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[11 The transport of fine sediment and organic matter plays an important role in the nutrient
dynamics of shallow aquatic systems, and the fate of these particles is closely linked to
vegetation. We describe the mean and turbulent flow near circular patches of synthetic
vegetation and examine how the spatial distribution of flow is connected to the spatial
distribution of suspended sediment deposition. Patches of rigid, emergent, and flexible,
submerged vegetation were considered, with two different stem densities. For the rigid
emergent vegetation, flow adjustment was primarily two-dimensional, with flow deflected
in the horizontal plane. Horizontal shear layers produced a von Karman vortex street. Flow
through the patch shifted the vortex street downstream, resulting in a region directly
downstream of the patch in which both the mean and turbulent velocities were diminished.
Net deposition was enhanced within this region. In contrast, for the flexible, submerged
vegetation, flow adjustment was three-dimensional, with shear layers formed in the vertical
and horizontal planes. Because of strong vertical circulation, turbulent kinetic energy was
elevated directly downstream of the patch. Consistent with this, deposition was not
enhanced at any point in the wake. This comparison suggests that morphological feedbacks
differ between submerged and emergent vegetation. Further, enhanced deposition occurred
only in regions where both turbulent and mean velocities were reduced, relative to the open

channel. Reduced deposition (indicating enhanced resuspension) occurred in regions of
high turbulence kinetic energy, regardless of local mean velocity. These observations
highlight the importance of turbulence in controlling deposition.

Citation: Ortiz, A. C., A. Ashton, and H. Nepf (2013), Mean and turbulent velocity fields near rigid and flexible plants and
the implications for deposition, J. Geophys. Res. Earth Surf., 118, 2585-2599, d0i:10.1002/2013JF002858.

1. Introduction

[2] The transport of fine sediment and organic flocs plays
an important role in the nutrient dynamics of shallow aquatic
systems, and the fate of these particles is closely linked
to vegetation [Jones et al., 2012; Larsen et al., 2009].
Vegetated regions often contain finer sediment of higher
organic and nutrient content than unvegetated regions
[Clarke and Wharton, 2001; Larsen et al., 2009], and the
accumulation of sediment in macrophyte stands can be an
important driver in landform evolution [e.g., Corenblit
et al. 2007]. However, the opposite tendency has also been
observed. Specifically, van Katwijk et al. [2010] noted that
the substrate beneath sparse seagrass meadows was much
sandier, with less fine particle and organic matter, than the
adjacent bare regions. This can be attributed to the removal
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of fine and organic material by higher levels of turbulence
within sparse meadows [Luhar et al., 2008].

[3] To understand both nutrient dynamics and landform
evolution, it is important to understand the biogeomorphic
feedbacks that drive macrophyte development, i.e., how changes
in vegetation distribution lead to changes in flow distribution
that in turn may promote or inhibit additional vegetation
growth. Sites of erosion are places of lower nutrient avai-
lability that lead to less favorable conditions for plant
growth [Corenblit et al., 2007; van Wesenbeeck et al.,
2008]. Sites of deposition, where seeds and organic matter
accumulate, lead to favorable conditions for plant growth
[Gurnell et al., 2001; Scott et al., 1996].

[4] Several previous studies have measured flow and deposi-
tion near finite patches of emergent vegetation, i.e., vegetation
that occupies the full water depth. The deflection of flow around
the patch produces locally enhanced flow at its edges, which
promotes erosion, which in turn inhibits the lateral expansion
of the vegetation [Bennett et al., 2008; Bouma et al., 2007,
Rominger et al., 2010; Vandenbruwaene et al., 2011]. The
wake downstream of an emergent patch is a region of
elevated suspended sediment deposition [Chen et al.,
2012; Tsujimoto, 1999] that is also shaded from significant
bed load transport [ Follett and Nepf, 2012], so that the wake
is a region of nutrient-rich soil, favorable for new plant
growth. Taken together, these two hydrodynamic controls,
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Figure 1.

(a) Upstream velocity, U, adjusts to patch of emergent vegetation, diameter D, producing a

wake profile with velocities (U; and U,) shown with the streamwise, x, and lateral, y, directions. The grey
lines represent dye streaks, which appear red in the photos. The steady wake zone is denoted by length ;.
(b) Dye visualization of von Karman vortex street at starting time, #,, over one characteristic period, T,
generated downstream of a dense patch of vegetation, adapted from Zong and Nepf [2011]. Two vortices,
labeled as A and B, are advecting downstream through time in the three images. Tracer was injected at the
red x’s. The quiescent region of the wake (L) appears as clear water directly downstream of the patch, in
between the two dye streaks. The transverse lines of yellow crosses mark 1 m intervals in the streamwise direction.

one that inhibits lateral expansion (a negative feedback) and
one that promotes longitudinal expansion (a positive feed-
back), may explain why patches expand predominantly in
the downstream direction. Indeed, Edwards et al. [1999]
and Gurnell et al. [2001, 2005, 2008] observed that fine
particle deposition and plant growth in the wake down-
stream of finite patches of woody debris led to streamlined
tree islands. Schnauder and Moggridge [2009] suggested
that this is an optimal geometry, because it offers a sheltered
environment for growth while also minimizing drag during
floods. A streamlined geometry has also been observed at
smaller scale, for patches of the macrophyte Callitriche
cophocarpa, which typically have a length that is 2.5 times
the width [Sand-Jensen and Madsen, 1992]. The positive
and negative feedbacks described in this paragraph are drawn
from conditions with emergent vegetation. In this study, we
consider whether submerged patches provide the same mor-
phological feedbacks. The experiments compare the potential
for fine particle and organic matter trapping in the wakes of
emergent and submerged vegetation and use detailed measure-
ments of the flow field to explain the differences.

1.1.

