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ABSTRACT

A survey of potential mixed-mode waste heat rejection
systems for large central power stations has been undertaken
in an effort to develop new waste heat rejection system
design options. A mixed-mode waste heat rejection system is
defined as a waste heat rejection system in which more than
one type of heat rejection device or more than one method of
system operation is utilized. All currently available waste
heat technology has been reviewed for its applicability to
the mixed-mode concept with the exception of "once-through"
cooling systems. The literature concerning the mathematical
modeling of the thermal performance of waste heat dissipation
systems is reviewed and recommendations are made for modeling
the thermal performance of natural and mechanical draft evap-
orative cooling towers, spray canals. cooling ponds, and
natural and mechanical draft dry cooling towers.

An initial survey of some mixed-mode options indicates
that waste heat system utilization considerations would, at
most sites, not provide sufficient economic justification for
the design of systems composed of devices with different ratios
of operational to capital cost. Also, a study of combined evap-
orative cooling tower-cooling pond systems yields some simple
design recommendations. Investigations of a variety of cycli-
cally-operated storage pond-cooling tower systems reveals that
this concept is an attractive solution to the problem of the
coincidental occurrence of the maximum daily power loss due to
high ambient temperatures and maximum daily utility-system elec-
trical demand. Several applications of this concept with re-
gard to evaporative cooling towers are examined and are shown
to be worthy of consideration as design options in more detailed
analyses of specific plant sites. The most important result of
this study of cyclically-operated waste heat rejection systems
has been the identification of significant economic benefits of
the combined thermal storage pond and dry cooling tower system.
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The engineering feasibility of constructing and operating
a thermal storage pond which would exhibit the type of thermal-
hydraulic behavior necessary for the efficient operation of the
combined thermal storage pond and dry cooling tower system has
been established through the use of an experimental physical
model of the proposed water storage pond. Based on the results
of the modeling studies, density-induced flows which tend to
short-circuit the pond are seen to be the major design con-
straint, and recommendations are made for the design of an
efficient and economical storage pond.

The economics of the thermal storage pond-dry cooling
tower system have been evaluated through the use of a design-
optimization, system-simulation model. Various plant sites,
steam turbine types, and system operational schemes are con-
sidered. A potential 15 to 20% savings in the cost of dry
cooling is seen for nuclear plants in the western United
States using the proposed high-exhaust-pressure, modified-
conventional steam turbine. Also, the thermal storage pond-
dry cooling tower system utilized with the conventional steam
turbine is seen to be economically superior at many sites to
simple dry cooling utilized with any of the proposed advanced
high-exhaust-pressure turbines.

Thesis Supervisor: Michael W. Golay
Associate Professor of Nuclear Engineering
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CHAPTER 1

MIXED-MODE WASTE HEAT DISSIPATION

AT CENTRAL POWER STATIONS

1.1 The Problem

Within the scope of present technology there are a num-

ber of waste heat dissipation methods available to the design-

er of a central power station. In all but a few instances,

it has been engineering practice to employ only a single

method at any particular station. Also, to date little consi-

deration has been given to dynamically operated systems which

attempt to maximize operational economies in the presence of

changing meterology and electrical generation requirements.

This practice of using single-mode waste heat dissipation sys-

tems is the result of current design procedures and not the

direct result of a comprehensive engineering and economic

evaluation of the entire range of options which can be fabri-

cated given the current waste heat technology.

The currently available methods for the dissipation of

waste heat include once-through cooling, cooling ponds, spray

canals, mechanical and natural draft evaporative cooling

towers and - to a limited extent - mechanical and natural

draft dry cooling towers. The primary goal of this research

has been the identification and subsequent engineering and

economic evaluation of mixed-mode waste heat rejection sys-

tems which can be constructed using the above devices as the
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basic system components. The general term "mixed-mode"

waste heat rejection system has, in this work, as its mean-

ing any waste heat rejection system which achieves the

desired cooling through the use of more than one device and/

or method of operation. A single-mode system is thus any

one of the above listed devices operated in a continuous

and non-varying manner. It should be clear that the inten-

tion of this work is not the specification of new heat dis-

posal equipment, but rather the intention is to reveal how

the presently available heat rejection technology can be

utilized to construct mixed-mode systems which are econo-

mically superior to single-mode systems.

The waste heat system evaluation problem being addressed

in this work is different from that which confronts the power

plant design engineer. Typically, the plant engineer has a

fairly well defined waste heat rejection problem in that the

site economics and physical characteristics are fixed. He

need only identify the system which is the most economical

with respect to the governing environmental constraints given

the site characteristics.

In the present task, it is of interest not to be con-

strained to a specific set of site characteristics since the

goal of this work is to determine what benefits might be

gained by employing mixed-mode waste heat dissipation systems

and under what circumstances these benefits are likely to be
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obtained. Thus, rather than being constrained to a specific

set of site characteristics the present work is constrained

only to the range of site characteristics which the United

States electric utility industry is expected to encounter in

the future.

1.2 Limitations on the Investigation

In order for this investigation to be compatible with

the available financial and human resources two important

limitations were placed on the scope of the proposed work.

The first limitation is that no consideration is given to

mixed-mode systems involving the use of once-through cooling.

Second, no effort has been made to explore the area of com-

bined evaporative/non-evaporative (i.e. wet/dry) systems.

Once-through systems have not been considered due to the

extremely site-specific constraints on the use of this type

of cooling. For economic reasons, the plant designer would

almost always attempt to maximize the use of once-through

cooling. More often than not, the limits on the use of once-

through cooling are environmentally and not economically or

physically based and any attempt to improve combined systems

involving a once-through component would necessitate direct

consideration of environmental matters [F3]. Reconciliation of

environmental constraints is difficult or impossible within

the context of quantitative waste heat system design and per-

formance analysis.



23

For similar reasons the use of wet/dry system is not

considered. Wet/dry systems would only be employed in

those instances when total wet cooling is not acceptable

due to water consumption or fogging.[Ll] Water consumption

and fogging are constraints which are environmental in nature

and are highly site dependent. Even a generalization of

the economic-environmental relationships between system per-

formance and these constraints is at best tenuous. In any

event, other investigators have given wet/dry systems consider-

[DLI][H6][L2]
able attention.

1.3 Approach to the Problem

Although minimum cost is the fundamental criterion by

which all waste heat rejection systems are judged, this criter-

ion in itself does not provide an adequate guide for the con-

ceptualization of mixed-mode systems. What is needed is a

set of avenues of approach to the conceiving of mixed-mode

waste heat systems. The required avenues of approach can be

formulated by considering the means by which mixed-mode sys-

tems could result in economic improvements. Then one may

consider how the available waste heat technology might be

adapted and utilized to realize the potential benefits.

Surveying the field of waste heat dissipation, mixed-

mode systems appear to offer potential with regard to

1) making greater advantage of the time varying meteor-

ological and cost characteristics of the site,
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2) utilizing to the maximum extent cooling resources

available on site, and

3) utilization of coupled systems such that the total

performance of the combined system is superior to

that of the individual components.

Certainly these three routes to the conceptualization

of mixed-mode waste heat systems are not entirely independent

of each other or completely comprehensive. It is not reason-

able to assume that all the potentially beneficial mixed-mode

systems will be recognized by this type of problem approach.

Indeed, this type of approach has as its basis an inventor-

type of recognition of problem solution. Consideration of

more structured approaches which would attempt to develop a

more analytical framework for mixed-mode system recognition

has, nevertheless, lead to an understanding of their decided

impracticality.

1.4 Outline of Presentation

The basic mathematical models of the thermal performance

of the various component waste heat rejection systems are dis-

cussed in Chapter 2. Then using the approach mentioned in

the previous section a survey of several possible mixed-mode

options is presented in Chapter 3. The results of this survey

reveal the large benefits which may be obtained through the

use of an adaptation of the conventional cooling pond - the
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thermal storage pond - in conjunction with dry cooling

towers. In Chapter 4 is discussed the experimental design

study of the proposed thermal storage pond and the follow-

ing chapter includes a detail discussion of thermal storage

pond/dry cooling tower system economics and engineering.
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CHAPTER 2

MATHEMATICAL MODELS FOR PREDICTING THE THERMAL

PERFORMANCE OF CLOSED-CYCLE WASTE HEAT

DISSIPATION SYSTEMS

2.1 Introduction

The literature concerning the dissipation of waste heat

from central power stations has grown rapidly in the last

decade. All areas within the general category - from biologi-

cal effects to heat transfer developments - have been the

subject of an increasing number of technical reports, journal

articles, and trade magazine articles.

The two fundamental reasons for the rapid growth of

this literature are the imposition of environmentally-motivat-

ed governmental regulations on the traditional "once-through"

cooling system and the increasing unavailability of adequate

sources of "once-through" cooling water at otherwise attrac-

tive central power station sites.

However, there is as yet no definitive source of informa-

tion from which one can independently construct reliable

thermal behavior and economic models of waste heat dissipa-

tion systems. The few studies which have addressed the gener-

al problem of developing the independent capability of evaluat-

ing the thermal performance of alternative waste heat dissi-

pation systems are either out-of-date [D5] or lacking in the
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details [H4][Sl] and thus can not be directly applied to

the present task. Thus, considerable effort was required

to review the available information and compile it into a

useful tool for evaluating the costs/benefits of various

alternative waste heat dissipation schemes.

The available literature concerning the mathematical

modeling of the economics and thermal behavior of waste

heat systems has been authored primarily by 1) the vendors

of waste heat dissipation equipment, 2) the electric utility

industry, and 3) various research institutes and universi-

ties. In view of the present task of developing accurate

mathematical models of conventional waste heat rejection

devices some general comments can be made about the litera-

ture with regard to its authorship.

Although there has been a tremendous increase in the

waste heat dissipation equipment vendor sector in both size

and diversity, the publications of these vendors are gener-

ally qualitative in nature. With a few notable exceptions,

the literature published does not deal quantitatively with

thermal behavior analysis, but, rather, describes qualita-

tively the particular vendors present capabilities and high-

lights the economic advantages of the particular vendors

devices. Little of this information is of value to those

interested in developing an independent analysis capability.
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The dearth of substantial information published by equip-

ment vendors is, of course, understandable since their

proprietary interests are not well served by the free-flow

of their costly research and development results.

The literature on this topic authored by the electric

utility industry has come from the electric utilities them-

selves as well as their consultants - mainly the large

architectural engineering firms. As is the case above,

little substantive information has been published with re-

gard to the mathematical modeling of the thermal behavior of

various heat rejection systems by this sector. However,

valuable government-sponsored information has been reported

by architectural engineering forms. Many trade journal

articles which review the waste heat dissipation solutions

applied to specific sites have been authored by utility sys-

tem engineers, but these findings are usually of little

value to the present task.

Much useful information concerning the mathematical

modeling of the thermal performance of heat rejection sys-

tems has been authored by various research institutes and

universities under the sponsorship of federal and. state

agencies and electric utilities. In applying some of this

information, however, difficulty is encountered in attemp-

ting to relate the published results to the actual thermal
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performance of modern, well-designed waste heat dissipation

systems.

2.2 Mechanical Draft Evaporative Cooling Towers

2,2.1 Literature Review

Croley et al. [C8] have recently addressed the problem

of developing an accurate thermal and economic model of

conventional cross-flow mechanical draft evaporative cooling

towers. Their review of the literature led then to the use

of a thermal analysis model based on a simple straightfor-

ward finite-difference solution of the well-known Merkel [M3]

evaporative heat transfer differential equation.

The Merkel formulation of evaporative heat transfer

combines the mass transfer (evaporation) and the sensible

heat transfer coefficient into a single coefficient. The

approximate net energy transfer is then a product of the

coefficient and the enthalpy potential difference between

the water and the air streams. The standard "Merkel" equa-

tion is as follows:

T
KaV dT
L - J (h"-h)

T2

where K = overall transfer coefficient, lb/(hr)(ft2 of

interface)(lb of water/lb of dry air)

a = interfacial contact area (ft 2 /ft 3 of tower fill)
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V = planar volume rt3/ft2 of plan area,)

L = water flow rate (lb/hr-ft2 of plan area),

T 1= inlet water temperature,

T2 = exit water temperature,

dt = water temperature differential,

h" = enthalpy of saturated air at the water

temperature, and

h = enthalpy of the main air stream(BTU/lb of

dry air).

Derivation of this relationship may be found in several

references [K21M51. Physically the quantity KaV/L in the

above equation represents an effective heat transfer ability

or "number of transfer units" for a particular cooling tower.

This coefficient is dependent on the relative amounts of

water and air flow in the tower and must be determined experi-

mentally.

Croley et al. [C8] have applied this differential equa-

tion in finite-difference form to solve the two-dimensional

heat exchange problem of the widely-utilized induced draft

crossflow evaporative cooling tower for known inlet air and

water boundary conditions. The finite-difference approxima-

tion to the Merkel equation consists basically of the divi-

sion of the energy transfer volume into a number of equal

sized blocks over which the energy transfer potential
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(enthalpy) is averaged.

The conclusions of Croley et al. concerning the utility

of the basic Merkel formulation for the predicting of the

energy transfer in a cooling tower has since been substanti-

ated by the recommendation of Hallet [H1]. Hallet, repre-

senting a leading cooling tower vendor, has suggested that

the best approach (for a non-vendor) to the problem of

evaluating the thermal performance of wet cross-flow towers

is a finite-difference solution of the basic Merkel equation.

This author also points out that, although many improvements

in the theory of simultaneous heat and mass transfer at

water/air interfaces have been suggested, the basic Merkel

formulation is the only widely accepted and proven theory.

The analysis technique suggested by Hallet is essentially

identical to that of Croley et al. except that Hallet recom-

mends the inclusion of a temperature dependence in the expres-

sion for the tower fill energy transfer coefficient:

Ka = f(T 1 ) (2.2)

where T is the tower inlet water temperature. It is interes-

ting to note that no physical justification is given by

Hallet for this "temperature effect". Consideration of

recent works which address the errors inherent to the Merkel

equation suggest that this "temperature effect" fixup is



32

necessary because of errors in the Merkel approximate formu-

lation for evaporative heat transfer.

The investigations of Nahavandi [N1] and Yadigaroglu

[Yl] have been concerned with an evaluation of the errors in-

herent to Merkel equation. The results of Yadigaroglu are

based on a comparison of the predictions of the Merkel

theory and a more exact and complete theory which treats the

mass and sensible heat processes separately. This investi-

gator found that the effect of the various approximations of

the Merkel theory tends to be small since the different approxi-

mations of the Merkel theory result in partially cancelling

positive and negative errors. The conclusion is that, given

the other errors associated with cooling tower performance

predictions (uniform air and water flow rates, for example)

and performance verifications (experimental uncertainties),

the added complexity of performing the more exact energy

transfer analysis is not justified. Nevertheless, it is of

interest to note that Yadigaroglu found that the net positive

error in predicting the cooling range increased with increas-

ing air inlet temperature and humidity. This error could be

corrected by arbitrarily decreasing the value of KaV/L by

the appropriate amount as the water inlet temperature increas-

ed. Indeed, this is the same, but unjustified, approach

recommended by Hallet. Examining the magnitude of the over-
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prediction resulting from the use of Merkel theory ( on the

order of 5%), it is found that the Merkel theory error is

consistent with the suggested "temperature effect" correc-

tion of KaV/L (about 5% per 10 OF rise in inlet water temp-

erature for inlet water temperatures in excess of 90 OF).

2.2.2 Selection of a Model

The mathematical model to be used in the prediction of

the thermal performance of mechanical draft evaporative

cooling towers is the finite-difference approximation of the

Merkel equation. The finite-difference approximation to the

Merkel equation can be stated as [C8]

KaV h -hi + h-h 1
G0eh N 2

where

(2.3)

h and h = saturated air enthalpies at the inlet

and outlet of an incremental element,

h and h0 = saturated air enthalpies at the temp-

erature of the water entering and

leaving the incremental element,

G = air flow rate per incremental element,

N = square root of the number of incremen-

tal elements, and

KaV = transfer coefficient.
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The application of this equation to the cross-flow prob-

lem of a conventional induced draft cross-flow cooling tower

is shown in Fig. 2.1.

In addition to the above equation, the energy balance

equation

G(h-h 1 ) = c L(t -t ) = L(h -h) (2.4)
0 i 0 10

is needed to completely describe the temperature history of

the air and water as it passes through the tower fill. In

the above equation:

L = water loading per incremental element,

ti and to = inlet and outlet water temperatures for an

incremental element, and

cp = specific heat capacity of water.

Equations 2.3 and 2.4 form a set of coupled equations

with unknown variables h0 and h0 which must be solved for

iteratively. The algorithm for calculating the average out-

let water temperature and average outlet air temperature is

given in Fig. 2.2. Note that, for practical purposes, the

water and air flow rates are fixed by the tower design and

to a good approximation can be assumed to be uniform and

constant throughout the tower. Note, also, that the algorithm

is for calculating the performance of a given tower design.

If we wish to find the size of the tower needed to meet a
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Fig. 2.1

Illustration of Tower Fill Finite-Difference Calculation
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specific cooling requirement, a trial and error calculation

may be performed.

The saturated air enthalpy used as the driving poten-

tial in the Merkel equation depends on both the dry bulb

temperature and the humidity of the air. However, a good

approximation to the enthalpy which depends solely on the

thermodynamic wet bulb temperature may be derived. From

Marks [M2] we have the relationship,

E = 0.24Td + W(1062.0 + 0.44Td) (2.5)

and

W* - (0.24 + 0.44W*)(Td - Twb) (2.6)

(1094 + 0.44Td - Twb)

where E = enthalpy of moist air,

Td = dry bulb temperature,

W specific humidity,

Twb = wet bulb temperature, and

W*= specific humidity for saturation at Twb.

Substituting the latter into the former we have

E = 0.24Td + W*(1062 + .44Td) -

(0.24 +0. 44W*)(Td-Twb)(l062 +0.44Td) (27)
(1094 + 0. 44Td-Twb)
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Fig. 2.2

Calculational Algorithm for Predicting the Performance
of Mechanical Draft Cross-flow Evaporative

Cooling Tower (MECDRAFT Program)

Determine inlet air and water enthalpies
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Now assuming that in the deminator we can make the approxi-

mation

32 - Twb ~ 0 (2.8)

and expressing the saturation himidity in terms of satura-

tion pressure we have

0.622P
E ~ 0.24Twb + o sa(10 6 2 .0 + o.44Twb) (2.9)

atm~ sa

where Patm = total atmospheric pressure, and

Psa = saturation pressure of water vapor at Twb.

The above assumption is a good one in this particular

circumstance since the error affects the ratio of large num-

bers. An error of 50 IF in magnitude in the denominator

would be typical with the total resultant error being about

5%. However, in all applications of the approximate enthalpy

equation the equation is ultimately used to find the differ-

ence of two enthalpies and thus the resultant error in the

difference is minimal.

2.2.3 Application of Model

To achieve the goal of obtaining an accurate thermal per-

formance model of a conventional cross-flow induced draft

evaporative cooling tower module the physical dimensions and

empirical heat transfer and air friction data for a typical
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module must be acquired. Croley et al. [C8] have modeled

the thermal behavior of such modules and reported the results.

From the published information the physical dimensions of

the tower fill are readily obtainable. They are

height = 60 feet

width = 36 feet, and

length = 32.

However, the air friction factors for this fill is not direct-

ly obtainable from the published results. Nevertheless, an

energy balance on the modeled tower based on the published

information indicates an average air flow rate of 2.4x103 lbm/

hr-ft2 . It will suffice for the purposes of this study to

assume the air flow is constant and equal to this value.

Croley et al. do not report the values of the energy transfer

coefficient used in their study since empirical proprietary

information was used in evaluating the energy transfer coeffi-

cient. However, sufficient calculational results using this

proprietary information are reported to allow a regression

of the required information.

The Cooling Tower Institute [C6] states that the depen-

dency of the energy transfer coefficient Ka on the air and

water flow rates in a tower can be well expressed by a rela-

tionship of the form
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Ka = aGa L 1-a (2.10)

where a depends on the fill configuration and 6 is, to a

good approximation, equal to 0.6. Using the following

expression

= 0.065 - (T1 - 110.0)*(0.000335) T1 >90*F

and (2.11)

a = 0.0715 Tl< 9'0 F

where T is the inlet water temperature, the performance

predictions of Croley et al. based on proprietary data can

be closely matched as shown in Fig. 2.3. This value of a

is consistent with the type of fill used in modern towers

and the values of a experimentally determined by Lowe and

Christie [L4].

2.3 Spray Systems

2.3.1 Literature Review

Spray cooling systems for the dissipation of waste heat

at large central power stations are a relatively new con-

cept [H9]. As a consequence, the development of thermal

analysis techniques for these systems is presently incom-

plete. The development of reliable mathematical prediction

models has not been achieved and has been hindered by the

complexity of the problem.
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Fig. 2.3

Comparison of Reported and Predicted Mechanical Draft

Coolinx Tower Performance
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As opposed to cooling towers, the water-air interfacial

area and relative air to water flow rates are not well

defined for spray systems. Open to the atmosphere, varia-

tions in the ambient wind result in different spray patterns,

different air flows through the sprays both in magnitude

and direction, and different interference effects between

the individual sprays. The spray canal system also presents

a channel hydraulics problem in that the behavior of the

water in the canal must be understood to insure optimum spray

system performance.

Porter et al. [P2][P3] have authored the only two present-

ly available detailed works on the thermal performance of

spray canals. The two papers represent two different approach-

es to the problem, one analytical and one numerical. Both

models, however, are based on the same limited data which

according to the authors result in optimistic predictions [Pl].

Richards of Rockford [K8] have published some limited

information concerning the application of their spray modules.

They indicate that an empirical "NTU" approach is used in

the basic heat transfer calculation. Most interesting, how-

ever, is their description of the flow requirements of the

channel in which the spray modules are utilized since this

description indicates their recognition of the importance of

the channel thermal-hydraulics in the overall performance of

the system.
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2.3.2 Selection of Model

For the purposes of survey-type analyses, the numerical

prediction of the thermal performance of spray canals as

suggested by Porter et al. [P2] is most advantageous. In

this model the heat transfer ability of each spray module

is defined by an empirical "NTU"t or number of transfer units

which is dependent on the ambient wind speed. The effects

of air interference between individual sprays is considered

through the use of an empirical air humidification coeffi-

cient. Given the ambient meterological conditions and inlet

water temperature and flow rate, the calculational procedure

is to march down the canal taking into account the cooling

effect of each spray module as it is encountered. The basic

calculational algorithm is given in Fig. 2.4.

The heat transfer equation used in the model is

C (T - T)
NTU - (h(T h(TS) (2.12)(T .) + h (T)

2 -h(Twb)

where C = specific heat capacity of liquid water,

Tn = temperature of water exiting spray nozzle,

Ts = final spray temperature,

h(T) = total heat or sigma function as defined by

Marks [M2],

Twb = local wet bulb temperature, and
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Fig. 2. 4

Computational Algorithm for Spray Canal Thermal
Performance Model (SPRANAL Program)

Determine if heat transfer calculation completed
for all sprays in pass

yes

Mix cooled water with main stream to obtain
spray inlet condition for next pass

Subtract evaporated flow from total flow

Determine if end of canal attained

yes

end

No

No

Pass=1

----- Calculate heat transfer for upwind module
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NTU = number of transfer units of an individual

module.

The total heat or sigma function used as the driving

potential for the energy transfer is defined by Marks [M2] as

* * *
= h - W h (2.13)

where h = enthalpy of moist air at the wet bulb

temperature,

W = specific humidity for saturation at the wet

bulb temperature, and
*

h = enthalpy of liquid water at the wet bulb

temperature.

However, comparison of the sigma function and the enthal-

py indicates that, for the temperature range and temperature

differences of interest the following is a good approximation;

AE(twb) ~~ Ah(Twb) (2.14)

where h is the enthalpy of saturated air at temperature Twb.

Since we are attempting to determine Ts by using Eq.(2.12)

and T5 is a term in the same equation an iterative solution

is necessary. The evaporated water loss is calculated using

the expression of Porter [P2]. It is
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= C p(Tn - TS fg (i + B) (2.15)

where a = fraction of water evaporated in each spray,

ifg = specific heat of vaporization of water, and

B = so-called Bowen ratio of sensible to evapora-

tive heat transfer.

In the application of the above equations, the Bowen

ratio can be conservatively set equal to zero, since, in

any case, the effect of water evaporation on the spray canal

thermal performance is minimal.

From the data given by Porter the relationship between

the NTU and windspeed has been deduced to be approximated by

NTU = 0.16 + 0.053*V (2.16)

where V is the windspeed in miles per hour.

In this model no direct account is made of the thermal-

hydraulic behavior of the water in the channel. However,

Porter has made some simple arguments in favor of assuming

that the channel is vertically fully-mixed between successive

passes of sprays.

2.4 Natural Draft Evaporative Cooling Towers

2.4.1 Literature Review

Conceptually, the thermal analysis of natural draft evapor-

ative cooling towers is a straightforward extension of the
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mechanical draft cooling tower analysis developed in this

chapter. However, from a practical standpoint the problem

is considerably more complex since the heat transfer char-

acteristics and the air flow in the tower are dynamically

coupled. Also, in addition to needing to know the empirical

heat transfer coefficient of the fill, one also needs to know

the empirical air friction factors for the tower structures

and the fill. Further, a more exact determination of the

psychrometric condition of the air exiting the fill is desir-

able since this condition ultimately determines the overall

performance of the tower.

In the past, attempts have been made, notably by Chilton[Cl]

to simplify the performance prediction for natural draft

evaporative cooling towers by applying an empirical relation-

ship for the overall thermal behavior. These efforts, how-

ever, were not well received and presently the suggested

approach to the thermal analysis problem is based on a detailed

evaluation of the important physical phenomena.

Keyes [K3] has outlined the necessary steps for the con-

struction of a thermal behavior model of natural draft cooling

towers. Essentially, the mathematical modeling of a natural

draft tower requires the solution of three coupled equations.

The equations are 1) an energy balance between the air and

water streams, 2) an energy transfer equation for the combined

evaporative and sensible heat transfer, and 3) an energy
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equation for the density induced air flow through the tower.

Keyes only reviews the general problem and discusses the

empirical information which is available for accomplishing

the modeling task.

Winiarski et al. [W4] have developed a computer model

of the thermal behavior of a natural draft cooling tower

based on the three equations mentioned above. The author

notes, however, that the model presented awaits final verifi-

cation based on reliable test data from actual towers.

2.4.2 Selection of Model

The model of Winiarski et al. [W4] has been chosen as the

basis for the development of a thermal behavior model of

natural draft evaporative cooling towers. The thermal ana-

lysis calculational procedure is reported in the form of a

computer program. The basic computational algorithm is given

in Fig. 2.5. The major remaining task in the model development

was, thus, the acquisition of the necessary empirical informa-

tion which would enable the computer program application. In

this regard all domestic vendors of natural draft evaporative

cooling towers were contacted and sufficient information was

obtained.

The data obtained was not typical heat transfer coeffi-

cients and air flow friction factors for a modern natural

draft tower but instead consisted of a set of typical perfor-



Fig. 2.5

Calculational Algorithm for Natural Draft
Evaporative Cooling Tower Performance

Model (NATDRAFT Program)

Input data including:

atmospheric conditions
packing characteristics
desired tower height
desired inlet water temperature
water loading

Estimate air flow rate

Calculate friction coefficient

Calculate heat transfer coefficient

Estimate outlet water temperature

Counterflow integration scheme

Is inlet water ~ desired value?

Yes l

Calculate pressure losses

Is calculated H - desired value?

Yes 4
Resulting output describes tower performance

END

49

No

I



50

mance curves and tower and fill structural dimensions. Thus,

is was required to fit the computer model to the performance

curves by a trial and error selection of appropriate heat

transfer coefficients and friction factors. The performance

data are known to be based on roughened-surface parallel-

plate-type tower fill with counter air/water flow. Rish [R1]

has reported an empirical relationship for the heat transfer

coefficient and friction factors for smooth parallel plate

packing. They are;

Cf = 0.0192(L/G)0 -5 , (2.17)

and

C C G
h = -0.25 (2.18)

2 + 71. 6 Cf($)

where .Cf = friction factor,

Cp = specific heat capacity of liquid water,

G = air flow rate lbm/ft2-hr,

L = water flow rate lbm/ft2-hr, and

h = heat transfer coefficient for evaporative

and sensible heat transfer based on enthalpy

difference potential.

It was assumed that the effect of the roughened surface of
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the parallel plates could be simply accounted for by a fric-

tion factor multiplier Fm. That is;

C = F * C (2.19)
fa m f

where Cfa is the actual friction factor. The relationship

between the heat transfer coefficient and the friction factor

was assumed to remain the same.

A trial and error approach to determining F was used

and, as Fig. 2.6 indicates, a value of Fm of 3.2 gives excel-

lent results over a representative range of operating tempera-

tures and flow rates. In the determination of F all otherm

air friction effects other than that of the fill were neglected.

All the details of the computer model will not be dis-

cussed here, but may be found in the original report. Never-

theless, some important points are worth mentioning. In this

model, water vapor saturation of the air stream is not a basic

assumption as was the case for the heat transfer model develop-

ed for the mechanical draft tower. Instead, the sensible heat

transfer is calculated in addition to the total heat transfer

due to both evaporation and sensible heat transfer. As in

the mechanical draft tower model the transfer calculation is

based on a finite-difference approximation to the Merkel

Equation, but in this case the counter-flow of the air and

water streams necessitates only a one-dimensional calculation.
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Fig. 2.6
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The calculation of both the total energy transfer and

the sensible heat transfer allows the determination of the

exact psychrometric condition (both dry bulb and humidity)

of the air stream leaving each "cell" of the finite differ-

ence integration. The assumption of water vapor saturation,

if it in fact did not exist, would result in an underesti-

mate of the fill air exhaust dry bulb temperature and hence

an underestimate of the induced draft.

To complete the thermal model of a natural draft tower

a relationship between the tower height and the tower base

diameter needed to be established for different sized towers.

This was necessary because while a mechanical draft tower

may be sized to a particular cooling duty by varying the

number of tower modules, a natural draft tower is sized by

varying the tower size. Flangan [F2] has published data

concerning the ratio of height to diameter for 16 large natur-

al draft towers which indicates an average ratio of 1.248.

2.5 Cooling Ponds

2.5.1 Literature Review

The task of mathematically modeling the thermal-hydraulic

behavior of a cooling pond is a problem which is substantially

different from the problem of modeling cooling towers. This

is because actual cooling ponds are not physically well-defined

in the sense that the important parameters which determine
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their thermal behavior can not be assigned values which are

representative of all, or even most. cooling ponds. In

fact different cooling ponds may exhibit completely differ-

ent types of thermal-hydraulic behavior each of which require

different analysis approaches and techniques.

There are two idealized cases of pond thermal-hydraulic

behavior which yield themselves to very simple analytical

treatment [L3]. These are termed the plug-flow and fully-

mixed models. In plug flow there is no mixing between the

discharge into the pond and the receiving water and the sur-

face temperature, for steady-state conditions, decreases

exponentially from the pond inlet to the pond outlet. The

fully-mixed pond represents an extremely high degree of mix-

ing of the discharge and the receiving water. Thus a uni-

form temperature over the entire pond results. In reality,

the behavior of most ponds would fall between these two

extreme cases. The plug flow pond represents the best possi-

ble heat dissipation situation since the temperature of the

discharge is kept as high as possible. Conversely, the

fully-mixed pond represents a lower bound on the heat trans-

fer performance of the pond. The "worst case" performance,

however, is a short-circuited pond. For either the plug-flow

or fully-mixed model both steady-state and transient behavior

can be readily calculated.
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Ryan [R10] reported the development of a transient

cooling pond thermal-hydraulic model which was the first

attempt to realistically mathematically model the actual

physical process occurring in a cooling pond. Watanabe [W1]

extended the model and reported criteria for its applicabi-

lity. This model is recommended for use as a design tool or

means of evaluating the performance of cooling ponds rela-

tive to alternative waste heat disposal systems. However,

since the model is not fully developed into a documented

computer program its application appears difficult. Also,

for the purposes of most surveys the computational time is

excessive.

2.5.2 Selection of a Model

The task of formulating a representative thermal-hydrau-

lic model of a cooling pond can be considered to be differ-

ent from the task of formulating a model of a cooling pond

which is to be used for design purposes. The present inter-

est is in mathematically representing the approximate thermal-

hydraulic behavior of a representative cooling pond. It is

perceived that this limited goal can be accomplished through

the use of a plug-flow, vertically-mixed pond model capable

of accounting for variable meterological conditions, variable

inlet temperatures, and variable flow rates. For a given
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cooling requirement such a model would tend to predict pond

sizes which are smaller than would be normally required.

Thus, if the model were to be used in a detailed economic

comparison of alternative waste heat disposal systems the

pond economics would be unduly favored.

The vertically-mixed, plug-flow model predicts the

transient pond behavior by following a slug of water of uni-

form temperature through the pond and calculating the aver-

age heat loss for each successive day of residence in the

pond. The heat transfer correlations used in this model are

those recommended by Ryan [R10]. The basic equation of the

net energy flux from a water surface exposed to the environ-

ment is

$n =r - 0x10 (Ts+460) +FW[(es-ea) +0.25(Ts-Ta)

(2.20)

where FW = 17*W for an unheated water surface,

FW = 22.4(AO)1"3 + 14*W,

A6 = Tsv - Tav (oF),

W = wind speed at 2 meters (MPH),

Tsv = virtual temperature of a thin vapor layer in

contact with the water surface,

= (TS + 460)/(1 - .378 es/P),

Tav = virtual air temperature,

= (Ta + 460)/(1 - .378 ea/P),
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es = saturated vapor pressure at Ts (mm Hg),

ea = saturated vapor pressure at Ta (mm Hg),

P = atmospheric pressure (mm Hg),

T = bulk water surface temperature (OF),

Ta = air dry bulb temperature (OF),

= net heat from pond surface (BTU/day-ft2)

= sn + + an = net absorbed radiative energy,

$sn = net absorbed solar radiation,

= .94($sC)( - 0.64C 2

$sC = incident solar radiation,

C = fraction of sky covered by clouds,

= net absorbed longwave radiation, andan

= 1.16x1- 13 ((460 + Ta )6(1 + 0.17C2

The computational algorithm for the plug-flow model is

given in Fig. 2.7. Note that the model is not a perfect plug-

flow model in that each plug of water entering the pond is

assumed to be mixed with the slug immediately preceeding it.

This mixing qualitatively accounts for the effect of entrance

mixing.

2.6 Dry Cooling Towers

In relation to the other waste heat dissipation systems,

the development of a reliable performance model of dry cooling

towers is simple. The amount of heat rejected by a mechanical

draft dry tower can be shown to be directly proportional to
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Fig. 2.7

Cooling Pond Model Computational Algorithm

Assign to each discharge slug an identifi-
cation number = day of discharge

initialize slugs in pond at time zero; temp-
erature, volume, fraction of volume in pond

begin calculation for day J

calculate temperature change for all slugs
in pond

add discharge volume of day J to pond volume,
set fraction of volume of slug J in pond equal

to 1

mix slugs J and J-1

determine which slugs (and fractions thereof)
remain in pond by summing up slug volumes for
day J, J-1, J-2, ... ; until pond volume is

equaled or exceeded

determine which slugs (and fractions thereof)
exhausted from pond during day J by comparing
new pond inventory (day J) and old pond

inventory (day J-1)

mix all exhausted slugs to find withdrawal
temperature for day J

end day J calculation
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the difference between the inlet water temperature and inlet

air temperature for a fixed dry tower design. With refer-

ence to Fig. 2.8

Q = UAAT mF (2.21)

where Q = heat rejection rate,

A = heat transfer surface area,

U = effective heat transfer coefficient,

F = cross-flow correction factor, and

ATlm = log mean temperature difference.

(TO-T) - (T i-T 0 )
ATlm - (T I_-T ) (2.22)

where (T -T') > (T -T')
0 1 1 o

T = water inlet temperature,

T = water outlet temperature,

T = air inlet temperature, and

T = air outlet temperature.

A heat balance on the tower gives

LCw(Ti-T0 ) = GCa(T -Tj) (2.23)

Equations (2.21), (2.22) and (2.23) may be combined to

yield
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Fig. 2.8

Dry Tower Schematic Drawing
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Q ITD(e (2.24)
e 1
GC a LCw

where ITD = Ti -T

and

x = F UA& -

Now note that, for fixed values of the parameters U,

A, Fg, G and L,

Q a ITD (2.26)

This result has been found by Rossie [R6] to be experi-

mentally verified. Further, Rossie has found that the ther-

mal performance of natural draft dry cooling towers may be

reasonably expressed by a relationship of the form

Q a ITDb (2.27)

where b is a constant for a given tower. A typical value of

b is 1.33.
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CHAPTER 3

SURVEY OF SOME MIXED-MODE WASTE HEAT

REJECTION SYSTEM OPTIONS

3.1 INTRODUCTION

The task of evaluating possible mixed-mode waste

heat dissipation options has been approached as discussed

in Chapter 1. The results of this survey are included in

three sections of this chapter. Each section discusses

a particular application of the rixed-mode concept. One

particular system - the thermal storage pond and dry cool-

ing tower system -- is shown to offer a substantial economic

benefit.

3.2 IMPROVEMENTS IN WASTE HEAT SYSTEM UTILIZATION ECONOMICS
TIPROUGH THE USE OF MIXFD-"1DE SYSTEMS

Because some waste heat rejection systems have higher

ratios of operational to capital cost and because the condi-

tions which determine the recuired amount of heat rejection

capability are variable, it is of interest to examine the

potential benefit of constructing waste heat dissipation

systems composed of two component systems. One comnonent

system would have a lower ratio of ooerating cost to capital

cost and would be used continuously. The other component

system would have a substantially higher ratio of system

operating to capital costs and would be used only as condi-
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tions required. Two such systems would be a natural draft

evaporative cooling tower and a mechanical draft evaporative

cooling tower. Based on the results of the economic studies

presented in WASH 1360 for typical optimal tower systems

for a 1000MWe nuclear power station the cost ratio for

these two types of heat rejection systems for a 40-year-

lifetime plant are;

Natural draft tower

R _ Capitalized Annual Operating Cost = 078
n Capital Cost

Mechanical Draft Tower

R = 1.98
m

To evaluate the potential benefit of combining these

two cooling tower types a hypothetical plant/combined cooling

tower system has been designed. The system is composed of

a dual unit station (100OMWe each) cooled by a series

flow combination of a 514 ft. high natural draft

evaporative cooling tower and a 44-cell mechanical draft

evaporative cooling tower as shown in Fig. 3.1.

For this system the most desirable condenser inlet

temperature is 70 0F. Higher condenser inlet temperatures

result when ambient temperatures are high. When the

temperature is low, however, the condenser inlet temperature
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FIG. 3.1

Combined Mechanical Draft Tower - Natural Draft Tower System

NATURAL
DRAFT
TOWER

PLANT
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is not allowed to fall below this value by shutting

off some of the mechanical draft tower cells and bypassing

the flow directly to the condenser intake. For the

hypothetical plant-towers system the 70 F condenser intake

temperature occurrs when the ambient dry bulb temperature

equals 50 0F and the ambient wet bulb temperature equals

47 F. This relationship of the ambient temperature and

optimal condenser intake temperature can be considered to

representative of closed-cycle evaporative cooling systems.

To determine the approximate utilization factor of the

mechanical draft towers, defined by

= Yearly average # of tower cells operating
Total # of cells

the number of cells, Ni, required at each 10 0F increment of

the dry bulb temperature from 10 to 90 F has been determined.

Using the annual temperature duration curves for ERDA's

Middletown site as shown in Fig. 3.2, f is determined by

i=90 D N

4Di Ni
i=10

i=90

Nt Z Di
i=10

(3.1)

where i = dry bulb temperature, increment of 10 F,
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N = number of cells required for plant operation
at temperature i,

D = the annual duration of temperatures above 1-5
and below 1+5, and

N = total number of mechanical draft tower cells.t

Actually, the performance of the waste heat rejection

system depends on both the dry bulb temperature and

the wet bulb temperature both of which are given in Fig. 3.2

and both of which are essentially independent variables.

Nevertheless, for the purposes of this preliminary

evaluation it is sufficient to assume a one to one corre-

spondance of the wet bulb temperature to the dry bulb temper-

ature based on equal cumulative duration. This assumption

can be construed as the assignment of an average wet bulb

temperature to each value of the dry bulb temperature.

Completion of the coupled plant-waste heat system

performance calculation for the hypothetical station

yields the results presented in Fig. 3.3. This figure

shows the number of mechanical draft tower cells which

are needed to maximize the plant power output as a function

of the ambient dry bulb temperature. Note that at all

ambient temperatures greater than 55 0F all the mechanical

draft tower cells are required and some loss of plant gener-

ating capability occurrs. The shifing of the main heat

-
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rejection load to the natural draft tower at ambient

temperatures below 500F is shown in Fig. 3 -4.

Now using the information in Figs.3.2 and 3.3 to

determine the mechanical draft tower utilization factor de-

fined earlier we find that

f = 0.92

Thus, the annual average number of tower cells in operation

is about 40 out of 44 and thus only about 10% of the maximum

mechanical draft tower opeation cost could be saved. The

total cost of the combined waste heat rejection system can

be adequately expressed as

C =C + C + C + C
t cn cm on om

where Ccn CCm = capital cost of natural draft
and mechanical draft towers,
respectively, and

C , C = capitalized annual operating cost
on om of the natural and mechanical draft

towers, respectively.

Now inputing values of these costs (based on WASH 1360 (H4))

to determine the total cost of the combined waste heat

system and comparing this cost to the calculated mechanical

draft tower operation savings it is found that the saving

resulting from the utilization of the combined waste

In. ---
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heat system is only about 3% of the total waste heat system

cost.

This cost savings is not significant and would be

easily outweighed by the economics of scale inherent to a

single-mode waste heat system. Thus, it is possible to

conclude that waste heat system utilization considerations

should not provide, in most circumstances, a basis for the

design of mixed-mode waste heat rejection systems. Although

this conclusion is based on the analysis of the particular

case of combined mechanical and natural draft evaporative

cooling towers, it is perceived that this conclusion would

be valid for combined systems composed in whole or in part

of cooling ponds (low cost ratio) or spray systems (high

cost ratio). Additionally, waste heat system utilization

considerations do not appear to offer significant savings

for the case of combined natural and mechanical draft dry

tower systems as indicated by Fig. 3.5. Figure 3.5 illus-

trates the extent to which the mechanical draft tower

component system for a combined natural draft dry tower

and mechanical draft dry tower system must be utilized to

maximize the plant power generation. The hypothetical dry

cooling system is composed of one natural draft dry cooling

tower capable of rejecting one-half of the total waste heat

load with an initial temperature difference (ITD) of 60 0F
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and a multi-cell mechanical draft dry cooling tower capable

of rejecting one half of the waste heat load with an

initial temperature difference of 60 0F.

In considering the above conclusions, it should be

understood that the general concept of utilizing combined

waste heat rejections systems is not ruled out. We have

only illustrated that the potential savings resulting

from the application of combined systems to achieve waste

heat rejection "load-following' are minimal. Also, anothing

in this work indicates that mechanical draft assisted natural

draft cooling towers are an unattractive concept. However,

the results of this work do indicate that the savings obtained

through the shutting-off of the assisting fans in this

type of tower during favorable heat rejection conditions

would in most cases be small in relation to the total costs

of the waste heat system. The summary capital and operation

economics for fan assisted natural draft towers reported in

WASH 1360 substantiate this conclusion.

3.3 The Design of Mixed-Mode Systems for Sites With a
Limited Cooling Pond Resource

3.3.1 Introduction

Because of their large thermal inertia and large

land requirements, cooling ponds may represent an attractive
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but limited heat rejection option at many central power

station sites. Utilization of the avilable cooling

pond resource would therefor necessitate the combination

of the cooling pond with an alternative heat rejection

device in order to meet the total heat rejection require-

ments of the station. Fan (Fl) has examined such combinations

but the findings of this study are inconclusive.

In designing such a combined system there are several

system configurations options which the waste heat rejection

system designer might consider. These design options would

include:

1) a series combination with the pond receiving the

condenser discharge and feeding and alternative

system,

2) a series combination in which the alternative system

discharges into the pond and the pond feeds directly

to the condenser,

3) a parallel combination in which the discharge

from the condenser is split between the pond and

the alternative system

The objective of this work is the evaluation of the compara-

tive economics of these system configuration options.

In attempting to perform this evaluation it readily

becomes apparent that there is considerable difficulty in
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formulating both the thermal performance and economic models

of cooling ponds. Simply stated, this difficulty arises

from the strong dependency of the pond thermal-hydraulic

behavior and cost on the physical and economic characteristics

of the site. This difficulty may be overcome, however, by

structuring the evaluation such that the economics of the

pond itself are divorced from the resultant conclusions and

by modeling the thermal-hydraulic behavior of the pond

with a representative model.

