∇rX,Y sCZ and∇rX,Y sDZ rescale like∇rX,Y sZ under Z Ñ fZ (see (3.21)), we

conclude that these rescale correctly under Z Ñ fZ. Neither, however, rescales correctly under

X Ñ fX, as can be seen from inspection of (3.17) and (3.19). In addition, for Y Ñ gY , the first

(Courant) has anomalous rescaling while the second (Dorfman) has correct rescaling. Given the
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extra simplicity of the Dorfman bracket we will now use it to attempt the full construction of a

tensor R. For the comparison below with formulas in the literature it is, however, convenient

to give a name to the (non-tensorial) object defined with the C-bracket,

RpX,Y,Z,W q ” x p∇X∇Y ´ ∇Y∇X ´ ∇rX,Y sC qZ , W y . (3.38)

We begin now the construction of the covariant curvature. Using the metric to have extra

flexibility in writing terms, we begin with

RpX,Y,Z,W q ” xp∇X∇Y ´ ∇Y∇X ´ ∇rX,Y sDqZ ,W y ` . . . , (3.39)

where the dots denote terms to be added and so far the extra input W has played no role.

Since we use Dorfman this definition is not X,Y antisymmetric. Clearly there is no rescaling

problem with W . Again, as discussed above, there is no rescaling problem for Z. There is no

rescaling problem for Y , since the Dorfman bracket transforms like the Lie bracket for scalings

of the second argument, as can be seen by comparing (3.20) with (3.14), and thus the proof of

scaling for the ordinary curvature tensor suffices. The only problem is the scaling of X.

Let us compute the anomalous term for X scaling in the above curvature, denoted by Anom,

by which we mean the anamalous terms beyond those of the Lie bracket. This requires using

the first equation of (3.19), which gives

Anom ∇rfX,Y sD “ xX,Y y∇∇f , (3.40)

so that in the above curvature we get an anomalous term

Anom p´x∇rfX,Y sDZ,W yq “ ´ xX,Y y x∇∇fZ,W y . (3.41)

To cancel it we must add some term to the definition of the curvature. We want a term that is

a generalized scalar with problematic X scaling and good Y scaling (and ideally good Z and

W scaling). We can come quite close to this by adding the term

∆R “ xY,∇ZA
Xy xW,∇ZAZy . (3.42)

In a coordinate basis this term would read YKp∇QXqKWN p∇QZqN . As desired, ∆R does not

scale anomalously for Y . For X Ñ fX we have an extra anomalous term

xY,Xy pZA fq xW,∇ZAZy “ xX,Y y x∇pZA¨fqZAZ,W y “ xX,Y y x∇∇fZ,W y , (3.43)

using (2.18). The above term cancels precisely (3.41). Next, ∆R has good scaling with W but

now the Z scaling has been compromised. The new term ∆1R required to cancel the Z scaling

of ∆R is

∆1R “ ´x∇rZ,W sDX,Y y , (3.44)

as can be seen with the first equation in (3.19). But this time the conventional Z scaling and

W scalings are ruined, since we do not have the extra terms in the curvature, so we finally take

RpX,Y,Z,W q ” xp∇X∇Y ´ ∇Y ∇X ´ ∇rX,Y sDqZ ,W y

` xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqX ,Y y

` xY,∇ZA
Xy xW,∇ZAZy .

(3.45)
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One can now verify that all scalings work out so that R as defined here is a tensor.

By definition, it is manifest that R is symmetric under the exchange of the first two inputs

with the last two inputs:

RpX,Y,Z,W q “ RpZ,W,X, Y q . (3.46)

In ordinary geometry this does not hold unless the torsion vanishes. The antisymmetry in the

first or second pair of arguments is not too hard to show. Consider the exchange of the first

two arguments,

RpY,X,Z,W q ” xp∇Y ∇X ´ ∇X∇Y ´ ∇rY,XsDqZ ,W y

` xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqY ,Xy

` xX,∇ZA
Y y xW,∇ZAZy .

(3.47)

To deal with the second line we recall (3.13) and that acting on functions the Lie and D-brackets

coincide:

p∇Z∇W ´ ∇W∇ZqxX,Y y “ ∇rZ,W sDxX,Y y . (3.48)

Letting the derivatives act we find

xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqX,Y y ` xX, p∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqY y “ 0 . (3.49)

Using this in the second line of (3.47) and using (2.16) in the first line we find

RpY,X,Z,W q ” ´ xp∇X∇Y ´ ∇Y∇X ` ∇´rX,Y sD`pZAxX,Y yZAqZ ,W y

´ xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqX,Y y

` xX,∇ZA
Y y xW,∇ZAZy .

(3.50)

This gives

RpY,X,Z,W q ” ´ xp∇X∇Y ´ ∇Y∇X ´ ∇rX,Y sDqZ,W y ´ pZA xX,Y yqxW,∇ZAZy

´ xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqX,Y y

` xX,∇ZA
Y y xW,∇ZAZy .

(3.51)

The last term on the first line combines with the last term of the right-hand side to give

RpY,X,Z,W q ” ´ xp∇X∇Y ´ ∇Y ∇X ´ ∇rX,Y sDqZ,W y

´ xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sDqX,Y y

´ xY,∇ZA
Xy xW,∇ZAZy .

(3.52)

This shows that, as claimed,

RpY,X,Z,W q “ ´RpX,Y,Z,W q . (3.53)

Next, we examine the component expansions. We write,

RpX,Y,Z,W q “ XMY N ZKWL
RMNKL . (3.54)
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In a coordinate basis the last term in the curvature formula (3.45) reads

pYN∇BQXN q pWK∇BQZ
Kq . (3.55)

By the scaling property we know that only the part without derivatives on any of X,Y,W and

Z contributes to the curvature components. We thus find

XMY N ΓQ
MN ZKWL ΓQKL , (3.56)

giving the following contribution to RMNKL:

ΓQ
MNΓQKL . (3.57)

Since the Dorfman bracket gives exactly the same derivative-independent terms as the Lie

bracket or the Courant bracket, we have proven that the geometric definition of R above

coincides with the one in [16]:

RMNKL “ RMNKL ` RKLMN ` ΓQ
MNΓQKL , (3.58)

where the components of R arise from (3.38) and read

RMNKL “ BMΓNKL ´ BNΓMKL ` ΓMQLΓNK
Q ´ ΓNQLΓMK

Q . (3.59)

4 Algebraic Bianchi identity

Here we apply the above geometrical framework to prove an algebraic Bianchi identity that

holds without imposing the constraint that the generalized torsion vanishes. Specializing to a

coordinate basis and setting the generalized torsion to zero, this leads to the algebraic Bianchi

identity derived in [16] for the component Riemann tensor.

4.1 Invariant form of algebraic Bianchi identity

The algebraic Bianchi identity that we will prove can be written as

antÿ

W,X,Y,Z

´
3RpW,X, Y,Zq ´ 4∇WT pX,Y,Zq ´ 3T pW,X,T ÒpY,Zqq

¯
“ 0 , (4.1)

which holds for arbitrary vector fields X,Y,Z and W , and the sum is to be interpreted as

complete antisymmetrization over the four arguments. In this form it looks weaker than the

algebraic Bianchi identity in conventional Riemannian geometry, for the latter involves only an

antisymmetrization over three rather than four arguments. It turns out, however, that due to

the extra pair exchange symmetry (3.46) of the generalized Riemann tensor (as compared to

the conventional one) this form of the Bianchi identity is equivalent to a similar identity with

antisymmetrization over three arguments only, as we will now show.