[5] Recent laboratory work has described the flow through
and the wake downstream of circular patches of emergent
vegetation [Chen et al., 2012; Follett and Nepf, 2012; Zong
and Nepf, 2011]. These studies show that the adjustment of

Wake Downstream of an Emergent Patch

the mean and turbulent flow field depends both on the patch
diameter, D, and the density of vegetation within the patch.
The density of vegetation is defined by the frontal area
per volume, a (cm ™). Given a characteristic stem diameter,
d (cm), and the number of stems per bed area, n (cm™?), the
frontal area per volume of evenly distributed vegetation is
a=nd. These two geometric parameters, a and D, together
constitute the flow blockage, CpaD, with Cp, the drag coeffi-
cient for the individual stems. This parameter determines how
the flow adjusts to the patch. Because the patch is emergent,
the flow adjustment is essentially two-dimensional in the
horizontal plane [Zong and Nepf, 2011]. The main features of
flow adjustment are shown in Figure 1. A uniform flow charac-
terized by a reference velocity (U,) approaches the patch from
upstream. Deflection of flow around the patch produces a wake
in which the velocity is significantly diminished (U; < < U,),
while velocity to the side of the wake is enhanced (U, > U,).
The magnitude of velocity in the wake, U;/U,,, can be predicted
from the flow blockage, CpaD [e.g., Chen et al., 2012].

[6] Because some flow passes through the patch, introduc-
ing a bleed flow into the wake, the formation of the von
Karman vortex street is delayed, relative to what is observed
downstream of a solid obstruction [Zong and Nepf, 2010].
The delay has length scale L; (Figure 1), and over this dis-
tance both the mean velocity (U;) and the turbulent kinetic
energy (TKE) are diminished. The TKE increases rapidly
after the vortex street forms, reaching a peak at distance
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Table 1. Summary of Experimental Parameters®

Stem Density aD H h U, Wake Velocity L, Lrkg

Units (stems cmfz) (cm) (cm) (cm 571)
+0.001 +0.2 +0.2 +0.2

Rigid emergent U, (Figure 1)
Control n/a n/a 13.5 n/a 9.4 n/a n/a n/a
Dense 0.34 8.4+04 13.5 Emergent 0.5+0.5cms (0.05+£0.05U, 24D+02D 3.8D+0.5D
Sparse 0.09 2.5+0.1 13.5  Emergent 5.0+0.5cms™" (0.53+0.05)U, 6.6D+0.7D 9.5D +2D
Flexible submerged z/H=0.3
Control n/a n/a 21.5 n/a 8.1 n/a n/a n/a
Dense 0.34 6 to 34 21.5 10.0 -0.1+0.1cms™ " (0.01+£0.01)U, n/a 1.4D +0.5D
Sparse 0.09 1.6 to 10 21.5 8.0 1.6£0.1cms (0.21+£0.01)U, n/a 1.5D+0.5D

“Uncertainty in length scales reflects the spatial resolution of measurement. Uncertainty in U,, is instrument error. Uncertainty in wake velocity is the sum of

instrument error and standard error over included measurements.

Ltk from the end of the patch. Turbulence production may
also occur within the patch, in the wakes of individual stems,
if the stem Reynolds number Re, (= U,d/v, with v the
kinematic viscosity) is above 100 [e.g., Zong and Nepf,
2010]. However, because of its small scale, the stem-scale
turbulence is rapidly dissipated. Both L; and Ltgg scale with
patch diameter, D, and both L,/D and Ltgg/D decrease as
flow blockage (CpaD) increases. Theory developed in Zong
and Nepf[2011] and Chen et al. [2012] can be used to predict
Ll and LTKE'

[7] Dye visualization reveals the von Karman vortex street
downstream of the patch [Zong and Nepf, 2011]. Dye is
injected at the outermost edges of the patch (Figure 1b).
After a distance L, the dye streaks come together and a
patch-scale von Karman vortex street forms. Vortices form
on alternating sides of the wake, with a characteristic period
T, for one shedding cycle. The period 7, is given by the
patch-scale Strouhal number, St=D/U,T,~0.2 [Zong and
Nepf, 2011]. In the first frame of Figure 1b (¢,), a vortex
has just formed on the left-hand side (labeled A), pulling
dye to the left between the 1 m and 2 m markers. In the
second frame (¢, + 7,/2), vortex A has migrated downstream,
and a new vortex (B) forms on the right-hand side. The cycle
is completed in the third frame, as a new vortex is again
formed on the left-hand side.

[s] Finally, the ratio of patch diameter (D) to channel
width (B) can influence the evolution of the wake through
its impact on the outer velocity U,, which increases as D/B
increases, because the diverted flow is confined to a narrower
width, i.e., (B-D) decreases. As U, increases, the length scale
L, also increases [Zong and Nepf, 2011]. This can be observed
in Table 1 of Chen et al. [2012]. For patches of comparable
flow blockage (e.g., CpaD=3.0 and 3.3) but D=22 and
42 cm, respectively, L;/D=4.5 and 6.2, respectively.

[°] In contrast to the emergent patch of finite width
discussed above, for which flow deflection and wake devel-
opment occur in the horizontal plane, Folkard [2005, 2011]
described the flow adjustment over a flexible, submerged
patch that spanned the channel width, for which flow deflec-
tion occurred only in the vertical plane, forming a vertical
shear layer (Figure 2). The vegetation height is /. In the wake
of the patch, the shear layer separates, forming a recirculation
zone centered at a distance 5 4 downstream from the end of
the patch. The peak turbulence in the wake occurs at the

height of the patch (z=%) and a distance 74 downstream
from the patch trailing edge, which also corresponds with
the end of the recirculation zone. Following the peak in tur-
bulence, the flow recovers to the boundary layer structure
found in open channel flow. In a field study, Sukhodolova
and Sukhodolov [2012] observed vertical flow adjustment
similar to that of Folkard [2005], near wide, but not channel-
spanning, patches of Sagittaria sagittifolia. However, when
submerged patches have a width that is much less than the
channel width, flow deflection may occur in both the horizontal
and vertical planes, e.g., as observed in the field experiments of
Gurnell et al. [2012].

[10] The pattern of two-dimensional flow adjustment
around an emergent patch (Figure 1) has been connected to
patterns of erosion and deposition associated with bed load
transport [Follett and Nepf, 2012] and with net deposition
of fine suspended sediment [Chen et al., 2012]. In this study,
we extend these observations by considering submerged
vegetation. In particular, we contrast the flow deflection
that occurs for emergent (horizontal deflection only) and
submerged (both horizontal and vertical deflection) patches
of finite width and explore how these differences impact
velocity, TKE, and deposition of suspended sediment. We
compare the spatial distribution of deposition to the spatial
pattern of mean velocity and TKE.

