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Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a
Unitary Fermi Gas

Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, and Martin W. Zwierlein
Department of Physics, MIT–Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(Dated: October 17, 2011)

We have observed the superfluid phase transition in a strongly interacting Fermi gas via high-
precision measurements of the local compressibility, density and pressure down to near-zero entropy.
Our data completely determine the universal thermodynamics of strongly interacting fermions with-
out any fit or external thermometer. The onset of superfluidity is observed in the compressibility,
the chemical potential, the entropy, and the heat capacity. In particular, the heat capacity displays
a characteristic lambda-like feature at the critical temperature of Tc/TF = 0.167(13). This is the
first clear thermodynamic signature of the superfluid transition in a spin-balanced atomic Fermi gas.
Our measurements provide a benchmark for many-body theories on strongly interacting fermions,
relevant for problems ranging from high-temperature superconductivity to the equation of state of
neutron stars.

Phase transitions are ubiquitous in Nature: water
freezes into ice, electron spins suddenly align as materi-
als turn into magnets, and metals become superconduct-
ing. A pervasive feature of continuous phase transitions
is their critical behavior, namely singularities in thermo-
dynamic quantities: the magnetic susceptibility diverges
at a ferromagnetic transition, the specific heat shows a
jump at superconducting transitions [1] as well as at the
superfluid transition of 3He [2]. In 4He, at the famous λ-
transition into the the superfluid state, the jump is even
resolved, in zero gravity, to be a near-diverging, singular
peak [3]. A novel form of superfluidity has been real-
ized in trapped, ultracold atomic gases of strongly in-
teracting fermions, particles with half-integer spin [4–6].
Thanks to an exquisite control over relevant system pa-
rameters, these gases have recently emerged as a versatile
system well suited to solve open problems in many-body
physics [6]. However, while superfluidity has been estab-
lished via the observation of vortex lattices in rotating
gases [7], no clear thermodynamic signature of the su-
perfluid transition has previously been observed.

Initial measurements on the thermodynamics of
strongly interacting Fermi gases have focused on trap av-
eraged quantities [8–10] in which the superfluid transition
is inherently difficult to observe. It is also challenging to
reveal the critical behavior through the study of local
thermodynamic quantities. The emergence of the con-
densate of fermion pairs in a spin-balanced Fermi gas is
accompanied by only minute changes in the density [4].
Therefore, quantities that involve integration of the den-
sity over the local potential, such as the energy E [11]
and the pressure P [12], are only weakly sensitive to the
sudden variations in the thermodynamics of the gas that
one expects near the superfluid phase transition [13].

A thermodynamic quantity involving the second
derivative of the pressure P is expected to become sin-
gular at the second order phase transition into the su-
perfluid state. An example is the (isothermal) compress-

ibility κ = 1
n
∂n
∂P |T , the relative change of the gas density

n due to a change in the pressure P . As the change in
pressure is related to the change in chemical potential
µ of the gas via dP = ndµ at constant temperature,

κ = 1
n2

∂2P
∂µ2 |T is a second derivative of the pressure, and

thus should reveal a clear signature of the superfluid tran-
sition.

In the present work, we report on a high-precision mea-
surement of the local compressibility, density and pres-
sure across the superfluid phase transition in the unitary
Fermi gas, realized using a trapped, two-spin mixture
of fermionic 6Li atoms at a Feshbach resonance [4, 6].
The combination of these three directly measurable, lo-
cal quantities determines the entire thermodynamics of
the homogeneous gas as we show below. Thermometry
of strongly interacting Fermi gases was known to be no-
toriously difficult. Our method solves this problem. It
is general and applies to other systems as well, such as
Bose gases in three or two dimensions.

In order to determine the thermodynamic properties
of a given substance, the general goal is to measure an
equation of state (EoS), such as the pressure P (µ, T ) as a
function of the chemical potential µ and the temperature
T . Equivalently, replacing the pressure by the density
n = ∂P

∂µ |T , one can determine the density EoS n(µ, T ).

In our experiment we directly measure the local gas
density n(V ) as a function of the local potential V from
in-situ absorption images of a trapped 6Li gas. The trap-
ping potential is cylindrically symmetric, with harmonic
confinement along the axial direction. This symmetry
allows to find the 3D density via the inverse Abel trans-
form of the measured column density [14]. Other than
cylindrical symmetry, no other assumption on the shape
of the potential is made. Instead, the local potential is
directly measured via the atomic density distribution and
the accurately known harmonic potential along the axial
direction of the atom trap.

The compressibility κ follows as the change of the den-
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sity n with respect to the local potential V experienced
by the trapped gas. The change in the local chemical
potential is given by the negative change in the local
potential, dµ = −dV , and hence the compressibility is
κ = − 1

n2
dn
dV |T .

The compressibility allows replacing the unknown
chemical potential µ in the density EoS n(µ, T ) by its
known variation in the atom trap, yielding the equation
of state n(κ, T ). In lieu of the a priori unknown tempera-
ture, we determine the pressure P (V ) =

∫ µ
−∞ dµ′n(µ′) =∫∞

V
dV ′n(V ′) that is simply the integral of the density

profile over the potential [15, 16]. The resulting equa-
tion of state n(κ, P ) contains only quantities that can
be directly obtained from the density distribution. This
represents a crucial advance over previous methods that
require the input of additional thermodynamic quanti-
ties, such as the temperature T and the chemical poten-
tial µ, whose determination requires the use of a fitting
procedure or an external thermometer, as in [11, 12].