The pond economics are separated from the evaluation by

stating the problem in the following manner: given a pond of

X acres at no cost which alone will not provide sufficient

yearround cooling for a hypothetical power station, what is

the best methoi of incorporating the pond in a combined waste

heat system such that the total cost of the waste heat system

is minimal. The cost of the system is the sum of the

capital cost of the alternative system and the operational

cost (including loss of capability penalties) of the entire

waste heat rejection system. For the present evaluation the

alternative system is taken to be a mutiple-cell, induced-

mechanical-draft, cross-flow, evaporative cooling tower. The

operational costs of the combined waste heat systems are

based on the computer simulation of the plant-tower-pond

system performance for one year periods.
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3.3.2 The Model

3.3.2.1 Plant

Since the interaction of the waste heat system with the

power plant is important in determining the total economics

of the waste heat rejection system, a representative plant

model is incorporated into the simulation model. The plant

modeled is a dual unit nominal 2000 MWe nuclear power station

with a conventional nuclear steam turbine and surface con-

denser. The two units are assumed to operate at a combined

full thermal power of 6000Mwt continuously.

3.3.2.2 Cooling Pond

The cooling pond thermal-hydraulic model employed in the

evaluation is the simple vertically-fully-mixed, plug-flow

model. Although this model is not accurate in representing

the behavior of actual cooling ponds, this model should be

adequate since our basic interest in this work is not the

sizing of a cooling pond. Rather, our interest is in repre-

senting the special heat transfer and thermal capacitive

characteristics of cooling ponds such that a survey of the

economic implications of the transient behavior of various

plant-cooling pond-cooling tower systems is possible.
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The details of the cooling pond model are found in Sec. 2.5.

3.3.2.3 Cooling Tower

The cooling tower performance model used in the eval-

uation is identical to that discussed in Sec. 2.2. The total

tower is composed of multiple cells of fixed dimensions.

The number of cells comprising the total tower is varied

according to the cooling demand of the system.

3.3.2.4 The Site

The steady-state heat transfer performance of combined

systems is independent of the site. However, in order to

determine optimal system configurations based on economic

evaluations it is necessary to perform year-long simulations

of the combined system behavior. The daily calculations of the

plant response to variable meteorology are necessary to

evaluate operational costs and penalties for the different

combined system configurations. The meteorological data input

included daily average dry bulb temperature and relative

humidity and monthly average windspeed, cloud cover, and

insolation. As previously stated, no cooling pond capital

costs are introduced into the system optimization and, thus,

no information concerning the physical characteristics of the



78

site as they relate to the capital cost of the pond need

be specified. The meteorology input to the model is that for

Boston, Mass., 1974.

3.3.2.5 Combined System Options

The three basic combined system configuration options

are shown in Fig. 3.6. Fig. 3.6a shows a "towers-first"

series flow system. In this system the full circulating waster

flow is routed first through the tower and then through the

pond. During periods of favorable heat rejection conditions

part of the condenser discharge can be directly routed to

the pond and some of the towers removed from service. Fig.

3.6b, the "pond-first" system, is the reverse of the above.

Again during periods of favorable heat rejection conditions,

the tower can be partially bypassed with the pond discharging

a fraction of the flow directly to the condenser. Fig. 3.6c

is a simple "parallel" flow configuration. In this system cold

weather tower operation expenses can be saved by increasing

the flow to the pond and removing from service the appropriate

number of cooling tower cells.

For all the above configurations the water loading of

the tower cells (lbm / ft -hr) is constant. Reduction of the

total flow to the entire tower is achieved by reducing the
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Fig. 3.6 Combined Coolinst Pond - Tower System Configurations

"Towers-First"
System

"Pond - First"
System
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number of towers in operation.

Since the optimal design evaluation performed in this

work is based on a given pond size and a given tower cell

design, the design variables for the series flow combinations

are simply the circulating water flow rate and the number of

tower cells. For the parallel case an additional design

variable must be considered which determines the flow split

between the pond and the tower. Including the tower cell

water loading along with the number of tower cells and the

circulating water flow rate as design variables satisfies this

requirement.

3.3.2.6 Combined System Economics

The optimal combined waste heat system is found by com-

paring the costs of the least-cost "towers-first" system, the

least-cost "pond-first" system , and the least-cost "parallel"

system. The least-cost for each of the different configurations

is found by varying the design variables over the range of

feasible values and calculating the total cost of the waste

heat rejection system for each set of design variables. The

cost of waste heat system for each set of values of the

design variables is based on a year-long operation simulation

(one day time increments) and is given by the following equation;
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C = C + C / aftrt c a

where

Ct = Total evaluated cost,

C = capital cost,c

Ca annual operating cost and
penalties, and

afcr = annual fixed charge rate.

The term C / afcr is an effective capitalization of the annuala

costs. The annual fixed charge rate is defined as the per-

centage of a capital investment which must be paid out each

year for interest on borrowed capital, retirement of capital,

taxes, etc. The total evaluated cost C is an approximate
t

measure of the lifetime cost of the system and is useful for

system comparisons. A more detailed present worth analysis

would be of little additional benefit although it would be

more precisely accurate.

The capital cost of the waste heat system is composed of

the cost of the tower cells, the cost of the circulating

water pumps, the tower booster pumps, and the cost of replace-

ment generating capacity. The capital cost of the condenser,

the circulating water piping, and all other waste heat system

structures is assumed to be constant for all system designs

and thus is not directly considered in the comparative analysis.
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The loss of capability capital cost is determined by the annual

minimum average power output for a one day period.

The annual operating costs include costs for operating

the main circulating water pumps, the tower booster pumps,

and the tower fans in addition to maintenance costs and energy

replacement costs due to loss of generating capability. The

main circulating water pumping cost and the booster pumping

cost are evaluated at 30 and 50 feet of head, respectively.

In all cases, fan and booster pumping power credits are taken

for the decreased utilization of the tower during cold weather.

The maintenance cost of the system is taken to be directly

proportional to the number of tower cells. The energy replace-

ment cost is evaluated by determining the difference between

the theoretical maximum annual station electricity generation

and the actual annual generation of electricity. The difference

is multiplied by a fixed replacement generation cost per

kilowatt-hour to yield the annual cost.

The unit costs used to calculate each of the above costs

are mainly based on the results published in WASH 1360 (H4)

and are given in Table 3.1.

3.3.2.7 Optimization Technique

Since the series combination optimization involved only

two design variables the complexities associated with the use
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of a guided search of the feasible design space to find the

global minimum of a nonlinear,numerically evaluated objective

function were avoided in favor of simply constructing a two-

dimensional matrix of discrete values of the design variables

(circulating water flow rate and the number of tower cells)

TABLE 3.1

UNIT COST SUMMARY
FOR COOLING POND-TOWER SYSTEM

1.0 Capital Costs

a) Tower cell

b) Pumps

c) Peaking Capacity

2.0 Operating Costs

a) Energy replacement

b) Maintenance

Annual Fixed Charge rate

= $162,000

= $125/hp

= $200/Kw

= 8.5 mills/Kwh

= $39,000/cell-yr

= 15%

and calculating the previously defined total cost for each

set of values. The discrete values of the variables are taken

to be regular increments over a limited range. Past experience
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with the design of waste heat rejection systems allows the

design variables to be restricted to a limited range.

The three variable problem of the "parallel" combination

is solved by simply performing the 2-dimensional calculation

as indicated above and then determing the effect of the sel-

ection of different values of the tower water loading.

3.3.3 Results of Combined System Evaluation

The principal results of the optimization study are

shown in Fig. 3.7. The meaning of the labels "tower-first",

"pond-first", and "parallel" have been previously defined.

As indicated, the results are based on the use of a 450

acre pond. However, this number is of no real physical

significance since an idealized pond thermal-hydraulic behavior

(plug-flow) has been assumed. Of importance, nevertheless,

is the fact that the pond is representative of a cooling

pond which is capable of meeting about 1/2 of the total heat

rejection requirements of the station. For clarity, Fig. 3.7

shows only the total cost as a function of the number of tower

cells. The circulating water flow rates indicated are those

which result in the least-cost for each of the particular

configuration options. The values of the combined system

design variables of ;
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Configuration = "parallel",

No. of Tower cells = 50,

Circulating water flow rate = 800,000,000 lbm /hr,

and water loading = 5200 lbm /ft -hr

result, to a good approximation, in the optimal combined

waste heat system. The total evaluated cost for the system

is $26,500,000.

The "parallel" system configuration is by far the best

design choice. The difference between the least-cost

"pond-first" system and the "parallel" system is about

$4,500,000 or about 17% of the total system cost. The greater

cost of both the series flow options is most readily attributed

to the increased cost of operating the tower booster pumps

and the somewhat reduced heat transfer performance of the

combined system as shown in Fig. 3.8.

Since the above conclusion concerning the economic

superiority of the "parallel" system configuration has resulted

from an examination of the specific case of a pond-tower

combination in which each of the devices rejects approximately

1/2 of the total heat load it is of interest to investigate

the sensitivity of this conclusion to this assumption. Figure

3.9 summarizes the results of this investigation. It is clear

that for combined systems in which the pond is the predominate
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heat rejection device the use of a series configuration

is highly undesirable since extremely high tower water loadings

result and hence high booster pumping power per unit heat

rejected in the tower. For combinations in which the tower

is the predominate heat rejection device the cost difference

between parallel and series combinations diminishes since

in either case the loading of the tower is approximately the

same.

3.3. 4 Conclusions

Although the economic evaluation of this study is based

on the meteorology for a specific site, the result that the

"parallel" combined system is the optimal configuration can

be taken as a general conclusion. The generalization is poss-

ible since the steady-state heat transfer of series flow sys-

tems has been found typically to be slightly inferior to

that of parallel flow systems. Certainly, for a series system

to be economically advantageous the overall heat transfer

performance of the series combinations would have to be sub-

stantially superior to that of the parallel system in order

to justify the considerable expense of pumping the full

circulating water flow through the cooling tower.

3.4 Cooling Tower-Pond Systems with Variable Operational
States
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3.4.1 Introduction

The loss of capability of tower cooled central power

stations during high ambient temperatures is a significant

problem since, in many cases, the periods of peak utility

system electrical demand and high ambient temperatures are

coincidental (HlO)(Tl) . This loss of capability results

from the inability of the towers to recool sufficiently

the condenser discharge water.

In order to improve this situation, it is proposed that

a small cooling pond be used as a capacitive heat sink with

the towers during the peak electrical demand periods of the

day (G3). The specific type and function of the pond would

depend on its particular application. Four different types

of tower-capacitive pond systems have been evaluated. They

are:

1) The evaporative cooling tower and supplemental
cooling pond system,

2) The salt-water evaporative cooling tower and
supplemental cooling and makeup storage pond
system,

3) The evaporative cooling tower and thermal storage
pond system, and

4) The dry cooling tower and thermal storage pond
system.
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3.4.2 The Evaporative Cooling Tower/Supplemental Cooling
Pond System

3.4.2.1 The System

The operation of the evaporative cooling tower/supplemental

cooling pond system is best explained by examining Fig.3.10.

During the greater part of the day when the utility system

demand is significantly below the daily peak electrical demand

the cooling tower would provide the sole source of condenser

cooling water (valves A open B and C closed). However, when the

system electrical demand becomes high the tower would dis-

charge to the pond and the condenser cooling water would

be withdrawn from the pond (valves A closed, B and C open).

Since the pond would be utilized for only a relatively

short period of the day (less than 12 hours) and since the

great portion of the heat rejection would still take place

through the towers, the pond should provide a relatively

constant heat sink temperature with respect to variations

in the ambient wet bulb temperature. Although the heat discharge

to the pond is intermittent, the heat transfer from the pond

would be continuous.

A variation of the above system would consist of having

the condenser discharge directly to the pond during periods

of high ambient temperature. The condenser cooling water during

the coincidental periods of high ambient temperature and
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Fig. 3.10 Evaporative Coolinr Tower/Supplemental Cooling
Pond System
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high system electrical demand would be gotten by discharging

from the pond, via the cooling tower, to the condenser intake.

The advantage of this system would be that, since the pond

is typically hotter than in the previously discussed case,

heat transfer from the pond would be greater. However, the

heat rejection from the towers would be decreased during the

combined system operation since the inlet temperature to the

towers would be low. Also, there is the disadvantage of having

the condenser temperature directly coupled to the ambient

wet bulb temperature.

3.4.2.2 Component System Models

In order to make a preliminary determination of the

potential benefits of the proposed system a computer model

has been constructed which simulates the day to day operation

of the proposed system. The system modeled is composed of a

3000 MWe nuclear power station with a conventional nuclear

turbine, a cross-flow induced-mechanical-draft evaporative

cooling tower, and a fully-mixed supplemental cooling pond.

The fully-mixed pond model is chosen as the pond thermal-

hydraulic model since it represents a lower bound on the

performance of a well-designed cooling pond.

In each of the evaluations of the concept for the diff-

erent geographical locations, the cooling tower model is repre-

sentative of a conventionally optimally-sized cooling tower.
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3.4.2.3 Description of Case Studies

The benefits of the proposed supplemental cooling

pond have been evaluated for four different geographical loc-

ations-- Boston, Mass; Winslow, Arizona; Atlanta, Georgia;

Minneapolis, Minn. The meteorolgy for each of these sites

is for the year 1974 and was obtained from the National

Climatic Records Center. A description of the cooling tower

systems for each of these sites is given in Table 3.2.

The use of both a "hot" and "cold" pond was evaluated.

A "hot" pond system is one in which during the period of pond

operation the condenser discharges directly to the pond and

the pond discharges through the towers to the condenser inlet.

The "cold" pond system is one in which during the period of

pond operation the tower discharges to the pond and the pond

discharges directly to the condenser inlet. The benefits

of the supplemental cooling system were evaluated in terms

of average daily and summer capability savings for both the

"hot" and "cold" systems, for all four sites, and for supp-

lemental pond sizes of 20,50, and 80 acres (all 20 feet deep).

The periods of operation of the supplemtntal pond were taken to

be either 3 hours (3 PM to 6 PM) or 6 hours (noon to 6 PM).

The heat transfer performance of the towers was evaluated

at the average wet bulb temperature for the supplemental
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TABLE 3.2

Description of Cooling Tower Systems

Location "Design"
Bulb

Boston, Mass.

Winslow, Ariz.

Atlanta, Geo.

Minneapolis,
Minn.

Wet Number of Tower
Cells

730 F 44

63

75

74

39

46

45

Circulating
Water Flow
Rate

1157 ft3/sec

1023

1206

1179

1 Cell = Fill volume of 32? by 36'

by 60',Station Power at "Design wet

bulb = 1027 MWe, Maximum Station Power =

1052 MWe
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3.4.2.4 Presentation and Discussion of Results

The summer average power savings during the periods

of operation of the combined pond-tower system as a function

of the supplemental pond size is shown in Figure 3.11 for the

four different sites. In examining the figure, it is inter-

esting to note that a pond size as small as 20 acres results

in average savings of almost 1% of the total plant capability.

Also, note that the effect of the different meteorologies

at the different sites on the resultant pond benefit is not

large.

Because of the summer peaking problem experienced by

many utilities the information in Figure 3.12 may be a more

significant indicator of the supplemental pond benefit. With

ponds which are small in comparison to typical 1000 acre

nuclear plant sites savings of nearly 2% of the plant power

output on the hottest summer days are indicated for some sites.

Tables 3.3 and 3.4 present the results of the investi-

gation of the comparative benefits for different supplemental

pond utilization schemes. Recalling the definition of the

"hot" and "cold" supplemental ponds presented earlier, these

results show that , in general, some additional summer

average power savings may be gained by utilizing a "hot"

pond instead of a "cold" pond. With one exception, the
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TABLE 3.3

Effect of Alternative Supplemental Cooling Pond

Utilization Schemes on Average Summer Power Savings

20 Acres

Cold Hot

80 Acres

Cold

Boston

3 hour

6 hour

8.0 MWe

5.6

8.6

5.9

12.5

10.3

Winslow

3 hour

6 hour

Atlanta

3 hour

6 hour

9.0

6.1

7.7

5.0

11.0

7.9

8.8

6.0

12.8

11.1

9.6

Minneapolis

3 hour

6 hour

Hot

13.0

10.9

15.6

13.0

12.5

10.6

7.7

5.3

8.3

5.7

12.0

9.9

12.4

10.5
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TABLE 3.14

Effect of Alternative Supplemental Cooling Pond

on "Worst-5-Day" Average Power Savings

20 Acres

Hot

80 Acres

CoJd

3 hour

6 hour

Winslow

3 hour

6 hour

Atlanta

3 hour

6 hour

Minneacolis

3 hour

6 hour

14.2 MWe

11.0

10.0

6.1

10.8

6.8

13.0

8.9

Cold

Boston

Hot

14.0

9.8

12.4

8.0

10.7

6.8

12.5

8.7

19.8

17.3

14.6

12.9

15.4

12.4

17.95

16.0

16.2

16.9

12.8

16.9
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"worst-5-days" capability savings appears to be comparable

for the two pond utilization schemes.

Noting the comparative benefits of the 3 hour pond

versus the 6 hour pond it is generally indicated that the

longer utilization period results in a lower capability

savings (MWe), but a larger total electrical energy produc-

tion savings (MWhrs).

It is difficult at this point to determine a general

cost-benefit of implementing this supplemental cooling system.

Indeed, an accurate cost-benefit analysis can only be achieved

through a total cooling system design optimization. The cost

of constructing the supplemental pond is highly site-dependent

and thus any determination of the cost/benefit ratio would be

site-dependent. Nonetheless, some comments concerning the

costs of a supplemental cooling pond are worthwile.

First, since the size of the proposed pond is small in

comparison to typical nuclear power station sites the cost of

the land for the pond may not be a relevant consideration.

Second, no extra pumps or pumping power would be required

if the pond is at the elevation of the tower discharge.

Third, credit may be taken for symbiotic use of the suppleme-

mental cooling pond with regard to blowdown control, emergency

cooling, and makeup storage.
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Although a complete cost-benefit analysis is not being

attempted at this point, it is of interest to examine the cost

of the obvious alternative to the supplemental cooling pond.

Essentially, we are interested in determining the capital

cost of the additional mechanical draft tower cells which would

be needed to obtain the same performance achieved through the

use of a supplemental pond. This can be simply accomplished

by determining the number of extra cells needed for a towers-

only cooled plant to have an annual minimum power equal to

that of a typical combined cooling system cooled plant. For

the 50 acre-3 hour supplemental pond in Boston, Mass. the min-

imim plant capacity is 1042 MWe. For the towers-only cooling

system consisting of 44 mechanical draft tower cells the

minimum power is 1025 MWe. To raise this minimal power

level to 1042 MWe the addition of approximately 13 tower cells

would be required. Thus, the increase in the capital cost

of the towers would be approximately 30%.

3.4.3 The Salt-Water Evaporative Cooling Tower/
Supplemental Cooling and Makeup Storage Pond
System

3.4.3.1 Introduction

The use of cooling towers has been considered for several

coastal-sited central power stations of the 1000 Mwe class.
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The application of conventionally optimal evaporative cooling

towers at such sites would result in a loss of generating

capability of about 30MWe during periods of high ambient

temperature. During such periods the tower discharge water

(condenser intake) would typically be about 90 0F. This is far

in excess of the local sea water temperature which for northern

coastal sites may average about 60 0F during the summer months.

Thus, it would be highly desirable to make use of this cooling

potential during the peak electrical demand periods. Obviously,

one cannot simply advocate a conventional "once-through"

type of supplemental cooling since the required use of the

towers is predicated on the environmental undesirability of

"once-through" cooling. However, if one considers the amount

of makeup water which will be required to operate the saltwater

towers (R3) and the amount of sea water needed to dilute

the tower blowdown it is realized that significant cooling

could be achieved through the proper application of this resource.

Essentially, the goal of this system is to utilize the

water resource required for makeup and blowdown dilution in

such a fashion that during peak electrical demand periods

plant performance typical of that of "once-through" cooling could

be attained while, on the other hand, the hydrothermal impact

be on the order of that associated with cooling towers.
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3.4.3.2 Description of Proposed System

To achieve the desired supplemental cooling it is

proposed that the makeup water and blowdown dilution water

be withdrawn steadily from the ocean and stored in a

small pond. The stored water would then be used for con-

denser cooling water during peak electrical demand periods.

The details of this concept are shown in Figure 3.13

and can be best explained by illustrating its application

to a typical ocean sited 1000 MWe station.

During periods of non-peak electrical demand the

cooling towers would operate in the conventional manner

with valves B and C closed. However, makeup water Mm would

come from the pond as would the dilution flow Md for the

blowdown flow M Note that for a typical 1000 MWe

station saltwater cooling tower operating at two cycles

of concentration (about 70,000 ppm)

Me = evaporation rate ~ 20 ft3/sec,

Mb = 20 ft 3 /sec , and

M m= 40 ft3/sec.

Now if we assume a blowdown dilution flow of 2 to 1 then

Md = 40 ft 3 /sec , and
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Mt = 80 ft3 /sec.

At this point it is important to note that Mt the total

rate at which water is withdrawn from the ocean, is the

same as if the dilution flow was obtained directly from

the ocean.

Now assume for the moment that the temperature of

the pond is higher than the ambient ocean temperature as

a result of having received the tower discharge during

some previous time period. Since the temperature of Mt

is less than the pond temperature the pond will be

gradually cooling towards the ocean temperature. During

this operation stage and all others the pond volume is

constant since

M = M + M .
t m d

The temperature of Mm the makeup water flow, will be

slightly higher than if it were obtained directly from

the ocean. However, the significance of this temperature

increase is small since the makeup flow is only about 4%

of the total circulating water flow rate. The net effect

would be less than a one degree F change in the condensing

temperature.
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The above mode of operation of the combined plant-

tower supplemental pond will be termed the "cooldown"

mode of operation and would continuous except for

periods of peak electrical demand. If the pond were

required to contain 3 hours worth of condenser cooling

water the necessary pond volume would be

Vp = Mc * 3hr

Vp = (1100 ft 3/sec) (3hr) (3600)

= 272 acre-ft '

Thus for At = 80 ft 3 /sec the ratio for the daily flushing

volume to the pond volume about 0.5. For a smaller pond

which would supply only the condenser cooling water

(the other coming directly from the towers) the same

ratio would be approximately unity.

The second mode of operation will be termed the "heatup"

mode. This "heatup" mode would continue for the period of

utility system peak electrical demand, say from 3 to 6PM.

The operational scheme would consist of closing valve A

and opening valves B and C. The tower discharge would be

directly routed to the pond and the condenser cooling

water would be supplied by the pond. Variations of this
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operation scheme would include the partial opening and

closing of the valves such that the condenser inlet water

was supplied in part by the pond and in part by the tower

discharge.

During the "heatup" mode of operation the temperature

of the water entering the condenser would be considerably

lower than if the tower discharged directly to the

condenser. Once the supplemental cooling capacity of the

pond had been exausted or the peak electrical demand period

had passed the system would then revert to the "cooldown"

mode of operation.

3.4.3.3 Description of Evaluation Model

A preliminary quantitative evaluation of the combined

system concept has been performed in order to reveal the

potential benefits of implementing such a system. The basis

of the evaluation is the simulation of the operation of a

representative system for the months of June, July and August.

The representative system is a nominal 100OMWe nuclear power

station cooled with a conventionally optimal 44 cell mechan-

ical draft tower. The characteristics of the site (meteorology

and ocean temperature) are typical of those of coastal

Massachusetts.

The mathematical models of the plant and the wet tower
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are identical to those described in Sec. 3.3.2. However,

suLstantial difficulty is encountered when attempting to

formulate a mathematical model of a storage pond.

Nevertheless, the following assumption allows for an

adequate appraisal of the concept:

complete mixing of M at all times and plug
flow of the tower discharge into the pond
during the "heatup" mode of operation.

3.4.3.4 Results of Evaluation

The benefits of several different makeup storage

schemes have been calculated. The system design variables

which which essentially determine the effect of the pond are

the pond size, the dilution flow rate Nd, and the pond utili-

zation rate. The pond utilization rate is defined here as

the fraction of the condenser cooling water supplied by the

pond during the "heatup" mode of operation.

A complete description of the system modeled is

given in Table 3.5 and the results of the simulation studies

for three different cases are shown in Table 3.6. An

explanation of the various column headings in Table 3.6

follows;

pond size - the size of the pond in acres; all ponds
are twenty feet deep,
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total withdrawal flow- the rate at which water is
withdrawn from the ocean and mixed with the
pond inventory,

dilution flow- rate at which water is withdrawn from
the pond to dilute the tower blowdown,

average power difference- the average of the difference
between the plant power output of a towers only
system and the combined system during the "heatup"
mode of operation for the entire summer,

temperature excess

with pond - average difference between the diluted
blowdown temperature and sea temperature
for the entire summer- dilution flow obtained
from pond,

without pond- average difference between the
diluted blowdown temperature and the sea
temperature for the entire summer-dilution
flow obtained directly from ocean,

power difference- ten worst days- same as average power
difference except evaluated for 10 hottest
(wet bulb) days of the summer only,

pond utilization scheme - "1/2 flow" indicates that the
pond supplies only 1/2 of the condenser cooling
water during the heatup mode, the rest comes
from the tower: "fullflow" indicates that the pond
supplies the total condenser cooling water
requirements during the "heatup" mode,

minimum power

with pond - minimum power of plant during the peak
demand period with combined cooling system
for the entire summer (peak demand period =
"heatup" period and,

without pond - minimum power of plant during the
peak demand period for towers-only cooling
system.

In addition to the thermal performance calculations
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TABLE 3.5

Description of Plant-Cooling Tower-Site

for Saltwater Evaporative Cooling Tower/Supplemental

Cooling and Makeup Storage Pond System Evaluation

1.0 Plant

-3000 MWt
-conventional nuclear turbine
-50F terminal temperature difference in condenser
-circulating water flow rate = 1200 ft3/sec
-temperature rise in condenser =_250 F
-plant power at design wet bulb of 730 F = 1027 MWe
-condenser inlet temperature at design condition = 91oF

2.0 Mechanical Draft Cooling Tower

-type-crossflow, induced draft
-number of cells = 44
-fill dimensions = 32 by 36 by 60
-water loading = 5130 lbm/hr-ft 2

-air loading = 1692 lbm/hr-ft 2

-cycles of concentration = 2

3.0 Meteorology

-Boston, Massachusetts-1974

4.0 Ocean Temperature; salinity = 30,000 ppm

-June = 550 F
-July = 60
-August = 65

5.0 Operation Schedule

-all combined systems operate in "heatup" mode
from 3 to 6 PM



TABLE 3.6

PERFORMANCE OF THE SALTWATER EVAPORATIVE TOWER/SUPPLEMENTAL COOLING AND MAKEUP

STORAGE POND SYSTEM

Case #1 Case #2 Case #3

1.0 Pond Size Acres 8 8 16

2.0 Total withdrawal
Flow Ft3/sec 80 120 160

3.0 Dilution Flow-Ft3/sec 40 80 120

4.0 Average Power
Difference MWe 12.6 15.0 17.4

5.0 Temperature
Excess

With Pond 0F 18.2 14.0 13.9
W/O Pond OF 8.8 5.3 3.7

6.0 Power Difference
Ten Worst Days MWe 15.6 17.9 22.6

7.0 Pond Utilization
Scheme 1/2 flow Full Flow Full Flow

8.0 Minimum Power-MWe
With Pond 1043 1045 1051
W/O Pond 1027 1027 1027

For all the above, raw blowdown = 20 ft3/sec
Diluted blowdown flow = 20ft3/sec = Dilution Flow r%)
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summarized in Table 3.6, calculations have been performed

with regard to the effect of the dual mode of tower operation

on the buildup of dissolved salts in the system. These

calculations indicate that, although the tower would be

purged of its high salt concentration during the "heatup"

mode of operation, blowdown of the tower would have to be

initiated within a few hours after the end of the "heatup"

mode in order that the maximum salt concentration not be

exceeded. The net salt blowdown from the system is identical

for both the tower-only systems and the combined systems

since the net salt blowdown depends only on the rate of evap-

oration which is essentially constant for all the systems

considered.

3.4.3.5 Conclusions

As in the case of the evaporative tower-supplemental

cooling pond system the determination of the benefit-cost

of the system is difficult due to the site-specificity of

the pond construction cost. However, in terms of conven-

tional replacement capability pricing at $150.00/Kw the

capibility replacement savings would be on the order of

several million dollars using the results of Table 3.6.

The costs of the pond construction (based on general

excavation and piping costs) would be lower at many sites.
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3.4.4 Cooling Tower/Thermal Storage Pond System

3.4.4.1 Introduction of the Concept

A fundamental disadvantage of wet and dry cooling

tower systems is the small thermal inertia of these sys-

tems and the sensitivity of their performance to changes

in the ambient meteorology. As a means of avoiding this

loss of generating capability during peak electrical demand

periods it is proposed that wet tower or dry tower systems

be combined with a small thermal storage pond. In this

combined system the thermal storage pond would function

as a heat capacitive component to take advantage of the

diurnal variation of the ambient meteorology. For many

inland regions of the United States the daily range of

the dry bulb temperature regularly exceeds 300F, and a

150 F average variation in the wet bulb temperature is

common.

To evaluate the benefits of this combined system

concept a computer model which simulates the operation

of a nominal 1000 MWe nuclear power station has been

constructed. The utilization of an idealized plug-flow

thermal storage pond capable of holding 3 hours of conden-

ser cooling water (approximately 300 acre-feet) with both

wet and dry cooling towers has been investigated.
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Typical results of these calculations are shown in Fig. 3.14.

The cases shown are based on daily variations of the wet

bulb temperature (wet tower) and dry bulb temperature

(dry tower) of 65 to 804F and 70 to 100 0 F, respectively.

In the proposed system the thermal storage pond

would hold the relatively warm tower discharge and would

supply cool water to the condenser intake during periods

of coincidental peak electrical demand and high ambient

temperature. During the night when the electrical demand

is low and the ambient temperature has declined the relat-

ively warm water in the pond would be used for condenser

intake water and the now relatively cool tower discharge

water would be used to "recharge" the pond. Between periods

of pond utilization the cooling tower would discharge

directly to the condenser intake.

As Fig. 3.14 indicates, the most likely candidate for

the addition of a thermal storage pond is the plant cooled

with dry cooling towers. The typical benefits which are

gained with the application of a thermal storage pond in

conjunction with a wet cooling tower are only minimal.

The greater impact of the thermal storage pond on the

performance of the dry tower cooled plant is due to

1) the significantly greater typical daily range of the
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dry bulb temperature and 2) the greater rate of change

of the plant heat rate per degree change in the condenser

inlet temperature for the condenser inlet temperature

ranges typical of dry tower cooled power plants.

Thus, in view of the greater potential benefit of

the thermal storage pond when combined with a dry tower

system, it was decided that a detailed examination of this

particular combination should constitute the major portion

of this cooling tower-thermal storage pond system evaluation.

3.4.4.2 Significance of High Ambient Temperatures
On the Performance of a Dry-Tower-Cooled
Nuclear Power Station

The relative heat rates as a function of condensing

temperature of several turbine designs are shown in Fig.3.15.

Several important observations concerning these curves are:

1) the modified basic nuclear turbine heat

rate curve is nonlinear and varies sub-

stantially in magnitude over the range

of condensing temperatures of 90 to 160 0 F.

(corresponds approximately to an ambient

temperature range of 30 to 100 0F)

2) the above situation is somewhat improved

with the intermediate annulus and high

back pressure turbine designs in that a
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less severe loss of performance at high

condensing temperatures, but loss of

performance in comparison to the modified

nuclear turbine design occurs at all

condensing temperatures less than 144 0 F

and 152 F respectively.

3) the performance of the modified basic

nuclear turbine is near that of the

conventional basic nuclear turbine at

low condensing temperatures.

Although substantial loss of generating capability

would be encountered during the great portion of the year

for many areas of the United States if an intermediate

annulus nuclear turbine or a high back pressure nuclear

turbine were to be employed at a dry cooled power station,

the incentive for considering such application is strong.

The impetus is derived from the fact that if a modified

nuclear turbine in conjunction with a dry cooling tower

system were required to generate full load at temperatures

exceeding approximately 90 0F the dry tower would be unduly

larger and more expensive (or the loss of capability

capital cost penalty would be considerably greater) than

that associated with either of the other two turbine designs.
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However, it is important to note that for both the

intermediate annulus design and the high back pressure

design the slope of the heat rate curve is nearly constant

at high condensing temperatures and is approximately

equal to the slope of the heat rate curve for the modified

conventional turbine at condensing temperatures 10 to 20 F less.

Thus if it were possible to reduce the design condition

(high ambient temperature) condenser inlet temperature

by a similar amount, the design condition performance

of the modified conventional turbine would be approximately

equal to the design condition performance of the other

two applicable turbines. The incentive for affecting

such a reduction of the condenser inlet temperature

during the design condition is the substantial performance

margin of the modified conventional turbine over the other

two at low and average condensing temperatures.

The above argument for reducing the peak load time

condenser inlet temperature can be extended to the case

where the turbine design has been established. Now, the

incentive for reducing the peak time condenser inlet

temperature is simply the reduction in the loss of

capability penalty. With the use of a thermal storage pond

it may be possible to shift the maximum expected loss of

capability to the late evening hours. Certainly, it seems
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reasonable that the same cost penalty used to penalize

the loss of production at peak demand times should not

be used to penalize the loss during off-peak night-time

hours. ( a more detailed discussion of the use of dry

cooling with nuclear steam-electric plants is presented

in Sec. 5.1.4).

3.4.4.3 Details of Operational Cycle

There are a variety of possible ways in which- a small

pond might be used in conjunction with a dry cooling

tower to produce a matching of peak load and peak cooling

ability, but some simple arguments lead us to consider

first the system mentioned previously. A more detailed

discussion of the system operation is now given.

In the late afternoon when electrical demand is

highest and the ability to reject heat at desirable

temperatures is lowest because of the high ambient

temperature, cooling water for the condenser would be

drawn from the pond. After passing through the condenser

the water would be passed through the towers and returned

to the opposite side of the pond. This operation would

continue until all the relatively cool water had been

withdrawn from the pond. At the end of this period
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the pond would contain water which is hotter than when

the pond cycling sequence began. Note, however, that a

considerable amount of waste heat would still be rejected

by the towers. In fact, the pond temperature may still

be considerably lower than the temperature of the tower

discharge for steady-state operation at these high ambient

temperatures without a thermal storage pond. Nevertheless,

the tower would not be operating very efficiently since

the ITD (tower inlet temperature-ambient air temperature)

would be low in comparison to the required average ITD.

When the peak load period has passed the discharge

from the tower would be routed directly to the condenser

bypassing the pond. This operation would continue until

the ambient temperature had declined sufficiently. Some

cooling of the pond may take place during this time period.

Now once the ambient temperature has declined to near

its minimal value and the electrical demand was low (say

12 midnight to 6 AM) the pond would be recooled in a manner

analogous to the previously discussed heatup operation. With

the plant operating at full thermal capacity, the now

relatively warm water in the pond would be circulated

through the condenser, through the tower and then back to

the pond. During this operational mode the towers would
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essentially be rejecting the presently required waste heat

energy in addition to that energy which the dry tower was

not able to reject earlier during the heatup mode of

operation. This large amount of heat rejection is

possible since during the cooldown mode of operation the

tower ITD would be increased over its normal value.

Once the entire pond inventory had been recooled the

pond again would be bypassed until its now relatively

cool water was needed during the peak electrical demand

time later that day.

In describing the above opeational sequence of the

thermal storage pond-dry tower system it was assumed that

the discharge into the pond was not mixed with water already

in the pond. This is the so-called "plug-flow" assumption.

From the stand-point of the performance of the combined sys-

tem this is a favorable, but realistic assumption. (See

Chapter 4)

3.4.4.4 Preliminary Quantitative Evaluation of the
Thermal Storage Pond Concept

In order to evaluate the feasibility of the combined

thermal storage pond-dry cooling tower concept a computer

model has been constructed which simulates the operation of

a 3000 MWt nuclear power station coupled with a dry tower-
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thermal storage pond heat rejection system.. The dry cooling

tower is sized to produce a net electrical output of 928 MWe

at a 93 0F ambient air temperature with a modified conventional

nuclear turbine. The thermal storage pond has a volume

of 305 acre-feet with a surface area of 14.3 acres and is

capable of holding 3 hours worth of condenser cooling water

supply. This system will be refered to as the standard sys-

tem. Important assumptions incorporated into this model are

the following:

1) Condenser type---surface;

Condenser terminal temperature difference---5 F;

2) Circulating water flow rate----277,499,900 lbs/hour;

3) Dry tower thermal performance is described by the

equation

Q = C * ITD

where Q = heat rejected,

ITD = temperature difference between
tower inlet water and ambient air,
and

C = 137445000.0 BTU/hr-F;

4) Plug flow during heatup and cooldown of pond;

5) Pond becomes completely mixed (i.e. homogeneous in

temperature) during period of pond bypass;
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6) The pond is open to the atmosphere and subject to

heat transfer to the environment as described by

Ryan;(R10)

7) Water loss from the pond occurrs only as a result of

evaporation;

8) The water inventory of the dry tower is small in

comparison to the pond inventory (based on informa-

tion presented by Rossie).(R7)

For the purpose of evaluating the thermal storage

pond concept a standard set of meteorological and operational

conditions have been assumed for a basis of comparison. The

standard conditions (as they will be called) are 1) a 3 hour

pond heatup time from 3PM to 6PM, 2) a 6 hour cooldown

period from 12 midnight to 6 AM, and 3) a daily variation

in the dry bulb temperature of 70 F to 100 F with a constant

relative humidity of 30%. For the standard conditions

listed above and for all other conditions examined in this

section the "steady-state" behavior of the plant-thermal

storage pond-dry tower system.is presented. The term

"steady-state"t in this case meaning that the pond temperature

assumed to exist at the beginning of the day is identical

to that calculated for the end of the cycling sequence

(i.e. beginning of the next day). It should be emphasized

that the pond cycling sequence mentioned above is only a
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qualitative attempt to define an optimal application

of the TSP concept. Consideration of alternative

operational sequences and TSP utilization schemes will be

mandatory in a more detailed and complete evaluation of

the TSP concept.

3.4.4. 4a Signific ance of Pond Size

The computer model has first used to evaluate the

benefit derived from ponds of various sizes. The meteorology

and dry tower are the standard given earlier. The results

are summarized in Table 3.7 and by Fig. 3.16 which shows the p1ant

output as a function of the time of day. The curves in

Fig. 3.16 represent the following situations;

Curve A--no thermal storage pond,

Curve B--3 hour pond,

Curve C--6 hour pond, and

Curve D--9 hour pond,

In each case the cooldown period is equal to the heatup

period in length. Table 3.7 indicates, as one would expect

that the benefit of an incremental increase in the pond

size diminishes as the pond becomes larger. Nevertheless,

the magnitude of the benefit per incremental increase in

pond size is large over the range examined.
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TABLE 3.7

Comparison of the Performance of Different Size

Thermal Storage Ponds

Pond Size-

Hours of Capacity

3

6

9

Daily Total

Extra MWhrs

153

308

Peak Load
Time

Extra MWhrs

280

513

Average
Peak Extra
Capacity MWe

93.3

85.5

506 ' 656 72.8
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3.4.4.4b Effect of Variations in the Ambient Daily
Range

The effect of variations of the ambient temperature

on the combined system performance at different absolute

temperatures is shown in Fig. 3.17. A general conclusion

which can be derived from this figure is that the excess

capacity due to the use of a thermal storage pond increases

with increases in both the magnitude of the peak daily

temperature and the range of the daily temperature. Fig. 3.18

shows the total extra daily electrical energy generated at

different temperature ranges at different peak daily

temerpatures. The increase of the total daily plant output

is due to 1) cooling of the water stored in the pond 2) the

nonlinearity of the turbine heat rate vs. condensing

temperature curve. The nonlinearity effect seems to be

predominant. The slope of the heat rate versus condensing

temperature curve is greater at high condensing temperatures

and thus a unit change in the condensing temperature at high

condensing temperatures results in a greater change in the

plant power output. Note, however, that deviation from this

behavior seems to occur at high peak ambient temperature

and low daily range. This is a result of cooling of the

pond water since for such conditions the pond temperature
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0
becomes quite high (greater than about 120 F). The effect

of pond cooling on the performance of the combined system

will be examined in a later section.

3.4.4.4c Significance of Alternative Pond Utilization
Schemes

The standard combined system as described earlier

calls for the utilization of the pond solely for condenser

inlet water supply for a time period which will result

in all the pond inventory passing once through the con-

denser. For such an operational scheme the temperature

of the pond water at the end of the heatup period may

still be substantially lower than that which would result

from the use of the towers only. So there exists the

option of cycling water in the pond through the condenser

and towers again to achieve additional generating capacity

gains while the system electrical demand is still high.

Another alternative to the standard utilization scheme

would be the partial utilization of the pond over an exten-

ded period of time. In this operational mode water from

the pond would be mixed with the tower discharge to supply

cooling water for the condenser. For the standard 3 hour

capacity pond mixed in a 1 to 1 ratio with the tower

discharge the benefits of the pond could be extended to
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six hours.

There are, however, penalties associated with the

increased utilization of the pond. The need to reject

additional quantities of heat during the pond cooldown

period would result in an increased pond temperature

at the end of the cooldown period and hence a loss of

benefit during the next peak load period. Also such a

system utilization would result in a greater sensitivity

to daily variations in the ambient temperature range.

Figure 3.19 shows the power histories of following:

Curve A-- the standard operational procedure

Curve B-- a double cycling of the pond

Curve C-- a partial utilization of the pond

of the standard pond over a six hour

period

3.4.4.4d Evaporation from the Thermal Storage Pond

Significant amounts of water loss from the thermal

storage pond by evaporation would occur at high ambient

temperatures. Covering of the pond would prevent this loss.

Whether or not such a cover would be economical would

depend on the economic and hydrological characteristics

of the site.

- Ao. - -
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The rate of evaporation from the pond for different

daily temperature ranges at different peak daily tempera-

ture is shown in Fig. 3.20. This may be compared to an

equivalent once-thru cooling utilization of about 1100 ft3

see and a cooling tower evaporative consumption of about

20 ft3 /sec.

3.4.4.4e Significance of Heat Transfer From the Pond

The significance of heat tran.sfer from the pond to

the environment can be determined by comparing the system

performance for the cases of heat transfer and no heat

transfer from the pond. The calculated performance for

each of these cases for the standard conditions is summar-

ized in Table 3.8. General conclusions derivedfrom these

results are:

1) the effect of heat transfer from the pond

increases with increasing daily average

ambient temperature,

2) the performance of the thermal storage pond-

dry tower system is not strongly dependent

on the amount of heat transfer from the pond-

thus, covered ponds appear to be feasible.

3.4.4.5 Simulation of Combined System Performance
for an Entire Year

- .0b. - -
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TABLE 3.8

Significance of Heat Transfer from the Thermal

Storage Pond

Case 1-- Heat Transfer from Pond Surface

Case 2-- No Heat Transfer from Pond Surface

Daily Temperature Case #
Range

Daily Total
Extra MWhrs

Peak Load
Time
Extra MWhrs

Average
Extra
Peak
Capacity
-MWe

70-100 0 F

50-1000F

50-80 0 F

30-80 0 F

2 142

1

2

1

2

1

2

1

155

10

233

155

112

90

154

283

232

373

358

160

154

187

94.3

77.3

124.3

119.3

53.3

51.3

62.3

187 62.3
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Although the previous section gives much insight

into the performance characteristics of thermal storage

ponds, the crucial test of such a system is the eval-

uation of the performance for an entire year. Thus, in

this section the results of the computer simulation of

the annual performance of the earlier described standard

thermal storage pond-dry tower system is reported.

The standard thermal storage pond-dry tower system

design used in this study is arbitrarily defined and hence

does not result in optimal performance. The dry tower

component of this combined system, however, matches those

found to be optimal for the western regions of the United

States. The meteorological variations used are those for

the town of Winslow, Arizona for the year 1974 and should

be representative of arid, moderate altitude, western

regions.

The daily maximum and minimum temperatures for the

entire year were input into the simulation model. It is

assumed that the maximum temperature occurs at 5 PM

and the minimum temperature occurs at 5 AM. The temperature

variation for the periods between the maximum and minimum

is assumed to follow a sine curve.
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Year-long simulations were performed for the following

three cases:

Case 1) Dry Tower only ("simple" dry cooling),

Case 2) Combined thermal storage pond-dry

tower system with an open pond

(i.e. heat transfer from the pone), and

Case 3) Combined thermal storage pond-dry

tower system with covered pond

(heat transfer from the pond assumed

to be negligible),

Tables 3.9,3.10,and 3.11 summarize the important

results of these simulation studies.

The results show that there is a substantial incentive

for considering the utilization of a thermal storage pond

in conjunction with dry cooling towers. Both the covered and

open ponds result in great savings in the summer time

loss of peak time generating capability. The difference

between the required peaking facility capability for Case

1 (no pond) and Case 2 (open pond) is 97 megawatts.

In summary, the thermal storage pond concept appears

to offer a very attractive solution to the summer peaking

problem of dry cooling towers. The system performance

is, however, strongly dependent on the local meteorology.

- A*h - -
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TABLE 3.9 -

Comparative Peak Time Performance For

Alternative Dry Cooling Systems

Peak demand time = 3 to 6 PM

Yearly Minimum
Peak Time
Capacity-MWe

Annual
Average
Peak Time
Capacity
-MWe

Summer
Average
Peak Time
Capacity
-MWe

Case 1
Tower only

Case 2
Combined
System-Open Pond

Case 3
Combined
System
Closed Pond

889

986

991

1037

926

1019

967 1032 1010
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TABLE 3.10 .