Z

u(2)
flow
direction
 —

h

T T 1T »X
X =-5h x=0 5h 10h

Figure 2. A side view of the flow adjustment over a sub-
merged vegetation patch of height 4. The vegetation patch
(marked “veg”) spans the channel width (into the page),
such that all flow adjustment occurs in the vertical plane
(x,z). Velocity profiles, u(z), are shown with heavy black
curves. The recirculation eddy is shown with light grey
arrow. The cartoon is not to scale. Based on Folkard
[2005, Figures 2a and 3a].
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2. Methods

2.1. Experimental Setup

[11] The experiments were conducted in a 16 m X 1.2m
recirculating flume with a 13 m test section (Figure 3). PVC
baseboards, perforated with a staggered array of holes for hold-
ing the model vegetation, covered the bed of the test section.
There was no sediment layer. A circular patch of model vegeta-
tion was constructed at the center of the channel. Wooden, cir-
cular dowels with a diameter d=6.4mm were used for the
emergent vegetation. The diameter was chosen to fall in the
range of observed values for emergent grasses, d=0.1 to 1 cm
[Leonard and Luther, 1995; Lightbody and Nepf, 20006;
Valiela et al., 1978]. The flexible vegetation had a 1 cm high
stem (d=6.4mm) with six thin blades of polyethylene film
attached as leaves. The flexible model vegetation was dynami-
cally and geometrically similar to the seagrass Zostera marina
[Ghisalberti and Nepf, 2002]. Visual observations in the field
suggest that freshwater plants are similar in their response to
flow. The individual leaves had a thickness of 0.2 mm, a width
of 3 mm, and a length of 13 cm (Figure 4). The diameter of each
patch was D=42cm, chosen to be comparable to field

conditions listed in Sand-Jensen and Pedersen [2008]. For each
type of vegetation, two stem densities were considered, with
n=0.09 and 0.34 stems cm ™2, which we call sparse and dense,
respectively. For the emergent patches and in the stem
region of the flexible patches, the solid volume fraction (SVF)
is 9 =nnd*/4. For the sparse and dense patches, respectively,
»=0.03 and ¢ =0.10. In the blade region of the flexible patch,
the range of SVF was estimated by considering the possible
range of blades per stem (1 to 6) with full blade width projected
to the flow, such that ¢ =0.04 to 0.25 and ¢ =0.01 to 0.07 for
the dense and sparse case, respectively. These values of SVF
are representative of densities found in real aquatic vegetation
[Nepf, 2012]. In marsh systems, ¢ =0.001 to 0.01 [Leonard
and Luther, 1995]. For mangroves ¢ can be as high as 0.45
[Furukawa et al., 1997]. Submerged grasses have ranges of
»=0.01 to 0.1 [Ciraolo et al., 2006].

[12] Under most conditions, emergent plants have rigid
stems and submerged plants have flexible stems, and we
mimic this difference in our study. However, a comparison
of Folkard [2005, 2011], who studied flexible, submerged
patches and Chen et al. [2013], who studied rigid submerged
patches, reveals that the distribution of flow and turbulence in
the wake is similar (see discussion in Chen et al. [2013]).
This makes physical sense, because the vertical shear which
drives the wake flow structure develops as a result of flow
deflection over the top of the canopy, which is primarily de-
pendent on the canopy density and the ratio of canopy height
to water depth [Chen et al., 2013]. These studies suggest that
the degree of submergence, and not the degree of rigidity, is
the dominant control on flow structure of the wake. However,
we also note that because flexible plants respond to increasing
velocity with increasing pronation, their degree of submergence
is dependent on the flow velocity (e.g., see discussion in Luhar
and Nepf[2011]).

[13] A weir at the end of the flume controlled the water
depth, H. For the emergent vegetation, the flow depth was
H=13.5£0.2cm. A greater depth (H=21.5+0.2cm) was
needed for the submerged vegetation in order to take velocity
measurements above the patch height (%). For the flexible
vegetation, the deflected height of the sparse canopy

Figure 4. Top view of submerged patch of flexible vegeta-
tion in the flume. Flow is from right to left, as indicated by the
black arrow. The distribution of cylindrical stems at the bed
is outlined with dashed black circle.
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Figure 5. Top view of channel showing the distribution of velocity measurements in the horizontal
plane for (a) the dense emergent patch, (b) the sparse emergent patch, (c) the dense submerged
patch, and (d) the sparse submerged patch. The color of each dot indicates the magnitude of the total
horizontal velocity normalized by U,, as shown in the color bar. The velocity is measured at the
same distance from the bed in all cases: z=6.5+0.5 cm (z/H=0.5) for the rigid emergent vegetation
and z=6.7+£0.5cm (z/H=0.3) for the flexible, submerged vegetation. The flow is symmetric about
the patch centerline (y=0), so that measurements are shown on only one side of the patch. The

location of the patch is indicated by a semicircle.

was h = 8.0£0.2 cm. The dense flexible canopy exhibited
less deflection due to the greater numbers of blades, such
that its deflected height was 2=10.0£0.2 cm.

2.2. Velocity Measurements

[14] The coordinate system is defined with x in the
streamwise direction, y cross stream, and z vertical, with
x=0 at the leading edge of the patch, y=0 at the center
of the patch, and z=0 at the bed (Figure 3). Velocity
measurements were taken using a Nortek Vectrino
(acoustic Doppler velocimeter, ADV) mounted on a movable
platform above the flume and positioned with an accuracy
of£0.5cm in y and z and+1 cm in x. Longitudinal transects
were taken through the centerline of the patch (y=0) starting
1 m upstream of the patch and extending 7 m downstream
beyond the patch (x=—2.4D to 17D) with variable spacing
to increase resolution where velocity variation was more
rapid. Lateral transects were taken upstream, at, and down-
stream of the patch. Figure 5 indicates the position of each
velocity measurement.

