MIT-4105-6 MITNE-128

OPTIMIZATION OF MATERIAL DISTRIBUTIONS IN FAST BREEDER REACTORS

by C. P. Tzanos, E. P. Gyftopoulos, M. J. Driscoll

August, 1971

Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Contract AT (30-1) -4105 U.S. Atomic Energy Commission

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF NUCLEAR ENGINEERING

Cambridge, Massachusetts

OPTIMIZATION OF MATERIAL DISTRIBUTIONS

IN FAST BREEDER REACTORS

Ъy

C. P. Tzanos, E. P. Gyftopoulos, M. J. Driscoll

August 1971

MIT-4105-6

MITNE-128

AEC Research and Development Report

UC-34 Physics

Contract AT(30-1)-4105

U. S. Atomic Energy Commission

DISTRIBUTION

MIT-4105-6 MITNE-128

AEC Research and Development Report

UC-34 Physics

U. S. Atomic Energy Commission, Headquarters Division of Reactor Development + Technology Reactor Physics Branch	(3	copies)
Argonne National Laboratory Liquid Metal Fast Breeder Reactor Program Offi	lce	
9700 South Cass Avenue Argonne, Illinois 60439	(1	copy)
U. S. Atomic Energy Commission Cambridge Office	(2	copies)
Dr. Paul Greebler General Electric Atomic Products Division		
175 Curtner Ave. San Jose, California 95125	(1	copy)
Dr. Harry Morewitz Atomics International P. O. Box 309 Canoga Park, California 91305	(1	сору)
Mr. M. W. Dyos Advanced Reactors Division Westinghouse Electric Corporation Waltz Mill Site P. O. Box 158 Madison, Pennsylvania 15663	(1	сору)
Dr. Robert Avery Argonne National Laboratory Applied Physics Division 9700 South Cass Avenue Argonne, Illinois 60439	(1	сору)
Dr. Charles A. Preskitt, Jr. Mgr. Atomic Nuclear Department Gulf Radiation Technology P. O. Box 608		
San Diego, California 92112	(1	copy)

ABSTRACT

An iterative optimization method based on linearization and on Linear Programming is developed. The method can be used for the determination of the material distributions in a fast reactor of fixed power output, constrained power density and constrained material volume fractions that maximize or minimize integral reactor parameters which are linear functions of the neutron flux and the material volume fractions.

The method has been applied:

(1) To the problems of optimization of the fuel distribution in the reactor core so as to obtain: (a) a maximum initial breeding gain; (b) a minimum critical mass; and (c) a minimum sodium void reactivity. Numerical results show that the same fuel distribution yields maximum breeding gain, minimum critical mass, minimum sodium void reactivity and uniform power density.

(2) To the problem of optimization of a moderator distribution in the blanket so as to maximize the initial breeding gain. Results indicate that breeding gain is a weak function of the moderator distribution. These results are confirmed by studying the effects on the breeding gain of the insertion of a moderator, homogeneously distributed, in the blanket.

Finally, the effects on the breeding gain of surrounding the blanket by a reflector are investigated. The results show that: (a) savings in blanket thickness may be achieved with choice of a proper reflector without substantial loss in breeding gain; and (b) the transport and absorption properties of a medium, rather than its moderating properties, determine the figure of merit of a fast reactor blanket reflector.

ACKNOWLEDGEMENTS

This report is based on a thesis submitted by Constantine P. Tzanos to the Department of Nuclear Engineering at Massachusetts Institute of Technology in partial fulfillment of the requirements for the degree of Doctor of Science.

Financial support from the U. S. Atomic Energy Commission under contract AT(30-1)-4105 is gratefully acknowledged.

Thanks are due to Barbara Barnes for typing this manuscript.

TABLE OF CONTENTS

			Page
Abstract	2		3
Acknowle	edgeme	ents	4
Table of	E Cont	tents	5
List of	Figu	res	8
List of	Table	es	9
Chapter	1.	Introduction	11
	1.1	The Problem	11
	1.2	The Breeding Ratio and Breeding Gain	14
	1.3	Optimization Techniques	16
	1.4	Report Outline	19
Chapter	2.	The Optimization Method	20
	2.1	Mathematical Statement of the Problem	20
	2.2	The Linearized Form of the Breeding	24
		Optimization Problem	
	2.3	Solution of the Linearized Multigroup	30
		Diffusion Equations	
	2.4	The Iterative Scheme	32
	2.5	Remarks	34
	2,6	Summary	35

Chapter	3.	Core Optimization	36
	3.1	Introduction	36
	3.2	Breeding Optimization	39
	3.3	Critical Mass Optimization	47
	3.4	Sodium Void Reactivity Optimization	52
	3.5	Summary	56
Chapter	4.	Blanket Optimization	57
	4.1	The Effect of Blanket Moderation	57
	4.2	The Effect of the Reflector Composition	64
Chapter	5.	Conclusions and Recommendations	70
	5.1	Conclusions	70
	5.2	Recommendations for Future Work	72
Appendix	κA.	Bibliography	76
Appendix	сB.	Linear Programming and Linearization	80
	B.1	Linear Programming	80
	B.2	Linearization	81
Appendia	ĸ C.	The Method of Piecewise Polynomials, and	85
		Integrals of Piecewise Polynomials	
	C.1	The Method of Piecewise Polynomials	85
	C.2	Integrals of Piecewise Polynomials	89

				Page
Appendix	D.	The Computer H	Program Greko	95
	D.1	Introduction		95
	D.2	Input		97
	D.3	Output		100
	D.4	Listing		102
Reference	es			188

7

-

LIST OF FIGURES

Page

2.1	Schematic	Representation of	of LMFBR	Cylindrical	Geometry	21
c.1	The Cubic	Piecewise Polyno	omials w _k	and v _{k,i}		87

LIST OF TABLES

•

Table No. Pa		
3.1	Dimensions of Reactor No. 1	37
3.2	Reactor Composition	38
3.3	Five-Group Cross Section Set Structure	40
3.4	Fissile Composition and Breeding Gain as a Function	
	of Linear Programming Iteration Number for Reactor	
	No. 1	42
3.5	Peak Power Densities for Reactor No. 1	43
3.6	Fissile Composition and Breeding Gain as a Function	
	of Linear Programming Iteration Number for Reactor	
	No. 1 and Different Starting Configuration	44
3.7	Dimensions of Reactor No. 2	46
3.8	Optimum Configuration of Reactor No. 2	46
3.9	Effect of Blanket Reflector on Breeding Gain	48
3.10	Fissile Composition and Critical Mass as a Function	
	of Linear Programming Iteration Number for Reactor	
	No. 1	49
3.11	Fissile Composition and k-effective of Sodium Voided	
	Reactor as a Function of Linear Programming	
	Iteration Number for Reactor No. 1	55

Table No.	Page
4.1 Dimensions of Reactor used in Blanket Studies	59
4.2 Reactor Composition for BeO Moderated Blanket	60
4.3 Reactor Composition for Na Moderated Blanket	61
4.4 The Breeding Gain as a Function of Moderator	
Concentration in the Blanket	62
4.5 The Breeding Gain as a Function of the Reflector	
Material and Blanket Thickness	65
4.6 The Breeding Gain as a Function of BeO Reflector	
Properties	67
4.7 The Effect of Resonance Self-Shielding on	
Breeding Gain	68

Chapter 1

INTRODUCTION

1.1 THE PROBLEM

The objective of this study is the development and application of a method to optimize the material distributions in a fast reactor of fixed power output. constrained power density and material volume fractions so as to maximize or minimize a given objective function.* An iterative method has been developed based on linearization of the relations describing the system and on Linear Programming. The method can be used to optimize integral reactor quantities which are linear functions of the neutron flux and the material volume fractions.

In what follows, primary emphasis has been placed on the problem of optimization of the fuel distribution in the reactor core and moderator distribution in the reactor blanket so as to obtain a maximum initial breeding gain. In addition, the optimization method has been applied to the problems of optimization of critical mass and sodium void reactivity.

Numerical results show that: (a) the core of maximum initial breeding gain is also the core of minimum critical mass and minimum

*The term objective function in this study is used to denote a criterion of optimality.

sodium void reactivity; and (b) the initial breeding gain is a very weak function of the moderator concentration in the blanket.

Fast reactors are of interest primarily because of the economic advantage resulting from their ability to breed more fissile fuel than they consume. It follows that fast reactors should be designed with a breeding potential as high as possible within the framework established by engineering constraints.

A typical fast reactor consists of a core of plutonium-enriched fuel surrounded by a blanket of depleted uranium, which in turn is surrounded by a reflector-shield region. Breeding can be achieved both in the core (internal) and in the blanket (external). In the core, the breeding potential increases monotonically as the spectrum is hardened. Therefore addition of a moderating material in the core is detrimental to internal breeding. In the blanket, however, introduction of a moderating material softens the spectrum and favors captures by the fertile material in the sub-kev energy range. Thus the central question is how should the fuel in the core, and the fertile and moderating materials in the blanket be distributed so that the initial breeding gain is maximized.

In typical demonstration plant and 1000-MWe fast breeder reactor studies, the blanket designs are quite similar. The apparent design strategy is primarily to accommodate as much depleted UO_2 as practicable subject to the following constraints. The axial blanket is an extension of the core fuel, and therefore has the same fuel volume fraction; further its thickness is often established by

shielding requirements for the protection of core structure, and for this reason is thicker than justified solely by breeding economics. The radial blanket consists of several rows (typically three) of subassemblies having larger diameter rods and a lower coolant volume fraction than the core. The reflector-shield external to the blanket is usually a high-volume-fraction steel region. Thus most of the current work is proceeding within a very narrow envelope of design choices.

liasnain and Okrent (1) made a preliminary study of the effects of inserting graphite in a fast reactor blanket. They studied four blanket configurations, three of them with graphite, and a reference blanket without graphite. They found a small drop in breeding ratio due to insertion of the graphite, and concluded that inclusion of moderating material in a fast reactor blanket is not promising for a high-power density reactor using optimum fuel cycling.

Perks and Lord (2) studied several blanket configurations containing moderating materials such as graphite, sodium and a graphite-stainless steel mixture. They also found a small drop in breeding ratio for the moderated configurations compared to a reference design without moderating material.

An early blanket design of the British PFR, since dropped, consisted of one row of subassemblies containing a mixture of graphite and steel, one row of subassemblies containing UO_2 , and two rows of subassemblies containing graphite. In reference (3) it is reported that this arrangement was selected because it leads to a reduction

in critical mass and to an improvement in the core radial power form factor. Moreover, it is reported that removal of the moderator improves the breeding gain.

In all the analyses just cited, however, it is not possible to ascertain whether the configuration which gives the maximum breeding is included among the options selected for study.

A primary purpose of the present work is to avoid this deficiency through use of systematic optimization techniques.

1.2 THE BREEDING RATIO AND BREEDING GAIN

The breeding ratio and the breeding gain have been defined in a variety of ways. In this section the various definitions of the breeding ratio and breeding gain which have been used in fast reactor studies, and the definition of the breeding gain used in this study are discussed.

The initial (i.e. beginning of life) breeding ratio, b, is usually defined as the ratio of the fissile production rate to the fissile consumption rate. The breeding gain is then defined as production less consumption per unit consumption, or b-1.

In the U.K., the preferred definition of breeding performance of a fast reactor is the breeding gain defined as (3) Breeding gain = Pu²³⁹ produced per fission above that required to maintain criticality

Since the plutonium inventory of a fast reactor can arise from sources

of plutonium of differing isotopic composition, an "equivalent Pu^{239} " quantity is defined as the quantity of Pu^{239} which has the same reactivity worth in fast reactors. For example, for a large ceramic fueled fast reactor the "equivalent Pu^{239} " is defined as

$$"Pu^{239}" = Pu^{239} + 1.5PU^{241} + 0.15(Pu^{240} + Pu^{242})$$

In a similar vein, Ott (4) defines the breeding ratio as

$$b_{o} = \frac{R_{c}^{238} + \gamma_{0}R_{c}^{239} + \gamma_{1}R_{c}^{240} + \gamma_{2}R_{c}^{241}}{R_{a}^{239} + \gamma_{0}R_{a}^{240} + \gamma_{1}R_{a}^{241} + \gamma_{2}R_{a}^{242}}$$

i.e., the (spatially integrated) production rate (R_c) of the weighted plutonium isotopes over their consumption rate (R_a) . The weights $(\gamma_i's)$ are defined as

$$\gamma_{i} = \frac{N_{i}}{\overline{N}_{P_{u}}^{239}}$$
, $i = P_{u}^{240}$, P_{u}^{241} , P_{u}^{242}

This definition has the advantage that b_0 is fairly insensitive to variations in fuel composition.

In this study, the breeding performance of a fast reactor is measured by a breeding gain, defined as the ratio of the net fissile production rate (production rate minus consumption rate) to the thermal power produced. This measure has been selected because: (a) for a power reactor of constant power output, it gives an objective function (breeding gain) for the breeding optimization problem, which is easily linearized about an operating point; and (b) it can be

readily used in economic studies, in which power production and plutonium production enter directly as key variables. Because it directly relates the net production of fissile fuel to the power production, which is desirable from the point of view of economic studies, the breeding gain used in the present study could be called the "economist's" breeding gain, as opposed to the "physicist's" or "chemist's" values defined by other authors (5). Compatible with this definition of the total breeding gain, the internal breeding gain is, in turn, defined as the net fissile production in the core per unit total thermal power produced. Similarly the external breeding gain is defined as the net fissile production of the blanket per unit total thermal power produced. These latter definitions of the total, internal and external breeding gain will be used consistently throughout the remainder of this study.

1.3 OPTIMIZATION TECHNIQUES

One recurring problem that arises in reactor design, is the selection of the optimum value of a reactor parameter according to a criterion of optimality. Optimization techniques can provide answers to such a problem, since they seek the optimum solution in a systematic way without reliance on intuition or random selection.

In the present work advanced optimization techniques, such as Variational Methods, Dynamic Programming and Linear Programming have been considered. These techniques have previously been used to solve several problems which are more or less related to the present work.

Goertzel (6) solved the problem of optimum fuel distribution in a homogeneous moderator region so as to obtain a thermal reactor of minimum critical mass by using the methods of the classical calculus of variations.

Kochurov (7) solved the same problem with the constraint that the fissile concentration be less than an upper limit, by means of the Maximum Principle of Pontryagin.

Goldschmidt and Quenon (8) used the Maximum Principle of Pontryagin to find the fuel distribution which minimizes the critical mass of a slab geometry fast reactor, described by one-group diffusion theory and subject to the constraints that: (a) the total thermal power be constant; (b) the power density be less than or equal to an upper limit; and (c) the fuel enrichment be bounded.

The Maximum Principle of Pontryagin has also been used by other authors. Zaritskaya and Rudik (9) used it to find the fuel distribution which leads to the minimum critical size of a reactor of given total power and limited power density, and the fuel distribution which gives the maximum total power output of a reactor of known dimensions and bounded maximum flux. Rosztoczy and Weaver (10) used it to determine an optimum reactor shutdown program that minimizes the excess reactivity required to override the xenon poisoning. Finally, Roberts and Smith (11) used it to determine an optimum reactor shutdown program that minimizes the time necessary for shutdown, subject to the constraint that the xenon concentration never exceed the available reactivity override. Ash (12) used Dynamic Programming to determine an optimal reactor-shutdown program that either minimizes the post-shutdown xenon concentration maximum, or minimizes the xenon concentration itself at a given post-shutdown time.

Wall and Fenech (13) also used Dynamic Programming to optimize the refueling policies of a single-enrichment, three zone PWR core for a minimum unit power cost subject to the constraints that the fuel burnup and power density be bounded.

Gandini, Salvatores and Sena (14) developed a method based on generalized perturbation theory and on Linear Programming to optimize reactor integral parameters, linear or bilinear in the real and adjoint neutron fluxes.

Purica, Pavelescou and Anton (15) developed an algorithm based on game theory, to optimize the dimensions and enrichment of a spherical fast reactor having homogeneous core and blanket and given U^{238} inventory so as to obtain a maximum initial breeding ratio.

A brief review of other optimization studies directly and indirectly related to Nuclear Engineering is given in Appendix A.

For the purposes of this work the Maximum Principle of Pontryagin and Dynamic Programming have been considered for the solution of the breeding optimization problem, but they have not been used. Application of the Maximum Principle of Pontryagin leads to a two-point boundary value problem which is difficult to solve either analytically or numerically. Dynamic Programming, in spite of its conceptual and programming simplicity, imposes exceptionally large fast-access digital computer memory requirements. Instead an iterative method based on linearization of the equations describing the system and on Linear Programming has been developed and successfully applied.

Linear Programming is concerned with the solution of optimization problems for which all relations among the variables are linear both in the constraints and the function to be maximized or minimized (16). Since the problem with which this study is concerned is nonlinear, linearization is used to reduce it to a form suitable for the use of Linear Programming. The linearization procedure and Linear Programming are discussed in Appendix B.

1.4 REPORT OUTLINE

This report is organized as follows. In Chapter 2 the theoretical basis of the optimization method used in the study is discussed. In Chapter 3 the method is applied to the optimization of the reactor core. In Chapter 4 the optimization of the reactor blanket is discussed. In Chapter 5 general conclusions and recommendations are discussed. Appendix A contains a brief literature review of publications on theory and applications of optimization methods. In Appendix B Linear Programming and the linearization procedure are discussed. In Appendix C the method of Piecewise Polynomials is briefly discussed and some integral quantities of the piecewise polynomials are evaluated. The computer program written to carry out the computations is discussed and listed in Appendix D.

Chapter 2

THE OPTIMIZATION METHOD

As already stated in Section 1.1, the purpose of this study is the development and application of a method for the optimization of the material distributions in a fast reactor of fixed power output, constrained power density and material volume fractions so as to maximize or minimize a given objective function. Without any loss of generality, the method will be developed in this Chapter in connection with the breeding optimization problem. The mathematical statement of this problem is given in Section 2.1, the linearized form of the problem is presented in Section 2.2, the solution of the linearized multigroup diffusion equations is discussed in Section 2.3, the Linear Programming iterative scheme is discussed in Section 2.4, some remarks on the limitations and capabilities of the method are discussed in Section 2.5, and a brief summary of the method is given in Section 2.6.

2.1 MATHEMATICAL STATEMENT OF THE PROBLEM

A typical fast reactor consists of a core of plutoniumenriched fuel surrounded by a blanket of depleted uranium, which, in turn, is surrounded by a reflector-shield region as shown schematically in Fig. 2.1. It is a common practice to describe the neutron behavior in a fast reactor by the multigroup diffusion

.

FIG. 2.1 SCHEMATIC REPRESENTATION OF LMFBR CYLINDRICAL GEOMETRY

equations. For an infinite cylindrical geometry the diffusion equation for the i-th group at a point r is written as (17)

$$\nabla D_{i}(r) \nabla \phi_{i}(r) - \Sigma_{a,i}(r) \phi_{i}(r) - \sum_{h=i+1}^{N} \Sigma_{(i-h)}(r) \phi_{i}(r) +$$

$$\sum_{h=1}^{i-1} (r)\phi_{h}(r) + \chi \sum_{h=1}^{N} v_{h} \Sigma_{f,h}(r)\phi_{h}(r) = 0$$
(2.1)

where

ϕ_{i}	=	neutron flux in group i
D _i	=	diffusion coefficient for group i
^Σ a,i	=	macroscopic absorption cross section for group i
Σ (i-h)	=	macroscopic down-scattering cross section for transfer from
		group i to group h by elastic and inelastic scattering
Xi	=	fraction of fission neutrons born into group i
ν _h	=	number of neutrons released per fission occuring in group h
^Σ f,h	=	macroscopic fission cross section for group h

The power density P(r) at a point r is given by the relation

$$P(\mathbf{r}) = \sum_{i=1}^{N} \{ u_{f}(\mathbf{r}) \sum_{f,i}^{fs} + [N_{0} - u_{f}(\mathbf{r}) - u_{m}(\mathbf{r})] \sum_{f,i}^{fr} \} \phi_{i}(\mathbf{r}) \quad (2.2)$$

where

 $u_f(r)$ = volume fraction of the fissile material $u_m(r)$ = volume fraction of the moderating material

- Σ^{fs}_{f,i} = macroscopic fission cross section of pure fissile material for group i
- Σ^{fr}_{f,i} = macroscopic fission cross section of pure fertile material for group i
- N₀ = fissile volume fraction + fertile volume fraction + moderator volume fraction

The total thermal power W delivered by the reactor is

$$W = 2\pi \int_{\substack{i=1\\0}}^{t_{fN}} \{u_{f}(r)\Sigma_{f,i}^{fs} + [N_{0} - u_{f}(r) - u_{m}(r)]\Sigma_{f,i}^{fr}\} \phi_{i}(r)rdr$$
(2.3)

where

t_f = outer reactor radius

T

The breeding gain as defined in Section 1.2 is written as

$$BG = \frac{2\pi \int_{\Sigma}^{t} \sum \{ [N_0 - u_f(r) - u_m(r)] \sum_{\gamma,i}^{fr} - \sum_{a,i}^{fs} u_f(r) \} \phi_i(r) r dr}{W}$$
(2.4)

where

Σ^{fr}_{γ,i} = macroscopic capture cross section of pure fertile material for group i

In terms of the mathematical relations just cited the breeding optimization problem is stated as follows: Find the optimum fissile and moderator distributions, $u_f(r)$ and $u_m(r)$ respectively, which maximize the breeding gain BG (Eq. 2.4) while the following equations and inequalities are satisfied:

1. Multigroup diffusion equations (Eq. 2.1)

2. The power density

$$P(r) (2.5)$$

3. The total thermal power

$$W = const.$$
(2.6)

4. The sum of fissile and moderator volume fractions

$$u_{m} + u_{f} \leq N_{0} = \text{const.}$$
(2.7)

2.2 THE LINEARIZED FORM OF THE BREEDING OPTIMIZATION PROBLEM

It is seen from Eqs. (2.1), (2.2), (2.3) and (2.4) that the optimization problem of interest is nonlinear. As already mentioned in Section 1.3 it is very difficult to solve such a problem explicitly or numerically through use of nonlinear optimization methods. For this reason computer aided solutions have been sought through use of appropriate mathematical programming techniques. One of these techniques is Linear Programming which has the advantages of simplicity and availability of standard computer subroutines.

