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Impact of thermal constraints on the optimal design of high-level

.waste repositories in geologic media

Abstract

An approximate, semi-analytical heat conduction model for

predicting the time-dependent temperature distribution in the

region of a high-level waste repository has been developed. The

model provides the basis for a systematic, inexpensive examination

of the impact of several independent thermal design constraints on

key repository design parameters and for determining the optimal set

of design parameters which satisfy these constraints. Illustrative

calculations have been carried out for conceptual repository designs

for spent pressurized water reactor (PWR) fuel and reprocessed PWR

high-level waste in salt and granite media.
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= canister mass loading

v = Poisson's ratio

P = canister pitch

= areal heat source strength

q'" = volumetric heat source strength
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p = density
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Nomenclature

a = -waste age at emplacement

a t = thermal expansion coefficient

c = specific heat

dr = room-to-room spacing

D = thermal diffusivity

H = repository depth

k = thermal conductivity
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L = room length of discrete line heat
source region
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t
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w"' = voluinetric heat generation rate (W/M3

W = specific waste decay heat characteristics (W/MTIM)
C

z = depth below the surface - (mn)

. If



1. Introduction

A key consideration in the design of underground repositories

for the disposal of high-level waste is the radiogenic heat emitted

by the waste canisters. The repository containment potential is-

affected by the decay heat in several ways. The high temperatures within

the waste package itself tend to promote chemical reactions and

physical changes in the waste form and surrounding engineered barriers

which may enhance the leachability of the radionuclides. Elevated

temperatures may also induce changes in the physical and chemical

properties of the host rock. Groundwater flow behaviour in the

vicinity of the repository may be modified by thermal stress frac-

turing in the host rock and neighboring strata, by buoyancy effects,

or by other thermal phenomena. In addition, while the repository

remains open, emplacement, monitoring, and potentially retrieval operations

will all be complicated by the temperature increase.

Thermal design limits can be identified for each of the preceding

phenomena, and such limits wil.l play a central role in the design of

high-level waste repositories.. Exact quantification of these limits

must await the selection of specific repository sites and waste pack-

age designs.- In the meantime, generic thermal design criteria for

alternative geologic media and package concepts have provided the

basis for conceptual design efforts [1). These efforts typically.

have involved the application of detailed, three-dimensional computer
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models for predicting the time-dependent temperature distribution in

the region of the repository, such as the finite difference code HEATING

5[2). Such codes readily account for the temperature dependence of the

rock properties and provide detailed and accurate temperature estimates.

Significant amounts of computer time are required, however, and the

codes are therefore less suitable for parametric analyses of key re-

pository design criteria. An approximate semi-analytical model, the

Finite-Length Line Source Superposition Model (FLLSSM) has also been

developed (3]. Though this code provides substantial savings, the need

to superimpose the thermal contributions of each of the tens of thousands

of canisters in a full-scale repository means that it is still quite time-

consuming and costly to run. Since current thermal design limits and

repository design concepts are still quite preliminary and likely to

undergo substantial refinement, approximate models permitting more rapid

and inexpensive estimates of repository thermal behaviour are particularly

useful.

One such approximate model is presented here. The model differs in

several important respects from FLLSSM: the use of analytical approxi-

mations for the waste decay heat behaviour and the homogenization of

most of the individual heat sources in the repository each provide signifi-

cant savings in computer time; in addition, the current model generates

estimates of the time-dependent temperature distribution within the waste

package itself; finally, the model -estimates the far-field thermomechanical

response of the geologic environment surrounding the repository. The

model permits a systematic approach to the selection of combinations of

key repository design and operating parameters which satisfy the various
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thermal criteria. Using a representative set of generic values for

these criteria, the model has been applied to conceptual repository

designs for spent pressurized water reactor (PWR) fuel and reprocessed

PWR high-level waste in salt and granite media.

A primary focus of these applications was to investigate the im-

pact on repository design of variations in the 'age' of the waste at

the time of emplacement. At present, it seems unlikely that either

spent fuel or reprocessed high-level waste will be placed in a full-

scale repository until at.least two decades after its generation.

Recent proposals to establish monitored retrievable storage facilities

(MRS) would, if implemented, increase the age at emplacement still

further, perhaps by several decades.

2. Repository design features

Approximate analytical correlations describing the decay heat

behaviour of the spent fuel and reprocessed high-level waste are
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shown in Table 1. The physical properties assumed for the salt

and granite media are summarized in Table 2.

The waste package design concepts adopted for the analysis are

based on those developed for the Swedish KaOrnbransles*kerhet (KBS)

study [4]. The KBS waste packages were specifically designed so as

to be compatible with. the granitic environment expected for a Swedish

repository. For convenience it is assumed here that the same packages

would also be used in salt repositories. In the case of spent fuel, the

fuel elements are disassembled and the rods placed in a thick-walled

copper canister. The void space between the rods is filled with

lead stabilizer. The canister .is surrounded by a 20cm-thick- buffer

- layer of highly compacted bentonite. The reference spent fuel package

is shown in Figure 1. The reprocessed high-level waste is vitrified

and cast in a cylindrical chromium-nickel std'el container. The waste

canister is surrounded by a 10cm-thick layer of lead and a thin outer

sheath of titanium. The region betwee'n the titanium sheath and the

rock wall is backfilled with a mixture of qutartz sand (85%) and

bentonite (15%). The reference high-level waste package is shown in

Figure 2. The thermal properties assumed for the waste package

materials are summarized in Table 3.