[15] Velocity was measured at middepth (z/H=0.5) for the
rigid emergent patches and at three depths for the flexible,
submerged patches, zZH = 0.3, 0.5, and 0.7, which
corresponded to midcanopy height, top of the canopy, and
above the canopy. For the submerged flexible vegetation,
we were unable to obtain measurements within the canopy,
because the dense distribution of blades obscured the ADV.
The Vectrino collected instantaneous measurements of longi-
tudinal, u(#), lateral, v(f), and vertical, w(¢), velocity for 240s
at 25Hz. The instantaneous velocity was decomposed into

time average components (denoted by overbar: u,v, w) and
fluctuating components (denoted by prime: u ' (¢), v'(f), w' (?)).
The turbulent kinetic energy (TKE) per unit mass [Pope,
2000] is
TKE = %(uz 7 4 w'2>. (1)
[16] A reference velocity, U,, was defined for the emergent
and submerged flow conditions, based on velocity measured
for the respective control, i.e., without patch (Table 1). A
lateral (y) transect was made at middepth and about Sm
downstream from the start of the test section, which is 1 m
upstream from where the patches would be placed. The ve-
locity was uniform over the channel width within the uncer-
tainty (0.2 cms '), and this velocity was chosen as U,,. The
reference turbulent kinetic energy (TKE,) was measured at
the same location. Further, vertical profiles taken at this point
were uniform above z=6cm, so that U, represents the
upstream velocity at all three depths used in the submerged
flow conditions. Finally, for the emergent patches, the
length scale, L, was estimated from the centerline transect
u(x, y=0) defined by the point at which u begins to increase,
as in Chen et al. [2012]. For all patches, the peak value in
TKE downstream of the patch was used to define Ltgg.

2.3. Deposition Experiments

[17] We selected model sediment to mimic the transport of
organic matter and fine suspended load. The tendency for
particles to deposit or resuspend is related to the ratio of the
particle settling velocity (wy) to the shear velocity (u+, which
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represents the velocity scale of turbulent eddies). In aquatic
environments, measured settling velocities of organic floc
fall around 0.1 to 0.3 cms™' [Droppo, 2004; Droppo et al.,
1997] and shear velocities range from 1 to 50cms™
[Fuller et al., 2011; Hoover et al., 2010; Statzner and
Mueller, 1989], yielding ratios of wy/ux=0.002 to 0.3. For
the lab experiment, we used the bed friction coefficient
(C;=0.006) measured in previous studies over the same
baseboards [ White and Nepf, 2007] and the channel velocity
(U,, Table 1), to estimate u«~0.7 cms~'. We selected a par-
ticle with w,=0.01cms™' (12um glass spheres, Potters
Industry, Valley Forge, PA), so that wy/ux~0.02, which is
in the middle of the field range. In addition, this ratio is sim-
ilar to a previous study (wy/u=~0.006 to 0.2 in Zong and
Nepf'[2010]) in which clear differences in deposition were
observed between the open and vegetated regions of a chan-
nel. To explore how changes in this ratio impact deposition,
we ran additional experiments for wy/u«=0.008 to 0.05. We
recognize that these ratios imply washload conditions, for
which no deposition is expected. However, the ratio repre-
sents the channel-average conditions, not the conditions
within the patch or patch wake. The study asks whether,
or not, finite patches of vegetation can sufficiently reduce
local bed stress and turbulent diffusion to allow for local
net deposition of fine material and thus verify a critical feed-
back for vegetation survival, the trapping of nutrient-rich
fine and organic matter.

[18] The deposition experiments were conducted sepa-
rately from the ADV measurements, so that the move-
ment of the ADV would not disturb the deposition
slides, but under identical flow conditions. Numbered mi-
croscope slides (7.5cm x 2.5cm) were placed perpendi-
cular to the flow direction (Figure 3) and at positions
every 10cm along the centerline of the patch, starting
1 m upstream of the patch (x/D=—2.4) and ending 6 to
8 m (x/D=14.3-19.0) downstream of the patch. Lateral
transects were made at multiple streamwise positions.
The position of each deposition measurement is visible
in Figure 11.

[19] Once the slides were placed, the pump speed was
slowly increased to the target velocity. A total of 650 g
of sediment was vigorously mixed with water in small
containers before being poured evenly over a 5 min in-
terval into the inlet section of the flume. Visually, the
particles mixed almost instantaneously over the water col-
umn. The initial sediment concentrations were 105 g/m’
and 75 g/m> for the emergent and submerged vegetation
cases, respectively, based on the total mass injected di-
vided by the total flume volume. The experiment was
run for 4 h. This duration was chosen by trial and error
to be long enough to develop a measurable signal on the
slides but short enough to facilitate triplicate runs. At the
end, the pump speed was slowly decreased to prevent
the formation of long waves that could move the slides.
Then, the flume was drained over 20 min. Note that depo-
sition was visually observed to occur progressively over
the experimental run and was not isolated to the period
of draining. The slides were left to air dry in the flume
for 2 to 3 days. Afterward, the slides were placed in a dry-
ing oven at 50°C for 2 to 4h to remove excess moisture
and then reweighed. The net deposition on each slide
was calculated by the difference in weight before and after

the experiment, divided by the area of the slide. Each de-
position study was run in triplicate. The standard deviation
among triplicates was used as an estimate of uncertainty at
each slide position. We also ran control experiments
without patches but with the slides at the same positions.
The standard deviation of all control points was used as
an estimate of uncertainty in the control.

3. Results and Discussion

3.1.

[20] The effect of each patch on the horizontal velocity
field is depicted with scatterplots of the total horizontal
velocity (Figure 5). Because we wish to relate the spatial
pattern in flow to differences in net deposition, we chose
the measurement closest to the bed and at the same
(within uncertainty) distance from the bed for all cases:
at z=6.5+0.5cm and 6.7+0.5 cm for the rigid emergent
and submerged flexible patches, respectively. First,
because flow is deflected away from the patch, the velocity di-
rectly downstream of each patch (Wake Velocity, Table 1) is
diminished relative to the upstream velocity, similar to flow
around submerged boulders [Papanicolaou et al., 2012], and
this effect is more pronounced for the dense patches.
Second, the deflection of flow enhances the velocity to
the side of all patches (U > U,, Figure 5). This enhance-
ment is greater for the emergent patches, which reach
1.7U, and 1.4U, for dense and sparse conditions,
respectively, than for the submerged patches, which only
reach 1.5U, and 1.2U, for dense and sparse conditions,
respectively. The emergent patches generate a higher edge
velocity because flow can only be deflected in the horizon-
tal plane. In contrast, for the submerged patches, flow can
be deflected vertically as well. As more flow is deflected
over the top of the patch, the acceleration at the edge is
decreased. This has important implications for the
sediment response. For example, recent studies have noted
that elevated velocity at a vegetation edge may produce
erosion, a negative feedback for patch growth [Bouma
etal.,2007; Rominger et al.,2010], or changes in sediment
texture, as the higher flow preferentially removes fines and
leaves coarse-grained sediment [Sand-Jensen and Madsen,
1992]. These effects will be more pronounced near
emergent vegetation than near submerged vegetation.