Linear Programming is a method for maximizing (minimizing) a linear objective function for a system with linear algebraic constraints. For a nonlinear problem, linearization can be used to reduce the problem into a form suitable for use of Linear Programming.

Application of the linearization procedure discussed in Appendix B to Eqs. (2.1), (2.2), (2.3) and (2.4) results in the following linearized form of these relations.

1. Linearized breeding gain

$$BG = \frac{2\pi}{W} \left\{ -\int_{0}^{t} \int_{i=1}^{t} (r) \sum_{i=1}^{N} (\Sigma_{\gamma,i}^{fr} + \Sigma_{a,i}^{fs}) \phi_{i}^{0}(r) r dr - \int_{0}^{t} \int_{i=1}^{t} \int_{\gamma,i}^{t} \phi_{i}^{0}(r) r dr + \int_{0}^{t} \int_{i=1}^{N} [(N_{0} - u_{f}^{0}(r) - u_{m}^{0}(r)) \Sigma_{\gamma,i}^{fr} - u_{f}^{0}(r) \Sigma_{a,i}^{fs}] \phi_{i}^{\star}(r) r dr + \int_{0}^{t} \int_{i=1}^{t} N_{0} \sum_{i=1}^{N} \Sigma_{\gamma,i}^{fr} \phi_{i}^{0}(r) r dr \right\}$$

$$(2.8)$$

where the superscript 0 is used to denote quantities evaluated at the operating point about which the relations describing the system are linearized, and

$$\phi_{i}^{\star}(\mathbf{r}) = \phi_{i}(\mathbf{r}) - \phi_{i}^{0}(\mathbf{r})$$
(2.9)

2. Linearized multigroup diffusion equations

$$\frac{1}{r} \frac{d}{dr} [r D_{1}^{0}(r) \frac{d}{dr} \phi_{1}^{*}(r)] - \Sigma_{a,i}^{0}(r) \phi_{1}^{*}(r) - \sum_{h=i+1}^{N} \Sigma_{(i-h)}^{0}(r) \phi_{1}^{*}(r) + \frac{1}{r} \frac{1}{r} \frac{1}{r} \sum_{h=1}^{0} (h-i) (r) \phi_{h}^{*}(r) + \chi_{i} \sum_{h=1}^{N} v_{h} \Sigma_{f,h}^{0}(r) \phi_{h}^{*} + \frac{1}{r} [r_{f,i}^{r}(r) - v_{f}^{0}(r)] \{ -[\Sigma_{a,i}^{fs} - \Sigma_{a,i}^{fr}] \phi_{1}^{0}(r) - \sum_{h=i+1}^{N} [\Sigma_{(i-h)}^{fs} - \Sigma_{(i-h)}^{fr}] \phi_{1}^{0}(r) + \frac{1}{r} \sum_{h=1}^{i-1} [\Sigma_{(h-i)}^{fs} - \Sigma_{(h-i)}^{fr}] \phi_{h}^{0}(r) + \chi_{i} \sum_{h=1}^{N} [v_{h}^{fs} \Sigma_{f,h}^{fs} - v_{h}^{fr} \Sigma_{f,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{i=1}^{r} [\Sigma_{(h-i)}^{fr} - \Sigma_{(h-i)}^{fr}] \phi_{h}^{0}(r) + \chi_{i} \sum_{h=1}^{N} [v_{h}^{fs} \Sigma_{f,h}^{fs} - v_{h}^{fr} \Sigma_{f,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{i=1}^{r} [\Sigma_{i,i}^{m} - \Sigma_{i,i}^{fr}] \phi_{i}^{0}(r) - \sum_{h=i+1}^{N} [\Sigma_{i-h}^{m} - v_{h}^{fr} \Sigma_{f,h}^{fr}] \phi_{h}^{0}(r) + \frac{1}{r} \sum_{i=1}^{r} [\Sigma_{i,i}^{m} - \Sigma_{i,i}^{fr}] \phi_{i}^{0}(r) - \sum_{h=i+1}^{N} [\Sigma_{(i-h)}^{r} - \Sigma_{i-h}^{fr}] \phi_{i}^{0}(r) - \frac{1}{r} \sum_{h=i+1}^{r} [\Sigma_{i-h}^{m} - \Sigma_{i,h}^{fr}] \phi_{h}^{0}(r) + \chi_{i} \sum_{h=1}^{N} [-v_{h}^{fr} \Sigma_{f,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} [\Sigma_{i-h}^{m} - \Sigma_{i-h}^{fr}] \phi_{h}^{0}(r) + \chi_{i} \sum_{h=1}^{N} [-v_{h}^{fr} \Sigma_{f,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} [\Sigma_{i-h}^{m} - \Sigma_{i,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} [V_{i-h}^{m} - \Sigma_{i,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} \frac{1}{r} \sum_{h=1}^{r} [V_{i-h}^{m} - \Sigma_{i,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} [V_{i-h}^{m} - \Sigma_{i,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} [V_{i-h}^{m} - \Sigma_{i,h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} [V_{i-h}^{m} - \Sigma_{i-h}^{fr}] \phi_{h}^{0}(r) - \frac{1}{r} \sum_{h=1}^{r} [V_{i-h}^{m} - \Sigma_{i-h}$$

where

 $\Sigma_{tr,i}$ = macroscopic transport cross section for group i The superscript m is used to denote properties of the moderating material.

3. Linearized total thermal power

$$W = \int_{0}^{t} \int_{i=1}^{t} \sum_{i=1}^{N} \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{i=1}^{r} \sum_$$

4. Linearized power density

$$P(\mathbf{r}) = u_{f}(\mathbf{r}) \sum_{i=1}^{N} [\Sigma_{f,i}^{fs} - \Sigma_{f,i}^{fr}] \phi_{i}^{0}(\mathbf{r}) - u_{m}(\mathbf{r}) \sum_{i=1}^{N} \Sigma_{f,i}^{fr} \phi_{i}^{0}(\mathbf{r}) + \sum_{i=1}^{N} \Sigma_{f,i}^{0} \phi_{i}^{*}(\mathbf{r}) + \sum_{i=1}^{N} N_{0} \Sigma_{f,i}^{fr} \phi_{i}^{0}(\mathbf{r})$$
(2.12)

When the multigroup diffusion equations are solved to obtain the neutron flux in a reactor, the criticality condition is imposed by the requirement that the eigenvalue of the multigroup diffusion equations be equal to 1. In this study, as explained later in this chapter, the linearized multigroup diffusion equations are used to express ϕ_i^* as a function of u_f and u_m . For the reactor to remain critical u_{f} and u_{m} can not change in an arbitrary way. Perturbation theory can be used to express the criticality condition in the form (18)

$$\int_{0}^{t} f_{-\left[u_{f}^{(r)}-u_{f}^{0}(r)\right]} \int_{1}^{N} \frac{\sum_{i=1}^{t} \sum_{j \in v_{i},i}^{r} -\sum_{i=1,i}^{r} \sum_{j \in v_{i},i}^{r} \sum_{j \in v_{i},i}^{r}$$

where

 ψ_i = adjoint flux for group i

k = k-effective

In terms of the linearized relations just cited the breeding optimization problem is stated as follows: Determine the optimum fissile and moderator distributions $u_f(r)$ and $u_m(r)$ respectively, which maximize the breeding gain BG (Eq. 2.8) while the following relations are satisfied:

1. Linearized multigroup diffusion equations (Eqs. 2.10)

2. The total thermal power

$$W = const. \tag{2.14}$$

3. The power density

$$P(\mathbf{r}) < \mathbf{p} = \text{const.} \tag{2.15}$$

4. Criticality condition as expressed by Eq. (2.13)

5.
$$0 \le u_f$$
, $0 \le u_m$, $u_m + u_f \le N_0 = \text{const.}$ (2.16)

Even after the linearization the optimization problem does not yet have the proper form for application of Linear Programming. Such a form, however, can be obtained as follows: (a) the reactor is divided into a number, R, of regions, each with spatially uniform material concentrations; and (b) the linearized multigroup diffusion equations are solved to express each ϕ_i^{\star} (i=1,N) as a function of $u_{f,j}$, $u_{m,j}$ (j=1,R). Thus, the functional to be maximized and the constraints of the problem become linear algebraic functions of $u_{f,j}$ and $u_{m,j}$ and therefore suitable for application of Linear Programming.

2.3 SOLUTION OF THE LINEARIZED MULTIGROUP DIFFUSION EQUATIONS

The linearized multigroup diffusion equations are of the form

$$\underline{L} \ \underline{\phi}^{\star} = \underline{f}(u_{f}^{\star}, u_{m}^{\star})$$
(2.17)

where \underline{L} is the multigroup diffusion matrix operator and

$$u_{f}^{*} = u_{f}^{-} - u_{f}^{0}, u_{m}^{*} = u_{m}^{-} - u_{m}^{0}$$
 (2.18)

We want to express $\underline{\phi}^*$ as a function of u_f^* and u_m^* . Application of the finite difference technique gives a set of algebraic equations of the form

$$\underline{M} \ \underline{\phi}^{*} = \underline{f}(\underline{u}_{f}^{*}, \underline{u}_{m}^{*})$$
(2.19)

Equations (2.19) can be solved by inversion of the matrix \underline{M} . On the other hand even for 5 neutron groups and 100 mesh points \underline{M} is a large (500 x 500) matrix and its inversion requires excessive computer time and gives rise to prohibitive round-off errors.

This difficulty can be avoided by use of the method of Piecewise Polynomials, discussed by Kang (19). A brief description of this method is given in Appendix C. The method of Piecewise Polynomials can be applied to solve the linearized multigroup diffusion equations as follows. The reactor is divided into a number n of mesh points and the flux difference ϕ_i^* (Eq. 2.9) is approximated by

$$\phi_{\mathbf{i}}^{\star} \stackrel{\sim}{=} \phi_{\mathbf{i}}^{\star} = \sum_{k=1}^{n} a_{k,\mathbf{i}}^{W} + \sum_{k=1}^{n} \beta_{k,\mathbf{i}}^{V} v_{k,\mathbf{i}}$$
(2.20)

where w_k and $v_{k,i}$ are cubic piecewise polynomials (Appendix C). The coefficients $a_{k,i}$ and $\beta_{k,i}$ are determined by requiring

$$\int_{V} (L_{i} \Phi_{i}^{\star}) w_{k} dV = \int_{V} f_{i} (u_{f}^{\star}, u_{m}^{\star}) w_{k} dV \qquad (2.21)$$

$$\int_{V} (L_{i} \phi_{i}^{*}) v_{k,i} dV = \int_{V} f_{i} (u_{f}^{*}, u_{m}^{*}) v_{k,i} dV \qquad (2.22)$$

where

V = reactor volume

The integrations on the right hand side of Eqs. (2.21) and (2.22) can not be carried out since the space dependence of u_f^* and u_m^* is unknown. On the other hand if the reactor is divided into a number, R, of regions with spatially uniform material concentrations in each region, then the right hand side of Eqs. (2.21) and (2.22) can be integrated and a system of algebraic equations results. These equations are of the form

$$\underline{A} = \underline{g}(\underline{u}_{f}^{*}, \underline{u}_{m}^{*}, a_{11}), \qquad (2.23)$$

where a_{11} is the coefficient of the polynomial w_1 in Eq. (2.20) for i=1, and the components of the vectors \underline{u}_{f}^{*} , \underline{u}_{m}^{*} are given by

$$u_{f,j}^{*} = u_{f,j} - u_{f,j}^{0}, u_{m,j}^{*} = u_{m,j} - u_{m,j}^{0} j=1, R$$
 (2.24)

The solution of the system of Eqs. (2.23) is

$$\underline{a} = \underline{A}^{-1} \underline{g} \tag{2.25}$$

For n mesh intervals and N neutron groups the order of the matrix <u>A</u> is equal to 2nN-1. The method of piecewise polynomials, compared to the finite difference technique, gives a very good approximation to ϕ_1^* with only a few mesh intervals, n. Since the order of matrix <u>A</u> is a function of the number of mesh intervals, n, the method of piecewise polynomials gives a smaller matrix <u>A</u> than the finite difference technique for the same accuracy in ϕ_1^* . Thus for N = 5 and n = 10 the order of <u>A</u> is 2 x 10 x 5 - 1 = 99. For the same accuracy in ϕ_1^* the finite difference technique gives a 500 x 500 matrix. The inversion of a 99 x 99 matrix is much more advantageous than the inversion of a 500 x 500 matrix from the standpoint of computation time and round-off errors.

2.4 THE ITERATIVE SCHEME

The solution of the linearized multigroup diffusion equations results in all constraints and the objective function of the problem being linear algebraic relations of $u_{f,j}$ and $u_{m,j}$ (j = 1,R). This means that the original nonlinear optimization problem has been reduced to a Linear Programming optimization problem.

The linearized form of the breeding optimization problem is a good approximation of the original nonlinear problem only if $u_{f,j}$ and $u_{m,j}$ are sufficiently close to $u_{f,j}^0$ and $u_{m,j}^0$ about which linearization took place. Therefore Linear Programming can be applied to obtain the optimum values of $u_{f,j}$ and $u_{m,j}$ which maximize the objective function while $u_{f,j}$ and $u_{m,j}$ must satisfy the additional constraints

$$u_{f,j}^{0} - \varepsilon_{f} \leq u_{f,j} \leq u_{f,j}^{0} + \varepsilon_{f}, u_{m,j}^{0} - \varepsilon_{m} \leq u_{m,j} \leq u_{m,j}^{0} + \varepsilon_{m},$$

$$(j = 1,R) \qquad (2.26)$$

The parameters ε_{f} , ε_{m} are constants such that $u_{f,j}$ and $u_{m,j}$ remain close enough to $u_{f,j}^{0}$ and $u_{m,j}^{0}$ respectively.

This procedure results in a suboptimum solution since $u_{f,j}$ and $u_{m,j}$ are restricted by Eqs. (2.26) to only small variations around $u_{f,j}^{0}$ and $u_{m,j}^{0}$. To advance the solution the following iterative scheme is devised. If $u_{f,j}^{(1)}$ and $u_{m,j}^{(1)}$ is the solution given by Linear Programming, the problem is re-linearized about $u_{f,j}^{(1)}$, $u_{m,j}^{(1)}$ and Linear Programming is again applied, while the relations

$$u_{f,j}^{(1)} - \varepsilon_{f} \leq u_{f,j} \leq u_{f,j}^{(1)} + \varepsilon_{f}, \quad u_{m,j}^{(1)} - \varepsilon_{m} \leq u_{m,j} \leq u_{m,j}^{(1)} + \varepsilon_{m},$$

$$(j = 1, R) \qquad (2.27)$$

must be satisfied, to obtain another solution $u_{f,j}^{(2)}$, $u_{m,j}^{(2)}$.

This procedure of linearization about the previous solution of Linear Programming and re-application of Linear Programming is repeated until no further improvement of the objective function is achieved. The last Linear Programming solution gives the optimum fissile and moderator distributions which result in the maximum value of the objective function. It must be pointed out that there is no assurance that the determined optimum is a local or a global one. Therefore one should repeat the iterative procedure starting with different initial fissile and moderator distributions and compare the determined optima.

2.5 REMARKS

The discussion in this chapter was based on infinite cylindrical geometry. In principle, the optimization method developed can be extended to any reactor geometry. For geometries, however, involving more than one dimension the method becomes very complicated in terms of its numerical implementation.

From among the possible one-dimensional geometries infinite cylindrical geometry has been selected because: (a) cylindrical geometry is, almost without exception, characteristic of practical reactors; and (b) the optimization of the fuel and/or a moderator distribution is likewise of practical importance primarily in the radial direction. Nevertheless, the method can be applied equally well to any one-dimensional geometry.

In addition, it should be noted that many two-dimensional calculations in cylindrical geometry are approximated by one-dimensional calculations by adding to the macroscopic absorption cross section a DB^2 term to account for axial leakage (20). This approximation can be incorporated in the optimization method discussed in this chapter by simply adding an appropriate DB^2 term to the macroscopic absorption cross section.

2.6 SUMMARY

In this chapter the theoretical development of an iterative optimization method has been discussed. Each iteration consists of three steps: (a) the relations describing the system are linearized about the previous Linear Programming solution; (b) the linearized multigroup diffusion equations are solved to express ϕ_i^* as a function of \underline{u}_f and \underline{u}_m ; and (c) Linear Programming is applied. The iterations continue until no further improvement of the objective function is achieved.

Results obtained from the numerical application of the method to the problems of Breeding Optimization, Critical Mass Optimization and Sodium Void Reactivity Optimization are presented in Chapters 3 and 4. The computer program written to carry out the operations described in this chapter is discussed and listed in Appendix D.
Chapter 3

CORE OPTIMIZATION

3.1 INTRODUCTION

The optimization method discussed in Chapter 2 has been applied to the core of a 1500 MW(th) fast breeder to obtain the fuel distribution that: (a) maximizes the initial breeding gain; (b) minimizes the critical mass; and (c) minimizes the sodium void reactivity. The results are presented in this chapter.

For these studies, an infinite cylindrical geometry reactor is considered. The core is divided into four regions of equal volume. As explained later the optimization procedure involves two reactors of different dimensions. They are designated reactor No. 1 and reactor No. 2. The dimensions of reactor No. 1 are given in Table 3.1. The dimensions of reactor No. 2 are given later. The composition of reactors No. 1 and No. 2 is given in Table 3.2. This composition is representative of LMFBR design studies presented over the last several years (21,22).

The sum of the PuO_2 and UO_2 volume fractions is constrained to remain constant during optimization and equal to 0.35.

Although for the neutronic calculations an infinite reactor height has been considered, the power of 1500 MW(th) is attributed to a fictitious core length equal to 100 cm.

A value of 550 w/cm^3 is used as an upper limit for the power

TABLE 3.1

Dimensions of Reactor No. 1

Region		Inner Radius	Outer Radius
Core	1	0.00 cm	62.64 cm
	2	62.64 cm	90.48 cm
	3	90.48 cm	111.36 cm
	4	111.36 cm	128.76 cm
Radial Blanket	5	128.76 cm	174.00 cm [*]

* Extrapolated outer boundary

_

TABLE 3.2

Reactor Composition

Material	Core	Blanket	Atomic or Molecular density (for pure materials) cm ⁻³ x 10 ⁻²⁴
Na	50 v/o	50 v/o	0.025410
Fe	15 v/o	15 v/o	0.084870
^{PuO} 2			0.025189
UO2	/ 35 V/O	35 v/o	0.024444

_

density. This is representative of typical LMFBR design studies (21,22).

For computational convenience the total thermal power has been normalized to 100 and the power density limit to a corresponding value:

$$p = \frac{P \times 2\pi H \times W_n \times 100}{W} \qquad \frac{w}{cm^3} \times cm \times \frac{w}{w} = 2.30267 \frac{w}{cm^2} \qquad (3.1)$$

where

P = power density upper limit = 550 w/cm³ H = reactor height = 100 cm W_n = normalized total power = 100 w W = total thermal power = 1500 x 10⁶ w

For the neutronic calculations five neutron groups were used. In principle any number of neutron groups and reactor regions can be employed. The choice is governed by the size of the matrix A (Chapter 2).

