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Abstract

In the first half of this study, rotational and vibrational structures of six Franck-Condon bright

states of S1 doubly-substituted carbon-13 acetylene are determined from the laser-induced fluores-

cence spectra of the molecule and an updated geometry of the trans conformer of S1 acetylene is

provided. In the second half, we determine the harmonic force constants of S1 acetylene, which

takes into account both diagonal and off-diagonal xij anharmonicities. Results from previous stud-

ies of various isotopologues of the molecule (including the first half of this work), both experimental

and theoretical, are used to obtain a set of force constants which agree well with ab initio calcu-

lations. Our set of force constants of S1 acetylene is believed to be more reliable than Tobiason’s

previous result [1], which does not include off-diagonal anharmonicities.

∗ Currently works at MIT Lincoln Laboratory.
† Corresponding author. Email: rwfield@mit.edu
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I. INTRODUCTION

The study of the first electronically excited S1 state of acetylene molecule dates back

exactly one hundred years ago, when Stark and Lipp published the first absorption spec-

trum of gas-phase acetylene from 2200-1900 Å [2]. The major breakthrough occurred in

the mid-50’s, when Ingold and King [3] and Innes [4] demonstrated that the lowest-lying

excited electronic state in the absorption spectrum has a near-prolate top trans-bent struc-

ture (C2h point group), in contrast to the linear structure in the electronic ground state.

From the rotational selection rule, they identified the transition as a C-type Ã1Au − X̃1Σg

transition. Since then, the vibrational structure of the trans conformer of S1 acetylene

has been nearly completely characterized [5–8] and important dynamics, such as Coriolis

and Darling-Dennison resonance [6, 9] and isomerization to the cis conformer [10], have

been identified. Along with experimental works, ab initio calculations have been carried to

treat the trans conformer in a global sense and good agreement with experiment has been

obtained [11].

Most of the work on S1 acetylene was done on the naturally-abundant species (hence

known as C12). However, in order to fully characterize a molecule, isotopologue information

is necessary for the determination of the molecular geometry as well as the harmonic force

field, provided that the Born-Oppenheimer approximation is valid. In this paper, the laser

induced fluorescence spectra of doubly-substituted carbon-13 acetylene (C13) recorded by

Michelle Clark during her PhD work at MIT is reanalyzed and the axis-switching effect has

been taken into account, allowing the determination of the A, B, and C rotational constants,

as well as band-origins of six Franck-Condon bright states involving mode 2 (CC-stretch)

and mode 3 (trans-bending). Details of the experiment can be found in Chapter 2 of Clark’s

PhD thesis [12] and are not repeated here. Combining all previous studies of S1 acetylene,

both experimental [5–8, 13, 14] and theoretical [11], we provide a more reliable set of force

constants of S1 acetylene, to be compared with Tobiason’s force field analysis [1], as well as

an updated geometry of the molecule. The most significant contribution of our present work

is the inclusion of all the xij anhamonicities, both diagonal and off-diagonal, to the harmonic

frequencies, in addition to the fact that the fundamentals of several normal modes are now

much better determined (notably ν1 of C12 acetylene [8]). This allows us to determine the

force constants with less ambiguity compared with previous work [1]. An ongoing project
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is to use this updated set of force constants and molecular geometry to refine the S1-S0

Franck-Condon calculation.

II. RESULTS

The C-type rotational selection rule K ′a − l′′ = ±1 for the S1-S0 electronic transition of

acetylene normally prohibits transitions to K ′a= 0 and 2 levels from the ground electronic

state with zero vibrational angular momentum, l′′ = 0. For a near prolate top, the diagonal

matrix elements of the rotational Hamiltonian are given by (with K ≡ Ka being unsigned

and |k|=K being signed) [5]

Hk,k = Tv+
1

2
(B+C)(J(J+1)−k2)+Ak2−DJJJ

2(J+1)2−DJKJ(J+1)k2−DKKk
4, (1)

and the off-diagonal ones are given by

Hk±2,k =
1

4
(B − C)

√
(J2 − (k ± 1)2)((J + 1)2 − (k ± 1)2). (2)

As a result, only B, C, and DJJ can be determined from a Π − Σ (K’=1-l”=0 transition)

spectrum, since one needs at least two K’s to determine the A constant. However, because

of large change of geometry upon excitation to the S1 state, K ′a− l′′ = 0,±2 transitions can

be weakly allowed [15]. This so-called axis-switching effect can best be understood if one

realizes that the molecular wave function normally used is expressed in terms of a molecule-

fixed coordinate system instead of a space-fixed coordinate system [15]. In other words,

the coordinate system rotates as the geometry of the molecule changes (while in the usual

selection rule, a fixed coordinate system is assumed), thus breaking the simple selection

rule. This is very similar in essence to the Duschinsky effect, where the coordinates of

the vibrational normal modes change upon large geometry change induced by an electronic

transition [15, 16].