[21] For the rigid, emergent patches, the velocity profiles
along the centerline of the patch are consistent with the
schematic given in Figure 1 and with the two regimes (high
and low flow blockage) defined in Chen et al. [2012].
The dense emergent patch (¢D=28.4) is in the high flow
blockage regime, defined as CpaD >4 (assuming Cp = 1),
for which we expect the velocity directly downstream of
the patch to be close to zero, and we expect a flow reversal
to occur within the wake. Both features are present in our
high flow blockage case (Figure 6a), i.e., directly down-
stream of the patch U; =0.05U,, and an area of flow reversal
occurs between x/D =3 and 4. The low velocity, U, persists
over length scale L; =100cm (L,/D=2.4, Table 1), ending
at the recirculation zone. Within this region, there is both
low velocity and low turbulent kinetic energy (Figure 6).
Beyond L;, a von Karman vortex street forms, enhancing
the TKE, which reaches a peak at distance Ltgg. The lateral
mixing generated by the von Karman vortices brings high

Flow Characteristics
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Figure 6. Velocity statistics at middepth (z/H=0.5) and deposition along the patch centerline

(y=0) for the dense, rigid, emergent patch of

vegetation. The patch is located between x/D=0

and 1, shown by black rectangle. (a) @#/U, on the left axis and TKE/U,? on the secondary (right)
y axis. Note that TKE/U,?=0.013 at the upstream reference point. (b) Deposition with patch shown
by open black circles, with vertical bars indicating the standard deviation among replicates.
Deposition in the control (no patch) shown by grey dots, with the gray band indicating the standard
deviation among all control points. The distances from the patch trailing edge to vortex formation
(L) and to the peak turbulent kinetic energy (Ltxg) are labeled.

momentum fluid to the centerline, so that the centerline
velocity increases, and the velocity eventually returns to
the upstream value at x=12D. However, the TKE remains
elevated to the end of the measurement region (x/D=14).
The longitudinal evolution of the flow in the low flow block-
age (sparse) case is similar (Figure 7a), but with the following
distinctions. First, compared to a dense patch, the sparse patch
allows more flow through the patch, resulting in a larger

velocity immediately downstream, U;=0.5U, (Table 1). A
higher exit velocity, or bleed flow, increases the distance to
the von Karman vortex formation [Chen et al., 2012], so that
both L; and Ltk are greater in the sparse case (Table 1).
Finally, there is no area of recirculation.

[22] The flow adjustment around the flexible, submerged
patch is fully three-dimensional, with flow diversion and
shear layer formation in both the vertical and horizontal
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Figure 7. Velocity statistics and deposition measured along the patch centerline for the sparse, rigid,
emergent patch of vegetation. See details in caption for Figure 6.
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is denoted by the black rectangle.

planes. For example, consider the dense, flexible, submerged
patch (Figure 8). Vertical shear and a recirculation zone
are observed in the wake (x/D=1.2 in Figure 8a). At the
same position, lateral transects reveal strong lateral shear
at zZH=0.3 and 0.5 (squares and dots, respectively, in
Figure 8b), with flow diminished (#/U,< 1) directly
downstream of the patch (/D=0 to 0.5) and enhanced
(w/U,>1) at the edge of the patch (y/D>0.5). Above
the patch (z/H=0.7, triangles in Figure 8b), the flow is
uniformly enhanced (u/U,>1), with negligible lateral
shear. Further downstream (x/D=4.8) the vertical profile
returns to a boundary layer structure (Figure 8a), but the
lateral profiles retain evidence of the wake, with reduced
velocity persisting at the centerline (y=0) (Figure 8c).
Despite the persistent horizontal shear, there is no evi-
dence for the formation of a von Karman vortex street.
Specifically, dye traces (as in Figure 1) and velocity spec-
tra suggest that a vortex street does not form [Ortiz, 2012],
possibly because the vertical circulation (x/D = 1.2) inhibits the
expression of the von Karmén vortex street. For this dense
patch, near-bed flow blockage is CpaD =6 (Table 1), for which
a vortex street would not form until x/D=2.5 downstream
of an emergent patch [Chen et al., 2012, equation (12)]. If

formation scales are similar for a submerged patch, the vertical
wake vortex forms before the possible onset of the lateral
vortex structures.

[23] Longitudinal transects of mean velocity and TKE taken
along the patch centerline further illustrate the flow structure
for the flexible, submerged patches (Figures 9 and 10). The flow
accelerates over the top of the patch (zZH=0.7, triangle)
reaching a maximum just downstream of the patch. The veloc-
ity at the height of the patch and within the patch (z/ZH=0.5, cir-
cles, and 0.3, squares) is diminished relative to the upstream
flow, such that a region of strong vertical shear exists directly
downstream of the patch (also seen in Figure 8). TKE peaks
at the height of the patch (z/H=0.5) at x’D=2.5, which corre-
sponds to a distance 6 & downstream of the trailing edge. This
is similar to Folkard’s [2005] observations downstream of a
submerged patch that spanned the channel width. Specifically,
Folkard observed a peak in turbulent stress at the height of the
patch (z=h) and at a distance 7 4 downstream from the patch
trailing edge. Beyond the point of maximum TKE, the vertical
differences in streamwise velocity are erased, i.e., by x/D =4 the
velocity at all three depths is essentially the same (Figure 9).

[24] If we consider both the similarity in flow structure be-
tween our finite width patch and Folkard’s channel-spanning
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Figure 9. Velocity statistics at three depths (z/H=

0.3, 0.5, and 0.7) and deposition along the patch cen-

terline (y =0) for the dense, flexible, submerged patch of vegetation. The patch is located between x/D=0
and 1, shown by black rectangle. (a) u/U, and (b) TKE/U,? where TKE/U,*=0.026 at the upstream refer-
ence point. (¢) Deposition with patch shown by open black circles, with vertical bars indicating the standard
deviation among replicates. Deposition in the control (no patch) shown by grey dots, with the gray band
indicating the standard deviation among all control points. The distance from the patch trailing edge to
the peak turbulence kinetic energy (Ltkg) is labeled.

patch, as well as the absence of a von Karman vortex street,
we conclude that for the canopy width to height ratios consi-
dered here (D/h=4 and 35), the flow adjustment more closely
resembles that of an infinitely wide (D/h=o0), or channel-
spanning patch, i.e., with flow deflection predominantly in

the vertical plane. Although not considered in this study,
we expect that as D/h decreases, the flow adjustment will
become more evenly distributed between the vertical and
horizontal. The submergence ratio, H/h, will also play a
role in determining the relative importance of vertical and
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Velocity statistics and deposition measured along the patch centerline for the sparse, flexible,

submerged patch of vegetation. See caption for Figure 9. At the upstream reference point TKE/U,? =0.026.
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horizontal deflection. Patches that favor horizontal deflection
will produce greater velocity enhancement at the patch edge,
which in turn can influence the sediment response, as
discussed in Figure 5.