The ANISN multigroup transport theory code was used to obtain a five-group cross section set by collapsing a sixteen-group modified Hansen-Roach cross section set (23). The five-group structure is shown in Table 3.3.

The three problems of Breeding Optimization, Critical Mass Optimization and Sodium Void Reactivity Optimization are described by the same equations except for the objective function.

3.2 BREEDING OPTIMIZATION

The purpose of this section is to present the results obtained for the Breeding Optimization Problem. In Table 3.4, the results

TABLE 3.3

Five-Group Cross Section Set Structure

Group	Neutron Energy in Mev	
1	1.400 -∞	
2	0.400-1.400	
3	0.100-0.400	
4	0.017-0.100	
5	0.000-0.017	

_

obtained in the successive iterations of the iterative optimization method, from the starting configuration * to the optimum one, are presented. As discussed in Section 2.6 each iteration consists of three steps: (a) the relations describing the system are linearized about the previous Linear Programming solution; (b) the linearized multigroup diffusion equations are solved to express ϕ_i^* as a function of \underline{u}_f and \underline{u}_m ; and (c) Linear Programming is applied. The computation begins with a four region homogeneous core as given by the first row of Table 3.4. The optimum configuration is given by the last row of the same table. The breeding gain listed in the last column of the table is calculated by the relation

$$BG = \frac{2\pi \int_{0}^{t} \sum_{i=1}^{f_{N}} [(N_{0}-u_{f}) \sum_{\gamma,i}^{f_{r}} - \sum_{a,i}^{f_{s}} u_{f}] \phi_{i} rdr}{2\pi \int_{0}^{t} \sum_{i=1}^{f_{N}} \sum_{f,i}^{f_{N}} \phi_{i} rdr}$$
(3.2)

The peaks of the power density in each core region (which occur at the inner radius of each region) for the initial and optimum configurations are shown in Table 3.5

* The term configuration in this study is used to denote a reactor's material composition: in all cases the geometry and size of all regions is fixed.

	TABI	Æ	3	•	4
--	------	---	---	---	---

Iter-		Reg	gion		Breeding
ation	1	2	3	4	Gain*
Number	Put	² ^v /c) 		
1	3.41200	3.41200	3.41200	3.41200	0.576527
2	3.40670	3.53833	3.21200	3.21200	0.578265
3	3.38110	3.69036	3.01200	3.01200	0.579931
4	3.35800	3.82934	2.81200	2.81200	0.581669
5	3.33607	3.95874	2.61200	2.61200	0.583506
6	3.31556	4.07905	2.41200	2.41200	0.585427
7	3.29832	4.17795	2.24362	2.21200	0.587314
8	3.29680	4.16995	2.32654	2.01200	0.588124
9	3.29543	4.16177	2.40826	1.81200	0.588952
10	3.29407	4.15375	2.48842	1.61200	0.589804
11	3.29277	4.14585	2.56699	1.41200	0.590672
12	3.29146	4.13812	2.64417	1.21200	0.591559
13	3.29017	4.13053	2.71992	1.01200	0.592458
14	3.28885	4.12313	2.79443	0.81200	0.593391
15	3.28765	4.11576	2.86731	0.61200	0.594337
16	3.28642	4.10857	2.93906	0.41200	0.595300
17	3.28521	4.10151	3.00954	0.21200	0.596284
18	3.28402	4.09457	3.07881	0.01200	0.597285
19	3.27854	4.09062	3.03854	0.11200	0.600014
20	3.27801	4.08658	3.07689	0.00000	0.600585
21	3.27801	4.08662	3.07676	0.0000	0.600585

Fissile Composition and Breeding Gain as a Function of Linear Programming Iteration Number for Reactor No. 1

*Net production of Pu^{239} atoms per fission

	TAB	LE	3.	. 5
--	-----	----	----	-----

Peak Power Densities for Reactor No. 1

Region	1	2	3	4
Initial Configuration	2.23971	1.68232	1.15895	0.72096
Optimum Configuration	2.30265	2.30264	1.14762	0.07654

Since, as mentioned in Section 2.4, there is no assurance that the determined optimum is a local or a global one, one should repeat the computations with different starting configurations. Table 3.6 shows the results obtained using a different starting configuration. The optimum configuration shown in Table 3.6 is the same as that presented in Table 3.4.

From the results given in Tables 3.4 and 3.5 it is concluded that for the five region reactor with dimensions as given by Table 3.1 (reactor No. 1) the optimum configuration is one for which there is no PuO_2 in the fourth region, and the peaks of the power density in regions 1 and 2 are equal to the upper power density limit. The breeding gain of the optimum configuration is 4.08% larger than the breeding gain of the initial homogeneous configuration.

The optimization started with a reactor of four core regions and a 45.24 cm blanket. The optimum configuration consists of three core regions and a 62.64 cm blanket (PuO_2 was removed from the 4th core region of the initial configuration). If it were possible to

TABLE	36	
TUDTU	J.U	

Iter-		R	egion	·	Breeding
ation	1	2	3	4	Gain*
Number	2		V/0		
1	3.41200	2.95400	4.32986	3.41200	0.571885
2	3.51200	2.87773	4.22986	3.31200	0.571959
3	3.49645	2.97773	4.13002	3.21200	0.572709
4	3.48061	3.07483	4.03002	3.11200	0.573490
5	3.46548	3.16738	3.93002	3.01200	0.574320
6	3.45102	3.25574	3.83002	2.91200	0.575160
7	3.43694	3.34062	3.73002	2.81200	0.576032
8	3.42342	3.42190	3.63002	2.71200	0.576907
9	3.41022	3.50079	3.53002	2.61200	0.577816
10	3.39757	3.57527	3.43002	2.51200	0.578767
11	3.38544	3.64733	3.33002	2.41200	0.579714
12	3.37364	3.71684	3.23002	2.31200	0.580675
13	3.36216	3.78394	3.13002	2.21200	0.581652
14	3.35105	3.84866	3.03002	2.11200	0.582644
15	3.34030	3.91116	2.93002	2.01200	0.583655
16	3.32991	3.97149	2.83002	1.91200	0.584673
17	3.31979	4.02992	2.73002	1.81200	0.585703
18	3.29200	4.08646	2.63002	1.71200	0.591873
19	3.28789	4.14161	2.52161	1.51200	0.593464
20	3.28602	4.13460	2.60000	1.31200	0.594340
21	3.28474	4.13692	2.67641	1.11200	0.595240
22	3.28346	4.11940	2.75148	0.91200	0.596150
23	3.28215	4.11205	2.82532	0.71200	0.597095
24	3.28097	4.10475	2.89756	0.51200	0.598052
25	3.27974	4.09763	2.96867	0.31200	0.599028
26	3.27854	4.09062	3.03854	0.11200	0.600023
27	3.27798	4.08669	3.07674	0.00000	0.600594
28	3.27808	4.08657	3.07660	0.00000	0.600594

Fissile Composition and Breeding Gain as a Function of Linear Programming Iteration Number for Reactor No. 1 and a different Starting Configuration

*Net production of Pu²³⁹ atoms per fission

apply the optimization method to a reactor with a core divided into an arbitrarily large number of regions, the optimum configuration would apparently approach the optimum configuration obtained by an analytical solution of the problem asymptotically as the number of core regions increased. This suggests that a configuration having a further improvement in breeding gain can be obtained by redivision of the core into four regions and reapplication of the optimization procedure. Thus the core of the optimum reactor No. 1 was redivided into four regions of equal volume. Since a typical fast reactor blanket is about 45 cm thick (21,22), the extra blanket was also removed. The dimensions of the new reactor, which will be called reactor No. 2 in the remainder or this study, are shown in Table 3.7. The composition and the peak power densities of the optimum configuration of reactor No. 2 are shown in Table 3.8. The breeding gain of the optimum configuration is equal to 0.582528. As shown in Table 3.8, the peak power densities in the first three core regions of the optimum configuration are all equal to the upper power density limit.

The breeding gain of the optimum configuration of reactor No. 2 is slightly smaller than the breeding gain of the optimum configuration of reactor No. 1. This is due to the fact that reactor No. 2 is smaller than reactor No. 1 and consequently loses more neutrons by leakage. Reduction of the leakage can be achieved by surrounding the blanket by a reflector. The breeding gains of the initial homogeneous version of reactor No. 2, the optimum configuration of reactor No. 1, and the optimum configuration of reactor No. 2,

TABLE 3.7

D	imens	ions	of	Reactor	No.	2
-						

Region		Inner Radius	Outer Radius
Core	1	0.00 cm	55.68 cm
	2	55.68 cm	80.04 cm
	3	80.04 cm	97.44 cm
	4	97.44 cm	111.36 cm
Radial Blanket	5	111.36 cm	* 156.60 cm

TABLE 3.8

Optimum Configuration of Reactor No. 2

Region	1	2	3	4
Pu0 ₂ v/o	3.23751	3.72338	5.01528	0.50175
Peak Power Density	2,30267	2.30267	2.30267	0.29742

*Extrapolated outer boundary

before and after the addition of a 45.24 cm BeO reflector at the outer periphery of the blanket, are shown in Table 3.9. The optimum reactor No. 2 now has a higher total breeding gain than the homogeneous reactor No. 1 and the optimum reactor No. 1, although it has a core about 25% smaller than the homogeneous reactor No. 1.

Table 3.9 also shows that the addition of the reflector considerably improves the external breeding gain while its effect on the internal breeding gain is very small. An extensive discussion of the effect of the reflector on breeding is given in Chapter 4.

3.3 CRITICAL MASS OPTIMIZATION

In this section the results obtained from the Critical Mass Optimization Problem are discussed.

The results obtained by the successive iterations of the iterative optimization method from the starting configuration to the optimum one, are shown in Table 3.10. The computation starts with the homogeneous reactor No. 1. The optimum configuration is given by the last row of the same table. The critical mass listed in the last column of the table is calculated by the relation

$$M_{c} = \frac{A \times M^{Pu}}{N_{A}} \int_{0}^{t_{f}} 2\pi r u_{f}(r) dr \qquad (3.3)$$

where

A = atom density of Pu in PuO₂ M^{Pu} = atomic weight of Pu N_A = Avogadro's number

TABLE 3.9

						_
	Breeding Unreflect	Gain of ed Reactor		Breeding addition	Gain after of BeO Ref	lector*
Reactor	Internal	External	Total	Internal	External	Total
						
Homogeneous No. 1	0.405686	0.170841	0.576527	0.405832	0.202875	0.608707
Optimum No. 1	0.345045	0.255540	0.600585	0.345059	0.270237	0.615296
Optimum No. 2	0.377648	0.204880	0.582528	0.378024	0.239341	0.616365

Effect of Blanket Reflector on Breeding Gain

* 45.24 cm BeO Reflector

TABLE 3.10

Fissile Composition and Critical Mass as a Function of Linear Programming Iteration Number for Reactor No. 1

Iter-		Critical Mass in			
ation	1	2	3	4	$kg \times 10^{-1}$ per cm
Number	Pu	⁰ 2 v/c)		core height
1	3.41200	3.41200	3.41200	3.41200	1.7756
2	3.40556	3.54010	3.21200	3.21200	1.7392
3	3.38058	3.69092	3.01200	3.01200	1.7036
4	3.35716	3.83033	2.81200	2.81200	1.6667
5	3.33521	3.95964	2.61200	2.61200	1.6286
6	3.31461	4.08004	2.41200	2.41200	1.5895
7	3.29748	4.17807	2.24549	2.21200	1.5523
8	3.29674	4.16940	2.32623	2.01200	1.5355
9	3.29536	4.16123	2.40797	1.81200	1.5188
10	3.29400	4.15322	2.48816	1.61200	1.5019
11	3.29266	4.14535	2.56682	1.41200	1.4849
12	3.29134	4.13762	2.64401	1.21200	1.4677
13	3.29005	4.13004	2.71979	1.01200	1.4503
14	3.28877	4.12259	2.79418	0.81200	1.4328
15	3.28751	4.11528	2.86724	0.61200	1.4151
16	3.28628	4.10809	2.93901	0.41200	1.3972
17	3.28506	4.10103	3.00951	0.21200	1.3792
18	3.28386	4.09409	3.07880	0.01200	1.3611
19	3.27152	4.09379	3.08245	0.00000	1.3584
20	3.27747	4.08592	3.07626	0.00000	1.3573
21	3.27746	4.08594	3.07623	0.00000	1.3573

Note that Eq. (3.3) is also the objective function of the critical mass optimization problem.

Table 3.10 shows that optimization of the fuel distribution in the core results in a reduction of the critical mass by 23.56%. In addition, comparison of Tables 3.10 and 3.4 shows that <u>the configu-</u> <u>ration of maximum breeding gain of reactor No. 1 is also the configu-</u> ration of minimum critical mass.

For the reasons explained in Section 3.1 a configuration having a further reduction in critical mass can be obtained by reapplication of the optimization procedure to reactor No. 2. The numerical results show that the critical mass of the optimum configuration of reactor No. 2 is equal to 12.333 kgs/cm, i.e. 30.54% smaller than the critical mass of the homogeneous reactor No. 1. In addition, the results show that <u>the configuration of maximum breeding gain of reactor No. 2 is</u> also the configuration of minimum critical mass.

As has been mentioned in Section 1.3 Goldschmidt and Quenon (8) used the Maximum Principle of Pontryagin to optimize the fissile fuel distribution of a fast reactor so as to obtain minimum critical mass, subject to the constraints that the power output be fixed and the power density and fuel enrichment be bounded. The reactor is of slab geometry and is described by one-group diffusion theory. They found that the optimum reactor consists of three distinct regions: a central region of constant power density, a region of maximum fuel enrichment and an outer region of minimum enrichment corresponding to the blanket. The zone of maximum enrichment disappears for sufficiently high values of maximum enrichment. From the numerical results they give, it is seen that when such a zone exists its thickness decreases as the reactor power output increases.

The same problem has been solved in the present study for a fast reactor of infinite cylindrical geometry described by five-group diffusion theory. The results obtained are similar. Specifically, for a five region reactor the optimum configuration consists of four core regions and a blanket. The three central core regions have a maximum power density equal to the upper limit of the power density. Since in this study we approximate continuous material distributions by region-wise constant distributions, the three central core regions correspond to the region of constant power density of reference (8) which allowed a continuously variable material distribution.

In summary, solutions of the minimum critical mass problem have widely appeared in the literature (6, 7, 8, 24, 25, 26, 27). These solutions, however, either do not consider realistic constraints which are required for practical reactor designs or they use at most two neutron groups for thermal reactors and one neutron group for fast reactors. In this study an improved solution to the minimum critical mass problem has been given by considering fast reactors of fixed power output, limited power density, limited fuel concentration and described by multigroup diffusion theory.

3.4 SODIUM VOID REACTIVITY OPTIMIZATION

One of the most important factors involved in the safety of large sodium-cooled fast reactors is the sodium void reactivity, which is defined as the change in reactivity resulting from the loss of sodium coolant from all, or some specified part, of the reactor. If positive, this reactivity can adversely affect the stability and safety of the reactor (28, 29). It follows that consideration should be given to the material distributions in a fast reactor so as to minimize the sodium void reactivity.

The optimization method developed in this study has been applied to a fast reactor of fixed power output, bounded power density and fuel volume fraction, to determine the fuel distribution which leads to a minimum sodium void reactivity. Note that the method can also be applied to determine the optimum distribution of any other material, for example a moderator, so that the sodium void reactivity is minimized.

For the mathematical formulation of the problem the fuel optimization process is viewed as follows: The critical reactor, or part of it, is voided and consequently the reactor becomes subcritical or supercritical. Then the question is raised as to how the fuel should be redistributed in the voided reactors so that: (a) the k-effective of the voided reactor is minimized; and (b) if the sodium is brought back into the reactor, the reactor becomes critical, delivers the same power as before voiding, and the power density is everywhere less than or equal to a given upper limit.

If the fissile fuel distribution of the voided reactor is changed from $u_f^0(r)$ to $u_f(r)$ and if $u_f(r)$ is sufficiently close to $u_f^0(r)$, then perturbation theory gives the following expression for the change in k-effective of the voided reactor

$$\frac{1}{k_{v}} - \frac{1}{k_{v}^{p}} = \int_{0}^{t} \int_{-u_{f}}^{t} \sum_{i=1}^{N} \frac{(\Sigma_{tr,i}^{fs} - \Sigma_{tr,i}^{fr})}{3(\Sigma_{tr,i}^{0})^{2}} \nabla \phi_{i} \nabla \psi_{i} r dr + \int_{0}^{t} \int_{-u_{f}}^{t} \sum_{i=1}^{N} (\Sigma_{a,i}^{fs} - \Sigma_{a,i}^{fr}) \phi_{i} \psi_{i} r dr + \int_{0}^{t} \int_{-u_{f}}^{t} \sum_{i=1}^{N} \sum_{h=i+1}^{N} \{[\Sigma_{(i-h)}^{fs} - \Sigma_{(i-h)}^{fr}] \phi_{i}(\psi_{i} - \psi_{h})\} r dr - \frac{1}{k_{v}} \int_{0}^{t} \int_{-u_{f}}^{t} \sum_{i=1}^{N} \sum_{h=i}^{N} [v_{f}^{fs} \sum_{f,h}^{fs} - v_{f}^{fr} \sum_{f,h}] \chi_{i} \phi_{h} \psi_{i} r dr + (3.4)$$

where

k p

k,

= k-effective of voided reactor

p

= k-effective of voided reactor after the fissile fuel
perturbation

and

$$u_{f}^{*} = u_{f} - u_{f}^{0}$$
 (3.5)

The minimization of the sodium void reactivity is equivalent to the minimization of the quantity $(1/k_v) - (1/k_p)$ given by Eq. (3.4).

From the discussion up to this point it follows that the problem is mathematically described by the same equations as the breeding optimization problem, with the only difference that the objective function here is given by Eq. (3.4). The computational iterative scheme is the same as for the two previous problems.

The numerical results obtained for 100% voiding of the reactor core (but not the blanket) of reactor No. 1 are shown in Table 3.11. Comparison of Tables 3.4, 3.10 and 3.11 shows that for reactor No. 1 the configuration of <u>maximum breeding gain and minimum critical mass</u> is also the configuration of minimum sodium void reactivity.

For the reasons explained in Section 3.1 a configuration having a further reduction in sodium void reactivity can be obtained by reapplication of the optimization procedure to reactor No. 2. The numerical results show that the k-effective of the voided optimum configuration of reactor No. 2 is equal to 1.05507, i.e. the sodium void reactivity of the optimum configuration is 2.9 \$ smaller than the same quantity of the homogeneous reactor No. 1 (for a delayed neutron fraction $\beta = 0.0035$). In addition the results show that <u>the</u> <u>configuration of maximum breeding gain and minimum critical mass of</u> <u>reactor No. 2 is also the configuration of minimum sodium void</u> reactivity.

The effect of the fuel distribution on sodium void reactivity was also studied by Allis-Chalmers (30). More specifically, changes

TABLE 3.11

Fissile Distribution	and k-e	ffectiv	e of	Sodi	ım
Voided Reactor a	s a Func	tion of	Line	ar	
Programming Iteratio	n Number	for Re	actor	No.	1

Iter-	Region				k-effective	
ation	1	2	3	4	of Sodium	
Number	Pu	⁰ 2 v	/o		Voided Reactor	
1	3.41200	3.41200	3.41200	3.41200	1.06523	
2	3.40556	3.54010	3.21200	3.21200	1.06465	
3	3.38058	3.69 090	3.01200	3.01200	1.06401	
4	3.35716	3.83033	2.81200	2.81200	1.06325	
5	3.33521	3.95964	2.61200	2.61200	1.06241	
6	3.31461	4.08004	2.41200	2.41200	1.06151	
7	3.29748	4.17807	2.24549	2.21200	1.06064	
8	3.29674	4.16940	2.32623	2.01200	1.06045	
9	3.29536	4.16123	2.40797	1.81200	1.06027	
10	3.29400	4.15322	2.48816	1.61200	1.06009	
11	3.29266	4.14535	2.56682	1.41200	1.05990	
12	3.29134	4.13762	2.64401	1.21200	1.05971	
13	3.29005	4.13004	2.71979	1.01200	1.05952	
14	3.28877	4.12259	2.79418	0.81200	1.05932	
15	3.28751	4.11528	2.86724	0.61200	1.05913	
16	3.28628	4.10809	2.93901	0.41200	1.05893	
17	3.28506	4.10103	3.00951	0.21200	1.05873	
18	3.27500	4.09409	3.07880	0.01200	1.05765	
19	3.27923	4.08810	3.07797	0.00000	1.05764	

in the sodium void reactivity resulting from radially varying the fuel enrichment to achieve radial power flattening in a cylindrical reactor were investigated. It was found that the flat power reactor had a sodium void reactivity 50% less than a homogeneous reactor producing the same total power. This is in agreement with the results of the present study.