The repository layout assumed for these calculations is shown

in Figure 3. Parallel horizontal rooms 1000 meters in length



Table 1
Analytical decay heat approximations for PWR spent fuel and reprocessed high-level waste [5].

Time (years)| - -Spent fuela
(Watts/MTHM)

Reprocessed high-level wasteb
(Watts/MTHM)c

1 < t < 30 W C(t) = 550 exp (0.223 a 0.117t) W (Tt) 363 exp (0.257 + 0.083t)-

+ 1W (Tt)
C

30 < t < 300 W (t) = 9410t 0 .749  W (T,t)= 415t 0 75  1 + + AW (Tt)

1+(A)

300 < t < 105 c(t) = 9410t 0 .749  Wc (Tt) = 415t0.75 2 + W (T,t)

AW c(Tt) = 141. 3[e-0.0016Te-0.0482T -0 .0016t
CW(~)=14.[ el

a. Where t is years after reactor discharge.

b. Where t is years after r'eprocessing; and (T + 160) is years between reactor

discharge and reprocessing.

c. Where the basis is the quantity of high-level waste resulting from the

reprocessing of 1 MTHM of spent fuel.
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Table 2
Rock Properties

Property Symbol Salt Granite

3Density (kg/m3 )

Thermal conductivity (W/m C)

Heat capacity (J/kg 0

Thermal diffusivity (in 2 yr)

Thermal expansion coefficient (0 C )

Poisson's ratio

p

k

c

D

t

I____ _____ ____V

4

2160

6.1

840

106

4.0 x 10

0.4

2646

2.86

920

37.1

8.1 X 10-6

0.18
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Welded copper lid

Centre tube for lead fill

Fuel rods

Lead fill

Copper rack for fuel rods

Copper canister

Dimensions
(rn) Diameter Length

Package 0.8 4.70

Fuel region 0.4 3.66

Weight

FIG. l. [4 I



Vitrified

Stainless

waste

stee

-Lead 100 mm

Titanium 6

Dimensions
(m)

I , 3 mm thick

thick

nm thick

Diameter Length

POckage 0.60 1.80

Waste 0.40 1.50

Neight -

Lead 3.25 MT

Waste 0.45 MT

Total 3.70 MT

FIG. 2 (4)

-8-
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Table 3
Waste Dackage material properties

p k c D

(kg/m ) (W/mC) (J/kgC) (m2/yr)

High-level wastes 3000 1.2 840 15.03

Leadb 11300 40 125 894

..Copper 8940 400 400 3530

Bentonitec 2100 1.2 1000 18.03

a. The same properties were assumed for the. s,pent fuel rods and vitrified high-

level waste.

b. The impact of the thin titanium sheath on heat transfer in the waste package

was neglected.

c. The same properties were assumed for the highly compacted bentonite and the

quartz-bentonite mixture.
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d e

FIG. 3.

y

y

(in) a b c f g h

PWR-U/SF 5.50 6.70 1.00 2.50 4.70 0.50 3.66 25.0 1,000 70.0

PWR-U/HLw 5.50 6.10 1.20 1.50 1.80 0.50 1.50 25.0 1,000 70.0

jI
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separated by rock pillars 25 meters thick are excavated in the

geologic formation at a depth of 600 meters. The waste canisters

are placed in a single row of vertical holes drilled in the floor of

each room. The rooms are connected to vertical shafts by horizontal

access corridors at each end.

3. Thermal design limits

For the purposes of this analysis, four separate thermal criteria

were adopted:

A. The maximum uplift at the surface over the repository due to thermal

expansion should not exceed 1.5 meters. [6].

B. The maximum temperature in the host rock should not exceed 250 C in

salt and 3500 C in granite. [1).

C. The maximum temperature in the bentonite backfill layer should

not-exceed 1000C. [7].

D. The maximum centerline temperature should not exceed 5000 C in the

vitrified high-level waste canister [1) and 2000C in the spent fuel

canister [7).

Both the selection of these criteria and the assignment of nu-

merical values were to some extent arbitrary. Additional criteria

have also been proposed in the literature. For example, limits on the

tempera.ture rise at the surface and in aquifers in the vicinity of the

repository; limits on the volume of host rock exceeding threshhold

temperatures; and limits on the temperature gradients established



-12-

in the host rock [1]. Moreover, many of these criteria serve as

pro'xies for underlying limits on rock mechanics, thermal

hydraulic, or thermochemical phenomena which depend in complex.

ways on the repository environment and for which more detailed

predictive calculations will be necessary once specific site character-

istics are known. However, the simplified modelling

approach adopted here is suitable for the present phase of con-

ceptual design; moreover, additional thermal limits or changes in

numerical values can readily be .accommodated by the model.

In what follows, sets of values of the canister pitch, pillar

thickness (i.e. room-to-room spacing), waste loading per canister,

and waste age at emplacement which satisfy these thermal design

limits are found.

4. Model Description

Three analytical or semi-analytical models were developed to

predict the thermal behaviour in the far-field region, the near-

field region, and within the waste package itself.

4.1 Far-field model

In the far-field region (i.e. at distances from the reposi-

tory structure large compared with the spacing of individual

canisters) heat transfer takes place almost entirely due to conduction.