We normalize the compressibility and the pressure by
the respective quantities at the same local density for a
non-interacting Fermi gas at T = 0, κ0 = 3

2
1

nEF
and

P0 = 2
5nEF , where EF = ~2(3π2n)2/3

2m is the Fermi en-
ergy and m is the particle mass, yielding κ̃ ≡ κ/κ0 and
p̃ ≡ P/P0. In general, κ̃ could depend on dimensionless
quantities other than P/P0, such as the interaction pa-
rameter na3 of the gas, where a is the scattering length.
However, for dilute gases at the Feshbach resonance, the
scattering length diverges and is no longer a relevant
length scale. In the absence of an interaction-dependent
length scale, the thermodynamics of such resonant gases
are universal [17], and κ̃ is a universal function of p̃ only.
Every experimental profile n(V ), whatever the trapping
potential, the total number of atoms or the temperature,
must produce the same universal curve κ̃ versus p̃. By
averaging many profiles, one obtains a low-noise deter-
mination of κ̃(p̃).

Our method has been tested on the non-interacting
Fermi gas that can be studied in two independent ways:
In spin-balanced gases near the zero-crossing of the
scattering length and in the wings of highly imbal-
anced clouds at unitarity, where only one spin state is
present locally. Both determinations yield the same non-
interacting compressibility EoS.

Fig. 1 shows the resulting compressibility equation of
state κ̃(p̃). In the high-temperature and, equivalently,
low-pressure regime, the pressure (and hence all other
thermodynamic quantities) allows for a Virial expansion
in terms of the fugacity eβµ [19]: Pβλ3 = 2

∑
j bje

jβµ,
with the nth order Virial coefficients bn. It is known
that b1 = 1, b2 = 3

√
2/8 [20], and b3 = −0.29095295 [19].

Our data agrees excellently with the Virial expansion.
Fixing b2 and b3, our measurement yields a prediction for
b4 = +0.065(10), in agreement with [12], but contradict-
ing a recent four-body calculation that gives a negative
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FIG. 1. Compressibility κ versus pressure P of the uni-
tary Fermi gas. Red solid dots show κ and P normalized by
their respective values κ0 and P0 for a non-interacting Fermi
gas at the same density. The error bars show one standard
deviation. The blue solid line shows the 3rd order Virial ex-
pansion. Black open squares (black solid line) denote data
(theory) for a non-interacting Fermi gas. The black dashed
line shows the relation κ̃ = 1/p̃ that must be obeyed at zero-
temperature both for the non-interacting gas (κ̃ = 1/p̃ = 1)
and the unitary gas (κ̃ = 1/p̃ = 1/ξ) (dotted lines). A gray
band marks the uncertainty region for the T = 0 value of
κ̃ = 1/ξ and p̃ = ξ. The blue dashed curve is a model for the
EoS of the unitary Fermi gas (above Tc: interpolation from
the Monte-Carlo calculation [18], below Tc: BCS theory in-
cluding phonon and pair-breaking excitations). Green solid
line: Effect of 2µm optical resolution on the model EoS.

sign [21].

At degenerate temperatures, the normalized compress-
ibility rises beyond that of a non-interacting Fermi gas,
as expected for an attractively interacting gas. A sudden
rise of the compressibility at around p̃ = 0.55, followed
by a decrease at lower temperatures marks the superfluid
transition. Indeed, the theory of superfluid phase tran-
sitions in three dimensions implies a singularity of the
compressibility at the transition. This would appear as a
sudden change in slope of n(V ) that is rounded off by the
finite resolution of our imaging system. Below the tran-
sition temperature, the decrease of the compressibility
is consistent with the expectation from Bardeen-Cooper-
Schrieffer (BCS) theory where single-particle excitations
freeze out and pairs form (see model in Fig. 1).

As T → 0, the Fermi energy EF is the only intensive
energy scale, and so the chemical potential must be re-
lated to EF by a universal number, µ = ξEF , where ξ
is known as the Bertsch parameter [5, 6]. It follows that
at T = 0, κ̃ = 1/p̃ = 1/ξ. The extrapolation of the
low-temperature experimental data for κ̃(p̃) towards the
curve κ̃ = 1/p̃ gives ξ ≈ 0.37, a value that we find consis-
tently for the normalized chemical potential, energy and
free energy at our lowest temperatures (see below).

From the universal function κ̃(p̃) we obtain all other
thermodynamic quantities of the unitary gas. First of all,
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FIG. 2. A Normalized compressibility κ̃ = 3
2
κnEF and B specific heat per particle CV /NkB of a unitary Fermi gas versus

reduced temperature T/TF , shown in solid red circles. The black solid curve shows the theory for a non-interacting Fermi
gas, the blue solid curve shows the third order Virial expansion for the unitary gas. Black open squares denote data for a
non-interacting Fermi gas. The green solid line shows the model from Fig. 1, again including 2µm imaging resolution. C
Condensate fraction at unitarity as determined from a rapid ramp to the molecular side of the Feshbach resonance. The onset
of condensation coincides with the sudden rise of the specific heat. All error bars show one standard deviation.

it allows translation between the pressure thermometer
p̃ and the more familiar normalized temperature T/TF
(where kBTF = EF ). Considering that the change in
p̃ with T/TF at constant temperature is related to the
change in pressure with density and thus the compress-
ibility, one finds dp̃

d(T/TF ) = 5
2
TF

T

(
p̃− 1

κ̃

)
and thus by in-

tegration [13]

T

TF
=

(
T

TF

)
i

exp

{
2

5

∫ p̃

p̃i

dp̃
1

p̃− 1
κ̃

}
. (1)

Here, (T/TF )i is the normalized temperature at an initial
normalized pressure p̃i that can be chosen to lie in the
Virial regime validated above.