3.5 SUMMARY

The numerical results discussed in this chapter show that for a fast breeder the fuel distribution which leads to a maximum initial breeding gain, leads also to a minimum critical mass, a minimum sodium void reactivity and a uniform power density (within the practical limits achievable through use of a small number of reactor zones). The significance of these results is obvious. A flat power density core is highly desirable from the aspect of thermal-hydraulic engineering design. This study shows that this highly desirable configuration is also the configuration of maximum breeding gain and minimum critical mass, which are of considerable importance from the point of view of reactor economics, and minimum sodium void reactivity which is of vital significance in reactor safety. Thus for future studies one may confidently choose a reference core without concern that practical designs will deviate far from it. Any further improvement in breeding performance, if it is feasible, will have to come through blanket modifications.

The problem of breeding optimization through blanket modifications is discussed in Chapter 4.

Chapter 4

BLANKET OPTIMIZATION

In this chapter the effects on the breeding gain of the insertion of a moderating material into the blanket and of surrounding the blanket by a reflector, are discussed.

Introduction of a moderating material into the blanket softens the spectrum and favors captures by the fertile material in the sub-kev energy range. In addition, if the blanket is surrounded by a good reflector the neutron leakage out of the blanket is reduced, and the capture rate of the fertile material is further improved.

4.1 THE EFFECT OF BLANKET MODERATION

The optimization of the distribution of BeO or Na in the blanket was investigated by means of the method described in Chapter 2. It was found that the breeding gain from iteration to iteration changed by an amount of the order of the expected numerical errors and that it changed erratically instead of improving. These results indicate that the breeding gain depends weakly on the moderator distribution. Accordingly, accumulated numerical errors are sufficiently large compared to changes in the optimization variables to preclude the study of optimization of the blanket breeding performance by the method of Chapter 2.

To support these results, the change of the breeding gain as a

function of the moderator concentration, homogeneously distributed, was investigated.

The dimensions of an infinite cylindrical geometry reactor considered for the computations are shown in Table 4.1. The reactor compositions for BeO and Na moderated blankets are shown in Tables 4.2 and 4.3 respectively. For the neutronic calculations five neutron groups were used. The structure and cross sections of these groups are described in Section 3.1. The computations were carried out using the appropriate parts of the computer program discussed in Appendix D.

The breeding gain as a function of the moderator volume fraction in the blanket is shown in Table 4.4. From this table it is seen that: (a) for a BeO moderated blanket the breeding gain attains a maximum value for a moderator volume fraction somewhere between 5% and 10%; (b) this maximum value is only 0.096% larger than the breeding gain of a typical fast reactor blanket without any moderator; (c) for a Na moderated blanket, the breeding gain increases monotonically as the Na volume fraction decreases; (d) a change in the Na volume fraction from 10% to 50% decreases the breeding gain by only 3.604%; and (e) as the moderator volume fraction increases the blanket becomes a better core reflector and, consequently, the internal breeding gain increases slightly.

TABLE	E 4.1

Dimensions of Reactor used in Blanket Studies

	Region	Inner Radius	Outer Radius	
Core	1	0.00 cm	62.64 cm	
	2	62.64 cm	90.48 cm	
	3	90.48 cm	111.36 cm	
Radial Blanket	4	111.36 cm	160.08 cm	
Reflector	5	160.08 cm	206.48 [*] cm	

* Extrapolated outer boundary

.

_

TABLE 4

Reactor Composition for BeO Moderated Blanket

Matorial	С	ore Regions				Atomic or Molecular
	1	2	3	3lanket	Reflector	Density for Pure Materi- als cm ⁻³ x10 ⁻²⁴
Pu02	3.2775 v/o	4.0859 v/o	3.0763 v/c) –	-	0.025189
^{UO} 2	31.7225 v/o	30.9141 v/o	31.9237 v/c) \(-	0.024444
Be0	-	-	-	/55 V/C	-	0.071270
Na	50 v/o	50 v/o	50 v/o	30 v/c	. –	0.025410
Fe	15 v/o	15 v/o	15 v/o	15 v/a	0 100 v/o	0.084870

_

Matoria	(Core Regions				Atomic or Molecular
mater 18	1	2	3	Blanket	Reflector	Density for Pure Materi- als x10 ⁻²⁴
PuO2	3.2775 v/o	4.0859 v/o	3.0763	v/o -	-	0.025189
^{UO} 2	31.7225 v/o	30.9141 v/o	31.9237	v/o	-	0.024444
Na	50 v/o	50 v/o	50 v/o		-	0.025410
Fe	15 v/o	15 v/o	15 v/o	15 v/c	0 100 v/o	0.084870

_

TABLE 4.3

Reactor Composition for Na Moderated Blanket

TABLE 4.4

The Breeding Gain as a Function of Moderator Concentration in the Blanket

Na Moderator						
Case	Moderator v/o	U ²³⁸ v/o	B:	reeding Gain		
			Internal	External	Total	
1	10	75	0.340401	0.286165	0.626566	
2	20	65	0.341137	0.282633	0.623770	
3	30*	55	0.342077	0.277693	0.619770	
4	40	45	0.343326	0.270523	0.613849	
5	50	35	0.345091	0.259680	0.604771	
		BeO 1	Moderator			
6	0	55	0.342077	0.277693	0.619770	
7	5	50	0.344532	0.275832	0.620364	
8	10	45	0.347181	0.272908	0.620089	
9	20	35	0.353354	0.263742	0.617096	
10	30	25	0.361465	0.248656	0.610121	
11	5**	50	0.344557	0.275206	0.619763	
12	5***	50	0.343183	0.271740	0.614923	
* Th of ** 0	ne volume fractic E typical fast re BeO = 0.0 (n,2n)	ons of Na and actor blanke	l UO ₂ of this et designs	row are repre	esentative	
*** o	BeO lown-scattering	• 0.0				

_

The llth row of Table 4.4 shows the breeding gain for a blanket moderated by a fictitious BeO with the cross section for the (n, 2n)reaction set equal to zero. The l2th row of the same table shows the breeding gain for a blanket diluted by a fictitious BeO with downscattering cross sections set equal to zero. Comparison of the 6th, 7th, 11th and 12th rows of Table 4.4 shows that the improvement in breeding due to BeO moderation just offsets the loss in breeding due to reduction of the U²³⁸ concentration; the net 0.096% improvement of the breeding gain is due to the production of neutrons by BeO through the (n, 2n) reaction.

The results just cited support the conclusion of the optimization studies to the effect that the initial breeding gain depends weakly on the moderator volume fraction in the blanket. This weak dependence could be of considerable importance to reactor economics. It suggests that the addition of an appropriate moderator or diluent in the blanket (and consequently the reduction of U²³⁸ concentration) might reduce the reprocessing and fabrication costs without significant penalties in breeding gain.

Finally, it is noteworthy that the method of Chapter 2 would be applicable to the problem of blanket optimization if the criterion of optimality were a stronger function of the moderator concentration in the blanket. For example, such a criterion might be the contribution of the blanket to the cost of reactor power.

4.2 THE EFFECT OF THE REFLECTOR COMPOSITION

The breeding gains for three different reflectors, BeO, graphite and Fe, and for three different blanket thicknesses, a one-row blanket (16.24 cm), a two-row blanket (32.48 cm) and a three-row blanket (48.72 cm) are shown in Table 4.5. It is seen from this table that: (a) surrounding the blanket with a reflector improves the breeding gain, compared to an unreflected blanket; the improvement is more significant as the blanket thickness decreases; (b) BeO is better than graphite, and graphite is better than Fe; (c) the breeding gain becomes a stronger function of the reflector properties as the blanket thickness decreases; (d) the internal breeding gain is practically insensitive to the nature of the reflector (as long as there is at least one row of blanket assemblies between core and reflector); and (e) for a 46.4 cm BeO reflector, the breeding gain of a three-row blanket is larger than that of a one-row blanket by only 3.31%. The results of Table 4.5 suggest that from the standpoint of economics a one- or tworow blanket surrounded by a BeO reflector could be better than a three-row blanket. Reduction of the blanket thickness might reduce the reprocessing and fabrication costs without significant penalties in breeding gain.

On the basis of breeding alone, there are two benefits to be obtained from the addition of reflectors: (a) neutron leakage is reduced from the blanket; and (b) neutron moderation softens the spectrum and favors captures by the fertile material in the sub-kev

TABLE 4.5

The Breeding Gain as a Function of the Reflector Material and Blanket Thickness

Blanket Thickness	Breeding Gain			
Cm	Internal	External	Total	
_	BeO Refl	ector	<u>, , , , , , , , , , , , , , , , , , , </u>	
16.24	0.344334	0.256966	0.601300	
32.48	0.342144	0.276049	0.618193	
48.72	0.342076	0.279802	0.621878	
_	Graphite R	eflector	, , , , , , , , , , , , , , , , , , ,	
16.24	0.343837	0.240930	0.584767	
32.48	0.342133	0.271428	0.613561	
48.72	0.342076	0.279611	0.621687	
	Iron Ref	lector		
16.24	0.343804	0.213572	0.557376	
32.48	0.342196	0.263786	0.605982	
48.72	0.342077	0.277693	0.619770	
,	No Refl	ector		
32.48	0.341873	0.227775	0,569648	
48.72	0.342071	0.267543	0.609614	

energy range. In this regard BeO is better than graphite and Fe. In addition, BeO has the property of producing neutrons through a (n,2n) reaction for incident neutron energies higher than 1.8 Mev. To evaluate the relative significance of the reflective and moderating properties and of the (n, 2n) reaction with respect to the breeding gain, the breeding gain has been computed for a two-row blanket and: (a) a fictitious "infinite mass" BeO reflector with down-scattering cross sections set equal to zero; (b) a fictitious BeO reflector with the cross section for the (n, 2n) reaction set equal to zero. The results are shown in Table 4.6. It is seen from this table that: (a) the reduction of neutron leakage is much more significant than moderation; and (b) the effect of the (n,2n) reaction is negligible. These results suggest that a simple figure of merit of a fast reactor blanket reflector could be determined as a function of only the transport and absorption cross sections of the reflector. A mean albedo (calculated using properly weighted cross sections) could be such a figure of merit. If this is so, then all materials could be ranked according to this figure of merit and the best fast reactor blanket reflector material readily selected.

It must be pointed out that all computations up to this point have been done without taking into account any resonance self-shielding corrections. The breeding gains of a two row blanket surrounded by a BeO reflector with shielded and unshielded cross sections for U^{238} are shown in Table 4.7. It is seen from this table that the shielded cross sections give a slightly smaller breeding gain. It is worth

TABLE 4.6

÷

The Breeding Gain as a Function of BeO Reflector Properties	eding Gain as a Function of BeO Re	eflector Properties
---	------------------------------------	---------------------

Reflector	Breeding Gain		
	Internal	External	Total
No Reflector	0.341873	0.227775	0.569648
BeO with $\sigma_{down-scat} = 0.0$	0.342354	0.273840	0.616194
BeO with $\sigma_{n,2n}=0.0$	0.342146	0.275884	0.618030
BeO	0.342144	0.276049	0.618193

TABLE 4	٠	1
---------	---	---

U ²³⁸ cross sections	Breeding Gain			
	Internal	External	Total	
Unshielded	0.342144	0.276049	0.618193	
Shielded	0.346069	0,265469	0.611538	

_

The Effect of Resonance Self-Shielding on Breeding Gain

noting that the effect of self-shielding would be more significant if appreciable amounts of a strong absorber such as plutonium were present in the blanket, as will occur near the end of the blanket fuel subassembly irradiation life.

In summary, the results of this chapter show that further investigation should be undertaken to determine if a moderated or diluted blanket, or a thin blanket surrounded by a good reflector are economically attractive. A more thorough examination of alternate high-albedo reflector materials is also indicated.

Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The purpose of this study has been the development and application of a method to optimize the material distributions in a fast reactor of fixed power output constrained power density and constrained material volume fractions, so as to maximize or minimize a given objective function.

An iterative method has been developed based on linearization of the relations describing the system and on Linear Programming. The method can be used to optimize integral reactor quantities which are linear functions of the neutron flux and linear functions of the material volume fractions (i.e. quantities which are integrals containing the material volume fractions and the neutron flux, or their products, to the first power only).

The method has been applied successfully to the problems of optimization of the fuel distribution in the reactor core so as to obtain a maximum initial breeding gain, a minimum critical mass and a minimum sodium void reactivity.

For a four region core numerical results show that the core of maximum breeding gain is also the core of minimum critical mass, minimum sodium void reactivity and uniform power density. It is expected, however, that these results are more general, and would be true regardless of the number of regions.

In addition, numerical results show (Table 3.9) that if the blanket is surrounded by a good reflector such as BeO the optimization of the fuel in the core leads to a small improvement in the breeding gain, while the improvement is considerably larger for a bare blanket. Since in power reactors there is always a reflector surrounding the blanket, the results of Table 3.9 show that a small improvement in breeding gain results from optimization of the fuel distribution in the core. Thus, from an economic standpoint one might argue that the much larger improvement in fissile inventory is more important. Since it has been shown that both optimizations lead to the same result, however, this distinction need not be the source of conflict.

The method has also been applied to the problem of optimization of the distribution of a moderator in a fast reactor blanket so as to obtain a maximum initial breeding gain. Numerical results indicate, however, that initial breeding gain is a weak function of the moderator concentration in the blanket and, therefore, numerical errors are sufficiently large compared to changes in the optimization variables to obviate blanket optimization by this approach.

On the other hand, the dependence of the breeding gain on the moderator concentration homogeneously distributed in the blanket has been studied in Chapter 4. The results show that for even marginally significant changes in the breeding gain large changes in the moderator volume fraction in the blanket are required.

In addition, the results of Chapter 4 show that: (a) when Na
replaces U^{238} in the blanket the neutron moderation by Na is not enough to offset the loss in breeding due to reduction of the U^{238} concentration and consequently the breeding gain decreases as the Na concentration increases; (b) when BeO replaces U^{238} in the blanket, for a BeO volume fraction somewhere between 5% and 10% the improvement in breeding due to moderation by BeO just offsets the loss in breeding due to reduction of the U^{238} concentration; for any other BeO concentration the neutron moderation is not enough to offset breeding losses due to reduction of the U^{238} concentration; (c) the breeding gain is a weak function of the blanket thickness if the blanket is surrounded by a good reflector; and (d) the transport and absorption properties of a medium, rather than its moderating properties, determine the figure of merit of a fast reactor blanket reflector.

5.2 RECOMMENDATIONS FOR FUTURE WORK

The method developed in Chapter 2 can be used to solve many other important reactor optimization problems. Some of these problems are as follows:

1) Optimization of the fuel distribution or moderator distribution in a fast reactor core so as to maximize the magnitude of the negative Doppler coefficient. In this problem the objective function would be the Doppler coefficient as given by perturbation theory.

2) Optimization of the moderator distribution in a fast reactor core so as to minimize the sodium void reactivity. In this problem the objective function would be an expression for the sodium void reactivity

analogous to Eq. (3.4).

3) Optimization of either the fuel distribution or the moderator distribution or both in a fast reactor core so as to minimize the sodium temperature coefficient. This problem is equivalent to problem No. 2 since reduction of the sodium density due to a temperature increase can be treated as equivalent to small voids in sodium.

4) Optimization of the shape of the reactor core in the axial direction so as to minimize the sodium void reactivity. If the axial leakage from the core is represented by an appropriate $BB_z^2(r)$ term then the problem can be formulated as follows: A fictitious material having an absorption cross section equal to D (the homogenized diffusion coefficient of the core materials), all other cross sections equal to zero, and a concentration equal to $B_z^2(r)$ (axial buckling) is introduced into the core. Then, the optimum radial distribution of this material is sought so as to minimize the sodium void reactivity. If $B_{0,z}^2(r)$ is the optimum buckling distribution, then the optimum core height distribution, $H_0(r)$, is determined by the relation

$$H_0(r) = \frac{\pi}{B_{0,z}(r)}$$
(5.1)

In this problem the objective function would also be an expression for the sodium void reactivity analogous to Eq. (3.4).

5) Optimization of the distribution of a control poison so as to minimize the amount of poison required. In this problem the objective function would be of the form

$$I = \int_{V} u_{p} dV$$
 (5.2)

where

u = volume fraction of control poison.

As discussed in Chapter 2 the solution of the linearized multigroup diffusion equations involves the inversion of a matrix. This limits the number of reactor regions and neutron groups which can be employed since the inversion of a large matrix requires excessive computer time and gives rise to prohibitive round-off errors. Future work could improve the accuracy of the method and remove the limitations on the number of reactor regions and neutron groups which can be employed, by investigating methods of solution of the linearized multigroup diffusion equations which avoid the matrix inversion.

This study has not considered any time-dependent problems. Many important reactor problems, however, are time-dependent. For example a more detailed study of the breeding optimization problem should take into account the fact that breeding gain is a time-dependent parameter. This suggests the need for the extension of the developed optimization method to time-dependent problems.

Another interesting area for future work is the application of the method to economic optimization problems. This should be a simple matter since many such problems can be cast into forms essentially linear in inventory and breeding gain.

From the results of Chapter 4 it has been concluded that: (a) the breeding gain is a weak function of the moderator distribution in the blanket; (b) the breeding gain is also a weak function of the blanket thickness if the blanket is surrounded by a good reflector; and (c) the effectiveness of a fast reactor blanket reflector is mainly a function of the reflective (as opposed to moderating) properties. These conclusions suggest additional areas for future work. Specifically conclusions (a) and (b) suggest that further investigation should be undertaken to determine if a moderated or diluted blanket, or a thin blanket surrounded by a good reflector are economically attractive. The replacement of uranium in the blanket by an appropriate moderator or diluent or the reduction of the blanket thickness might reduce the reprocessing and fabrication costs without significant penalties in breeding. In addition, conclusion (c) suggests further investigation to determine a specific, simple figure of merit for a fast reactor blanket reflector such as a mean albedo (calculated by using properly weighted cross sections), and its use to survey and rank all materials according to this figure of merit.

Appendix A

BIBLIOGRAPHY

This Appendix contains a selection of references on theory and applications of optimization methods. A brief comment is included on each.

- Athans, M. and P. L. Falb, "Optimal Control", McGraw-Hill, New York, 1965. Theory and applications of optimal control.
- 2. Balakrishnan, A. V. and L. W. Neustadt, eds., "Computing Methods in Optimization Problems", Academic Press, New York, 1964. Papers presented on the conference on Computing Methods on Optimization Problems at the University of California at Los Angeles in January, 1964.
- 3. Bellman, R. E. and S. E. Dreyfus, "Applied Dynamic Programming", Princeton University Press, Princeton, New Jersey, 1962. Theory and Applications of Dynamic Programming.
- 4. Blaine, R. A. and J. L. Watts, "Radial Flux Flattening in the organic moderated Reactor Critical Assembly by variable Fuel-To-Moderator Ratio", NAA-SR-5858 (1961). A calculation is described concerning a flux flattening experiment in the Organic Moderated Reactor Critical Assembly.
- 5. Bryson, A. E. and Y. Ho, "Applied Optimal Control", Blaisdel Publishing Company, Waltham, Massachusetts, 1969. Theory and applications of optimal control.

- 6. Bouchey, G. D., C. S. Beightler and B. V. Koen, "Optimization of Nuclear Systems by Geometric Programming", Nucl. Sci. Eng., <u>44</u>, 267 (1971). The application of Geometric Programming in Nuclear Engineering problems is discussed and the method is illustrated by a few simplified examples.
- 7. Denn, M. M., "Optimization by Variational Methods", McGraw-Hill, New York, 1969. Optimization theory at an elementary mathematical level, with applications to simple but typical process design and control problems.
- 8. Heusener, G., "Core-Optimization of Sodium Cooled Fast Breeder Reactors with Methods of Nonlinear Programming", Nucl. Eng. and Design, <u>14</u>, 3 (1970). Methods of solution of nonlinear optimization problems are described, and one of them has been applied to the core optimization of a 1000 MWe fast breeder.
- 9. Kotaro, I., "Fast-Reactor-Core Design Optimization by Linear Programming", Nucl. Sci. Eng., <u>39</u>, 394 (1970). Linear Programming is applied to optimize the design of a fast reactor core.
- 10. Leondes, C. T., ed., "Advances in Control Systems: Theory and Applications", Academic Press, New York, 1964. Theory and applications of control systems by leading contributors in the field.
- 11. Mansfield, W. K., ed. "Introduction to Nuclear Engineering", Vol. 2, Simmons-Boardman, New York, 1959. A series of monographs

one of which deals with application of simple optimization techniques to Nuclear Engineering Problems.