The basic equation of heat conduction for homogeneous, isotropic media

is

;T
PC -= V.kT + w"'(r,t) (1)Pt -
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where

0T = rock temperature (C)

P = rock density (kg/m )

c = rock specific heat (J/kg 0C)

k = rock thermal conductivity (W/m 0C)

3W'" = volumetric heat generation rate (W/m )

The geologic medium is represented as a semi-infinite, isotropic,

homogeneous conducting material with a zero temperature boundary

condition.- at:the surface plane and an-initial temperature:every-

where zero. The physical properties of the medium are assumed

to be temperature independent.

The repository itself is modelled as an infinite plane source at

a depth corresponding to the midplane of the waste canisters,

with a thermal strength equal to the average areal loading of the

repository.

The temperature increase in the rock for the linearized,

one-dimensional problem can be written:

2 2
t -(z-H) -(z+H)

1r 4DT 4D t
T(z,t,a) = q"(t+2-,) - e - e dt (2)

I0 /(
0



where

z = depth below the surface (m)

H = repository depth (m)

t = time since waste emplacement (yrs)

a = waste age at emplacement (yrs)

D = thermal diffusivity (m 2-yz

k 3.156 x 107

PC

q"(t) = heat source strength for waste aged t years

since generation (m0C/yr)

w if 7
- . 3.156 x 10

= areal heat generation rate (W/m2)

If it is further assumed that the rock behaves as a thermo-

elastic medium, the displacement due to thermal expansion is given by

t

uz,t,a) -m- q"(t+a-T) erf( z-H - erf( z+H dt (3)

where

1 + V
S= at1

and

at = coefficient of thermal expansion (0 C1)

v = Poisson's ratio
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The uplif t at the surface is given by: -

t

uz (O,t,a) = - m q"(t+a-r) erf H dT (4)

0

For a given waste age at emplacement, a, it is easy to see from Equation

(4) that the maximum surface uplift varies linearly with the initial

thermal loading. It is thus straightforward to calculate for each

value of a the initial thermal loading corresponding to a maximum allowable

surface uplift limit of 1.5 meters. The corresponding mass loading

2
(in kg/m ) can then be obtained using the correlations in Table 1.

The results are shown in Figure 4.

4.2 Near-field model

For the prediction of near-field temperatures in the host

rock in the zone of maximum temperature (i.e. in the vicinity of

the central canister in the central room), a semi-analytical three-

dimensional model is constructed based on the following assumptions:%

(i) The host rock is represented as an igfinite, homogeneous,

isotropic conducting medium with zero temperature at infinity.

(ii) The physical properties of the medium are temperature-

independent.

(iii) The canisters are represented by finite-length line

sources.

(iv) The volume actually occupied by the waste packages and

the disposal rooms is assumed to have the same thermal properties as

the host rock.
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103 Repository depth, H=600 m

C~j
Reprocessed H LW in GRANITE~

00
z

E;Reprocessed HLW in SL

0 -2

-lo

Ur)
Ul)

w

0 00

< 10

Spent Fuel in SALT

x.

10 25 50 75 100 125
WASTE AGE AT EMPLACEMENT, a

(years after discharge)

FIG.4.
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(v) Heat removal due to forced ventilation of the storage

rooms and access corridors prior to backfilling is neglected.

(vi) The entire repository is instantaneously loaded with

waste canisters of the same age.

(vii) The initial rock temperature at the repository midplane
0e

is 35 0C.

To avoid the need to sum the thermal contributions of each of

the tens of thousands of cinisters stored in a full-scale repository,

three further assumptions are made:

(viii) For all rooms except the central one, the row of discrete

line sources is homogenized ove.r a parallelepiped of length equal to

the room length, width equal to the room-to-room spacing, and height

equal to the active canister length.

(ix) To further simplify the integration, 'the rooms are assumed

to be infinitely long.

(x) Within the central room, the canisters at distances greater

than 35 meters from the center are homogenized into parallelepiped sources.

The near-field model geometridal assumptions are illustrated in

Figure 3.

Solution of the heat conduction equation (1) for the peak host

rock temperature location (i.e. at the rock-package interface for the

centeral waste canister in the repository midplane) yields:



t - /4DT

T(Rhta) = T + 1 t e
0 4-fDL f

C 0

+ 1

27rDL
C

N

fQ(t+a-T)1-1 T

t -d /4DT

L
erf Cd T+

4v5T

L
erf c dT +*

4VYT

t

L
+ 1 Q (t+a-T) erf C - dT -

d PL C
r c 0

1 t r R~/2 Rh-d r/2 L r : Lc
- Q (t+a-T) erf - erf erf - erf - dT

2d P L /4Z l 4V5T 4 5T
r c

where T is the initial temperature at the repository midplane,

the. second term predicts the temperature increment at the hol-e-wall

-due to the central waste canister, the third term the con-

tribution of the adjacent discrete line sources in the central

room, and the last' two terms account for the contribution of the

surrounding homogenized source. In Equation (5):

P =

(2N + 1)

L =r

L =
C

R h

d =
r

d. 2
2.