Comparative Gross Power Generation

For Alternative Dry Cooling Systems

Annual Energy
Production-MWhrs

Summer Energy
Production-MWhrs

Case 1
Tower Only8,3,2 I2,195,050

Case 2
Combined
System-Open Pond 8,963,44 7 2,210,663

Case 3
Combined
System-Closed Pond 2,202,186

8, 9301, 920

8,951,354
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TABLE 3.11

Comparative Average Monthly Peak Time Capacity

For Alternative Dry Cooling Systems

Feb. Mar. Apr. May Jun.

Case 1
Tower only

Case 2
Combined
System
Open Pond

1042 MWe 1037

1044

Case 3
Combined
System
Closed Pond 1044

Jul.

Case 1 930

Case 2 1016

1020 1009 964

1044 1044 1044 1035

1044 1044 1043 1033

Aug. Sep. Oct. Nov.

933 965 1007 1031

1027 1029 1039 1044

1014 1023 1028 1044

Jan.

917

1018

1010

Dec.

1042

1044

Case 3 1006 1044
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3.4.4.6 Applicability of Thermal Storage Pond
Concept to Alternative Sites

Using averaged historical meterological data, the

applicability -of the thermal storage pond concept to sites

other than the Winslow,Arizona site has been examined as a

part of the preliminary evaluation of the concept. Table

3.12 illustrates the theoretical average summer capability

savings during the peak demahd' period for a 1000 MWe plant

with a modified conventional steam turbine obtained by

multiplying the summer average daily range of the ambient

dry bulb temperature by the slope of the heat rate versus

temperature for the modified conventional turbine (Fig. 3.15)

at high condensing temperatures - 0.4% per 0F. As

evidenced by the results of the simulation calculation

for the Winslow, Arizona site reported in the previous

section it is expected that the actual savings would be

about 75% of the theoretical values.

In general, the areas offering the greatest potential

for the utilization of a thermal storage pond are the

interior western regions. Russell (R9) remarked that

in the United States, east of the Mississippi, the daily

range of temperature varies from 12 to 200F, with a 150F

average while west of the Mississippi to the Rocky Mountains

it varies from 200 to 35 F. In a classical treatise on

American weather Greely (Gl) states,
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TABLE 3.12

THEORETICAL AVERAGE SUMMER CAPABILITY SAVINGS

DURING PEAK ELECTRICAL DEMAND PERIODS FOR A

1000. MWe NUCLEAR POWER STATION*

Reno, Nevada 123 MWe

Winslow, Arizona 115

Albuquerque, New Mexico 99

Boise, Idaho 97

Lander, Wyoming 93

Billings, Montana 92

Denver, Colorado 91

Salt Lake City, Utah 85

Walla Walla, Washington 85

Atlanta, Georgia 68

Boston, Massachusetts 61

Los Angeles, California 67

San Francisco, California 30

* Modified-Conventional Turbine

Meteorological Data taken from Reference (Bl)

- - Aft
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"The daily ranges over the Rocky Mountain and plateau

regions are extraordinary. At Fat Apache, Arizona (elevation,

5050 feet), the mean daily range is no less than 42.6 0 F

Even as remarkable as are these ranges they are exceeded

at Campo, California (elevation,27l.0feet), where the mean

range for September is 45.4 0F, and from June to October

inclusive averages 44.8 0F"

It is also observed that the days of maximum yearly

temperature are usually coincidental with the occurance

of greater than average daily ranges. This can be attri-

buted to the fact that the clear sky conditions which

lead to the maximum temperature normally persist until

the evening thus creating favorable conditions for

radiative cooling.

- Am - -
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CHAPTER 4

DESIGN OF A THERMAL STORAGE POND

4.1 Introduction

4.1.1 Statement of Basic Problem

The basic function of a thermal storage pond is to pro-

vide simultaneously a relatively low temperature condenser

cooling water source and a holding facility for the same

water after it has passed through the condenser and has been

recooled partially by the dry cooling tower. Thus, the funda-

mental fluid dynamics problem in designing the pond becomes

apparent. It can be briefly stated as follows: design a

container for the storage of a large volume of water such

that the simultaneous withdrawal of the total initial inven-

tory at rate Q and the introduction of water at an equal rate

and different temperature is possible, with minimal mixing

of the incoming water with that initially in place.

The type of thermal-hydraulic behavior required in the

pond is exactly that of the well-known plug-flow. However,

exact plug-flow in the pond may not be required since the dry

cooling tower/TSP system may still perform effectively - in

an economic sense - in spite of some undesirable mixing in

the pond. The extreme case of mixing of the initial pond in-

ventory with incoming flow is the case of fully-mixed behavior.
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A further limit beyond that of the idealized fully-mixed

case - in terms of overall system performance degradation -

is that of the short-circuited pond. This situation is high-

ly undesirable since any fraction of the pond which is iso-

lated from the flow circuit becomes lost as a medium for the

storage of waste heat with the net result that the effective

storage volume of the pond is reduced accordingly.

Before considering the constraints in designing a TSP a

note regarding the attitude taken in this investigation is

useful. One can imagine that the TSP design problem can be

solved by using some sort of mechanical separation of the ini-

tial pond inventory from the inlet flow into the pond. Mech-

anical separation could be achieved by utilizing two ponds,

or by use of some type of movable mechanical barrier in a

single pond. The former solution is unattractive economically,

and the latter solution is seen to be unattractive if one

considers the required size of the proposed pond, the dura-

tion of pond operation, and the range of available pond lining

and roofing materials. Thus, the goal of this investigation

has been to design a thermal storage device without mechanical

segregation such that a significant fraction of the possible

benefits of the thermal storage concept can be obtained at

reasonably low costs.

It should also be pointed out that the TSP design effort

is directed towards achieving an efficient and economical
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design for a particular application of the TSP concept. The

particular application of interest is the use of the TSP to

achieve a "matchup" of the daily periods of peak ability to

reject heat with the daily period of peak utility system

electrical demand. An alternative application of the TSP

concept might be the use of a pond on a continual basis

(no operation mode switching) to damp out daily ambient temp-

erature variations. The design of a TSP which will allow

the efficient "Imatchup" operation nevertheless has been selec-

ted as the design problem of most interest because of the

following factors:

1) Most electric utilities experience difficulty in meeting

the summer daily peak electrical demand. The utility

systems incremental cost of power production (mills/kwhr)

is highest during the peak demand period due to the

required operation of peaking units with high heat rates.

The "matchup" TSP will result in maximum plant output

during this period thus keeping peaking unit operation

to a minimum.

2) The "matchup" system could operate effectively with as

little as 3 hours of storage. A continuously utilized

pond in the "averaging" system would require at least

about 12 hours of water storage since the magnitude of

the characteristic response time of the pond would
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necessarily be on the order of that of the period of

the ambient temperature oscillation (24 hours).

Finally it is important to emphasize that although a

preliminary evaluation has shown that the loss of TSP benefit

is not large for the cases of a full-mixed pond as opposed

to a plug-flow pond the correct design of the pond is extreme-

ly important. This is because the idealized fully-mixed

behavior is not the "worst-case" which can be realized for

the performance of a TSP. The "worst-case" is that of a

short-circuited pond. As is discussed in Section 4.2.1, short-

circuiting is likely to occur in a poorly designed TSP due

to density-induced flow.

4.1.2 Design Constraints and Requirements

In attempting to formulate some preliminary design options

for the plug-flow TSP the designer must consider the engineer-

ing and economic constraints or requirements which will be

imposed on any design concept. A list of some of the desir-

able features of a well-designed pond is the following:

1) low pond head loss during operation,

2) low pond flow velocity,

3) minimal bottom and surface area,

4) not excessively deep,

5) smooth response of the TSP outlet temperature to

changes in the inlet temperature,
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6) effective operation during both "heatup" mode and

"cooldown" mode of operation, and

7) modest inlet flow velocity.

The requirement of low pond head loss during operation

stems simply from the fact that during the standby stage of

the TSP operation the surface elevation of the pond will seek

its natural level. If the pond structure must also contain

the extra water elevation due to a large head loss through

the flow circuit of the pond then storage capacity will be

wasted. A low pond flow velocity is also desirable since the

pond lining and covering will likely be fabricated from flexi-

ble plastic or rubber membranes.

The requirements of minimal bottom and surface areas and

reasonable depth are contradictory when attempting to design

a TSP for a fixed storage volume. Thus, some compromise is

required. Minimal surface area is desirable for either the

open or covered pond. In the case of the open pond it is of

interest to minimize evaporation, and in the case of the cover-

ed pond it is of interest to minimize the cost of covering and

lining the structure. The need to maintain a reasonable depth

is connected with the difficulty of constructing high dikes

for an above-ground level pond, and of excavating to large

depths for a below ground level pond.

Additionally, it is a basic design constraint that the
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TSP outlet temperature respond smoothly to the inlet tempera-

ture. Large and high frequency variations in the TSP outlet

temperature (condenser temperature) as the storage capacity

of the pond nears exhaustion could result in unacceptable

transients in the turbine-generator behavior.

A most fundamental requirement is that the TSP functions

effectively during both the "heatup" and "cooldown" modes of

operation. Designing for one mode of operation will not auto-

matically result in a correct design for the other due to the

potential for the occurrence of density-induced flows in the

TSP.

Finally, it is desirable to minimize the inlet velocity

into the pond since the velocity head of the inlet flow is non-

recoverable and requires an additional amount of circulating

water pumping power above that required for the operation of

the tower only.

4.1.3 Feasible Solutions to the TSP Design Problem

There are two general methods by which the desired plug-

flow behavior may be achieved. They are by means of horizon-

tal plug-flow and vertical plug-flow. Figure 4.1 schemati-

cally demonstrates how the two types of behavior might be

obtained in situations in which the reservoir is being filled

with warm water. In the vertical plug-flow case one would

attempt to take advantage of the tendency for stable vertical
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stratification, and in the case of the horizontal plug-flow

one would have to guard against the tendency for vertical

stratification (with the warm water floating above the colder

water). As an alternative, one could consider the possibility

of designing a fully-mixed pond, but this does not appear to

be a practical alternative. To achieve uniform mixing the

inlet flow discharge would have to be injected with high mix-

ing (either jet induced or mechanical) at various points

throughout the entire pond volume and the mixed condenser

cooling water would have to be selectively withdrawn from the

pond in a manner such that only the mixed pond water, and not

the direct inlet flow, is withdrawn. Such a discharge and with-

drawal system would be expensive and it is difficult to envision

how one could guard against inadvertant short-circuiting.

Both the vertical and horizontal plug-flow design options

have particular advantages and disadvantages with regard to

the previously discussed economic and engineering constraints

and performance requirements. Based on a somewhat qualitative

comparison of the advantages and disadvantages of the two

options it has been decided that an attempt would be made to

design a horizontal plug-flow pond. This decision is justi-

fied by examining the applicability of both the vertical plug-

flow and horizontal plug-flow pond concepts to the problem at

hand. It is important to note that precise quantitative justi-

fication for the selection of either options based on their
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comparative economics is not possible, given the current

state of available information. The economic benefits of

the pond will largely depend on its thermal-hydraulic behavior,

and in the cases of both the horizontal and vertical plug-

flow ponds one if faced with the need for resolution of a

previously unresolved and complex problem in transient non-

homogeneous fluid flow. Additionally, the capital cost of

the pond structure will depend strongly upon the particular

geologic and economic characteristics of the site. Thus the

preliminary option selection is made under some uncertainty.

For the vertical plug-flow design to be feasible it would

be necessary to introduce the discharge into the pond in a

manner such that little mixing with the initial inventory can

occur. Later, as the water discharged into the pond begins

to comprise a significant fraction of the pond volume selec-

tive withdrawal would be required. The problems which might

be encountered in achieving a weakly-mixed inlet flow situa-

tion and selective outlet flow withdrawal can be appreciated

by examining a hypothetical 300 acre-ft (about 3 hours of

storage capacity) TSP. The pond is assumed to be square in

shape, to utilize a skimmer wall for selective withdrawal, and

to have a 5 *F temperature difference between the hot and cold

water layers. The minimum depth of the cold lower layer before

entrainment (drawdown) of the hot upper layer commences for
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such a pond has been calculated as a function of the pond

geometry based on the work of Harleman [H3]. These results

are shown in Fig. 4.2. Examining these data one notes that

for practical man-made pond depths of 20 to 40 feet an exten-

sive skimmer wall structure would be required to secure a

satisfactory amount of selective withdrawal before drawdown

(say greater than 80% of the initial cold water inventory).

An evaluation of the practicality of floating the dis-

charge into the pond and over the initial cold water pond in-

ventory is difficult to achieve. An analytical model for

predicting the transient spreading of a confined buoyant sur-

face discharge does not appear to be available currently.

However, since it is of interest to minimize the entrance mix-

ing so that the discharge would not interact directly with

the selective withdrawal, a shallow, low-velocity inlet geo-

metry is indicated. These combined requirements of low velo-

city and shallowness in turn indicate that a wide and shallow

discharge structure is required in order to obtain the desired

1000 ft3/sec discharge flow.

Other apparent problems with a vertical plug-flow pond

include 1) operation during the "cooldown" mode, and 2) off-

design condition performance. Since in the "cooldown" opera-

tional mode the discharge into the pond is denser than the

initial pond inventory it would be necessary to reverse the
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pond in order to obtain a stable density front. The off-

design condition performance of a vertical plug-flow pond

may also be a problem in that with a decreasing daily range

of the ambient air temperature the thermal-hydraulic efficien-

cy of the pond would decrease. The efficiency would decrease

since a smaller daily ambient temperature range would result

in a decreasing density difference between the "hot" and

"cold" pond fluids, and thus decreased pond stratification

stability with an attendant decrease in the pond's selective

withdrawal performance.

In view of the difficulties encountered with the vertical

plug-flow concept as outlined above, the horizontal plug-flow

concept has been selected for detailed evaluation. This

design appears to be superior in that no elaborate discharge

and withdrawal structures are required and operation during

both the "heatup" and "cooldown" modes would be identical.

Additionally, the depths for typical man-made water storage

facilities (about 20-40 feet) favor the horizontal plug-flow

design. A detailed discussion of this concept follows.

4,1.4 Initial Design Concept

4.1.4.1 Concept and Design Goal

In the situation where the density of the inlet

flow into a rectangular pond is equal to the ambient density,

and where the inlet flow in uniformly introduced along one end
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and withdrawn uniformly at the opposite end, the inlet flow

would form a nearby vertical interface with the original

pond fluid and this interface would pass through the pond at

the plug-flow velocity

V = Q/A , (4.1)

where Q = discharge flow rate ft3 /sec and,

A = pond cross-sectional area.

This behavior is shown in Figure 4.1. This is the ideal TSP

thermal-hydraulic behavior. In the case of the actual TSP

where the density of the inlet flow is different from that of

the initial pond inventory the propagation of the front would

be perturbed by the density-induced flow instability at the

interface. Two general cases of possible behavior due to

density effects are shown in Fig. 4.3. The first, shown in

Fig. 4.3a, would arise when there is only a weak tendency for

stable stratification and the second, shown in Fig. 4.3b would

result when there is a strong tendency for stable stratifica-

tion. The second case is highly undesirable in terms of the

desired TSP performance, while the acceptability of the first

case would depend on the rate of propagation of the incoming

fluid to the pond withdrawal structure. The initial design

concept utilizing the horizontal plug-flow behavior is based

on an attempt to design a TSP such that the inclination of

the density front is minimized.
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4.1.4.2 Assessment of Performance - Basic Design

Tradeoff

A review of the pertinent literature has revealed

no previous work which directly addresses the problem of

achieving transient horizontal plug-flow in the presence of

density differences. However, some quantitative arguments

based on available information can be employed to characterize

the general type of pond required to achieve the desired perfor-

mance.

A determination of the magnitude of the density-induced

velocity at a density interface for an initially static, verti-

cal density interface is a classical problem in stratified

flow. This problem is termed the lock-exchange problem due to

its similarity to the transient flow which arise from the open-

ing of a channel lock interfacing between initially static

fresh and salt water. Simple conservation of the available

potential energy resulting from the density difference across

the interface is shown in Fig. 4.4 and results in the following

prediction for the initial density front velocity:

V =1 (g H)l/ 2  , (4.2)

where Ap = the density difference

p = average density,

H = depth, and

g = gravitational acceleration.
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Assuming that this relationship should also provide an

approximate estimate of the additional density-induced velo-

city of an interface, which was initially vertical, and mov-

ing at a velocity Vp, the total velocity of the leading edge

of the density front would be

V F V + 1(g H)1 /2  (4.3)
F p 2 p

Thus., in order that the pond not be badly short-circuited by

the density-induced flow it would be required that

V
1 5 to 10 . (4.4)

2 p

This is equivalent to requiring that

V

FD H 1/2 > 3.5 to 7.0 , (4.5)

(gAP 2)

where FD is the pond densimetric Froude number. For a typi-

cal pond flow of 1000 ft3/sec and AT = 10 IF a narrow and

shallow TSP is indicated to be desirable. Using FD = 2.5

as the design Froude number, the required pond dimensions

would be:

depth = 10 feet,

width = 60 feet, and

length = 21,000 feet for a 3 hour pond.
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Such a design would not be acceptable due to the large

ratio of surface area to stored volume, the large flow velo-

city, and the extremely long length of the channel.

However, it may be possible to reduce the design Froude

number substantially since some effects which may retard the

motion of the density front have not been taken into considera-

tion. Nevertheless, the fundamental design tradeoff has been

established in this example -- increasing the pond (channel)

design densimetric Foude number would lead to increased pond

construction costs. The design task is thus the specifica-

tion of the minimal design Froude number such that an accept

able level of performance is achieved.

4.1.4.3 Information Requirements for Accurate TSP

Performance Assessment

The correct design of the horizontal plug-flow TSP

will require 1) the design of a pond discharge structure such

that the initial condition of a near-vertical density front is

achieved, and 2) the prediction of the behavior of the density

front as it propagates downstream.

4.1.4.3a Entrance Region

The design of the pond inlet flow structure can be

based on the work of Jirka [Jl] et al. This author has present-

ed criteria for the stability of submerged multiport discharges

- Aft - -
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which can be used to design an inlet structure for a highly

unstable submerged multiport jet discharge into the TSP.

Unstable submerged jets are those which do not result in a

stable stratified, two-layered flow in the mixing region

(near-field) of the jet, but rather which produce vertical

mixing in the vicinity of the jet. In the actual TSP it

will not be possible to establish initially a distinct inter-

face between the hot (or cold) inlet flow discharge and the

ambient pond water as a result of jet-induced mixing. However,

the mixing region should be flushed rapidly by the inlet flow

discharge at a velocity equal to the plug-flow velocity.

Therefore a zone transition from p1 to P2 moving at Vp wil be

established initially which will be short with respect to the

entire length of the pond, and which will display a minimal

amount of vertical stratification. This postulated behavior

has been observed in the experiments discussed later in this

chapter.

The criterion of Jirka is given in Fig. 4. 5 . Definition

of the parameters constituting the criterion are as follows:

1/2 V .

FS = (9 ) (g D)1 /2 (4.6)
p

= equivalent slot jet densimetric Froude number,
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where V = jet velocity,

D = diameter of multiport jets,

X = centerline spacing between jets,

H = depth of pond,

Ap = initial density difference, and

D2ff
B = D

The design of the highly mixed entrance region is aided

by the fact that a horizontal plug-flow pond will in general

be-narrow and shallow with a small initial temperature differ-

ence. For the range of TSP depths and widths of practical

interest calculations indicate that reasonable discharge

designs would fall well below the line of transition from

stable to unstable jets shown in Fig.4.5

4.1.4.3.bDensity Front Propagation

A literature survey was unable to discover any

published theoretical or experimental information which would

enable the confident prediction of the propagation behavior

of the density front as it passes through TSP. As indicated

in Section 4.1.4.2 some simple arguments can be made regarding

the general magnitude of the density-front velocity, but

these are at best speculative. A more accurate model is re-

quired along with experimental verification.

A steady-state criterion has suggested the establishment

of fully-vertical mixed flow in ponds [Jl]. This steady-

state criterion predicts that the expulsion of any underlying



167

cold wedge will occur in cases for which FD > 1.0. However,

this criterion, which is based on a solution of a limiting

case of the two layer shallow water equations, is not appli-

cable in any respect to the thermal-hydraulic behavior of a

TSP since it does not account for the withdrawal flow behavior

exhibited at the outlet of the TSP. In fact, if the withdrawal

from the pond is taken over the full depth of the pond, one

would expect that at long time (i.e. steady-state) no cold

underlying wedge would exist at any densimetric Froude number

due to the interfacial shear flow acting on the cold wedge.

The cold bottom layer would gradually diminish in thickness

since there is no mechanism for its renewal. But, as a prac-

tical matter, the ultimate condition of vertically homogeneous

flow may not be important since such cold wedge explosion

would probably occur only long after the plug-flow flushing

time, V/Q = Tflush (V - pond volume, Q = flow rate).

Koh and Fan [K7] have addressed the problem of transient

stratified flow for the case of a surface discharge layer

spreading over an infinite quiesent body of colder water,

but likewise the results are not applicable to the case of

interest in this work.

To provide the required ability to describe the behavior

of a propagating density front in a TSP a control-volume type

fluid dynamic model has been derived, and its predictions have

been matched to experimental results. The experiment has

been designed such that it serves the dual purposes of providing

-. 00. __ -
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the data necessary to construct the semi-empirical mathema-

tical model of transient stratified flow in shallow channels

for a limited range of densimetric Froude numbers, and of

providing a physical model of a prototype thermal storage

pond.

4.2 Modeling of the Initial Design Concept

The modeling of the thermal-hydraulic behavior of the

initial TSP design concept has been based on the experimental

examination of the behavior of a TSP model. Subsequently,

a simple control-volume analytical model has been fitted to

the experimental data by means of appropriate adjustment of

one free parameter. Assessment of the thermal-hydraulic

behavior of the initial design concept in relation to the

practical implementation of the dry cooling tower-TSP system

indicates the need for modification of the initial concept.

4.2.1 Physical Model

4.2.1.1 Similarity Requirements

Total physical similarity between model and proto-

type TSP's requires similarity of flow in three regions.

These are the entrance mixing region, the main storage volume,

and the withdrawal region. The intent in physically modeling

a horizontal plug-flow TSP is the replication of the behavior

of the entrance mixing and main storage regions. Modeling of

the withdrawal region is not crucial in this work, since if

- - Im- -
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the horizontal plug-flow concept is to be viable, vertical

stratification in the withdrawal region will necessarily be

minimal (or at least this would be true for the greater part

of the TSP operational time).

It is important to note that no attempt has been made to

delineate the positions of the boundaries between the different

density regions. As has been indicated previously, a horizon-

tal plug-flow TSP will likely have a channel-type geometry

with a large length/width ratio. In any situation, the boun-

daries of the entrance and withdrawal regions will not likely

exceed a length of more than several pond widths, and thus

will comprise only a small fraction of the total pond volume.

Therefore, accurately specifying these boundaries does not

appear to be. essential.

Similarity to the entrance region of a prototype TSP is

obtained in the model in an integral sense by assuming that any

submerged jet discharge with a highly unstable near-field

region will produce essentially the same vertical tempera-

ture mixing effect in a geometrically similar region, without

regard for the geometrical details of the discharge structures.

Since the volume of the entrance region is small in relation

to the total storage volume this assumption should be adequate.

In any event, the near-field mixing region would be flushed

rapidly by the inlet flow, and would quickly approach the

locally steady-state condition that the inlet discharge temp-

- -IM - -
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erature would be equal to the ambient water temperatures

(i.e. no back flow from the storage region to the entrance

mixing region would occur). In both the model and the proto-

type an unstable near-field flow can be obtained by using a

horizontal multiport submerged jet discharge with the Jets

uniformly spread over the width of the pond (see Fig. 4.6).

To insure similarity between the main storage volume

flows of the model and the prototype, the following require-

ments are met:

1) geometric similarity,

2) Froude Law similarity,

3) densimetric Froude Law similarity,

4) satisfaction of Reynolds criterion, and

5) similarity of the ratio of inertial to friction forces.

The requirement of geometric similarity is fundamental to

all hydraulic scale-models. The remaining similarity require-

ments can be derived from the differential equation of motion

for channel flow with buoyant acceleration. The momentum

equation-is

au + au2 +_p+v ( ) (47)

where u = component of velocity in x direction,

v = component of velocity in z direction,
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p = density,

v = kinetic viscosity, and

p = hydrostatic and dynamic pressure = pgx + PD'

Note also that

= gp + x 2+ .'D (4.8)

Strictly speaking the force of gravity would not act in the

direction x, but is included in Eq. (4.7) to show the deri-

vation of the basic dimensionless groups. For geometric

similarity,

K = x/x (4.9)

where the subscripted variable refers to the model. For

dynamic similarity [R4],

K =

Kv = v/v

Kt = t/t1

KdPD =dPD dPD
dx = dx dx

K = u/u1 , v/v1

K = Ap/Ap1

Kg = g/g1
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where Ap equals the characteristic density difference. Now

rewriting Eq. (4.7) in terms of the subscripted quantities

and the scaling ratios:

K au K 23u
u 1 1

K ) + -4 ) +
t 1 L 1

K KL g1 x3p1  -

K KL p1 lax 1

K au v
u( 11 =

L 1

dP 3P

-1 - D

+ ( KVKu)v (a 2)

KL

From the above we find the following must be true

KL

KtK 
1

K K

g L = 1 KA

K2

K K KKL gKAp = 1

K K2p u

dP
K K D

L dx

K K2P u

(4.10)

(4.11)

(4.12)

(4.13)

(14.14)
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K K /K
2

v u L=

K /KL
(4.15)

Equation (4.11) simply indicates the ratio of characteristic

times for the model and the prototype, i.e.,

t _ x/u
t x /u '

(4.16)

Equation (4.12) yields the Froude law similarity requirement

F =
/9iL

(4-17)

and Equation (4.13) gives the densimetric Froude number

F = u
d /g Ap/p L

(4.18)

for the characteristic flow depth L. Equation (4.14) gives

the dimensionless quantity defined as the friction factor

dPD)L

f = _2
pu

(4.19)

Lastly, Eq. (4.15) gives the well-known Reynolds number:

Re = uL (4.20)
V
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In Froude models it is impossible to meet both Froude

similarity and Reynolds similarity exactly. However, exact

similarity of Reynolds number for turbulent flows is not

required. It is generally satisfactory to meet the criterion

Re model >Rec (14.21)

where Re is the critical Reynolds number for fully developedc

turbulent flow.

Although it is not essential to meet Reynolds number

similarity, it is important, as noted by Jirka [Jl] that the

ratio of inertial forces to bottom friction forces be equal

for the model and the prototype. Thus in the physical model-

ing of the prototype TSP it is desirable to distort the verti-

cal dimension of the model such that the ratio of friction

forces to inertial forces in the prototype is approximately

replicated in the model. This ratio can be expressed by

2
fP pv (L/DH

RFI = 0 pv 2 H (4.22)
pV2

where f0 = friction factor, f(Re),

V = velocity,

L = characteristic horizontal dimension, and

D = hydraulic radius.
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Cancelling terms one obtains the result

RFI = f . (4.23)

Examining Fig. 4.6 we see that over a limited range of

aspect ratios, the hydraulic diameter of a rectangular

channel is approximately directly proportional to the

aspect ratio.

Since DH, the hydraulic diameter, is approximately

equal to aD/W over a limited range we have for a constant

w, f ,and L the relationship

RFI 2  f o L/DH f L/a(D2/w) (4.24)
__~ 2  / o-2 or

RFI1  f L/D oL/a(D 1
o H

RFI2 D D
RFI 1 D . (4.25)

Thus, as long as the aspect ratio of the model remains with-

in the limited range the ratio of frictional to inertial

forces may be taken into account simply through its in-

verse dependence upon depth. The required distortion is

given as

RFlprototype RFdisto = ted RFIdisort D undistorted
model distorted

In general RFI in the geometrically undistorted model is

greater than that of the prototype. Thus, an increase in the

model depth is required.
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Intuitively, this ability to distort the geometry of

the model to obtain RYI similarity is justifiable. For

small values of the aspect ratio it seems reasonable that

the total effect of friction is largely independent of the

channel width. The role of geometric similarity in model-

ing the TSP prototype is that of simulating the boundary

effects (friction effects). The above discussion simply

indicates that these boundary effects are, over a limited

range, dependent only on depth. As a practical matter, the

limiting value of the aspect ratio will be taken to be 0.25.

Finally, it should be noted that similarity of surface

heat loss is not important in TSP modeling because of the

short operation period of the prototype in relation to the

time required to produce significant temperature changes via

heat transfer to the environment.

In meeting all the above similarity requirements it is

often desirable to use a distorted temperature difference.

An increase in the temperature difference requires an off-

setting increase in the mean plug-flow velocity to sustain

densimetric Froude law similarity. The increase in velocity

is advantageous in maintaining a high (turbulent) Reynolds

number. However, the distortion of the temperature diff-

erence results in an inability to meet exactly normal Froude

law similarity. A temperature distortion of four leads to

a Froude number change by a factor of two. Nonetheless this

alteration of the Froude number value does not appear to be
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significant in the present case since the magnitude of

-2
the Froude number is small (approximately 10-2 A

small Froude number is characteristic of weak or tranquil

flow and density-induced flows are most strongly dependent

in their character on the densimetric Froude number. Thus,

it can be reasoned that for variations of the Froude number

of the order of magnitude stated above the resultant effect

on the overall behavior of the density induced flow is small.

This deduction has been verified by observations of the den-

sity induced flow behavior at two different Froude numbers.

4.2.1.2. Experimental Apparatus and Observational
Techniques

The experimental model of the prototype TSP

has been constructed at the Ralph M. Parsons Laboratory for

Water Resources and Hydrodynamics at M.I.T. The model

fabrication consisted mainly of the modification of an

existing flume. The flume, shown in Figs. 4.13 and 4.14,

is constructed of 1/2" glass mounted on an aluminum frame.

The nominal flume dimensions are 8" deep, 18" wide and

64 feet long. The piping and storage tanks which were

added to the facility to enable the desired inlet discharge

and withdrawal flowrates to be maintained in the model are

shown schematically in Fig. 4.7.

The inlet flow holding tank and the flume are filled

with water at the desired temperatures prior to the oper-

ation of the experiment by mixing streams of hot and cold



Fig. 4.7 Schematic of Thermal Storage Pond Model Experiment
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tap water (controlled by globe valves), and by monitoring

the mixed stream temperature. Careful monitoring of the

filling stream temperature allows the establishment of

initial discharge tank and flume temperatures within 1 0F

of the desired values.

As indicated in Fig. 4.7, a flume recirculation line

was installed to allow the initial pond inventory to be

continuously cycled through the flume in order to diminish

any temperature differences which may develop just prior to

the actual experiment. Also the recirculation flow allows

the plug flow velocity field to be established in the flume

prior to the introduction of hot inlet water. The inlet and

withdrawal flow rates are measured by rotor-meters with

maximum capacities of 67 gpm. The discharge structure con-

sists of four 2 in. threaded nozzles which could be reduced

in size by application of the appropriate reducing fittings.

Various withdrawal schemes were utilized during different

experimental runs depending on the current modeling require-

ments.

The following observational techniques were tested for

recording the thermal-hydraulic behavior of the model:

1) verbal recording of a description of the progress

of the dyed density-front as a function of time

using a cassette recorder,

2) photographic recording of the dyed density-front

configuration at known instants,
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3) videotape recording of the dyed density-front

displacement, and

4) measurement of vertical temperature profiles

with thermistor probes at fixed stations.

In general, the photographic and video recording methods

have not been found to be superior to the simple verbal re-

cording of the motion since the characteristic velocities

are small (less than 0.20 ft/sec). Temperature measure-

ments were found to be necessary in determining the effects

of mixing in the pond upon the outlet flow temperature. The

temperature dependent resistance of the fast response (70

millisec) thermistor probes was measured using a compensating

Wheatstone bridge circuit coupled to a Sanborn amplifier and

strip chart recorder.

The flow visualization dye, FD+C Blue Food Color #1,

was used to color the entire contents of the inlet flow

holding tank just prior to the operation of the experiment.

The addition of the dye has an inconsequential effect on the

density difference between the inlet flow and the initial

flume inventory. The required dye concentration is 0.5

grams/gallon.

4.2.2 Analytical Model

4.2.2.1 Approach to the Problem

An approximate analytical model of the behavior of
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a density front in a horizontal plug-flow pond has been

developed based on a control-volume momentum conservation

equation. The resultant equation contains one empirical

constant, the value of which is determined by experiment.

Essentially the model utilizes the superposition of the

density-induced "lock-exchange" flow field upon the un-

perturbed homogenous fluid velocity profile in the pond.

It also includes interfacial and bottom friction effects.

The formulation of the control-volume equation for the case

of interest is similar to the treatment by Abraham and

Vreugdenhil [A2] of the exchange flow problem.

4.2.2.2 Derivation of Density-Front Propagation
Equation

The equation of motion of the leading and trailing

edges of the density front in a horizontal plug-flow pond

is obtained from a force balance on the double-lumped

moving control volume shown in Fig. 4.8. The forces affect-

ing the motion of the leading and trailing edges of the

density front with respect to the mean plug-flow velocity

V are:
p

1) F = pressure force due to p2 >1'

2) F. = interfacial friction force,

3) Fb = bottom friction force, and

4) Fm = inertial force, where

Fi, Fb, and Fm all act to resist the pressure force F . Thus,

one obtains the result
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FP = Fi + Fb + F . (4.26)

The approximate analytic expression for Vf, the leading

edge velocity, and VT, the trailing edge, is obtained by

expressing Eq. (4.26) in terms ofd, the rate of growth

of the horizontal interfacial length. Thus, under the

assumption of equal depths of the two overlying layers, and

from the requirement of continuity one obtains the result

Vf -V =v -v dD1 2  0(4.27)f - p = p - T dt4

The total static pressure due to density difference

acting horizontally across any point on the interface is

(P2 ~ l h = h(p 2 - (4.28)

where h is the depth into the pond.

Since this pressure difference is a linear function

of depth the total pressure acting across the interface is

given as

F - 2 P1)H - 0.0 A , (4.29)
p 2

where (P2 - 1) is the pressure difference at the bottom

of the pond, and A is the cross-sectional area of the pond,

(A = L-H, where L = width). The average pressure can be

envisioned to act (see Fig. 4.8) to the right on the top

fluid segment in the control volume and to the left on the
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bottom fluid segment. Substitution of Eq. (4.28) into

Eq. (4.29) gives the result

Fp = LH2 p - (4.30)

where the parameter 0 has been introduced to account for

the fact that the actual pressure difference may be different

from that deduced from the simple model.

The friction force terms in Eq. (4.26) can be expres-

sed as

F = T iAi, and 
(4.31)

Fb bAb

where A i Ab = D-L, and T and Tb are the interfacial and

bottom shear forces, respectively. The interfacial shear

is given by

T 1 2 1 dD 2
1 PV R P p ( dt ) , (4.32)

where f is the interfacial friction factor. The #ari-

ation of f as deduced by Abraham and Eyeink [Al] is shown

in Fig. 4.9 as a function of the Reynolds number.

The bottom shear force will be effected by the magnitude

of the plug-flow velocity. The resultant bottom shear force is

T = b (D) V l(dD) ) . (4-33)
b TP dt 2 'T dt
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The inertial force acting on the control volume is

Fm d (434)m g dt

or

F M dV + V dM,
m go dt gc dt (435)

when M = DLHp, and V is the average relative velocity of the

control volume segment with respect to V . Since the accele-
p

ration of the control volume is expected to be small the

term M dv / g may be neglected. Noting that

dMdD LHp (4.36)
dt -t

and

= ( ) (4.37)

we obtain the result

F 1 dD 2 LHp (4.38)

In deriving the terms Fi, Fb and Fm it has been

assumed that the density front velocity similarity profile

is that shown in Fig.. 4.8. Thus, to account for the fact

that the actual velocity profile may be different from that

assumed the parameter y is introduced as follows:
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(dD) = ( dD (39

Actual

where ()Actual is the actual rate of growth of the

distance D defined in Fig. 4.8. The entire equation of

motion may now be written as

LH2  2 d 2 * L +

+ 8 p 2 DD
y (dD .dD2

.2
y dD )2

+ - )dt L H p
S(14.140)

The above equation is quadratic in d, with the solution being

2 2

2b pD + (Y b pD)2 +4 H2 ) fi pD - 1 D 2
dD 8
dt f 2

2(y -pD - bpD + y Hp) (4.41)
16

Now if typical values of the various parameters are used to

evaluate Eq. (4.41) (y = = 1) it becomes apparent that

the effect of V p, for the range of Froude numbers of interest,

is small. Thus, the terms containing V can be neglected in

Eq. (4.41). Equation (4.41) is then simplified to the form
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( 2 1/2
dD _ H2 HAg (4.42)

dt 2 (Hp + i+ b pD. )
4 pD)

or

dD H ) 1/2
dt af +fb/

Hp+ ( 4 )pD

(4.43)

where a = 6/y2

Thus, the expression for the rate of growth of the

horizontal projection of the interface is given by an equation

with a single free parameter to be determined by experiment.

The total velocity of the leading edge of the density front

is now expressed as

V C V + a H2Apg
F p (Hp f ib4 pD (4.44)

The displacement of the leading edge at time t from D = 0

at t = 0 is

XF = Vt + 1 D(t), (4.45)

where D(t) is .obtained by integrating d (Eq. 4.43) fromdt

time-zero to t.' The resulting expression for D(t) is
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2/3

2 _ 3/2 3p(fifb
D(t) =H4H2H + ( 2 )+

p ( f +f b /8H2 Apg

- 4H

(f i fb/4
(4.46)

The position of the trailing edge at time t would be

XT =C vt - D(t). (4.47)

It should be realized that since no specific assumption

has been made regarding the exact density-induced velocity

distribution the above equation only predicts the position

of the leading edge or trailing edge of the density front.

The parameter C0 corrects for the fact that the channel

velocity at the height of the leading edge (or trailing edge)

is, in general, different from the mean plug-flow velocity.

The value of C can be determined, by assuming that the

unperturbed velocity profile in the pond is given by the

relationship [R4]

1/6
V(y) = V (X) , (4.49)

where Vs is the surface velocity. The value of Co at any

particular height y in the pond is seen to be
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(y 1/6

Co (y) = 5 Yo
C p (4.50)

At y = 0, C0 = 0 and at y = yo, C0 = 1.15. The fact that at

y = 0, C = 0 poses somewhat of a dilemma since if some

simple density induced flow similarity profile is assumed

(linear for example) Eq. (4.48) predicts a negative trailing

edge velocity for the case of hot water discharged into an

initially cold pond. However, keeping in mind that the

present interest is primarily in predicting the position

of the leading edge, the position of the trailing edge is

(for the case of the hot discharge into the cold pond)

assumed to be given by

VT (1.0 - (C(y 0) 1.0.))'V + D(t)
2

(4.51)

This relationship satisfies continuity (i.e. Eq. 4.45))

if a linear density front profile is assumed. As is dis-

cussed in the next section this assumption appears to be ade-

quate for describing the bulk density flow behavior outside

the boundary layer at the bottom of the pond.

The case of the advancing cold front presents a different

problem. In this case the maximum density-induced forward

velocity should occur at or near the bottom. Certainly it

would not occur at the bottom wall since the wall no-slip

condition always holds.
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In any event, the maximum advancing cold front velocity

would be less than the maximum advancing hot-front velocity

since in the latter case the plug-flow velocity correction

factor C is greater than 1 while in the former case it would

be less than 1. The advancing cold front case thus repre-

sents a more desirable situation than with the advancing

hot front in terms of achieving a near vertical density

front velocity profile. In view of this fact no effort

has been made to quantify the behavior of the advancing

cold front other than to say that for TSP design purposes

the advancing hot front is the more restrictive design

condition. This conclusion has been verified by experiment.

4.2.2.3 Summary

An expression for prediction of the position of the

leading edge of an advancing two dimensional "hot" density

front in shallow water channels has been derived and is

repeated here:

1/2

V =C V + aH 2Apg(-2
F 0 p f f +f b/ Apg

Hp + ( )D

where C ~ 1.15. For small values of D, Eq. (4.52) reduces to

V = V (C + F ) ,
F P 0 2D (4.53)
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where FD is the pond densimetric Froude number

V
FD# opH 1/

p 2 (4-54)

The velocity of the trailing edge is approximated by

the equation:

2 1/2
H opg

VT = 20CVp Hp + 1 b pD (4.55)

where again C0  1.15. Equations (4.52) and (4.55) are

valid only for flows FD > 1.0 since at lower FD values

Eq. (4.55) will predict a negative trailing edge velocity.

No quantitative analysis of the advancing cold front has

been found to be necessary since the advancing hot front

represents the more conservative TSP design situation.

4.2.3. Results of Initial Design Concept Evaluation

Three prorotype TSPs have been designed to span the

range of design densimetric Froude numbers from 0.5 to 1.5,

as is shown in Table 4.1. The densimetric Froude number

value of 1.5 can be considered to be an upper limit for

practical designs. Three model designs which simulate

these prototype designs, and which can be realized in the

available flume are summarized in Table 4.2. All three
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designs result in unsatisfactory thermal hydraulic per-

formance of the pond.



TABLE

Thermal Storage Pond

4.1

Prototype Designs

1. Densimetric Froude Number

2. Depth (feet)

3. Width (feet)

4. Aspect ratio (depth/width)

5. Mean velocity (ft/sec)

6. fo (L/D)

7. Reynolds Number

8. Discharge

9. Temperature Difference
(OF)

#1 #2 #3

1.5 1.0 .50

15 15 15

72 109 218

0.20 0.14 0.07

0.93 0.61 0.30

o.o48 0.072 0.144

4.3x106  2.8x10 6  1.5x10 6

Highly unstable submerged multiport
type

10 10

195

10
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TABLE 4.2

Thermal Storage Pond Model Designs

#1 #2 #3

1. Densimetric Froude Number 1.5 1.0 .50

2. Depth (inches) 4.5 4.5 4.0

3. Width (inches) 18 18 18

4. Aspect ratio 0.25 0.25 0.22

5. Mean Velocity (ft/sec) 0.28 0.19 0.088

6. Total flow (GPM) 70.4 47.2 19.5

7. Reynolds Number 30,000 20,100 8,830

8. Scale factor 48.4 72.7 147.0

9. Temperature difference
(OF) 40 40 40

10. Vertical Distortion 1.21 1.80 3.33

11. f (1/D)model 1.83 1.38 0.94
f0 (1/D)prototype

highly unstable submerged multiport12. Discharge
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4.2.3.1 Qualitative Discussion of Thermal-Hydraulic Behavior

All three of the TSP designs summarized in Table 4.2

have significant density-induced flows which partially

reduce the pond thermal capacitance. As is shown in Fig.

4.15 the highly unstable inlet flow jets were successful

in establishing initially a nearly vertical density front.

However, as the density front propagates a short distance

downstream from the inlet mixing region as shown in Fig.

4.16 significant vertical stratification begins to develop.

In fact, except for the case of a densimetric Froude number

of 1.5, the trailing edge of the density front was not

observed to travel a significant distance beyond the inlet

mixing region.

Figure 4.16 also indicates that a short time after

the initiation of the inlet flow, the overlying hot wedge

is somewhat diluted as a result of inlet flow mixing. This

small dilution nevertheless is rapidly overcome by the

continuing intrusion of the unmixed inlet flow, and a dis-

tinct density interface develops rapidly.

Accurate visual determination of the position of the

trailing edge of the upper fluid layer in all cases was

difficult since in none of the experiments was the inlet

flow able to displace rapidly or to mix with the initial

cold water in the boundary layer at the bottom of the channel.

Figure 4.10a shows qualitatively the profile of the density

front for FD greater than about 1.00. The interface is



a
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nearly linear except at the leading and trailing edges.

At lower densimetric. Froude numbers density front profiles

developed as shown approximately in Fig. 4.10b.



200

In addition to the three experimental runs performed

at densimetric Froude numbers of 0.5, 1.0, and 1.5 several

runs were made at higher densimetric Froude number values

to see if any gross changes in the flow behavior would

occur. In all cases the flow behavior was observed to

remain qualitatively unchanged.

4.2.3.2 Quantitative Evaluation of Thermal-Hydraulic
Behavior

The positions of the leading edge of the advancing

density front as a function of time for each of the TSP

designs of Table 4.2 are shown in Fig. 4.11. In each

case the position is plotted in a non-dimensional manner

as a function of the fraction of the plug-flow residence

time V/Q, which had elapsed. The design parameters are

equal for all of the ponds except for the densimetric Froude

number values. As Fig. 4.11 indicates, even a TSP with a

Froude number of 1.5 (which corresponds to a channel only

72 feet wide and 15 feet deep) is observed to short-circuit

long before the plug-flow residence time has elapsed.