- 12. Mohler, R. R. and C. N. Shen, "Optimal Control of Nuclear Reactors", Academic Press, New York, 1970. Applications of optimization techniques in Nuclear Engineering Problems with brief summaries of reactor dynamics, classical reactor control, and optimal control fundamentals.
- 13. Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidge and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes", Willey (Interscience), New York, 1962. An excellent reference on the Maximum Principle of Pontryagin.
- 14. Sauer, A., "Optimum Control and Flat Flux", Nucl. Sci. Eng., <u>5</u>, 71 (1959). The problem of optimizing the distribution of a control poison in a thermal reactor to minimize the amount of the control poison required is discussed.
- 15. Suzuki, A. and R. Kiyose, "Maximizing the Average Fuel Burnup Over Entire Core: a Poison Management Optimization Problem for Multizone Light-water Reactor Cores", Nucl. Sci. Eng., <u>44</u>, 121 (1971). A method based on a topological mapping theory and used to find the governing principles in optimal control programming to maximize the average burnup for light-water reactors is described.
- 16. Sherman, D. C., "A Formal Procedure for Rapid Optimization of Design Performance", KAPL-2114, 1961. A systematic procedure of design performance optimization is discussed.

- 17. Terney, W. B., and H. Fenech, "Shipboard Reactor Shield Optimization Using the Optimum Gradient Method", Nuclear Applications, <u>3</u>, 47 (1967). The optimum gradient technique is used to optimize a shipboard reactor shield system consisting of a water-lead primary and a concrete-lead-polyethylene secondary shield.
- 18. Terney, W. B., "Analytic Solution to the Flat Flux Problem", Nucl. Sci. Eng., <u>45</u>, 266 (1971). The Maximum Principle of Pontryagin is used to find the optimum k_{∞} distribution so as to minimize the integral of the squared deviation of the flux from its average value, while k_{∞} is restricted by lower and upper bounds.
- 19. Wade, D. C. and W. B. Terney, "Optimal Control of Nuclear Reactor Depletion", Nucl. Sci. Eng., <u>45</u>, 199 (1971). The design and operation of a nuclear reactor are posed as optimal control problems, and the Maximum Principle of Pontryagin is used to derive the necessary conditions of optimality.
- 20. Wilkins, J. E. Jr., "Minimum Total Mass", Nucl. Sci. Eng., <u>6</u>, 229 (1959). The problem of designing a reactor with minimum total mass is discussed.
- 21. Wilkins, J. E. Jr., "Nuclear Reactors with Maximum Prompt Neutron Lifetime", Nucl. Sci. Eng., <u>10</u>, 331 (1961). The problem of the optimum fuel distribution in a thermal reactor to obtain a maximum prompt neutron lifetime is discussed.

Appendix B

LINEAR PROGRAMMING AND LINEARIZATION

In this Appendix the general Linear Programming problem and the linearization procedure are briefly discussed. The reader who may be more deeply interested in Linear Programming is referred to the book by Gass (30) for acquisition of basic material, while Dantzig (31) and Hadley (16) provide a more detailed and sophisticated treatment.

B.1 LINEAR PROGRAMMING

Linear Programming is concerned with the solution of optimization problems for which all relations among the variables are linear both in the constraints and the function to be maximized or minimized. The general Linear Programming problem can be stated as follows: Given a set of m linear equations, or inequalities, or both, in r variables, find non-negative values of these variables which satisfy the constraints and maximize or minimize some linear function of the variables.

In terms of symbols, this statement is equivalent to the seeking of a vector \underline{x} with non-negative components which satisfies the relations

$$\underline{A} \times \frac{s}{\zeta} \underline{b}, \qquad (B.1)$$

and maximizes or minimizes the function

$$I = \underline{c} \underline{x}, \tag{B.2}$$

where the matrix \underline{A} , and the vectors \underline{b} and \underline{c} are all independent of \underline{x} .

B.2 LINEARIZATION

Since Linear Programming is a method for maximizing or minimizing a linear objective function for a system of linear algebraic constraining relationships, linearization can be used as a first step to reduce a nonlinear problem into a suitable form for use of Linear Programming. For the sake of generality the linearization procedure is discussed here for a general nonlinear optimization problem.

Such a problem can be stated as follows (33): Determine the optimal control $\underline{u}(t)$ which maximizes (minimizes) the functional

$$I = \int_{t_i}^{t_f} L(\underline{x}, \underline{u}, t) dt + S[\underline{x}(t_f), t_f], \qquad (B.3)$$

in a class of functions $\underline{x}(t)$, $\underline{u}(t)$, satisfying the differential equations

$$\frac{dx}{dt} = \underline{f}(\underline{x}, \underline{u}, t)$$
(B.4)

The terminal point t_f may be fixed or free, the terminal state $\underline{x}(t_f)$ may be fixed, completely free, or specified by a set of equations of the form

$$\underline{h}[\underline{x}(t_{f}), t_{f}] = 0$$
(B.5)

The control vector $\underline{u}(t)$ is a member of a set U called the control region, which may be either open or closed. The state vector $\underline{x}(t)$ and the control vector $\underline{u}(t)$ satisfy constraints of the form

$$\Phi(\mathbf{t}, \mathbf{x}, \mathbf{u}) \leq 0 \tag{B.6}$$

The linearization proceeds as follows: Let \underline{x}^0 , \underline{u}^0 be a solution of Eqs. (B.4) and

$$\frac{dx_i}{dt} = f_i(x_i, x_2, ..., x_j, u_1, u_2, ..., u_k, t)$$
(B.7)

a member of the system of Eqs. (B.7). Equation (B.7) can be linearized by means of a Taylor series expansion of f_i about \underline{x}^0 , \underline{u}^0 . This series expansion is given by the relation

$$f_{i}(x_{1}, ..., x_{j}, u_{1}, ..., u_{k}, t) = f_{i}(x_{1}^{0}, ..., x_{j}^{0}, u_{1}^{0}, ..., u_{k}^{0}, t) +$$

$$\frac{\partial f_{i}}{\partial x_{1}} (x_{1} - x_{1}^{0}) + \dots + \frac{\partial f_{i}}{\partial x_{j}} (x_{j} - x_{j}^{0}) + \frac{\partial f_{i}}{\partial u_{1}} (u_{1} - u_{1}^{0}) + \dots + \frac{\partial f_{i}}{\partial u_{k}} (u_{k} - u_{k}^{0}) + \text{higher-order terms}, \qquad (B.8)$$

where the derivatives are evaluated at

$$x_1^0, \dots, x_j^0, u_1^0, \dots, u_k^0$$

If changes in <u>x</u> and <u>u</u> from the solution \underline{x}^0 , \underline{u}^0 are designated as \underline{x}^* and \underline{u}^* , defined by the relations

$$\underline{\mathbf{x}}^{*} = \underline{\mathbf{x}} - \underline{\mathbf{x}}^{0}, \ \underline{\mathbf{u}}^{*} = \underline{\mathbf{u}} - \underline{\mathbf{u}}^{0}, \tag{B.9}$$

then Eq. (B.8) can be written in terms of \underline{x}^* and \underline{u}^* as

$$f_{i}(x_{1}, ..., x_{j}, u_{1}, ..., u_{k}, t) = f_{i}(x_{1}^{0}, ..., x_{j}^{0}, u_{1}^{0}, ..., u_{k}^{0}, t) +$$

$$\frac{\partial f_{\mathbf{i}}}{\partial \mathbf{x}_{1}} \mathbf{x}_{1}^{*} + \dots + \frac{\partial f_{\mathbf{i}}}{\partial \mathbf{x}_{\mathbf{i}}} \mathbf{x}_{\mathbf{j}}^{*} + \frac{\partial f_{\mathbf{i}}}{\partial \mathbf{u}_{1}} \mathbf{u}_{1}^{*} + \dots + \frac{\partial f_{\mathbf{i}}}{\partial \mathbf{u}_{k}} \mathbf{u}_{k}^{*} +$$

Since

$$\frac{dx_{i}}{dt} = f_{i}(x_{1}, ..., x_{j}, u_{1}, ..., u_{k}, t),$$

and

$$\frac{dx_{i}^{0}}{dt} = f_{i}(x_{1}^{0}, \ldots, x_{j}^{0}, u_{1}^{0}, \ldots, u_{k}^{0}, t),$$

with \underline{x}^* and \underline{u}^* sufficiently close to \underline{x}^0 and \underline{u}^0 , a first-order approximation to Eq. (B.7) is given by the relation

$$\frac{\mathrm{d}\mathbf{x}_{i}}{\mathrm{d}\mathbf{t}} = \frac{\partial \mathbf{f}_{i}}{\partial \mathbf{x}_{1}} \mathbf{x}_{1}^{*} + \ldots + \frac{\partial \mathbf{f}_{i}}{\partial \mathbf{x}_{j}} \mathbf{x}_{j}^{*} + \frac{\partial \mathbf{f}_{i}}{\partial \mathbf{u}_{1}} \mathbf{u}_{1}^{*} + \ldots + \frac{\partial \mathbf{f}_{i}}{\partial \mathbf{u}_{k}} \mathbf{u}_{k}^{*} \qquad (B.11)$$

Equation (B.11) represents the linearized form of the i-th of Eqs. (2.9).

The functional to be maximized (minimized) and the constraints of the problem are linearized in a similar way.

The second step in reducing the problem into a suitable form for use of Linear Programming is to transform the linearized relations describing the problem into linear algebraic relations. For the optimization problem with this study is concerned this is achieved as follows: (a) the reactor is divided into a number, R, of regions, each with spatially uniform material concentrations; and (b) the linearized multigroup diffusion equations are solved to express each $\phi_i^*(i=1, N)$ as a function of $u_{f,j}$, $u_{m,j}$ (j = 1,R). As explained in Section 2.3 for the solution of the linearized multigroup diffusion equations the method of Piecewise Polynomials is used. A brief description of this method is given in Appendix C.

Appendix C

THE METHOD OF PIECEWISE POLYNOMIALS AND INTEGRALS OF PIECEWISE POLYNOMIALS

C.1 THE METHOD OF PIECEWISE POLYNOMIALS

The method of Piecewise Polynomials developed by Kang (19) to solve the multigroup diffusion equations has the following characteristics. The reactor is divided into a number, n, of mesh points and the flux, ϕ_i , for the i-th group is approximated by a sum of properly defined piecewise polynomials. For example, if cubic piecewise polynomials are employed, the flux ϕ_i in a cylindrical reactor is approximated by the relation

$$\phi_{i} \stackrel{\sim}{=} \phi_{i} = \sum_{k=1}^{n} a_{k,i} w_{k} + \sum_{k=1}^{n} \beta_{k,i} v_{k,i}$$
(C.1)

where $a_{k,i}$ and $\beta_{k,i}$ are constants and w_k and $v_{k,i}$ are cubic piecewise polynomials defined as

$$w_{k} = \begin{pmatrix} 3(\frac{r-r_{k-1}}{h_{-}})^{2} - 2(\frac{r-r_{k-1}}{h_{-}})^{3}, & r\varepsilon[r_{k-1}, r_{k}] \\ 3(\frac{r_{k+1}-r}{h_{+}})^{2} - 2(\frac{r_{k+1}-r}{h_{-}})^{3}, & r\varepsilon[r_{k}, r_{k+1}] \\ 3(\frac{r_{k+1}-r}{h_{+}})^{2} - 2(\frac{r_{k+1}-r}{h_{+}})^{3}, & r\varepsilon[r_{k}, r_{k+1}] \end{pmatrix}$$
(C.2)
(C.2)
(C.2)

$$\mathbf{v}_{k,i} = \begin{pmatrix} -\frac{(\mathbf{r}-\mathbf{r}_{k-1})^2}{D_{i-}h_{-}} + \frac{(\mathbf{r}-\mathbf{r}_{k-1})^3}{D_{i-}h_{-}^2}, & \mathbf{r}\in[\mathbf{r}_{k-1},\mathbf{r}_k] \\ \frac{(\mathbf{r}_{k+1}-\mathbf{r})^2}{D_{i+}h_{+}} - \frac{(\mathbf{r}_{k+1}-\mathbf{r})^3}{D_{i+}h_{+}^2}, & \mathbf{r}\in[\mathbf{r}_k,\mathbf{r}_{k+1}] \quad (C.3) \\ 0 \text{ otherwise} \end{pmatrix}$$

where

h = mesh interval to the left of mesh point k

 h_+ = mesh interval to the right of mesh point k

- D_i = diffusion coefficient, for the group i, to the left of mesh point k
- D = diffusion coefficient, for the group i, to the right of mesh
 point k
- $r_k = radial position of mesh point k$

The cubic piecewise polynomials w_k and $v_{k,i}$ corresponding to the mesh point k are shown in Fig. C.1. Since

$$\frac{dw_{k}}{dr} = 0 \text{ at } k-1, k, k+1$$

$$\frac{dv_{k,i}}{dr} = 0 \text{ at } k-1, k+1 \qquad (C.4)$$

$$D_{i-} \frac{dv_{k,i}}{dr} = D_{i+} \frac{dv_{k,i}}{dr} \text{ at } k$$

FIG. C.1 THE CUBIC PIECEWISE POLYNOMIALS w_k AND v_{k,i}

$$w_k = 0, v_{k,i} = 0$$
 at k-1, k+1
 $w_k = 1, v_{k,i} = 0$ at k

the conditions of continuity of flux and current at interfaces are automatically satisfied by selecting the interface as a mesh point. To satisfy the boundary conditions

$$\frac{\mathrm{d}\phi_{\mathbf{i}}}{\mathrm{d}\mathbf{r}} /_{0} = 0, \quad \phi_{\mathbf{i}}(\mathbf{t}_{\mathbf{f}}) = 0, \qquad (C.5)$$

we define

$$\beta_{1,i} = 0, \ a_{n,i} = 0$$
 (C.6)

The multigroup diffusion equations can be written in the form

$$L_i \phi_i = 0 \tag{C.7}$$

where L_i is the multigroup diffusion operator for the i-th group. Then, the coefficients $a_{k,i}$ and $\beta_{k,i}$ of the piecewise polynomials w_k and $v_{k,i}$ in Eq. (C.1) are determined by requiring that

$$\int_{V} (L_{i} \Phi_{i}) w_{k} dV = 0, \qquad (C.8)$$

$$\int_{\mathbf{V}} (\mathbf{L}_{i} \Phi_{i}) \mathbf{v}_{k,i} d\mathbf{V} = 0$$
 (C.9)

where k = 1, n

After the integrations are carried out in Eqs. (C.8) and (C.9) a number of linear algebraic equations results equal to the number of the coefficients $a_{k,i}$, $\beta_{k,i}$ from which these coefficients can be determined.

The error involved in approximating ϕ_i by Φ_i is given by (19)

$$|\phi_{\mathbf{i}} - \Phi_{\mathbf{i}}| \leq k(\mathbf{h})^4 , \qquad (C.10)$$

where k is a constant and h is the largest mesh interval. Kang (19) has shown that for one-dimensional calculations a reduction by a factor of about 10 in the number of mesh points is possible by the use of cubic piecewise polynomials compared to conventional finite difference calculations of the same accuracy.

C.2 INTEGRALS OF PIECEWISE POLYNOMIALS

For the numerical application of the method of Piecewise Polynomials to solve the linearized multigroup diffusion equations (Section 2.3), the evaluation of some integral quantities involving piecewise polynomials is needed. In this section analytic expressions are given for those which can be evaluated in closed form.

As discussed in Section 2.3, the constants $a_{k,i}$ and $\beta_{k,i}$ of Eq. (2.20) are determined by requiring

$$\int_{V} (L_{i} \Phi_{i}) w_{k} dV = \int_{V} f_{i} (u_{f}^{*}, u_{m}^{*}) w_{k} dV , \qquad (C.11)$$

and

$$\int_{V} (L_{i} \Phi_{i}) v_{k,i} dV = \int_{V} f_{i} (u_{f}^{\star}, u_{m}^{\star}) v_{k,i} dV \qquad (C.12)$$

or

$$\int_{V} \left[L_{i} \left(\sum_{k=1}^{n} a_{k,i} w_{k} + \sum_{k=1}^{n} \beta_{k,i} v_{k,i} \right) \right] w_{k} dV =$$

$$\int_{V} f_{i} \left(u_{f}^{*}, u_{m}^{*} \right) \underset{k}{\overset{w dV}{\overset{w dV}{\overset{w}{\overset{w}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}}{\overset{w}}{\overset{w}{\overset{w}}{\overset{w}}{\overset{w}}{\overset{w}}{\overset{w}{\overset{w}}{$$

and

$$\int_{V} \begin{bmatrix} L_{i} & \begin{pmatrix} n & & & \\ \Sigma & a_{k,i} & & \\ k=1 & & \\ k=1 & &$$

The left hand side of Eqs. (C.13) and (C.14) is the sum of integrals of products of the piecewise polynomials and of products of their derivatives. Since the piecewise polynomials w_k and $v_{k,i}$ are zero everywhere outside the interval $[r_{k-1}, r_{k+1}]$ the non-zero integrals of these products are (for cubic piecewise polynomials):

$$\int_{V} w_{k}w_{k} r dr = \frac{2}{7}(h_{-}^{2} - h_{+}^{2}) + \frac{13}{35}(h_{-}r_{k-1} + h_{+}r_{k+1})$$

$$\int_{V} w_{k}w_{k+1} r dr = \frac{9}{140}h_{+}^{2} + \frac{9}{70}h_{+}r_{1}$$

$$\int_{V} w_{k}w_{k-1} r dr = -\frac{9}{140}h_{-}^{2} + \frac{9}{70}h_{-}r_{1}$$

$$\int_{V} v_{k,1}v_{k,j} r dr = \frac{1}{105}(r_{k+1}\frac{h_{+}^{3}}{D_{1+}D_{j+}} + r_{k-1}\frac{h_{-}^{3}}{D_{1-}D_{j-}}] +$$

$$\frac{1}{168}[\frac{h_{-}^{4}}{D_{1-}D_{j-}} - \frac{h_{+}^{4}}{D_{1+}D_{j+}}]$$

$$\int_{V} v_{k,1}v_{k+1,j} r dr = -\frac{1}{140}r_{k}\frac{h_{+}^{3}}{D_{1-}D_{j-}} + \frac{1}{280}\frac{h_{+}^{4}}{D_{1-}D_{j-}}$$

$$\int_{V} v_{k,1}v_{k-1,j} r dr = -\frac{11}{140}r_{k}\frac{h_{-}^{3}}{D_{1-}D_{j-}} + \frac{1}{280}\frac{h_{-}^{4}}{D_{1-}D_{j-}}$$

$$\int_{V} w_{k}v_{k,1} r dr = -\frac{11}{210}(r_{k-1}\frac{h_{-}^{2}}{D_{1-}} - r_{k+1}\frac{h_{+}^{2}}{D_{1+}}) -$$

$$\frac{1}{28}(\frac{h_{-}^{3}}{D_{1-}} + \frac{h_{+}^{3}}{D_{1+}})$$

$$\int_{V} w_{k} v_{k+1,i} r dr = -\frac{13}{420} \frac{r_{k} h_{+}^{2}}{p_{i+}} - \frac{h_{+}^{3}}{70 p_{i+}}$$

$$\int_{V} w_{k} v_{k-1,i} r dr = \frac{13}{420} r_{k} \frac{h_{-}^{2}}{p_{i-}} - \frac{1}{70} \frac{h_{-}^{3}}{p_{i-}}$$

$$\int_{V} \frac{dw_{k}}{dr} x \frac{dw_{k}}{dr} r dr = \frac{6}{5} \frac{r_{k-1}}{h_{-}} + 0.6 + \frac{6}{5} \frac{r_{k+1}}{h_{+}} - 0.6^{*}$$

$$\int_{V} \frac{dw_{k}}{dr} x \frac{dw_{k+1}}{dr} r dr = -\frac{6r_{k}}{5h_{+}} - 0.6$$

$$\int_{V} \frac{dw_{k}}{dr} x \frac{dw_{k-1}}{dr} r dr = -\frac{6r_{k}}{5h_{-}} + 0.6$$

$$\int_{V} \frac{dw_{k,i}}{dr} x \frac{dw_{k-1}}{dr} r dr = -\frac{6r_{k}}{5h_{-}} + 0.6$$

* The first two terms come from integration to the left of point k and the last two from integration to the right of point k.

$$\int_{V} \frac{dv_{k,i}}{dr} x \frac{dv_{k+1,i}}{dr} r dr = -\frac{r_{k}h_{+}}{30D_{i+}^{2}} - \frac{h_{+}^{2}}{60D_{i+}^{2}}$$

$$\int_{V} \frac{dv_{k,i}}{dr} x \frac{dv_{k-1,i}}{dr} r dr = -\frac{h_{-}r_{k}}{30D_{i-}^{2}} + \frac{h_{-}^{2}}{60D_{i-}^{2}}$$

$$\int_{V} \frac{dw_{k}}{dr} x \frac{dv_{k,i}}{dr} r dr = \frac{r_{k}}{10} \left(\frac{1}{D_{i+}} - \frac{1}{D_{i-}}\right) + \frac{1}{10} \left(\frac{h_{+}}{D_{i+}} + \frac{h_{-}}{D_{i-}}\right)$$

$$\int_{V} \frac{dw_{k}}{dr} x \frac{dv_{k+1,i}}{dr} r dr = \frac{r_{k}}{10D_{i+}}$$

$$\int \frac{dw_{k}}{dr} x \frac{dv_{k+1,i}}{dr} r dr = -\frac{r_{k}}{10D_{i+}}$$

The solution of the linearized multigroup diffusion equations (Section 2.3) gives the coefficients $a_{k,i}$ and $\beta_{k,i}$ of the piecewise polynomials in Eq. (2.20) as a function of u_f^* and u_m^* . Thus when integral quantities involving ϕ_i^* , such as the breeding gain (Eq. 2.8) and the total power (Eq. 2.11), are calculated, the evaluation of integrals w_k and $v_{k,i}$ is required. These integrals are as follows:

$$\int_{r_{k}}^{r_{k}} w_{k} r dr = \frac{7h_{-}^{2}}{20} + 0.5 r_{k-1}h_{-}$$

$$\int_{r_{k}}^{r_{k+1}} w_{k} r dr = -\frac{7h_{+}^{2}}{20} + 0.5 r_{k+1}h_{+}$$

$$\int_{r_{k-1}}^{r_{k}} v_{k,i} r dr = -\frac{h_{-r_{k-1}}^2}{12D_{i-}} - \frac{h_{-}^3}{20D_{i}}$$

$$\int_{k}^{r_{k+1}} v_{k,i} r dr = \frac{r_{k+1}h_{+}^{2}}{12 D_{i+}} - \frac{h_{+}^{3}}{20 D_{i+}}$$

$$r_{k}$$

All the other required integrations were carried out numerically by using Simpson's rule. The integration step size was chosen such as to keep the error of numerical integration less than about 1×10^{-5} .