Q (t)

C

C

canister pitch (m)

number of discrete line sources

(2N + 1)P > 70 (m)

active canister length (m)

hole radius (m)

room-to-room spacing (m)

2 + (iP) 2
NRh

= 3.156 x 10 7  W (t) (M3 oC/yr)
PC C C

= waste decay heat, from Table 1 (W/MTHN)

= canister mass loading (MTHM)

(5)

and

where

.- 18-
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Quantitative error estimates were obtained for most of the

preceding assumptions. The error in the near-field temperature

introduced by the infinite geologic medium assumption was found not

to become significant until well after the maximum temperature in

the mid-plane occurred. Also, for expected full-scale repository

horizontal dimensions on the order of 1000 meters, the error in the

maximum near-field temperature introduced by assuming an infinite

room length was also found to be insignificant. The finite length

line source approximations contained in assumptions (iii) and (iv)

were found elsewhere to yield errors of less than 3% in the maximum

rock wall temperature. [8). Assumptions (vii) and (ix) regarding

heat source homgenization were also found to result in a c-mbined

error of less than 3%.

More significant errors were introduced by neglecting the

temperature dependence of the rock thermal conductivity. A three-

dimensional near-field calculation with temperature-dependent thermal

properties was not attempted here. However, when the temperature-

dependent thermal conductivity of salt was incorporated into a one-

dimensional calculation for a high-level waste repository, the maximum

temperature was 17% higher than when an average value was assumed.

Another potentially significant source of error, which leads to con-

servative design predictions, is the neglect of forced ventilation

heat removal from the storage rooms prior to backfilling.

The effects of some of these assumptions are presented in more

detail in Appendix I.
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4.3 Waste package model

To predict the temperature distribution within the waste

package, a simple one-dimensional, quasi-steady state model was

adopted. The one-dimensional steady state heat conduction equation

for the cylindrical coordinate system

D a T t
(-r 7 ) + q"'(r,t) = 0 (6)r ar ar--

is solved for the waste package region at successive time steps,

at each time imposing as the rock-package interface boundary

condition the temperature predicted by Equation (5). As a result,

the temperature at the canister outer surface is given by:

W (t+a)M R
T(R c,t,a) = T(Rh,t,a) + 2k L C ln (7a)

co T(R7tcx Rbc oc

at the canister inner surface:

W (t+ca)M R
T(R .,t,a) = T(R ,t,a) + C c ln (7b)

ci co 2kL R.

and at the canister centerline:

W c(t+a)M
T(o,t,a) = T (R ci,t,) + Wc )k Lc (7c)

w c

where k bk ,k represent the conductivities of the backfill,
bcw

canister and waste materials respectively. For the spent fuel

package calculations, the fuel rod-lead stabilizer region was

homogenized.
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5. Results

5.1 Fixed canister loadings

The preceding models were applied to spent fuel and

reprocessed high-level waste repositories in salt and granite.

In all cases, a room-to-room spacing of 25 meters was assumed.

The spent fuel canisters contained two PWR assemblies

(0.9228 MTHM), and the high-level waste canisters contained the

waste products from the reprocessing of 1 MTHM of spent fuel.

In each case, the maximum temperatures in the rock, backfill, and

waste matrix were computed as a function of the waste age at em-

placement and the canister pitch. The calculated maximum temper-

-atures in the backfill are illustrated in Figure 5(a)-(d).

5.2 Sensitivity of repository loadings to design parameters

The sensitivity of the maximum permissible repository

mass loading to some of the repository design parameters, such as

backfill material conductivity, room-to-room distance, and the

number of canisters per hole, was investigated. The maximum allow-

able backfill temperature of 100 C was the only thermal design limit

considered in these calculations. Details of the results of these

calculations are presented in Appendix II.

5.2.1 Backfill conductivity.

To .account for possible reductions in thermal conductivity

as a result of the elevated temperatures or because of fracturing

of the backfill layer, the average backfill material conductivity

was reduced by a factor of three, to 0.4 W/m0 C. The effect on the

repository mass loading is shown in Table 1 of Appendix II. The

reduction in repository loading is significant for young waste ages
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MAXIMUM BACKFILL TEMPERATURE
Spent Fuel in SALT

2 Assemblies (0.9228 MTHM)/Conister
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MAXIMUM BACKFILL TEMPERATURE
Spent Fuel in GRANITE

2 Assemblies (0.9228 MTHM)/Conister
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I
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MAXIMUM BACKFILL TEMPERATURE
Reprocessed HLW in SALT
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at the time of emplacement. However, the effect of changing the

backfill material conductivity declines as the age of the waste

of emplacement of the wastes is increased.

5.2.2 Waiting time prior to hole backfilling.

In order not to violate the backfill temperature limit of

1000 C, the backfilling of the holes with bentonite blocks once the

canisters are emplaced could be postponed for a certain period of

time. The required waiting times prior to backfilling after the

emplacement of the reprocessed HLW canisters are shown in Figure 6

(a)-(b).. In these calculations, heat removal due to forced ventil-

lation of the storage rooms and access corridors was neglected.

The effect of a 25.0 year waiting period prior to backfilling on

the repository mass loading is shown in App. II, Table 2. Increased

aging of the waste prior to emplacement will again reduce the effect

of the prior-to-backfill waiting period. In the case of spent fuel,

the case for delaying the initiation of backfilling is weaker. The

maximum rock temperature occurs at much lon}er times after emplace-

ment and declines much less rapidly thereafter because of the slower

decay behavior of the spent fuel. This can be seen from the tempera-

ture histograms in Figure 7(a)-(b) compared to those for reprocessed

HLW (Figure 7(c)-(d)).