3.2. Sediment Deposition

[25] First, we did not see any indication of supply limita-
tion in the control runs. Specifically, the deposition measured
along the centerline for the control condition is reduced by
less than 3% along the length of the flume (e.g., see
Figure 6). This was expected, because the sediment was re-
mixed each time it passed through the pump, and the
time scale for settling (H/w,=3 to 5 x 10> s) is an order of
magnitude longer than the transit time within the measure-
ment section, which spans L=10.5m [x=—-2D to 22D], so
L/U,=130s. In contrast to the control, deposition measured
near an emergent patch had significant spatial variation (e.g.,
Figures 6 and 7). We note that the spatial variation evolved
over the course of the experiment and cannot be attributed to
the draining process. While it is difficult to estimate the
amount of deposition that occurs during the draining
process, any deposition that occurs during draining would
be spatially uniform and so cannot explain the spatial
pattern of deposition observed for the cases with patches.
In addition, the same deposition would occur for control
and patch cases, so that the contribution to deposition that
occurs during draining is captured in the control.

[26] We compare the spatial patterns of flow and net depo-
sition along the patch centerline (Figures 6, 7, 9, and 10). We
first consider the dense, rigid, emergent patch of vegetation
(Figure 6b). Deposition upstream of the patch is quite
variable between replicates but on average is higher than
the control. Gurnell et al. [2001] and Zong and Nepf [2010]
also observed enhanced deposition upstream of a vegetated
region and attributed it to the deceleration of flow and the
associated decrease in bed shear stress. Downstream of the
patch, deposition is enhanced, relative to the control, over a
distance comparable to L, (marked in figure). Beyond L,
the deposition is lower than the control, and it remains dimi-
nished, relative to the control, to the end of the measurement
section (x=20D). The region of diminished net deposition
corresponds to the region in which TKE is enhanced by the
von Kéarman vortex street (Figure 6a), i.e., net deposition
varies inversely with TKE. Enhanced deposition occurs
where turbulence is low, while reduced deposition (relative
to the control) occurs where turbulence is high. We interpret
the spatial patterns of net deposition as reflecting differences
in resuspension, rather than differences in deposition. During
the experimental run, the rate of deposition is the same at all
positions in the flume, because the concentration in the water
column remains spatially uniform throughout the experi-
ment. Specifically, the deposition is not sufficient within
the residence time of the test section to produce significant
spatial patterns in water concentration, and each time the
water passes through the pumps, the water concentration is
completely remixed. However, local changes in flow can
create local difference in resuspension. For example, within
the emergent patch wake, the velocity and turbulence
are reduced, relative to the open channel, which would
reduce resuspension, explaining the enhanced net deposited
observed in this region.

[27] For the sparse rigid, emergent patch (Figure 7a),
L, (=6.6D) is longer than for the dense patch, consistent with
predictions for L, =f(CpaD) provided in Chen et al. [2012].
Importantly, the region of enhanced deposition is also longer,
again corresponding with L; (Figure 7b). That is, predictable
values of L; =f(CpaD) provide a reasonable estimate of the
deposition footprint downstream of an emergent patch.
Although we considered a single value of D, Chen et al.
[2012] varied both D and a, showing that L, =f (CpaD) is
unique, except through the influence of the sidewalls,
expressed through D/B. There are important differences
between the dense and sparse emergent cases. First, for the
sparse case the upstream deposition is hardly distinguishable
from the control, probably because the deceleration of flow
and the decrease in bed shear stress is less pronounced for the
sparse patch. Second, the decrease in net deposition in the far
wake, i.e., beyond Ly, is less pronounced for the sparse patch
and in fact very close to the control. This is because the TKE
is lower downstream of the sparse patch, so that resuspension
is diminished. The peak in TKE is 0.02U,2, which is barely
above the open channel control (TKE/U,?>=0.013) and much
smaller than the peak of 0.16U,> downstream of the dense
patch. Finally, velocity measurements were possible within
the sparse patch, and so we can observe that TKE is elevated
within the patch. This is due to turbulence generated in the
wakes of individual stems, as discussed by Follett and Nepf
[2012]. Elevated TKE within the sparse, rigid emergent patch
explains the significant decrease in deposition both within the
sparse patch and immediately downstream of the patch
(Figure 7). Although we could not measure inside our dense
patch, previous studies have noted elevated TKE and scouring
within dense patches as well [Follett and Nepf, 2012]. The
elevated TKE may promote resuspension of sediment in these
areas and, thus, decrease net deposition.

[28] In sharp contrast to the emergent patches, for which
regions of enhanced deposition occur downstream of each
patch, there are no regions of enhanced deposition in the
wakes of the flexible, submerged patches. The deposition is
either below the control (Figure 9b, dense patch) or in-
distinguishable from the control (Figure 10b, sparse patch).
This occurs even though the velocity is somewhat lower down-
stream of the submerged patches, compared to emergent
patches of the same near-bed stem density (Table 1). The
submerged patches produce recirculation and elevated TKE be-
ginning directly downstream of the patch, with peaks in TKE at
x=1.4D and 1.5D for the dense and sparse cases, respectively
(Table 1). In contrast, for the emergent patches the peak TKE
occurs much further downstream (Ltxp=3.8D and 8D,
Table 1). We suggest that directly downstream from the sub-
merged patches, the net deposition is decreased (relative to the
control and relative to the emergent patch) because the TKE is
elevated directly downstream of the patch, increasing
resuspension. Finally, upstream of the submerged patches the
deposition is variable but on average comparable to the control
(Figures 9 and 10), which is also a distinction from the
enhanced deposition observed upstream of the dense emergent
patch. The key point is that unlike the rigid emergent patches,
the flexible, submerged patches do not produce enhanced
deposition relative to the control experiments.