To this end we find it convenient to write (4.1) with respect to the coordinate basis, which

then reads

3RrMNKLs “ 4∇rMTNKLs ` 3TrMN
Q
TKLsQ . (4.2)
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We will now show that this identity is equivalent to

cycÿ

M,N,K

RMNKL “ ´∇LTMNK `
cycÿ

M,N,K

´
∇MTNKL ` TMN

QTKLQ

¯
, (4.3)

where the cyclic sum extends over three arguments. First, note that the cyclic sums actually

create antisymmetry in three indices. For this recall that for a three-index tensor SABC that is

antisymmetric in two indices, complete antisymmetrization is equivalent to the cyclic sum,

SABC “ ´SBAC ñ
cycÿ

A,B,C

SABC “ 3SrABCs . (4.4)

Recalling that T is totally antisymmetric, we can use this to rewrite (4.3) as

3RrMNKsL “ ´∇LTMNK ` 3∇rMTNKsL ` 3TrMN
Q
TKsLQ . (4.5)

To proceed further consider the antisymmetrization identities

SrABCs “ 1

3

cycÿ

A,B,C

SArBCs , SrABCDs “ 1

4

˘ cycÿ

A,B,C,D

SArBCDs , (4.6)

where the ˘ indicates that the cyclic sum alternates signs. The second identity implies that

∇rMTNKLs “ 1

4

´
∇MTrNKLs ´ ∇NTrKLMs ` ∇KTrLMNs ´ ∇LTrMNKs

¯
. (4.7)

The total antisymmetry of T allows us to delete the r. . .s on its indices and thus we have

∇rMTNKLs “ 1

4

´
∇MTNKL ` ∇NTKML ` ∇KTMNL ` ∇LTMKN

¯
, (4.8)

where we used the antisymmetry of T to rearrange indices. This in turn can be rewritten as

4∇rMTNKLs “ ´∇LTMNK `
cycÿ

M,N,K

∇MTNKL “ ´∇LTMNK ` 3∇rMTNKsL , (4.9)

where we used (4.4). Thus, the combination of terms on the right-hand side of (4.5) with

covariant derivatives on the torsion is actually totally antisymmetric in four indices and so

(4.5) becomes

3RrMNKsL “ 4∇rMTNKLs ` 3TrMN
QTKsLQ . (4.10)

This equation suggest that the left-hand side is actually antisymmetric on the four indices,

which we now show. This fact is a consequence of the antisymmetry in each pair and the

symmetry under pair exchange,5

RrMNKsL “ 1

3

´
RMNKL ` RNKML ` RKMNL

¯

“ 1

3

´
´RMNLK ´ RLMNK ´ RNLMK

¯
“ ´RrMNLsK .

(4.11)

5Recall that this property of the generalized Riemann tensor holds even with torsion. This is not the case for

the conventional Riemann tensor.
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Being thus antisymmetric in its four indices the Riemann tensor satisfies

RrMNKsL “ RrrMNKsLs “ RrMNKLs . (4.12)

A completely analogous analysis shows that the combination TrMN
QTKsLQ is also totally anti-

symmetric in M,N,K, and L. Using this in (4.10) finally proves that (4.2) follows from (4.3),

thus showing their equivalence.

We can understand group theoretically that for the generalized Riemann tensor antisym-

metry in three indices implies antisymmetry in all four. Since R is antisymmetric in its first

two and second two indices it lives in the tensor product

b “ ‘ ‘ . (4.13)

By definition, however, R has the exchange symmetry between the two index pairs indepen-

dently of the torsion constraint. Therefore, R belongs only to the symmetric tensor product

ˆ
b

˙

sym

“ ‘ . (4.14)

Antisymmetrization in three indices eliminates the window Young tableau , and therefore

only the totally antisymmetric part survives. In the form (4.1) the algebraic Bianchi identity

is relatively easy to prove, as we do below.

4.2 Invariant proof

We will now give an invariant ‘index-free’ proof of the algebraic Bianchi identity (4.1) (and thus

of its equivalent forms (4.3) and (4.10)). We first write (4.1) as

RpW,X, Y,Zq ´ 4

3
p∇WT qpX,Y,Zq ´ T pW,X,T ÒpY,Zqq “ 0 , (4.15)

where from now on we will leave the totally antisymmetric projection implicit. One important

simplification due to the antisymmetry is that we can replace D-brackets for C-brackets, because

these are precisely the antisymmetrization of D-brackets. Thus, we can replace rX,Y sD by

rX,Y sC and, by linearity, ∇rX,Y sD by ∇rX,Y sC . Therefore, we get

RpW,X, Y,Zq “ 4x∇W∇XY,Zy ´ 2x∇rW,XsCY,Zy ` xX,∇ZA
W y xZ,∇ZAY y . (4.16)

Let us consider the double torsion term in (4.15). We compute with (3.28) and (3.36)

T pW,X,T ÒpY,Zqq “ T
`
W,X, 2∇Y Z ´ rY,ZsC ` xZ,∇ZA

Y yZA
˘

“
A
2∇WX ´ rW,XsC , 2∇Y Z ´ rY,ZsC ` xZ,∇ZA

Y yZA
E

`
@
X,∇2∇Y Z´rY,ZsC`xZ,∇ZA

Y yZAW
D

“ 4 x∇WX,∇Y Zy ´ 4x∇WX, rY,ZsCy ` xrW,XsC , rY,ZsCy

` xZ,∇2∇WX´rW,XsCY y

` 2xX,∇∇Y ZW y ´ xX,∇rY,ZsCW y ` xZ,∇ZA
Y y ¨ xX,∇ZAW y .

(4.17)
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Here we have used (3.34) to obtain the term in the second line of the last equality. The same

term, when expanded, gives terms that combine with the first two of the last line. We finally

get (changing the overall sign)

´ T pW,X,T ÒpY,Zqq “ ´ 4x∇WX,∇Y Zy ` 4x∇WX, rY,ZsCy ´ xrW,XsC , rY,ZsCy

´ 4xZ,∇∇WXY y ` 2xZ,∇rW,XsCY y ´ xZ∇ZA
Y y xX∇ZAW y .

(4.18)

Notice that the last two terms in here and in (4.16) are the same and thus cancel out in the

Bianchi identity.

Let us now compute the remaining term in (4.15), the covariant derivative of the torsion.

Recalling the total antisymmetry that is left implicit and using (3.8) we get

∇WT pX,Y,Zq “ W ¨ T pX,Y,Zq ´ 3T pY,Z,∇WXq

“ W ¨ x2∇XY ´ rX,Y sC , Zy ` W ¨ xY,∇ZXy

´ 3
´

x2∇Y Z ´ rY,ZsC ,∇WXy ` xZ,∇∇WXY y
¯
.

(4.19)

Letting the W ¨ act inside the inner product for all terms except the xrX,Y sC , Zy, using the

metric compatibility (3.6), and simplifying using the antisymmetry one finds

∇WT pX,Y,Zq “ 3 x∇W∇XY,Zy ´ 3 x∇WX,∇Y Zy ´ W ¨ xrX,Y sC , Zy

` 3 x∇WX, rY,ZsCy ´ 3 x∇∇WXY,Zy .
(4.20)

Multiplying by ´4{3 we have

´4

3
∇WT pX,Y,Zq “ ´ 4 x∇W∇XY,Zy ` 4 x∇WX,∇Y Zy ` 4

3
W ¨ xrX,Y sC , Zy

´ 4 x∇WX, rY,ZsCy ` 4 x∇∇WXY,Zy .

(4.21)

We can now add the three equations (4.16), (4.18) and (4.21) to find that all terms except two

cancel,

RpW,X, Y,Zq ´ 4

3
p∇WT qpX,Y,Zq ´ T pW,X,T ÒpY,Zqq

“ 4

3
W ¨ xrX,Y sC , Zy ´ xrW,XsC , rY,ZsCy .

(4.22)

It remains to prove that the above right-hand side vanishes. For this we use (2.23), which gives

W ¨ xX, rY,ZsCy “ xrW,XsC , rY,ZsCy ` xX, rW, rY,ZsC sCy

` 1

2
rY,ZsC ¨ xW,Xy ` 1

2
X ¨ xW, rY,ZsCy .

(4.23)

Because of the implicit antisymmetry, the first term on the second line vanishes and the second

term on the second line can be moved to the left-hand side,

3

2
W ¨ xX, rY,ZsCy “ xrW,XsC , rY,ZsCy ` xW, rrX,Y sC , ZsCy , (4.24)
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where we also used the total antisymmetry in the last term. This last term is the C-Jacobiator

(2.21) which, assuming multiplication by antisymmetric projectors, reads

JCpX,Y,Zq ” 3rrX,Y sC , ZsC , (4.25)

so that (4.24) becomes

3

2
W ¨ xrX,Y sC , Zy “ xrW,XsC , rY,ZsCy ` 1

3
xW,JCpX,Y,Zqy . (4.26)

Using (2.21) and the antisymmetry we can use

JCpX,Y,Zq “ 1

2
~B xrX,Y sC , Zy ñ xW,JCpX,Y,Zqy “ 1

2
W ¨ xrX,Y sC , Zy . (4.27)

Inserting this in (4.26) we get

3

2
W ¨ xrX,Y sC , Zy “ xrW,XsC , rY,ZsCy ` 1

6
W ¨ xrX,Y sC , Zy , (4.28)

so we finally have
4

3
W ¨ xrX,Y sC , Zy “ xrW,XsC , rY,ZsCy . (4.29)

This is the desired identity, and therefore the right-hand side of (4.22) vanishes and we have

proven the algebraic Bianchi identity.