5.2.3 Room-to-room distance

In the conceptual repository design, the room-to-room distance

was arbitrarely taken to be equal to 25.Qm in order to maintain the

structural stability of the rooms and pillars. It is conceivable,

however, that a higher extraction ratio will be possible without
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t p REQUIRED WAITING TIME, PRIOR TO BACKFILLINGpb,
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Backfill temperature limit - 100 0 C
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Figure 6(b)
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affecting the mechanical integrity of the rock. The effect of a

reduction of the room-to-room distance to 12.5 m is shown in

App. II, Table 3. In the case of reprocessed HLW, the repository

loading increases from about 25.0% to the maximum 100% as the

waste age at emplacement increases from 10.0 years to 89.0 or 98.0

years for emplacement in salt or granite respectively. For.spent fuel em-

placement in granite, the increase in repository mass loading declines

from -12.0% to -4.0% as the waste age increases from 10.0 to 100.0 years.

5.2.4 Number of canisters-per hole

If two reprocessed HLW canisters are emplaced in each hole,

instead of one, the repository mass loading will either increase or

decrease depending on the waste age at the time of emplacement. The

cross-over occurs at a waste age at emplacement of 35.0 or 49.0

years depending on the geological medium, salt or granite respectively.

The results are shown in App. II, Table 4.

The effects of changes in the various delign parameters on the

minimal canister pitch as a function of waste age at emplacement are

summarized in Figure 8 (a)-(d).

5.3 Variable canister loading

Next, the canister loading was permitted to vary and for

each combination of waste age and canister pitch the maximum per-

missible value of the canister loading for which the backfill

temperature limit of 100 C would not be violated was calculated.

In these
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calculations upper limits on the canister loading of 2.4 MTBM for spent

fuei (corresponding to the fuel rod close packing limit) and 5.0 MTM

equivalent for reprocessed high-level waste (corresponding to a maximum

radionuclide fraction in the waste glass of 30 w/o) are imposed.

Similar .calculations were performed for the thermal limits on the

rock and the waste matrix. In each case, the corresponding maximum

repository mass loading (in kg/m2 of repository area) was also computed.

These results were then compared with the maximum repository mass load-

ing at which the far-field, surface uplift limit would not be violated

(figure 4).

Figure 9(a) shows that for spent fuel aged ten years at the time of

emplacement in salt, it is the far-field thermal constraint which con-

trols the repository mass loading for values of the canister pitch less

than 11 meters. However, for 10-year old reprocessed high-level waste

in salt the repository loading is determined by the backfill temperature

limit (see figure 9(b)).

The controlling thermal constraint may change as the age of the waste

at emplacement increases. Figures10(a) andl'0(b) show, for salt reposi-

tories containing spent fuel and reprocessed high-level waste respectively,

which thermal constraint dominates and to what extent the repository

loading can be expanded as the waste age at emplacement is increased. For

spent fuel, the surface uplift limit is the most restrictive of the four

thermal criteria over virtually the entire range of values considered for

the waste age and canister pitch. Consequently, the maximum permissible

repository mass loading is independent of the canister pitch.
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MAXIMUM REPOSITORY MASS LOADING (KG/M 2 )
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Max. Surface Uplift = 1.5 M
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Max. Canister Load = 2.4 MTHM
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MAXIMUM REPOSITORY MASS LOADING (KG/M 2 )
Reprocessed HLW in SALT

Max. Surface Uplift = 1.5 M

Max. Backfill Temp. = 100*C

Max. Canister Load 5.0 MTHM

100.0
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Moreover, it is only weakly dependent on the age of the waste

2
at emplacement, increasing by a factor of l.22, from 6.87 kg/m

to 8.39 kg/m , for an increase in the waste age from 10 to 100

years.

By contrast, for reprocessed high-level waste the backfill

temperature limit remains the most restrictive criterion for most

values of waste age and canister pitch. Furthermore, delay in

waste burial greatly increases the allowable repository loading.

For example, at a canister pitch of 0.6m (the- smallest possible

value), when the waste age at emplacement is increased from 10

to 100 years the maximum repository loading increases by a factor

2 2of 7.63, from 18.51 kg/m to 141.15 kg/m . The much greater

sensitivity of the repository loading to the waste age in this case

is because of the more rapid thermal decay of the reprocessed high-

level waste compared with the spent fuel, once more than about

thirty years have elapsed since generation. (It should be noted

that no account is taken 'here of the areal requirements of the low-

heat transuranic (TRU) wastes generated during reprocessing, which

will most probably also be stored in the repository. The additional

areal requirements for the TRU canisters and drums will be

2
approximately 20 m /MTHM [7].

The corresponding results for granite repositories are shown in

Figures 10(c) and 10(d).
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MAXIMUM REPOSITORY MASS LOADING (KG/M 2 )
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In Figure 11 (a)-(d) the maximum canister loading is shown as a

function of waste age and canister pitch for the four cases considered.

6. Application

The two most important components of the -total cost of waste

emplacement are the cost of excavation and the waste packaging

cost. The former varies inversely with the repository mass

loading and the latter .varies inversely with the canister load-

ing. An inspection of Figures 10 and 11 indicates that at each

value of the waste age at emplacement an optimal canister pitch

can be found for which the sum of excavation and packaging costs

per unit of waste is minimized. By deferring waste disposal the

optimized excavation and packaging unit costs both decline, but

the unit cost of interim storage is increased. With the appropriate

cost data, the interim waste storage period which results in the

minimum overall system cost can be determined. In future work,

the simplified repository thermal model presented here w'ill be'

used to address the economic optimizat.ion problem.