[29] We now expand our view beyond the centerline
transect to consider the broader spatial pattern of deposition
(Figure 11). Deposition was classified as equal to the control
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Flow is left to right, and y=0 is the patch centerline.

if the mean of replicates at a given point agreed with the mean
control within the sum of the standard deviation of the
replicates and the standard deviation of the control (shown
in Figures 6, 7, 9, and 10). Otherwise, the point was labeled
as above or below the control. For the emergent patches,
deposition above the control occurred within the wake region
defined by L, (Table 1) and spanning nearly the patch width.
It is in this region that both velocity and turbulence are
depressed, relative to the open channel control. Deposition
is diminished to the side of the patch, corresponding to
regions of flow enhancement (see Figure 5). The sparse patch
generates a much longer region of enhanced deposition, but it
does not span the patch width. Deposition is also diminished
within the sparse emergent patch. Deposition measurements
were not possible within the other patches. In contrast to
the emergent patches, the submerged patches do not generate
any locations with deposition elevated above the control.
[30] Both the emergent and submerged patches create
regions of diminished velocity, for which we expected
enhanced deposition. Yet, enhanced deposition was not
always observed. In particular, directly downstream of the
submerged patches the velocity is close to zero, yet for the
dense submerged patch, this is the point at which the deposi-
tion is the lowest (Figure 9). These observations suggest that
elevated TKE may play a role. To examine this more closely,
we consider the codependence of net deposition on both the
time-averaged horizontal velocity and the TKE (Figure 12).
Using the same deposition classification as Figure 11, we or-
ganize points according to mean velocity (normalized by U,)
and TKE (normalized by U,?). The dashed lines indicate ve-
locity and TKE conditions equivalent to the open channel
control. The dense, rigid emergent patch produces the largest
spatial variability in mean velocity and TKE, reaching maxi-
mums of 2U, and 0.2TKE,,. The sparse, flexible, submerged

patch produces the smallest flow perturbation, with the
smallest ranges of velocity (0.5U, to 1.2U,) and TKE
(0.015U,2 to 0.1U,2). In most cases, enhanced deposition is
only observed in the quadrant where both TKE and horizon-
tal velocity are below the open channel values. For the dense
patch of rigid emergent vegetation, 89% of the enhanced
deposition occurs within this quadrant, and for the sparse
patch of rigid emergent vegetation, all of the enhanced
deposition (100%) occurs in this quadrant. Note also that
there are points within this quadrant without enhanced
deposition. This may indicate that we defined the region
too conservatively, u < U, and TKE < TKE,, and a less
conservative boundary may provide a more precise delinea-
tion, e.g., u<0.5U, and TKE <TKE,. It may also indicate
the importance of particle history, which is not captured in
this point analysis, e.g., particles that recently experienced
strong turbulence may be mixed high into the water
column, and thus less available for deposition. Finally, the
occurrences of reduced deposition (indicating enhanced
resuspension) are mainly controlled by TKE. Specifically,
reduced deposition tends to occur in regions of high TKE,
regardless of the mean velocity magnitude (Figure 12).

[31] Currently, most parameterizations of sediment trans-
port depend only on the mean bed stress, which is a function
of the mean velocity [Bos et al., 2007; Christiansen et al.,
2000; Rodrigues et al.,2006]. However, several studies point
to the role of turbulence in initiating sediment motion
(resuspension), implying that turbulence can influence net
deposition [Boyer et al., 2006; Celik et al., 2010; Church,
2006; Nelson et al., 1995; Nino and Garcia, 1996;
Williams et al., 1989]. Vegetation can alter both the mean
and turbulent components of flow [e.g., Nepf, 2012], and
our observations suggest that changes in both flow statis-
tics influence net deposition.
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[32] Previous studies considering emergent vegetation
have also observed regions of enhanced deposition in the
wake. Tsujimoto [1999] observed deposition of fine material
downstream of a dense patch of model vegetation. The depo-
sition formed a triangular region that extended a distance
2.5D downstream from the back of the patch. Tanaka and
Yagisawa [2010] observed the preferential deposition of
fines in the wakes of real vegetation patches in the field. As
noted in section 1, this pattern of deposition in the wake of
rigid, emergent vegetation may be connected to the growth
pattern of vegetation. During the preliminary stages of colo-
nization, vegetation is often found in circular patches, but
over time the patches grow predominantly in the downstream
direction [Sand-Jensen and Madsen, 1992]. The streamwise
growth is promoted by the deposition of fines and organics
in the wake of the patch. Our study suggests that this positive
feedback will be stronger for sparse emergent patches, which
create longer regions of enhanced deposition (Figure 11).
Our study also implies that this positive feedback is unlikely
to occur for flexible, submerged patches, because we do not
observe any preferential deposition in the wakes of the sub-
merged patches (Figure 11). In fact, TKE is elevated so close
downstream of the dense flexible, submerged patch that de-
position was actually diminished relative to the control. We
therefore suggest that patch growth is primarily promoted
during low flow conditions, when channel vegetation is
emergent, or nearly so. During high flows, which submerge
vegetation, the positive feedback for patch growth is shut
off. Indeed, the elevated TKE occurring under submerged,
high flow conditions may erase deposition occurring in the
previous low flow period, suggesting that the timing between
high flow events may be critical to patch growth. Low flows,

which promote patch growth, must persist for a sufficient
time for deposition and germination to occur.

[33] Next, we consider how changes in the velocity ratio
wg/u« impact the deposition near a dense, rigid, emergent
patch. Keep in mind that this ratio, and in particular ux,
represents the open channel, i.c., the conditions away from
the patch. Using the same particles (same wy), we varied the
channel velocity, U,, and thus u« For the lowest velocity,
(U,=2.6 and 5.4 cms™') deposition was not enhanced in
the wake (Figure 13a, squares), relative to the open channel
adjacent to the patch (Figure 13a, triangle), which is in
contrast to the conditions discussed in Figures 6 and 7
(U,=9.6 cms™"). We interpret this to mean that for these
low flow conditions, resuspension in the open channel is
sufficiently reduced to be comparable to that occurring in
the wake. As U, increases, resuspension in the open channel
increases, leading to a decrease in net deposition adjacent to
the patch (Figure 13a). The velocity in the wake, however,
remains close to zero for all flow conditions, so that
resuspension is unchanged or remains negligible. Because
the flume is a closed system, as less material is deposited in
the open channel (which represents over 95% of the bed
area), more material remains in suspension, available for
deposition in the wake. As a result, the deposition in the wake
increases with increasing U, (Figure 13a, squares).