Clearly, this problem becomes worse at even lower design

densimetric Froude number values. Once the density front

has reached the withdrawal region, the pond would be effect-

ively short-circuited, since as is discussed in section 4.1.3,

selective withdrawal of the remaining cold layer is not

possible.
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A total of 8 experimental runs were made to determine

the value of the empirical constant a of Eq. (4.52). In

each experimental run the position of the advancing hot

front was observed visually and recorded as a function of

time. Some of these runs reflected variations of the design

parameter values of the three initial model designs summar-

ized in Table 4.2. Table 4.3 summarizes the values of the

relevant parameters for each run, and all of the resulting

data points are plotted in Fig. 4.12. The coordinate axes

in Fig. 4.12 are chosen such that the slope of the straight

line drawn through the data points is equal to the empirical

coefficient a. The abscissa variable is time, while the

ordinate variable is the result of integration of Eq. (4.52),

followed by solution for aT. The ordinate variable is

y* =1 (D ) 3/2- B (4.56)

where D = observed position of the leading edge of the
advancing hot front at time t,

A - 4H 2 Apg
p(f7+fb

3/2

B =HApg

3 f +f / 4

C = Ap (2 b ,and
H g

E =4H
fi + ft b '
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TABLE 4.3

Summary of Experiments for a Determination

F AT p Depth
D (OF) (ft/sec) (Inches)

1.46 37 0.26 4.5

2.99 9 0.26 4.5

1.30 32 0.25 4.75

1.48 36 0.26 4.5

2.58 10 0.25 4.75

1.05 37 .19 4.5

1.28 40 .16 2.0

.85 40 .113 2.2

204

No.

1

2

3

4

5

6

7

3

a

1.16

1.20

0.93

1.00

1.11

1.20

1.11

1.03
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Fig. 4.13 TSP Experimental
Model - Side View
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Fig. 4.14 TSP Experimental
Model - Top View
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Fig. 4.15 Initial Density Interface.-.

I

Fig. 4.16 Advancing Density
Interface
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An approximate best-fit (eyeball) straight line was

drawn through each set of data points, and a value of (I

determined. These values are summarized in Table 4.3

along with the average value of 1.09 for all runs. Using

the value of a the data points for all 8 experimental runs

can be predicted with an average error of 4.0%. The aver-

age error for the run with the poorest agreement is 7.2%.

Note that most runs show substantially greater downstream

propagation of the density front at small times than is

predicted by Eq. (4.52). This deviation is expected since

the effective volume of the injected hot water (and hence

the apparent downstream propagation of the front) is in-

creased due to the inlet flow mixing with the cold pond

inventory.

4.3 EVALUATION OF DESIGN MODIFICATIONS

4.3.1 Survey of Design Modification Options

As Section 4.2.3.2 has indicated, an efficient

and economical horizontal plug-flow TSP cannot be designed

as envisioned in the initial design concept. If the devel-

opment of the TSP design on the basis of a horizontal plug-

flow pond is to be pursued then some measures must be taken

to retard the advancing density front, and the resultant

short circuiting. Thus, some simple modifications of the

initial design concept have been investigated by testing

the effects of design changes in the experimental model.
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In evaluating different possible designs all the previously

discussed constraints must be considered. No exhaustive

examination of all possible design modifications has been

attempted. The development effort has been directed

mainly towards achieving experimentally a workable design

with a simple and hopefully economical modification.

There appear to be two different means of retarding the

density-induced flow in a TSP. The first is simply the

correct placement of barriers in the pond such that the

advance of the leading edge of the front is retarded. The

second is the placement of barriers in the pond such that

internal mixing jets are created which have the effect of

reducing the local density differences, and consequently of

retarding any density-induced flow. Actually, any barrier

or construction placed in the pond will have, to varying

degrees, both of the above effects. Any constriction

produces a jet as a result of the locally increased flow

velocity, and a barrier will retard the leading edge of

either a hot or cold advancing front. Thus, the design

task has been to select empirically an appropriate pond

constriction design and to determine the required number

of such constrictions in order to yield the desired result

of adequately diminishing the density-induced flow short-

circuiting.

4.3.2 Additional Modeling Considerations

In modifying the basic flow processes occuring
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in the model TSP due to changes in the model geometry

one needs to insure that the identical geometry changes in

the prototype will yield the same effect on the prototype

flow behavior. Of particular importance are the effects

of jets created by constrictions in the flow channel. As

noted by Jirka [Jl], modeling of flows with jets requires

undistorted geometry. This is because the width of a tur-

bulent jet flows as a linear function of the downstream

distance. The rate of growth of a jet is independent of the

Reynolds number [W3]. All experiments reported herein

have a distorted vertical dimension to correct for the fric-

tion factor dependence on Reynolds number (the distortion

also helps in maintaining high Reynolds number values).

Consequently, any jet produced in the model which grows

vertically will not be modeled correctly. However, the

practical consequence of this modelling flaw does not

appear to be important. This is because the type of con-

striction which appears to offer the best combination of

pond performance enhancement, and ease of construction,

is a symmetrical full depth barrier as shown in Fig. 4.17a

and 4.17b. Such constrictions produce laterally two

dimensional jets which are largely unaffected by the vertical

distortion. Of course the bottom does interact with such

jets as a result of the requirement of a zero bottom wall

velocity (i.e. friction) and thus they are not entirely

independent of the vertical dimension.
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Fig. 4.17 Horizontal Barriers

(a)

(b)
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4.3.3 Comparative Performance of Design Modifications

4.3.3.1 Performance of Barriered Ponds

4.3.3.la Horizontal Versus Vertical Barriers

Initially a determination of the relative merits

of horizontal versus vertical barriers was made. A horizon-

tal barrier is of the type shown in Fig. 4.17a and 4.17b

while a vertical barrier would have the general characteris-

tic of blocking the entire width of the pond over a part

of the water depth as shown in Fig. 4.18.

As is shown in Fig. 4.19, the horizontal barrier con-

cept was found to be superior. Figure 4.19 compares the

thermal capacitance performance of identical ponds (except

for barrier geometries) on the basis of percentage of the

theoretical cooling potential recovered from the pond as

a function of time. The time variable is plotted in a non-

dimensional manner by dividing by the plug-vlow residence

time V/Q where V is the pond volume and Q equals the flow

rate. Mathematically, the percentage of the theoretical

cooling potential recovered, R(t). is defined as follows:
t
T -T

R(t) = 100% -T (VQ) (4.57)
00) Ti- oa- V_(57

01ot

where T = pond inlet temperature,

Toa = actual outlet temperature,
Tot = outlet temperature for theoretical plug-flow,and

t = elapsed time of operation.
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Fix. 4.18

Vertical Barrier
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Also shown in Fig. 4.19 is the idealized plug-flow per-

formance curve and the performance curve for a TSP with

no flow constrictuions.

All the curves in Fig. 4.19, except that for the ideal-

ized plug-flow case, are deduced from actual temperature

measurements in the model at the point of flow withdrawal.

In all cases the withdrawal structure consisted of a hori-

zontal slot 1" high centered at mid-depth of the TSP model.

The experimental error in the curves in Fig. 4.19 is esti-

mated to increase from 0.0 (at t/(!)= 0) to about ±3% (at

t/( )=1.0). Correction was made for water surface heat loss

from the flume based on an experimental determination of the

water to air heat transfer rate.

The performance curves in Fig. 4.19 indicate that in

maintaining the total amount of flow constriction constant

at 1/2 the total cross-sectional area (i.e. constant barrier

pressure drop) the horizontal barriers appear to be slightly

more efficient than the vertical barrier. If one considers

the comparative difficulty in constructing the vertical

barrier as opposed to that involved with the horizontal

barrier, the horizontal is also seen to be the more desirable

option.

It is important to note that all the curves in Fig. 4.19

are for a thermal storage pond with a design densimetric

Froude number of 0.5. From Tables 4.1 and 4.2 it is seen

that this corresponds to a prototype TSP design 15 ft.

deep and 218 ft. wide. This geometry is practical for the
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storage of large volumes of water. A three-hour capacity

TSP of these dimensions would require a channel about

3300 ft. long, and would have a total surface area of about

16 acres. Additionally, the flow head loss through the

barriers is small. The 1/2-total area construction results

in an additional head loss of approximately 0.05 inches

per constriction in the prototype. This loss is negligible

even for multiple barriers.

4.3.3.lb Observations of Thermal-Hydraulic Behavior
of Horizontal-Barriered TSP

In performing the TSP model experiments the injected

discharge into the pond was dyed in order that visual ob-

servations could be made of the flow processes. For the

case of the barriered ponds this visualization of the den-

sity front behavior yielded substantial insight into the

effects of the different types of barriers in retarding the

density-induced motion. A series of photographs which

characterize the behavior of an advancing hot front are

shown in Figs. 4.26 through 4.29. The pertinent parameters

describing the particular experiment are:

F = 0.5, type of barrier = 1/2 total area
hohizontal type

Number of barriers = 8, modeled storage capacity = 6 hrs.

Figure 4.26 shows the density front as it approaches

the first barrier. Due to the thinness of the hot stratum

it is not affected significantly by the barrier. Recall
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that for the case of FD = 0.5 the trailing edge (not visible

in the photograph) never advances far beyond the inlet mixing

zone. As the thickness of the density front passing through

the barrier increases, however, the influence of the barrier

becomes very strong as is shown in Fig. 4.27.

At lease two processes appear to be contributing to

the vertical mixing of the hot and cold fluids. The first

process in the downward movement of the hot upper layer

along the upstream surface of the barrier, followed by

streaming around the barrier and through the constriction.

Passing through the constriction is an apparently nearly

homogeneous flow which in the second process mixes with the

ambient water in the downstream pond segment. The downward

movement of the upstream hot layer behind the barrier can

be observed in Fig. 4.27. However, the mean temperature

of the flow through the constriction is necessarily less

than that of the upstream hot layer since, as can be seen

in Figs 4.27 and 4.28, the underlying cold layer is grad-

ually drawn through the constriction.

The same processes occur at succeeding barriers down-

stream. In fact, succeeding barriers are more efficient

in mixing the stratified layers since the density front

at each succeeding barrier is progressively less stable

than previously. In the latter portions of the pond the

dye tracer indicates that little or no vertical stratifica-

tion exists, as can be seen in Fig. 4.29 (the dark area to
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the extreme right is a shadow).

4.3.3.2 Refinement of Horizontal Barrier Concept

In attempting experimentally to optimize the design

of a barriered TSP two general problems need investigation.

The first is the design of the barrier itself, and the

second is the specification of the number and spacing of

barriers required to obtain good pond performance. Beyond

these two problems it would be desirable to investigate the

tradeoffs between decreasing the pond design densimetric

Froude number value, and increasing the number of barriers.

Additionally, the effect of a floating roof needs to be

evaluated.

All these problems have been given some consideration

by making appropriate modifications to the TSP experimental

model. The goal of this series of experiments has been

to converge to a spectrum of workable designs and within

that spectrum to define a good design.

4.3.3.2a Barrier Geometry

Horizontal barrier design variations from that shown

in Fig. 4.19 would include different total area constric-

tions, and a distribution of the constriction over the width

of the channel such that multiple smaller internal jets

would be created at each barrier. Increasing the total

constriction (i.e. more blockage of flow) has the advan-

tage of creating more vigorous jet mixing. However, the
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experiments have shown decreased jet size may lead to un-

desirable preferential attachment of the jet to the pond

wall resulting in partial short-circuiting. This pheno-

menon, termed the Coanda effect [K6], is similar to that

occurring in bistable fluidic switching devices. In the

TSP model this effect was observed at a design F = 0.5,

and a barrier geometry at 5/6 total constriction with a

1/6-width slot at the center of the pond. In this case the

jet issuing from the first barrier became attached to the

pond wall, bypassing a large part of the pond volume between

the barriers. A large recirculating eddy was formed in each

segment as is shown in Fig. 4.20. The result of this be-

havior is that no increase in the pond performance was noted

beyond that obtained in the case of a 1/2 total area con-

striction. This attachment effect appears to be adequately

counteracted by using smaller multiple jets to obtain the

same total flow constriction.

Since this attachment phenomenon was evident in some

experiments and not in others some critical condition for

this attachment to occur is suggested. Review of the work

by Krischner and Katz [K6] however, indicates that predic-

tion of the critical condition in the particular situation

of interest is an unsolved problem. Only some simple

cases of isolated jet attachment have been investigated,

with the results not being applicable to the present case.



Preferential Jet Attachment to Wall (Coanda Effect)

Top View of TSP Model

Fig. 4.20 Flow Field Resulting From Attached Jet'
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4.3.3.2b Number and Spacing of Barriers

Several experiments were performed to examine the

effect of varying pond length on the number of barriers

required to achieve a certain level of performance. The

results are summarized in Table 4.4. Essentially, these

results indicate that the number of barriers required to

achieve a certain level of performance (percent of the

theoretical cooling potential recouped at the plug-flow

residence time V/Q may be largely independent of the

length (storage volume) of the pond. To see this, compare

the results of case 1 to those of cases 2 and 3 in Table 4.4.

Intuitively the conclusion can be related to the need in

the smaller (shorter) ponds to diminish the density in-

duced flow more quickly than in the larger (longer) ponds.

One would also expect that there would be a diminishing rate

of return for the addition of barriers to the pond. Such

behavior has been observed, as is shown in Fig. 4.21.

Throughout the experiments uniform spacing of the

barriers was employed. Ideally, since the strength of the

density-induced flow decreases as the mixed front passes

through the pond it may be advantageous to have the barriers

more closely spaced near the TSP inlet.

4.3.3.2c Design Densimetric Froude Number

As is discussed in Section 4.2.3.1 with regard to the

initial design concept (unbarriered pond), the tendency
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TABLE 4. 4

Experiments to Examine Effect of Number
of Barriers on Pond Performance

Case FD Number of
Barriers

1 0.5

2 0.5

3 0.5

8

4

8

Prototype
Storage Volume

6

3

3

% of Total Theoretical
Cooling Potential

Recovered at t/(V/Q)=1.0

87%

81%

89%

All barriers 1/2 Total Area Constriction, 3 slot horizontal
type
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for short-circuiting increased with decreasing design den-

simetric Froude number value. Qualitatively this same

result holds in the case of the barriered pond. Decreasing

the design densimetric Froude number value allows for a

deeper and wider pond, but to maintain high performance

additional (or more effective) barriers need to be added.

Table 4.5 gives the performance loss for a decrease in

design densimetric Froude number from 0.5 to 0.25 (cases

1 and 2). However, in comparing cases 1 and 3 in Table 4.5

it is apparent that a highly efficient pond can still be

realized with the same number of barriers by increasing

the effectiveness of the barriers. The barrier effectiveness

is increased by increasing the total constriction, which

in turn increases the jet mixing effect.

The experiments were limited to a minimum densimetric

Froude number of 0.25 due to the necessity of maintaining

a high (turbulent) Reynolds number. However, decreasing

the design Froude number much below this value would probably

not result in substantial savings since the number and width

of the required barriers would become excessive.

In addition to the modeling of the behavior of the

advancing hot front at the design condition temperature

difference of 10 0F, experimental runs were made to examine

the off-design behavior. One run was made which is identical

to case 1 in Table 4.4 except instead of a hot discharge

into a cold pond, cold water was discharged into an initially
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TABLE 4.5

Experiments to Determine Effect of Design
Densimetric Froude Number on TSP Performance

F D Number of
Barriers

0.5

0.25

0.25

8

8

8

Fraction of Cross-
Sectional Area
blocked by Barrier

1/2

1/2

5/6

% of Total Theo-
retical Cooling
Potential Recovered
at t/(V/Q)=1.0

87%

75%

86%

All barrier horizontal type, 3 slot, Prototype Storage
Volume = 6 hrs.

Case

1

2

3
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hot pond. This simulates the "cooldown" mode of operation.

As anticipated the performance increased from 87% to 92%

(percentage of theoretical cooling potential recouped at

t=V/Q). Also as anticipated an evaluation of the off-design

performance (AT=5 0F) for a TSP of the same design revealed

an increase in the performance from 87% to 90%.

4.3.4 Numerical Prediction Model for TSP Thermal
Behavior

4.3.4.1 Analytical Modeling Difficulties

It has been demonstrated that the thermal perfor-

mance of the thermal storage pond need not be known exactly

for adequate evaluation of the plant lifetime economics.

It is only required that the actual performance fall between

the bounds of plug and fully-mixed flow. Nevertheless, if

the TSP concept is to find application there will be a

strong desire for a means of predicting the thermal behavior

for all conceivable operating conditions.

In attempting to develop a predictive model of a

barriered TSP one is immediately confronted with the problem

of mathematically modeling the complex flow behavior of a

density front as it intercepts and passes through a barrier.

The fluid dynamic mechanisms which result in the observed

behavior are not obvious. In fact, as is discussed in

Section 4.3.3.lb, there may be several phenomena which

contribute to the overall effect of the barrier. Addition-
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ally, there is the problem of predicting the motion of the

density front between the barriers.

4.3.4.2 Approximate TSP Behavior Model

In spite of these difficulties some effort has been

directed towards developing a model of TSP thermal behavior

based on simple approximations to the density induced

fluid dynamic behavior. It was believed that such a model

might result in some improvement over the oversimplified

plug-flow and fully-mixed models. The results obtained

from the model are not very accurate.

The approximate numerical model used in attempting to

predict the performance of a barriered TSP is based on a

time-marching calculation of the position of the density

front in each segment of the pond. The assumptions made

are the following:

1) full vertical mixing occurs in all flows passing

through a barrier,

2) a distinct linear interface develops in each

TSP segment sequentially and its motion is given

by Eqs. (4.52) and (4.55). (If t-he trailing

edge velocity- VT < 0.0, then set VT = 0.0)

3) full-mixing occurs at each time step of the water

on the "hot" side of the linear density front,

4) if the leading edge of the density front inter-

cepts the next barrier, then the amount of the
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remaining cold wedge in that segment expelled

through the barrier during that time step is

equal to the volume decrease resulting from

the imaginary projection of the leading edge

of the density front past the barrier. (See

Fig. 4.22)

An illustration of the calculational procedure is

given in Fig. 4.23.

A first test of the model is that it be able to pre-

dict the temperature of the discharge from an unbarriered

pond. The agreement between the numerical model and the

experimental result is better than that of the oversimpli-

fied models of plug-flow and full-mixing. A typical case

is shown in Fig. 4.24. In applying the numerical model

to a barriered pond some improvement over the idealized

cases of flow behavior in behavior prediction was again

noted as is shown in Fig. 4.25. Nevertheless, the errors

are still large and it is apparent that a more realistic

model of the fluid dynamics is required for confident pre-

dictions.

4.4 SUMMARY AND CONCLUSIONS

The two basic options for the thermal storage

pond design - horizontal and vertical plug-flow - have

been evaluated semi-quantitatively with regard to their



229

Fig. 4.22 Illustration of Barrier Flow Calculation
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Fig. 4.25 Comparison of Observed and Predicted TSP Outlet

Temperature -- 4 barriers, Fd='*O

Fix. 4.24 Comparison of Observed and Predicted TSP Outlet
Temperature -- No barriers, Fd=0.5
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Bar-ier

Fig. 4.26 Density Front
Intercepting Barrier
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-II

Fig. 4.27 Mixing of Density
Front at Barrier
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Fig. 4.28 Expulsion of Cold
Wedge thru Barrier

Fig. 4.29 Vertically Homogeneous
Flow near Point of Withdrawal ~
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value in TSP applications. The horizontal plug-flow pond

was selected for detailed evaluation based on its relative

merits. Subsequently, an initial design concept was for-

mulated for the horizontal plug-flow pond and its perfor-

mance evaluated by the use of an experimental model. The

result was found to be unsatisfactory due to the magnitude

of the density-induced flows. Thus, modification of the

initial design concept was required. Various flow constric-

tions which induced flow mixing were evaluated in model

studies in order to determine their relative merits. A

simple full-depth barrier with vertical slot jets proved

to be a very successful in achieving control of the density-

induced currents.

Experiments were performed to examine the sensitivity

of the pond performance to variations in the design densi-

metric Froude number, and to the number and geometry of

the flow constrictions. In addition the off-design perfor-

mance was evaluated. An attempt to develop a simple mathe-

matical model to predict the behavior of a barriered TSP

proved to be inconclusive. Accurate and predictive mathema-

tical modeling of the TSP thermal-hydraulic behavior will

require development of more precise models of the transient

non-homogeneous flows occurring in the TSP.

The main conclusion of this design investigation is

that a horizontal plug-flow thermal storage pond of apparently

reasonable geometry and cost can be designed such that the
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ideal plug-flow behavior is approximated well. The following

TSP specification results in the excellent design-condition

performance shown in Fig. 4.30. This case may be used to

evaluate TSP construction costs:*

Design FD = 0.25,

Depth = 20 ft.,

Width = 24o ft.,

# of barriers = 8

Length = (dependent on desired storage volume),

Barrier geometry = 5/6 total constriction, horizon-

tal type, 3 slot

Discharge structure = 10 uniformly spaced 4' dia.

submerged nozzles,

Withdrawal structure = no specific structure

required, and

Cover = (floating cover will enhance performance).

It should be emphasized that many other designs may also

prove to be efficient thermally, and may ultimately be more

economical. Qualitatively, tradeoffs between the above para-

meters may be made on the following basis:

*For design flow = 1000 cfs, design AT = 10 0F
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Increasing design FD + increasing performance

Increasing depth + decreases performance

Increasing width + decreases performance

Increasing number of barriers + increases performance

Increasing total constriction + increases performance
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CHAPTER 5

ENGINEERING DESIGN AND ECONOMIC EVALUATION

OF TSP/DRY COOLING TOWER SYSTEMS

5.1 Engineering Design Considerations

5.1.1 System Configuration

In general, there are two locations in the circulating

water flow circuit of a dry dooling tower system at which

one might consider incorporating a thermal storage pond.

These locations are the dry tower outlet and the condenser

outlet. Some simple analysis indicates that the tower

outlet is the preferable location. The relative merits of

the two configurations shown in Fig. 5.1 are best shown by

a simple numerical example.

The performance of the idealized TSP/dry tower system

shown in Fig. 5.1 resulting rom a 30 OF daily range in the

ambient dry bulb temperature (70 OF to 100 OF) is shown in

Table 5.1. Note that system A has been termed the "cold"

pond system and system B the "hot" pond system. In both

systems A and B in Fig. 5.1 the pond does produce the

desired capacitive effect and a greater rate of heat

rejection occurs during the "cooldown" mode of operation.

As a consequence, the condenser outlet temperature (approx-

imately equal to the condensing temperature) is less in
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"Hot" Pond System

Fig. 5.1 Alternative TSP/Dry Tower System Component
Arranvements



240

both systems during the "heatup" period in comparison to

that occurring in a system with no capacitive pond.

However, the condenser outlet temperature for system A

during the heatup mode is substantially less than that for

system B. The superiority of system A, the "cold" pond

system, can be attributed to the fact that the condensing

temperature in system A during the "heatup" mode is not

directly coupled to the maximum ambient temperature as it

is in system B.

The component configuration of system A also has other

advantages. System A would allow the circulating water

pumps to be located in their normal position just ahead

of the condenser. System B would require that a set of

pumps be located downstream of the pond in order to overcome

the pressure drop occurring in the tower. Additionally,

the "cold" pond concept is attractive since the temperature

of the pond is lower than that of system B. High pond

temperatures would not be advantageous with regard to the

selection of a TSP lining and roofing material.

5.1.2 Mode Switching Transients

Knowledge of the thermal transients occurring in the

TSP-dry tower-plant system as a result of operational mode

switching is necessary for the prediction of the power

generation transients. Also one needs to be assured that

the turbine-condenser is not subject to excessive thermal-
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Table 5.1

Comparative Performance of Alternative TSP /
Dry Tower Configurations

Condenser
Inlet
Temperature

Condenser
Outlet
Temperature

Tower
Inlet.
Temperature

Tower
Outlet
Temperature

System A

(TSP located
at tower outlet)

Heatup Mode

Cooldown Mode

System B

(TSP located
condenser
outlet)

Heatup Mode

Cooldown Mode

System C

(Simple Dry
Tower System)

Afternoon

Early
Morning

,

1100F

120

140

150

140

150

140

150

120

110

120

110

120

110

150

140

130 160

130100

160

130

130

100

*Afternoon and Early Morning periods identical to Heatup and Cooldown Modes
Based on Heatup Mode period ambient tem erature of 100 F and a
Cooldown Mode period temperature of 70 F
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mechanical stresses. The character of the thermal tran-

sients in the system will be determined by 1) the circu-

lating water valve opening and closing time, 2) the water

inventory of the dry tower-condenser system, and 3) the

thermal inertia of the dry tower system.

5.1.2.1 Condenser Inlet Temperature Transient

The condenser inlet temperature as a function of

time for an idealized TSP-dry tower-plant system in which the

valving times, tower water inventory~and tower thermal iner-

tia are equal to zero is shown in Fig. 5.2. Figure 5.3

is representative of the actual condenser inlet temperature

transient which should occur at the "heat-up" mode startup

time. The time interval T indicated in Fig. 5.3 is

simply the time required for the simultaneous opening of

the pond isolation valves and the closing of the valve on

the pipe leading directly from the tower outlet to the

condenser inlet. The condenser temperature would closely

follow the condenser inlet temperature and thus for a

5-minute valving time the turbine-generator would exper-

ience a power transient (about 5 to 10%) with a period of

about 5 minutes.

A power transient of this magnitude appears to be

acceptable with regard to the allowable thermal transients

in the steam turbine and with regard to the stability of

the electric utility system. Discussion with a turbine
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manufacturer fS3) revealed that the design thermal transients

include those resulting from major load changes and load

rejection. Transients resulting from TSP/dry tower mode

switches are clearly much less severe.

The anticipated electrical power production transient

also appears to be acceptable. The rate of change of load

in a large utility system is about 1 to 2% per minute.

Further a system must be able to withstand the instantaneous

loss of the largest plant and remain operable. A 5 minute

50 MWe TSP induced transient (5% of 1000 MWe) in a 10,000

MWe system (i.e.0.1% per minute) would not exceed these

limits. Of course, the transients resulting from the TSP

operation would be predictable by simple monitoring of the

pond temperature and controllable by regulating the valving

action.

5.1.2.2 Pond Inlet Temperature Transients

A condenser-piping-tower system has a finite

water inventory and resistance to temperature change.

Changes in the inlet condenser temperature will not be

reflected in the tower discharge temperature (pond inlet

temperature) until a time

T = Tower

has elapsed where VTower equals the volume of the tower

water inventory. Thus, as shown in Fig. 5.4, the pond

inlet temperature (temperature of the water discharged
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Fig. 5.3 Condenser Inlet Temperature Transient

Fiw. 5.4 Pond Inlet Temperature Transient
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into the pond) will initially be equal to the steady-

state tower outlet temperature existing just prior to the

mode change. This pond inlet temperature will persist

until the entire pipe-dry tower water inventory has been

flushed. The time period for the subsequent decrease

would be approximately T0 , the previously mentioned

valving time. Actually, the period of decrease would

differ somewhat with the actual valving time period due to

mixing in the condenser and the thermal inertia of the

tower. However, both of these effects should be small.

Condenser volumes are typically equivalent to only about

2 minutes of flow [D3]. A lumped parameter analysis has

shown that the characteristic thermal response time of a

typical dry-tower finned-tube bank is about 0.5 minutes.

5.1.3 Thermal Storage Pond Construction

The use of a thermal storage pond in conjunction with

a dry cooling tower will be practical only if the water

loss from the pond due to seepage and evaporation can be

controlled. If the condenser cooling system is to be

totally "dry", it will be necessary to line the pond

bottom to stop seepage and cover the pond to inhibit

evaporation. In some cases it may be desirable to leave

the pond uncovered and thus receive the added benefit of

evaporative cooling at the expense of a significant amount

of water consumption. In almost all cases, control of
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seepage would be required since it results in no cooling

effect. However, the covered pond system is qualitatively

more attractive in that it provides the only totally "dry"

solution to the performance problems of conventional

dry towers. Thus, the available techniques and materials

for lining as well as covering storage reservoirs will be

discussed. The purpose of this discussion is to review

the available literature on the subject and justify the

conclusion that the construction of a TSP would not involve

the development of a substantially new water impoundment

technology.

5.1.3.1 Linings for Thermal Storage Ponds

A variety of different materials have been examined

with regard to the lining of large irrigation canals and

"finished" water storage reservoirs. The Bureau of Recla-

mation of the Department of the Interior has been partic-

ularly active in examining canal lining techniques many of

which would be applicable to the construction of a TSP [B21

[H7] [H8]. A summary of the types of canal linings placed

on Bureau operated projects is given in Table 5.2. Since

it would be desirable to maintain high water quality, use

of either buried membrane linings or earth linings would

probably be undesirable. Also seepage rates through simple

earth linings would be intolerable. In fact, as is dis-

cussed in Reference [B2], seepage can be significant in

many of the asphaltic and cement linings due to post-
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TABLE 5.2

TSP Lining Options

Exposed Linings

a) Asphaltic Concrete

b) Asphaltic macadams

c) Asphaltic surface membranes

d) Reinforced Portland cement concrete

e) Unreinforced Portland cement concrete

f) Pneumatically applied Portland cement mortar

g) Soil cement

h) Plastic and rubber membranes

II Buried Membrane Lining

a) Asphalt

b) Bentonite

c) Plastic

III Earth linings

a) Thick compacted earth

b) Thin compacted earth

c) Loosely-placed earth blankets

d) Soil sealants
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construction cracking. Only plastic and rubber membrane

linings appear to offer the potential for zero seepage.

In addition to providing for near-zero seepage membrane

linings are seen to be lowest in cost. Recent applications

of calendered polyvinylchloride sheet have included a 215

million gallon, 40 acre sewage lagoon and a 447 acre solar

evaporation pond for the recovery of potash from brine [Kl].

Day [D2] has presented a manual for the details of brine

disposal ponds which in many respects are similar to the

proposed thermal storage pond. Recently a DuPont Co.

synthetic butyl-rubber called Hypalon has seen numerous

reservoir lining applications [P4]. A 1975 cost of lining

2
a 14 acre reservoir with 45 mil. Hypalon was $0.69/ft

with a projected lifetime of 40 years [R5]. Discussion

with a vendor of this product indicates that the highest

temperature which might occur in a TSP (about 115 F) and

the flow velocity (less than 1 ft/sec) should not degrade

this type of lining [K2].

5.1.3.2 Covers for Thermal Storage Ponds

The technology for covering public water supply

reservoirs should be directly applicable to the proposed

thermal storage pond. Covers are placed on storage

reservoirs primarily to preserve the water quality. A

TSP cover would have the dual benefit of suppressing evapor-

ation and preserving water quality. Measures which would
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partially control evaporation and which would not preserve

the quality of the stored water such as monolayer additives

[C9] and floating rafts [T2] appear less attractive.

Chin [C2] has reviewed in detail many of the options

available for constructed reservoir covering. Projected

costs for steel and pre-cast concrete coverings supported

on columns ranged from 2 to 3 times those of flexible

floating covering. Projected costs for steel and pre-cast

concrete coverings supported on columns ranged from 2 to 3
times those of flexible floating coverings. Past uncer-

tainties concerning the working lifetime of flexible covers

seems to have been resolved and the successful use of this

type of covering has been discussed by several authors

[P4] [R2]. Currently vendors of the patented "Roofloat"

system. [K2] are anticipating 40 year lifetimes for conven-

tional storage reservoir applications. This cover, which

is made from nylon reinforced Hypalon synthetic rubber

appears to be satisfactory for use in covering a TSP and
2currently (1976) has a cost of between $1.50 and $2.50/Ft

Economies of scale and the simultaneous installation of a

similar lining should favor a minimal unit cost of covering.

The drag on a floating cover which would result during the

operation of a TSP has been evaluated and found to be in-

significant. The placement of the suggested barriers in

the TSP should provide convenient anchor points for a

floating cover. Consideration of the effect of pond
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freezing on the cover, as well as lining and barriers,

will be essential. The rubber membrane lining and covers,

however, have demonstrated resistance to freezing of the

impounded water.

5.1.4 Steam Turbines for Use With Dry Cooling Systems

The maximum allowable condenser pressure of conventional

steam turbine systems is about 5" HgA. With dry cooling

systems condensing pressures far in excess of this value

would be routinely encountered. Although dependent on the

size of the dry tower system, a condenser pressure range

of about 3 to 15 HgA is not unlikely.

The main problem in designing a steam turbine to

operate at high back pressure is the design of the blading

of the last few stages of the low pressure turbine. High

back pressure results in a substantially decreased steam

specific volume and thus a substantially decreased axial

steam velocity. Normally, high axial steam velocities are

required to assure that inlet steam velocities relative

to each blade row are subsonic, that negative reaction

static pressure rise across the rotating blades will not

occur, and that adequate stage efficiency is obtained (S2).

At present, no nuclear-steam turbine which can be

operated at elevated back pressure is marketed domestically.

However, one manufacturer has developed a special low

pressure stage design suitable for operation up to 15"

HgA for use with high-quality fossil-steam [M6]. The
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poorer nuclear-steam quality and the resulting generally

larger physical size of the nuclear turbines necessitate

considerable additional development work. Currently, it

appears that the domestic turbine vendors are not pressing

forward with this development effort (S3.).

The hesitancy of vendors to invest in the high-back-

pressure nuclear turbine appears to stem from the follow-

ing two factors. First, the electrical generating industry

simply has not demonstrated a near-term need for such

devices. Second, the actual design of the turbine will

be influenced by the yet-to-be-resolved economics of

dry-tower condenser cooling. The industrial need has not

occurred since to date the availability of makeup water

for evaporative cooling systems has not yet severely

constrained generating capacity expansion.

The actual turbine design will be influenced by the

economics of dry cooling because different types of high

back pressure designs will result in different performance

curves as shown in Fig. 5.5. In general, two types of

high back pressure turbine designs appear to be feasible

each of which has its particular performance characteristics.

Curve A is representative of a design which has a small

low-pressure stage exhaust annular area. Reducing this area

(in comparison to the conventional design-curve C) allows

high axial velocities to be maintained even at high con-

densing pressures. However, at low condensing pressure
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the flow through the last stage of the turbine becomes

choked and further decreasing the condenser pressure does

not result in increasing performance. Thus, although the

performance is relatively good at very high pressures the

performance is relatively poor at the more frequently

occurring low pressures. Curve B shows the- performance of

a design which is similar to the conventional design (approx-

imately same exhaust annulus area) but which is suitable for

operation at the higher pressures. In this case the low

pressure operation is good while at high pressures the

decreasing specific volume (axial velocity) of the steam

results in inferior performance.

To date no decision has been made by the industry

as to which type of design would yield the most favorable

overall system economics. Studies by a turbine manufac-

turer have suggested that a compromise design, the per-

formance of which is shown by curve D in Figure 5.5,

is most desirable [M71.

Since the performance characteristics of high back

pressure steam turbines are not as yet resolved this study

of the combined dry-tower/TSP system will individually

consider the application of the TSP system to plants with

the following turbine types:

1) Conventional with 5.0" HgA limit (Curve C).

2) Modified Conventional type (Curve B)

3) Reduced exhaust annulus type (Curve A)
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Since the TSP concept works better when the plant

performance is more sensitive to variations in the conden-

sing temperature it is apparent that a plant with a modified

conventional design turbine (Curve B) would be more

greatly benefited by the incorporation of a TSP into the

dry cooling system. The conventional turbine design will

also be considered since this represents a proven and

readily available technology and is projected to be less'

expensive. Estimated costs for a high-back-pressure design

turbine are about 15% higher than for conventional designs

( C3). This difference is substantial considering the cost

of a 1000 MWe steam turbine -- about $50 million.

5.1.5 Secondary Uses of a Thermal Storage Pond

Although the primary use of a TSP at a central power

station would be the maintenance of favorable temperatures

in the main steam condenser, the TSP may also play an

important role in meeting other heat rejection needs of the

dry-tower cooled plant. For both fossil and nuclear plants

the TSP may aid in the meeting of the service cooling

water requirement. For the nuclear plant, the TSP could

provide a reliable backup system for emergency cooling of

the reactor. In this section the possible use of a TSP

in these applications is examined.

5.1.5.1 Utilization of a TSP for Emergency Cooling

All nuclear power plants require a reliable backup
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cooling system for the dissipation of reactor core decay

heat for an extended period of time. At several sites

using evaporative cooling towers the emergency cooling

system requirement has been met by constructing a small

pond [H51. A thermal storage pond could be utilized

similarly at a station cooled by dry cooling towers.

The waste heat rejection requirements of a nuclear

plant due to decay heat is well described by [El].

q = 0.095 Pot-0 .2 6  (5.1)

when
P = Power before shutdown

t = time in seconds.

This equation applies only to t>200 sec and to infinite

(usually a good approximation) operation with uranium

fuels. Assuming a fully-thermally-mixed TSP an energy

balance for a TSP during the dissipation of decay heat would

be
-0.26

V pcp dTp P o(o.095)t - KA (Tp T E) (5.2)
dt

where Tp = pond temperature,

V-= pond volume,

A = pond surface area,

Cp = specific heat of water,

p = density of water,

K = pond surface heat transfer coefficient,

TE = pond equilibrium temperature, and

t = time.
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This equation contains the additional simplification that

K, the heat transfer coefficient, is independent of the

pond temperature. The above equation can be simply sulved

for the limiting case of

dT
p

=0
dt

and the results of such a solution are plotted in Fig. 5.6.

The limiting temperature of the pond as a function

of the pond size is given in Fig. 5.6. The limitimg temp-

erature is defined as being that temperature of the pond

above which there will not be a rise of the pond temper-

ature due to the introduction of decay heat. For all

initial pond temperatures less than this value the pond

temperature will at first rise and then later decline,

but the maximum attained will be less than the limiting

temperature. A TSP would likely not be any less than

10 acres in size. The approximate 1050F limiting tempera-
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ture for a pond of this size is well within the range of

temperature for cooling water supply. This analysis is

based on an uncovered pond with evaporative heat transfer

taken into account. In the case of a covered pond, ample

time would exist for the removal of the pond cover, if

necessary, since the adiabatic heatup rate of the pond

due to decay heat accumulation would be only about 1 F

per hour. The total amount of water evaporated from the

pond over a period of several months of decay heat rejec-

tion would be small in comparison to the TSP volume.

In conclusion, a thermal storage pond should provide

an excellent source of cooling water for long-term core

decay-heat removal. This conclusion is significant since

the use of a TSP as an emergency cooling system may help

justify the required capital expenditure for the construc-

tion of the pond. Other studies of dry-cooling at nuclear

power stations have, to date, not taken into consideration

emergency cooling requirements [R7].

5.1.5.2 Use of a TSP for Service Water Cooling

The service water cooling requirement for a nominal

1000 MWe nuclear power station is about 150 x 106 BTU/hr

with a maximum inlet temperature of 95 0F. The 95 0F limit

arises from temperature limits in the hydrogen cooling of

the generator and the cooling of the turbine bearing oil.

The amount of cooling required is about 2% of that of the
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total plant heat rejection and consideration has been given

to use of a covered TSP as a means of meeting this require-

ment. Application of an uncovered TSP would indicate that

small amounts of evaporative water consumption are tolerable

and in such cases a small, mechanical-draft, evaporative

cooling tower would be the logical means of satisfying

the service cooling water requirements.

For the TSP/dry tower system to be the sole source

of service water cooling, water of a temperature less than

95 0F must be available from the tower discharge or from the

water stored in the pond. Based on the computer simulation

of optimally-designed TSP/dry tower systems for two different

sites this was not found to be the case. For both sites,

Winston, Arizona and Billings, Montana, during a significant

length of time in the summer the temperature of both the

tower discharge and the pond exceeded 95 0F. The quantitative

results of the simulation calculation are given in Table 5.3.

At both sites the TSP can extend the use of the main cooling

system as a supply of service water only slightly and does

not negate the need for some intermittent evaporative cooling.

5.2 Economics of TSP/Dry Cooling Tower Systems

Having established the magnitude of the potential

benefit and engineering practicality of the thermal storage

pond concept it is necessary at this point to consider the

comparative economics of the TSP/dry tower system with

respect to simple dry-tower cooling systems.
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Table 5.3

Service Cooling Water Availability in
a TSP/Dry Tower Cooling System

Site

Winslow, Arizona Billings, Montana

Number of Hours the

Temperature of the Tower

Discharge is Less Than 950F 6585 7590

Number of Hours the

Temperature of the Tower

Discharge is Greater Than

950F and the TSP Temperature

is Less Than 950F 838 572

Number of Hours the

Temperature of the Tower

Discharge is Greater Than

95 0F and the TSP Temperature

is Greater Than 950F 1337 598

* Hours per Year
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5.2.1 Basis for Economic Comparison

Previous studies concerned with the economics of dry

cooling have presented final cost determination in terms of

the incremental cost of utilizing dry cooling per unit of

electrical energy production. The generating plant is assumed

to have a fixed capital and operational cost independent

of the specific cooling system design. Annualized capital

and operating expenses for cooling systems are divided by

the annual electrical power production to yield the incre-

mental cost in mills/KWHR.

An expression for the incremental cost of dry cooling

can be derived from the simplified electrical energy cost

equation. The cost equation is

e ($I+f+o) 1000 (5.3)
e K*8760) L-

where

e = cost of electricity (mills/KWHR),

I = total capital cost of station ($),

= annual fixed charge rate,

f = annual fuel cost ($),

o = annual operating cost ($),

L = plant capacity factor, and

K = net plant capacity (KWe)

In the above equation the quantities I,f, and o
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can be expressed as a sum of two parts -- one associated

with the costs of the basic plant and site and one asso-

ciated with the use of dry cooling,

Thus,

e (I p +I f +f d + Op+0d 1000 (5.4)

(K- 8460) L

where the subscripts p and d refer to the basic plant-site

and the dry cooling system respectively. The basic plant-

site cost component of the total cost can be expressed

as

e = I $ + f + 0 1000
pp p (5.5)

(K- 8460) L

and the cost of the dry cooling system (i.e. incremental

cost of dry cooling) as

edE d  fd +0d 11000 (5.6)

(K- 8460) L

where

e = e d+ e. (5.7)
d p

The determination of the quantities Id' d, and Od

necessarily include a consideration of the capital and operation

expense of the dry tower itself as well as a consideration

of the electrical generation losses imposed on the plant.
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The dry tower capital cost includes the direct cost of

the dry tower and associated pumps and piping in addition

to the cost of replacement electrical generation capability.

A fuel cost fd associated with the dry cooling system arises

from the power requirements of the dry tower itself and the

need to replace the plant power losses resulting from ele-

vated condensing temperatures. The operating cost of the

dry tower would be equal to the operating cost of pro-

ducing the energy replacement in addition to the cost of

maintaining the dry tower system.

The economics of central power station cooling systems

has been based on the assumption that any loss of capacility

below that of the maximum station rating due to cooling

system inadequacies must be replaced by supplemental elec-

trical generation. This assumption is founded on the fact

that in many utility systems the maximum electrical demand

is coincidental with the maximum power generation losses

due to cooling system inadequacies (i.e. highest ambient

temperatures). During such periods there would not be

routinely large amounts of idle capacity in excess of the

required reserve capacity and therefore supplemental generation

in an amount equal to the maximum loss must be included in

the total cost of dry cooling.

The TSP/dry tower system represents an effort to

correct this unfavorable coincidental occurrence of the

peak condensing temperature and the peak electrical demand
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and thus the simple assumption concerning the necessity

of penalizing all lost capability and energy production

irrespective of its time of occurrence is no longer ade-

quate or rational. The specific assumption made with regard

to loss of capability penalties which should allow for the

realistic accounting of the TSP benefit and the justification

for these assumptions are found in the next section.

5.2.2 Evaluation of Condenser-Cooling-System
Induced Power Generation Losses

5.2.2.1 Approach to Cost Evaluation and Justi-
fication

In previous economic analyses of condenser cooling

systems no accounting has been made for the routine varia-

tion with time of the worth of electrical generation.

Typically, in a large utility during the early morning hours

there is a large excess of generating capacity and the in-

cremental cost of obtaining the next kilowatt-hour of

electrical energy is small. During the afternoon, espec-

ially during summer peak demand periods, there would

typically be a dearth of excess capacity with an incremental

kilowatt-hour of electrical energy obtained at considerable

expense (i.e. from lightly-loaded units with high heat rates).

Previous studies have assumed that all the replacement energy

can be evaluated at a constant cost [H4] [R7]. Further,

as implied in the previous section, the capital cost of the

replacement capability in these studies is evaluated by a
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simple calculation of the maximum power loss occurring during

the year.

Clearly these assumptions are adequate when the peak

load is coincidental with the maximum loss of capability.

A more realistic approach to cost evaluation which can be

applied to plants in which the maximum loss of capability

is not coincidental with the peak electrical system load

will be based on the following assumptions:

1) the capability replacement cost is evaluated by a
determination of the annual maximum power loss occurring
during the daily period of peak electrical demand and,

2) all replacement energy costs are to be evaluated
at the incremental power production cost in the utility
system at the time of the loss.

The first assumption can be justified by examining the

load curve of a typical large utility system for the

summer day on which the yearly peak demand occurs as shown

in Fig. 5.7. Ideally, the utility's generation capability

(minus the required reserve capacity) would just equal

the peak load indicated in the figure. Any capability loss

due to dry cooling occurring at the peak demand time must

be included as an economic penalty since supplemental

generation would in fact be needed to meet the peak demand.

For the simple dry cooling system the loss of capability

penalty must be assessed as the absolute maximum loss since

the maximum loss and peak load are coincidental. However,

for a plant with a well-designed TSP/dry tower system the

maximum loss should occur at a time other than the peak
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load time as shown in Fig. 5.8. Figure 5.8 shows the

excess system generating capability as a function of time

based on the maximum required capability shown in Fig. 5.7.