7. Conclusions

An approximate, semi-analytical model for predicting the time-

dependent temperature distribution in the region of a high-level

waste repository has been developed. The model has been applied

to a determination of the maximum permissible repository average

mass loading and canister loading for -spent PWR fuel and reprocessed

PVR high-level waste repositories in salt and granite media, subject

to several independent thermal constraints. The impact of these

constraints on key repository design parameters has been investigated
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MAXIMUM CANISTER MASS LOADING (MTHM)
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MAXIMUM CANISTER MASS LOADING (MTHM)
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FIG. 11(d)
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for values of the waste age at emplacement ranging from 10 to

100 years. It is found that for spent fuel repositories in

salt the surface uplift criterion determines the maximum permis-

sible repository mass loading, while in the other three cases

both the repository loading and the canister loading are con-

trolled by the bentonite backfill temperature constraint. Finally,

despite the differences between. the thermal and thermoeleastic

properties of salt and granite, neither medium appears to offer

decisive advantages in terms of the maximum permissible waste

loading in the repository.

Acknowledgement

This work was supported by the U.S. Department of Energy,

under Contract EX-76-A-01-2295.



-49-

References

[1) IJ;S. Department of Energy, Final Environmental Impact Statement:
Management of Commercially Generated Radioactive Waste, DOE/EIS-
0046F (October 1980), App. K.

[2] W.D. Turner, D.C. Elrod and I.I. Siman-Tov, HEATING 5 - An IBM 360
heat conduction program, Oak Ridge National Laboratory Report,
ORNL/CSD/TM-15 (March 1977).

[3] W.M. Kays, F. Hossaini-Hashemi, and J.S. Busch, Calculation of media
temperatures for nuclear sources in geologic depositories by a finite-
length line source superposition model (FLLSSM)., Nucl. Engrg. Des.
67 (1981), 339-347.

[4) P.-E. Ahlstrom, Ceramic and pure-metal canisters in buffer material
for high level radioactive waste, Nuclear and Chemical Waste Management
1 (1980) 77-88.

[5) C.M. Malbrain, R.K. Lester and J.M. Deutch, Analytical approximations
for the long-term decay behaviour of spent fuel and high-level waste,
Nucl. Tech. 57 (1982).

[61 J.E. Russell, Areal thermal loading recommendations for nuclear waste
repository in salt, Union Carbide Corporation Report, Office of Waste
Isolation, Y/OWl/TM-37 (1977).

[7]. International Atomic Energy Agency, International Nuclear Fuel Cycle
Evaluation, Volume 7: Waste Management and Disposal (1980).

[83 M.H. Tennant, Sensitivity calculations for low-heat generating defense
waste repository temperatures, Nucl. Engrg. Des. 67 (1981) 391-396.



A.l.

Appendix I:

Table -A.I.-1:

Illustration of Some of the Near-Field Model

Assumptions

Reprocessed HLW in Salt
Single heat source (model assumptions i-4)

Maximum salt temperature increase for alternative heat source models

as a function of the radial distance from the source centerline, at

the source midplane.

Waste age at emplacement,

Canister waste loading,

Active canister length,

Active canister radius,

Equivalent active canister width,

a

M
c

L
c

Rc

w
c

- 10.0 yrs

- 2,.0 MTHM

3.0 m

= 0.18 m

- 0.316m

r ATi ~ AT AT 3  ~ tia
AT 1,max AT2,max 3,max imax

(m) (OC) (0C) (0C) (yrs)

0.0 -- 49.12 49.13 0.32

0.2 39.80 39.50 39.75 0.32

0.3 33.60 33.55 33.47 0.32

1.0 16.57 16.59 15.17 1.0

2.0 9.13 9.14 4.89 1.0

5.0 3.38 3.38 <0 3.16
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Table A.I-1 (continued)

Model 1.: Finite length line heat source

1
AT(r,t) 4rDL

c

t

f
0

Model 2: Parallellepiped heat source

t

AT 2(r,t) = W
2W 2cL

c c 0

. r+W /2 r-Wc/2
qc c+a-) irf c - erf

W L
erf - erf dT

4 f 4/DT

(A.2)

Model 3: Cylindrical heat source

t

LT (r, t) = 2
3 TrR 2L

c c
I

4
-R 2/DT L

Q (t+a-T) 1-e c erf c dT
4 57

Q (t+a)

47TDL

Q (t+T)

4'iDL
c

r

c

r{R J
2

for r - Rc

+ 2 ln
c

(A.3)

for r > R (A.3')

r r

Model 2

2Q (t+a-t) -r /4DT

* e
Lr

erf -dT

7--T

(A. 1)

Model 3Model 1.
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Table A.II.-2: Reprocessed HLW in Salt
Infinite row of canisters (bodel assumption viii)

Maximum salt temperature increase at the repository midplane as a

functiotr of the distance from the center of the disposal room for

two different source models.