The result is listed in Table I and line assignments are provided in the Supporting Infor-

mation. V m
n is a short-hand notation for a transition from n quanta of the trans-bending

mode, ν ′′4 of the ground electronic state to m quanta of the trans-bending mode, ν ′3 in the

excited state. Rotational constants B and C, DJJ , and Tv +Ak2 terms are first determined

by assigning the rotational lines of the much stronger Π−Σ transition. Axis-switching lines

from the weaker Σ − Σ transition can then be easily picked out by noticing that the axis-

switching Q(J) line near J=20 should lie close to the normal Q(J+1) line. This is because
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TABLE I: Rotational and vibrational constants for the observed vibrational states. Units are all

in cm−1. Those constants left in blank were not included in the fit. Numbers in the parentheses

are ±1σ uncertainties.

Constants V 0
0 V 1

0 V 2
0 210V

0
0 210V

1
0 210V

2
0

Tv 42214.49(1) 43250.06(1) 44268.55(1) 43551.43(1) 44586.99(1) 45605.17(3)

A 12.783(13) 13.692(7) 14.811(7) 12.661(9) 13.513(8) 14.340(26)

B 1.0592(1) 1.0610(1) 1.0618(0) 1.0513(1) 1.0522(0) 1.0514(1)

C 0.9750(1) 0.9717(1) 0.9686(0) 0.9679(1) 0.9642(0) 0.9609(1)

DJJ × 106 2.30(7) 2.44(7) 1.98(4) 2.6(1) 2.04(4) 2.00(2)

DJK × 105 9(2) 7(1) 5(3) 28(9)

DKK 0.004(3) 0.013(2)

rms 0.021 0.026 0.016 0.017 0.015 0.024

the expected separation of the K=1f and 0f levels will be about 8 cm−1 at J=20, based on

information from the study of C12. This also happens to be roughly the spacing of the two

Q branches near that J value. Unfortunately, only Q-type transitions are allowed for a Σ−Σ

band because of the parity selection rule, but in general the observed progression of axis-

switching Q lines is fitted with good accuracy. This is particularly made possible by the fact

that the transition is red-shifted with respect to the Π−Σ transition. In addition, for an axis-

switching transition, the intensities scale approximately as J3exp[−B′′J(J + 1)hc/kT ] [15],

whereas the normal rotational intensities scale as J exp[−B′′J(J + 1)hc/kT ] [15] and thus

reach maximum earlier (B′′ = 1.1196 cm−1 is the ground electronic state rotational con-

stant [17]). As a result, the strongest part of the relatively weak Σ− Σ axis-switching lines

avoids being buried under stronger Q lines which reach maximum intensity at around J=6

in our experimental conditions. In contrast, all P, Q, and R transitions are allowed for the

axis-switching ∆− Σ transition. However, the intensities of these transitions is only about

half that of the Σ−Σ [15], and the band is severely overlapped by the R-head of the Π−Σ

band. As a result, no attempts are made to assign the ∆ − Σ transition except for the V 0
0

and V 1
0 bands, mainly due to the fact that those bands were sampled only by relatively short
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scans and only a few Σ− Σ Q lines can be assigned. For those two bands, a progression of

Q and/or P branches of the ∆ − Σ transition can still be observed. The spectrum in the

R-branch region was not recorded. The A rotational constant can thus be determined for

all the observed levels. DJK and DK are added only if they significantly improve the fit and

also give reasonable uncertainties. The inclusion of those two constants only causes a small

change in the other fitted constants and sometimes even increases the uncertainties of those

values. The overall rms is good, given the spectra were calibrated to an accuracy of around

0.02 cm−1.

III. ROTATIONAL AND VIBRATIONAL ANALYSIS

As can be seen from Table I, the A and C rotational constants are observed to increase or

decrease linearly with the number of quanta in mode 3, with the greatest changes occurring

in the values of the A constant. This is consistent with the fact that as more and more

quanta of the trans-bending mode 3 are excited, the molecule becomes quasi-linear, with an

increased apparent value of the A rotational constant [5]. It should be noted that the values

of B constant deviate from the linear trend, in particular for the progression containing one

quantum of ν2. This might be caused by some J-dependent Coriolis-type perturbation. A

similar effect has been observed in C2D2 [14].