Also shown in Fig. 5.8 is the loss of capability as a function

of time for a hypothetical 1000 MWe plant cooled by a TSP/

dry tower system. For a "well-designed" TSP/dry tower

cooled plant the maximum loss of capability should occur

when there is ample excess system capacity to accommodate

the loss. The capability replacement penalty would be

assessed only as the actual capability loss occurring at the

peak load time. Since this capability savings at the peak

load time is the main purpose of implementing a TSP the

criterion of "well-designed" can be construed to mean that

the length of the operation of the TSP is sufficiently long

such that the peak demand time will always fall within the

period of the TSP operation.

The second part of the operational penalty is the cost

of replacement energy. The incremental cost of electricity

production is defined as the cost of obtaining the next

kilowatt-hour of electricity given the present status of the

utility system and forms the basis for assessing the penalty.

This incremental power production cost, termed X, is

important with regard to utility generating scheduling.

At any given time, the generating units called-up or shut-

down are those whose value of X is most nearly that of the
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system X. The system X equals the value of X for the

plant currently operating with the largest value of X.

To a good approximation, the penalty for not generating

power as a result of cooling system inadequacies can be

based on the system X and thus will vary with the time of

day. Weekly and seasonal variations in the system X could

be important. In general, however, the system X would

be minimal during the early morning hours reflecting the fuel

and operating costs of large base loaded units and be at a

maximum during the afternoon reflecting the operation of

peaking units with high heat rates.

Utilizing the system X as the economic basis, the

evaluation of the energy replacement penalty is straight-

forward. The annual energy replacement cost would simply be

ERC = (t) CL(t) dt (5.8)

1 year

where

X(t) = the incremental power production cost of the
utility system at time t, and

CL(t) = the capability loss experienced by the plant
at time t.

In terms of the expression for the incremental cost of

dry cooling (Eq. 5.6)

ERC = fd + 0 

(

(5.9)
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since the value of X incorporates both the fuel and oper-

ation cost of producing an incremental unit amount of

electricity.

5.2.2.2

As Eg. 5.8

of the energy replac

plant-TSP-dry tower

year with a maximum

lation is the basis

tower cooling report

would not allow for

economic benefit of

be computationally p

Practical Aspects of Determining
Capacity Replacement and Energy
Replacement Costs

suggests, the correct determination

ement cost requires the simulation of the

system performance for at least one

time step of one hour. Such a calcu-

for the economic case studies of TSP/dry

ed in Chapter 6. Larger time steps

an accurate determination of the

the TSP while smaller time steps would

rohibitive.

Since in the case studies a single year of historical

meteorology was used to evaluate the system performance

some question arose as to what temperature (or what day)

should be used to evaluate the maximum loss of capability.

The year of historical meteorology for a given site was

chosen at random. Evaluation of the replacement capability

penalty solely on the basis of the hotest day for the

particular year chosen is not an adequate approach since

1) the yearly single highest temperature occurring at a

particular site is subject to substantial variation from

year to year and 2) the economics of the TSP system are
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strongly dependent on the temperature used to evaluate the

capability replacement penalty. Therefore the approach

used was to determine the average maximum temperature of

the ten hotest days for the chosen meteorological year.

This average maximum temperature is used to directly eval-

uate the maximum loss of capability for the simple dry

tower systems considered in the case studies. The deter-

mination of the peak demand time loss of capability for the

TSP/dry tower cooled plant involved additionally the

determination of the average minimum temperature on the

ten hotest days and the averages of the maximum and

minimum temperatures of the ten days preceding the ten

hotest . The preceding day's average maximum and minimum

temperatures were used to calculate iteratively an initial

TSP temperature. This TSP temperature was subsequently

used to determine the loss of capability of the plant

at the peak load time subject to the average temperature

extremes of the ten hotest days.

The accurate evaluation of the energy replacement

cost at a given site is more difficult since the value of

X as function of time is highly dependent on the utility

system generating-unit mix and load curve. Efforts were

made to secure directly fron electrical utilities histor-

ical information which would detail the value of the system

A for a specific area at one-hour increments for a one year
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period. This effort was unsuccessful. Apparently, in

practice, the system X is not routinely recorded by most

utilities in scheduling the production of electricity from

various units in the system.

Nevertheless, after some discussion with utility

operation personnel it was concluded that the best approach

to the problem of specifying a system X function for use

in a survey of TSP/dry tower economics would be to assume

that the value of X varies sinusoidally from a minimum at

the time of minimum utility system load to a maximum at

the time of maximum system demand. The maximum and minimum

values are chosen to represent the fuel and operating cost

of based loaded steam-electric plants and peaking combus-

tion turbines or deisels respectively. The specific form

of the assumption is shown in Fig. 5.9.

Considering all aspects, this approach may be prefer-

able to use of site-specific historical data since 1) rapid-

ly changing fuel costs would negate much of the benefit of

using historical costs and 2) using an identical economic

model at the different sites of the case-studies allows

a clearer resolution of the significance of the major

performance-determining site variable -- the site

meteorology. In any event, the case studies include an

evaluation of the sensitivity of the results to this and

other economic assumptions.
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5.3 Methods for Determining Optimal Thermal Storage Pond
Dry Cooling Tower - Plant System Designs

Any decisions concerning the economic viability of the

combined thermal storage pond - dry cooling tower system

must be based on a comparison of the economics of this

system with the various design alternatives. To insure

a meaningful comparison, the TSP-dry tower and the alter-

native systems chosen for this comparison should in each

case represent optimal system designs. As in all economic

studies, optimum is defined as "least-cost."

The main emphasis of this work is a comparison of the

economics of combined TSP-dry tower waste heat rejection

systems and conventional dry tower heat rejection systems

for large steam-electric plants.

5.3.1 Design of Optimum Simple Dry Tower - Plant
Systems

For the purposes of this study it is assumed that the

dry-tower unit cell design is fixed and the present task

is simply a specification of the system design. Thus,

the design of optimal simple dry-tower cooled stations

requires only a determination of the particular circulating

water flow rate and the number of dry tower unit cells

which will yield the smallest incremental cost of dry-

cooling. The numerical search procedure termed the

Rosenbrock is utilized to determine optimal designs.

The details of this method are presented in section 5.3.5.
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Similar to the combined TSP/dry tower system, the deter-

mination of the cost of dry cooling for a specific design

is based on a one year plant performance simulation with

one hour time steps.

5.3.2 Design of Optimum TSP-Dry Tower-Plant Systems

Determination of optimum TSP-dry tower-plant designs

is a more formidable problem. This is because in addition

to a determination of the actual design of the system

(i.e. number of tower cells, flow rates) it is necessary

to determine the optimal method of operating the system.

The full set of design and operational variables which

needs to be considered in arriving at the least-cost

TSP/dry tower cooling system design is given in Table 5.4.

The decision variables included in Table 5.4 are

separated into two groups -- discrete value integer oper-

ational variables and continuous design variables. The

need to constrain the operational variables to integer

values stems from the computational requirement of simu-

lating the plant performance.

To solve the optimization problem indicated in Table

5.4 a two stage optimization method has been utilized.

The integer variables are treated by means of a simple

grid search. Then:Lfor each set of integer operational

variables determined by the grid search the optimal set

of continuous design variables is determined by the

Rosenbrock method. Thus, a sub-optimal determination of
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TABLE 5. 4

TSP/DRY TOWER SYSTEM OPTIMIZATION DECISION VARIABLES

I) Discrete Value Integer Operational Variables

A) heatup mode startup time

B) heatup mode shutdown time

C) cooldown mode startup time

D) cooldown mode shutdown time

II) Continuous Design Variables

A) dry tower size

B) circulating water flow rate

1) coupled modes

2) uncoupled modes

C) fraction of flow bypassing pond

D) size of pond (volume)
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the continuous design variables is nested in the grid

search of the integer operational variables.

The cost of performing the nested optimization has

been greatly reduced by making some simple but adequate

assumptions. First, it is assumed that the length of

the "heatup" mode of operation is equal to that of the

"cooldown" mode. Second it is assumed that the "heatup"

mode operation period and the "cooldown" mode operation

period are centered on the times of the daily maximum

and minimum ambient temperatures respectively. This

simply has the effect of maximizing the temperature

difference between the "hot" and "cold" states of the pond.

Since the times of the maximum and minimum system elec-

trical demand are typically nearly coincidental with the

times of the maximum and minimum ambient temperatures.

This assumption also has the effect of maximizing the

benefits of the TSP with regard to energy replacement cost

savings. These assumptions reduce the set of operational

variables to a single variable the length of pond

operation.

The number of continuous design variables also can be

reduced by assuming that the plug-flow flushing time of

the pond (V/ Q) is equal to the period of pond operation.

Ponds with a storage volume greater than that required to

contain the flow during the heatup or cooldown mode would

be wasteful. Operation of the pond for periods longer
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than the plug flow flushing time may have some additional

benefit. However, since the empirical thermal performance

model derived from the experiments reported in Chapter 4

is only valued up to the plug-flow flushing time the above

assumption is retained. The probable additional benefit

of extended operation is nevertheless examined in Chapter 6

based on a grossly simplified pond thermal-hydraulic model.

Additionally, the bypass flow fraction has not been in-

cluded as a decision variable in the case studies in order

to minimize the computational effort. The bypass flow

is set to zero for all the design studies reported in

Chapter 6 except that addressing the economic significance

of non-zero bypass flow. The bypass flow fraction is

defined as that fraction of the tower discharge flow

routed directly from the tower discharge to the condenser

inlet during the combined system operational modes.

5.3.3 Optimization Methods for TSP-Dry Tower-
Plant Design

As has been noted in the previous section a nested

optimization procedure is utilized in determining the

least-cost TSP/dry tower system. A simple grid search

is utilized for the integer variable part of the problem,

but the grid method is not attractive for the continuous

design variable part due to the large number of function

evaluations which would be required.
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The more efficient direct-search methods for handling

multivariable, constrained, nonlinear problems which have

found application to engineering problems are based on

multivariable unconstrained methods combined with tech-

niques for handling the constraints. The basic exploration

technique in many of these unconstrained methods involves

sequencial single direction searches guided by successes

as they are achieved [F4]. Some methods (which are not

properly classified as direct search methods) are based

on finite-difference evaluation of the gradient of the

non-analytic objective function.. However, caution must be

exercised in using these methods since truncation and/or

concellation errors may lead the search astray so that it

converges very slowly or not at all [S51. Additionally,

the present case may be particularly unsuited to such

schemes since the evaluation of the objective function

will in part be based on the use of tabluar data to approx-

imate continuous functions.

The techniques for handling the constraints for the

direct search methods are grouped in two categories --

feasibility.check and modified objective function. The

constrained decision variable problems are computed in a

manner identical to the unconstrained problem for the

feasibility check methods except that, if the search leads
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to non-feasible space, the search is redirected to the

feasible region in a prescribed manner. The modified ob-

jective function techniques incorporate the constraints

into the objective function thus producing an unconstrained

problem. With regard to these methods, preference has

been indicated for interior penalty or barrier functions

in which the objective function is modified within the

feasible region and all non-feasible points are rejected

as search failures [S5].

5.3.4 Selection of Optimization Method

The direct search method of Rosenbrock has proved

to be particularly successful in solving constrained

optimization problems and has been selected for use in

determining optimal TSP-Dry tower-plant system designs.

This method which handles the constraints via objective

function modification and which does not require derivative

evaluations has been noted to be fairly slow with respect

to more advance techniques but has proven to be very re-

liable and has seen widespread use in practical engineering

applications [D1]. Since it is expected that the

present problem will be characterized by broad optima

and since close convergence on the true optimum will not

be required, the disadvantages resulting from this relative

slowness should be more than offset by the method's

robustness and reliability.
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The Rosenbrock method consists of sequencial explor-

ations along a set of orthogonal directions which are

rotated periodically according to the results of the ex-

plorations. Each rotation is prescribed such that the

successive sets of directions generated converge on the

principal axes of the quadratic function which approximates

the objective function in the neighborhood of the optimum.

The constraint handling strategy is based on the use of

barrier functions within narrow boundaries of the con-

straints to modify the objective function. The function is

altered in such a way that the modified function has a

minimum in the boundary region. The method requires the

selection of a starting point which is in the feasible

region but not within one of the boundary zones.

Kuester and Mize [K91 have detailed the Rosenbrock

method algorithm and presented a FORTRAN computer program

for its convient application. The algorithm is presented

in the next section.

5.3.5 Constrained Rosenbrock Method Algorithm

The basic unconstrained search method as outlined by

Kuester [K91 is given first and then the necessary modi-

fications for constrained problems given second. A logic

diagram for the method is given in Fig. 5.10 and a

two-dimensional illustration of the search procedure is

discussed in Fig. 5.11.
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5.10. Constrained Rosenbrock Logic Diagram [K9]
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Fig. 5.11 2-Dimensional Illustration of Rosenbrodk Method
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It is worthwhile to point out that, in practice, the

constraints on the design variables do not actively limit

the search of the feasible design space. In this study,

the flow rates and number of tower cells are constrained

only to be non-negative. Consideration of design constraints

may be important in later studies and thus the constraint

handling procedure is included.

5.3.5.1 The Unconstrained Search Routine

1) A starting point and initial step sizes,

Ss ,i = 1, 2, ... , N, are picked and the

objective function evaluated.

2) The first variable X is stepped a distance

S parallel to the axis, and the function

evaluated. If the value of F decreased,

the move is termed a success and S1 increased

by a factor a, a - 1.0. If the value of F

increased the move is termed a failure and S

decreased by a factor S, 0 < a 1.0, and

the direction of movement reversed.

3) The next variable, Xi, is in turn stepped a

distance S parallel to the axis. The same

acceleration or deceleration and reversal

procedure is followed for all variables in

consecutive repetitive sequences until a

success (decrease in F) and failure (increase
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in F) have been encountered in all N direc-

tions.

4) The axes are then rotated by the following

equations. Each rotation of the axes is termed

a stage.

D(k)
M (k+l) _ ij

2(D k ) 2  1/2 (5.10)

E= 1

where

D (k) A(k) (5.11)

D(k) = A(k) - [ M(k+l) A(k) M(k+l)
i,j 1,j £=1 n=l n,j ' 2 *

J=2,3....N (5.12)

(k) N (k) . M(k)A = dMi j _j 1 k(5.13)

where

i = variable index = 1, 2, 3, ... , N

j = direction index = 1, 2, 3, ... , N

k = stage index

d = sum of distances moved in the i direct,.on since
last rotation of axes

M = direction vector component (normalized).
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5) Search is made in each of the X directions

using the new coordinate axes:

new X k) = old X k) + S M (5.14)

6) The procedure terminates when the convergence

criterion is satisfied.

5.3.5.2 Constrained Variable Modifications

The search computations are the same for the con-

strained method escept that after each function evaluation,

the following steps are required:

1) Define by F0 the current best objective function

value for a point where the constraints are satis-

fied, and F* the current best objective function

value for a point where the constraints are

satisfied and in addition the boundary zones are

not violated. F and F* are initially set equal

to the objective function value at the starting

point.

2) If the current point objective function evaluation,

F, is worse than Fo or if the constraints are

violated, the trial is a failure and the uncon-

strained procedure is continued.

3) If the current point lies within a boundary zone,

the objective function is modified as follows:

F(new) = F(old) - (F(old) - F*) (3X-4X2+2X3
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where

distance into boundary zone
width of boundary zone

-4
G + (Hk - Gk) 10 - Xk

= (lower zone)

Xk- (Hk- (Hk - Gk) -10 )
(upper zone)

(H-- Gk 10

At the inner edge of the boundary zone, X = o,

i.e., the function is unaltered (F(new) = F(old).

At the constraint, X = 1, and thus F(new) = F*.

Thus the function value is replaced by the best

current function value in the feasible region and

not in a boundary zone. For a function which

improves as the constraint is approached, the

modified function has an optimum in the boundary

zone.

4) If an improvement in the objective function has

been obtained without violating the boundary

zones or constraints, F* is set equal to F
0

and the procedure continued.

5) The search procedure is terminated when the con-

vergence criteria is satisfied.

5.4 The MITDAS Code

A FORTRAN computer program has been written and utilized
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to perform the case studies reported in Chapter 6. The

MITDAS code (Model for the Investigation of the Thermal

Storage Pond/Dry Cooling Tower Advanced Heat Rejection Sys-

tem) is listed with sample output data in Appendix B. All

important assumptions incorporated in the code are discussed

in this chapter. Details of the program's use are found in

Appendix B.
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CHAPTER 6

ECONOMICS OF TSP/DRY COOLING TOWER
WASTE HEAT REJECTION SYSTEMS

6.1 Approach to the Problem and Assumption

A survey of the economics of combined thermal storage

pond/dry cooling tower waste heat rejection systems has

been completed using the TSP/dry tower-plant simulation

design-optimization model MITDAS described in Appendix B.

This effort has been directed mainly towards a comparison

of the economics of the combined TSP/dry cooling tower

system with the economics of the simple dry cooling tower

system

Throughout these studies, a consistent set of eco-

nomic parameters which should reasonably reflect present

day costs have been employed. Nevertheless, the uncer-

tainties in performing economic studies on undeveloped and

unconventional technology are fully recognized and an

approximate examination of the sensitivity of the results

to the basic economic assumptions has been attempted. The

details of the basic economic assumptions utilized in the

studies are given in Table 6.la. The dry cooling tower,

pumps, and piping costs are based on costs reported in

WASH 1360 [H4], The costs of the thermal storage pond are

estimated from references IC7], IR7], and [K2]. The cost

breakdown of the TSP is given in Table 6.lb.
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Table 6.la

Cost Assumptions Used in Economic Studies

I. Dry Cooling Tower
*

1) Unit Tower CellI Cost
2) Pump and Piping Cost

II. Thermal Storage Pond

1) Covered Pond
2) Open Pond

$165,000/cell
$37,500 * R * R2

$515,000 + $0.175 * VOLUME(ft3)
$515,000 + $0.100 * VOLUME(ft3)

III. Capability and
Energy Replacement

1) Electrical Generation
Capabi 1 i ty Replacement

2) Energy Replacement

a) Daily Minimum

b) Daily Maximum

3) Utility System
Electrical Load

a) Daily Minimum

b) Daily Maximum

IV. Annual Fixed Charge Rate

V. Plant Capacity Factor

$150/KWe

4.0 mills/KWHr

20.0 mills/KWHr

3 AM

2 PM

15%

0.75

R= Ratio of flow rate (ft3/sec) in system to that in
reference system (Q/1154)

R = Ratio of number of Tower cells to number of Tower
cells in reference system (#/141)

VOLUME = volume of TSP based on design recommended in
Chapter 4

All costs in current dollars (1976)
* Physical parameters of Tower cell described in Appendix B
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Table 6.1b

Thermal Storage Pond Capital Costs

I. Fixed Costs

a) Valves

b) Piping

c) Discharge Structure

d) Withdrawal Structure

e) 8 Barriers

$25,000

$100,000

$100,000

$100,000

$140,000

II. Stored-Volume Dependent Costs

a) Excavation

b) Lining

c) Cover

$0.05/ft3

$0.05/ft 3

$0.075/ft3
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6.2 Base Case Study

6.2.1 Base Comparison

The plant-site for the base comparison between the

use of "combined" TSP/dry tower cooling and "simple"

dry tower cooling is as follows:

1) Meteorology -- Winslow, Arizona, 1974
Weather Service Observatory

2) Plant -- 3000 Mwt Boiling Water Reactor with a
conventional nuclear steam turbine.
(Curve C, Fig. 5.5)

Optimum systems have been designed for both the "com-

bined" and "simple" heat rejection systems. The TSP thermal-

hydraulic model is based on Fig. 4.30 and is as follows:

If t < 0.63(V),

T = T i or, (6.1)

If t > 0 . 6 3 (y) , (6.2)

T p = Ti + 0.33 (T0 - T i)

where

V = pond volume (ft3 )

Q = flow rate (ft3/sec),

t = time since initiation of pond operation,

T = TSP outlet temperature,

Tpi = initial temperature of TSP, and

T = pond inlet temperature at t = 0.
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In the case of the combined TSP/dry tower system the cost

of the pond covering has been included but no credit was

taken for heat transfer from the covered surface. A de-

scription of the optimized designs for the base plant-

site is given in Table 6.2.

In comparing the "combined" and "simple' dry cooling

systems some important observations and deductions are

the following:

1) utilization of a TSP results in a net dry cooling

savings of about '1%,

2) the greatest cost saving obtained through the use

of a TSP is the saving in the capability replace-

ment cost,

3) the tower size and circulating water flow are very

similar for both systems,

4) the ratio of the economic benefit of the pond to

the cost of the pond is approximately 4 to 1.

The "worst-ten-day" maximum loss of capability (de-

fined in Sec. 5.2.2.2) for the "simple" system is 149.2

MWe while for the combined system the maximum loss is

70.2 MWe. The average capability loss during the heatup

mode is somewhat less (about 65 MWe( with the maximum

loss occurring near the end of the heatup mode due to

partial short-circuiting of the pond. Figure 6.1 illus-

trates the behavior of the sub-optimal cost of the

TSP/dry tower system as a function of the length of pond
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Table 6.2

Comparison of Optimized Designs for "Combined" and "Simple" Systems
for the Basic Plant/Site

I. System Design Parameters

a) Number of Tower cells
b) Flow rate during un-

coupled modes(ft3/sec)
c) Flow rate during

coupled modes(ft3/sec)
d) Pond Area(acres)
e) Heatup Mode Startup Time
f) Heatup Mode Shutdown Time
g) Cooldown Mode Startup Time
h) Cooldown Mode Shutdown Time

II. System Costs

a) Initial Costs

1) Dry Tower System
(tower cells, pipes
pumps)

2) Thermal Storage Pond
3) Replacement Capability

b) Annual Costs

1) Fan and Pump Operation
2) Replacement Energy

"Combined"
System

165

1225

1233
30.6
Noon
6 PM
1 AM
7 am

$35,400,000
$5,170,000

$10,500,000

$2,310,000
$1,820,959

"Simple"
System

176

1237

$38,400,000

$22,400,000

$2,420,000
$2,430,000

c) Incremental Cost of Dry Cooling
(mill s/kwhr)

d) Incremental Annual Cost of
Dry Cooling

1.71 2.04

$14,100,000$11,800,000
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aI

3.0

Simple Dry Tower System

2.0 *

0
0

Combined System

0.

C
C

H4 100

0.0

4 6 8 10

Lenpht of Pond Operation (hrs)

Fir. 6.1 Cost of Combined System as a Function of
Pond Operation Period Lenght
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operation (i.e. pond size). Note the relative insensi-

tivity of the incremental cost of dry cooling to the size

of the TSP. This broad minimum is to a degree a reflection

of some of the simplifying assumptions build into the

simulation model. Nevertheless the basic tradeoffs leading

to a minimum can be generally characterized as follows:

increasing pond size + decreases capability replace-
ment savings

increasing pond size + increases energy savings

increasing pond size + increases cost of pond

One assumption which tends to result in unrealistically

low costs for long pond operation periods (say greater than

8 hours) is that the pond becomes fully-mixed during the

standby modes of operation. For standby mode periods

much less than 3 hours this assumption is not realistic.

Another assumption which tends to result in unrealistically

low costs at short operational periods is the assumption

that the length of pond operation adequately covers the

period of peak utility-system electrical demand. For pond

operation times less than 2 hours this assumption seems

unjustifiable.

6.2.2. Effects of Heat Transfer from the TSP

Heat transfer from the surface of the TSP aids to

a limited extent in the rejection of waste heat. Radi-

ative and conductive heat transfer will occur at the



298

surface of a pond with a floating membrane cover. Addi-

tionally, evaporative heat transfer will occur if the

pond surface is uncovered. Table 6.3 compares the total

cooling costs for the two types of ponds with the base

case. The savings obtained by using the uncovered pond

amount to 20% of the total cost of "simple' dry cooling.

However, taking into account the fact that a more expensive

corrosion resistant tube material would be needed in the

dry tower would, in part, nullify this apparent increase

in savings. Also, no penalty has been assessed for the

cost of water treatment and makeup water supply. The

results for the reflective pond (all evaporation suppressed

and all solar radiation reflected) indicates that the heat

transfer from a covered pond will have a small effect on

the total system economics.

6.2.3. Effect of Pond Bypass Flow

The potential benefit of bypassing a fraction of the

tower discharge directly to the condenser inlet during

both the "heatup" and "cooldown" modes of operation has

been examined and the results are shown in Table 6.4

in comparison to the base case (bypass flow fraction

= 0.0). Included in Table 6.4 is the benefit/cost ratio

of the TSP for the different systems. Note that the rela-

tively small capital expenditures for the 15.4 acre pond

results in a substantial reduction in the incremental cost



Table 6.3

Significance of Heat Transfer from the Pond Surface

Base Case
(Adiabatic
Pond)

Reflective
Pond
(Cover)

Exposed
Pond
(No Cover)

I. Incremental Cost

of Dry Cooling )ills
kwhr

II. Heat Rejection from

Pond Surface ( % of

Total)

III. Annual Water Consumption

(Acre-feet)

1.701.71

0.0 1.8

1.61

3.3

0.0 0.0

299

673
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Table 6.4

Effect of TSP Flow Bypass

0.0

Bypass Flow Fraction

0.25 0.50

1) Incremental Cost of
Dry Cooling (mills/kwhr)

2) Pond Area (Acres)

3) Pond Cost

4) Pond Benefit/Cost Ratio

5) Savings over "Simple"
Dry Cooling

1.71,

30.6

$5,170,000

4.0

15.0%

1.72

23.0

$4,020,000

4.6

14.4%

1.74

15.4

$2,870,000

5.8

13.1%

All the above systems operate in the "Heatup" mode from
Noon to 6PM and in the "Cooldown" mode from 1 AM to 7AM

* Fraction of Total circulating water flow routed directly
from the tower to the condenser inlet during the coupled
modes of operation



301

of dry cooling.

This result is important in that it indicates that a

detailed design optimization of a TSP/dry tower system

should include the bypass flow fraction as design varia-

ble. Qualitatively, the increase in the pond benefit/cost

ratio with increasing pond bypass flow fraction can be

attributed to more efficient utilization of the pond

(i.e. greater difference between the temperatures of the

"hot" and "cold" pond states).

6.2.4 Alternative Pond Utilization Schemes

The experimental model studies of the TSP thermal-

hydraulic behavior have been limited to the extent that,

once the pond became partially short-circuited, it was

not possible to maintain the correct temperature of the

discharge into the model TSP. Consequently, the empir-

ical thermal-hydraulic model obtained from the experimen-

tal results is only valid over the pond operational time T=O

to T =( ) or until the plug-flow flushing time. The

base case has been formulated with this restriction in

mind and thus does not consider the additional benefits which

may be gained by operating the pond for a time longer than the
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plug-flow flushing time in either the heatup or cooldown

modes.

The most obvious benefit of extended operation of

the pond would be in decreasing the initial temperature

of the pond at the beginning of the heatup mode of oper-

ation. This could be done by beginning the cooldown of

the pond prematurely in the evening and thus allowing the

bulk pond temperature to more closely approach the minimum

ambient temperature occurring the next morning.

As a first approximation to the determination of the

added benefit of an extended cooldown operation a simu-

lation calculation was performed based on a fully-mixed

TSP thermal-hydraulic model. The fully-mixed model was

found to result in total dry-cooling cost predictions very

near those resulting from use of the empirical pond model.

Therefore, the extension of the fully-mixed model to pond

operation times in excess of the plug-flow flushing time

appears reasonable. Table 6.5 summarizes the results of

the simulation calculation for an extended cooldown period

based on the fully-mixed model. As indicated in Table 6.5

the added benefits are substantial and strongly suggest that

careful consideration be given in the design of a prototype

TSP to more complex operational schemes than that employed

in the base case.
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Table 6.5

Performance and Cost of TSP / Dry Tower System with Extended
"Cool down" Period

Heatup Mode Startup Time

Heatup Mode Shutdown Time

Cooldown Mode Startup Time

Cooldown Mode Shutdown Time

Maximum Capability Loss

Incremental Cost of Dry Cooling

TSP Benefit/cost Ratio

Savings over "Simple" Dry
Cooling System

1 PM

5 PM

10 PM

7 AM

45.8 MWe

1.62 mills/kwhr

6.7

21%

1)

2)

3)

4)

5)

6)

7)

8)
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6.2.5 Sensitivity of the Results to the Economic
Assumptions

The quantitative economic results presented in the

preceding section of this chapter are only as valid as the

economic assumptions upon which they are based. Uncertain-

ties in the economics used to evaluate the incremental

cost of dry cooling systems is found in four areas. They

are 1) the capital cost of the dry tower system, 2) the

energy replacement cost, 3) the capablity replacement

penalty, and 4) the capital cost of the thermal storage

pond.

Examination of the sensitivity of the predicted ben-

efit of the thermal storage pond (mills/kwhr) to changes

in the cost of the dry cooling towers indicates that an

increasing capital cost of the tower system (i.e. cost

per unit heat rejection capability) favors an increasing

TSP benefit. However, a 50% increase in the cost of the

towers results in only an 8% increase in the pond benefit

over that of the base case.

One of the largest uncertainties in the base economic

model is associated with the energy replacement cost. The

savings resulting from the utilization of a TSP, however,

appears to be largely independent of the energy replacement

cost as shown in Table 6.6. This can be attributed to the

fact that, at low energy replacement costs, the capability

replacement savings dominates the total savings resulting

from the use of a TSP. Increasing the energy replacement
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Table 6.6

Sensitivity of TSP Benefit to Energy Replacement Cost Variations

Daily Range of Utility
System Incremental Power
Production Cost (x )

(mills/kwhr)

4 to 10 4 to 20 4 to 40

1) Daily Average X 7 12 22

2) "Combined System
Incremental Cost
(mills/kwhr) 1.43 1.71 2.21

3) "Simple" System
Incremental Cost 1.70 2.04 2.67
(mills/kwhr)

4) Savings (mills/kwhr) 0.27 0.33 0.46

5) Percentage Savings 19% 16% 17%
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cost increases both the cost of "simple" dry cooling and

the "combined" system dry cooling with ratio of the two

costs remaining about the same.

The uncertainity with regard to the evaluation of the

capability replacement penalty lies not.with the unit cost

of replacement -- this is fairly well established at about

$150/KW -- but rather with how the maximum loss of capabil-

ity should be determined. The method for assessing the

maximum loss for both the "simple" and "combined" sys-

tem is discussed in detail in Sec. 5.2.2. A different

approach which has been used in other studies of simple

dry cooling is to assess the maximum loss at some design

temperature condition. The design temperature is usually

defined as some temperature which is exceeded (historically),

on the average, a certain percentage of the time during

the year [C5]. For the Winslow, Arizona site, 91 0F

is the dry-bulb temperature exceeded 5% of the time during

the summer months. Using this temperature to evaluate

the maximum loss capability for a conventional dry tower

system results in a total cost of simply dry-cooling of

1.89 mills/KWHR for the base case. Using the same design

temperature and an appropriate average minimum daily tem-

perature to evaluate the maximum loss of capability for

the "combined" system results in a total cost of dry cooling

of 1.59 mills/KWHR. The total benefit of the TSP of 0.30

mills/KWHR under the above assumption is only slightly
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less than the 0.33 mills/KWHR benefit determined earlier

for the base case.

Finally, it is clear that even if the cost of the TSP

itself is substantially underestimated in this study the

qualitative conclusion regarding its benefit is still

valid. The calculated benefit/cost ratio (as large as 6.7)

demonstrates that a considerably more expensive pond (say

100% greater) would still be economically attractive.

In summary, the qualitative and general conclusion that

the combined TSP/Dry tower system is economically superior

to simple dry tower systems is judged to be justified for

the plant-site examined. For the base case of the Winslow,

Arizona site meteorology and the modified conventional

turbine plant the anticipated savings resulting from the

use of a TSP falls in the range of 15 to 20%of the total

cost of dry cooling.

6.3 Use of Conventional Steam Turbines With TSP/Dry
Cooling Tower Systems

Conventional nuclear or fossil fired steam electric

plants are not adaptable to dry cooling systems since

in many areas the yearly maximum ambient dry bulb temper-

ature would exceed the maximum allowable condenser inlet

temperature. Thus before dry-cooling, as it is presently

perceived, can succeed a new turbine design must be evolved

as discussed in Sec. 5.1.4.
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However, consideration of the use of a conventional steam

turbine plant with a combined TSP/dry cooling tower system

has revealed that at many sites the conventional turbine

is economically preferable to any of the new proposed

designs.

Table 6.7 summarizes the results of the design-

optimization simulation calculation for the three types of

nuclear steam turbines (discussed in Sec. 5.1.4 (for the

base site.) The most important result contained in Table

6.7 is the near equality of the cost of TSP/dry tower

cooling for both the conventional turbine and modified-

conventional turbine. The total cost of an optimally-de-

signed TSP/dry tower system is less than one-half of that

of simple dry cooling for a conventional turbine plant

but is also less than that of a modified conventional

turbine using simple dry cooling. The benefit/cost

ratio for the utilization of a TSP with a conventional

turbine cooled by dry cooling towers is a dramatic 17.5.

As expected, the thermal storage pond is of little benefit

to the dry-cooled plant with a reduced-exhaust-annulus

turbine since the heat rate of this proposed turbine de-

sign is relatively independent of the condensing tempera-

ture.

The conventional turbine simulation model includes

a plant thermal-power derating option for use when the
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Table 6.7

Performance and Cost of Alterntive Turbines with
TSP/Dry Tower System

Turbine Type(Nuclear)

Conventional
*

Modified
Conventional

1) Number of Tower
Cells

2) Pond Size(acres)

3) Maximum loss of
Capabi li ty (MWe)

4) Capability Replacement
Capital Cost

5) Energy Replacement
Cost(Annual)

6) TSP Benefit/Cost
Ratio

7) Increment&l Cost
of Simple Dry
Cooling(mills/kwhr)

8) Incremental cost of
TSP/Dry Tower
Cooling(mills/kwhr)

$8,700,000

$2,905,000

17.5

3.53

1.72

$10,500,000

$1,820,000

4.0

2.04

1.71

$20,090,000

$11,100,000

1.6

2.87

2.80

* Credit Taken for Less Expensive Coventional

Reduced
Exhaust
Annulus

165173.

30.3

58.4

108

30.6

70.2

28.3

133.5

Turbine = 0.13 mills/kwhr
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condenser temperature exceeded the maximum temperature

limit. For the Winslow, Arizona site derating would,

at times, be necessary during the cooldown period in the

early morning and during the pond-standby modes of opera-

tion. As evidenced by the maximum loss of capability for

the conventional turbine plant given in Table 6.7, however,

even on the hotest days of the year full thermal power

could be achieved during the peak utility electrical

load period.

The effect of variations of the base economic para-

meters (as is discussed in Sec. 6.2.5 with regard to the

modified-conventional turbine system analysis) has been

considered in connection with the results for the con-

ventional turrine. Significant perturbations have been

made in each of the basic unit costs as is detailed in

Table 6.8 and the fundamental conclusion is unchanged.

6.4 Significance of Site Meteorology in Determining
TSP Economics

6.4.1 Modified Conventional Steam Turbine Plants

In addition to the Winslow, Arizona site, four addi-

tional sites were examined with regard to the applicabil-

ity of the TSP concept. The four sites are as follows:

Needles, California;
Billings, Montana;
Atlanta, Georgia; and
Boston, Massachusetts.

The Winslow, Arizona site was chosen since it repre-
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Table 6.8

Economic Parameter Variation Sensitivity Study
for

Conventional Nuclear Turbine Plant

Combined Cooling

with
Conventional
Turbine

Simple Dry Cooling

with
Conventi onal
Turbi ne

Modi fied
Conventional
Turbine

1) 50% Increase in
Cost of Dry
Tower

2) 100% Increase
in Cost of Pond

3) 50% Increase in
Replacement
Capability Cost

4) 50% Increase in
Average Cost
of Replacement
Energy

5) "Base" Case

2.03 mills/kwhr

1.82

1.79

1.99

1.72

4.66

3.53

4.57

2.41

2.04

2.22

2.17

2.04

3.85

3.53
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sents an arid region of moderately high summer temperatures

(about 103 OF) with a substantial daily range. Needles,

California is similar but the summer maximums are consid-

erably higher (about 120 0F). Billings, Montana represents.

a cool climate with considerable variation of the ambient

temperature during the summer. Atlanta, Georgia and Boston,

Massachusetts typify coastal-northeastern and southeast

meteorologies both of which are characterized by relatively

small daily temperature variations. Table 6.9 gives the

relative frequencies of occurrence of daily average temper-

ature groups and corresponding daily ranges for the five

sites for the year 1974.

For each of the sites the design-optimization calcula-

tion for both the "simple" and "combined" dry cooling sys-

tems have been performed. The results are shown in Table

6.10. The economic assumptions are identical for all

these calculations and equal to the base case values.

Figure 6.2 demonstrates the correlation between the eco-

nomic savings resulting from the use of a TSP and the

average daily temperature range for the ten hottest days

of the year at each site. The economic savings do not

correlate well with the yearly average tempeature range

since, as in the case of Billings, Montana, the winter

daily range (which does not greatly affect the economics)

may be substantially less than the summer daily range.
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Table 6.9

Temperature Frequency Distribution for Various Sites - 1974 Meteorology

0 4J

C 4j0Co 4- C u
r 0 r- 4- to- C 0 0

Dai ly Daily* r-0 (
A4verage Range

22 1

57 3

13 0

21 75

51 54

48 0

8 25

87 59

42 6

0 22

13 116

3 4

104 12 90 Days/Year

17 6 6

1 0 0

81 61 127

64 67 19

4 10 0

7 148 100

76 65 18

8 10 0

1 4 4

2 0 1

0 0 0

* 15 indicates range
and 37.5 F, and 45

falls between 0 and 22.5 0F, 30 indicates
indicates 37.5 F and above.

between 22.5

0

to

40

15

30

45

40

to

60

15

30

45

60

to

80

15

30

45

80

to

15

30

45100
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Fig. 6.2 Correlation of TSP/Dry Tower Savings with Average
Ambient Temperature Range
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Table 6.10

Cost Comparison of TSP/Dry Tower System and Simple Dry
Tower System for Modified Conventional Nuclear Steam Turbine

Combined TSP/
Dry Tower System

Simple Dry
Tower System

1) Winslow, Arizona

2) Needles, California

3) Billings, Montana

4) Atlanta, Georgia

5) Boston, Massachusetts

1.71 mills/kwhr

2.33

1.50

1.74

1.53

2.-04

2.66

1.79

1.92

1.73
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The optimized designs for the "combined" systems

for the different sites are similar to that determined

for the Winslow, Arizona site in that there is very little

difference in the number of tower cells and flow rates

between the "combined" and "simple" dry tower systems.

6.4.2 Conventional Steam Turbine Plants

To investigate further the possible use of the TSP/

dry tower system with a conventional nuclear steam tur-

bine the MITDAS code has been used to determine the eco-

nomics of TSP/dry tower cooling with a conventional nuclear

turbine plant for the four sites listed in the previous

section. The results are shown in Table 6.11.

In all cases, the use of a TSP results in a substantial

savings. More importantly, however, the cost of TSP/dry

tower cooling with the conventional turbine is nearly

identical to that of TSP/dry tower cooling with the advanced

turbine design and is less than that of simple dry cooling

with the advance turbine design for all but one site.

The exception, the Needles, California site, arose from

the fact that, although the TSP/dry tower system could

sustain full thermal power during the peak demand period,

considerable plant thermal derating(up to 50%) is required

at other times leading to excessive energy replacement
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Table 6.11

Cost Comparison of TSP/Dry Tower System and Simple
Dry Tower System for Conventional Nuclear Steam Turbine

Combined TSP/
Dry Tower System

Simple Dry
Tower System

1) Winslow, Arizona

2) Needles, California

3) Billings, Montana

4) Atlanta, Georgia

5) Boston, Massachusetts

1.72 mills/kwhr

2.82

1.51

1.77

1.55

3.53

6.86

2.72

2.38

2.40

Credit Taken for Less Expensive Conventional Turbine = 0.13 mills
kwhr

# Total Plant Shutdown During Hottest Summer Days Unaviodableri.
Due to Extreme Ambient Temperatures (Approximately 1200F)
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costs.

6.5. Use of a TSP With Alternative Plants and/or Dry
Cooling Systems

6.5.1 Use of a Natural-Draft Dry Cooling Tower

A power station utilizing a natural--draft cooling

tower will be benefited more by the use of a TSP than

the mechanical-draft tower cooled plant. This fact is

readily established by comparing the basic performance

relations for the two-types of towers. For a fixed-design

mechanical draft tower the rate of heat rejection is given

by q = c (ITD)l.0

while for the natural draft tower of fixed design

q = c1 (ITD)1 .3 3

as previously discussed in Chapter 2. Now consider two

dry tower facilities each of which rejects the same amount

of heat at a 60 OF ITD. If the two towers are operated

equal lengths of time a 40 OF and then 80 OF ITD (repre-

senting the "heatup" and "cooldown" modes) the natural-

draft tower will reject a greater amount of heat to the

atmosphere than the mechanical-draft tower.

This is simply due to the non-linear nature of the

natural-draft tower performance equation which results in

the average heat rejection over such a cycle being greater

than that which would be calculated using the average ITD.

Table 6.12 illustrates the comparative thermal performance
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Table 6.12

Comparative Performance of Natural Draft Dry Tower/TSP
System and Mechanical Draft Dry Tower/ TSP System

Natural Draft
Tower/TSP

Mechanical Draft
Tower/ TSP

1) Heatup Mode Operation
(Ambient Temperature=1)000F)

a) Condenser Inlet

b) Condenser Outlet

c) ITD

d) Tower Outlet

e) Tower Cooling
Range

2) Cooldown Mode Operation 0
(Ambient Temperature=70 F)

a) Condenser Inlet

b) Condenser Outlet

c) ITD

d) Tower Outlet

e) Tower Cooling
Range

106.5 0F

136.5

36.5

121.0

15.4

121.00F

151.0

81.0

106.5

44.6

110

140

40

120

20

120

150

80

110

40

ITD for steady-state hea rejection = 600F , and the cooling
range at 600F ITD is 30 F for both systems
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of the two types of TSP/tower systems each of which is sized

to yield a 30 OF water cooling range for a 600 F ITD.

6.5.2 Use Of a TSP With Dry-Cooled Fossil-Fired
Stations

One vendor of large steam turbines has marketed a

turbine for dry-cooled fossil-fired plant applications

[M7]. The heat rate curve for this turbine and that for the

conventional fossil-fired plant turbine are shown in Fig.

6.3. Using the base economic and meteorological model

an evaluation of the economics of utilizing TSP/dry cooling

and simple dry cooling has been performed for both of these

types of turbines. The results are shown in Table 6.13.

The TSP is of little benefit to the plant with the high back

pressure turbine design. However, there is a large incentive

for using a TSP with the dry-cooled conventional fossil

turbine as there is in the case of the conventional nuclear

turbine. The relatively high cost of dry-cooling with

the advanced turbine is due to its much higher heat rate

even at low condensing temperatures.

TABLE 6.13

Use of TSP/Dry Tower System With Fossil Fueled Plants

TSP/Dry Tower Dry Tower
System System

Conventional Turbine 0.976 mills/KWHR 1.74

High Back Pressure
Design Turbine 2.50 2.65



0

Exhaust Pressure (in. Hg abs.)

Fig. 6.3 Heat Rates for Fossil-Steam Turbines

321

1.18
4,
0-I

Co

0,
.4.,

4.,

0,

0)
4.,
0!

4,
0!
0)

1.14

1.10

1.06

1.02

0.98



322

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Applicability of the Mixed-Mode Concept

A survey of mixed-mode waste heat dissipation systems aimed

at improving waste heat system utilization economics indicates

that no substantial benefit may be gained through the use of a

combined system composed of component systems with different

ratios of capital to operating cost. Thus, waste heat system

utilization considerations should not be a basis for mixed-

mode waste heat system design. Qualitatively this result can

be attributed to the fact that optimized waste heat system

designs typically call for "undersized" systems which result

in partial loss of plant generation capability at high ambient

temperatures. Excess heat rejection capability exists only at

relatively low ambient temperatures and even at the low ambient

temperatures the amount of excess cooling capacity is not large

for evaporative systems since, simply stated, the performance

of water-air evaporative heat exchangers becomes limited by the

low water-vapor saturation specific humidity occurring at low

temperatures. This conclusion that system utilization consider-

ations should not provide a basis for system design also

appears to be applicable to dry cooling tower systems.

One goal of this investigation of mixed-mode systems is

to survey the use of mixed-mode systems which would extent lim-

ited cooling resources avialable on the plant site. Since this
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investigation of mixed-mode systems does not include a consid-

eration of "once-through" cooling, the combined evaporative

cooling tower / cooling pond system was selected as being

representative of this application of the mixed-mode system.con-

cept. The conclusion derived from the examination of this

system is simply that combined cooling pond / evaporative cool-

ing tower waste heat rejection systems should be designed with

a parallel. water flow circuit with the ability to route a

larger fraction of the flow to the pond during periods of cold

weather. Any alternative component arrangement has not been

seen to provide superior thermal performance. Thus, the

parallel flow system results in the least total system cost

since it minimizes the required pumping power for the water

flow through the tower.