Thanks to the relation E = 3
2PV valid at unitarity [17],

we can also directly obtain the heat capacity per particle
at constant volume V [13],

CV
kBN

≡ 1

kBN

∂E

∂T

∣∣∣
N,V

=
3

5

dp̃

d (T/TF )
=

5

2

TF
T

(
p̃− 1

κ̃

)
.

(2)
Fig. 2 shows the normalized compressibility and the

specific heat as a function of T/TF . At high tem-

peratures, the specific heat approaches that of a non-
interacting Fermi gas and eventually CV = 3

2NkB , the
value for a Boltzmann gas. A dramatic rise is observed
around Tc/TF ≈ 0.16, followed by a steep drop at lower
temperatures. Such a λ-shaped feature in the specific
heat is characteristic of second order phase transitions,
as in the famous λ-transition in 4He [23]. Jumps in
the specific heat are also well-known from superconduc-
tors [1] and 3He [2]. To our knowledge, this is the
first time that a specific heat jump has been directly
measured in an ultracold atomic gas. Previously, such
jumps had only been inferred from derivatives to fit func-
tions that implied a jump [10, 24]. We do not expect
to resolve the critical behavior very close to Tc, given
by CV = Cns + A+/−|T − Tc|−α with Cns the non-
singular part of the specific heat, the critical exponent
α ≈ −0.012 and amplitudes A+/− above and below the
transition [25]. In our trapped sample the critical region
is confined to a narrow shell due to the spatially vary-
ing chemical potential. Based on the estimate in [26],
the thickness of the critical shell is 1% of the cloud size.
The finite resolution of our imaging system (2 µm or
about 5% of the cloud size in the radial direction) suf-



4

0.7

0.6

0.5

0.4

0.3

0.2

µ/
E

F
, E

/E
0,

 F
/E

0

0.50.40.30.20.10.0
T/TF

2.5

2.0

1.5

1.0

0.5

0.0

S
/N

k B

0.60.40.20.0
T/TF

7.0

6.5

6.0

5.5

5.0

4.5
0.50.0

ξn

ξ

A B

FIG. 3. A Chemical potential µ, energy E and free energy F of the unitary Fermi gas versus T/TF . µ is normalized by
the Fermi energy EF (red solid circle), E (black solid circle) and F (green solid circle) are normalized by E0 = 3

5
NEF . At

high temperatures, all quantities approximately track those for a non-interacting Fermi gas, shifted by ξn − 1 (dashed lines).
The peak in the chemical potential signals the onset of superfluidity. In the deeply superfluid regime at low temperatures,
µ/EF , E/E0 and F/F0 all approach ξ. B Entropy per particle. At high temperatures, the entropy closely tracks that of a
non-interacting Fermi gas (solid line). Below T/TF = 0.1, the entropy per particle reaches values < 0.04 kB . The open squares
are from the self-consistent T-matrix calculation [22]. A few representative error bars are shown, representing one standard
deviation.

fices to explain the rounding of the singularity expected
from criticality. The rounding reduces the jump in the
heat capacity at the transition. From our data, we ob-
tain ∆C/N ≡ Cs/N − Cn/N , where Cs/N (Cn/N) is
the specific heat per particle at the peak (the onset of
the sudden rise). Due to the finte resolution, our mea-
surement sets a lower bound on the jump in the specific
heat, ∆C/Cn ≥ 1.0+4

−1. Considering the strong interac-
tions, this is surprisingly close to the BCS value of 1.43.
Below Tc, the specific heat is expected to decrease as
∼ exp(−∆0/kBT ) due to the pairing gap ∆0. At low
temperatures T � Tc the phonon contribution ∝ T 3

dominates [22]. This behavior is consistent with our data,
but the phonon regime is not resolved.

To validate our in-situ measurements of the super-
fluid phase transition, we have employed the rapid ramp
method to detect fermion pair condensation [27, 28].
The results are shown in Fig. 2C, and demonstrate
that the onset of condensation and the sudden rise in
specific heat and compressibility all occur at the same
critical temperature, within the error bars. Previous
experimental determinations of Tc/TF of the homoge-
neous unitary Fermi gas relied on a temperature cali-
bration that did not agree with the Virial expansion [11],
or obtained TF from the µ-derivative of a pressure fit,
and Tc from a construction implying a first-order tran-
sition [12]. Here we determine Tc/TF directly from the
density profiles, finding a sudden rise in the specific heat

and the onset of condensation at Tc/TF = 0.167(13).
This value is determined as the midpoint of the sudden
rise, and the error is assessed as the shift due to the un-
certainty of the Feshbach resonance [13]. This is in very
good agreement with theoretical determinations, for ex-
ample, the self-consistent T-matrix approach that gives
Tc/TF ≈ 0.16 [22, 29], and Monte-Carlo calculations
which give Tc/TF = 0.173(6) [30] and 0.152(7) [31]. It
disagrees with Tc/TF = 0.23(2) [32], but is close to a later
determination by the same group of Tc/TF . 0.15(1) [33].
There is a current debate on the possibility of a pseudo-
gap phase of preformed pairs above Tc [12, 34]. A pair-
ing gap for single-particle excitations above the transition
should be signaled by a suppression of the specific heat
already above Tc, which is not observed in our measure-
ments.