Appendix D

THE COMPUTER PROGRAM GREKO

D.1 INTRODUCTION

In this Appendix the computer program written to carry out the computations is discussed and listed. This program is not intended for use as a production program, and hence has not been groomed to minimize storage requirements or running time. It is written in Fortran IV language for the M.I.T. IBM 360/65 computer.

The program consists of four main parts. In the first part the multigroup diffusion equations and the adjoint multigroup diffusion equations are solved to compute the reactor eigenvalue, the neutron fluxes and their adjoints. This part is based on the multigroup diffusion program DIFFUSE written by W. H. Reed at M.I.T. In the second part the coefficients of $(u_f - u_f^0)$ and $(u_m - u_m^0)$ in Eq. (2.13) are computed by using multigroup diffusion perturbation theory. In the third part the linearized multigroup diffusion equations (Eqs. 2.10) are solved to express ϕ_i^* as a function of $u_{f,j}^{, u}$, (j = 1,R). The subroutine DMINV of this part is based on the subroutine MINV of In the fourth part the Linear Programming algorithm is used to IBM. determine the optimum material distribution which leads to a maximum or minimum value of the objective function. The subroutine SIMPLE of this part is based on the subroutine SIMPLE of RAND Corporation. The first two parts can be used independently of the rest of the program.

For example the case studies of Chapter 4 were done by using only these two parts. In such cases one should put a CALL EXIT card after the card CALL AEDIT of the MAIN (see listing).

The program is dimensioned for the following maximum problem sizes: 200 mesh intervals, 10 compositions, 5 regions, and 5 neutron groups. If only the first two parts of the program are used then the maximum number of regions can be raised to 10. The number of mesh intervals in each region must be of the form 2 x ℓ where ℓ is an even number. In subroutine BIGMAT the dimensions of the arrays G, LW, MW and the first dimension of the array F must have the value

4*NRG*NGP-1 where:

NRG = number of regions

NGP = number of neutron groups

The same value must also be assigned to the first dimension of the array WK in the COMMON/COWE/ which is contained in the subroutines BASE, BIGMAT, WENDO, BASINT and LINPRO.

The running time is proportional to the number of iterations required to go from the starting configuration to the optimum configuration. The number of iterations depends on how close the initial configuration is to the optimum configuration and on the value of the parameter ε (Eqs. 2.26, 2.27). The value of the parameter ε is chosen such that the $u_{f,j}$, (j = 1,R) remain close enough to $u_{f,j}^0$ (Section 2.4). Optimization of the value of this parameter minimizes the number of iterations required for a given initial configuration. In this study the parameter ε was not optimized. Typical running times for the results presented in Chapter 3 are of the order of 30 minutes.

D.2 INPUT

Using the nomenclature of the program listing a card-by-card description of the required input is as follows:

Card #1 FORMAT (20A4)

TITLE (I), I = 1,20 Problem title

Card #2 FORMAT (1615)

NGP	Number	of	neutron groups
NRG	Number	of	regions
NMAT	Number	of	isotopes or materials

Card #3 FORMAT (7G10.0)

TH(J), J=1, NRG Thickness of regions (cm)

Card #4 FORMAT (15, 5X, 4F15.0/4F15.0/2F15.0)

Repeat card #5 NMAT times

IDMAT(I) ID number of i-th nuclide

CONC(I,J), J=1, NRG Concentration of i-th nuclide (atoms x $cm^{-3} \times 10^{-24}$) in each region

Card #5 FORMAT (1615)

NPT(J), J=1, NRG Number of mesh points assigned to each region

Card #6 FORMAT (3F15.0, 215)

EPS1 Convergence criterion on eigenvalue in inner iteration (recommended value 1.0 x 10⁻⁴)

	98
EPS2	Convergence criterion on eigenvalue in outer
	iteration (recommended value 1.0 x 10^{-5})
EPS3	Convergence criterion for flux (recommended
	value 1.0 x 10^{-8})
ITMAXO	Maximum number of outer iterations (typical
	value 10)
ITMAXI	Maximum number of inner iterations (typical
	value 20)
Repeat cards #7 through	#12 as a unit NMAT times
Card #7 FORMAT (1615)	
MMM	Material ID number
Ml	= 0, non-fissionable material
	= 1, fissionable material
Card #8 FORMAT (7G10.0)	
SIGC(JJ,J), J=1, NGP	Total microscopic absorption cross section
	of material JJ in group J (capture + fission),
	barns
Card #9 FORMAT (7G10.0)	
SIGTR(JJ,J), J=1, NGP	Microscopic transport cross section of
	material JJ in group J, barns
Card #10 FORMAT (7G10.0)	
Skip if M1 = 0 for th	is material
XNU(JJ,J), J=1, NGP	Fission neutron yield, v , of material JJ
	in group J

Card #11 FORMAT (7G10.0)

Skip if M1=0 for this material

SIGF(JJ,J), J=1, NGP Microscopic fission cross section of material

JJ in group J, barns

Card #12 FORMAT (7G10.0)

Repeat this card NGP times for each material

SIGGG(JJ,K,J), J=1, NGP Microscopic scattering cross section
K=1, NGP from group K to J (barns). Give for
all groups J from K=1, then for all
groups J from K=2, etc.

Card #13 FORMAT (7G10.0)

SPECT(J), J=1, NGP Fission spectrum (i.e. group value of χ) Card #14 FORMAT (F10.0), 215)

VNO Volume fraction of fissile material + volume fraction of fertile material NPR Problem type: = 1, Breeding Optimization

= 2, Sodium Void Reactivity Optimization

= 3, Critical Mass Optimization

NCR Number of core regions

Card #15 FORMAT (15)

Skip if NPR not equal to 2

IDNA ID number of sodium

Card #16 FORMAT (215)

IPID number of fissile materialIUID number of fertile material

Card #17 FORMAT (2F15.0)

CONCP(IP)Concentration of pure fissile material
(atoms x cm $^{-3}$ x 10 $^{-24}$)CONCP(IU)Concentration of pure fertile material
(atoms x cm $^{-3}$ x 10 $^{-24}$)

Card #18 FORMAT (7F10.0)

UO(L), L=1, NCR Volume fraction of fissile material in region L

Card #19 FORMAT (2F10.0)

PDL	Power density upper limit (Eq. 3.1)
THUO	Value of parameter ε (Eqs. 2.26, 2.27)
	(Typical value 0.002)

D.3 OUTPUT

The output from the program has all entries clearly identified by an appropriate heading using the terminology and nomenclature of this study. The following information is given:

- 1. Number of energy groups (Input)
- 2. Number of regions (Input)
- 3. Number of materials (Input)
- 4. Problem geometry (Cylinder)
- 5. Region thickness (Input)
- 6. Material concentrations (Input)
- 7. Number of mesh points (Input)
- 8. Fission spectrum (Input)

- 9. Cross sections (Input)
- 10. Concentrations of pure fissile and fertile materials (Input)
- 11. k-effective
- 12. k-effective of sodium voided reactor (if NPR=2)
- 13. Total breeding gain
- 14. Internal breeding gain
- 15. External breeding gain
- 16. Peak power density in each region
- 17. Total power
- 18. Neutron flux for each energy group and for each space point (only for the first iteration)
- 19. Adjoint flux for each energy group and for each space point (only for the first iteration)
- 20. Critical mass (if NPR=3)
- 21. Feasibility. If the value of this parameter is equal to zero the problem is feasible, if it is equal to 1 the problem is infeasible.
- 22. Fissile volume fractions given by the Linear Programming solution
- 23. Number of iterations

D.4 LISTING

C		MAINCODI
r	****	MAIN0002
r	PROGRAM GREKO	MAIN0003
r.	****	MAIN0004
c c		MAINOOOS
C	MATN DROCRAM	MAIN0006
	$[MPLICIT REAL * P (\Delta - H_{-}) - 7)$	MAIN0007
	COMMON/POWER/ STGEM(10.5) + OKTIS(201) + TOTP(10) + SYLI(10) + FISIT(10) +	MAIN0008
	1 ESDIT(10), TMETOL(10), SYLIM(10), FISLIM(10), TMETLM(10), ALKGEM(10),	MAINCOO9
	2CPPH2(1, 5) .CRPHA1(10.5) .GRPHA2(10.5) .ALKGE(10),GRPH1(10.5),	MAIN0010
	3 STS PHI (201-5) - SR (10-5) - SA (10-5) - SNUE (10-5) - STR (10-5) -	MAIN0011
	4 SCC(18.5.5) DI(18.5)	MAIN0012
	COMMON /FLUX/ PHI(201.5) .ANORM.BNORM.A(201.5) .B(201.5) .	MAIN0013
	1 - C(2(1.5) - W(2(1.5.5)) - S(2(1.5))	MAIN0014
	COMMON /CNTRL/ EPS1.EPS2.EPS3.EFEK.TH(1.), RK1, RK2, BIG, AHOLD(90),	MAIN0015
	INGP.NRG.NMAT.NGFOM.JBCL.JBCR.NFG.JAC.NP.NPT(10), IOP, NRVARY,	MAIN0016
	2 IPVARY (SO) . MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	MAIN0017
	3 101M, 140LD (90)	MAIN0018
	COMMON /MACX/ SPECT(5) *XA(1(*5) *XNUF(10,5) *XTR(10,5) *XGG(10,5,5) *	MAIN0019
	1 CONC(12, 1.5), D(10, 5), XR(12, 5), CC, CT, ID (AT(12))	MAIN0020
	CLAAGN /ERR/IERR	MAIN0021
	COMMON/CONV/ CRMA(30) .NPR .KNA .NCR . I DNA	MAIN0022
	COMMENTITER/ NIT	MAIN0223
	DIMENSION CONCN(8)	MAIN0024
	A = S(77) = DA + S(77)	MAIN0025
	$\langle M \Delta = 0 \rangle$	MAIN0026
	NIT=	MAIN0027
15	C. LERR=1	MAIN0028
	RK1=7.0	MA IN 0029
	TK = "	MA I NO 030
	BIG=1000.0	MAIN0031
	$[\Delta] =$	MAIN0032
	EFFK=1.	MAIN0033
	K F F P = 3	MAIN0034
	CC=1.	MA INO0 35
	II c = 1	MAIN0036

		MAIN0037
	$\frac{1}{1} = 0$	MAIN0038
	TE(KNA E0.1) CO TO 1510	MAIN0039
	CALL TNDATA	MAIN0040
1510	TELTEDD NE (ICO TO 0000	MATN0041
171		MAIN0042
	CALL FACTOR	MAIN0043
	TELTEDRINE DIGD TO 9999	MAIN0044
1	THE VERT	MAIN0045
ι 7	CALL AGEUT CALL TOTOTA	MAIN0046
5	CALL VEICHT	MAIN0047
2	CALL WEIGHT	MAIN0048
٤.		MAIN0049
	TTI=TTI+1	MAIN0050
	IF(TILGT_ITMAXI) CALL FROR(1)	MAIN0051
	TE(TERR.NE.0)G() T() 9999	MAIN0052
	IF(ABS(PK2-TK), IT, FPS1) GO TO 3	MAIN0053
	TK = RK2	MAIN0054
	GO TO 2	MAIN0055
3	IF (ABS(RK2-1.0).LT.EPS2) GG TO 6	MAIN0056
	CALL ADJUST	MAIN0057
	THOLD(ITO)=ITI	MAIN0058
	AHOLD(ITO)=KK2	MAIN0059
	RK1=RK2	MAIN0060
	IT0=IT0+1	MAIN0061
	IF(ITO.GT.ITMAXO) CALL FRROP(6)	MAIN0062
	IF(IERR.NE.0)GD TO 9999	MAIN0063
	ITI=0	MAIN0064
	GO TO (5,7,1),IOP	MAIN0065
6	IF (BIG.LT.EPS3) GO TO 100	MAIN0066
	BIG=C.0	MAIN0067
	KEEP=1	MAIN0068
	GO TO 2	MAIN0069
1()	TE(JAD.EQ.0)GO TO 9999	MAIN0070
	D() 19) J=1,NP	MAIN0071
	DO 10 I=1,NGP	MAIND072

		MAIN0073
• •	PHL(J,I)=PHI(J,I)	MAIN0074
L D	CURTINDE	MAINOO75
	CALL AJOINT	
	CALL ISCHIS	
	IF(NPR•NE•2) GO TO 25	MAINUUT MAINUUT
	IF(KNA.EQ.1) GO TO 1531	MAINUUT
	IF(NIT.NF.0) G0 TO 1530	MAINO079
	D0 20 K=1.NCP	MAIN0080
2.5	$CONCN(K) = CONC(IDNA \cdot K)$	MAIN0081
25	TE(NIT_NE_C) G() TO 1533	MAIN0082
6.2	CALL EDIT	MAIN0083
	CALL AEDIT	MAIN0084
1520		MAINOO85
105		MAINOOBE
1631	CALL DIGRAT	MAIN0087
1001	TEINDO NE 21 CO TO 1543	MAINOO88
	TELENA TO 21 CO TO 1545	MAINOO89
	1F(KNA.EU.) 60 10 1040	MA 1 N0090
	D = [5 K=1, NCR]	MAINOO91
15	CENC(IDNA,K)=0.V	MAIN00/2 MAIN00/2
	GO TO 1540	
1545	DO 21 K=1,NCR	
21	CONC(IDNA,K)=CONCN(K)	MAINUU 94
1540	GO TO 1500	MAIN009
9999	CALL EXIT	MA INOO 90
	CNO	MA INOO9

ŧ.

END

	SUBROUTINE INDATA	INDA0001
	IMPLICIT REAL *8 (Δ -H.O-7)	INDA0002
	COMMON /FLUX/ PHI(201.5) .ANDRM.BNORM.A(201.5) .B(201.5) .	INDA0003
	1 = (1201.5) = W(201.5.5) = S(201.5)	INDA0004
	COMMON /CNTRL/ EPS1.EPS2.EPS3.EEEK.TH(10).RK1.RK2.BIG.AHULD(90).	INDA0005
	INCP. NPC. NMAT. NGEDM. IBCL. IBCR. NEGALAC. NP. NPT(10) . IOP. NRVARY.	INDAD005
	2 TO VARY OCH . MVARY, TTMAXE, ITMAXI, ITM.ITI.KEEP.MCODE.BIG.JBIG.IAJ.	INDA0007
	2 INVARIA 20 / FEVALA VIINAR SVITAR ALVITOVITVY ACCOUNT OF CONTRACTOR STATE	INDA0008
	COMMONE / AACY/ SPECT (5) - XA(10,5) - XNUE(10,5) - XTR(10,5) - XGG(10,5,5)	INDA0009
	$\frac{1}{1000} + \frac{1}{10} + \frac{1}{10$	INDA0010
	COMMON = MTCY / STCC(1) -5) = STGTR(10 - 5) = STGF(10 - 5) = STG	INDA0011
	1 CICCC(10.5.5)	INDA0012
		INDA0013
		INDA0014
•	DIMENSION TITLE(20)	INDA0015
	NGEOM=2	INDA0016
	.18C1 = 1	INDA0017
		INDA0018
	T(P)=1	INDA0019
	READ $(5.99(1))$ (TITLE(J), J=1, 2 ⁽¹⁾	INDA0020
	WRITE(6.991) (TITLE(J), J=1.20)	INDA0021
	READ (5.992) NGP.NRG.NMAT	INDA0022
	WRITE(6.993) NGP-NRC-NMAT	INDA0023
	TE (NGEFM.EQ.1) WRITE (6.994)	INDA0024
	IE (NGEOM.EQ.2) WRITE (6.995)	INDA0025
	IF (NGEDM.EQ.3) WRITE (6,996)	INDA0026
	READ (5.997) (TH(J), J=1, NRG)	INDAU027
	WRITE (6.9913) (J.TH(J), J=1, NRG)	INDA0028
	$D(t_1 t_1 = 1 \cdot NMAT)$	INDA0029
	READ (5.990) IDMAT(I), (CONC(I,J), J=1, NRG)	INDA0030
1	CONTINUE	INDA0031
~	WRITE (6.9900)	INDA0032
	$DC = 2 I = 1 \cdot NMAT$	INDA0033
	WRITE (6,9902) IOMAT(I), (J,CONC(I,J), J=1, NRG)	INDA0034
2	CONTINUE	INDA0035
	READ (5,992) (NPT(J),J=1,NPG)	INDA0036

•

			-
-	WRITE (6,9903) (J.NPT(J),J=1,NRG)		INDAD037
	READ (5,9912) EPS1.EPS2.EPS3.ITMAX0.ITMAX1		INDA0038
	$DO_3 I=1, NMAT$		INDA0039
	READ (5,992) MMM, M1, M2		INDA 0040
	DC 4 J=1, NMAT		INDA0041
	J = J		INDA0042
	IF (MMM.EQ.IDMAT(J)) GO TO 5		INDA0043
4	CONTINUE		INDA0044
	CALL ERROR (2)		INDA0045
	IF(IERP.NE.O) RETURN		INDA0046
5	$PEAU = \{5, 997\} = \{SIGC(JJ, J), J=1, NGP\}$		INDA0047
	READ (5,997) (SIGTR(JJ,J),J=1,NGP)		INDA0048
	IF (M1.FQ.1) GO TO 7		INDA0049
	DO = 8 J = 1, NGP		INDA0050
	XNU(JJ,J)=(INDA0051
	SIGF(JJ,J)=0.0		INDA0052
8	CONTINUE		INDA0053
	GO TO 9		INDA0054
7	READ (5,997)(XNU(JJ,J),J=1,NGP)		INDA0055
	READ (5,997) (SIGE(JJ,J),J=1,NGP)		INDA0056
9	DO 6 K=1, NGP		INDA0057
	READ (5,997)(SIGGG(JJ,K,J),J=1,NGP)		INDAU058
6	CONTINUE		INDA0059
3	CONTINUE		INDAC060
	RFAD (5,997) (SPECT(J),J=1,NGP)		INDA0061
	WPITE (6,9904) (SPECT(J),J=1,NGP)		INDA0062
	$D \cup 1 \langle 1 = 1, NMAT \rangle$		INDAD063
	WRITE (6,9905) IOMAT(I)		INDA0064
	WRITE (6,9906) (SIGC(I,J),J=1,NGP)		INDA0065
	WRITE (6,9907) (SIGF(I,J),J=1,NGP)		INDAU066
	WRITE (5,9911) (XNU(1,J),J=1,NGP)		INDA0067
	WRITE (6,9908) (SIGTR(I,J),J=1,NGP)	,	INDA0068
	00 1° K=1,NGP		INDA0069
	WRITE (6,9909) K,(SIGGG(I,K,J),J=1,NGP)		INDA0070
10	CONTINUE		INDA0071
991	FORMAT (20X,2044)		INDA0072

.