The major portion of this investigation of mixed-mode

systems has involved an examination of cooling towers combined

with several types of small, intermittently-used cooling and/or

storage ponds. All these systems are proposed as solutions

to the problem of coincidental occurrance of the'maximum loss

plant generation capability due to high ambient temperatureea

and the maximum utility system electrical demand. In all the

proposed systems the pond serves as a source of condenser cool-

ing water supply for the daily period of peak utility system

electrical demand. The major difference among these systems

is the method of cooling the pond. Three possible alternatives

for evaporative cooling tower / intermittently-used pond systems
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which have been examined are the following:

1) the evaporative cooling tower / supplemental

cooling pond system,

2) the evaporative saltwater cooling tower / sup-
plemental cooling and makeup storage pond
system, and

3) the evaporative cooling tower / thermal stor-
age pond system.

All three types of ponds provide simultaneously a source

of condenser cooling water and a storage reservoir for the

tower outflow during the daily period of peak utility system

electrical demand. In the first system the pond temperature

is maintained at a desinable level simply as a result of heat

transfer from the pond surface. The second system, the salt-

water evaporative cooling tower / supplemental cooling and

makeup storage pond system, is applicable only to coastal-

sited plants and in this system the pond temperature is main-

tained at a low value by flushing the pond with tower makeup

water and blowdown dilution flow obtained directly from the

ocean. The potential benefit of both these systems has been

demonstrated and indicates that these mixed-mode alternatives

should be given consideration when contemplating the use of

evaporative cooling systems. A detailed benefit-cost deter-

mination is not possible for these two systems due to the strong

site dependency of the cost of constructing the required pond.

Nevertheless, the 10 to 20 acre size of these ponds is note-

worthy since it is small in comparison to the typical 1000

acre nuclear power plant site.
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The t hird evaporative system combination, the evaporative

cooling tower and thermal storage pond system, is considered

in an attempt to take advantage of the daily variation in

the ambient wet bulb temperature. In this system the pond

is recooled each day by cycling the entire volume of the

pond back through the condenser and cooling tower during the

early morning hours of minimum daily ambient wet bulb tempera-

tureand minimum daily utility system electrical demand. A

survey examination of the performance of this combined system

indicates that the potential benefit of the system is small

due to the small and highly variable daily range of the wet

bulb temperature occurring at most locations in the United

States. However, recognition of the large and consistent

variation of the ambient dry bulb temperature in many of the

arid regions of the country has led to a consideration of

using a thermal storage pond in an exactly analagous manner

with a dry cooling tower. A simple analysis of the combined

thermal storage pond! dry cooling tower system and the plant

power generation performance resulting from the cyclic oper-

ation of this waste heat rejection system reveals that this

system offers great potentail for the solution of the problem

of coincidental occurrance of maximum loss of plant generating

capability and the maximum utility system electrical demand.

For this resason and the fact that this system is currently

the only proposed solution to the performance problems of

dry-cooled plants which does not require supplemental evapor-

ative cooling it was concluded that this concept was worthy
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of a detailed analysis and developement effort. Indeed such

and effort has been directed towards achieving an accurate

determination of the system economics and a resolution of

the engineering design problems which would be encountered

in the practical implementation of the system.

7.2 Economics of Thermal Storage Pond / Dry Cooling Tower
Systems

The cost-benefit of the TSP/dry cooling tower system

for various plant types and site meteorologies has been ascer-

tained by constructing a computer model of the basic TSP -

dry tower - plant system and utilizing the model to simulate

the dynamic thermal and power generation behavior of the system.

An accurate description of the thermal-hydraulic behavior of

the TSP is crucial to the prediction of the overall system

performance and has been obtained from a physical model of

the propoeed TSP.

The initial design concept of the TSP, simply a long

and narrow channel, proved inadequate due to strong density-

induced flows which tended to short-circuit the pond. The

flow stratification problem was resolved by installing a

series of flow constricting barriers in the pond experimental

model in order to induce vertical mixing. The recommended

design results in a good approximation to the idealized case

of plug-flow behavior. The structure, geometry, and operation

of the recommended design appear to be compatable with avail-

able low-cost water impoundment technology.

Using the empirical thermal-hydraulic model of the pond
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which was deduced from the experiments, the economics of

the TSP/dry tower system were evaluated on the basis of an

incremental cost of dry cooling(mills/kwhr). The benefit of

the TSP has been determined by the differnce between the total

cost of optimized TSP/dry tower and optimized simple dry cool-

ing. As expected, the benefit of utilizing a TSP depends

greatly on the type of generating plant and the site meteor-

ology. In general, a 15 to 20% savings in the cost of dry

cooling with a modified-conventional nuclear steam turbine

aDnears to be Dossible at sites with a large daily range of

the ambient dry bulb temperature. This result is to a large

degree dependent on the assumptions incorporated in the econ-

omic model with regard to loss of generation capability and

loss of power production pricing. These assumptions, never-

theless, are judged to be reasonable and appropriate exten-

sions of current waste heat system design practices., Sensi-

tivity studies based on variations of the several economic

parameters used in the model add confidence to at least the

qualitative nature of these conclusions concerning the magni-

tude of the pontential benefit.

The most important conclusion of the economic studies

is that TSP/dry tower cooling with a conventional nuclear

steam turbine plant is, in many geographical areas, less cost-

ly than simple dry cooling with any of the proposed advanced

turbine designs. The advance turbine designs have been pro-

posed to allow for plant operation at the-highoondenSing

pressures which would be commonly experienced with simple dry
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cooling. Use of a TSP has shown that a condensing pressure

less than the conventional steam turbine limit of 5 in.Hg

can be maintained during the afternnon period of peak utility-

system electrical demand~even during the summer months. It

is imperative to emphasize that this conclusion is strongly

dependent on the site meteorology. However, the locations at

which this conclusion is most appropriate are those regions

where dry cooling is most attractice - the arid western re-

gions of the United States. This conclusion concerning

the economic practicality of dry cooling with a conventioaal

nuclear steam turbine is important since the application of

dry cooling to nuclear plants has been hindered by the commer-

cial unavailability of a suitable turbine.

Two TSP construction options are possible - the covered

and the uncovered pond. The covered pond would be decidedly

more expensive since the pond cover would likely constitute

a major part of the pond construction cost. An uncovered

pond would enhance heat transfer from the pond surface but

would cause degradation of the quality of the water inventory.

In either case, the total heat transfer from the. pond surface

would be small in relation to the total heat rejected by the

station. Review of the water impoundment technology suggests

that synthetic rubber or polyvinylchloride membrane reservior

lining and covering materials are adaptable to the proposed

TSP.

Investigation of the possible secondary uses of the TSP

in addition to its main function as an aid in condenser cooling
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indicates that a TSP will not provide a solution to the ser-

vice water cooling problem of dry-cooled plants. Generally,

the temperature of the pond would exceed the service water

temperature criterion frequently during the summer. Evalu-

ation of the TSP as a means of rejecting reactor core decay

heat under reactor accident conditions does indicate that

the TSP could be a reliable and effective means of meeting

this cooling requirement. To date, the problem of long-term

emergency cooling at dry-cooled nuclear power stations has

not been addressed. A TSP can provide a low-temperature

heat sink for a period of several months if necessary. Appli-

cation of the TSP in this regard would help justify the re-

quired capital expenditure for the pond construction.

In the economic studies, a cost and thermal performance

model of a mechanical-draft, multi-cell, dry cooling tower

was used to model the tower system. Comparing the simple

thermal performance models of mechanical and natural draft

dry copling towers indicates that use of a TSP in conjunction

with a natural draft dry tower would yield somewhat larger

economic benefits. Also, analysis indicates, as in the case

of the nuclear steam plant, that the use of a conventional

fossil-steam turbine with the TSP/dry tower system may be

preferable to simple dry cooling with advance high-back-prssure

fossil-steam turbines.

In designing the TSP/dry tower system the most important

consideration is the correct sizing of the pond. The cost

of the pond is approximately directly proportional to the
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stored volume of water. This is because the pond depth is

fixed by thermal-performance requirements and the major cost

of constructing the pond would be the cost of excavating,

lining, and covering the pond. No additional pumps or pump-

ing power would be required above that required for simple

dry cooling systems and the cost of the additional piping,

the pond discharge and withdrawal structures, and the pond

mixing barriers are judged to be secondary to the cost of

excavating, lining, and covering the pond. There is no re-

quirement that the pond be constructed without bends in the

flow circuit and thus a labyrinth type of pond appears at-

tractive as it would minimize land usage and piping costs.

If a covered TSP is utilized, the dry cooling tower de-

sign neednot be different from that of a conventional dry

cooling system. However, if the TSP is open to the air and

subject to evaporative losses use of corrosion resistant tube

material in the dry tower may be required and some method

of water treatment would be mandatory. The TSP/dry tower

concept is predicated on the use of a conventional surface

condenser. Application of the TSP concept to the proposed

"Heller" dry cooling system which utilizes a jet condenser

does not seem practical.

Careful consideration of the various feasible methods

of operating the TSP/dry tower system is important in arriv-

ing at the most economic design. Specification of the optimal

TSP/dry tower system. necessitates the inclusion of operation-

al variables in the design procedure in addition to the system
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design varialbles,such as component sizes and water flow rates,

which are common to traditional waste heat system design pro-

cedures. The operational variables to be considered are

the daily startup and shutdown times of the various modes

of operation. Also, it has been recognized that diversion

of the total flow from the tower to the pond during the coup-

led modes of operation may be economically unjustified. Thus,

the fraction of the flow bypassing the pond and routed di-

rectly to the condenser during the coupled modes of operation

should be treated as a basic system design varialbe.

As expected, the site-specific factor which is most

significant in determining the economic attrdctiveness of

the TSP concept is the daily range of the ambient dry bulb

temperature. All other factors being equal, the economic

benefit of the TSP increases with increasing average daily

range of the ambient dry bulb temperature. The quantitative

nature of the relationship between the ambient temperature

range and the economic benefit is dependent on the type of

steam turbine plant under consideration. Another site-specific

factor which is important is the daily range of the incremental

cost of electrical power production in the local utiltiy

system.

7.3 The TSP / Dry Tower System Compared to Alternative
Enhanced Performance Dry Tower Systems

To date, the most widely discussed method of enhancing

the heat rejection performance of dry cooling towers is the
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addition of some evaporative cooling. Tower cells composed

of both wet and dry parts with series and/or parallel air

and water paths have been proposed as well as the utilization

of separate dry and wet tower structures and the deluge cool-

ing of the dry tower extended surface. If minimal water

consumption is the primary motive for the use of a dry tower

such systems are an unattractive compromise.

The TSP / dry tower system has been shown to be effective

in maintaining desirable condensing temperatures without any

evaporative cooling. A TSP with a liner and cover would

theoretically result in no water loss. Filling of the pond

could be accomplished over an extended period of time during

the plant construction. For the case of the uncovered pond,

evaporation from the pond would be at a near constant rate.

Typically, the rate of evaporation for the Winslow, Arizona

site examined in this study would be about 0.3% of the pond

volume per day or about 220 GPM for a 15 acre pond.

The makeup flow of a supplemental evaporative cooling

tower which would result in the same thermal performance

improvement obtained with the TSP for the Winslow site would

be approximately 5500 GPM. Admittedly, this is the maximum

water flow demand. The total annual consumption would be

about equal to that of the uncoverd TSP. Greater performance

improvement than that obtained from the TSP would be possible

through the use of supplemental evaporative cooling but the

water consumption would increase markedly.

In short, it appears that the relative attractiveness of
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the-TSP system as opposed to supplemental evaporative cool-

ing will be dependent on the availability of makeup water

for supplemental evaporative cooling or on the necessity of

maintaining high water quality in the cooling system. A gen-

eral translation of these constraints into economic terms is

difficult. For sites at which no water consumption is allow-

able the covered thermal storage pond is the only option for

improving the plant performance (other than increasing the

size of the dry tower). For sites at which the consumptive

use of water is limited to a small but constant flow rate

(i.e. instantaneous flow demand and not total consumption is

limiting) the uncovered TSP would find appropriate appli-

cation. For sites with greater water availability the most

economical system can only be determined by a detailed design

and operation optimization taking into account the cost of

water. A such sites the TSP system, the supplemental evap-

orative system, or some combination of the two systems would

be feasible.

The combination of the TSP and supplemental evaporative

cooling presents an interesting compromise. In this system

the large instantaneous water flow demand for evaporative

cooling could be met by the TSP which would also function

to reduce the required amount of supplemental evaporative

cooling.
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7.4 Recommendations for Future Investigations of the TSP/
Dry Tower System Concept

Future developement of the TSP / dry tower concept should

encompass the following tasks.

1) System Economics

Economic studies should be performed for proposed

plant sites using loss of capability and energy replacement

pricing which reflects actual anticipated costs of the loca.

utility. Further, effort should be directed towards a

detailed design of the thermal storge pond for these sites

in order that a more exact correlation between the cost of

the TSP and the stored water volume be established. The cost

of water should be introduced into the economic model if

uncovered ponds are considered.

2) Performance Modeling

The range of applicability of the empirical thermal

performance relationship derived from the TSP experimental

model should be extended to pond operational periods greater

than the plug flow residence time of the pond. The assumptions

of complete mixing during the standby modes of pond operation

and the significance of startup thermal transients in the

pond should be quantified. Correlation of the pond thermal

performance with the pond geometry and the number and type

of barriers would aid in the design of optimal TSP / dry

tower systems.

3) Combined TSP - Supplemental Evaporative - Dry Tower
Cooling Systems

The economics and design of combined thermal storage
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pond - supplemental evaporative cooling - dry cooling tower

systems should be examined. In such systems the pond would

serve as a storage device for both makeup water for the

supplemental evaporative cooling and waste heat for the

capacitive cooling system.
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Appendix A

SUMMARY OF EXPERIMENTAL RESULTS

Figures A.l through A.8 in this Appendix summarize

the results of the experiments for the determination of the

empirical coefficient a defined in Sec. 4.2.2.2. Figures A.9

through A.21 summarize the results of the experiments con-

cerning the effect of flow-constricting barriers on the ther-

mal performance of the thermal storage pond. The parameters

describing each experiment are defined below:

AT = Temperature difference between the discharge into
the model and the initial temperature of the model
(OF)

Q = Flow rate in model (GPM)

D = Depth of water in model (inches)

L - Length of model (feet)

W = Width of model = constant = 1.5 ft.

Tr = Plug-flow flushing time of model = V/Q (min.)

V = Volume of water (gallons)

A description of the "horizontal" and "vertical" barriers

mentioned in connection with Figures A.8 through A.21 is

found in Sec. 4.3.
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APPENDIX B

MODEL FOR THE INVESTIGATION OF THE THERMAL STORAGE

POND/DRY COOLING TOWER ADVANCED WASTE

HEAT REJECTION SYSTEM

The MITDAS program calculates the incremental cost of

dry cooling for steam-electric plants for both simple dry

tower systems and combined TSP/dry tower systems. Included

in the program is a routine for the determination of optimal

system design and operation.

The dry cooling system operational costs are determined

for the optimum system design by performing a plant-TSP-dry

tower system thermal performance simulation calculation for

a one year period with a one year period with a one hour time

step. A complete simulation calculation is not performed for

each design specified by the optimization routine as it search-

es for the optimal system design. To do so would be prohibi-

tively expensive. Instead, operational costs are determined

by a pseudo-simulation calculation which is based on the

grouping of days (from the chosen meteorological year) of

similar ambient temperature range. The "steady-state" per-

formance of the system and the associated daily operational

costs are determined for each of the averaged daily tempera-

tures and ranges listed in Table B.l. The daily cost for

each average temperature and range is then multiplied by its
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frequency of occurrence (days/year) and then the sum of

weighted costs is found to yield the annual cost.

The basic logic diagram for the program is given in

Fig. B.1 and the required input data is described in Table

B.2 and Fig. B.2. Included in this Appendix is a listing

of the MITDAS program and a sample output. The sample run

is for an adiabatic TSP-dry cooling tower-conventional nuc-

lear steam turbine plant sited at Winslow, Arizona.
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Table B.1

Average Daily Ambient Temperature and Temperature

Range Groups

30,15 50,15 70,15 90,15

30,30 50,30 70,30 90,30

30,45 50,145 70,45 90,45

x,y - Representation of average daily temperature (OF)

and daily temperature range (OF) assigned to any

day with an average temperature less than x+10 and

greater than x-10, and with a range less than

y+7.5 and greater than y-7.5.
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Table B.2

MITDAS Input Variable Definitions

(Variables listed in input sequence)

ITHRMB = TSP thermal-hydraulic model

PONTYP = Type of thermal storage pond cover

BYPASS = fraction of circulating water flow bypassing TSP

ITHTMN = Minimum temperature of heat rate data input

ITHTMX = Maximum temperature of heat rate data input

ITHTIN = Temperature increment of heat rate data

IPOHMN = Minimum power of heat rate data input (tenths)

IPOHMX = Maximum power of heat rate data input

(normally = 10)

IPOHIN = Power increment of heat rate data input (tenths)

HTRATE(ITHTR,IPOHTR) = net heat rate of turbine (BTU/KwHr) at

condensing temperature ITHTR and thermal

power IPOHTR

TDBMAX(J) = maximum day bulb temperature on day J (OF)

TDBMIN(J) = minimum dry bulb temperature on day J (OF)

NOPSET = number of operational variables sets to be read in

TURMAX = maximum allowable condensing temperature (OF)

MPRATE = minimum plant thermal power (tenths)

MWTHRM = thermal power of plant (MW)

TIMMAX = daily time of peak ambient temperature (integer

hour)
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Table B.2(continued)

TIMMIN = daily time of minimum ambient temperature (integer

hour)

DEMDPT = time of day, following time of maximum system

lambda, at which the average system lambda

occurs (integer hour)

DEMDMT = time of day, following time of minimum system

lambda, at which the average system lambda

occurs (interger hour)

LAMMAX = daily maximum system lambda ($)

LAMMIN = daily minimum system lambda Cs)

PRINTl = printout option (T or F)

PRINT2 = printout option (T or F)

TOWONL = Simple dry tower system simulation option (T or F)

NOPTIM = optimization routine bypass option (T or F)

WLG = initial geuss at circulation water flow during

uncoupled modes (ft3/sec)

WLCG = initial geuss at circulating water flow during

coupled modes (ft3 /sec)

TOWSZG = initial geuss at number of tower cells

TBHUOP = time begun heatup operation (integer hour)

TEHUOP = time end heatup operation (integer hour)

TBCDOP = time begin cooldown operation (integer hour)

TECDOP = time end cooldown operation (integer hour)
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Fig. B.1 Simplified Flowchart for MITDAS Program

MAIN PROGRAM

Input data

Interpolate heat rate data to 10F increments

Determine hourly values of lambda

Determine temperature frequency distribution

Find ten hotest day's maximum and minimum temperatures

Find maximum and minimum temperatures of ten
days preceding the tem hotest

4
Printout input data

Make initial geuss of optimal design

Determine cost of specified design by calling
FUNCTION F(X) (using pseudo-simulation)

to
-- Select improved design by Rosenbrock method

NO 4
Determine change in system cost from improved design
and previous design by calling FUNCTION F(X)

L Convergence criterion satisfied

YES

Determine exact cost of improved system design by
calling FUNCTION(X) (using exact simulation)

41
Printout system design summary and costs

E r
End program
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Fig. B.1 (cont.)

FUNCTION F(X)

Determine condenser outlet temperature as a function
of inlet temperature for 10F temperature increments
for coupled operational mode

Determine tower performance coefficients for both
coupled and uncoupled modes

Determine condenser outlet emperature as a function
of inlet temperature for I F temperature increments
for uncoupled operational modes

Determine plant power output as a function of ambient
dry bulb temperature for uncoupled modes

Is this cost determination to be based on pseudo-
simulation

YES

Determine "steady-state" behavior of system for each of
the representative ambient temperature averages and
daily ranges---determine daily operational cost

NO V
Determine loss of capability penalty based on ten hotest
day's average maximum and minimum ambient temperatures

Weigh each daily cost by its frequency of occurrance and
sum over all temperature average and range groups to
determine annual operational cost

Calculate capital cost based on system design parameters
and add to operational cost to find total cost

Return to MAIN PROGRAM

Determine annual operational costs by calculating the system
performance for a one year period with one hour time steps

f
Calculate capital cost based on system design parameters

and add to operational cost

Return to MAIN PROGRAM



last record ********* TBHUOP TEHUOP TBCDOP TECDOP : FORMAT(4Il0)

WLG WLCG TOWSZG : FORMAT(3F10.3)

TOWONL NOPTIM : FORMAT(2L5)

PRINTi PRINT2 : FORMAT(2L5)

DEMDPT DEMDMT LAMMAX LAMMIN FORMAT(2Il0,2F10.7)

TIMMAX TIMMIN : FORMAT(2I4)

TURMAX MPRATE MWTHRM FORMAT(FlO.2,Il0,F1O.2)

NOPSET : FORMAT(I4)

(TDBMAX(J),TDBMIN(J),J=1,365) FORMAT(20F4.0)

((HTRATE(ITHTR,IPOHTR),ITHTR=ITHTMNITHMXITHTN),IPOHTR*IPOHMN,IPOHMXIPOHIN):FORMAT(8F1O.1)

ITHTMN ITHTMX ITHTIN IPOHMN IPOHMX IPOHIN : FORMAT(6Il0)

ITHRMB PONTYP BYPASS FORMAT(2I10,F1O.5) **************first record

Fig. B.2 MITDAS Input FORMAT

NJ~
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THE 'MITDAS' PROGRAM
C
C MODEL FOR THE INVESTIGATION OF THE THERMAL STORAGE POND/DRY COOLING

TOWER ADVANCED WASTE HEAT REJECTION SYSTEM

C
C
C AVBCKX = AVERAGE MAXIMUM TEMPERATURE ON DAYS PRECEDING THE TEN HOTEST
C AVBCKN = AVERAGE MINIMUM TEMPERATURE ON DAYS PRECEDING THE TEN HDTEST
C AVTENX = AVERAGE MAXIMUM TEMPERATURE ON TEN HOTEST DAYS
C AVTENN = AVERAGE MINIMUM TEMPERATURE ON TEN HOTEST DAYS
C AFCR = ANNUAL FIXED CHARGE RATE
C AVPCLD = AVERAGE POWER DURING COOLDOWN MODE
C AVPHTU = AVERAGE POWER DURING HEATUP MODE
C AREAP = AREA OF POND
C AJF = HEAT TRANSFER AREA * HEAT TRANSFER COEFFICIENT * CROSS FLOW

FACTOR FOR REPRESENTATIVE DRY TOWER CELL
C BYPASS = FRACTION OF CIRCULATING WATER FLOW BYPASSING THE PON3
C CAPRC = CAPITAL COST OF REPLACEMENT CAPABILITY
C CAPTSP = CAPITAL COST OF THERMAL STORAGE POND
C CAPTOW = CAPITAL COST OF TOWER
C CAPLMX = MAXIMUM CAPABILITY LOSS
C CONOT CONDENSE1 OUTLET TEMPERATURE
O CITCM = MAXIMUM INLET CONDENSER TEMPERATURE FOR COUPLED MODES
C :UNIT = TOWER PERFORMANCE COEFFICIENT FOR UNCOUPLED MODE
C CUNITC = TOWER PERFORMANCE COEFFFICIENT FOR COUPLED MODE
C CDNDEN(XCONIN) = CONDENSER OUTLET TEMPERATURE FOR CONDENSER INLET

TEMPERATURE XCONIN FOR COUPLED MODE
C CAPLUM (XCONIN) = LOSS OF GENERATING CAPABILITY FOR UNCOUPLED MODE OF OPERAT
C ION WITH CONDENSER INLET TEMPERATURE XCONIN
C CAPLCM (XCONIN) = LOSS OF GENERATING CAPABILITY FOR COUPLED MODE OPERATION
C WITH CONDENSER INLET TEMPERATURE XCONIN
C CONDNI(XCONIN)= CONDENSER OUTLET TEMPERATURE FOR CONDENSER INLET TEMPERATURE

XCONIN FOR UNCOUPLED MODE
C DELY = CONVERGENCE CRITERION
C DELPR2 = PRESSURE DROP IN TOWER, COUPLED MODE
C )ELPRI = PRESSURE DROP IN TOWER, UNCOUPLED MODE
C )EMDPT = TIME OF DAY, FOLLOWING TIME OF MXIMUM SYSTEM LAMBDA, AT WHICH THE
C AVERAGE SYSTEM IAMbDA OCCUR.S
C DEMDMT = TIME OF DAY, FOLLOWING TIME OF MINIMUM SYSTEM LAMBDA, AT WHICH THE
C AVERASE SYSTEM LAMBDA OCCURS
C E( ) = DIRECT SEARCH STEP SIZES
C ETA = PLANT EFFICIENCY
C EVAPD = DAILY EVAPORATIVE LOSS FORM POND
C EVAPT = TOTAL EVAPORATION FORM POND IN ONE YEAR
C FREQ(XY) = FREQUENCY OF DAYS PER YEAR WITHIN AVERAGE TEMPERATURE GROUP X
C AN) AVERAGE RANGE GROUP Y
C FLTOWC = FLO4 THRU TOWER CELL, COUPLED MODE
C FLTOWU = FLOW THRU TOWER CELL, UNCOUPLED MODE
C FANPOW = FAN POWER PER UNIT DRY TOWER CELL
C ITRATE (A,8) = HEAT RATE AT CONDENSER TEMPERATURE A AND POWER LEVEL 8 = POW
C ER/MAXIMUM POWER
C IPOW = PLANT THERMAL POWER RATING (TENS OF PERCENT)



C IPOW = POWER LEVEL = (MWT) = PER CENT
C ITHTR = CONDENSING TEMPERATURE AT WHICH HEAT RATE IS EVALUATE5

IPOHTR = THERMAL POWER AT WHICH HEAT RATE IS EVALUATED
ITHTMN = MINIMUM CONDENSING TEMPERATURE INPUT OF HTRATE

C ITHTMX = MAXIMUM CONDENSING TEMPERATURE INPUT OF HTRATE
IPOHMN = MINIMUM POWER LEVEL OF HTRATE INPUT
IPOHMX - MAXIMUM POWER LEVEL OF HTRATE INPUT

C IPOHIN = POWER INTERVAL FOR IPOHTR INPUT OF HTRATE
ITHRM8 = THERMAL-HYDRAULIC BEHAVIOR OF POND,1=EMPIRICAL MODEL,2=FULLY-MIXED
IJUROP = HOUR OF OPERATIONAL DAY

C JDAY = DAY-OF YEAR
C LOSCPU (ITTDB) = LOSS OF PLANT GENERATION CAPABILITY FOR UNCOUPLED OPERATION

AT AMBIENT TEMPERATURE IITDB
C LAMBDA(I) = SYSTEM INCREMENTAL GENERATION COST FOR HOUR I
C TDBMAX (S) = MAXIMUM DRY BULB TEMPERATURE ON DAY J

M3DSYS = SYSTEM OPERATIONAL ODE, I=COLD STANDBY, Z=HEATUP, 3=HOT
STANDBY, 4=COOLDOWN

C MASSP = MASS OF WATER IN POND
MLSPKW = INCREMENTAL COST OF DRY COOLING
4OVSRI = NUMBER OF OPERATIONAL VARIABLE SETS READ IN

C NOPSET = NUMBER OF SETS OF OPERATIONAL VARIABLES
C 3PUMP = PUMP OPERATIONAL COST
C 3PFAN = FAN OPERATIONAL COST
C OPPEN (IJ) = LOSS OF CAPABILITY PENALTY FOR DAY J, HOUR I
C PKTEM(XY) = MAXIMUM TEMPERATURE FOR AVERAGE TEMPERATURE GROUP X AND AVERAGE

P3NTYP = (INTERGER) IF 1- OPEN POND, IF 2- REFLECTIVE POND, IF 3- ADIBATIC P
C POWFRC = FRACTIONAL THERMAL POWER
C PAISCC = DAILY INSOLATION

PRINT2 = PRINTING OPTION
PRINT1 = PRINTING OPTION

C PCF = PLANT CAPACITY FACTOR
POWFRC = FRACTION OF MAXIMUM THERMAL RATING
P3WMAX = MAXIMUM POWER RATING OF PLANT

C PHOTSB = LENGHT OF HOT STANDY OPERATION
C PCOOLD = LENGHT OF COOLDOWN OPERATION

PAEATU = LENGHT OF HEATUP OPERATION
C PCOLSB = LENGHT OF COLD STANDBY OPERATION
C QJECT = HEAT TRANSFER RATE FORM TOWER

RELHUM = RELATIVE HUMIDITY
C SMTEM(X,Y) = MINIMUM TEMPERATURE FOR AVERAGE TEMPERATURE GROUP X AND AVERAGE
C AVERAGE RANGE GROUP Y

SUNSSS = FRACTION OF CLOUD COVER
C TOTANC = TOTAL ANNUAL COST OF COOLING SYSTEM
C TOPC = TOTAL YEARLY OPERATIONAL COST

TPOND = POND TEMPERATURE
TBDA = AVERAGE AMBIENT TEMPERATURE DURING PERIOD OF HEAT TRANSFER FROM POND

C TIMEX = PERIOD OF HEAT TRANSFER FORM POND
C TURMAX = MAXIMUM TURBINE EXHAUST TEMPERATURE, I.E. CONDENSING TEMPERATURE

TIMMIN = HOUR OF DAY WHEN DAILEY MINIMUM AMBIENT TEMPERATURE 3CCURRS
C TECDOP = (INTERGER) = TIME COOLDOWN OPERATION ENDS
C TBCDOP = (INTERGER) = TIME COOLDOWN OPERATION BEGINS
C TIMMIN = TIME OF DAY WHEN MINIMUM DAILY TEMPERATURE OCCURRS
C TIMMAX = TIME OF DAY WHEN MAXIMUM DAILY TEMPERATURE OCCURRS
C TIMMAX = HOUR OF DAY WHEN DAILY MAXIMUM AMBIENT TEMPERATURE OCCURS
C TPONDH = HOT POND TEMPERATURE
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C TPONDC = COLD POND TEMPERATURE
C TITO = TOWER INITIAL TEMPERATURE DIFFERENCE

T: = CONDENSING TEMPERATURE
C THTOUT = HEAT TRANSFER FROM POND DURING ONE DAY
C TLSOGN = YEARLY GENERATION LOSS

TOWSZ = NUMBER OF TOWER CELLS
TDWSZG = INITIAL GEUSS AT NUMBER OF TOWER CELLS

C TWASTH = TOTALL WASTE HEAT REJECTION AT POWMAX
C TAUF = TOTAL AUF FOR A GIVEN TOWER SIZE
C TPONDI = INITIAL CONDITION OF POND
C TEHUOP = TIME HEATUP OPERATION ENDS
C TBHUOP = TIME HEATUP OPERATION BEGINS
C TDBMIN (J) = MINIMUM DRY BULB TEMPERATURE ON DAY J
C VOLUM = POND VOLUME
C W2 = WIND SPEED

WLC = CIRULATING WATER FLOW FOR COUPLED MODES
C OL = CIRCULATING WATER FLOW FOR UNCOUPLED MODES
C WLCG = INITIAL GEUSS AT CIRCULATING WATER FLOW FOR COUPLED MODES
C WLG = INITIAL GEUSS AT CIRCULATING WATER FLOW FOR UNCOUPLED M3DES
C Xf ) = OPTIMIZATION DECISION VARIABLE
C XLOSS = LOSS OF PLANT GENERATING CAPABILITY
L YMELGN = YEARLY TOTAL POWER GENERATION
C YTOWOP = YEARLY TOWER OPERATIONAL COST
C YCAPEN = ANNUAL LOSS OF GENERATION PENALTY

C
I DIMENSION X(3),E(3),V(3,3),SA(3),0(3),G(3),H(3),AL(3),

I PHI3),A(3),B13,3),BX(3),DA(I),VV(3,3),EINT(3),VM(3)
2 DIMENSION HTRATE(300,tO),LAMBDA(25),TOBMAX(370),TDBMIN(373)
3 DIMENSION WINTIL(400),IWTEN(O)
4 DIMENSION FREQ(6,6),PKTEM14,4),SMTEMI4,4)
5 DIMENSION XSAVE(3)
5 DATA ((PKTEM(IIAV,IIRAN),IIRAN=1,3),IIAV=1,4)/37.5,45.O,52.5,57.

15,65.0,72.5,77.5,85.0,92.5,97.5,105.0,112.5/

7 DATA (ISMTEM(JJAVJJRAN),JJRAN=1,3),JJAV=1,4)/22.5,15.0,7.5,42.5
1,35.0,27.5,62.5,55.0,47.5,82.5,75.0,67.5/

a REAL LAMMAXLAMMIN
9 REAL LAMBDA
10 REAL LOSCPUMLSPKW,MWTHRM
11 INTEGER PONTYPTIMMINTIMMAX
12 INTEGER DEMDPTDEMDMT
13 INTEGER TBHUOPTEHUOP,TBCDDPTECDOP
14 COMMON/H3TDAY/WINTIL
15 LOGICAL TOWONL,NDPTIM
16 LOGICAL PRINT1,PRINT2
17 COMMON KOUNT



18 INTEGER P,PR,R,C
19 REAL LC
20 COMMON/OMEGA/MWTHRM
21 :OMMO4/TOPANT/TIMMINTIMMAX
22 COMMON/CAPCIT/CAPLMX,CAPSAV
23 COMMON/PHTRMO/PONTYPITHRMB
24 COMMON/CAPLDT/AVBCKX,AVBCKNAVTENXAVTENN
25 COMMON/SEQE/N0PTIM
26 COMMON/PMAX/POWMAX
27 COMMON/PRINTO/PRINT1,PRINT2
28 COMMON/WAS/TWASTH
29 COMMON/TURBIN/HTRATETURMAX
30 COMMON/OPMODE/TOWONL
31 -OMMON/MP/MPRATE
32 COMMON/FJLCOS/LAMRDA
33 COMMON/METEOR/TDBMAXTDBMIN
34 COMMON/PARTFL/BYPASS
35 COMMON/TIMES/TBHUOP,TEHUOPTBCDOPTECDOP
35 COMMON/COST/MLSPKW
37 COMMON/SWITCH/IFINAL
38 COMMON/TEMFRQ/FREQ

C DATA INPUT

39 30 CONTINUE
40 READ(5,99) ITHRMB,PONTYP,BYPASS
41 99 FORMATI2I10,F10.5)
42 . EAD(5,101)ITHTMN,ITHTMX,ITHTIN,IPOHMN,IPOHMX,IPDHIN
43 101 FORMAT(6110)
44 READ(5,102)((HTRATE(ITHTR,IPDHTR),ITHTR=ITHTMN,ITHTMX,ITHTIN),

1 IPOHTR=IPOHMN,IPOHMXIPOHIN)
45 102 FORMAT(8F10.1)
46 READ(5,104)(TDBMAX(JJJJ),TDBMIN(JJJJ),JJJJ=1,365)
47 104 FORMAT(20F4.0)
48 READ(5,111) NOPSET
49 111 FORMAT(14)
50 READ(5,112) TURMAX,MPRATEMWTHRM
51 112 FORMATIF1O.2,110,F10.2)
52 READ(5,113) TIMMAXTIMMIN
53 113 FORMAT(214)
54 READ(5,117) DEMDPTDEMDMT,LAMMAX,LAMMIN
55 117 FORMAT(2110,2F10.7)

C PRINT1=TRUE DESIGN VARIABLES SUMMARY ONLY
C PRINT2=TRUE DAILY RESULTS FOR FINAL DESIGN

56 READ(5,1311 PRINT1,PRINT2
57 131 FORMAT(2L5)
58 NOVSRI=0
59 PIE=3.141

C IF TOWDNL = TRUE -- OPTIMIZED DRY TOWER SYSTEM ONLY
C IF NOPTIM = TRUE, NO OTIMIZATION OF SYSTEM DESIGN

60 READ(5,177) TOWONL,NOPTIM
61 177 FORMAT(2L5)
62 AMPLAM=(LAMMAX-LAMMIN)/2.0



63 PER1=DEMDPT-DEMDMT
64 PER2=24.0-PERI
65 REUOPT=DEMDPT
66 RDMDMT=DEMDMT

CALCULATE HOURLY VARIATION IN THE INCREMENTAL POWER PRODUCTION COST
67 DO 499 KKK=1,24
68 RKKK=KKK
69 IF(KKK.LE.DEMDMT) LAMBDA(KKK)=-AMPLAM*SIN((PIE/(PER2))*

I (RKKK+(PER2-RDMDMT)))+LAMMIN+AMPLAM
70 IF(KKK.GT.DEMDMT.AND.KKK.LT.DEMDPT) LAMBDA(KKK)=AMPLAM*

1 SINI(PIE/(PER1f)*(RKKK-RDMDMTI)+LAMMIN+AMPLAM
71 IF(KKK.GE.DEMDPT) LAMBDA(KKK)=-AMPLAM*SIN((PIE/(PER2))

1 *(RKKK-RDMDPT))+LAMMIN+AMPLAM
72 499 CONTINUE
73 RTHTIN=ITHTIN
74 LESS1=ITHTMX-ITHTIN

C INTERPOLATE HEAT RATE DATA INPUT TO 1 DEGREE F INCREMENTS FOR ALL POWER
LEVELS

75 DO 601 IXPOW=IPOHMNIPOHMXIPOHIN
76 DO 599 IXI=ITHTMNLESS1,ITHTIN
77 DELTR=HTRATE(IXI+ITHTINIXPOW)-HTRATE(IXI,IXPOW)
78 INCM1=ITHTIN-1
79 IF(INCMI.EQ.0) GO TO 599
80 DO 598 JXJ=1,INCM1
81 RJXJ=JXJ
82 KXK=IXI+JXJ
83 HTRATE(KXK,IXPOW)=HTRATE(IXI,IXPOW)+IRJXJ/RTHTIN)*DELHTR
84 598 CONTINUE
85 599 CONTINUE
86 DO 602 ITM3=ITHTMX,250
87 HTRATE(ITM3,IXPOW)SHTRATE(ITHTMX,IXPOW)
88 602 CONTINUE
89 601 CONTINUE
90 POWMAX=(3412.0/HTRATE(ITHTMN,10))*MWTHRM
91 TWASTH=(MWTHRM-POWMAX)*81888000.0/100.0

C DETERMINE TEMPERATURE AVERAGE-RANGE FREQUENCY
92 00 2602 IJKA=1,4
93 DO 2601 KJIR=1,3
94 FREQ(IJKAKJIR)=O.O
95 2601 CONTINUE
96 2602 CONTINUE
97 DO 2620 ITEMI=1,365
93 TAVEGE=(TDBMAX(ITEMI)+TDBMINIITEMI))/2.0
99 TAVFIX=TAVEGE-40.0

100 IF(TAVFIX.LE.O.0) IAVET-1
101 IF(TAVFIX.LE.O.0) GO TO 2618
102 TAVFIX=TAVFIX-20.0
103 IF(TAVFIX.LE.0.0) IAVET=2
104 IF(TAVFIX.LE.O.0) GO TO 2618
105 TAVFIX=TAVFIX-20.0
106 IF(TAVFIX.LE.O.0) IAVET=3
107 IF(TAVFIX.LE.O.0) GO TO 2618
108 IAVET=4
109 2618 CONTINUE
110 TAVEGE=(TDBMAX(ITEMI)+TDBMIN(ITEMI))/2.0



111 RANS=TDBMAX(ITEMI)-TDBMIN(ITEMI)
112 RANG=RANG-22.5
113 IF(RANG.LE.O.0) IRANG=1
114 IF(RANG.LE.0.O) GO TO 2619
115 RANG=RANG-15.0
116 IF(RANG.LE.0.0 IRANG=2
117 IF(RANG.LE.O.0) GO TO 2619
118 IRAN=3
119 2619 CONTINUE
120 FREQ(IAVET,IRANG)=FREQ(IAVET,IRANG)+1.0
121 2620 CONTINUE
122 DO 2833 IXYZI=1,365
123 WINTILfIXYZI)=0.0

C DETERMINE THE TEN HOTEST DAYS OF THE YEAR
124 2833 CONTINUE
125 DO 2844 IFINDT=1,10
126 TAXFIN=0.0
127 DO 2846 IDAFIN=1,365
128 IF(WINTIL(IDAFIN).EQ.1.O) GO TO 2846
129 IF(TDBMAX(IDAFIN).GE.TAXFIN) TAXFIN=TDBMAX(IDAFIN)
130 IF(TDBMAX(IDAFIN).EO.TAXFIN)IWTEN(IFINOT)=IDAFIN
131 2846 CONTINUE
132 WINTIL(IWTEN(IFINDT))=1.0
133 2844 CONTINUE
134 AVTENN=0.0
135 AVBCKN=0.0
135 AVTENX=0.0
137 AVBCKX=0.0
138 00 2863 ITZ=1,10
139 AVBCKN=AVBCKN+TDBMIN(IWTEN(ITZ)-1)/10.0
140 AV8CKX=AVBCKX+TDBMAX(IWTEN(ITZ)-1)/10.0
141 AVTENN=AVTENN+TDBMIN(IWTEN(ITZ))/10.0
142 AVTE4X=AVTENX+TDBMAX(IWTEN(ITZ))/10.0
143 2863 CONTINUE
144 WRITE(6,1315)
145 1315 FORMAT(50X,19H INPUT DATA SUMMARY)
145 WRITE(6,2631)
147 2631 FORMAT(35H TEMPERATURE FREQUENCY DISTRIBUTION)
148 WRITE(6,2633)((PKTEM(JZAJZR),SMTEM(JZA,JZR),FREQ(JZAJZR),

1 JZR=1,3),JZA=1,4)
149 2633 FORMAT111H PEAK TEMP=,F5.1,15H MINIMUM TEMP=,F5.1,12H FREQUENC

1Y=,F8.1)
150 WRITE(6,1318)
151 1318 FORMAT(IHO)
152 DO 1317 KUZK=1,24
153 XAMFIX=LAMBDA(KUZK)*1000.0
154 WRITE(6,1319) KUZK,XAMFIX
155 1319 FORMAT(25X,4H AT ,13,36H HOURS THE INCREMENTAL FUEL COST IS

I F8.4,12H MILLS/KWHR )
156 1317 CONTINUE
157 IF(ITHRMB.EQ.1) WRITE(6,1321)
158 1321 FORMAT(38HOTHIS RUN IS FOR A PLUG FLOW TYPE POND)
159 IF(ITHRMB.EQ.2) WRITE(6,1322)
160 1322 FORMAT(35HOTHIS RUN IS FOR A FULLY-MIXED POND)
161 WRITE(6,1344) BYPASS
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162 1344 FORMAT(48HOTHE FRACTION OF THE FLOW BYPASSING THE PO4D IS ,F8.4)
163 IF(PONTYP.EQ.3) WRITE(6,1323)
164 1323 FORMAT(34HOTHIS RUN IS FOR AN ADIABATIC POND)
165 IF(PONTYP.EO.2) WRITE(6,1324)
166 1324 FORMAT(34HOTHIS RUN IS FOR A REFLECTIVE POND)
167 IF(PONTYP.EQ.1) WRITE(6,1325)
168 1325 FORMAT(34HOTHIS RUN IS FOR AN UNCOVERED POND)
169 XPRATE=MPRATE*10
170 WRITE(6,1326) TURMAXXPRATE
171 1326 FORMAT(31HOTHE MAXIMUM CONDENSING TEMP ISF8.1,33H AND THE MINIM

1UM THERMAL POWER ISF5.1,9H PER CENT)
172 WRITE(6,1327) MWTHRMPOWMAX
173 1327 FORMAT(22H THE THERMAL POWER IS ,FlO.2,41H MEGAWATTS AND THE MAX

IIMJM GENERATION IS ,F10.2,10H MEGAWATTS)
174 WRITE(6,1328)
175. 1328 FORMAT(64HOTHE MAXIMUM TEMPERATURES OF THE TEN HOTEST DAYS ARE

1AS FOLLOWS)
176 WRITE(6,1329)(TDBMAX(IWTEN(ITZZZ)),ITZZZ=1,10)
177 1329 FORMAT(10F10.1)
178 WRITE(6,1339)
179 1339 FORMAT(78HOTHE MAXIMUM TEMPERATURES OF THE DAYS PRECEDING THE TE

IN HOTEST ARE AS FOLLOWS)
180 WRITE(6,1340)(TDBMAX(IWTEN(ITXZ)-1),ITXZ=1,10)
181 1340 FORMAT(1OF10.1)
182 WRITE(6,1341)AVTENNAVTENX
183 1341 FORMAT(46HOAVERAGE TEMPERATURES OF TEN HOTEST --MINIMUM=,F5.1,

1 10H MAXIMUM=,F5.1)
184 WRITE(6,1342) AVBCKNAVBCKX
185 1342 FORMAT(53H AVERAGE TEMPERATURES OF PRECEDING TEN DAYS--MINIMUM=,

1 F5.l,9H MAXIMUM=,F5.1)
186 IF(TOWONL) WRITE(6,1330)
187 1330 FORMAT(38HOTHIS RUN IS FOR TOWERS ONLY OPERATION)

C STATE INITIAL GEUSS FOR DESIGN VARIABLES
188 READ(5,133)WLGWLCGTOWSZG
189 133 FORMAT(3F10.2)
190 WLG=WLG*224640.0
191 WLCG=WLCS*224640.0
192 WL=WLG
193 WLC=WLCG
194 TOWSZ=TOWSZG
195 2000 CONTINUE
196 M=-1
197 P=3
198 L=3
199 PR=1
200 NSTEP=l
201 LOOPY=50