[34] The divergence in net deposition between the patch
wake and the adjacent open channel can be captured in a
single parameter: the ratio of spatial standard deviation
(SD) to the mean (Deppean) Of the measured deposition
throughout the flume. The ratio SD/Depyycan 1 @ measure of
preferential capture of particles in the patch wake, which
increases with increasing channel velocity (Figure 13b). A
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Figure 13. Net deposition near a dense, rigid, emergent patch of model vegetation as a function of chan-
nel velocity. (a) Deposition measured adjacent to patch (triangle) and maximum deposition in the wake
(square) for aD="7. The uncertainty is comparable to the symbol size. (b) The spatial standard deviation
of measured deposition (SD), normalized by the mean deposition (DEP,,..,) over entire test section.
Triangle for aD=8.4 from Figure 6. Additional flow conditions with aD=7 shown by circles. For the
additional cases, the estimate of U, is based on available flow measurements, which did not correspond
to the same measurement position for U,. Uncertainty shown by horizontal bar.

change in behavior occurs around U, =6 cms™ ', which corre-

sponds wy/ux~0.01, and above this value the SD increases
rapidly with increasing U, and continues to increase above
our original design conditions (Figure 6, triangle). Although
we did not vary w,, we can use the trends in wy/ux to infer
deposition behavior. The trend of increasing SD/Depyyean 1S as-
sociated with decreasing wy/u« (noted by arrow in Figure 13b).
This suggests that within a single system (single value of u+),
preferential deposition in the wake will be stronger (higher
SD/Depiean) for smaller particles (smaller wy/u+). This sugges-
tion is supported by observations made by Tanaka and
Yagisawa [2010], who investigated deposition in the wakes of
Salix subfragilis patches. They found that the material in the
wake was of significantly finer grain material (0.1 to 1 mm) than
upstream of the patch (10 to 100 mm), indicating that the prefer-
ential capture in the wake was stronger for finer particles. There
are two reasons for this. First, as velocity increases, the ability
for fines to settle in the open channel (away from the patch) de-
clines more rapidly than in the wake, because the velocity in the
wake remains significantly depressed relative to the open chan-
nel. Second, because of the depressed velocity in the patch and
the wake, the coarse fraction of sediment (bed load) cannot enter
the wake. This was shown explicitly in Follett and Nepf2012],
who examined a mobile bed with bed load transport interacting
with an emergent patch of rigid vegetation. They observed that
the coarse fraction of sediment (transported as bed load) did not
move into the wake of the patch.

[35] As a final note, we reiterate the fact that our experi-
ments do not include a mobile bed and, thus, cannot represent
the influence of bed load transport or changes in bed
morphology. As such, the experiments only reveal the initial
tendencies for deposition near finite patches of vegetation.
However, Follett and Nepf [2012] ran experiments on a
mobile bed with both bed load and suspended load transport,
and they observed deposition of fine material in the wake of a
finite patch of emergent vegetation. As noted in the previous
paragraph, their study also showed that bed load transport
does not occur within the patch wake, which, together with
the deposition of fine material, provides good conditions
for seed germination and growth. Follett and Nepf [2012]
observed significant scour at the leading and lateral edges

of the patch, processes that are excluded from our study.
When present, these changes in bed morphology could inhibit
the lateral expansion of the patch and potentially increase the
deflection of flow away from the patch, leading to even more
quiescent conditions in the wake, and thus more favorable
conditions for patch expansion in the streamwise direction.

4. Conclusions

[36] Laboratory experiments examined the alteration of
flow and the tendency for suspended sediment deposition
of fine particles near finite patches of model vegetation, com-
paring rigid emergent and flexible, submerged vegetation
types. Within the wake of a rigid, emergent patch, there is a
distinct region of diminished mean velocity and TKE in
which deposition is enhanced. This region extends a distance
L, downstream of the patch, which can be predicted from the
patch flow blockage. The enhanced deposition of fines, in
addition to the diminished mean and turbulent flow, could pro-
mote germination, seed growth, and, ultimately, patch extension
in the streamwise direction. This positive feedback may be
stronger for sparse patches, which create longer regions of
diminished flow and enhanced deposition, i.e., larger values of
L,. Further, emergent patches deflect flow in the horizontal
plane, leading to elevated velocity at the patch edge, which
diminished net deposition and may inhibit the lateral expansion
of the patch (i.e., a negative feedback to patch growth). In
contrast near flexible, submerged vegetation, these feedbacks
were greatly reduced or completely absent for two reasons.
First, submerged patches do not have a wake region in which
both mean velocity and TKE are diminished, and subsequently,
deposition is not enhanced downstream of the patch. This sug-
gests that submerged patches do not provide a positive feedback
for streamwise patch growth. Second, for submerged patches,
flow deflection over the top of the patch diminishes deflection
to the side, so that for the same flow conditions, submerged
vegetation produces weaker flow enhancement at the patch
edge, compared to an emergent patch of comparable stem
density. Thus, the tendency to inhibit lateral patch growth and
to provoke sediment sorting along the patch edge are likely to
be weaker for submerged patches.
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Notation List

a cm frontal area per volume

Cp ~ drag coefficient

Cr ~ bed friction coefficient

d mm dowel diameter

D cm diameter of patch

h cm height of canopy

H cm height of water

Ly m steady wake length

Ltke m length to maximum turbulence

n cm? dowels per bed area

Re, ~ stem Reynolds number

St ~ Strouhal number

t s time

T, s characteristic period of von Karman vortices
TKE m’s > turbulence kinetic energy

TKE, m’s ™2 upstream reference TKE

U cms™! total horizontal velocity

U, cms”! upstream reference velocity

U, cms wake velocity

U, cms™! velocity adjacent to wake

u,y,w cms i streamwise, lateral, and normal velocity components
Wy cms fall velocity

XY,z m streamwise, lateral, and normal directions
1) ~ solid volume fraction (SVF)

v cm’s™! kinematic viscosity
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