,

106

1

.

992	FORMAT (1615)	INDA0073
993	FORMAT (///' NUMBER OF ENERGY GROUPS =', I1C,//' NUMBER OF REGIONS	INDA0074
	1=",110,//' NUMBER OF MATERIALS =',110,//)	INDA0075
094	FORMAT (////' PROBLEM GEOMETRY = SLAB!)	INDA0076
995	FORMAT (////' PROBLEM GEOMETRY = CYLINDER')	INDA0077
996	FORMAT (////' PROBLEM GEOMETRY = SPHERE!)	INDACO78
907	FORMAT (7610)	INDA 0079
698	FORMAT (////lox, 'GROUP', 10X, 'LOWER ENERGY BOUND', /10X, '+', 10X,	INDA0080
	1''•//(1CX•13•10X•015•5))	INDA0081
000	F08MAT(15.FX.4F15.0./4F15.0./2F15.0)	INDA0082
0000	FORMAT (////IUX, MATEPIAL, 40X, REGION / CONCENTRATION, //)	INDAQ083
0001	FORMAT (2014)	INDA0084
9902	FORMAT(/1X,12,9(12, ' / ', F13.10),/10X,8(14, ' / ', F15.10))	INDA0085
9903	FORMAT (///* REGION / NUMBER OF MESH POINTS',//10(15, 1 / 1, 13))	INDA0086
09.4	FORMAT (///' FISSION SPECTRUM'/(3F15.10))	1NDA 0087
9905	FORMAT ('1 CROSS SECTIONS FOR MATERIAL', 110,///)	INDAC088
9906	FORMAT (' CAPTURE CROSS SECTION',/(8F15.10))	INDA0089
9907	FORMAT (' FISSION CROSS SECTION',/(8F15.10))	INDA0090
9978	FORMAT (' TRANSPORT CRUSS SECTION',/(8F15.10))	INDAC091
99999	FORMAT (' TRANSFER CROSS SECTION FROM GROUP', 15, / (8F15.10))	INDA0092
9911	FORMAT (' NU',/(8F15.6))	INDA0093
9912	FORMAT (3F15.0,215)	INDA0094
9913	FORMAT(///' REGION / REGION THICKNESS IN CM',/6(5X,12,1 / ',F8.4))	INDA0095
	RETURN	INDA0096
	END	INDA0097
SUBROUTINE MACROX	MACR 0001	
--	-----------	
IMPLICIT REAL $*8 (\Lambda - H, \Theta - 7)$	MACR0002	
COMMON/POWER/ SIGEM(10.5) .AKTIS(201).TOTP(10).SYLI(10).FISIT(10).	MACR0003	
16SOTT(1.).TMETOL(1.).SVLTM(1.).EISTTM(1.).TMETLM(1.).ALKGEM(1.).	MACR0004	
2GPDH2(10.5) .GRDHA1(10.5) .GRDHA2(10.5) .ALKGE(10).GRDH1(10.5).	MACR0005	
$2 \text{ STS}_{\text{DH}} (201.5), \text{ SR} (10.5), \text{ SA} (10.5), \text{ SNUE} (11.5), \text{ STR} (10.5), $	MACR0006	
- 5 - 5 + 5 + 5 + 1 + 1 + 5 + 5 + 5 + 5 + 5 +	MACR 0007	
$\frac{4 - 566(19)}{2} + \frac{2}{2} + \frac{2}$	MACROOOS	
UNER NOR NUCL ACCOUNT OF NECTAR NO NOT (19), TOD NOVARIOUS AND	MACROOOS	
INGP, NKG, NMAT, NGEUM, JBUL, JBUK, NEW, JAU, NET TI VEED, MCODE, LRIC, BIG, TAL	MACROOLO	
2 IRVARY(97), MVARY, LIMAXU, LIMAXI, IIII, III, KEPP, MCUUE, LEIG, JDIG, IAG	MACROBIL	
$3 \text{ JDUM}_{1} \text{ HULD}(90)$	MACROO12	
COMMON / MACX/ SPECI(5), XA(10,5), XNUF(10,5), XIK(10,5), XOU(10,5), 217	MACROOIZ	
1CONC(10,10), D(10,5), XR(10,5), UC, UT, IDMATTINA 	MACROOIS	
COMMEN /MICX/ SIGU(10,5) ,SIGIR(10,5) ,XNU(10,5) ,SIGR(10,5)	MACROOIS	
1 = SIGGG(19, 5, 5)	MACROOIS	
COMMON /FLUX/ PHI(201,5) ,ANUKM,BNURM,ATZU1,5/ ,BTZU1,5/ ,	MACROUID	
$1 C(2^{1},5) W(2^{1},5,5) V(2^{1},5,5) V(2^{1},5)$	MACROOIS	
DO 4 I=1, NRG	MACROOID	
DO 4 J=1, NGP	MACROQIA	
SR(I,J)=0.0	MACROVZU	
XA(I,J)=0.0	MACROOZI	
SIGFM(I,J)=0.0	MACROUZZ	
XNUF(I,J)=C.O	MACRUUZS	
XTR(I,J)=0.0	MACROUZ4	
DO 4 K=1,NGP	MACROUZS	
XGG(I,J,K)=0.0	MACROU25	
CONTINUE	MACROOZ /	
DO 3 J=1, NMAT	MACR0028	
DO 3 I=1,NGP	MACRO029	
DO 3 K=1,NRG	MACR0030	
XA(K,I)=XA(K,I)+CDNC(J,K)*SIGC(J,I)	MACR0031	
SIGFM(K,I)=SIGFM(K,I)+CONC(J,K)*SIGF(J,I)	MACR0032	
XNUF(K,I)=XNUF(K,I)+CONC(J,K)*SIGF(J,I)*XNU(J,I)	MACR 0033	
XTR(K,I) = XTR(K,I) + CONC(J,K) + SIGTR(J,I)	MACR0034	
DO 3 L=1, NGP	MACR0035	
XGG(K,I,L)=XGG(K,I,L)+CONC(J,K)*SIGGG(J,I,L)	MACR0036	

•

3	CONTINUE	MACR0037
	90.2 I=1.NRG	MACR0038
	$DO 2 J=1 \cdot NGP$	MACR0039
2	$XGG(I \cdot J \cdot J) = 0 \cdot 0$	MACROD40
•-	$DC_5 K=1.NRG$	MACRO041
	DO 5 I=1.NGP	MACROD42
	SA(K, I) = XA(K, I)	MACRO043
	SNUE(K,T) = SNUE(K,T)	MACR 0044
	$STR(K_T) = TR(K_T)$	MACR0045
	$DI(K,I)=1-0/(3-0\times STR(K,I))$	MACR0046
	$D_{1} = 5 + 1 = 1 + NGP$	MACRO047
	SGG(K, I, I) = XGG(K, I, I)	MACR 0048
	SR(K,T) = SR(K,T) + XGG(K,T,T)	MACR0049
5	CONTINUE	MACR0050
.	RETIRN	MACR0051
	FND	MACR0052

· · ·

109

•

	SUBSOUTINE FLUXIN	FLUX0001
	IMPLICIT REAL*8 (A-H,O-Z)	FLUX0002
	COMMEN /CNTRL/ FPS1. EPS2. EPS3. EFFK, TH(10). RK1. RK2. BIG, AHOLD(90).	FLUX0003
	INGP .NRG .NMAT . NGEBM. JBCL . JBCR .NEG. JAC. NP. NPT(10). IOP, NRVARY,	FLUX0004
	2TRVARY (90) . MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	FLUX0005
	3.10UM THOLD(90)	FLUX0006
	COMMEN /MACX/ SPECT(5),XA(10,5),XNUE(10,5),XTR(10,5),XGG(10,5,5),	FLUX0007
	$1 \text{ COMC} (10, 10) \cdot \text{D} (10, 5) \cdot \text{XR} (10, 5) \cdot \text{CC} \cdot \text{CT} \cdot \text{IDMAT} (10)$	FLUX0008
	COMMON /FLUX/ PHT(201.5) .ANORM.BNDRM.A(201.5) .B(201.5) .	FLUX0009
	1 = C(201.5) + W(201.5.5) + S(201.5)	FLUX0010
	COMMON /FRR/TERR	FLUX0011
	SORT(77) = DSORT(77)	FLUX0012
	NP=1	FLUX0013
	$DD = 1 J = 1 \cdot NRG$	FLUX0014
1	NP = NP + NPT(J)	FLUX0015
-	$DD = 2 I = 1 \cdot NGP$	FLUX0016
	$DO_2 J = 1 \cdot NP$	FLUX0017
2	PHI(J,L)=1.0	FLUX0018
23	ANORM=SOPT(1.COO*NP*NGP)	FLUX0019
-	GO TO (6.6.5), IOP	FLUX0020
5	$DP = 3 J = 1 \cdot NMAT$	FLUX0021
	L=LL	FLUX0022
	IF (IDMAT(J).EQ.MVAPY) GO TO 4	FLUX0023
3	CONTINUE	FLUX0024
	CALL ERROR(4)	FLUX0025
	IF(IERR.NE.D) RETURN	FLUX0026
4	MCODE=JJ	FLUX0027
6	CONTINUE	FLUXC028
	RETURN	FLUX0029
	END	FLUX0030

				Y SEC 0001
		SUBRUUTINE XSEUT		YSEC0002
		IMPLIUIT REAL#B (A-H,U-Z)	D FERK THANAN DRIDERS DIE AHOLD(OC)	X S EC 0002
		UMMUN /UNIKL/ EPSI, EPSZ, EPS	SPEFFK HILLUJ #KN1 #KN2 #DIG #AROLU 7074	
		INGP, NRG, NMAI, NGEUM, JBUL, JBUR	NEGOJALONPONPILLUIOLUPONKVAKIO VI ITO ITI VEED NEODE LDIC IDIC IA.	
		21RVARY(90), MVARY, 11M4X(), 11MA	X1,110,111,KEEP,MCODE,LD10,JD10,1AJ,	X SECODD S
		3 JOUM, THELD(92)	CA MARTIN EN MIRING EN MOCINO 5 51	
		COMMON /MACX/ SPECT(5),XA(10	+5)+XNUF(LU+5)+XIK(LU+5)+XGG(LU+5+2)	
		1CONC(10,10), D(10,5), XR(10,5)	, UC, UI, 10MAI(10)	
		COMMEN /MICX/ SIGC(10,5), SI	GIR(12,5) ,XNU(18,5) ,SIGF(10,5),	
,		1 = SIGGG(10, 5, 5)	2004 DN(204 A (201 E)	
		COMMON /FLUX/ PHI(201,5) ,AM	URM,BNURM,A(201,5),B(201,5),	
		-1 ((231,5), w(21,5,5), 512)	J1, D1	XSEC0013
		DIMENSION F(10)		XSECODIS
		69 10 (6,6,5), LUP		XSEC0015
	5			XSEC0016
	1	$DI = 1 K = I_{\phi} NKG$		XSEC0017
	J.	$P(K) = CONU(PCODE + K)^{2}$		XSECC018
		$\frac{1}{2} = \frac{1}{2} + \frac{1}$	· · ·	X SEC0019
		$\frac{1}{1} = \frac{1}{1} = \frac{1}$	ODE.I)	X SEC 0020
			E(MCODE,I) * XNU(MCODE,I)	XSEC0021
		VT0/K.I)-VT0/K.I)+E(K)*SIGTR	(MCODE.I)	XSEC0022
		DO = 2 + 1 + 1 + NCP	(10002917	XSEC0023
		YCC(K, T, L) - YCC(K, T, L) + E(K) * S	IGGG(MCEDE.I.I)	XSEC0024
	2	CONTINUE		XSEC0025
	6	CONTINUE		XSEC0026
	ę	DO 3 I-1.NRC		X SECOC 27
		$DO_3 = 1 \cdot NGP$		X SEC 0028
	2	$\frac{\nabla (I - J)}{\nabla P (J - I)} = X \Lambda (J - I)$		XSEC0029
)	DD = 4 L=1 NRG		X SEC 0030
		$DO 4 I=1 \cdot NGP$		X SEC 00 31
		$D(T_{1}, I) = 1 \cdot D(T_{2}, 0 \times XTR(T_{1}, I))$		XSEC0032
		$\partial (1+\partial (1+\partial (1+\partial (1+\partial (1+\partial (1+\partial (1+\partial (1+$		XSEC 00 33
		$XR(I_{\bullet},I) = XR(I_{\bullet},I) + XGG(I_{\bullet},I_{\bullet},K)$	(X SEC0034
	4	CONTINUE		X SEC0035
	·	RETURN		X S EC 0036

XSEC0037

į

END

	SUBROUTINE TRIDIA	TRIDOOOL
	IMPLICIT REAL*8 (A-H.O-Z)	TRID0002
	COMMON /CNTRL/ FPS1, EPS2, FPS3, EFFK, TH(10), RK1, RK2, BIG, AHOLD(90),	TRID0003
	1NGP • NRG• NMAT • NGEDM • JBCL • JBCR • NEG • JAD • NP • NPT(10) • TOP • NRVARY •	TR100004
	2 TRVARY (90). MVARY. ITMAXO. ITMAXI.ITT. ITT. KEEP. MCDDE. BIG. JBIG. IAJ.	TRID0005
	3. IDIM. THOLD(90)	TRIDOOO6
	COMMON /MACX/ SPECT(5).XA(10.5).XNUE(10.5).XTR(10.5).XGG(10.5.5).	TR I D0007
	$1 \text{CONC} (10.10) \cdot D(10.5) \cdot XR(10.5) \cdot CC \cdot CT \cdot IDMAT(10)$	TRIDOOOR
	COMMON / FLUX / PHT(201.5) .ANORM.BNORM.A(201.5) .B(201.5) .	TRIDOOO9
	= C(201.5) + W(201.5.5) + S(201.5)	TRIDOOIO
	DO = 3 + 1 = 1 + NGP	TRIDOOII
	D7 3 1=1 NP	TRID0012
3	B(1.1) = 0.0	TRIDO013
141	RWR = 0.0	TRID0014
	0=LL	TRID0015
	D_{1} 1 K=1 NRG	TRIDO016
	H=TH(K)/NPT(K)	TRIDO017
	HI=1.0/H	TRID0018
	R=RWR-H*0.5	TRID0019
	JMAX = NPT(K)	TRID0020
	DD = 2 J = 1, JMAX	TRID0021
	JJ=JJ+1	TRID0022
	R=R+H	TR I D 0 2 3
	IF (NGEOM.EQ.1) RP=1.0	TRID0024
	IF (NGEOM.EQ.2) RP=R	TRID0025
	IF (NGEDM.E0.3) RP=P *R	TRID0026
	DO 2 L=1, NGP	TRID0027
	A(JJ,L)=RP*D(K,L)*HI	TRID0028
	C(JJ,L)=A(JJ,L)	TRID0029
	Z=A(JJ,L)+((R-H/2.0)**(NGEDM-1))*XR(K,L)*H*0.5	TR I D 0030
	Z1=A(JJ,L)+((R+H/2.0)**(NGEOM-1))*XR(K,L)*H*0.5	TR I D 00 31
	B(JJ,L)=B(JJ,L)-Z	TRIDO032
	B(JJ+1,L)=B(JJ+1,L)-Z1	TR I D 0 0 3 3
2	CONTINUE	TRID0034
	RWR=RWR+TH(K)	TRID0035
1	CONTINUE	TR I D 0 0 36

•

	TE (IBC) EQ C) CQ TQ 4	TR I D00 37
		TRIDOG38
		TRIDOCSS
-	$A(1, L) = 2 \cdot \frac{1}{2} \cdot $	TRIDOGAO
B -1	B(1,L) = -A(1,L)	
	GO TO 6	
L,	DO 7 L=1,NGP	TR100042
	8(1,L)=1.0	TRIDOC43
7	A(1,L)=;,.;	TRIDO044
6	IF (JBCP.EQ.0) GD TO 8	TRIDO045
	RP = RWR ** (NGEOM-1)	TR ID0046
	$DO = 1 = 1 \cdot NGP$	TRID0047
C	C(NP-1,L) = 2.0*C(NP-1,L)	TR ID0048
	$B(NP_{1}) = 2 (2 \times B(NP_{1}) - RP \times R(NRG_{1}) \times H$	TRIDO049
		TRIDO050
c	$300 \cdot 11 \cdot 1 - 1$, NCD	TRID0051
۳. ۱		TR 100052
		TRIDO053
11	C(NP-1,L)=0.0	TP 100054
10	CUNTINUE	
	RETURN	
	END	TK1D0056

.

	WEIG0001
$IMPLICIT REAL *8 (A-H_0-7)$	WEIG0002
COMMEN / CNTRL/ EPS1.EPS2.EPS3.EFEK.TH(10).RK1.RK2.BIG.AHOLD(90).	WE IG0003
INGP.NRG.NMAT.NGEOM.IBCL.IBCR.NEG.IAD.NP.NPT(10).IOP.NRVARY,	WEIG0004
2TRVARY(90), MVARY, ITMAXO, ITMAXI, ITO, ITI, KEFP, MCODF, LBIG, JBIG, IAJ,	WEIG0005
	WEIG0006
COMMON /MACY/ SPECT(5). $XA(1(.5).XNUE(10.5).XTR(10.5).XGG(10.5.5).$	WEIG0007
1 CONC (10, 10), D (10, 5), YR (10, 5), CC (11, 10) MAT (10)	WEIG0008
COMMON (E) HY (DHI(201.5) ANORM.BNORM.A(201.5) B(201.5)	WEIGO009
$\frac{1}{1} = \frac{1}{2} \frac{1}{2} \frac{1}{5} \frac{1}{5} = \frac{1}{5} $	WEIG0010
	WEIG0011
55-1 PWR=0.0	WEIG0012
$P = 1 \cdot 0$	WEIG0013
H-TH(I)/NDT(I)	WEIGO014
IMAX = NPT(T) - 1	WEIG0015
	WEIG0016
$DD 2 I=1 \cdot IM\Delta X$	WEIG0017
1.1 = 1.1 + 1	WEIGC018
R=R+H	WEIG0019
IE (NGEOM.EQ.1) RP=1.0	WEIG0020
IF (NGEOM.FQ.2) RP=R	WEIG0021
IF (NGEOM.EQ.3) RP=R*R	WE IG0022
F=H*RP	WEIG0023
$D(1 = 3 + 1 = 1 \cdot NGP)$	WEIG0024
$D(1/3) K=1 \cdot NGP$	WEIG0025
W(JJ+K+L)=(XGG(I+K+L)+EFFK*SPECT(L)*XNUF(I+K))*F	WEIG0026
CONTINUE	WEIG0027
TE (T.EQ.NRG) GO TO 1	WEIG0028
(1 = 1.1 + 1)	WEIG0029
R=R+H	WEIG0030
RP = R**(NGF(M-1))	WEIG0031
$H_2 = TH(I+1)/NPT(I+1)$	WEIG0032
E=0.5*RP	WEIG0033
DO 4 L=1, NGP	WEIG0034
00 4 K=1,NGP	WEIG0035
W(JJ,K,L)=((XGG(I,K,L)+EFFK*SPECT(L)*XNUF(I,K))*H+(XGG(I+1,K,L)+	WEIG0036

. .