C THE SUBSCRIPTED VARIABLES E ARE OPTIMIZATION ROUTINE STEPPING SIZES,
C ADJUST IF REQUIRED

202 E(1)=15000000.0
203 E(2)=15000000.0
204 E(3)=7.0
205 IF(TOWONL) E(2)=7.0
206 IF(TOWONL) P=2
207 IF(TOWONL) L=2
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C FOR EACH SET OF OPVAR INITIAL GEUSS IS RESULT FROM LAST SET
208 IF(NOVSRI.EQ.NOPSET) GO TO 9999
209 READ(5,121) TBHUOPTEHUOP,TBCDOPTECDOP
210 121 FORMAT(4110)
211 NOVSRI=N0VSRI+l

C ***********#***************************************************** ***************

C IF FINAL =0 FINAL RUN BEING MADE

212 IFINAL=1

213 IF(.NOT.TOWONL) GO TO 178
214 X(1)=WLG
215 X(2)=TOWSZG
216 GO TO 179
217 178 CONTINUE
218 X(1)=WLG
219 X(2)=WLCG
220 X(3)=TDWSZG
221 179 CONTINUE

C
C MAIN LINE PROGRAM FOR ROSENBROCK HILLCLIMB
C

222 LAP=PR-1
223 LOOP=0
224 ISW=0
225 INIT=O
226 KOUNT=0
227 TERM=0.0
228 DELY=0.005
229 F1=0.0
230 NPAR=1
231 N=L
232 DO 40 K=1,L
233 40 AL(K)=(CH(XNK)-CG(XNK))*0.0001
234 DO 60 I=1,P
235 DO 60 J=1,P
236 V(IJ)=O.O
237 IF(I-J) 60,61,60
238 61 VIIJ)=1.0
239 '60 CONTINUE
240 DO 65 KK=1,P
241 EINT(KK)=E(KK)
242 65 CONTINUE

C

243 1000 DO 70 J=1,P
244 IF(NSTEP.EQ.0) E(J)=EINT(J)
245 SA(J)=2.0
246 70 D(J)=0.0
247 FBEST=Fl
248 80 ,1=1
249 IF(INIT.EQ.0) GO TO 120
250 90 00 110 K=1,P
251 110 X(K)=X(K)+E(I)*V(IK)
252 DO 50 K=1,L



253 50 H(K)=FO
C

254 120 FL=FIX)
255 IF(NOPTIM) GO TO 485
256 F1=M*F1
257 IF(ISW.EQ.0) FO=Fl
258 ISW=l
259 IF(ABS(FREST-Fl)-OELY) 122,122,125
260 122 TERM=1.0
261 GO TO 450
262 125 CONTINUE

C

263 J=l
C

264 130 XC=CX(XN,J)
265 LC=CG(X,N,J)
266 UC=GH(XNJ)
267 IF(XC.LE.LC) GO TO 420
268 IF(XC.GE.UC) GO TO 420
269 IF(F1.LT.F0) GO TO 420
270 IF(XC.LT.LC+AL(J)) GO TO 140
271 IF(XC.GT.UC-AL(J)) GO TO 140
272 A(J)=FO
273 GO TO 210

C

274 140 CONTINUE
C

275 BW=AL(J)
c

276 IF(X'.LE.LC.OR.UC.LE.XC) GO TO 150
277 IF(LZ.LT.XC.ANO.XC.LT.LC+BW) GO TO 160
278 IF(UC-8W.LT.XC.AND.XC.LT.UC) GO TO 170
279 PH(J)=1.O
280 'O TO 210

C
C

281 150 PHIJ)=0.0
282 GO TO 190
283 160 PW=(LC+BW-XC)/BW
284 GO TO 180
285 170 PW=(XC-UC+BW) /81
285 180 PH (J)=l.-3.O*PW+4.0*PW*PW-2.0+PW*PW*PW

C
287 190 F1=H(J)+(FI-H(J)I*PH(J)

288 210 CONTINUE
289 IF(J.EQ.L) GO TO 220
290 J=J+1
291 GO TO 130

C
292 220 INIT=1
293 IF(Fl.LT.F0) GO TO 420



j32

294 D(I)=D(I)+E(I)
295 E(I)=3.0*E(II
295 FO=F1
297 IF(.NOT.TWON4L) GO TO 227
298 XSAVF(I1)=X(1)
299 XSAVE(2)=X(2)
300 GO T3 228
301 227 CONTINUE
302 XSAVE(1)=X(1)
303 XSAVE(2)=X(2)
304 XSAVE(3)=X(3)
305 228 CONTINUE
305 CAPSAV=CAPLMX
307 IF(SA(I).GE.1.5) SA(I)=1.0

308 230 DO 240 JJ=1,P
309 IF(SA(JJ).GE.0.5) GD TO 440
310 240 CONTINUE

C
C AXES ROTATION
C

311 DO 250 R=1,P
312 DO 250 C=1,P
313 250 VV(C,R)=0.0
314 DO 260 R=1,P
315 KR=R
316 00 260 C=1,P
317 DO 265 K=KR,P
318 265 VV(R,C)=D(K)*V(K,C)+VV(R,C)
319 260 B(R,)=VV(RC)
320 BMAG=0.0
321 DO 280 C=1,P
322 BMAG=BMAG+B(1,C)*8(1,C)
323 280 CONTINUE
324 BMAG=SQRT(BMAG)
325 BX(1)=BMAG
326 DO 310 C=1,P
327 310 V(1,C)=8(1,C)/BMAG

C
328 DO 390 R=2,P

329 IR=R-1
330 DO 390 C=1,P
331 SUMVM=0.0
332 DO 320 KK=1,IR
333 SUMAV=0.0
334 DO 330 KJ=1,P
335 330 SUMAV=SUMAV+VV(R,KJ)*V(KK,KJ)
336 320 SUMVM=SUMAV*V(KKC) + SUMVM
337 390 B(RC)=VV(R,C)-SUMVM
338 DO 340 R=2,P
339 BBMAG=0.0
340 DO 350 K=1,P
341 350 BBMAG=BBMAG+B(R,K)*B(R,K)
342 8BMAG=SQRT(B8MAG)
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343 DO 340 C=1,P
344 340 V(RC)=B(R,C)/BBMAG
345 LOOP=LOOP+1
346 LAP=LAP+1
347 IF(LAP.EQ.PR) GO TO 450
348 GO TO 1000

C
349 420 IF(INIT.EQ.0) GO TO 450
350 DO 430 IX=1,P
351 430 X(IX)=X(IX)-E(I)*V(I,IX)
.352 E(I)=-0.5*E(I)
353 IFISA(I).LT.1.5) SA(I)=0.0
354 -0 TO 230

C
355 440 CONTINUE
356 IF(I.EQ.P) GO TO 80
357 1=1+1
358 50 TO 90

359 450 WRITE(6,003)
360 003 FORMAT(//,2X,5HSTAGE,8X,8HFUNCTION,12X,8HPROGRESS,9X,

1 16HLATERAL PROGRESS )
361 WRITE(6,004) LOOP,F0,BMAG,B8MAG
362 004 FORMAT(1H ,15,3E20.8)
363 WRITE(6,014) KOUNT
364 014 FORMAT(/,2X,33HNUMBER OF FUNCTION EVALUATIONS = ,18)
365 WRITE(6,005)
366 005 FORMAT(/,2X,25HVALUES OF X AT THIS STAGE

C PRINT CURRENT VALUES OF X
367 WRITE(6,006)(JMXSAVE(JM),JM=1,P)
368 006 FORMAT(/,2X,3(2HX(,I2,4H) = ,1PE14.6,4X))

C
369 LAP=0
370 IF(INIT.EQ.0) GO TO 470
371 IF(TERM.EQ.1.0) GO TO 480
372 IF(LOOP.GE.LOOPY) GO TO 480
373 GO TO 1000

374 470 WRITE16,007)
375 007 FORMAT(///,2X,81HTHE STARTING POINT MUST NOT VIOLATE THE CONSTRA

IINTS. IT APPEARS TO HAVE DONE SO.)
376 480 CONTINUE

C*********************************************************************
377 IFINAL=O
378 EXACT=FlXSAVE)
379 WRITE(6,9998) EXACT
380 9998 FORMAT(43H THE EXACT COST OF THE OPTIMIZED DESIGN IS ,F7.3,

1 15H MILLS PER KWHR)
381 WLG=XSAVE(1)
382 IF(TOWONL) TOWSZG=XSAVE(2)
383 IF(.NOT.TOWONL) WLCG=XSAVE(2)
384 IF(.NOT.TOWONL) TOWSZG=XSAVE(3)
385 GO TO 2000
386 485 CONTINUE
387 XSAVE(1)=X(1)



388 XSAVE(2)=X(2)
389 IF(.NOT.TOWONL) XSAVE(3)=X(3)
390 IFINAL=O
391 EXACT=F(XSAVE)
392 WRITE(6,9997) EXACT
393 9997 FORMAT(34H THE NON-OPTIMIZED DESIGN COST IS ,F7.31
394 GO T3 2000
395 9999 CONTINUE
396 STOP
397 END
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398 FUNCTION F(X)
399 DIMENSION X(3)
400 DIMENSION HTRATE(300,10),LAMBDA(25)TDOBMAX(370),TDBMIN(370)
401 DIMENSION CAPLCM4300),CAPLUM(300),TDB(30)
402 DIMENSION FREQ(6,6),PKTEM(4,4),SMTEM(4,4)
403 DIMENSION PLNTPF(300),LOSCAP(300),CONDEN(300),CONDN1(300)
404 DIMENSION LOSCPU(300)
405 DIMENSION WINTIL(400)
405 DATA ((PKTEM(IIAV, IIRAN), IIRAN=l,3),IIAV=1,4)/37.5,45.0,52.5,57.

15,65.0,72.5,77.5,85.0,92.5,97.5,105.0,112.5/

DATA ((SMTEM(JJAVJJRAN) ,JJRAN=1,3),JJAV=1,4)/22.5,15.0,7.5,42.5
1,35.0,27.5,62.5,55.0,47.5,82.5,75.0,67.5/

408 REAL LOSCPUMLSPKWMWTHRM
409 LOGICAL PRINTl, PRINT2
410 REAL MASSP
411 REAL LAMBDA
412 INTEGER TBHUOP,TEHUOP,TBCDOPTECDOP
413 LOGICAL TOWONL
414 LOGICAL NOPTIM
415 INTESER XCONINXXIN,TIMMIN,TIMMAX,PONTYP
416 COMMON KCOUNT
417 COMMON/TURBIN/HTRATE,TURMAX
418 COMMDN/CAPLDT/AVBCKXAVBCKN,AVTENXAVTENN
419 COMM3N/CAPCIT/CAPLMXCAPSAV
420 COMMON/PHTRMO/PONTYP,THRMB
421 COMMON/PRINTO/PRINT1,PRINT2
422 COMMON/TOPANT/TIMMIN,TIMMAX
423 COMMON/SEQE/NOPTIM
424 COMMON/PMAX/POWMAX
425 COMMON/HTPOND/HTOUT
425 COMMON/METEOR/TDAMAXTDBMIN
427 COMMON/FULCOS/LAMBDA
428 COMMON/HOTDAY/WINTIL
429 :OMMON/OPMODE/TOWONL
430 COMMON/OMEGA/MWTHRM
431 COMMJN/SWITCH/IFINAL
432 ZOMMON/TIMES/TBHUOPTEHUOPTBCDOPTECDOP
433 'OMMON/WAS/TWASTH
434 COMMON/MP/MPRATE
435 COMMON/PARTFL/BYPASS
436 COMMON/COST/MLSPKW
437 COMMON/POND/MASSP,AREAP
438 COMMON/TEMFRQ/FREQ
439 WL=X(1)
440 WLC=X(2)
441 IF(TOWNL) TOWSZ=X(2)
442 IFI.NOT.TOWONL) TOWSZ=X(3)



443 SPCHET=1.0
444 TPONDI=50.0
445 YCAPEN=0.0
446 EVAPT=0.0
447 TLOSGN=0.0
448 EVAPD=0.0
449 HTOUT=0.0
450 THTOUT=0.0
451 IF(TOWONL) GO TO 2026
452 PCOLSB=TBHUOP-TECDOP
453 PHEATU=TEHUOP-TBHUOP
454 PCO0LD=PHEATU
455 PHOTSB=24.0-PCOLSB-PHEATU-PCO0LD
456 VOLUM=WLC*(1.O-BYPASS)*PHEATU/62.4
457 MASSP=VOLUM*62.4
458 AREAP=VOLUM/20.0
459 ITCHAN=0.63*PHEATU
460 ITIMHF=TBHUOP+ITCHAN
461 ITIMCF=TBCDOP+ITCHAN

C DERTERMINE CONDENSER HT MATRIX FOR COUPLED MODE

462 CITCM=250.0
463 DO 2020 XCONIN=1,250
464 IPOW=10
465 POWFRC=1.0
466 2009 ETA=0.33
467 2010 ETAI=ETA
468 CONIN=XCONIN
469 CONOT=(POWFRC*MWTHRM*1000.0*3412.0*(1.0-ETA)+WLC*SPCHET*

1 CONIN)/(WLC*SPCHET)
470 TC=:ONOT+5.0
471 IF(TC.LE.85.0) TC=85.0
472 IF(T'.GE.TURMAX.AND.IPOW.EQ.MPRATE)CITCM=XCONIN
473 IF(TC.GE.TURMAX.AND.IPOW.EQ.MPRATE)GO TO 2021
474 ITC=TC
475 HEATR=HTRATE(ITC,IPOW)
476 ETA=3412.0/HEATR
477 DIFETA=ABS(ETA1-ETA)
478 IF(DIFETA.LE.0.0001) GO TO 2015
479 ETA=(ETA+ETA1)/2.0
480 GO TO 2010

C PLANT DERATES IN 10, INCREMENTS AT EXCESSIVE CONDENSING TEMPERATURES
481 2015 CONTINUE
482 IF(T^.LE.TURMAX) GO TO 2017
483 POWFaC=POWFRC-0.1
484 IPOW=IPOW-1
485 GO TO 2009
485 2017 CONDEN(XCONIN)=CONOT
487 POWRR=POWFRC*MWTHRM
488 CAPLCM(XCONIN)=POWMAX-ETA*POWRR
489 IF(IFINAL.EQ.1) GO TO 2020
490 2020 CONTINUE
491 2021 CONTINUE
492 ICIT'M=CITCM
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493 DO 2025 IITEM=ICITCM,250
494 CAPLCM(IITEM)=POWMAX
495 CONDEN(IITEM)=IITEM
496 2025 CONTINUE
497 2026 CONTINUE
498 NIDWC=2
499 IF(TOWONL) NIDWC=1
500 DO 2044 IDWC=1,NIDWC
501 IF(IDWC.EQ.1) XWL=WL
-502 IF(IDWC.EQ.2) XWL=WLC

C DETERMINE TOWER PERFORMANCE COEFFICIENT

C ALTERNATIVE TOWER DESIGNS MAY BE CONSIDERED BY CHANGING THE NEXT TWO CARDS
503 AUF=1120000.0
504 AIRFLO=11466000.0
505 ARTFLO=AIRFLO*TOWSZ
506 TAUF=TOWSZ*AUF

PICK ARBITARY ITD, TAIR
501 ARITD=60.0
508 ARTAIR=95.0

C SEUSS AT TOWER OUTLET TEMPERATURE
509 ARTOWO=ARTAIR+30.0
510 ADD=1.0
511 2030 CONTINUE
512 ARQJET=XWL*(ARTAIR+ARITD-ARTOW)
513 ARTARJ=AROJET/(ARTFLO*0.24*TOWSZ)+ARTAIR
514 DELTAA=ARTAIR+ARITD-ARTARO
515 DELTAB=ARTOWD-ARTAIR
516 IF(DELTAA.LE.0.0.OR.DELTAB.LE.0.0) ARTOWO=ARTAIR+ADD
517 IF(DELTAA.LE.O.0.OR.DELTAB.LE.0.0) ADD=ADD+1.0
518 IFIDELTAA.LE.0.0.OR.DELTAB.LE.O.0) GO TO 2030
519 ARQJT1=TAUF*(DELTAA-DELTAB)/ALOG(DELTAA/DELTAB)
520 ARTOI=(ARTAIR+ARITD)-ARQJTI/XWL
521 ARDIF=ABS(ARTOWO-ARTWO1)
522 IF(ARDIF.LE.0.1) GO TO 2040
523 ARTOWO=(ARTOWO+ARTWO1)/2.0
524 50 TO 2030
525 2040 CONTINUE
526 IF(IDWC.EQ.1)CUNIT=AROJT1/ARITD
527 IF(IDWC.EQ.2) CUNITC=ARQJT1/ARITD
528 IF(IFINAL.EQ.l) GO TO 2045
529 IF(.40T.PRINT2) GO TO 2045
530 IF(IDWC.EQ.1) WRITE(6,2041) CUNIT
531 2041 FORMAT(53H TOWER PERFORMANCE COEFFICIENT FOR UNCOUPLED MODES =

1 F20.4)
532 IF(IDWC.EQ.2) WRITE(6,2042) CUNITC
533 2042 FORMAT(51H TOWER PERFORMANCE COEFFICIENT FOR COUPLED MODES ,

1 F20.4)
534 2045 CONTINUE
535 2044 CONTINUE

C************************************************ *******************************
DETERMINE CONDENSER HT MATRIX FOR UNCOUPLED MODE

536 DO 2049 XCONIN=32,200



537 IPOW=10
538 POWFRC=1.0
539 2051 ETA=0.33
540 2052 ETA1=ETA
541 CONIN=XCONIN
542 XCONOT=(POWFRC*MWTHRM*1000.0*3412.0*(1.0-ETA)+WL*SPCHET*CONIN)/

1 (WL*SPCHET)
543 TC=X:ONDT+5.0
544 IF(TC.LE.85.0) TC=85.0
545 IF(TC.GE.TURMAX.AND.IPOW.EQ.MPRATE)CITUCM=XCONIN
546 IF(TC.GE.TURMAX.AND.IPOW.EQ.MPRATE)GO TO 2069
547 ITC=TC
548 HEATR=HTRATE(ITCIPOW)
549 ETA=3412.0/HEATR
550 DIFETA=ABS(ETAI-ETA)
551 IF(DIFETA.LE.O.0001) GO TO 2054
552 ETA=(ETA+ETAI)/2.0
553 GO TO 2052
554 2054 CONTINUE
555 IF(TC.LE.TURMAX) GO TO 2053
556 POWFRC=POWFRC-0.1
557 IPOW=IPOW-1
558 '0 TO 2051
559 2053 CONDN1(XCONIN)=XCONOT
560 POWRR=POWFRC*MWTHRM
561 CAPLUM(XCONIN)=POWMAX-ETA*POWRR
562 2049 CONTINUE
563 2069 CONTINUE
564 ICTUCM=CITUCM
565 FAKDIF=CONDN1(ICTUCM-1)-CITUCM-1.0
566 DO 2070 IITEM=ICTUCM,250
567 RIITEM=IITEM
568 CONDN1(IITEM)=RIITEM+FAKDIF
569 CAPLUM(IITEM)=POWMAX
570 2070 CONTINUE

C DETERMINE PERFORMANCE MATRIX FOR UNCOUPLED MODE

571 DO 2060 IITDB=1,120
572 RITDB=IITDB
573 XXIN=IITDB+30
574 IF(IITDB.LE.40) RITDB=40.0
575 IF(IITDB.LE.40) XXIN=70
576 RXXIN= XXIN
577 2055 CONTINUE
578 IRXXIN=RXXIN
579 IRXXN1=IRXXIN+1
580 RIRXXN=IRXXIN
581 CONT=CONDN1(IRXXIN)+(RXXIN-RIRXXNI*(CONDNI(IRXXN1)-CONDNI(IRXXI

1N))
582 TITD=:ONOT-RITOB
583 QJECT=CUNIT*TITD
584 TOWOT=CONOT-QJECT/WL
585 RXXINl=TOWOT
586 XXDIF=ABS(RXXINI-RXXIN)
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587 IF(XXDIF.LE.0.1) GO TO 2057
588 RXXIN=(RXXIN+RXXINI)/2.0
589 GO T3 2055
590 2057 CONTINUE
591 LOSCPU(IITDB)=CAPLUM(IRXXIN)+(RXXIN-RIRXXN)*(CAPLUM(IRXXN1)-

ICAPLUM(IRXXIN))
592 2060 CONTINUE

C INITIALIZE VARIABLES FOR SIMULATION
593 MODSYS=1
594 TPOND=TPONDI
595 TPONDH=TPONDI
596 TPONDC=TPONDI
597 JDAY=O
598 PHASEIzTIMMIN
599 PHASE2=TIMMAX
600 CYC1=PHASEI+24.0-PHASE2
601 CYC2=24.0-CYC1
602 PIE=3.141
603 EVAP=0.0
604 FANPOW=139.6*TOWSZ
605 FLTOWU=WL/TOWSZ
606 DELPR1=42.0*(FLTOWU/1.835E6)**2
607 PPUMPU=WL*DELPR1/2.67E6
608 YT00P=0.0
609 IF(TOWONL) CAPLMX=0.0
610 IF(TOWONL) GO TO 10000
611 FLTOW'E=WLC/TOWSZ
612 DELPR2=42.0*(FLTOWC/1.835E6)**2
613 PPUMPC=WLC*DELPR2/2.67E6
614 MIN1I1=TEtiUOP-1
615 MIN222=TECDOP-1
616 IF(IFINAL.EQ.1) GO TO 9000
617 IFI.NDT.NOPTIM) CAPLMX=CAPSAV
618 AVPCLD=0.0

C IF NOT FINAL COST DETERMINATION - GO TO PSEUDO SIMULATION

C EXACT SIMULATION - STATEMENTS 3000 TO 4000

C ENTER DAILY LOOP

619 3000 CONTINUE
620 JDAY=JDAY+1
621 JBEFOR=JDAY-1
622 JNEXT=JDAY+1
623 IF(JBEFOR.EQ.O) JBEFOR=l
624 IFIJNEXT.EQ.366) JNEXT=365
625 AMP1=-TDBMIN(JDAY)+TDBMAX(JBEFOR)
626 AMP2=TDBMAX(JDAY)-TDBMIN(JDAY)
627 AMP3=-TDBMIN(JNEXT)+TDBMAX(JDAY)
628 IUROP=0
629 3050 CONTINUE

C *****************************************************************************
C ENTER HOURLY LOOP



630 IOUROP=IOUROP+1
631 ROUROP=IOUROP
632 IF(IOUROP.LE.TIMMIN) TDB(IOUROP)=-AMP1*SIN((PIE/(2.0*CYC1l))*

1 (ROUROP+(CYC1-PHASE)))+AMPI+TDBMIN(JDAY)
633 IF(IOUROP.GT.TIMMIN.AND.IOUROP.LE.TIMMAX) TDB(IOUROP)=AMP2*

1 SIN(IPIE/(2.0*CYC2))*(ROUROP-PHASE1))+TDBMIN(JDAY)
634 IF(IOUROP.GE.TIMMAX) TDB(IOUROP)=-AMP3*SIN((PIE/(2.0*CYCI))*

I (ROJROP-PHASE2))+TDBMAX(JDAY)
635 IF(TDB(IOUROP).LE.1.0) TDB(IOUROP)=1.0
636 IPTDB=TDBtIOUROP)
637 RIPTDB=IPTDB
638 FPTDB=TDB(IOUROP)-RIPTDB
639 IPTD81=IPTDB+1
640 IF(TOWONL) GO TO 10100
641 IF(MODSYS.EQ.1) GO TO 3100
642 IF(MODSYS.EQ.2) GO TO 3200
643 IF(M3DSYS.EQ.3) GO TO 3300
644 IF(M3DSYS.EQ.4) GO TO 3400

C********************* ********************************************************
C CALCULATIONS FOR COLD STANDBY MODE

645 3100 CONTINUE
646 IF(IOUROP.EQ.TBHUOP) MODSYS=2
647 IF(IOUROP.EQ.TBHUOP) GO TO 3200
648 XLOSS=LOSCPU(IPTOB)+FPTD8*(LOSCPU(IPTD81)-LOSCPU(IPTDB))
649 TLOSGN=TLOSGN+XLOSS
650 OPPEq=LAMBDA(IOUROP)*XLOSS*1000.0
651 YCAPEN=YCAPEN+OPPEN
652 GO T9 5000

C CALCULATIONS FOR HEATUP MODE
C***************************************************************** **************

653 3200 CONTINUE
654 IF(IOUROP.EO.TEHUOP) MODSYS=3
655 IF(MODSYS.EO.3) GO TO 3300
656 IF(IOUROP.NE.TBHUOP) GO TO 3225
657 TPONDC=TPOND
658 IF(PONTYP.EQ.3) GO TO 3220
659 IF(JDAY.NE.1) GO TO 3216
660 HAFTIM=0.5*PCOLSB+0.25*(PCOOLD+PHEATU)
661 BCDOP=TBCDOP
662 TFCEV=BCDOP+0.5*PCOOLD+HAFTIM
663 ITFCEV=TFCEV
664 TIMEX=2.0*HAFTIM
665 3216 CONTINUE
666 TDBA=TDB(ITECEV)
667 CALL PONTEMIPONTYP,TPOND,EVAPTDBA,TMEX)
668 EVAPT=EVAPT+EVAP
669 3220 CONTINUE
670 3225 CONTINUE
671 JCTC=O
672 TGEUSS=TPOND
673 3241 IGEUSS=TGEUSS
674 RIGEUS=IGEUSS
675 IGEUSI=IGEUSS+1

At -
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676 COLT=CONDEN(IGEUSS)+(TGEUSS-RIGEUS)*(CONDEN(IGEUS1)-CONDE4( IGEUS
IS))

677 TLET=COLT-(CUNITC*(COLT-TDB(IOUROP))/WLC)
678 IF(IOUROP.EQ.TBHUOP) TLETI=TLET
679 IF(IOUROP.LE.ITIMHF.AND.ITHRMB.EQ.1) TGEUSN=TPOND*(1.O-BYPASS)+

1 TLET*BYPASS
680 IF(IOUROP.GT.ITIMHF.AND.ITHRMB.EO.1) TGEUSN=(TPOND+0.33*

1 (TLET1-TPOND))*(1.0-BYPASS)+TLET*BYPASS
681 IF(ITHRMB.EQ.2) TGEUSN=TPOND*(1.O-BYPASS)+TLET*BYPASS
682 DFXX=ABS(TGEUSN-TGEUSS)
683 IF(DFXX.LE.0.3) GO TO 3229
684 JCTC=JCTC+1
685 IF(JCTC.GE.20) WRITE(6,9242) TGEUSS
686 IF(JCTC.GE.25) GO TO 3229
687 TGEUSS=(TGEUSS+TGEUSN)12.0
688 GO TO 3241
689 3229 XLOSS=CAPLCM(IGEUSS)+(TGEUSS-RIGEUS)*(CAPLCM(IGEUS1)-CAPL'M(IGEU

1SS))
690 IF(IOUROP.EQ.TBHUOP) TPONDS=0.0
691 IF(ITHRMB.EQ.1) TPONDS=TPONDS+TLET*((WLC*(1.O-BYPASS))/MASSP)
692 IF(ITHRMB.EQ.1.AND.IOUROP.EQ.MIN111) TPOND=TPONDS
693 IF(ITHRMB.EQ.2) TPOND=(TPOND*(MASSP-WLC*(1.0-BYPASS))+TLET*

1 (WLC*(1.O-BYPASS)))/MASSP
694 TLOSGN=TLOSGN+XLOSS
695 OPPEN=LAMBDA(IOUROP)*XLOSS*1000.0
695 YCAPEN=YCAPEN+0PPEN
697 IF(IOUROP.EO.TBHUOP) THTOUT=THTOUT+HTOUT/TWASTH
698 IF(.40T.PRINT2) GO TO 5000
699 IF(IOUROP.EQ.TBHUOP) AVPHTU=0.0
700 AVPHTU=((POWMAX-XLOSS)/PHEATU)+AVPHTU
701 IF(IOUROP.EQ.TBHUOP) EVAPD=EVAP+EVAPD
702 GO TO 5000

C ***** **************** ******************************************** **.************

C CALCULATIONS FOR HOT STANDBY MODE
v******************************************************************************

703 3300 CONTINUE
704 IF(IOUROP.EQ.TBCOOP) MO0SYS=4
705 IF(MODSYS.EQ.4) GO TO 3400
706 XLOSS=LOSCPU(IPTDB)+FPTDB*(LOSCPU(IPTDBI)-LOSCPU(IPTDB))
707 TLOSGN=TL3SGN+XLOSS
708 OPPEN=LAMBDA(IOUROP)*XLOSS*1000.0
709 YCAPEN=YCAPEN+OPPEN
710 GO TO 5000

0**********~************************************************ ***************

C CALCULATIONS FOR COOLDOWN MODE

711 3400 CONTINUE
712 IF(IOUROP.EQ.TECDOP) MODSYS=l
713 IFIIOUROP.EQ.TECDOP) MODSYS=1
714 IF (MODSYS.EQ.1) GO TO 3100
715 IF(IOUROP.NE.TBCDOP) GO TO 3425
716 TPONDH=TPONO
717 IFIPONTYP.EQ.3) GO TO 3420
718 IF(JDAY.NE.1) GO TO 3416
719 HAFTIM=0.5*PHOTSB+0.24*(PCOOLD+PHEATU)



720 BHUOP=TBHUOP
721 TFCEV1=BHUDP+O.5*PHEATU+HAFTIM
722 ITFCV1=TFCEV1
723 TIMEX2=2.0*HAFTIM
724 IF(ITFCV1.GT.24) ITFCV1=ITFCV1-24
725 3416 CONTINUE
726 TDBA=TDB(ITFCV1)
727 CALL PONTEM(PONTYPTPONDEVAP,TDBATIMEX2)
728 EVAPT=EVAPT+EVAP
729 3420 CONTINUE
730 3425 CONTINUE
731 JCTC=0
732 TGEUSS=TPOND
733 3441 IGEUSS=TGEUSS
734 RIGEUS=IGEUSS
735 IGEUSl=IGEUSS+1
736 COLT=CONDEN(IGEUSS)+(TGEUSS-RIGEUS)*(CONDEN(IGEUS)-CONDE4(IGEUS

is))
737 TLET=CDLT-(CUNITC*(COLT-TDB(IOUROP))/WLC)
738 IF(IOUROP.EQ.TBCDOP) TLETI=TLET
739 IF(IOUROP.LE.ITIMCF.AND.ITHRMB.EQ.1) TGEUSN=TPOND*(1.0-BYPASS)+

I TLET*BYPASS
740 IF(IOUROP.GT.ITIMCF.AND.ITHRMB.EQ.1) TGEUSN=(TPOND+0.33*

1 (TLET1-TPOND))*(1.0-BYPASS)+TLET*BYPASS
741 IF(ITHRMB.EQ.2) TGEUSN=TPOND*(1.O-BYPASS)+TLET*BYPASS
742 DFXX=ABS(TGEUSN-TGEUSS)
743 IF(DFXX.LE.O.3) GO TO 3429
744 JCTC=JCTC+1
745 IF(J.TC.GE.20) WRITE(6,9242) TGEUSS
745 IF(JCTC.GE.25) GO TO 3429
747 TGEUSS=(TGEUSS+TGEUSN)/2.0
749 GO T3 3441
749 3429 XLOSS=CAPLCM(IGEUSS)+(TGEUSS-RIGEUS)*(CAPLCM(IGEUS1)-CAPL'M(IGEU

155))
750 IF(IOUROP.EQ.TBCDOP) TPONDS=0.0
751 IF(ITHRMB.EQ.1) TPONOS=TPONDS+TLET*((WLC*(1.O-BYPASS))/MASSP)
752 IF(ITHRMB.EQ.1.AND.IOUROP.EQ.MIN222)TPOND=TPONDS
753 IF(ITHRMB.EQ.2) TPOND=(TPOND*IMASSP-WLC*(1.o-BYPASS))+TLET*

1 (WLC*(1.0-BYPASS)))/MASSP
754 TLOSSN=TLOSGN+XLOSS
755 OPPEN=LAMBDA(IOUROP)*XLOSS*1000.0
756 YCAPEN=YCAPEN+OPPEN
757 IF(IOUROP.EQ.TBCDOP) THTOUT=THTOUT+HTOUT/TWASTH
758 IF(.40T.PRINT2) GO TO 5000
759 AVPCLD=AVPCLD+((POWMAX-XLOSS)/PCOOLD)
760 IF(IOUROP.EQ.TBCDOP) EVAPD=EVAP+EVAPO
761 GO TO 5000
762 5000 CONTINUE

C SJM DAILY PARAMETERS - PRINT OUT DAILY PERFORMANCE

763 OPFAN=FANPOW*LAMBDA(IOUROP)
764 IF(MODSYS.EQ.1.OR.MODSYS.EQ.3) OPUMP=PPUMPU*LAMBDA(IOUROP)
765 IF(MODSYS.EQ.2.OR.MODSYS.EQ.4) OPUMP=PPUMPC*LAMBDA(IOUROP)
766 YTOW3P=YTOWP+OPUMP+0PFAN
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767 IF(I0UROP.LT.24) GO TO 3050
768 IF(.NOT.PRINT2) GO TO 5500
769 IF(JDAY.EQ.1) LCOUNT=0
770 IF(LCOUNT.EQ.45) LCOU4T=O
771 IF(LCOUNT.NE.0) GO TO 5150
772 LCOUNT=LCOUNT+1
773 WRITE(6,5099)
774 5099 FORMAT(1H1)
775 WRITE(6,5101)
775 5101 FORMAT(120H DAY MAXIMUM MINIMUM AVERAGE AVERAGE

1COLD HOT EVAP HEAT TR
2 )

777 WRITE(6,5102)
778 5102 FORMAT(120H AMRIENT AMBIENT POWER - POWER -

IPOND POND LOSS FROM
2 )

779 WRITE(6,5103)
780 5103 FORMAT(120H TEMP TEMP HEATUP COOLD3WN

ITEMP TEMP (LBS/DAY) POND(%)
2 )

781 5150 CONTINUE
782 WRITE(6,5155) JDAYTDBMAX(JDAY),TDBMIN(JDAY),AVPHTUAVPCL,

1 TPONDCTPONDH,EVAPDTHTOUT
783 5155 FORMAT(I5,2X,6F10.1,F13.1,F1O.1)
784 EVAPD=0.0
785 5500 CONTINUE
785 IF(JDAY.EQ.1) TOTHET=0.0
787 TOTHET=TOTHET+THTOUT/165.0
788 THTOUT=0.0
789 AVPCLD=0.0
790 IF(JDAY.EQ.365) GO TO 7000
791 GO TO 3000
792 7000 CONTINUE

C *******************************************************************************
COST DETERMINATIONS

793 IFITOWONL) VOLUM=0.0
794 XWLX=WL
795 IF(WL.LT.WLC) XWLX=WLC
795 XWLX=XWLX/224640.0

C CHANGES IN BASIC ECONOMIC PARAMETERS MAY BE ACCOMPLISHED BY APPROPRIATLY
ADJUSTING THE CONSTANTS IN THE NEXT TEN CARDS

797 PCF=0.75
798 AFCR=0.15
799 CAPTO0=132000.0*TWSZ
800 CAPPJP=30000.0*TOWSZ*I(XWLX/1154.0)**2.0)*(TOWSZ/141.0)
801 CAPTOW=CAPTOO+CAPPUP
802 CAPTOW=1.25*CAPTOW
803 CAPTSP=515000.0 + 0.175*VOLUM
804 IF(PONTYP.EQ.1) CAPTSP=515000.0+0.10*VOLUM
805 IF(TOWONL) CAPTSP=0.0
805 CAPAC=CAPLMX*150000.0
807 TCAPC=CAPTOW+CAPTSP+CAPRC
808 TOPC=(YTOWOP+YCAPEN)*PCF
809 TOTANC=(TCAPC*AFCR) + TOPC
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810 YMELGN=POWMAX*1000.0*8760.0*PCF
811 IF(TOWONL) GO TO 8500
812 IF(.NOT.PRINTI) GO TO 8000
813 WRITE(6,7100)
814 7100 FORMAT(1HO,20K,30HOPERATION AND DESIGN VARIABLES)

C 0INTOUT OF SIMULATION RESULTS
C *******************************************************************************

815 WRITE(6,7101)
816 7101 FORMAT(80H TIME TIME TIME TIME I TOWER F

1LOW FLOW POND
817 WRITE(6,7102)
818 7102 FORMAT(80H HU BEGINS HU ENDS CLD BEGINS CLDENDS CELLS COU

IP M3DE UNCO MODE AREA
819 WLCCUF=WLC/224640.0
820 WLCUF=WL/224640.0
821 PONARA=AREAP/43560.0
822 WRITE(6,7103) T8HUOPTEHUDP,TBCDOP,TECDOP,TOWSZWLCCUFWLCUFPON

1ARA
823 7103 FORMAT(15,3110,4F10.1)
824 GO TO 8700
825 8500 CONTINUE
826 WLCUF=WL/224640.0
827 WRITE(6,8501) TOWSZWLCUF
828 8501 FORMAT(20H NUMBER OF TOWERS = ,F10.3,14H FLOW RATE = ,F20.4)
829 8700 CONTINUE
830 MLSPKW=(TOTANC/YMELGN)*1000.0
831 WRITE(6,7700) MLSPKW
832 IF(IFINAL.EQ.1) GO TO 8900
833 WRITE(6,8801)
834 8801 FORMAT(lH1,30X,21H FINAL DESIGN SUMMARY)
835 IF(.NOT.TOWONL) GO TO 8319
836 TBHU3P=O
837 TEHUOP=0
838 TBCDOP=0
839 TECDOP=0
840- WLCCUF=0.0
841 PONARA=0.0
842 TOTHET=0.0
843 8319 CONTINUE
844 WRITE(6,8802)
845 8802 FORMAT(1HO)
846 WRITE(6,7100)
847 WRITE(6,7101)
848 WRITE(6,7102)
849 WRITE(6,7103) TBHUOP,TEHUOP,TBCDOP,TECDOP.TOWSZWLCCUFWLCUF,

1 PONARA
850 WRITE(6,8803)
851 8803 FORMAT(IHO,45X,13H SYSTEM COSTS)
852 WRITE(6,8813)
853 8813 FORMAT(28X,13HCAPITAL COSTS,35X,24HOPERATING COSTS (ANNUAL))
854 WRITE(6,8804)
855 8804 FORMAT(5X,13H TOWER CELLS ,5X,13H STORAGE POND,5X,27HREPLACEMENT

1 CAPABILITY ,5X,14HFANS AND PUMPS,5X,11HENERGY REPL)
856 YT0OWP=PCF*YTOWOP
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857 YCAPEN=PCF*YCAPEN
858 WRITE(6,8RO5) CAPTOWCAPTSPCAPRCYTOWOPYCAPEN
859 8805 FORMAT(8X,F10.1,8X,FIO.1,13X,FIO.1,17X,F1O.1,9XF1O.1)
860 WRITE(6,8806) CAPLMX
861 8806 FORMAT11HO,28H MAXIMUM CAPABILITY LOSS IS ,F10.2,7H MWS(E))
862 WRITE(6,8807) TLOSGN
863 8807 FORMAT(38H TOTAL LOST ELECTRICAL GENERATION IS ,FI0.1,6H MWHRS)
864 WRITE(6,8810) EVAPT,TOTHET
865 8810 FORMAT(32H THE EVAPORATIVE WATER LOSS IS ,F18.2,60H LBS AND T

1HE TOTAL HEAT TRANSFER FROM THE POND SURFACE IS ,F5.1,3H )
866 8900 CONTINUE
867 7700 FORMAT(20H INCREMENTAL COST = ,F8.3,11H MILLS/KWHR)
868 8000 CONTINUE
869 F=(TOTANC/YMELGN)*1000.0
870 KCOUNT=KCOUNT+l
871 RETURN

C BEGIN AVERAGED-METEOROLOGICAL-CONDITION PSEUDO SIMULATION
C***************************************************************************

872 9000 CONTINUE
873 TPOND=TPONDI
874 HAFTIM=0.5*PHOTSB+0.24*(PCOOLD+PHEATU)
875 BHUOP=TBHUOP
876 TFCEVI=BHUOP+0.5*PHEATU+HAFTIM
877 ITFCV1=TFCEV1
878 TIMEX2=2.0*HAFTIM
879 IF(ITFCV1.GT.24) ITFCVI=ITFCV1-24
880 HAFTIM=0.5*PCOLSB+0.25*(PC00LD+PHEATU)
881 BCDDP=TBCDOP
882 TFCEV=BCDDP+0.5*PCOOLD+HAFTIM
883 ITFCEV=TFCEV
884 TIMEX=2.0*HAFTIM
885 SMTEM(4,4)=AVBCKN
886 PKTEM(4,4)=AVBCKX
887 DO 9500 IAVE=1,4
888 NORNGI=3
889 IF(IAVE.EQ.4) NORNGI=4
890 DO 9499 IRANG=1,NORNGI
891 KKCOUT=0
892 9025 CONTINUE
893 YCAPET=0.0
894 YTOWDT=0.0
895 TPCHEK=TPOND
896 AMP=PKTEM(IAVEIRANG)-SMTEM(IAVEIRANG)
897 9026 CONTINUE
898 IOUROP=0
899 9099 CONTINUE

C ENTER HOURLY LOOP
900 IOUROP=IOUROP+1
901 ROUROP=IOUROP
902 IF(IOUROP.LE.TIMMIN) TDB(IOUROP)=-AMP *SINI(PIE/(2.0*CYC1))*

1 (ROURDP+(CYCL-PHASE1)))+AMP + SMTEM(IAVE,1RANG)
903 IF(IOUROP.GT.TIMMIN.AND.IOUROP.LE.TIMMAX) TDB(IOUROP)=AMP *

1 SINI(PIE/(2.0*CYC2))*(ROUROP-PHASEl))+SMTEM(IAVEIRANG)
904 IF(IOUROP.GE.TIMMAX) TDB(IOUROP)=-AMP *SIN((PIE/(2.0*CYC1))*
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1 (ROUROP-PHASE2f)+PKTEM(IAVEIRANG)
905 IF(TDB(IOUROP).LE.1.0) TDB(IOUROP)=1.0
906 IPTDB=TDB(10UROP)
907 RIPTDB=IPTDB
908 FPTDB=TDB(IOUROP)-RIPTDB
909 IPTDBI=IPTDB+l
910 IF(MODSYS.EQ.1) GO TO 9100
911 IF(MODSYS.EQ.2) GO TO 9200
912 IF(MODSYS.EQ.3) GO TO 9300
913 IF(MODSYS.EQ.4) GO TO 9400

C *******************************************************************************
C CALCULATIONS FOR COLD STANDBY MODE

914 9100 CONTINUE
915 IF(IOUROP.EQ.TBHUOP) MODSYS=2
916 IF(IOUROP.EQ.TBHUOP) GO TO 9200
917 XLOSS=LOSCPU(IPTOB)+FPTDB*(LOSCPU(IPTDB1)-LOSCPU(IPTDB))
918 GO TO 9489

C CALCULATIONS FOR HEATUP MODE

919 9200 CONTINUE
920 IF(IOUROP.EQ.TEHUOP) MODSYS=3
921 IF(MO0SYS.EQ.3) GO TO 9300
922 IF(IOUROP.NE.TBHUOP) GO TO 9225
923 TPONDC=TPOND
924 IF(PONTYP.EQ.3) GO TO 9220
925 TDBA=TDB(ITFCEV)
926 IF(IAVE.EQ.4.AND.IRANG.EQ.4) TDBAS=TDBA
927 CALL PONTEM(PONTYPTPONDEVAPTDBATIMEXI
928 9220 CONTINUE
929 9225 CONTINUE
930 9242 FORMAT(8H TGEUSS=,F10.1)
931 JCTC=O
932 TGEUSS=TPOND
933 9241 IGEUSS=TGEUSS
934 RIGEUS=IGEUSS
935 IGEUS1=IGEUSS+l
936 COLT=CONDEN(IGEUSS)+(TGEUSS-RIGEUS)*(CONDEN(IGEUSI)-CONDEN(IGEUS

is))
937 TLET=COLT-(CUNITC*(COLT-TDB(IOUROP))/WLC)
938 IF(IOUROP.EQ.TBHUOP) TLET1=TLET
939 IF(IOUROP.LE.ITIMHF.AND.ITHRMB.EQ.1) TGEUSN=TPOND*(1.O-BYPASS)+

I TLET*BYPASS
940 IF(IOUROP.GT.ITIMHF.AND.ITHRMB.EQ.1) TGEUSN=(TPOND+0.33*

1 (TLET1-TPOND))*(1.O-BYPASS)+TLET*BYPASS
941 IFIITHRMB.EQ.2) TGEUSN=TPOND*(1.0-BYPASS)+TLET*BYPASS
942 DFXX-ABS(TGEUSN-TGEUSS)
943 IF(DFXX.LE.0.3) GO TO 9229
944 JCTC=JCTC+I
945 IF(JCTC.GT.40) GO TO 9229
946 TGEUSS=(TGEUSS+TGEUSN)/2.0
947 GO TO 9241
948 9229 XLOSS=CAPLCM(IGEUSS)+(TGEUSS-RIGEUS)*(CAPLCM(IGEUSI)-CAPL'M(IGEU

949
iss))