From the definition of the compressibility κ = 1
n2

∂n
∂µ |T

we can obtain the reduced chemical potential µ/EF as
a function of the reduced temperature, see Figure 3A
and [13]. Here, for the first time, this function is obtained
from measured quantities, rather than from numerical
derivatives of data that involved uncontrolled thermom-
etry [11]. Around T/TF ∼ 0.25 to 1, the chemical po-
tential is close to that of a non-interacting Fermi gas,
shifted by (ξn−1)EF due to interactions present already
in the normal state, with ξn ≈ 0.45. However, unlike a
normal Fermi gas, the chemical potential attains a max-
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FIG. 4. A Density and B pressure of a unitary Fermi gas versus µ/kBT , normalized by the density and pressure of a non-
interacting Fermi gas at the same chemical potential µ and temperature T . Red solid circles: experimental EoS. Dashed lines:
low-temperature behavior with ξ = 0.364, 0.376 and 0.389. Black dashed line: low-temperature behavior from the ξ upper
bound ξ = 0.383 [35]. Green open circles and black dashed line at 1.0: MIT experimental density and pressure, and theory for
the ideal Fermi gas. Blue solid squares (blue band): Diagrammatic Monte Carlo [18] for density (pressure). Solid green line:
3rd order Virial expansion. Open black squares: self-consistent T-matrix [22]. Open green circles: [32]. Orange star: [30]. Blue
star: [31]. Solid diamonds: ENS experiment [12]. Open diamonds: Tokyo experiment [11].

imum of µ/EF = 0.42(1) at T/TF = 0.171(10), and then
decreases at lower temperatures. This is expected for a
superfluid of paired fermions [22]. As the temperature
is increased from zero in a superfluid, phonons (sound
excitations) emerge that increase the chemical potential
µ. In addition, fermion pairs start to break and single
fermions contribute increasingly to the chemical poten-
tial with increasing temperature. At Tc, µ/EF must have
a sharp change in slope, as d(µ/EF )/d(T/TF ) involves
the singular compressibility. Indeed, the self-consistent
T-Matrix calculation shows a very clear peak in µ/EF
near Tc [22], in agreement with our observation. At low
temperatures, the reduced chemical potential µ/EF sat-
urates to the universal value ξ. As the internal energy
E and the free energy F satisfy E(T ) > E(T = 0) =
3
5NξEF = F (T = 0) > F (T ) for all T , the reduced

quantities fE ≡ 5
3

E
NEF

= p̃ and fF ≡ 5
3

F
NEF

= 5
3
µ
EF
− 2

3 p̃
provide upper and lower bounds for ξ [36], shown in Fig.
3A. Taking the coldest points of these three curves and
including the systematic error due to the effective inter-
action range, we find ξ = 0.376(5). The uncertainty in
the Feshbach resonance is expected to shift ξ by at most
2% [13]. This value is consistent with a recent upper
bound ξ < 0.383 [35], is close to ξ = 0.36(1) from a
self-consistent T-matrix calculation [22], and agrees with
ξ = 0.367(9) from an epsilon expansion [37]. It lies be-
low earlier estimates ξ = 0.44(2) [38] and ξ = 0.42(1) [39]
via fixed-node quantum Monte-Carlo that provide upper

bounds on ξ. Our measurement agrees with several less
accurate experimental determinations [5], but disagrees
with the most recent experimental value 0.415(10) that
was used to calibrate the pressure in [12], shown in Fig.
4B.

From the energy, pressure and chemical potential, we
can obtain the entropy S = 1

T (E + PV − µN). Shown
in Figure 3B is the entropy per particle S/NkB =
TF

T (p̃ − µ
EF

) as a function of T/TF . At high tempera-
tures, S is close to the entropy of an ideal Fermi gas at
the same T/TF . Down to Tc, neither the non-interacting
nor the unitary Fermi gas has S/N � kB . Also, the
specific heat CV is not linear in T . Thus it is question-
able to identify the normal regime as a Landau Fermi
Liquid, although some thermodynamic quantities agree
surprisingly well with the expectation for a Fermi liquid
(see [12] and [13]). Below about T/TF = 0.17 the en-
tropy starts to strongly fall off compared to that of a
non-interacting Fermi gas, which we again interpret as
the freezing out of single-particle excitations due to for-
mation of fermion pairs. Far below the critical tempera-
ture for superfluidity, phonons dominate. They only have
a minute contribution to the entropy [22], less than 0.02
kB at T/TF = 0.1, consistent with our measurements.
At the critical point we obtain Sc = 0.73(13)NkB , in
agreement with [22]. It is encouraging for cold atom ex-
periments that we obtain very low entropies, less than
0.04NkB , far below critical entropies required to reach
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magnetically ordered phases of fermions in optical lat-
tices.