5 Connection with generalized geometry

In this section we make contact with results in the literature on generalized geometry. This

introduces the generalized metric. It will also be useful below when we compare with the frame

formalism of Siegel.

5.1 Generalized metric

We now introduce the generalized metric. In this subsection we closely follow the treatment

in generalized geometry as given by Gualtieri in [34]. We first note that on the (generalized)

tangent space TM with OpD,Dq metric x¨ , ¨y we can select a D-dimensional basis C` which is

positive definite with respect to the inner product x¨ , ¨y. This choice corresponds to a choice

of generalized metric. The orthogonal complement C´ is also D-dimensional and negative

definite.6 We thus have

TM “ C` ‘ C´ . (5.1)

For arbitrary vectors X,Y P TM we write decompositions

X “ X` ` X´ , Y “ Y` ` Y´ . (5.2)

6In double field theory we often consider the full spacetime metric, i.e., a metric of Lorentzian signature. Then

we should consider a decomposition into subspaces C˘ each of Lorentzian signature (but with opposite overall

sign). This generalization is straightforward and so we spell out only the details for positive definite signature.
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We now define the generalized metric tensor HpX,Y q by the relation

HpX,Y q ” xX`, Y`y ´ xX´, Y´y . (5.3)

This is sometimes written schematically as

H “ x , y
ˇ̌
C`

´ x , y
ˇ̌
C´

. (5.4)

We can use the orthogonality of the subspaces C` and C´ to write

HpX,Y q “ xX` ` X´, Y`y ´ xX` ` X´, Y´y

“ xX,Y`y ´ xX,Y´y ,
(5.5)

and we conclude that

HpX,Y q “ xX,Y` ´ Y´y “ xX` ´ X´, Y y . (5.6)

We now define the linear operator S by

SX ” X` ´ X´ , (5.7)

i.e., it changes the overall sign of the part in C´ but leaves C` invariant. It follows that the

operator squares to one and that it preserves the C˘ spaces:

S2 “ 1 , SX˘ “ ˘X˘ . (5.8)

This allows us to rewrite (5.6) as

HpX,Y q “ xX,SY y “ xSX, Y y , (5.9)

demonstrating that S is a symmetric map. It is also an automorphism since by (5.8)

xSX , SY y “ xX ,S2Y y “ xX,Y y . (5.10)

Let us now phrase the covariant constancy of the generalized metric in these invariant terms.

We want to impose

∇H “ 0 , and ∇η “ 0 , (5.11)

where the last condition is equivalent to (3.6). We compute for the first with (3.8)

0 “ ∇HpX,Y,Zq “ ∇ZHpX,Y q

“ Z ¨ HpX,Y q ´ Hp∇ZX,Y q ´ HpX,∇ZY q

“ Z ¨ xX,SY y ´ x∇ZX,SY y ´ xX,S∇ZY y .

(5.12)

The relation ∇η “ 0 implies with (3.6)

Z ¨ xX,SY y “ x∇ZX,SY y ` xX,∇ZSY y . (5.13)

Insertion into (5.12) then yields

0 “ xX,∇ZSY y ´ xX,S∇ZY y . (5.14)
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We thus learn that the linear map S commutes with covariant differentiation,

∇XS “ S∇X . (5.15)

Thus the spaces C` and C´ are preserved by covariant differentiation:

∇X : C˘ Ñ C˘ , @X . (5.16)

It is also simple to see that for certain inputs the C- and D-brackets coincide:

rX`, Y´sD “ rX`, Y´sC . (5.17)

This follows because the C- and D- brackets differ by a term proportional to the derivative of

xX`, Y´y “ 0, as we can see from (2.15).

5.2 Implications for connections and curvature

We derive now some conclusions for the connections and our curvature tensor with respect

to the splitting TM “ C` ‘ C´. Let us first summarize the constraints imposed so far and

introduce a final one, item (3) below, that introduces the dilaton:

(1) The generalized torsion vanishes, T pX,Y,Zq “ 0 for all X,Y,Z.

(2) The OpD,Dq metric and the generalized metric are covariantly constant,

∇H “ 0 , ∇η “ 0 . (5.18)

(3) The density e´2d allows for integration by parts as

ż
e´2d f divV “ ´

ż
e´2d V f , (5.19)

for any function (scalar) f and vector V , where the divergence is defined as

divV “ x∇ZA
V,ZAy . (5.20)

Next we derive some useful relations for various connection components, written using the

splitting of the tangent bundle. We first note that the torsion constraint allows some nice

simplification. With (3.28) we infer

0 “ T pX`, Y´, Zq ” x∇X`Y´ ´ ∇Y´X` ´ rX`, Y´sD , Zy ` xY´,∇ZX`y . (5.21)

The last term vanishes and the above holds for all Z, so that we find

∇X`Y´ ´ ∇Y´X` “ rX` , Y´sD “ rX` , Y´sC . (5.22)

In order to gain further insights we start from the metric compatibility

X ¨ xY,Zy “ x∇XY,Zy ` xY,∇XZy , (5.23)
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so that using the torsion constraint for the second term we find

X ¨ xY,Zy “ x∇XY,Zy ` xY,∇ZXy ` xY, rX,ZsDy ´ xZ,∇Y Xy . (5.24)

Moving the third term on the right-hand side to the left, and using (2.22), we get

xrX,Y sD, Zy “ x∇XY,Zy ` xY,∇ZXy ´ xZ,∇Y Xy . (5.25)

Making choices for which only the first term in the above right-hand side is nonzero we find

x∇X´Y` , Z`y “ x rX´, Y`sD, Z`y ,

x∇X`Y´ , Z´y “ xrX`, Y´sD, Z´y .
(5.26)

These equations explicitly determine the corresponding projections of the connection in terms

of the D-bracket. Since ∇X´Y` does not have a component in C´ and ∇X`Y´ does not have

a component in C` (see (5.16)), back to (5.26) we see that

∇X´Y` “ rX´, Y`sD` ,

∇X`Y´ “ rX`, Y´sD´ .
(5.27)

We could also trade the above D-brackets for C-brackets. As a consistency check we can also

confirm that the torsion constraint (5.22) is satisfied. Indeed, using the above expressions and

recalling that for C`, C´ inputs the D-bracket is antisymmetric we find

∇X`Y´ ´ ∇Y´X` “ rX`, Y´sD´ ´ rY´,X`sD`

“ rX`, Y´sD´ ` rX`, Y´sD`

“ rX`, Y´sD .

(5.28)

So far we have derived relations that determine certain projections of the connection that

are ‘off-diagonal’ with respect to the decomposition C` ‘ C´. Next, we derive an equation

that determines the totally antisymmetric part of the connections. We begin with (5.25) and

rewrite the last term using metric compatibility,

xrX,Y sD, Zy “ x∇XY,Zy ` xY,∇ZXy ´ xZ,∇Y Xy

“ x∇XY,Zy ` x∇ZX,Y y ´ Y xZ,Xy ` x∇Y Z,Xy .
(5.29)

It follows that

xrX,Y sD, Zy ` Y xZ,Xy “
cycÿ

X,Y,Z

x∇XY,Zy . (5.30)

The left-hand side is not manifestly cyclic but it is cyclic. Indeed,

xrX,Y sD, Zy ` Y xZ,Xy “ xrX,Y sD, Zy ` xrY,ZsD,Xy ` xZ, rY,XsDy

“ xrY,ZsD,Xy ` x rX,Y sD ` rY,XsD , Zy

“ xrY,ZsD,Xy ` Z xX,Y y ,

(5.31)
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where we used (2.16) in the second line in order to rewrite the symmetric part of the D-bracket.

This proves the cyclicity in X,Y,Z. We therefore have

cycÿ

X,Y,Z

x∇XY,Zy “ 1

3

cycÿ

X,Y,Z

´
xrX,Y sD, Zy ` X xY,Zy

¯
, (5.32)

which determines the totally antisymmetric (cyclic) part of the connection.

Let us summarize and interpret our above results. First, for the connection coefficients Γ in

a coordinate basis, defined in (3.26), the relation (5.32) shows that the totally antisymmetric

part vanishes, ΓrMNKs “ 0, because on the right-hand side the OpD,Dq metric is constant and

the D-bracket is zero. Second, off-diagonal projections of the connections are determined by

(5.27). This leaves a ‘Hook-like’ Young tableau in the connections coefficients undetermined,

but whose trace part is determined by the dilaton according to constraint (3) above. This leaves

the traceless part of this representation undetermined; the connections cannot be determined

completely by means of covariant constraints.