The rovibrational parameters can be determined from the rotational constants by the

relation

Rv = Re − αR2 (ν2 +
1

2
)− αR3 (ν3 +

1

2
), (3)

where R can be either A, B, or C, and ν2 and ν3 stand for the number of quanta of those

two modes in each level. The result is presented in Table II. Note that Re here can only be

considered an effective value, since not all α’s can be determined from the available data. A

weighted fit based on the uncertainties of the fit values is used throughout this work.

With the inclusion of the new C13 rotational constants, geometrical parameters of the

trans conformer of S1 acetylene can be updated. Assuming the validity of the Born-

Oppenheimer approximation, the equilibrium structure of a molecule should be isotope-

independent. In fact, without additional isotopologue information, the equilibrium geome-

try of a polyatomic molecule cannot generally be determined. For trans S1 acetylene, the
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TABLE II: Rotational and vibrational constants of the observed vibrational states. Units are all

in cm−1.

Ae = 12.44(15) Be = 1.064(1) Ce = 0.9806(3)

αA2 = 0.23(9) αB2 = 0.0088(6) αC2 = 0.0075(2)

αA3 = −0.96(6) αB3 = −0.0009(4) αC3 = 0.0034(1)

FIG. 1: Geometry of trans acetylene (adapted from ref [18] ). r1 and r2 are the rCC and rCH bond

lengths respectively. α is the CCH angle. γ is the angle between the principal axis system and

the x, y, z-coordinate system, with the y-axis being out of plane. Note that in the final results, the

CCH angle is reported as the supplementary angle of α.

principal moments of inertia are given by the equations [18]

1

2
IA0 =

r21
4

(m1 +m2)sin
2γ +m2r

2
2sin

2(γ − α) +m2r1r2sin(γ − α)sinγ (4)

1

2
IC0 =

r21
4

(m1 +m2) +m2r
2
2 +m2r1r2cosα (5)

tan 2γ =
m2r

2
2sin 2α +m2r1r2sinα

1
4
(m1 +m2)r21 +m2r22cos 2α +m2r1r2cosα

, (6)

where m1 and m2 are the masses of various isotopes of carbon and hydrogen atoms, respec-

tively. In this study, geometrical parameters are fitted to Ia and Ic of C12, C2D2 and C13.

As a usual practice, the rotational constants, R0, from the ground vibrational state are used,

instead of equilibrium rotational constants, mostly because only some of the αi parameters

are known in the S1 state. It should be noted that attempts have been made to include Ib

in the fit as well. However, the fit residuals become larger when Ib is included, possibly due
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to the presence of a positive inertial defect, calculated to be 4◦ = Ic− Ia− Ib ≈ 0.06 amu Å
2

for all three isotopologues, while Ic is supposed to be equal to Ia + Ib for a planar molecule.

The calculated inertial defect, which occurs mainly due to vibration, is consistent with the

typical value for a “well-behaved” planer molecule [19]. The inertial defect is not taken into

account during the structural determination, thus the geometry we obtain is best described

as a zero-point geometry. From the fit, one obtains

rCC = 1.374(1)Å rCH = 1.099(2)Å ∠CCH = 122.82(8)◦.

The updated structure is not very different from the result in [18] . The most noticeable

change is a slight increase (+0.34◦) in the CCH bond angle.

From the band origins of the six vibrational levels, harmonic frequencies and anharmonic-

ities can be obtained. However, as no global fit is possible, the result should be treated with

care, especially for the harmonic frequencies and Te (not including the zero-point energy) in

Eq.(7). The six levels are fitted to the model

G(ν2 ν3) = Te+ω2(ν2+1/2)+ω3(ν3+1/2)+x22(ν2+1/2)2+x33(ν3+1/2)2+x23(ν2+1/2)(ν3+1/2).

(7)

It should be mentioned that x22 can neither be fitted in our model (since we need at least

three different quanta of ν2 to determine its value) nor absorbed into any of the fitted terms.

An approximate value of x22 can be obtained by using Eq. (8) in the next section, based

on the known x22 of C12 [8]. For comparison, a fit result when x22 is effectively set to be

zero is also reported (see Table III). As expected, the value of ω2 is the one most affected

TABLE III: Vibrational analysis. Numbers with asterisks are fixed in each fit. Units are all in

cm−1.