IF(IOUROP.EQ.TBHUOP) TPONDS=0.0
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950 IF(ITHRMB.EQ.1) TPONDS=TPONDS+TLET*((WLC*(1.O-BYPASS))/MASSP)
951 IF(ITHRMB.EQ.1.AND.IOUROP.EQ.MIN1) TPOND=TPONDS
952 IF(ITHRMB.EQ.2) TPOND=(TPOND*(MASSP-WLC*(1.O-BYPASS))+TLET*

1 (WLC*(1.O-BYPASS)))/MASSP
953 XLOSAV=XLDSS
954 GO TO 9489

C *******************************************************************************
C CALCULATIONS FOR HOT STANDBY MODE

955 9300 CONTINUE
956. IF(IOUROP.EO.TBCDOP) MODSYS=4
957 IF(MODSYS.EQ.4) GO TO 9400
958 XLOSS=LOSCPU(IPTDB)+FPTDB*(LOSCPU(IPTDB)-LOSCPU(IPTDB))
959 GO T3 9489

C ***************************************************************** **************
C CALCULATIONS FOR COOLDOWN MODE
C*********************************s******************************* ***************

960 9400 CONTINUE
961 IF(IOUROP.EO.TECDOP) MODSYS=1
962 IF(IOUROP.EQ.TECDOP) MODSYS-1
963 IF (MODSYS.EQ.1) GO TO 9100
964 IF(IOUROP.NE.TBCDOP) GO TO 9425
965 TPONDH=TPOND
966 IFIPONTYP.EQ.3) GO TO 9420
967 TDBA=TDB(ITFCV1)
968 CALL PONTEM(PONTYPTPONDOEVAPTDBA,TIMEX2)
969 9420 CONTINUE
970 9425 CONTINUE
971 JCTC=O
972 TGEUSS=TPOND
973 9441 IGEUSS=TGEUSS
974 RIGEUS=IGEUSS
975 IGEUS1=IGEUSS+1
976 COLT=CONDEN(IGEUSS)+(TGEUSS-RIGEUS)*(CONDEN(IGEUS)-CONDE(IGEUS

IS))
977 TLET=COLT-(CUNITC*(COLT-TDB(IOUROP))/WLC)
978 IF(IOUROP.EQ.TBCDOP) TLETL=TLET
979 IF(IOUROP.LE.ITIMCF.AND.ITHRMB.EQ.1) TGEUSN=TPOND*(1.O-BYPASS)+

1 TLET*BYPASS
980 IF(IOUROP.GT.ITIMCF.AND.ITHRMB.EQ.1) TGEUSN=(TPOND+0.33*

1 (TLETI-TPOND))*(1.0-BYPASS)+TLET*RYPASS
981 IF(ITHRM8.EQ.2) TGEUSN=TPOND*(1.O-BYPASS)+TLET*BYPASS
982 DFXX=ABS(TGEUSN-TGEUSS)
983 IF(DFXX.LE.0.3) GO TO 9429
984 JCTC=JCTC+1
985 IF(JCTC.GT.40) GO TO 9429
986 TGEUSS=(TGEUSS+TGEUSN)/2.0
987 GO T3 9441
988 9429 XLOSS=CAPLCM(IGEUSS)+(TGEUSS-RIGEUS)*(CAPLCM(IGEUS1)-CAPLCM(IGEU

1SS))
989 IF(IOUROP.EQ.TBCDOP) TPONDS=0.0
990 IF(ITHRMB.EQ.1) TPONDS=TPONDS+TLET*((WLC*(1.O-BYPASS))/MASSP)
991 IF(ITHRM.EQ.1.AND.IOUROP.EQ.MIN222)TPOND=TPONDS
992 IF(ITHRMB.EQ.2) TPOND=(TPOND*(MASSP-WLC*(1.0-BYPASS))+TLET*

I (WLC*(1.0-BYPASS)))/MASSP



993 GO TO 9489
994 9489 CONTINUE
995 OPPENT=LAMBDA(IOUROP)*XLOSS*1000.0
996 OPFAN=FANPOW*LAMBDA(IOUROP)
997 IFtMODSYS.EQ.1.OR.MODSYS.EQ.3) OPUMP=PPUMPU*LAM8DA(IOUROP)
998 IF(MODSYS.EQ.2.OR.MODSYS.EQ.4) OPUMP=PPUMPC*LAMBDA(IOUROP)
999 YCAPET=YCAPET+OPPENT

1000 YTOWOT=YTOWOT+0PUMP+OPFAN
1001 IF(IOUROP.LT.24) GO TO 9099
1002 DIFPON=ABS(TPOND-TPCHEK)
1003 IF(DIFPON.LE.O.3) GO TO 9490
1004 TPOND=ITPOND+TPCHEK)/2.0
1005 KKCOUT=KKCOUT+1
1006 IF(KKCOUT.GT.30) GO TO 9490
1007 GO T3 9025
1008 9490 CONTINUE
1009 IF(IAVE.EQ.4.AND.IRANG.EQ.4) TPCPLO=TPONDC
1010 IF(LiVE.EQ.4.AND.IRANG.EQ.4) GO TO 9499
1011 YCAPEN=YCAPEN+FREQ(IAVE,1RANG)*YCAPET
1012 YTOWOP=YTOWOP+FREO(IAVEIRANG)*YTOWOT
1013 9499 ZONTINUE
1014 9500 CONTINUE

C DETERMINE MAXIMUM CAPABILITY LOSS

1015 IOUROP=TBHUOP
1016 TPOND=TPCPLO
1017 IF(PONTYP.EQ.3) GO TO 9725
1018 TDBA=TDBAS
1019 CALL PONTEM(PONTYPTPONDEVAPTDBATIMEX)
1020 9725 CONTINUE
1021 CAPLMX=0.0
1022 AMP=AVTENX-AVTENN
1023 00 9811 IUROP=TBHUOP,MIN111
1024 lOUROP=IOUROP
1025 IF(IOUROP.LE.TIMMIN) TDB(IOUROP)=-AMP *SIN((PIE/12.0*CYCl))*

1 (ROUROP+(CYCL-PHASE1)))+AMP + AVTENN
1026 IF(IOUROP.GT.TIMMIN.AND.IOUROP.LE.TIMMAX) TDB(IOUROP)=AMP *

1 SIN((PIE/2.0*CYC2))*(ROUROP-PHASE1))+AVTENN
1027 IF(IOUROP.GE.TIMMAX) TDB(IOUROP)=-AMP *SIN((PIE/(2.0*CYC1))*

1 (ROUROP-PHASE2))+AVTENX
1028 IF(TDB(IOUROP).LE.1.0) TDB(IOUROP)=l.0
1029 JCTC=O
1030 TGEUSS=TPOND
1031 9741 IGEUSS=TGEUSS
1032 RIGEUS=IGEUSS
1033 IGEUS1=IGEUSS+l
1034 COLT=CONDEN(IGEUSS)+(TGEUSS-RIGEUS)*(CONDEN(IGEUS1)-CONDEN(IGEUS

15))
1035 TLET=COLT-(CUNITC*(COLT-TDB(IOUROP))/WLC)
1036 IF(IOUROP.EQ.TBHUOP) TLETI=TLET
1037 IF(IOUROP.LE.ITIMHF.AND.ITHRMB.EQ.1) TGEUSN=TPOND*(1.0-BYPASS)+

1 TLET*BYPASS
1038 IF(IOUROP.GT.ITIMHF.AND.ITHRMB.EQ.1) TGEUSN=(TPOND+0.33*

I (TLETl-TPOND))*(1.0-BYPASS)+TLET*BYPASS



1039 IF(ITHRMB.EQ.2) TGEUSN=TPOND*(1.o-BYPASS)+TLET*BYPASS
1040 DFXX=ABS(TGEUSN-TGEUSS)
1041 IF(DFXX.LE.0.3) GO TO 9729
1042 JCTC=JCTC+1
1043 IF(JCTC.GT.40) GO TO 9729
1044 TGEUSS=(TGEUSS+TGEUSN)/2.0
1045 GO TO 9741
1046 9729 XLOSS=CAPLCM IGEUSS)+(TGEUSS-RIGEUSI*(CAPLCM( IGEUS1)-CAPLCM(IGEU

iSS))
'1047 IF(XLOSS.GE.CAPLMX) CAPLMX=XLDSS
1048 IF(ITHRMB.EQ.2) TPOND=(TPOND*(MASSP-WLC*(1.O-BYPASS))+TLET*

1 (WLC*(1.0-BYPASS)))/MASSP
1049 9811 CONTINUE
1050 GO TO 7000
1051 10000 CONTINUE

C**************************************************************** ***************
C SIMULATION ROUTINE FOR TOWERS-ONLY SYSTEM

1052 GO T3 3000
1053 10103 CONTINUE
1054 XLOSS=LOSCPU(IPTDB)+FPTDB*(LOSCPU(IPTDBI)-LOSCPU(IPTOB))
1055 IF(WINTIL(JDAY).EQ.1.0.ANO.IOUROP.EQ.TIMMAX) CAPLMX=CAPLMX+

I XLOSS/10.0
1056 OPPEN=XLOSS*LAMBDA(IOUROP)*1000.0
1057 YCAPEN=YCAPEN+OPPEN
1058 YTOWOP=YTOWOP+IFANPOW+PPUMPU)*LAMBOA(IOUROP)
1059 TLOSGN=TLOSGN+XLOSS
1060 IF(IOUROP.LT.24) GO TO 3050
1061 IF(JDAY.EO.365) SO TO 7000
1062 GO TO 3000
1063 END
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1064 SUBROUTINE PONTEM(PONTYPTPONDEVAPTDBATIME)
C THIS SUBROUTINE DETERMINES HEAT TRANSFER FROM THE POND SURAFACE
C ADJUST METEOROLOGICAL PARAMETERS IF REQUIRED

1065 COMMON/HTPOND/HTOUT
1065 COMMON/POND/MASSP,AREAP
1067 INTEGER PONTYP
1068 REAL MASSP
1069 PTEMP=TPOND
1070 AREA=AREAP
1071 RELHUM=0.40
1072 AIRTMP=TDBA
1073 SUNSSS=0.0
1074 PHISCC=3000.0
1075 W2=6.0
1076 SPCHET=1.0
1077 PTSAVE=PTEMP
1078 NCHOCK=0
1079 ICOUNT=0
1080 15 CONTINUE
1081 NCH0CK=NCHOCK+1
1082 IF(NCHOCK.GE.20) GO TO 50
1083 ES=PSA(PTEMP)
1084 EA=PSA(AIRTMP)*RELHUM
1085 TSV=(PTEMP+460.0)/(1.0-(0.378*ES/14.7))
1086 TAV=(AIRTMP+460.0)/(1.0-(0.378*EA/14.7))
1087 DELTV=TSV-TAV
1088 IF(DELTV.LE.0.0) DELTV=0.0001
1089 FW2=22.4*(DELTV**.33)+14.0*W2
1090 ES=ES*51.8
1091 EA=EA*51.8
1092 IF(PONTYP.EQ.2) ES-0.0
1093 IFIPONTYP.EQ.2) EA=0o.0
1094 CE=SUNSSS/100.0
1095 PHISN=0.94*PHISCC*(I.0-0.65*ICE**2.0))
1096 IF(PONTYP.EQ.2) PHISN=0.0
1097 PHIAN=(1.16E-13)*1(460.0+AIRTMP)**6)*(1.0+0.17*(CE**2))
1098 PHIR=PHISN+PHIAN
1099 PHIN=PHIR-((4.OE-8)*(IPTEMP+460.0)**4)+FW2*((ES-EA)+0.25*(PTEMP-

I AIRTMP)))
1100 HTOUT=PHIN*AREA*TIME/24.0
1101 DELTP=HTOUT/(MASSP*SPCHET)
1102 PTEMPI=PTSAVE+DELTP
1103 IC0JT=ICOUNT+l
1104 IF(ICOUNT.GT.1) GO TO 30
1105 PTMPAV=(PTEMP1+PTEMP)/2.0
1106 PAVES=PTMPAV
1107 IF(ICOUNT.EQ.1) PTEMP=PTMPAV
1108 IF(ICOUNT.EQ.1) GO TO 15
1109 30 :ONTINUE
1110 PTMPAV=(PTEMPI+PTSAVE)/2.0
1111 DIF=ABS(PTMPAV-PAVES)
1112 IF(DIF.LE.0.2) GO TO 50
1113 PTEMP=(PTMPAV+PAVES)/2.0
1114 PAVES=PTEMP
1115 GO T3 15



1116 50 CONTINUE
1117 PTEMP=PTSAVE
1118 TPOND=PTEMP1
1119 EVAP=HTOUT/1060.0
1120 IF(PONTYP.EQ.2) EVAP=0.0
1121 RETURN
1122 END

1123 FUNCTION PSA(T)
C THIS FUNCTION SUPPLIES VAPOR PRESSURE OF WATER

1124 DIMENSION V(181)
1125 DATA M/0/
1126 DATAV/.08854,.09223,.09603,.09995,. 10401,.10821,.11256,.11735,.121

170,. 12652,.13150,.13665,.14199,. 14752,.15323,. 15914,. 16525,. 17157,
2.17811,.18486,.19182,.19900,.20642,.2141,.2220,.2302,.2386,.2473,.
32563,.2655,.2751,.2850,.2951,.3056,.3164,.3276,.3390,.3509,.3631,.
43756,.3886,.4019,.4156,.4298,.4443,.4593,.4747,.4906,.5069,.5237,.
55410,.5588,.5771,.5959,.6152,.6351,.6556,.6766,.6982,.7204,.7432,.
67666,.7906,.8153,.8407,.8668,.8935,.9210,.9492..9781,1.0078,1.0382
7,1.0695,1.1016,1.1345,1.1683,1.2029,1.2384,1.2748,1.3121,1.3504,1.
83896,1.4298,1.4709,1.5130,1.5563,1.6006,1.6459,1.6924,1.7400,1.788
98,1.8387,1.8897,1.9420,1.9955,2.0503,2.1064,2.1538,2.2225,2.2826,2
*.3440,2.4069,2.4712,2.5370,2.6042,2.6729,2.7432,2.8151,2.8886,2.96
*37,3.0404,3.1188,3.1990,3.281,3.365,3.450,3.537,3.627,3.718,3.811,
*3.906,4.003,4.102,4.203,4.306,4.411,4.519,4.629,4.741,4.855,4.971,
*5 .090,5.212,5. 335, 5.461,5.590,5. 721, 5.955,5.992,6. 131,6.273, 6.471,
*6.565,6.715,6.868,7.024,7.183,7.345,7.510,7.678,7.850,8.024,8.202,
*8.383,8.567,8.755,8.946,9.141,9.339,9.541,9.746,9.955,10.169,10.38
*5,10.605,10.830, 11.058,11.290,11.526,11.769,12.011,12.262,12.512,1
*.771,13.031,13.300,13.568,13.845,14.123,14.410,14.696/

1127 NT=T
1128 PSA=0.0
1129 IF(NT.GT.31) GO TO 5
1130 PSA=VIl)
1131 RETUAN
1132 5 CONTINUE
1133 IF(NT.GE.212) PSA=V1212)
1134 IF(NT.GE.212) RETURN
1135 PSA=V(NT-31)+(V(NT-30)-V(NT-31))*(T-NT)
1136 RETURN
1137 END
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1139

1140

1141
1142

1143

1144

1145

1146
1147

1148

1149
1150
1151

1152
1153
1154
1155

1156
1157
1158

1159
1160

SENTRY

FUNCTION CX(XNK)
IMPLICIT CONSTAINTS ON VARIABLES IUSUALLY NONE)

DIMENSION XIN)
C

CX=X(K)
C

RETURN
END

FUNCTION CG(X,N,K)
C LOWER LIMIT CONSTRAINTS

DIMENSION X(N)
C

C^=0.0

RETUAN
END

FUNCTION :H(X,N,K)
C JPPER LIMIT CONSTRAINTS

DIMENSION XIN)
LOGICAL TOWONL
COMMON/DPMODE/TOWONL

C
IF(.NOT.TOWONL) GO TO 10
GO TO (1,21,K

10 CONTINUE
GO TO (1,1,2),K

l CH=1000000000.0
GO TO 3

2 CH=3000.0
C
3 RETUAN

END



TEMPERATURE FREQUENCY DISTRIBUTION
PEAK TEMP= 37.5 MINIMUM TEMP= 22.5
PEAK TEMP= 45.0 MINIMUM TEMP= 15.0
PEAK TEMP= 52.5 MINIMUM TEMP= 7.5
PFAK TEMP= 57.5 MINIMUM TEMP= 42.5
PEAK TEMP= 65.0 MINIMUM TEMP= 35.0
PEAK TEMP= 72.5 MINIMUM TEMP= 27.5
PEAK TEMP= 77.5 MINIMUM TEMP= 62.5
PEAK TEMP= 85.0 MINIMUM TEMP= 55.0
PEAK TEMP= 92.5 MINIMUM TEMP= 47.5
PEAK TEMP= 97.5 MINIMUM TEMP= 82.5
PEAK TEMP=105.0 MINIMUM TEMP= 75.0
PEAK TEMP=112.5 MINIMUM TEMP= 67.5

INPUT DATA SUMMARY

FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=
FREQUENCY=

22.0
57.0
13.0
21.0
51.0
48.0

8.0
87.0
42.0

0.0
13.0

3.0

INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST
INCREMENTAL FUEL COST

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

5.0725 MILLS/KWHR
4.1219 MILLS/KWHR
4.1211 MILLS/KWHR
5.0702 MILLS/KWHR
6.8549 MILLS/KWHR
9.2599 MILLS/KWHR
11.9953 MILLS/KWHR
13.6630 MILLS/KWHR
15.2533 MILLS/KWHR
16.7015 MILLS/KWHR
17.9443 MILLS/KWHR
18.9274 MILLS/KWHR
19.6078 MILLS/KWHR
19.9559 MILLS/KWHR
19.9564 MILLS/KWHR
19.6093 MILLS/KWHR
18.9298 MILLS/KWHR
17.9475 MILLS/KWHR
16.7053 MILLS/KWHR
15.2577 MILLS/KWHR
13.6676 MILLS/KWHR
12.0000 MILLS/KWHR
9.2643 MILLS/KWHR
6.8585 MILLS/KWHR

TIIS RUN IS F3R A PLUG FLOW TYPE POND

THE FRACTION JF THE FLOW BYPASSING THE POND IS 0.0000

THIS RUN IS F3R AN ADIABATIC POND

THE MAXIMUM CONDENSING TEMP IS 133.0 AND THE MINIMUM THERMAL POWER IS 50.0 PER CENT
THE THERMAL POWER IS 3000.00 MEGAWATTS AND THE MAXIMUM GENERATION IS 1050.17 MEGAWATTS

THE MAXIMUM TEMPERATURES OF THE TEN HOTEST DAYS ARE AS FOLLOWS
103.0 102.0 102.0 102.0 102.0 102.0 101.0 101.0 101.0 101.0

THE MAXIMUM TEMPERATURES OF THE DAYS PRECEDING THE TEN HOTEST ARE AS FOLLOWS

AT 1
AT 2
AT 3
AT 4
AT 5
AT 6
AT 7
AT 8
AT 9
AT 10
AT 11
AT 12
AT 13
AT 14
AT 15
AT 16
AT 17
AT 18
AT 19
AT 20
AT 21
AT 22
AT 23
AT 24

HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

()



100.0 102.0 101.0 100.0 100.0 103.0 101.0

AVERAGE TEMPERATURES OF TEN HOTEST -- MINIMUM= 64.7 MAXIMUM=101.7
AVERAGE TEMPERATURES OF PRECEDING TEN DAYS--MINIMUM= 63.5 MAXIMUM=101.1

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST

TIME TIME
HU BEGINS HU ENDS

12 18
INCREMENTAL COST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL C3ST =

TIME TIME
HJ BEGINS HU ENDS

12 18
I4CREMENTAL COST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL C3ST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST =

101.0 101.0 102.0

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 160.0 1100.0 1100.0 27.3

1.921 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 160.0 1166.8 1100.0 28.9

1.936 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 167.0 1100.0 1100.0 27.3

1.900 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 167.0 1100.0 1300.3 27.3

1.904 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 167.0 1066.6 1100.0 26.4

1.909 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 188.0 1100.0 1100.0 27.3

1.877 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 188.0 1100.0 999.8 27.3

1.920 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLO ENDS CELLS COUP MODE UNCO MODE AREA
1 7 188.0 1116.7 1100.0 27.7

1.886 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME T TOWERO

r-
FLOW FLOW P0DDTIME TIME



HJ BE3INS HU ENDS CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
12 18 1 7 251.0 1100.0 1100.0 27.3

INCREMENTAL COST = 2.127 MILLS/KWHR

TIME TI ME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST =

TIME TIME
HJ BEGINS HU ENDS

12 18
INCREMENTAL COST =

TIME TIME
HU BEGINS HU ENDS

12 18
INCREMENTAL COST =

OPERATION AND DESIGN VARIABLES
TIME TIME N TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 188.0 1100.0 1150.1 27.3
1.883 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 188.0 1091.7 1100.0 27.1

1.875 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
1 7 156.5 1091.7 1100.0 27.1

2.295 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLO BEGINS CLO ENDS CELLS COUP MODE UNCO MODE AREA
1 7 188.0 1091.7 1075.0 27.1
1.882 MILLS/KWHR

OPERATION AND DESIGN VARIABLES
TIME TIME # TOWER FLOW FLOW POND

CLD BEGINS CLD ENDS
1

CELLS COUP MODE UNCO MODE AREA
7 188.0 1066.6 1100.0

1.886 MILLS/KWHR
26.4

STAGE FUNCTION PROGRESS LATERAL PROGRESS
1 -0.18752450E 01 0.15116730E 08 0.28000000E 02

NUMBER OF FUNCTION EVALUATIONS = 14

VALUES OF X AT THIS STAGE

X( 1) = 2.471039E 08 X( 2) = 2.452290E 08 X( 3) = 1.880000E 02

OPERATION AND DESIGN VARIABLES
TIME TIME TIME TIME # TOWER FLOW FLOW POND

HU BESINS HU ENDS CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
12 18 1 7 193.2 1090.1 1112.4 27.0

INCREMENTAL COST = 1.887 MILLS/KWHR

STAGE FUNCTION PROGRESS
1 -0.18752450E 01 0.15116730E 08

NUMBER OF FUNCTION EVALUATIONS = 15

LATERAL PROGRESS
0.28000000E 02

0



DAY MAXIMUM MINIMUM AVERAGE AVERAGE COLD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

AMBIENT
TEMP
45.0
24.0
17.0
29.0
37.0
39.0
42.0
50.0
43.0
44.0
44.0
44.0
52.0
51.0
33.0
31.0
36.0
44.0
52.0
58.0
54.0
40.0
39.0
42.0
53.0
51.0
37.0
42.0
47.0
55.0
58.0
61.0
47.0
49.0
54.0
45.0
39.0
40.0
38.0
45.0
51.0
59.0
62.0
53.0
51.0
55.0
62.0
56.0
48.0
63.0
42.0

AMBIENT
TEMP
23.0

9.0
11.0
13.0
26.0
30.0
32.0
31.0
31.0
25.0
20.0
20.0
28.0
21.0
22.0
27.0
29.0
28.0
23.0
25.0
31.0
18.0
17.0
14.0
11.0
18.0
18.0
16.0
13.0
20.0
16.0
25.0
20.0
13.0
12.0
15.0
11.0
9.0
8.0
7.0

10.0
12.0
31.0
27.0
20.0
16.0
13.0
25.0
19.0
24.0
24.0

POWER -
HEATUP

1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1049.9
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1049.9
1050.0
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2

POWER -
COOLDOWN

0.0
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1048.8
1049.9
1050.2
1050.2
1050.2
1049.1
1049.4
1050.2
1050.2
1050.2
1050.2
1049.3
1047.7
1048.1
1050.2
1050.2
1050.2
1050.1
1049.8
1050.2
1050.2
1050.2
1049.3
1048.5
1047.3
1049.8
1050.2
1049.8
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1048.7
1045.7
1048.3
1049.5
1049.3
1048.1
1048.2
1049.8
1047.1

POND
TEMP
50.0
41.2
35.8
34.6
44.9
50.9
53.6
54.3
56.2
51.4
47.9
47.3
52.0
50.6
50.4
49.0
49.5
50.4
49.6
52.6
58.0
50.2
44.9
42.1
40.8
47.2
47.6
43.2
42.1
47.2
47.7
53.8
52.4
44.8
43.5
46.1
41.9
38.7
37.8
36.7
40.0
43.3
56.8
57.3
51.1
47.4
46.1
54.4
50.8
51.3
54.8

HOT EVAP
POND
TEMP
50.0
57.4
42.1
36.2
42.8
51.7
55.3
58.1
62.7
59.4
57.8
56.3
56.3
62.5
61.3
51.5
50.0
53.0
57.5
61.6
66.4
66.0
54.9
52.1
52.5
58.2
59.8
52.2
53.1
55.5
62.0
64.1
68.1
59.5
57.4
59.8
55.8
50.7
49.8
48.3
51.8
56.6
63.0
70.2
65.2
61.3
61.9
65.5
65.6
59.8
68.4

LOSS
(LBS/DAY)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

HEAT TR
FROM
POND(%)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

45.0
62.0
44.0
45.0
51.0
64.0
68.0
72.0
70.0
64.0
60.0
50.0
60.0
69.0
59.0
54.0
47.0
51.0
57.0
66.0
68.0
72.0
73.0
81.0
79.0
73.0
63.0
64.0
64.0
65.0
65.0
67.0
72.0
68.0
69.0
69.0
78.0
77.0
66.0
65.0
59.0
55.0
56.0
71.0
77.0
68.0
78.0
73.0
53.0
63.0
71.0
55.0
61.0
69.0
81.0

17.0
13.0
15.0

5.0
7.0
9.0

25.0
23.0
35.0
40.0
29.0
19.0
14.0
23.0
29.0
29.0
30.0
22.0
22.0
26.0
24.0
24.0
33.0
37.0
34.0
39.0
46.0
40.0
30.0
37.0
40.0
37.0
29.0
32.0
31.0
29.0
34.0
40.0
29.0
28.0
34.0
23.0
20.0
17.0
33.0
31.0
25.0
43.0
33.0
33.0
35.0
22.0
23.0
21.0
21.0

1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.0
1049.7
1047.6
1046.0
1048.9
1050.2
1050.2
1050.1
1049.3
1049.8
1050.1
1050.2
1050.2
1050.0
1049.8
1049.7
1047.9
1045.6
1045.3
1043.5
1041.5
1046.1
1048.6
1047.7
1046.6
1047.1
1048.5
1048.0
1048.3
1048.6
1047.3
1043.5
1047.7
1049.0
1048.4
1050.1
1050.2
1050.2
1048.3
1047.7
1049.1
1043.0
1047.5
1049.1
1048.1
1049.9
1050.2
1050.1
1049.7

1050.2
1050.2
1048.6
1050.2
1050.2
1050.2
1048.3
1044.3
1040.8
1038.2
1040.7
1045.7
1049.4
1048.4
1043.9
1046.0
1047.7
1049.2
1049.4
1048.3
1044.9
1043.5
1040.6
1036.5
1026.2
1026.9
1030.0
1038.3
1040.7
1042.6
1040.7
1040.0
1040.2
1039.1
1040.4
1040.5
1040.5
1030.8
1029.0
1041.3
1042.8
1045.3
1048.2
1048.6
1043.9
1034.4
1040.6
1034.4
1031.7
1046.4
1043.6
1039.8
1047.8
1047.4
1044.3

46.2
43.5
48.0
38.6
38.5
41.4
54.3
56.3
64.5
68.3
61.0
52.8
46.3
53.0
59.6
58.2
57.3
50.9
50.8
54.7
56.4
57.2
63.6
67.3
68.2
70.6
73.5
68.1
61.6
64.6
67.1
65.8
61.5
63.6
62.5
61.4
64.2
70.4
64.6
60.3
62.8
55.3
51.3
49.4
62.1
64.4
59.2
71.2
65.9
60.3
63.1
57.7
53.5
53.3
55.3

57.9
55.9
64.2
55.8
52.5
55.9
64.7
72.3
75.7
78.2
76.1
70.5
61.4
64.5
72.5
69.7
66.4
61.9
61.5
64.9
71.4
73.2
76.0
79.3
85.3
84.6
82.6
78.2
76.1
73.5
75.5
76.5
76.7
77.7
76.4
76.4
76.1
82.5
84.1
75.5
73.4
70.9
65.4
64.2
72.2
80.8
76.5
80.4
82.5
69.1
72.4
77.6
66.4
68.0
72.3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



107
108
109
110
ill
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

77.0
77.0

-64.0
67.0
72.0
79.0
79.0
77.0
75.0
77.0
78.0
75.0
73.0
75.0
82.0
82.0
81.0
80.0
83.0
80.0
81.0
87.0
89.0
86.0
89.0
87.0
83.0
85.0
85.0
84.0
79.0
83.0
69.0
68.0
76.0
85.0
87.0
84.0
89.0
93.0
98.0
92.0
88.0
86.0
86.0
87.0
91.0
89.0
91.0
90.0
91.0
87.0
76.0
82.0
93.0

34.0
34.0
38.0
25.0
32.0
33.0
44.0
42.0
47.0
36.0
28.0
36.0
34*0
36.0
34.0
42.0
40.0
42.0
36.0
40.0
36.0
44.0
56.0
49.0
45.0
50.0
55.0
53.0
51.0
53.0
47.0
41.0
37.0
31.0
33.0
44.0
55.0
44.0
44.0
45.0
50.0
51.0
47.0
49.0
49.0
49.*0
47.0
46.0
47.0
57.0
64.0
64.0
47.0
36.0
42.0

1046.5
1046.0
1045.2
1049.4
1048.4
1047.1
1041.1
1040.9
1038.7
1044.5
1047.4
1045.7
1046.4
1046.1
1045.9
1041.0
1041.1
1040.4
1043.3
1041.4
1043.6
1038.7
1023.2
1027.3
1033.5
1027.9
1022.8
1025.6
1027.3
1025.2
1033.2
1040.1
1043.0
1047.9
1047.6
1041.4
1026.2
1034.7
1035.9
1033.2
1024.4
1021.9
1027.8
1028.6
1029.7
1029.7
1030.9
1030.8
1030.2
1017.7
1005.6
1005.0
1029.9
1043.1
1038.9

1035.3
1031.5
1030.1
1040.8
1042.5
1038.8
1028.9
1022.4
1023.5
1025.5
1030.1
1031.9
1032.1
1034.5
1032.6
1024.3
1019.4
1020.5
1021.9
1020.8
1022.8
1022.4
1007.4
995.6

1003.4
1001.6
999.9

1002.9
1002.3
1001.4
1004.4
1016.9
1017.9
1035.5
1040.1
1032.6
1013.0
1001.5
1010.7
1004.7
995.9
912.5
988.7

1000.0
1003.2
1003.8
1002.9
998.4

1000.8
995.3
964.7
907.9
960.4

1020.1
1021.4

66.1
67.0
69.2
58.9
62.0
64.5
73.0
73.3
75.7
69.3
64.0
67.9
66.7
67.2
66.7
73.0
72.9
73.8
70.3
72.7
70.0
74.6
83.9
81.9
78.5
81.5
84.4
82.8
81.9
83.1
79.2
73.9
71.4
64.0
63.8
72.2
82.4
78.2
76.8
78.4
82.7
84.3
81.6
81.2
80.7
80.6
79.7
79.9
80.1
86.4
91.2
91.6
81.2
70.5
73.8

80.1
82.5
83.0
76.3
73.9
78.0
83.3
86.8
85.9
85.6
83.6
82.2
82.1
80.6
81.8
85*8
88.4
87.8
87.4
87.7
86.9
86.6
92.3
97.2
94.5
94.8
95.2
94.2
94.6
94.8
94.0
89.4
89.1
80.2
76.6
81.3
90.2
95.3
91.7
94.0
97.0

101.6
98.9
95.5
94.3
94.'
94.5
96.4
95.3
96.9
99.3

101.9
99.4
88.3
87.3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



162 95.0
163
164
165
166
157
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

98.0
100.0
103.0
102.0
100.0
100.0

98.0
100.0
102.0

98.0
100.0
100.0
102.0
101.0
101.0
101.0
101.0
102.0
102.0

98.0
94.0
93.0
97.0
99.0
92.0
83.0
91.0
93.0
92.0
95.0
93.0
96.0
88.0
86.0
84.0
87.0
92.0
83.0
89.0
85.0
92.0
91.0
97.0
97.0
97.0
96.0
98.0
99.0
97.0
95.0
94.0
88.0
86.0
86.0

50.0 1026.4 1000.9
50.0
54.0
56.0
60.0
60.0
55.0
55.0
58.0
59.0
57.0
65.0
60.0
65.0
73.0
73.0
66.0
62.0
68.0
65.0
63.0
58.0
56.0
56.0
56.0
67.0
62.0
61.0
59.0
53.0
55.0
57.0
69.0
61.0
63.0
62.0
65.0
64.0
61.0
60.0
61.0
61.0
63.0
60.0
63.0
60.0
63.0
63.0
63.0
67.0
67.0
62.0
66.0
64.0
64.0

1023.1
1016.3
1013.2
1007.5
1008.1
1015.8
1015.2
1011.7
1009.6
1012.9
1001.2
1008.2
1000.9
954.0
953.7
999.0

1006.2
996.2

1000.6
1005.2
1012.9
1015.5
1015.5
1014.9

999.4
1010.0
1012.6
1012.9
1019.9
1017.8
1014.5
996.7

1010.1
1008.5
1010.3
1006.5
1006.1
1010.6
1014.7
1011.4
1011.4
1006.2
1009.4
1004.8
1008.9
1004.9
1004.4
1004.6
999.2
999.7

1006.4
1003.2
1006.6
1006.6

945.1
910.8
822.0
724.3
704.4
730.0
825.3
829.5
763.8
724.8
801.3
702.7
719.3
605.1
575.4
612.9
623.6
672.6
614.1
616.3
764.3
907.6
913.6
841.9
800.4
819.8
994.7
914.4
912.9
947.2
911.5
883.7
727.3
944.4
987.1
992.4
935.5
887.7
995.2
963.7
992.5
910.4
910.6
801.7
793.1
801.5
801.0
741.8
704.5
710.1
800.3
804.3
913.3
974.7

81.8
83.3
86.3
87.5
89.8
89.7
86.5
87.0
88.4
89.0
88.0
92.3
89.7
92.3
96.7
96.8
93.1
90.3
93.9
92.4
90.9
88.3
87.2
86.9
87.0
93.5
90.0
88.5
88.3
85.3
86.0
87.7
94.3
89.7
90.3
89.9
91.0
90.9
89.8
87.9
89.3
88.9
91.0
89.4
91.1
89.6
91.2
91.2
91.1
93.2
93.2
90.7
92.2
91.1
91.1

95.1
99.6

102.0
104.5
106.8
107.3
106.0
104.6
103.7
105.5
106.8
104.4
107.3
106.3
108.8
109.8
109.7
108.2
107.2
109.3
108.5
105.5
102.0
101.0
103.1
104.6
103.4
96.9

100.6
101.4
99.6

101.6
101.6
106.0
99.6
98.8
97.5,
99.7

102.3
96.8
99.3
97.7

101.5
101.7
104.4
105.1
104.5
104.7
105.8
106.4
106.3
105.0
103.4
100.8

99.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0



217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

89.0
91.0
88.0
89.0
89.0
91.0
92.0
91.0
91.0
91.0
95.0
94.0
96.0
98.0
91.0
91.0
91.0
91.0
91.0
91.0
93.0
96.0
95.0
95.0
94.0
95.0
96.0
93.0
92.0
90.0
92.0
90.0
81.0
91.0
94.0
96.0
96.0
91.0
88.0
87.0
78.0
75.0
74.0
75.0
78.0
67.0
72.0
75.0
79.0
77.0
81.0
82.0
81.0
82.0
74.0

63.0
62.0
58.0
60.0
58.0
56.0
56.0
56.0
57.0
60.0
59.0
58.0
61.0
58.0
59.0
58.0
52.0
54.0
54.0
57.0
54.0
51.0
48.0
52.0
50.0
54.0
59.0
56.0
60.0
60.0
59.0
56.0
55.0
56.0
59.0
61.0
60.0
63.0
55.0
54.0
53.0
49.0
47.0
52.0
49.0
55.0
49.0
50.0
49.0
49.0
50.0
49.0
51.0
51.0
38.0

1007.6
1009.0
1014.8
1012.2
1015.4
1016.9
1017.2
1017.5
1016.1
1012.5
1012.5
1013.4
1007.8
1012.0
1012.0
1014.7
1022.6
1019.7
1019.3
1015.8
1019.6
1022.7
1025.5
1021.4
1023.6
1018.9
1011.3
1016.0
1011.0
1011.0
1013.5
1017.0
1018.7
1018.1
1013.0
1007.9
1009.8
1006.6
1018.1
1021.2
1024.6
1034.1
1038.2
1035.1
1036.4
1030.7
1038.9
1037.5
1036.6
1035.6
1034.6
1033.5
1030.8
1030.6
1041.4

977.4
914.4
912.8
987.7
944.2
986.6
937.8
916.3
943.7
916.7
914.3
861.2
899.4
827.4
803.4
914.4
917.4
990.0
983.1
969.9
926.5
917.6
915.4
929.3
915.7
931.2
911.8
840.8
912.9
911.7
915.3
914.0
978.3
993.1
946.4
894.3
809.4
803.6
912.3
993.3
996.5

1012.0
1021.0
1023.3
1021.0
1017.3
1027.1
1026.0
1022.3
1017.5
1019.0
1013.4
1011.1
1010.9
1012.1

90.5
89.9
87.9
88.8
87.6
86.7
86.5
86.4
87.1
88.6
88.4
88.1
90.1
88.4
88.8
87.8
84.1
85.4
85.6
87.2
85.3
83.6
82.3
84.3
83.3
85.4
88.8
87.0
89.1
89.2
88.2
86.7
86.1
86.2
88.3
90.1
89.3
90.8
86.3
85.0
83.8
79.0
76.2
78.4
77.4
81.2
75.8
76.7
77.1
78.1
78.4
78.9
80.3
80.4
72.9

99.1
100.5
101.2
98.7
99.6
99.0
99.7

100.2
99*6

100.0
100.7
102.7
102.1
104.0
104.4
100.7
100.0
98.5
99.1
99.2
99.9

100.0
100.8
99.8

100.7
99.8

101.4
103.4
101.1
101.4
100.4
100.9
99.1
97.8
99.6

102.2
104.1
103.8
101.5
97.8
96.7
91.0
87.3
85.7
87.2
88.5
84.0
84.4
86.4
88.8
88.1
90.4
91.2
91.3
91.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

81.0
81.0
82.0
85.0
81.0
81.0
81.0
65.0
68.0
74.0
75.0
81.0
78.0
61.0
62.0
72.0
71.0
74.0
75.0
78.0
77.0
77.0
70.0
60.0
63.0
66.0
70. D
70.0
60.0
58.0
50.0
48.0
53.0
51.0
58.0
59.0
66.0
74.0
62.0
62.0
65.0
68.0
67.0
73.0
74.0
62.0
66.0
54.0
50.0
48.0
45.0
47.0
49.0
52.0
51.0

34.0
36.0
42.0
47.0
57.0
47.0
46.0
51.0
50.0
46.0
44.0
48.0
46.0
48.0
45.0
38.0
36.0
34.0
36.0
40.0
44.0
45.0
44.0
46.0
44.0
37.0
40.0
47.0
45.0
43.0
37.0
37.0
33.0
26.0
24.0
26.0
24.0
36.0
34.0
31.0
37.0
35.0
28.0
30.0
40.0
35.0
30.0
35.0
33.0
33.0
21.0
20.0
18.0
32.0
28.0

1045.6
1044.1
1040.8-
1036.0
1023.2
1033.9
1036.3
1034.1
1039.5
1041.0
1041.0
1037.5
1037.2
1038.6
1043.6
1046.6
1046.4
1046.9
1046.0
1043.6
1040.6
1039.7
1040.5
1041.8
1044.8
1047.2
1046.1
1041.5
1042.4
1045.7
1048.1
1049.0
1049.9
1050.2
1050.2
1050.1
1050.0
1047.8
1047.5
1048.8
1047.9
1047.7
1048.8
1048.6
1045.2
1046.8
1048.8
1048.2
1049.4
1049.9
1050.2
1050.2
1050.2
1050.2
1050.2

1029.4
1025.9
1023.3
1017.9
1007.2
1007.3
1013.7
1014.4
1030.5
1031.2
1027.0
1024.3
1016.3
1019.5
1037.3
1039.9
1035.5
1036.4
1034.4
1031.6
1025.4
1023.4
1022.8
1030.3
1039.6
1040.0
1039.8
1035.3
1031.3
1040.0
1042.7
1047.4
1048.2
1048.0
1048.8
1047.9
1047.4
1044.1
1035.8
1042.6
1043.7
1040.8
1040.3
1042.0
1037.8
1032.3
1042.1
1042.0
1046.6
1048.1
1048.9
1050.2
1050.2
1049.9
1048.4

67.4
69.4
73.2
77.1
84.3
78.8
77.2
79.5
75.5
73.3
73.3
76.1
76.7
76.9
71.1
66.4
66.9
65.6
67.3
70.2
73.7
74.7
74.1
73.3
69.7
65.8
67.6
73.0
72.6
68.9
64.2
61.4
58.2
54.8
52.7
55.2
54.8
63.5
65.6
61.2
64.0
64.4
60.8
61.2
68.6
67.0
61.0
63.6
60.0
58.4
50.6
48.0
47.0
55.5
55.3

83.7
85.3
86.3
88.7
92.3
92.9
90.4
89.9
82.1
82.0
84.3
85.5
89.4
88.0
78.6
76.5
80.0
79.5
80.7
82.1
85.1
86.1
86.5
82.4
76*6
76.5
76.5
79.7
82.0
76.2
73.4
67.0
64.6
65.8
63.2
66.2
67.7
71.8
79.8
73.9
72.3
75.7
76.7
74.6
78.5
82.0
74.5
74.3
68.8
65.1
63.0
58.0
58.0
59.1
64.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

53.0
60.0
64.0
61.0
62.0
54.0
52.0
49.0
46.0
51.0
54.0
55.0
52.0
48.0
49.0
45.0
41.0
44.0
47.0
48.0
54.0
38.0
48.0
51.0
61.0
44.0
49.0
51.0
52.0
56.0
27.0
18.0
21.0
27.0
27.0
31.0
36.0
34.0
32.0

22.0
21.0
24.0
25.0
32.0
25.0
39.0
33.0
21.0
26.0
20.0
30.0
30.0
26.0
21.0
22.0
14.0
10.0
14.0
19.0
21.0
14.0
16.0
18.0
21.0
15.0
23.0
19.0
19.0
27.0
11.0
-4.0
-7.0

9.0
3.0

-3.0
10.0

5.0
9.0

1050.2
1050.2
1050.1
1050.0
1049.2
1050.0
1048.6
1049.6
1050.2
1050.2
1050.2
1050.1
1050.0
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2

1048.8
1049.0
1047.8
1045.8
1046.1
1044.9
1047.7
1047.4
1048.7
1050.0
1049.3
1048.8
1047.8
1048.3
1049.5
1049.7
1050.2
1050.2
1050.2
1050.2
1050.2
1049.3
1050.2
1050.2
1049.8
1048.0
1050.2
1049.8
1049.7
1049.3
1048.5
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2
1050.2

51.5
50.9
54.3
56.3
60.0
56.7
62.3
59.3
51.0
51.9
49.8
56.0
57.2
54.3
50.0
50.0
44.4
40.2
42.6
46.6
48.8
46.3
43.3
46.5
49.6
48.8
49.2
48.3
48.6
53.6
45.7
30.6
26.0
31.5
30.5
28.2
35.0
34.4
36.1

63.3
62.8
66.5
70.1
69.5
71.4
66.0
67.2
63.9
58.9
61.9
62.9
66.1
64.8
61.2
60.0
57.5
52.8
52.9
55.7
58.0
62.0
52.1
56.6
59.6
66.2
56.6
59.6
60.3
61.2
65.0
45.1
33.8
34.1
39.7
39.0
40.6
46.1
44.8

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



FINAL DESIGN SUMMARY

OPERATION AND DESIGN VARIABLES
TIME TIME TIME # TOWER FLOW FLOW PO4D

HU ENDS CLD BEGINS CLD ENDS CELLS COUP MODE UNCO MODE AREA
18 1 T 188.0 1091.7 1100.0 2T.1

TOWER CELLS
39560830.0

CAPITAL COSTS
STORAGE POND

4641447.0

SYSTEM COSTS

REPLACEMENT CAPABILITY
.8146130.0

OPERATING COSTS (ANNUAL)
FA4S AND PUMPS ENERGY REPL

2457541.0 2750809.0

MAXIMUM CAPABILITY LOSS IS 55.64
TOTAL LOST ELECTRICAL GEMERATION IS
THE EVAPORATIVE WATER LOSS IS
TiE EXACT COST OF THE OPTIMIZED DESIGN

MEMORY USAGE

COMPILE TIME=

MWS(E)
310553.1 MWHRS

0.00 LBS AND
IS 1.89T MILLS PER

OBJECT CODE= 48272 BYTES,ARRAY AREA=

1.B5 SECEXECUTIDN TIME-

THE TOTAL HEAT
KWHR

26820 BYTES

TRANSFER FROM THE POND SURFACE IS

28.12 SEC,

TI ME
HJ BEGINS

12

0.0 2