It is instructive to write and count the connection components with respect to a coordinate

basis, also to make contact with the explicit results in [16]. First we have to introduce some

notation. Because of S2 “ 1, see (5.8), one can define projection operators P˘, mapping

P˘pTMq “ C˘, by

P˘ “ 1

2
p1 ˘ Sq , (5.33)

so that P 2
˘ “ P˘ and P`P´ “ 0. For any OpD,Dq tensor V we introduced in [16] the notation7

VM̄ ” pP`qMNVN , VM ” pP´qMNVN , etc. (5.34)

Contracting now the defining relation (3.26) for the Christoffel symbols with P` and P´ and

employing this notation we obtain

pP`qMKpP´qNP∇BK pBP q “ ΓM̄N
PBP . (5.35)

Moving the projectors inside the covariant derivatives, remembering (3.3), yields

∇pP`BqM pP´BqN ´ pP`qMKBKpP´qNPBP “ ΓM̄N
PBP , (5.36)

where pP`BqM “ pP`qMNBN , etc. Completely analogously we have

∇pP´BqN pP`BqM ´ pP´qNKBKpP`qMPBP “ ΓNM̄
PBP . (5.37)

Subtracting (5.37) from (5.36) we obtain

∇pP`BqM pP´BqN ´ ∇pP´BqN pP`BqM “
“
pP`qMKBKpP´qNP ´ pP´qNKBKpP`qMP

‰
BP

`
`
ΓM̄N

P ´ ΓNM̄
P

˘
BP .

(5.38)

On the other hand, by (5.28) the left-hand side can also be written with the D-bracket,

∇pP`BqM pP´BqN ´ ∇pP´BqN pP`BqM “
“
P`M , P´N

‰
D
, (5.39)

7In order to compare with [16] set P` ” P̄ and P´ ” P .
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where we interpret P`M
N as a generalized vector with vector index N , treating M as a pure

label index. Using (2.12) this D-bracket reads

“
P`M , P´N

‰
D

“
`
pP`qMKBKpP´qNP ´pP´qNKBKpP`qMP `BP pP`qMKpP´qNK

˘
BP . (5.40)

This has to be equal to the right-hand side of (5.38) and so we have arrived at a relation

determining Γ,

ΓM̄NP ´ ΓNM̄P “ BP pP`qMK pP´qNK , (5.41)

where we dropped the basis vectors BP and lowered the index P . We see that various terms

cancelled. Since the totally antisymmetric part of Γ vanishes we can rewrite the left-hand side

as ΓM̄NP ` ΓNPM̄ “ ´ΓPM̄N , so that we finally get

ΓPM̄N “ ´pP´qNKBP pP`qMK , (5.42)

which is in agreement with eq. (2.54) in [16].

We close the discussion of the connection components by counting the number of undeter-

mined connections. Without any constraints, ΓMNK has p2Dq3 “ 8D3 components. We next

subtract the numbers of independent constraints, which will give the number of undetermined

connections:

• Metric compatibility:

ΓMpNKq “ 0 : 2D ¨ 2Dp2D ` 1q
2

“ 1

2
¨ 8D3 ` 2D2 . (5.43)

• Vanishing torsion: Using metric compatibility, the torsion components TMNK are totally

antisymmetric. Thus, the number of constraints is

2Dp2D ´ 1qp2D ´ 2q
6

“ 1

6
¨ 8D3 ´ 2D2 ` 2

3
D . (5.44)

• Covariant constancy of H: the independent components determined by this constraint

are given by (5.42), so that we obtain the number p2DqD2 “ 2D3.

• Trace constraint and dilaton: this constraint determines the trace part ΓKN
K , thus adding

2D constraints.

In total, the number of undetermined connections is given by

8D3 ´
´1

2
8D3 ` 2D2

¯
´

´1

6
8D3 ´ 2D2 ` 2

3
D

¯
´ 2D3 ´ 2D “ 2

3
DpD2 ´ 4q , (5.45)

in agreement with the counting in [8] and in agreement with the dimension of two traceless

Hook tableau representations of GLpDq.

Let us finally derive some conclusions for certain projections of the generalized Riemann

tensor. This tensor RpX,Y,Z,W q defined in (3.45) is antisymmetric under the exchange of X

and Y as well as under the exchange of Z and W . We can now give an alternative formula

using the Courant bracket by making the symmetries explicit by the relation

RpX,Y,Z,W q “ 1

4

´
RpX,Y,Z,W q´RpY,X,Z,W q´RpX,Y,W,Zq`RpY,X,W,Zq

¯
. (5.46)
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Since the D-bracket differs from the C-bracket only by a term symmetric in the arguments we

can replace in the right-hand side the D-bracket by the C-bracket. One finds

RpX,Y,Z,W q ” xp∇X∇Y ´ ∇Y∇X ´ ∇rX,Y sC qZ ,W y

` xp∇Z∇W ´ ∇W∇Z ´ ∇rZ,W sCqX ,Y y

` 1

4

´
xY,∇ZA

Xy xW,∇ZAZy ´ xX,∇ZA
Y y xW,∇ZAZy

´ xY,∇ZA
Xy xZ,∇ZAW y ` xX,∇ZA

Y y xZ,∇ZAW y
¯
,

(5.47)

where we used (3.49), that holds for the C- and the D-bracket. Note that the equivalence of

the two expressions for the curvature R only holds when the connection is compatible with the

OpD,Dq metric. We now see that

RpX`, Y´, Z,W q “ xp∇X`∇Y´ ´ ∇Y´∇X` ´ ∇rX`,Y´sC qZ ,W y , (5.48)

since the covariant derivatives preserve the orthogonal ` and ´ subspaces and so only the first

line in (5.47) is non-zero. As a simple consequence

RpX`, Y´, Z`,W´q “ 0 . (5.49)

Using the algebraic Bianchi identity we also see immediately that

RpX`, Y`, Z´,W´q “ 0 . (5.50)

6 Relation to frame formalism

In this section we evaluate the geometrical quantities with respect to a frame basis in order to

make contact with the frame formalism of Siegel. In particular, we will show how the constraints

of Siegel are recovered from our constraints above and that the Riemann tensor reduces to the

curvature of the frame formalism.

6.1 Generalities

We introduce a general (‘frame’) basis EA “ EA
MBM , with A “ 1, 2, . . . , 2D and with EM

A,

defined to be the inverse of EA
M , assumed to exist. The frame basis is not necessarily orthonor-

mal, so we define

GAB ” xEA, EBy . (6.1)

We will assume that the basis EA respects the decomposition (5.1) of the tangent space into

C` ‘C´. More explicitly, the basis decomposes as EA “ pEa, Eāq, where indices a, b “ 1, . . . ,D

refer to C´ and indices ā, b̄ “ 1, . . . ,D refer to C`,
8 so that for the OpD,Dq invariant inner

product we have the constraints

Gab̄ “ xEa, Eb̄y “ 0 , det pGabq ă 0 , det pGāb̄q ą 0 . (6.2)

8The convention for unbarred and barred indices here is chosen such that it complies with that of [8].
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We also define

HAB ” HpEA, EBq . (6.3)

With respect to the basis EA we then introduce spin connection components ωAB
C as

∇EA
EB “ ´ωAB

CEC , (6.4)

similar to the Christoffel-like connections (3.26). In physicists terminology the spin connections

are related to the Christoffel connections via a ‘vielbein postulate’ that states that the ‘vielbein’

or frame components EA
M are covariantly constant with respect to the simultaneous use of

the Christoffel and spin connection. In this invariant formulation this is not an independent

postulate but rather follows directly:

∇EA
EB “ EA

M∇BM

`
EB

NBN
˘

“ EA
M

`
BMEB

N BN ` EB
N∇BM pBN q

˘

“ EA
M

`
BMEB

N ` ΓMK
NEB

K
˘
BN ” ´ωAB

CEC
NBN ,

(6.5)

where we used (3.26) and (6.4). Bringing the right-hand side to the left-hand side, we get

EA
M

`
BMEB

N ` ΓMK
NEB

K ` ωMB
CEC

N
˘
BN “ 0 . (6.6)

This implies the vielbein postulate in the usual form

∇MEA
N ” BMEA

N ` ΓMK
NEA

K ` ωMA
BEB

N “ 0 . (6.7)

Here we introduced the notation ∇M for the covariant derivative with respect to both the

Christoffel and spin connection, which acts in the usual way on tensors with an arbitrary

number of curved and flat indices. We will also write ∇A “ EA
M∇M . Let us stress that here

and below we employ the physicists notation for covariant derivatives with a pure letter as an

index, as opposed to covariant derivatives like∇BM used in the nomenclature of mathematicians.