Te 41013.8(2) 41021.7(2)

ω2 1358.1(1) 1337.1(2)

ω2 1052.9(3) 1052.9(2)

x33 -8.61(8) -8.60(8)

x23 -0.17(9) -0.15(10)

x22 -10.86* 0*
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by the choice of the x22 value. It should be re-emphasized that the “harmonic frequencies”

obtained here are not real harmonic frequencies, since no global fit is possible. Thus, the

treatment introduced in the next section is still necessary to obtain more accurate harmonic

frequencies.

IV. HARMONIC FORCE-FIELD DETERMINATION

As promised, a new harmonic force-field analysis with a complete set of xij anharmonic-

ities [7–9, 11, 20, 21] can now be completed, with the inclusion of several new fundamental

frequencies, notably ν1 of C12 [8] in combination with the results from the present work. In

Tobiason’s harmonic force field analysis [1], only the diagonal anharmoncities are included,

claiming that off-diagonal ones should be relatively small. However, recent developments in

the study of acetylene, both experimental and ab initio, have shown that several off-diagonal

anharmonicities are much larger than or at least comparable to the diagonal ones, most no-

tably x15=-158.57 cm−1 [11] and x36=-33.45 cm−1 [20]. The former is an ab initio (VPT2)

anharmonicity between the high-frequency symmetric and asymmetric stretch modes. The

large value of the latter is caused by the fact that modes 3 and 6 are the two active modes in

the S1 acetylene cis↔ trans isomerization path [10, 20]. A complete list of anharmonicities

can be found in [11], with updated values: x56=-8.98 cm−1 and x45=-16.81 cm−1. Only

those associated with modes 1 and 5 have not been experimentally determined because it

would require observation of very high-lying vibrational levels well aboisotopologueve the

dissociation limit. However, given excellent agreement of the ab initio fundamental frequen-

cies of those two modes with the experimental values, we have confidence in the calculation.

Anharmonicity constants for various isotopologues of S1 acetylene are very sparsely available

and most of them are not very well-determined. An empirical relation [22] is used instead

to infer those values from C12 anharmonicities

x∗ik =
ω∗i ω

∗
k

ωiωk
xik, (8)

where an asterisk indicates the corresponding value for an isotopologue. As the relation

involves ratios of harmonic frequencies, and since not all of them are available for various

isotopologues (only those of C12 can be determined), ab initio harmonic frequencies are used

to obtain anharmonicities of other isotopologues, as ratios of ab initio values are usually of
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good quality. Ab initio harmonic frequencies of the isotopologues are generated based on

results in [11]. The harmonic frequencies are related to fundamentals and anharmonicities

via the relation

ωi = νi − 2xii −
1

2

∑
k 6=i

xik, (9)

where νi is an observed fundamental frequency (e.g. the difference between the band origin

of ν3=1 and 0), while harmonic frequencies are the second derivative of the potential energy

surface along a normal mode direction. For force-constant calculations, harmonic frequencies

must be used, because the usual force constants are related to a harmonic force field. The

harmonic frequencies are summarized in Table IV.

As can be seen, the harmonic frequencies listed are quite different from the ones that

Tobiason used in his work [1]. Most of them, even those of various isotopologues, agree

excellently with ab initio harmonic frequencies, which are known to produce accurate fun-

damentals. This justifies the use of the empirical relation Eq. (8). The discrepancies for

mode 4 and mode 6 can mostly be explained by the choice of coordinate system [11]. In

the VPT2 calculations, a rectilinear coordinate system is used, which tends to yield more

accurate result for stretching modes and less accurate ones for bending and especially tor-

sional modes [11]. When a curvilinear system is used, a much better agreement with the

experiment can be achieved for those two modes. It should be noted that the agreement with

the ab initio ω1 and ω2 for C2D2 is significantly poorer than for other harmonic frequencies.

This casts doubt on the accuracy of the observed fundamentals [14], since the stretching

mode should be very accurately determined in the ab initio calculation, as is the case for

other isotopologues. Using the Teller-Redlich product rule [22], which relates the products

of harmonic frequencies of a given symmetry of two different isotopologues to the mass and

geometrical structure of the molecule, we have for modes 1, 2, and 3 of C12 and C2D2

ω1ω2ω3

ω∗1ω
∗
2ω
∗
3

=
m∗Hm

∗
C

mHmC

√
Ic
I∗c
, (10)

where an asterisk indicates the relevant value for the other isotopologue. It is evident that

(Table V) ab initio calculation essentially yields the same ratio as the one calculated from

Eq.(10), but the agreement with experimental harmonic frequencies is worse for C2D2. In

comparison, if we use the experimental ω2 and ω3 of C13 to extrapolate to its ω1 value,

it yields a result that is very close to the ab initio value, which is expected to be close to

9



TABLE IV: Experimental, ab initio, and fit harmonic frequencies. Data in asterisks are not included

in the harmonic force field fit. Units are all in cm−1.