AT 1,max AT2,max tl,max t2,max

(m) ( C) (0C) (0C) (0C)

0.0 25.55 50.79 - 10.0 3.16

12.5 18.47 15.72 10.0 10.0

25.0 11.15 10.85 31.62 31.62

50.0 6.08 6.00 31.62 31.62

75.0 3.56 3.56 100.0 100.0

Waste age at emplacement,

Single canister mass loading,

Average repository mass loading,

Active canister length,

Distance between adjacent rooms,

Distance between adjacent canisters,

=

Mc=

M =

L =

C

c

d =
r

PC

10.0 yrs

2.0 MTHM

25.90 kg/m2

3.0 m

25.0 m

3.09 m
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Table A.II.-2 (Continued)

Model 1: Infinitely long parallelepiped heat source

AT (y,t) = 2 P1 2d P L
r cc

t

f
0

y+d /2 y-d. /2
r 4-

Qc(t+a-t) erf -erf
v4 DT 4DT

L
c

erf d r
4v'75

Model 2: Infinitely long parallelepiped heat source

t

AT (y,t) = f
2 2Wc

0

y+W /2 y-W /2

Q (t+a-T) erf - erf .c 4DT

Model 1

(A. 4)

L
c

-dT derf (A. 5)

y

Model- 2-
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Table A.I.-3: Reprocessed HLW in Salt
Finite row of canisters (model assumption ix)

Maximum salt temperature increase -at the repository midplane as a function of

the distance from the center of the disposal room for different room lengths.

y AT AT AT AT AT tl,max 2,max 3,max 4,max 5,max 5,max

(M) (C) C) (C) (C) (C) (yrs)

0.0 50.65 50.78 50.79 50.79 50.79 3.16

12.5 14.55 15.66 15.72 15.72 15.72 10.0

25.0 7.96 10.16 10.84 10.85 10.85 31.62

50.0 3.88 5.45 6.00 6.00 6.00 31.62

75.0 1.36 2.97 3.44 3.56 3.56 100.0

L

(m)
100.0 200.0 500.0 1000.0

I 1. 1. 1

Waste age at emplacement,

Single canister mass loading,

Average repository mass loading,

Active canister length,

Distance between adjacent rooms,

Distance between..adjacent canisters,

a

M
C

M

Lc

d
r

Pc

= 10.0 yrs

M 2.0 MTHM

- 25.90 kg/m 2

= 3.0 m

= 25.0. m

- 3 .09 m
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Table A.I.-3 (Continued)

Model: parallelepiped heat source

1
AT(y,t) =2W P L

-. C C c

t y+W c/2
Q'(t,-t){ erf C/ -

0

erfy-W 
/2

erf- c ,

L c

erf * erf

y

Lr



A.7

Table A.I.-4: Reprocessed HLW in Salt
Single heat source (model assumption x)

Waste age at emplacement, a = 10.0 yrs

Single canister mass loading, M c = 2.0 MTHM

Active canister length, Lc = 3.0 m

Average repository mass loading, M = 25.90 kg/m 2

Distance between adjacent rooms, d = 25.0/12.5 m
rl,2

Distance between adjacent canisters, P cl.2~ 3.09/6.18 m

x AT AT AT t
1 max 2 6max 3 6max i,max

(M) (C) (C) (C) (yrs)

0.0 5.52 9.69 - 1.0

10.0 1.12 1.33 1.47 3.16

25.0 0.39 0.41 0.42 10.0

50.0 0.14 0.15 0.15 31.62

75.0 0.07 0.07 0.07 31.62
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T'able A.I-4 (Continued)

Model 1,2: parallelepiped heat source

AT 1 2 (x, t) = L

r c c
0

Q C
x+P 2

erf -
Xr P /2

erf-
YZ74--

dr Lerf *erf
4 14 Y5

Single Finite Length Line Heat Source

t

AT3 (Xt) = 47rDL

0

-x2/4Dt *

QC (t+a-T) e erf . dT

d

x

Model 1,2

}*

Model 3:

(A. 8)

(A. 9)

x

Model 3
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Appendix II: Sensitivity of Repository Mass Loadings to
Repository Design Parameters

Table A.II.-1: Reduction in backfill conductivity from 1.2 W/m 0C
to 0.4 W/mOC

A.II.-l(a): Spent Fuel in Salt

a P P* M 2 2 M/M
(yrs) (m) (m) (kg/m2) (kg/M %

10.0 2.85 4.57 12.95 8.07 -37.68

15.0 2.56 3.88 14.42 9.52 -33.98

25.0 2.19 2.79 16.84 13.24 -21.38

50.0 1.76 1.91 21.02 19.28 - 8.28

75.0 1.56 1.65 23.70 22.42 - 5.40

100.0 1.43 1.50 25.79 24.69 - 4.27

A.II.-l(b): Reprocessed HLW in Salt

a P P* M M* AM/M
(yrs) (m) (m) (kg/m 2) kg/Ih %

10.0 3.88 - 10.32 - -100.0

15.0 2.79 - 14.34 - -100.0

25.0 1.97 - 20.30 - -100.0

50.0 0.99 1.83 40.40 21.86 - 45.89

75.0 0.60 0.62 66.67 64.14 - 3.79

100.0 0.60 0.60 66.67 66.67 0.0
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Table A.II-1 (continued): Reduction in
to 0.4 W/m 0 C

backfill conductivity from 1.2 W/m0 C

A. II-1(c) : Spent Fuel in Granite .

a P P* M2 M* 2A/M
(yrs) (W) (m) (kg/m) (kg/m2

10.0 4.13 - - 8.93 - -100.0

15.0 3.73 6.81 9.89 5.42 - 45.20

25.0 3.02 4.40 12.24 8.40 - 31.37

50.0 2.31 2.58 15.97 14.29 - 10.52

75.0 2.02 2.16 18.26 17.08 - 6.46

100.0 1.86 1.94 19.88 19.00- - 4.43

A.II-1(d): Reprocessed HLW in Granite

a P P* M 2)M* 2 AM/M
(yrs) (W) (W) (kg/m2) (kg/m %

10.0 - - - -

15.0 5.73 - 6.98 - -100.0

25.0 3.38 - 11.83 - -100.0

50.0 1.47 3.36 27.28 11.91 - 56.34

75.0 0.73 0.94 54.93 42.37 - 22.87

100.0 0.60 0.60 66.67 66.67 0.0
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Table A.II.-2: Introduction of a 25.0 year
..prior to hole backfilling