Finally, let us discuss the generalized metric in this basis. As SpX˘q “ ˘X˘ for the

endomorphism introduced in sec. 5.1 we have

SpEaq “ ´Ea , SpEāq “ Eā . (6.8)

Therefore, the frame components of the generalized metric as defined in (5.9) are given by

Hab “ HpEa, Ebq “ xEa, SpEbqy “ ´xEa, Eby “ ´Gab ,

Hāb̄ “ HpEā, Eb̄q “ xEā, SpEb̄qy “ xEā, Eb̄y “ Gāb̄ .
(6.9)

Moreover, since S preserves the orthogonal subspaces we have

Hab̄ “ HpEa, Eb̄q “ 0 . (6.10)

We can finally express the generalized metric in a coordinate basis in terms of the frame com-

ponents. We have

HMN ” HpBM , BN q “ HpEM
AEA , EN

BEBq “ EM
AEN

BHAB , (6.11)

where EM
A denotes the inverse of EA

M . Inserting the non-vanishing components (6.9) of HAB

we get

HMN “ EM
āEN

b̄Gāb̄ ´ EM
aEN

bGab “ EM
āENā ´ EM

aENa , (6.12)

where indices are contracted with GAB . This coincides with the expressions for the generalized

metric in terms of the frame fields given in [4, 8].
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6.2 Constraints

We now give the various constraints in the frame formalism and show that they are equivalent

to those in Siegel’s original approach. We start with the constraint stating compatibility of

the connection with the generalized metric. According to (5.16) this constraint is equivalent

to the condition that the connection preserves the subspaces C˘. In the frame basis pEa, Eāq
this amounts to the constraint that the connection coefficients (6.4) are only non-vanishing for

ωAa
b and ωAā

b̄, and that there are no ‘off-diagonal’ components. Put differently, the structure

group takes the factorized form GLpDq ˆ GLpDq. In Siegel’s formalism this is assumed from

the outset, so in this formulation covariant constancy of the generalized metric is automatic.

Next, we inspect the constraint (6.13) stating compatibility of the OpD,Dq metric x , y and

the connection,

∇Z xX,Y y “ Z xX,Y y “ x∇ZX,Y y ` xX,∇ZY y . (6.13)

Specialized to the anholonomic basis EA it implies

EA xEB , ECy “ EAGBC “ x∇EA
EB, ECy ` xEB ,∇EA

ECy

“ ´ωAB
D
GDC ´ ωAC

D
GDB ,

(6.14)

and thus

∇AGBC ” EAGBC ` ωAB
DGDC ` ωAC

DGDB

“ EAGBC ` ωABC ` ωACB “ 0 .
(6.15)

This is the covariant constancy of the tangent space metric imposed in Siegel’s frame formalism

as one of the constraints.

Finally, we inspect the constraint of vanishing torsion. The torsion tensor (3.28) evaluated

for the basis EA reads

T pEA, EB , ECq “ x∇EA
EB ´ ∇EB

EA ´
“
EA, EB

‰
D
, ECy ` xEB ,∇EC

EAy . (6.16)

In order to compare this with the torsion constraint in the frame formalism we introduce some

notation. As in [8] we define generalized ‘coefficients of anholonomy’ ΩAB
C by use of the

C-bracket: “
EA, EB

‰
C

“ ΩAB
CEC , (6.17)

where we stress again that this equation holds generally, not only when acting on functions

satisfying the strong constraint. With (2.15) we then find for the D-bracket

“
EA, EB

‰
D

“
“
EA, EB

‰
C

` 1

2
pEC xEA, EByqEC “

`
ΩAB

C ` 1

2
ECGAB

˘
EC . (6.18)

Inserting this into (6.16) and using (6.4) we find for the torsion

T pEA, EB , ECq “ ´ωABC ` ωBAC ´ ΩABC ´ 1

2
ECGAB ´ ωCAB

“ ´
`
ΩABC ` 2

`
ωrABsC ` 1

2
ωCrABs

˘˘
´ 1

2

`
ECGAB ` 2ωCpABq

˘
.

(6.19)
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Comparing with eq. (2.21) of [8] we infer

T pEA, EB , ECq “ ´ T
S
ABC ´ 1

2
∇CGAB , (6.20)

where T S denotes the torsion tensor of Siegel. Since we assume the metricity constraint (6.15) it

follows that vanishing generalized torsion is equivalent to the zero torsion constraint in the frame

formalism. Moreover, constraint (3) in sec. 5.2, determining the trace of the connection in terms

of the dilaton, coincides with one of the constraints in Siegel’s frame formalism. Summarizing,

all constraints imposed here agree with the constraints in the frame formalism.

We close this subsection by giving the explicit spin connection components solving the above

constraints, which can be determined immediately from the results in sec. 5.2. First, specializing

the first equation in (5.27) to the frame basis we find

∇EaEb̄ ” ´ωab̄
c̄Ec̄ “

“
Ea, Eb̄

‰
C`

“ Ωab̄
c̄Ec̄ , (6.21)

where we noted that for off-diagonal projections we can replace the D-bracket by the C-bracket,

and we inserted (6.17). From this we conclude that ωab̄
c̄ “ ´Ωab̄

c̄. The analogous relation for

the opposite projection follows from the second equation in (5.27), and so we have in total

ωab̄
c̄ “ ´Ωab̄

c̄ , ωāb
c “ ´Ωāb

c , (6.22)

which agrees with eq. (2.34) in [8].

Next, we inspect (5.32), which determines the totally antisymmetric part of the connection.

Specializing to the frame basis we get

cycÿ

A,B,C

x∇EA
EB , ECy “ 1

3

cycÿ

A,B,C

´
xrEA, EBsD, ECy ` EA xEB, ECy

¯
. (6.23)

Using (6.4) on the left-hand side and (6.18) on the right-hand side this reads

´ ωABC ´ ωBCA ´ ωCAB “ 1

3

cycÿ

A,B,C

´
ΩABC ` 1

2
ECGAB ` EAGBC

¯
. (6.24)

Next we can use the metricity (6.15) in order to rewrite all derivatives of G in terms of ω.

Bringing then all ω terms to the left-hand side it is a straightforward computation to show that

this is equivalent to

ωrABCs “ ´1

3
ΩrABCs , (6.25)

in agreement with eq. (2.32) in [8].

Summarizing, the constraints (1) and (2) in sec. 5.2 determine the following connection

components ωABC : the off-diagonal projections, for which the first index and the second two

indices belong to opposite subspaces C˘, are determined by (6.22); for the diagonal projections

the part symmetric in the last two indices is determined by (6.15), while the totally antisym-

metric part is determined by (6.25). This leaves the ‘Hook Young tableaux’ representation

undetermined. The trace part, however, is determined by constraint (3) in sec. 5.2 in terms of
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the dilaton (see, e.g., eq. (2.37) in [8]). Thus, the undetermined part, which we denote by ω̃,

takes values in the traceless Hook representation:

ω̃abc :
Ć

, (6.26)

and completely analogously for the second GLpDq. This will be instrumental for the analysis

in sec. 6.4 below.

6.3 Riemann tensor

Let us now evaluate the generalized Riemann tensor with respect to the frame basis and verify

that it is equivalent to the Riemann tensor in Siegel’s formalism. We thus want to compute

RABCD ” RpEA, EB , EC , EDq . (6.27)

It is again convenient to introduce some notation. We write for the frame components of the

(non-tensorial) Riemann-like tensor given in (3.38)

RABCD ” ´RpEA, EB , EC , EDq “ ´xp∇EA
∇EB

´ ∇EB
∇EA

´ ∇rEA,EBsC qEC , EDy

“ xEAωBC
F EF ` ωBC

F∇EA
EF ´ pA Ø Bq ` ΩAB

F∇EF
EC , EDy

“
`
EAωBC

F ´ EBωBC
F ´ ωBC

EωAE
F ` ωAC

EωBE
F ´ ΩAB

EωEC
F

˘
GFD ,

(6.28)

using in the second line (6.17). The object RABCD so defined agrees with the object with the

same name in [8]. The combination in the generalized Riemann tensor (3.45) contains the D-

rather than the C-bracket, and so we have to compute the difference. With (6.18) we have

´∇rEA,EBsDEC “ ´∇rEA,EBsCEC ´ 1

2
EDGAB ∇ED

EC

“ ´∇rEA,EBsCEC ` 1

2
ED

GAB ωDC
EEE .