Exp. Ab initio Exp. Fit Predicted

mode fundamental harmonic harmonic harmonic fundamental

C12 1 2880.1 [8] 3053.5 3052.1 3052.2 2880.1

2 1386.9 [5] 1424.6 1420.9 1421.0 1387.0

3 1047.6 [5] 1106.1 1098.0 1098.1 1047.7

4 764.9 [6] 757.9 787.7 787.7 764.9

5 2857.4 [7] 3033.4 3032.4 3031.1 2856.1

6 768.3 [6] 780.6 801.6 800.8 767.5

C2D2 1 2209.2* 2262.6 2303.5* 2262.3 2168.0

[14] 2 1305.8* 1385.1 1335.3* 1378.0 1348.5

3 845.3 877.8 875.6 874.0 843.8

4 556.5 578.4 564.6

5 2227.2 2225.6 2130.6

6 573.2 588.0 568.7

C2HD 1 3043.6 3041.8 2893.5

[13] 2 1367.4 1403.7 1399.0 1398.2 1366.6

3 980.8 1026.1 1021.8 1022.7 981.7

4 664.8 691.0 672.4

5 2245.2 2244.2 2131.3

6 635.7 644.4 660.6 659.5 634.7

C13 1 3043.7 3042.3 2871.4

2 1336.9 1372.4 1368.9 1369.5 1337.6

3 1035.6 1093.5 1085.1 1085.0 1035.5

4 755.6 785.4 763.0

5 3024.4 3022.0 2848.2

6 778.3 798.4 765.5
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TABLE V: Teller-Redlich product rule for mode 1, 2 and 3.

Calc. Ab initio Exp.

C12/C2D2 1.748 1.749 1.768(13)

C12/C13 1.054 1.054 ω3=3043(19)cm−1

the experimental value. Indeed, in the original paper on C2D2, the ν2 fundamental was

not directly observed; the ν2=1 level seems to be determined from a combination band

with ν1, the position of which also might not be securely determined. Considering all these

difficulties, the ν1 and ν2 fundamentals of C2D2 are not included in the harmonic force-field

fit. In fact, inclusion of the two corresponding harmonic frequencies makes the fit residual

much larger than otherwise. The assignment of ν3 fundamental [14] should be secure, since

a long progression of this Franck-Condon active mode was observed in the study.

Based on harmonic frequencies, harmonic force constants of the trans conformer of the

S1 state of acetylene can be determined by the GF matrix method. This is a well-developed

method to obtain force constants, and has been discussed in great detail in [23], as well as

in Tobiason’s force constant analysis paper [1]. Here, only a brief theoretical background is

provided. In the internal coordinate system, harmonic frequencies can be obtained from the

secular equation [23]

| F−G−1λ |= 0, (11)

where Ftk is an element of the force constant matrix, F, expressed in internal coordinates,

t and k represent specific internal coordinates, G−1 is the inverse of the matrix G, which

contains geometrical and isotope information of the molecule, and the λ are the squares of

the harmonic frequencies. The internal coordinates of acetylene are represented in Fig. 2.

The relation in Eq. (11) is analogous to the case of diatomic molecules, where the harmonic

frequencies equal to the square root of force constant divided by the reduced mass. Thus,

in many ways, the GF matrix is the polyatomic version of this relation, with G being a

reduced mass matrix that also contains geometrical information about the molecule. In fact,

G can be determined from [23]

G = Bm−1BT , (12)

where B transforms Cartesian displacement coordinates to internal coordinates and m−1 is
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a diagonal inverse mass matrix. G can also be obtained from a purely geometrical point

of view described in [23]. Both methods are used to obtain the G matrix for the four

isotopologues of acetylene. Specific forms of the matrices as well as F are provided in the

Supporting Information. Note that m−1 and thus G are isotope-dependent, but F is not

isotope-dependent within the Born-Oppenheimer approximation. By simple diagonalization

of each GF matrix, the square-root of the eigenvalues are fitted to the experimental harmonic

frequencies listed in Table IV. Our updated acetylene geometry is used in the G matrices.