A.II.-2(a): Reprocessed HLW in Salt

waiting period

P PA* M* AM/M
(yrs) (M) (M) (kg/m) (kg/m2 ()

10.0 3.88 3.08 10.32 12.99 +25.84

15.0 2.79 2.45 14.34 16.33 +13.85

25.0 1.97 1.72 20.30 23.26 +14.56

50.0 0.99 0.87 46.40 45.98 +13.80

75.0 0.60 0.60 66.67 66.67 0.0

100.0 0.60 0.60 66.67 66.67 0.0

A.II.-2(b): Reprocessed HLW in Granite

P P* AM/M
(yrs) (M) (M) (kg/m) (kg/m ) (%)

10.0 - 5.15 - 7.77 G

15.0 5.73 4.15 6.98 9.64 ' +38.09

25.0 3.38 2.90 11.83 13.79 +16.59

50.0 1.47 1.28 27.28 31.25 +14.55

75.0 0.73 0.68 54.93 58.82 + 6.62

100.0 0.60 0.60 66.67 66.67 0.0
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-Table A.II.-3: Reduction in room-to-room distance by factor of two.

A.II.-3(a): Reprocessed HLW in Salt

SP* M* AM/M
(yrs) (M) (M) (kg/m2) (kg/m M

10.0 3.88 6.45- 10.32 12.41 + 20.25

15.0 2.79 4.97 14.34 16.11 + 12.34

25.0 1.97 3.47 20.30 23.07 + 13.65

50.0 0.99 1.72 40.40 46.51 + 15.12

75.0 0.60 0.87 66.67 92.35 + 38.52

100.0 0.60 0.60 66.67 133.33 +100.0()

A.II.-3(b): Reprocessed HLW in Granite

a P P* M M* AM/M

(yrs) (m) (M) (kg/m2) (kg/n ) M

10.0 - - - -

15.0 5.73 8.98 6.98 8.91 + 27.65

25.0 3.38 5.30 11.83 15.10 + 27.64

50.0 1.47 2.34 27.28 34.20 + 25.37

75.0 0.73 1.15 54.93 69.49 + 26.51

100.0 0.60 0.60 66.67 133.33 +100.0 (2
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Table A.II.-3 (continued): Reduction in room-to-room distance
by a factor of two.

A.II.-3(c): Spent Fuel in Granite

a P P* 2 M* AM/M
(yrs) (m) (W) (kg/m) (kg/m2

10.0 4.13 7.40 8.93 9.98 +11.76

15.0 3.73 6.54 9.89 11.28 +14.05

25.0 3.02 5.49 12.24 13.44 + 9.80

50.0 2.31 4.38 15.97 16.87 + 5.64

75.0 2.02 3.88 18.26 19.01 + 4.11

100.0 1.86 3.57 19.88 20.67 + 3.97

(1) The 100.0% increase in repositing mass loading is
attained for waste ages at emplacement greater than
89.0 years.

(2) The 100.0% increase in repository mass loading
is attained for waste ages at emplacement greater
than 98.0 years.

(3) Spent Fuel emplacement in Salt is not considered.
In that case, the far-field surface uplift constraint
will determine the repository lay-out.
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Table A.II.-4: Emplacement of two canisters per hole

A.II.-4(a): Reprocessed HLW in Salt

a P P* M M* 2 AM/M
(yrs) (M) (M) (kg/m2) (kg/m2) M

10.0 3.88 - 10.32 - -100.0

15.0 2.79 6.17- 14.34 12.96 - 9.62

25.0 1.97 4.02 20.30 19.89 - 2.02
(1)

50.0 0.99 1.93 40.40 41.44 + 2.57

75.0 0.60 0.97 66.67 82.57 + 23.85

100.0 0.60 0.60 66.67 133.33 +100.0

A.II.-4(b): Reprocessed HLW in Granite

aP P* MM* A&M/M
(yrs) (M) (M) (kg/m2) (kg/m2 )

10.0 - - - --

15.0 5.73 - 6.98 - -100.0

25.0 3.38 9.55 11.83 8.37 - 29.25
(2)

50.0 1.47 2.89 27.28 27.64 + 1.32

75.0 0.73 1.39 54.93 57.37 + 4.44

100.0 0.60 0.68 66.67 117.44 + 76.15

(1) Cross-over occurs at a waste age at emplacement of
35.0 years (between 35-68 yrs: AM/M<5%). The 100%
increase in repository mass loading is attained for
waste ages greater than 86.0 yrs.

(2) Cross-over occurs at a waste age at emplacement of
49.0 years (between 49-82 yrs: AM/M<5%).