From the chemical potential µ/EF and T/TF =
4π

(3π2)2/3
1

(nλ3)2/3
, we finally obtain the density EoS

n(µ, T ) ≡ 1
λ3 fn(βµ), with the de Broglie wavelength

λ =
√

2π~2

mkBT
. The pressure EoS follows as P (µ, T ) ≡

kBT
λ3 fP (βµ) with fP = 2

5
TF

T p̃fn(βµ). Fig. 4 shows the
density and pressure normalized by their non-interacting
counterparts at the same chemical potential and tem-
perature. For the normal state, a concurrent theoret-
ical calculation employing a new Monte-Carlo method
agrees excellently with our data [18]. Our data deviates
from a previous experimental determination of the pres-
sure EoS [12] that was calibrated with an independently
measured value of ξ = 0.415(10) [40] - a value which
agrees neither with our value nor a recent theoretical up-
per bound [35]. Our data also disagrees with the energy
measurement in [11] that used a thermometry inconsis-
tent with the Virial expansion [10]. Around the critical
point the density shows a strong variation, while the pres-
sure, the integral of the density over µ at constant T , is
naturally less sensitive to the superfluid transition.

In conclusion, we have performed a high-precision ex-
perimental study of the thermodynamics of a unitary
Fermi gas across the superfluid transition. For the first
time, we observe direct signatures of the superfluid phase
transition in various thermodynamic quantities, such as
a sudden rise in the compressibility and the specific heat.
The critical temperature for superfluidity at unitarity is
found to be Tc = 0.167(13)TF , the critical entropy is
0.73(13)NkB , and we set a lower bound on the jump in
the specific heat, ∆C/Cn ≥ 1.0+4

−1. We also find a new ex-
perimental value for the Bertsch parameter ξ = 0.376(5),
subject to at most a 2% shift due to the uncertainty in
the Feshbach resonance position. We have demonstrated
that precision many-body determinations of phase tran-
sitions involving fermionic atoms are possible at the few
percent level and without any fits or input from theory,
enabling validation of theories for strongly interacting
matter. Similar unbiased methods can be applied to
other systems, for example, two-dimensional Bose and
Fermi gases or fermions in optical lattices.
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SUPPLEMENTAL MATERIALS AND METHODS

Obtaining density versus potential curves from
absorption images of trapped samples

In this section we provide details on the determination
of the density from in-situ images of trapped samples.
The experimental set up is described in [S1]. Fermionic
6Li is cooled to degeneracy via sympathetic cooling with
23Na. A two-state mixture of the two lowest hyperfine
states of 6Li is prepared and brought into the strongly-
interacting regime at a broad Feshbach resonance at
834.15 G in a hybrid magnetic and optical trap, where
the mixture is further cooled. We measure the column
density of the gas via high-resolution in situ absorption
imaging.

The trapping potential is provided by a magnetic field
saddle potential that is confining along the z-direction,
and a gaussian laser beam (wavelength 1064 nm, waist
w = 120 µm) propagating along z. Due to the large
waist and correspondingly large Rayleigh range of the
gaussian beam, the trapping potential is to an excellent
approximation harmonic in the z-direction, with a mea-
sured trapping frequency of ωz = 2π ·22.83(5) Hz. Waist
w and power P of the laser beam determine the trapping
potential along the radial direction. The total potential
can be excellently modeled as

V (ρ, z) = Vρ(ρ) + Vz(z)

≡ 1

2
mω2

zz
2 − 1

4
mω2

zρ
2 − α Pπ

2w
2
e−2ρ

2/w2

, (3)

where α is the polarizability. We can safely neglect in
this model the 0.01% contribution to the axial trapping
frequency from the variation of the laser power along
the z-direction. We do not rely on the waist and power
measurement of the laser beam but in fact measure the
trapping potential directly using the atomic distribution
itself, as will be outlined below.

To obtain the 3D density from the measured optical
density OD(x, z) = σn2D(x, z) with effective absorption
cross section σ, we employ the inverse Abel transform for

each z [S2]:

n3D(x, z) = − 1

π

∫ ∞
x

dρ
1√

ρ2 − x2
∂n2D
∂ρ

(ρ, z)

Cylindrical symmetry, i.e. the equality of the waist of
the optical potential along the transverse x and y di-
rection, is measured via a beam profiler to be better
than 1% and confirmed via the observation of long-lived
vortices [S3]. Cylindrical symmetry is not required: As
long as equipotential lines in the (x, y) plane transverse
to the z-direction can be parameterized as an ellipse
x2/a2 + y2/b2 = const, the inverse Abel formula for the
3D density would be modified only through an overall
factor b/a:

n3D(x, z) = −a
b

1

π

∫ ∞
x

dρ
1√

ρ2 − x2
∂n2D
∂ρ

(ρ, z)

The absolute scale of density is calibrated through nor-
malization via the measured effective absorption cross
section of a non-interacting Fermi gas, so this prefac-
tor, even if different from unity, is simply absorbed in
the effective absorption cross section. Absorption imag-
ing is performed at low intensity I/ISAT < 0.07 to avoid
saturation, and the total number of photons scattered
is kept small (around 4) by using a short pulse dura-
tion to avoid optical pumping and an increasing Doppler
shift [S4]. Simulations have confirmed that non-linear ef-
fects in our imaging procedure distort the density profile
by much less than 1%.