An uncertainty of 2 cm−1 is given for all C12 harmonic frequencies and 5 cm−1 for the

rest. Note that since mode 4 is the only mode that involves out of plane motion, GF is

automatically block-diagonalized into an 1×1 ω4 block and a 5×5 block. Such feature is

obvious if one uses the geometrical approach to obtain G and takes the symmetry of different

vibrational normal modes into account.

FIG. 2: Internal coordinates of acetylene. Note that the torsional coordinate, τ being out of plane,

is not shown.

To increase the accuracy of the fit, we also fit to the a-axis Coriolis constant ξa46 =

0.707 ± 0.006 between modes 4 and 6 [6]. Details of obtaining ξa46 from GF are described

in [1]. The matrix L mentioned there is the one that diagonalizes GF. Note that there is

a typo in Eq. (4) of ref [1]. The summation should be from i = 1− 4, since there are only

four atoms in acetylene, and the superscript should specify principal axes a, b, and c. Thus,

care should be taken to transform B into the principal axis system.

We encounter similar fitting problems as noted in Tobiason’s previous work [1]. When we

try to fit to all ten parameters, large relative uncertainties are found in FrR and Fr′θ, as well

as in Frr′ . The first two were constrained to be zero in [1]. It turns out that those three force

constants are much smaller than the others obtained from the ab initio calculation [11]. We

thus also tried constraining the first two parameters to be zero, and reasonable parameter

uncertainties are obtained. In addition, given confidence in the accuracy of the VPT2

calculation, we also tried constraining FrR and Frr′ to have their ab initio ratio with respect
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to Fr′θ. The results are presented in Table VI. The fitted harmonic frequencies presented in

Table IV are based on the latter.

As can be seen, both approaches give very similar force constants, with the ratio-

constraining set matching almost perfectly with the ab initio results. Compared with Tobi-

ason’s previous result [1], one of the most obvious and easily understandable changes is the

increase in Frr, as the harmonic frequency of the CH asymmetric stretching mode of C12

used in this work is significantly larger. A similar argument applies to the torsional force

constant. Using our harmonic force constants, both the harmonic frequencies and funda-

mentals can be predicted for all six vibrational modes of all isotopologues (see Table IV). It

is not surprising that the predicted frequencies of fundamentals of mode 1 and 2 of C2D2 are

rather far away from the values claimed in ref [14], which were used in Tobiason’s analysis [1].

TABLE VI: Force constants of the trans conformer of S1 acetylene. Numbers in asterisks are either

constrained to have their ab initio ratio with respect to Fr′θ or constrained to be zero.

a ab-initio Tobiason

Frr 5.07(1) 5.06(0) 5.08 4.78(3)

FrR 0.089(18)* 0* 0.086 0*

Frr′ 0.042(8)* 0.029(6) 0.041 0.138(25)

Frθ 0.216(47) 0.185(43) 0.212 0.188(40)

Fr′θ 0.032(6) 0* 0.031 0*

FRR 7.71(2) 7.74(2) 7.75 7.63(2)

FRθ 0.434(50) 0.434(49) 0.417 0.583(21)

Fθθ 0.545(6) 0.543(6) 0.536 0.541(4)

Fθθ′ 0.114(6) 0.112(6) 0.128 0.127(4)

Fττ 0.145(1) 0.145(1) 0.136 0.137(4)

aUnits are: mdyn/Å for force constants between two bonds (e.g. Frr); mdyn×Å for ones between two

angles; and mdyn for ones between a bond and an angle.
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V. CONCLUSION

As mentioned earlier in the Introduction, a large portion of this work is made possible after

an almost complete characterization of the vibrational structure of the trans conformer of S1

C12 acetylene, in addition to works from relatively fewer but important isotopologue studies

of the molecule, including the first part of this work. Specifically, we have determined the

rotational and vibrational structure of six Franck-Condon bright states of doubly-substituted

carbon-13 acetylene. An updated geometry of the trans conformer of S1 acetylene is then

provided. By including both the diagonal and off-diagonal xij anharmonicities, we obtain

harmonic frequencies of four isotopologues of S1 acetylene, which agree well with ab initio

calculations. GF matrix method is then applied to obtain harmonic force constants of

the molecule, which also agree well with the calculations. This updated set of harmonic

force constants, which are believed to be more reliable than Tobiason’s previous results,

will be used together with our new molecular geometry to refine the S1-S0 Franck-Condon

calculation.
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