(6.29)

We then conclude with (6.28)

x
`
∇EA

∇EB
´ ∇EB

∇EA
´ ∇rEA,EBsD

˘
EC , EDy “ ´RABCD ` 1

2
EEGAB ωECD , (6.30)

where as usual we raise and lower frame indices with GAB . The final term in the last line in

(3.45) simply reads

xEB,∇EF
EAy xED,∇EFECy “ ωFAB ωF

CD . (6.31)

The full Riemann tensor is then finally given by

RpEA, EB , EC , EDq “ ´ RABCD ´ RCDAB ` ωEABω
E
CD

` 1

2
EEGAB ωECD ` 1

2
EEGCD ωEAB .

(6.32)

In order to compare with Siegel we rewrite the derivatives of G as covariant derivatives as in

(6.15), which gives after a short computation

RpEA, EB , EC , EDq “ ´
´
RABCD ` RCDAB ` 1

2
ωECD ωE

BA ` 1

2
ωEAB ωE

DC

´ 1

2
ωECD ∇EGAB ´ 1

2
ωEAB ∇EGCD

¯
.

(6.33)
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Comparison with eq. (2.50) of [8] then shows

RpEA, EB , EC , EDq “ ´2RS
ABCD , (6.34)

with RS denoting the Riemann tensor in the frame formalism, which is what we wanted to show.

We may also impose the metricity condition for G, in which case the second line vanishes. The

resulting Riemann tensor then agrees with eq. (2.48) of [8].

Since we have now shown that the invariantly defined generalized Riemann tensor (3.45)

reduces for a frame basis to the Riemann tensor of Siegel’s frame formalism we can immediately

derive some conclusions from our previous results. First, the identity (5.48) shows that for

certain index projections the generalized Riemann tensor reduces to the naive one (6.28),

Rāb CD “ Rāb CD . (6.35)

Second, the identity (5.49) implies for the frame basis

Rābc̄d ” 0 . (6.36)

Finally, the algebraic Bianchi identity (4.1) reads for vanishing torsion

RrABCDs “ 0 ñ RrABCsD “ 0 , (6.37)

where the last implication follows as in sec. 4.1, which in combination with (6.36) implies

Rāb̄cd ” 0 . (6.38)

It may be very tedious to verify identities like (6.37) and (6.38) using the component expression

(6.33), but here, employing a proper geometric framework, we almost get them for free.

6.4 Physical content of the Riemann tensor

We now analyze to what extent the generalized Riemann tensor encodes the usual curvature

invariants of Riemannian geometry. We will show that it contains the Ricci tensor and Ricci

scalar, but that due to the presence of undetermined connections it does not contain the full

uncontracted Riemann tensor.

We begin by recalling that due to (6.36) and (6.38) the non-vanishing independent compo-

nents of the Riemann tensor are

Rabcd , Rabcd̄ , Rāb̄c̄d̄ , Rāb̄c̄d . (6.39)

Let us first consider Rabcd̄. Its unbarred indices are antisymmetric in a, b and therefore belong

to the GLpDq representation

ab, c : b “ ‘
Ć

‘ , (6.40)

where the Young tableaux refer to the left GLpDq. The tilde in the Hook diagram indicates the

traceless part, and the box diagram represents the trace part. We have the algebraic Bianchi
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identity Rrabcsd̄ ” 0 and so the totally antisymmetric part is actually absent. In total, the full

tensor Rabcd̄ belongs to the representation

Rabcd̄ Ø pab, cq d d̄ :

˜
Ć

‘
¸

d . (6.41)

Here the rightmost box diagram refers to the right GLpDq, corresponding to the index d̄, and we

have indicated the product by d in order to stress that the second factor belongs to a different

GLpDq. Now, the undetermined connection ω̃ in (6.26) makes a contribution to the tensor

Rabcd̄. Moreover, this undetermined connection lives precisely in the traceless Hook diagram,

and so its contribution to Rabcd̄ lives in the representation9

Rabcd̄pω̃q „ Ed̄ ω̃abc ` ¨ ¨ ¨ :
Ć

d , (6.42)

where the traceless Hook diagram represents the undetermined connection and the second

box refers again to the right GLpDq. In the above, the dots represent additional terms that

may even be free of undetermined connections. But, even if such terms were relevant, they

are not accessible since they are affected by the fully undetermined structure Ed̄ ω̃abc in the

representation indicated by the above tableaux. That full representation is therefore unavailable

and, subtracting it from (6.41), we conclude that the ‘physical’ representations encoded inRabcd̄,

i.e., those independent of the undetermined connections, are given by d . This is precisely

the representation content of the generalized Ricci tensor with D2 components,

Rab̄ : d . (6.43)

Thus we have shown that the physical content of Rabcd̄ is given by its trace part, the generalized

Ricci tensor.

Next we turn to the first structure in (6.39), the tensor Rabcd. It is antisymmetric in a, b

and c, d and so lives in the symmetric tensor product (compare (4.14))

ˆ
b

˙

sym

“ ‘
Ć

‘ Ć ‘ 1 , (6.44)

where we decomposed into traceless representations, and 1 denotes the singlet representation

corresponding to the double trace. As the totally antisymmtric part is again absent due to the

algebraic Bianchi identity, Rabcd lives in the following representation

Rabcd : “
Ć

‘ Ć ‘ 1 . (6.45)

Let us now compare with the contribution of the undetermined connection ω̃ to Rabcd, which

reads

Rabcdpω̃q „ Eaω̃bcd ` ¨ ¨ ¨ :

˜
b

Ć
¸

p2,2q

“
Ć

‘ Ć . (6.46)

9We note that both derivative operators Ea and Eā are non-zero even when we solve the strong constraint

by setting B̃i “ 0. Thus, all derivatives contribute a factor of D additional components.
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Here the subscript p2, 2q indicates the projection onto the representations contained in the

p2, 2q window Young tableaux (6.45). There is no singlet (double trace) contribution since ω̃

is traceless. Thus, comparing (6.46) with (6.45), we conclude that the physical representation

encoded in this projection of the Riemann tensor (i.e., that independent of the undetermined

connection) is precisely given by the singlet,

R : 1 , (6.47)

which corresponds to the generalized scalar curvature.

The analogous arguments apply to the final two projections in (6.39), with the role of the two

GLpDq groups interchanged and with respect to the undetermined connection ω̃āb̄c̄. Moreover,

the Ricci tensor and scalar curvature obtained from these projections are equivalent to those

discussed above, as can be verified in an explicit basis, see e.g. sec. 3.2 and 3.3 in [16]. Thus,

in total, the physical content of the generalized Riemann tensor is encoded by the generalized

Ricci tensor and scalar curvature.

7 Differential identities and the Riemann tensor

In this section we report on some results that originated from attempts to derive differential

Bianchi identities for the Riemann tensor beyond those following from the gauge invariances of

an action. Although ultimately unsuccessful, we obtain on the way some interesting equations

that may turn out to be useful, specifically for the gauge variation of the connection symbols

and for a particular triple-commutator of covariant derivatives. Here we find it convenient to

leave the invariant language and write everything in terms of a basis.

7.1 Covariant gauge variation of connections

One main difference between the geometry of double field theory and ordinary Riemannian

geometry is that the commutator of covariant derivatives generally does not take a nice form

in terms of the generalized Riemann tensor. We can write

“
∇M ,∇N

‰
VK “ ´RMNK

LVL ´ TMN
L∇LVK , (7.1)

but here we obtain the ‘naive’ Riemann tensor (3.38) and the naive torsion tensor, TMN
K “

2ΓrMNs
K , which do not have tensor character (although the sum on the right-hand side of (7.1)

of course does [16]). Nevertheless, in the following we use this relation to rewrite the gauge

variation of the connection symbols ΓMNK in a manifestly covariant form involving the proper

generalized Riemann tensor.

The gauge variation of Γ is given by [8, 16]

δξΓMNK “ BM pBN ξK ´ BKξN q ` pLξΓMNK . (7.2)

We replace now each partial derivative by a covariant derivative, adding and subtracting the

corresponding connection terms. As (7.2) contains second derivatives this yields terms with
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first derivatives on connections, which we can rewrite in terms of the Riemann-like tensor R.