To obtain a direct measurement of the trapping po-
tential, one can employ the local density approxima-
tion: equidensity lines must be equipotential lines, and
the potential is excellently known in the axial (z) di-
rection, thus calibrating the potential everywhere. For
this measurement, one may average many independent
3D density profiles, even if the atom number or tem-
perature vary from shot to shot. The averaged density
along z, navg.3D (0, z) = navg.3D (V (0, z)) can be inverted to
find V (n3D), so that the density at any point (ρ, z) in
the trap gives V (ρ, z). The resulting potential can be fit
with our model, and results in a waist that agrees with
the measured waist to within one percent, and a power
that agrees with the measured power to within 10% (a
typical error for standard power meters). Thus anhar-
monicities in the trapping potential have been incorpo-
rated into the experimental analysis of density profiles
exactly. Previous measurements attempted to charac-
terize anharmonic traps via measured trapping frequen-
cies [S5, S6]. However, anharmonicities cause such fre-
quencies to depend on the trap filling, rendering that
method less reliable. Knowing the trapping potential, a
single experimental density profile n3D(ρ, z) can now be
averaged over equipotential lines V (ρ, z) = V0, yielding
a low-noise determination of the density as a function of
the local potential V0.

http://arxiv.org/abs/1103.2851
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The local density approximation (LDA) is well fulfilled
as long as the cloud size (typically ∼ 40µm in the narrow,
radial direction) is large compared to the characteristic
length of spatial correlations in the gas, on the order
of ∼ 1/kF = 400 nm [S7]. Violations of LDA due to
criticality close to the superfluid transition have not been
detected, likely due to our finite optical resolution (about
2− 3 µm).

The profiles n(V ) for varying atom numbers, trap pa-
rameters and degree of evaporative cooling are then used
to calculate the normalized compressibility and the pres-
sure, as described in the text.

Compressibility equation of state and relation to the
specific heat and reduced temperature

The compressibility κ, the pressure P and the density
n are related by an equation of state κ(n, P ). At uni-
tarity, all these thermodynamic quantities are related to
universal functions of βµ. Let us define P = 1

βλ3 fP (X),

then n = 1
λ3 f
′
P (X) ≡ 1

λ3 fn(X), and κn2 = β
λ3 f
′′
P (X),

with X = βµ.
The experiment determines the density as a function

of the local potential, n(V ). We have κn2 = ∂n
∂µ =

− ∂n
∂V . We normalize κ by the compressibility of a non-

interacting, zero-temperature Fermi gas κ0 = 3
2

1
nεF

. We

find κ̃ ≡ κ
κ0

= ∂EF

∂µ = −∂EF

∂V , where EF = ~2(3π2n)2/3

2m is
the Fermi energy, with m being the mass of the atom.

At unitarity, κ̃ is a universal function of T/TF or,
equivalently, of nλ3. If we replace the temperature by
the pressure P , another dimensionless quantity that we
can form is p̃ = P

2
5nεF

, which is the pressure normalized

by the zero-temperature limit for a non-interacting gas.
One can trade the unknown thermometer T/TF for the
known, new thermometer p̃. For every profile, one can

determine κ̃(V ) = −dEF (V )
dV and p̃(V ) =

∫∞
V
dV ′n(V ′)

2
5n(V )EF (V )

, and

then plot κ̃ vs p̃. Even though obtaining κ̃ involves tak-
ing a derivative of the data, accumulation of data reduces
the noise. Data from all profiles within a bin of p̃ is av-
eraged to give the EoS. The statistical error bar is taken
to be the standard error.

In terms of the function fP we have κ̃ = 2
3
TF

T
f ′′P
f ′P

and

p̃ = 5
2
T
TF

fP
f ′P

. The different thermometers, p̃, X = βµ and

T/TF depend on each other in the following way:

dp̃

dX
=

5

2

T

TF
(1− κ̃p̃) (4)

d(T/TF )

dX
= −κ̃

(
T

TF

)2

(5)

dp̃

d(T/TF )
=

5

2

TF
T

(
p̃− 1

κ̃

)
. (6)

Note that apart from a prefactor, the last equation is just
the heat capacity per particle (using E = 3

2PV valid at

unitarity):

CV
kBN

=
1

kBN

dE

dT

∣∣∣
N,V

=
3

5

dp̃

d (T/TF )
=

3

2

TF
T

(
p̃− 1

κ̃

)
.

(7)
Further simplifying, we have dp̃

d ln(T/TF ) = 5
2

(
p̃− 1

κ̃

)
which can be integrated to give

T

TF
=

(
T

TF

)
i

exp

{
2

5

∫ p̃

p̃i

dp̃
1

p̃− 1
κ̃

}
, (8)

where κ̃ is known as a function of p̃, and (T/TF )i is the
temperature at the initial normalized pressure p̃i. This
function relates the thermometer T/TF to the pressure
thermometer p̃.

There are several ways to obtain βµ vs T/TF . One can
consider κ̃ as a function of T/TF and obtain

βµ = (βµ)i −
∫ T/TF

Ti/TF

d( T
TF

)
1

κ̃

(
TF
T

)2

, (9)

or one can consider T/TF as a function of p̃ and obtain

βµ = (βµ)i +
2

5

∫ p̃

p̃i

dp̃
TF
T

1

1− κ̃p̃
. (10)

Together with T/TF = 4π
(3π2)2/3

1

f
′2/3
P

, this now gives

f ′P (βµ) = fn(βµ). We then get directly fP = 2
5 p̃

TF

T f
′
P

and f ′′P = 3
2
T
TF
f ′P κ̃. In addition, for the entropy per

particle we have S/NkB = TF

T (p̃− µ
EF

).
We validate the method via the measurement of the

equation of state of a non-interacting Fermi gas. This
provides a check for the effective absorption cross section:
If the cross section had been determined too large by a
factor of γ, κ̃ ∝ γ−2/3 would be too small, and p̃ ∝ γ2/3

too large. Note, however, that the determination of T/TF
from κ̃(p̃) is insensitive to errors in the absorption cross
section, as all factors of γ cancel in Eq. 8. Systematic
errors that are unique to the unitary gas are discussed in
the following.