After a straightforward computation one obtains

δξΓMNK “ 2∇M∇rNξKs ` ξPRPMNK ` TNK
P∇P ξM ´ ΓQNKΓQ

MP ξ
P . (7.3)

We can now use (7.1) to rewrite the term on the right-hand side involving T ,

TNK
P∇P ξM “ ´

“
∇N ,∇K

‰
ξM ´ RNKMP ξ

P . (7.4)

Inserting this into (7.3) we obtain

δξΓMNK “ 2∇M∇rNξKs ´
“
∇N ,∇K

‰
ξM ` ξP

`
RPMNK ` RNKPM ` ΓQPMΓQ

NK

˘
, (7.5)

using the antisymmetry in the last two indices of R and Γ. The terms in brackets constitute

precisely the coordinate expression (3.58) of the generalized Riemann tensor. Thus, after a

minor rewriting, we have shown

δξΓMNK “ 2
`
∇M∇rNξKs ´ ∇rN∇KsξM

˘
` ξPRPMNK . (7.6)

This is manifestly covariant, as it should be since the variation of a connection is a tensor. This

relation is the analogue of a similar expression in Riemannian geometry, where

δΓk
mn “ ∇m∇nξ

k ` ξlRlm
k
n , (7.7)

and where Γ denotes the usual Christoffel symbols and R the usual Riemann tensor.

In the above computation we have repeatedly used the generalized torsion constraint T “ 0.

For completeness let us note that the variation of Γ can also be written covariantly for non-

vanishing torsion. After a lengthier computation, which we do not display, one obtains

δξΓMNK “ 2
`
∇M∇rNξKs ´ ∇rN∇KsξM

˘
` ξPRPMNK

` ξP∇MTNKP `
`
∇MξP ´ ∇

P ξM
˘
TNKP ,

(7.8)

which reduces to (7.6) for T “ 0.

It is amusing to note that these relations allow us to give an alternative proof for the

algebraic Bianchi identity (4.10). We first recall that the generalized torsion tensor can be

alternatively defined by the relation [16]

` pL∇
ξ ´ pLξ

˘
VM “ TMNKξNV K , (7.9)

where pL∇
ξ denotes the generalized Lie derivative in which each partial derivative has been

replaced by a covariant derivative. This implies for any generalized vector V

δξVM “ pLξVM “ pL∇
ξ VM ´ TMN

KVKξN , (7.10)

and analogously for arbitrary generalized tensors. Therefore we can apply this relation to the

gauge transformation of TMNK itself,

δξTMNK “ pL∇
ξ TMNK ´ TMP

QTQNKξP ´ TNP
QTMQKξP ´ TKP

QTMNQξ
P

“ ξP∇PTMNK ` 3
`
∇rMξP ´ ∇

P ξrM

˘
TNKsP ´ 3TrMN

Q
TKsPQξ

P ,
(7.11)
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using the total antisymmetry of T in the second line. On the other hand, we can also compute

this gauge transformation from (7.8), using TMNK “ 3ΓrMNKs, by simply projecting that

equation to the totally antisymmetric part:

δξTMNK “ 3δξΓrMNKs “ 3ξPRP rMNKs`3ξP∇rMTNKsP`3
`
∇rMξP ´∇P ξrM

˘
TNKsP . (7.12)

Since this has to be equal to (7.11) for arbitrary ξP we immediately conclude

3RP rMNKs “ ∇PTMNK ´ 3∇rMTNKsP ´ 3TrMN
QTKsPQ , (7.13)

or, after a minimal rewriting,

3RrMNKsP “ 4∇rMTNKP s ` 3TrMN
QTKsPQ , (7.14)

which is the full algebraic Bianchi identity (4.10).

We close this section by giving the analogue of (7.6) for the spin connection coefficients.

Their gauge variation is determined by the gauge variation of Γ by means of the vielbein

postulate (6.7),

∇MEA
N “ BMEA

N ` ΓMK
NEA

K ` ωMA
BEB

N “ 0 . (7.15)

Variation of (7.15) then yields

0 “ ∇M

`
δEA

N
˘

` δΓMK
NEA

K ` δωMA
BEB

N . (7.16)

This equation determines the ξ gauge transformations of ω. However, ω also transforms under

local frame transformations corresponding to the structure group GLpDqˆGLpDq under which

Γ is inert. It is convenient to determine δω for a particular combination of gauge transformations

with respect to ξ and a field-dependent frame transformation, setting the GLpDq ˆ GLpDq
parameter to

ΛA
B “ ξNωNA

B . (7.17)

This implies for the frame components GAB of the OpD,Dq metric

δGAB “ ξNBNGAB ` ΛA
C
GCB ` ΛB

C
GAC “ ξN

`
BNGAB ` ωNA

C
GCB ` ωNB

C
GAC

˘

“ ξN∇NGAB ” 0 ,
(7.18)

using the covariant constancy of GAB in the last step. Thus, under this combination of gauge

transformations GAB is invariant and so we can freely raise and lower frame indices inside

gauge variations. Contracting next (7.16) with the inverse vielbein EN
C we obtain after a

minor rewriting and relabeling of indices

δωMAB “ ´∇M

`
δEA

NENB

˘
´ δΓMNKEA

NEB
K , (7.19)

where we used the relation EM
A “ GABEB

NηMN in order to adjust the index positions, and the

covariant constancy (7.15) to move the vielbein under ∇M . We next use that for the combined

ξ gauge transformations and field-dependent frame transformations with parameter (7.17) we

have

δEA
NENB “ ´ p∇AξB ´ ∇BξAq , (7.20)
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where ξA “ EA
MξM , as has been shown in eq. (3.14) in [8]. Inserting now this and (7.6) into

(7.19) we obtain

δωMAB “ ∇M p∇AξB ´ ∇BξAq

´
`
∇M p∇NξK ´ ∇KξN q ´

“
∇N ,∇K

‰
ξM ` ξPRPMNK

˘
EA

NEB
K ,

(7.21)

Using the covariant constancy of the vielbein, we can convert indices in the second line to frame

indices, after which we see that the terms in the first line cancel. In total we get

δωMAB “
“
∇A,∇B

‰
ξM ` RABMN ξN , (7.22)

using the symmetry properties of R in the last step. This is our final form of the gauge variation

of the spin connection. It is quite a remarkable relation, for the right-hand side is precisely

the combination that would be zero if things were as in Riemannian geometry, where the

commutator of covariant derivatives yields the Riemann tensor. In contrast, here it determines

the gauge variation of ω, which is generally non-zero. There is one exception, however. The

special component ωMab̄ vanishes and hence its variation vanishes, which implies

“
∇a,∇b̄

‰
ξM “ ´Rab̄MN ξN . (7.23)

It is clear from (7.22) that this is the only simple relation between the commutator of covariant

derivatives and the generalized Riemann tensor.

7.2 Triple commutators and the Riemann tensor

We have seen above that (7.8) allows for a simple proof of the algebraic Bianchi identity. One

may thus wonder whether we can also obtain a differential Bianchi identity this way. Indeed, in

conventional Riemannian geometry the differential Bianchi identity can be proved along these

lines, which we briefly sketch in the following. The gauge transformation of the Christoffel

symbols Γk
mn can be written as in (7.7). Using this in the general variation of the Riemann

tensor,

δRmn
k
l “ ∇mδΓk

nl ´ ∇nδΓ
k
ml , (7.24)

employing the standard relation r∇m,∇nsV k “ Rmn
k
lV

l, one finds after a brief computation

δRmn
k
l “ ´2ξp∇rmRnsp

k
l ´ 2∇rmξpRnsp

k
l ´ ∇pξ

kRmn
p
l ` ∇lξ

pRmn
k
p . (7.25)

On the other hand, this gauge transformation can also be written as the standard Lie derivative,

but with all partial derivatives replaced by covariant derivatives (as we are allowed to do for

the Levi-Civita connection),

δRmn
k
l “ ξp∇pRmn

k
l ´ 2∇rmξpRnsp

k
l ´ ∇pξ

k Rmn
p
l ` ∇lξ

pRmn
k
p . (7.26)

As this has to agree with (7.25) for arbitrary ξ we conclude

3∇rpRmns
k
l “ ∇pRmn

k
l ` 2∇rmRnsp

k
l ” 0 , (7.27)

which is the differential Bianchi identity we wanted to prove.
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A crucial step in the above proof, from (7.24) to (7.25), was to rewrite the commutator of

covariant derivatives with the Riemann tensor. As discussed above, in the generalized case we

do not have such an identity, so it appears doubtful whether the above strategy can be employed.

However, what is really needed are triple-commutators of covariant derivatives, and it turns

out that there is such an identity in terms of the generalized Riemann tensor. Unfortunately,

following the above steps it leads to 0 “ 0, thus confirming the suspicion expressed in [16] that

there is no analogue of an uncontracted differential Bianchi identity. Rather, we now turn the

logic around and use this observation to give a simple proof for this triple-commutator relation,

which may be useful for other applications.