Systematic errors from non-universal scattering
properties

In the following we discuss systematic errors in our
experiment from possible non-universal behavior. The s-
wave scattering amplitude f(k) for atom-atom collisions
can be written as

f =
1

u(k)− ik

where u(k) = − 1
a + 1

2rek
2 + . . . , a is the scattering

length, and re the effective range. The latter can gen-
erally differ from the range of the interatomic potential,
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FIG. S1. The effect of uncertainty in the Feshbach resonance
position on the equation of state κ̃ versus p̃. The experimental
result at 834.15 G is shown in red solid circles. This would be
the EoS of the unitary Fermi gas if the Feshbach resonance is
located at B0 = 834.15 G. If the true location of the resonance
is at ±1.5 G away, one can estimate the true EoS for the
unitary Fermi gas using the contact (see text). The result is
shown as triangles pointing up (down) if the true resonance
position is at 832.65 G (835.65 G). Also shown are the third
order virial expansion (blue solid curve), the non-interacting
EoS (black solid curve), and the curve κ̃ = 1/p̃ on which the
curve κ̃ versus p̃ must end.

b. To be in the universal regime at unitarity where the
universal relation nλ3 = f(βµ) holds, we require that
kFa � 1, kF re � 1, kF b � 1 [S8]. Otherwise, the
additional length scales a, re and b will feature in the
more complex equation of state that would be written
as nλ3 = f(βµ, λ/a, λ/re, λ/b). We discuss the possible
influence of the various terms separately in the following.

Effect of the uncertainty in the Feshbach resonance position

The Feshbach resonance between the lowest two hy-
perfine states in 6Li lies at (834.15 ± 1.5) G [S9]. The
systematic error from the uncertainty in the Feshbach
resonance position of ∆B = 1.5 G can be estimated us-
ing the contact [S10]. As the scattering length varies, the
change in the energy of the system is given by(

∂E

∂a−1

)
S,N,V

=
~2

4πm
CV

where C is the contact density. From this relation, the
change in the pressure and, via n = ∂P

∂µ |T , the change
in density with a can be derived. Diagrammatic Monte-
Carlo calculations yield the temperature dependence of
the contact [S11]. We can thus predict the true density
profiles starting with our measured normalized densities.
The result is shown as the triangles pointing up and down
in Fig. S1.

From these upper and lower bounds on the true equa-
tion of state we can deduce upper and lower bounds for

the normalized chemical potential, energy and free en-
ergy, pressure and entropy, which result from different
combinations of density and pressure. All errors grow
as the temperature is lowered, as the contact increases.
At the lowest temperatures, the error in the density is
3%, in the pressure 1%, in the chemical potential (and
therefore ξ) 2%, in the normalized energy (free energy)
4% (1%). As it turns out, the entropy per particle S/N
is only very weakly sensitive to the uncertainty in the
resonance position, as the systematic error in the pres-
sure and density cancel to a high degree. At the lowest
temperatures, the error has grown to only ±0.08kB . At
higher temperatures, the systematic error in S/N from
the error in B0 is much smaller than the statistical error
bars. Note that ∆B is much larger than the variation of
the magnetic field along the axial direction of the cloud
of about 15 mG due to the magnetic confinement, which
contributes only a 0.01% error in ξ.

Effective range correction

The effective range near a Feshbach resonance at scat-
tering length a can be modeled as [S8]:

re = −2R∗(1−
abg
a

)2 +
4b√
π
− 2b2

a

where R∗ = 0.0269 nm and b = 2.1 nm for 6Li [S8]. At
our typical densities, 1/kF ≈ 400 nm and thus kFR∗ <
10−4. As this parameter is very small, errors due to
spatial variation of the scattering length, mediated by the
optical trap, are vanishingly small [S8]. As a� b across
the Feshbach resonance, the effective range is reduced to
a constant re = 4.7 nm for essentially all magnetic fields
B & 650 G [S12].

At our highest densities at low temperatures, kF re =
0.012. All thermodynamic potentials and thus also the
ground state energy E = 3

5ξNEF are expected to de-
pend linearly on this parameter [S13]. From the Quan-
tum Monte-Carlo values of ξ versus effective range given
in [S14] one can deduce a linear behavior of the upper
bound on ξ:

ξ(kF re) = ξ(re = 0) + 0.26(6) · kF re + . . .

With this dependence of ξ on the effective range, the error
on ξ in our experiment is at most +0.003 or +0.8%. This
is small compared to the error due to the uncertainty in
the Feshbach resonance position.