We start with the general variation of the generalized Riemann tensor, which can be written

similar to the standard case [16],

δRMNKL “ 2∇rMδΓNsKL ` 2∇rKδΓLsMN . (7.28)

We can now specialize to the generalized diffeomorphism transformation in the form (7.6),

which yields after a brief computation

δRMNKL “ 2
´““

∇M ,∇N

‰
,∇rK

‰
ξLs `

““
∇K ,∇L

‰
,∇rM

‰
ξNs

` ∇rMξP R|P |NsKL ` ∇rKξP R|P |LsMN ` ξP
`
∇rMR|P |NsKL ` ∇rKR|P |LsMN

˘¯
.

(7.29)

As above we know that this must be equal to the generalized Lie derivative, and for vanishing

torsion we can replace all partial derivatives by covariant derivatives, see (7.10). Thus, we have

δξRMNKL “ ξP∇PRMNKL

` 2
`
∇rMξP ´ ∇P ξrM

˘
R|P |NsKL ` 2

`
∇rKξP ´ ∇P ξrK

˘
R|P |LsMN .

(7.30)

Comparing this with (7.29) we infer the following triple-commutator relation valid for an arbi-

trary vector ξ:
”“
∇M ,∇N

‰
,∇rK

ı
ξLs `

”“
∇K ,∇L

‰
,∇rM

ı
ξNs “ RMNP rK∇

P ξLs ` RKLP rM∇
P ξNs

` ξP
´
∇rMRNsPKL ` ∇rKRLsPMN ` 1

2
∇PRMNKL

¯
.

(7.31)

7.3 Differential Bianchi identities from higher-derivative actions

Although we have argued in [16] and above that there is no analogue of the differential Bianchi

identity ∇rmRnkspq “ 0 in double field theory, there is of course the Bianchi identity following

from the gauge invariance of the double field theory action (1.3), which in turn is a generalization

of the usual Bianchi identity ∇mGmn “ 0 for the Einstein tensor in general relativity. Similarly,

one can derive further differential Bianchi identities by using the gauge invariance of higher-

derivative actions such as

S “
ż
dxdx̃ e´2d RMNKLRMNKL . (7.32)

This action as such is not of direct physical interest, for it depends on undetermined connections

and thus involves more than the physical fields. Moreover, as we showed in the previous section,
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it does not contain the (square of the) Riemann tensor and is therefore insufficient for α1

corrections. All we need, however, is the gauge invariance of (7.32), which is manifest.

Let us now derive the differential Bianchi identity. This requires (7.28) and (7.6) for the

variation of the Riemann tensor and [16]

δξe
´2d “ e´2d

∇P ξ
P (7.33)

for the gauge transformation of the dilaton. We compute

0 “ δξS “
ż
dxdx̃ e´2d

”
∇P ξ

P RMNKLRMNKL ` 8RMNKL∇MδΓNKL

ı

“
ż
dxdx̃ e´2d

”
´ 2ξPRMNKL∇PRMNKL

´ 8∇MRMNKL
`
2∇N∇KξL ´ 2∇K∇LξN ` ξPRPNKL

˘ı

“ ´2

ż
dxdx̃ e´2d

”
ξPRMNKL∇PRMNKL

` ξP
`
8∇K∇N∇MRMNKP ´ 8∇L∇K∇MRMPKL ` 4∇MRMNKLRPNKL

˘ı

“ ´2

ż
dxdx̃ e´2d ξP

”
RMNKL∇PRMNKL ` 8∇K∇N∇M

`
RMNKP ´ RMPNK

˘

` 4RPNKL∇MRMNKL
ı
.

(7.34)

Here we did several integrations by part and index relabelings. As this integral vanishes for

arbitrary ξP we conclude

RPNKL∇MR
MNKL`2∇K

∇
N
∇

M
`
RMNKP ´RMPNK

˘
` 1

4
R

MNKL
∇PRMNKL “ 0 . (7.35)

We close this section by noting that along the same lines one could easily derive more differential

Bianchi identities, by using different higher-derivative actions, e.g., involving the generalized

Riemann tensor with certain index projections rather than the full unprojected one in (7.32).

8 Concluding remarks

Even though a geometric framework for double field theory is by now quite well-understood in

‘index-based’ physics terminology, see e.g. [8,16], a more invariant treatment, analogous to the

coordinate-free formulation of differential geometry developed in pure mathematics in the mid

20th century, was lacking. In this paper we believe to have taken a first step towards a similar

formulation of the geometry of double field theory. Among other things, this formulation

makes manifest the equivalence of the previously developed frame-like [5, 8] and metric-like

formalisms [16,21,22]. The geometric structures emerging in double field theory are a compelling

generalization of those in Riemannian geometry. Nevertheless, there are also puzzling features

which seem to suggest that the present framework may eventually become just part of a more

general structure.

Most importantly, in contrast to Riemannian geometry, the connection is not uniquely

determined in terms of the physical fields. This is essentially because the constraint of zero
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generalized torsion in double geometry is weaker than the similar constraint in Riemannian

geometry. More precisely, in Riemannian geometry the constraint of zero torsion and the

constraint that ∇ is compatible with the metric x¨, ¨y determine completely the connection. In

the doubled geometry the analogous conditions use the generalized torsion and the compatibility

of ∇ with the metric x¨, ¨y described by η. They come up short to fix the connection because,

when ∇ is compatible with the metric, the generalized torsion is totally antisymmetric in its

three indices and thus has far fewer components than expected. Not even the imposition of

further conditions – the compatibility of ∇ with the generalized metric and a trace condition on

the connection – can make up for the shortcoming. With undetermined connections, we have

a generalized Riemann tensor with undetermined components.

Another puzzling feature of the generalized geometric formalism, perhaps related to the

presence of undetermined connection components, is the apparent absence of differential Bianchi

identities beyond those following from the gauge invariance of actions. Specifically, it seems

quite clear that there is no analogue of the uncontracted differential Bianchi identity for the

Riemann tensor, but we also have not been able to find a once-contracted Bianchi identity

that would generalize the familiar relation ∇mRmnkl “ 2∇rkRlsn. One may wonder whether

this somehow hints at the need to introduce some larger structures in which the significance of

these observations will become clear.

While it has been known that the generalized Riemann tensor does encode the Ricci tensor

and Ricci scalar, we have shown (sec. 6.4) that the presence of undetermined connections

implies that the generalized Riemann tensor does not have enough physical components to

describe the Riemann tensor. In fact, it has only enough of Riemann to determine the Ricci

and scalar curvatures. An immediate consequence of these results is that the present framework

is insufficient to describe α1-corrections to the effective action, for the latter are known to include

higher powers of the full Riemann tensor. This implies that even if there were a procedure to

remove the undetermined connections from curvature-squared terms, as we speculated in [16],

it would not describe the complete couplings required by string theory to higher order in α1.

We close be arguing that, despite the apparent complications, there are very good reasons

to believe that it must be possible to encode α1 corrections in double field theory. For instance,

in closed string field theory [37], which uses doubled coordinates [38] and inspired the recent

progress in double field theory, T-duality is known to be present to all orders in α1. Moreover,

as shown by Sen [39], such symmetry implies the continuous OpD,Dq symmetry of the effective

low-energy action to all orders in α1, which has been verified explicitly by Meissner to first

order in α1 in reductions to one dimension [40]. String field theory also suggests what may be

needed in order to overcome the obstacles found here. In fact, the gauge transformations and

the bracket governing the gauge algebra receive α1 corrections in string field theory. Therefore it

would not be surprising if we are forced to go beyond the geometric framework developed so far,

e.g., generalizing the Courant and Dorfman brackets. If a further generalization encompassing

α1 corrections does exist, it is reasonable to expect that the geometric structures discussed here

will become a natural part of that larger framework.

Apart from the problem of α1 corrections there is a wealth of questions related to the pure

two-derivative theory. Most importantly, we are still lacking a proper ‘intrinsic’ understanding
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of the doubled manifold and the generalized vectors. Our recent paper [31] interprets finite

gauge transformations as generalized coordinate transformations and so suggests a generalized

notion of manifold, but a precise mathematical formulation and nontrivial examples are clearly

desirable. In particular, such progress is needed to understand global aspects of generalized

manifolds, e.g., in order to investigate to what extent solutions can be patched together to a

globally non-trivial space. We hope that these questions will be answered in the near future.
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