Energy vs entropy of the harmonically trapped gas

In Fig. S2 we show the energy versus entropy for
a harmonically trapped Fermi gas at unitarity, deter-
mined from our experimental determination of the homo-
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FIG. S2. Energy vs entropy of a harmonically trapped gas at
unitarity, deduced from our measured bulk equation of state
(red solid dots). The curve is smooth, as required by thermo-
dynamics. Blue diamonds: Duke experiment [S15], for which
an interaction correction has been applied to the entropy.

geneous density EoS and temperature. The data are com-
pared with the earlier measurement of the same quanti-
ties by the Duke group [S15], after applying a correction
of the entropy for the finite interaction strength in that
measurement. The agreement is excellent. Note that
the energy vs entropy curve is smooth and on its own
does not allow for a determination of the critical energy
or entropy, in contrast to earlier interpretations of the
Duke data [S15]. From the bulk thermometry, we obtain
Ec,trap = 0.698(23)NEF,trap and Sc,trap = 1.70(10)NkB .

Discussion on possible Fermi Liquid behavior

In Fig. S3 and S4 we plot the density and pressure,
normalized by that of a non-interacting Fermi gas at
zero temperature, versus (T/µ)2. The linear behavior
of the normalized density and pressure at high temper-
atures is reminiscent of a Fermi liquid. However, in the
range shown, T/µ is not a small parameter. The su-
perfluid transition leads to a dramatic upturn at low T
in the normalized density at low temperatures. This is
directly related to the downturn in the chemical poten-
tial seen in Fig. 3 A, as n(µ, T )/n0(µ, 0) ∝ (µ/EF )−3/2.
The minimum value of the normalized density occurs at
T/µ = 0.41(5), close to Tc/µc = 0.40(3), where Tc is
determined from the midpoint in the specific heat jump
and validated via the condensate fraction measurement.

At low temperatures, the normalized density reaches
the zero-temperature value 1/ξ3/2. The pressure does
not show an upturn but smoothly attains a limiting value.
The smooth behavior is expected for a second-order tran-
sition, where first derivatives of the pressure with re-
spect to the chemical potential are continuous across
the transition. The intercept of a straight line at the
limiting value P (µ, 0)/P0(µ, 0) = 1/ξ3/2 with the linear

4.8

4.6

4.4

4.2

4.0

3.8

3.6

n(
µ,

T
)/

n 0
(µ

,0
)

0.80.60.40.20.0

(kBT/µ)
2

FIG. S3. Density n(µ, T ), normalized by the density n0(µ, 0)
of the non-interacting Fermi gas at zero temperature and same
chemical potential µ, versus (T/µ)2. The solid blue line de-

notes the zero-temperature limit, n(µ, 0)/n0(µ, 0) = 1/ξ3/2.
The solid red line is a linear fit, resembling Fermi liquid be-
havior of the density above Tc.
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FIG. S4. Pressure P (µ, T ), normalized by the pressure
P0(µ, 0) of the non-interacting Fermi gas at zero tempera-
ture and same chemical potential µ, versus (T/µ)2. Red solid
circles are the experimental data from this work. Black solid
circles are from [S6]. The solid blue line denotes the zero-

temperature limit, P (µ, 0)/P0(µ, 0) = 1/ξ3/2, the red solid
line is a linear fit, resembling Fermi liquid behavior for the
pressure above Tc. The black solid line shows the pressure of
a non-interacting Fermi gas, the dashed solid line the linear
approximation, valid if T � TF .

fit at high temperatures underestimates Tc/µc by 22%.
This method resulted in Tc/µc = 0.32(2) in [S6] (shown
for comparison), inconsistent with our determination.
However, our value for Tc/µc = 0.40(3) agrees excel-
lently with the most accurate theoretical determination
Tc/µc = 0.400(14) from [S16]. In a Fermi liquid, one has

P (µ, T ) = P0(µ, 0)

(
ξ
−3/2
n + 5π2

8 ξ
−1/2
n

m∗

m

(
kBT
µ

)2)
[S6].

Although the agreement with the Landau Fermi liquid
is fortuitous, we may nevertheless use it to model the
data. From the linear fit versus (T/µ)2, we obtain the
fit parameters ξn = 0.46(1), in agreement with the de-
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termination of the same parameter from the chemical
potential, and m∗

m = 1.04(2). Note that in the same tem-
perature regime, a linear fit to the normalized pressure of
a non-interacting Fermi gas (solid line in Fig. S4) gives
m∗0
m = 0.91, while clearly, this value for a non-interacting

Fermi gas should not differ from unity. The reason for
discrepancy is that the pressure of the non-interacting
Fermi gas in the temperature range 0.2 > (T/µ)2 > 1
is not in the linear regime of low temperatures (shown
as the dashed line in Fig. S4). Equivalently, the en-
tropy per particle is not much smaller than kB . The fit-
parameter m∗ should thus not be taken literally as the
effective mass of particles in the normal state. However,
the general finding of [S6] of an only weakly renormalized
normal state at unitarity remains true. Compared to the
non-interacting Fermi gas in the same regime of T/µ,
the unitary gas has an apparent effective mass enhance-
ment of only about 12%. In view of the specific heat,
which is not linear in temperature above Tc, and the facts
that neither T/µ, nor the entropy per particle, are small
above Tc, we conclude that the usual Landau Fermi liq-
uid picture, valid when the temperature is much smaller
than the Fermi energy, cannot properly describe all ther-
modynamic properties of the normal unitary Fermi gas.
Note that our determination of fit parameters differs from
the previous result [S6] m∗

m = 1.13(3) and ξn = 0.51(2),
possibly due to the mentioned differences in calibration
between the experiments. This results in overall lower
pressures (by a factor of about 13%) than in the present
experiment, where we find ξ = 0.376(5), to be shifted by
at most 2% due to the error in the Feshbach resonance.
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