4

RWR=RWR+TH(1) WEIG0038 1 CONTINUE WEIG0039 H1=TH(1)/NPT(1) WEIG0040 H2=TH(NRG)/NPT(NRG) WEIG0042 RWF=RWR+TH(NRG) WEIG0042 RWF=RWR**(NGEOM-1) WEIG0043 F1=H1*(1/IOP) WEIG0044 F2=H2*RP WEIG0045 DO 5 L=1,NGP WEIG0046 DO 5 L=1,NGP WEIG0045 DO 5 L=1,NGP WEIG0046 O 5 K=1,NGP WEIG0046 GO TO 5 K=1,NGP WEIG0047 WEIG0047 WEIG0048 WU1,K,L)=0.0 WEIG0047 WEIG0050 WEIG0050 GO TO 8 WEIG0050 WEIG0050 WEIG0052 WEIG0050 WEIG0052 WEIG0052 WEIG0053 WEIG0053 WEIG0055 GO TO 5 WEIG0055 S CONTINUE WEIG0055 RETURN WEIG0057 WEIG0056 WEIG0057 WEIG0057 WEIG0057 WEIG0058 WEIG0057 WEIG0059 WEIG0059 WEIG0055 WEIG0057 <		1 EFFK*SPECT(L)*XNUF(I+1,K))*H2)*F	WEIG0037
1 CONTINUE WEIG0039 H1=TH(1)/NPT(1) WEIG0040 H2=TH(NRG)/NPT(NRG) WEIG0041 RWP=RWR+TH(NRG) WEIG0042 RP=RWR**(NGEOM-1) WEIG0044 F1=H1*(1/IOP) WEIG0045 D0 5 L=1,NGP WEIG0045 D0 5 L=1,NGP WEIG0046 D0 5 L=1,NGP WEIG0047 G0 5 K=1,NGP WEIG0047 WEIG0047 WEIG0048 WEIG0048 WEIG0045 D0 5 K=1,NGP WEIG0046 D0 5 K=1,NGP WEIG0047 WEIG0047 WEIG0047 WEIG0048 WEIG0047 WEIG0049 WEIG0047 WEIG0049 WEIG0049 WO(1,K,L)=0.0 WEIG0050 WEIG0051 WEIG0051 % WEIG0052 WEIG0053 % WO(1,K,L)=0.0 WEIG0053 % WO(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 % WEIG0055 WEIG0055 % WEIG0055 WEIG0056 % WEIG0056 WEIG0057 % WEIG0057 WEIG0056 % WEIG0057 WEIG0057 <t< td=""><td></td><td>RWR=RWR+TH(I)</td><td>WEIG0038</td></t<>		RWR=RWR+TH(I)	WEIG0038
H1=TH(1)/NPT(1) WEIG0040 H2=TH(NRG)/NPT(NRG) WEIG0041 RWF=RWR*TH(NRG) WEIG0042 RP=RWR**(NGEOM-1) WEIG0043 F1=H1*(1/IOP) WEIG0044 F2=H2*RP WEIG0044 D0 5 L=1,NGP WEIG0046 D0 5 L=1,NGP WEIG0047 IF (JBCL) 6,6,7 WEIG0047 G0 T0 8 WEIG0048 WEIG0050 WEIG0051 WEIG0051 WEIG0052 G0 T0 8 WEIG0052 Y W(1,K,L)=0.0 WEIG0052 WEIG0052 WEIG0052 G0 T0 5 WEIG0052 Y W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 Y W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0057 WEIG0054 WEIG0055 WEIG0055 Y WIND WEIG0055 WEIG0054 Y WIND WEIG055 WEIG0055 Y WIND WEIG0055 WEIG0055 Y WIND WEIG0055 WEIG0055 Y WIND WEIG0055 WEIG0057 Y WIND WEIG0057 WEIG0057 Y WIND WEIG0057 <td>1</td> <td>CONTINUE</td> <td>WEIG0039</td>	1	CONTINUE	WEIG0039
H2=TH(NRG)/NPT(NRG) WEIG0041 RWP=RWR+TH(NRG) WEIG0042 RP=RWR**(NGE0M-1) WEIG0043 F1=H1*(1/I0P) WEIG0044 F2=H2*RP WEIG0045 D0 5 L=1,NGP WEIG0046 D0 5 L=1,NGP WEIG0047 IF (JBCL) 6,6,7 WEIG0047 G0 T0 8 WEIG0047 WEIG0050 WEIG0050 WEIG0051 WEIG0052 WEIG0052 WEIG0053 WI(1,K,L)=0.0 WEIG0055 SONTINUE WEIG0055 RETURN WEIG0054 WEIG0055 WEIG0056	-	H1 = TH(1) / NPT(1)	WEIG0040
RWR=RWR+TH(NRG) WEIG0042 RP=RWR**(NGE0M-1) WEIG0043 F1=H1*(1/I0P) WEIG0044 F2=H2*RP WEIG0045 D0 5 L=1,NGP WEIG0046 D0 5 K=1,NGP WEIG0047 IF (JBCL) 6,6,7 WEIG0047 G0 T0 8 WEIG0049 G0 T0 8 WEIG0051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 G0 T0 5 WEIG0055 5 CONTINUE WEIG0055 7 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0057		H2=TH(NRG)/NPT(NRG)	WEIG0041
RP=RWR**(NGEOM-1) WEIGO043 F1=H1*(1/IOP) WEIGO044 F2=H2*RP WEIGO045 DD 5 L=1,NGP WEIGO047 DD 5 L=1,NGP WEIGO047 DF (JBCL) 6,6,7 WEIGO048 6 W(1,K,L)=0.0 WEIGO050 7 W(1,K,L)=0.0 WEIGO051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 GO TO 5 WEIG0053 GO TO 5 WEIG0053 GO TO 5 WEIG0054 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 WEIG0055 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 WEIG0055 WEIG0055 9 WEIG0055 WEIG0055 9 WEIG0055 WEIG0055 9 WEIG055 WEIG0055 9 WEIG055 WEIG055 9 WEIG055 WEIG055 9 WEIG055 WEIG055 9 WEIG055 WEIG055 9 WEIG055 <t< td=""><td></td><td>8WR = RWR + TH(NRG)</td><td>WEIG0042</td></t<>		8WR = RWR + TH(NRG)	WEIG0042
F1=H1*(1/I0P) WEIG0044 F2=H2*RP WEIG0045 DD 5 L=1,NGP WEIG0046 DD 5 K=1,NGP WEIG0047 IF (JBCL) 6,6,7 WEIG0047 6 W(1,K,L)=0.0 WEIG0049 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 GO TO 5 WEIG0054 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0054 RETURN WEIG0057		$2P = P \square P \times (N \cap P \cap M - 1)$	WEIG0043
F2=H2*RP WEIG0045 D0 5 L=1,NGP WEIG0046 D0 5 K=1,NGP WEIG0047 IF (JBCL) 6,6,7 WEIG0047 6 W(1+K,L)=0.0 WEIG0049 G0 T0 8 WEIG0050 7 W(1,K,L)=0.0 WEIG0050 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 G0 T0 5 WEIG0054 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0056 8 RETURN WEIG0057 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0056 9 WEIG0057 WEIG0057 9 WEIG0058 WEIG0057 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0057 9 WEIG0059 WEIG0059		$E_1 \rightarrow H_1 \pm (1/T \cap D)$	WEIG0044
DD 5 L=1, NGP WEIG0046 DD 5 K=1, NGP WEIG0047 IF (JBCL) 6,6,7 WEIG0048 6 W(1,K,L)=0.0 WEIG0050 7 W(1,K,L)=0.0 WEIG0051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 GO TO 5 WEIG0055 5 CONTINUE WEIG0055 7 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPECT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(NRG,K) WEIG0055 9 W(NP,K,L)=(NRG,K) WEIG0055 9 W(NP,K,L)=(NRG,K) WEIG0055 9 W(NP,K) WEIG0055 9 W(NP,K) WEIG0055			WEIG0045
D0 5 K=1,NGP WEIG0047 IF (JBCL) 6,6,7 WEIG0048 6 W(1,K,L)=0.0 WEIG0050 7 W(1,K,L)=0.0 WEIG0051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 GO TO 5 WEIG0054 10 W(NP,K,L)=0.0 WEIG0055 5 CONTINUE WEIG0055 6 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(COG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(COG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(COG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(COG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0056 9 W(NP,K,L)=(COG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0057		$\frac{1}{100} = \frac{1}{100} = \frac{1}$	WEIGN046
00 5 K=1,N5P WEIG0041 IF (JBCL) 6,6,7 WEIG0048 6 W(1,K,L)=0.0 WEIG0050 7 W(1,K,L)=0.0 WEIG0051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 G0 T0 5 WEIG0054 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0056 RETURN WEIG0057 6 WEIG0057 WEIG0056 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0055 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0056 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 WEIG0057		$\frac{1}{2} \frac{1}{2} \frac{1}$	WE100047
1F (JBCL) 6,6,7 WEIG0048 6 W(1,K,L)=0.0 WEIG0050 7 W(1,K,L)=0.0 WEIG0051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 9 W(NP,K,L)=0.0 WEIG0055 9 WEIG0055 WEIG0055 <t< td=""><td></td><td></td><td></td></t<>			
6 W(1,K,L)=0.0 WEIG0050 7 W(1,K,L)=0.0 WEIG0051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 9 W(NP,K,L)=0.0 WEIG0053 9 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPECT(L)*XNUF(NRG,K))*F2 WEIG0055 9 WEIG0056 WEIG0056 9 WEIG0057 WEIG0057 9 WEIG0058 WEIG0058 9 WEIG0058 WEIG0058 9 WEIG0058 WEIG0058 9 WEIG0058 WEIG0058 9 WEIG0058	,		WEICOC40
GU TU 8 WEIG0050 7 W(1,K,L)=0.0 WEIG0051 8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 GO TO 5 WEIG0054 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPECT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0056 RETURN WEIG0057 WEIG0057 GU TO S WEIG0057	6	$W(1, K, L) = \{0, 0\}$	WEIG0049
7 W(1,K,L)=0.0 8 IF (JBCR) 9,9,10 9 W(NP,K,L)=0.0 GO TO 5 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPFCT(L)*XNUF(NRG,K))*F2 5 CONTINUE RETURN 5 CONTINUE 7 WEIG0055 8 WEIG0056 9 WEIG0057 9 WEIG0057	_ ·	GO TO 8	WEIGUUSU
8 IF (JBCR) 9,9,10 WEIG0052 9 W(NP,K,L)=0.0 WEIG0053 GO TO 5 WEIG0054 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPECT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0056 RETURN WEIG0057 WEIG0057 600 FND WEIG0058	7	W(1,K,L)=0.0	WEIG0051
9 W(NP,K,L)=0.0 WEIG0053 G0 T0 5 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPECT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0056 7 RETURN WEIG0057 8 WEIG0057 WEIG0057 9 WEIG0057 WEIG0057	8	IF (JBCR) 9,9,10	WEIG0052
G0 T0 5 WEIG0054 10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPECT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0056 RETURN WEIG0057 SND WEIG0058	9	W(NP,K,L)=0.0	WEIG0053
10 W(NP,K,L)=(XGG(NRG,K,L)+EFFK*SPECT(L)*XNUF(NRG,K))*F2 WEIG0055 5 CONTINUE WEIG0056 RETURN WEIG0057 CND WEIG0058		GO TO 5	WEIG0054
5 CONTINUE RETURN END	10	$W(NP \cdot K \cdot I) = (XGG(NRG \cdot K \cdot L) + EFFK * SPECT(L) * XNUF(NRG \cdot K)) * F2$	WEIG0055
RETURN WEIG0057	5	CONTINUE	WE IG0056
CND WEIG0058	_	RETIIRN	WE 160057
		END	WEIG0058

SUBROUTINE SOURCE(1)	SOUR0001
$IMPLICIT REAL *8 (\Delta - H_{\bullet} \Omega - 7)$	SOUR0002
COMMON /CNTRL/ EPS1.EPS2.EPS3.EEEK.TH(10).RK1.RK2.BIG.AHOLD(90).	SOUR0003
1NGP-NRG-NMAT-NGEDM-JBCL-JBCR-NEG-JAD-NP-NPT(10)-IOP-NRVARY.	SOURCOO4
2IRVARY (96) . MVARY. ITMAX 1. ITMAX 1. ITO. ITI. KEEP. MCODE. LBIG. JBIG. IAJ.	SOUR 0005
3. IDIM. THOLD (90)	SOUR0006
COMMON /MACY/ SPECT(5).XA(10.5).XNUE(10.5).XTR(10.5).XGG(10.5.5).	SOUROOO7
$1 CONC(10, 10) \cdot D(10, 5) \cdot XR(10, 5) \cdot CC \cdot CT \cdot IDMAT(10)$	SOUR OCOB
COMMON /ELHX/ PHI(201.5) .ANORM.BNORM.A(201.5) .B(201.5) .	SOUR0009
$(-C(201.5)) \cdot W(201.5.5) \cdot S(201.5)$	SOUROO10
DD = 1 I = 1 NP	SOUR 0011
	SOUROO12
$DO = 2 I = 1 \cdot NP$	SOUROO13
DO = 2 K = 1 NGP	SOUROO14
IF $(IAJ,FQ,0)$ GO TO 3	SOUROO15
IF $(IAJ \cdot EQ \cdot 1)$ GO TO 4	SOUR 0016
S(J,L) = S(J,L) - W(J,K,L) * PHI(J,K)	SOUROO17
GO TO 2	SOUR0018
S(J,L)=S(J,L)-W(J,L,K)*PHI(J,K)	SOUR 0019
CONTINUE	SOUR0020
RETURN	SOUR0021
END	SOUROO22

•

	SUBROUTINE MATINV(X.UL.DD.DU.Y.N)	MATIOGO1
	IMPLICIT REALER (Δ -H.O-Z)	MATI0002
	DIMENSION X(1).DL(1).DD(1).DU(1).Y(1).WA(201),GA(201)	MATIOCO3
	WA(1) = DI(1) / DD(1)	MATIO004
	$G\Delta(1) = Y(1) / DD(1)$	MATI0005
	$DO = 1 K = 2 \cdot N$	MATI0006
	$T_{1=1}^{\circ} C_{1}^{\circ} (D_{1}(K) - D_{1}(K-1) * W \Delta (K-1))$	MAT10007
	$\psi \Delta(\mathbf{k}) = D H(\mathbf{k}) * T I$	8000ITAM
	GA(K) = (Y(K) - D) (K - 1) * GA(K - 1)) * T1	MATIO009
1	CONTINUE	MATIOD10
1	X(N) = GA(N)	MATIO011
	KMAX = N - 1	MATIO012
	$D \cap 2$ K=1.KMAX	MATI0013
	J=N-K	MATIO014
	X(J) = GA(J) - WA(J) * X(J+1)	MATIO015
2	CENTINUE	MATI 0016
20	PETURN	MATIO017
		MATIO018

.

END

.

	SUBROUTINE SOLVE	SOLVOOO1
	IMPLICIT REAL*8 (A-H,O-Z)	SOLV0002
	COMMEN /CNTRL/ EPS1, EPS2, EPS3, EFFK, TH(10), RK1, RK2, BIG, AHOLD(90),	SULA0003
	1NGP,NRG,NMAT,NGEOM,JBCL,JBCR,NFG,JAD,NP,NPT(10),TOP,NRVARY,	SOLV0004
	2 IRVARY (90), MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	SOLV0005
	3 JDUM, IHOL) (90)	SOLV0006
	COMMON /FLUX/ PHI(201,5) ,ANORM,BNORM,A(201,5) ,B(201,5) ,	SOLV0007
	1 = C(201,5) + W(201,5,5) + S(201,5)	SOLV0008
	DIMENSION U(201), XL(201), D(201), X(201), Y(201)	SOLV0009
	FMAX=0.0	SOLV0010
	DO 1 L=1.NGP	SOLV0011
	CALL SOURCE(L)	SULA0015
	DD 2 J=1, NP	SOLV0013
	$U(\mathbf{J}) = A(\mathbf{J}, \mathbf{L})$	SOLV0014
	XL(J)=C(J,L)	SOLVOO15
	D(J)=B(J,L)	SOLV0016
	Y(J) = S(J,L)	SOLV0017
2	CONTINUE	SOLV0018
	CALL MATINV(X,XL,D,U,Y,NP)	SOLV0019
	IF (KEEP) 5,5,3	S0LV0020
•	3 JJJ=NP-1	SOLV0021
	DO 4 J=2, JJJ	SOLV0022
	CC=X(J)/PHI(J,L) - 1.0D+CO	SOLV0023
	F=DABS(CC)	SOLV0024
	IF(FMAX.GT.F)GD TO 4	SOLV0025
	LBIG=L	SOLV0026
	JRIG=J	SOLV0027
	BIG=PHI(J,L)	SOLV0028
4	CONTINUE	SOLV0029
5	DO = 1 J = 1, NP	SOLV0030
	PHI(J,L)=X(J)	SOLVOC31
1	CONTINUE	SOLV0032
	RETURN	SOLV0033
	END	SOLV0034

SUBROUTINE RESCAL	RESC0001
IMPLICIT REAL*8 (A-H.O-Z)	RESCO002
COMMON /CNTRL/ EPS1.EPS2.EPS3.EFFK.TH(10),RK1,RK2.BIG,AHOLD(90),	RESC0003
1 NGP.NRG.NMAT.NGEOM.JBCL.JBCR.NEG.JAD.NP.NPT(1J), IOP.NRVARY,	RESC0004
2IRVARY(90), MVARY, ITMAXD, ITMAXI, ITD, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	RESC0005
3 JDUM. IHOLD(90)	RESC0006
COMMON /MACX/ SPECT(5),XA(1(,5),XNUF(10,5),XTR(10,5),XGG(10,5,5),	RE SC0007
1 CONC(10.10).D(10.5).XR(10.5).CC.CT.IDMAT(10)	RESC0008
COMMON /FLUX/ PHI(201,5) ,ANORM, BNORM, A(201,5) ,B(201,5) ,	RESC0009
1 = C(201,5) + W(201,5,5) + S(201,5)	RESCOU10
ABS(ZZ) = DABS(ZZ)	RESCOC11
SCRT(ZZ) = DSORT(ZZ)	RESCO012
BNORM=).	RESC0013
00 1 J=1,NP	RESCOC14
DO = 1 L = 1, NGP	RESC0015
BNORM=BNORM+PHI(J,L)*PHI(J,L)	RESC0016
BNORM=SQRT(BNORM)	RESCO017
DNDRM=ANORM/BNORM	RESC0018
00 2 J=1,NP	RESC0019
DO 2 L=1,NGP	RESC0020
PHI(J,L)=PHI(J,L)*DNURM	RE SC 0021
RK2=BNORM/ANORM	RESC0022
IF(KEFP)3+3+4	RESCOC23
BIG=ABS(PHI(JBIG,LBIG)-BIG)	RESC0024
CONTINUE	RESC0025
RETURN	RESCOC26
END	RESC0027

	SUBROUTINE ADJUST	ADJUC001
	IMPLICIT REAL*8 (A-H.D-Z)	ADJU0002
	COMMON /CNTPL/ EPS1, EPS2, EPS3, EFFK, TH(10), RK1, RK2, BIG, AHOLD(90),	ADJU0003
	1 NGP • NRG • NMAT • NGEDM • JBCL • JBCR • NFG • JAC • NP • NPT (10) • IOP • NRVARY •	ADJU0004
	21EVARY(90) . MVARY. ITMAXO. ITMAXI. ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	ADJU0005
	3JDUM.THOLD(90)	ADJU0006
	COMMEN /MACX/ SPECT(5).XA(10.5).XNUE(10.5).XTR(10.5).XGG(10.5.5).	ADJU0007
	1 CONC(10.10).D(10.5).XR(10.5).CC.CT.IDMAT(10)	ADJU0C08
	ΔI PHΔ=1.1	ADJU0009
	GO TO (1.2.3). TOP	ADJU0010
1	EFEK = (1, 9 + A) PHA * (1, 9 + PK2) * EFEK	ADJU0011
-	RETURN	ADJU0012
2	$CT=1 \cdot C+AI PHA*(1 \cdot C-RK2)$	ADJU0013
5	00.6 J=1.NRVARY	ADJU0014
	JJ = IRVARY(J)	ADJU0015
	T+(JJ)=(T+T+(JJ))	ADJU0016
6	CONTINUE	ADJU0017
	RETURN	ADJU0018
z	1F (IT0.E0.0) GO TO 7	ADJU0019
	CC=1.0+((CC-1.0)/CC)*((1.0-RK2)/(RK2-RK1))	AD JU0020
	GO TU 8	ADJU0021
7	CC=1.1	ADJU0022
8	$DC = 9 J = 1 \cdot NRG$	ADJU0023
	CONC(MCODE, J) = CC * CONC(MCODE, J)	4DJU0024
q	CONTINUE	ADJU0025
	RETURN	ADJU0026
	END	ADJU0027

•

```
SUBROUTINE FRROR(N)
IMPLICIT REAL*8 (A-H,O-Z)
CCMMON /ERR/IERR
WRITE (6,1) N
FORMAT ('1 ERROR STOP NUMBER',I5)
IERR=1
RETURN
END
```

•

1

ERR00001 ERR00002 ERR00003 ERR00004 ERR00005 ERR00006 ERR00007 ERR00008

SUBROUTINE EDIT	EDIT0001
IMPLICIT REAL $*8$ (Δ -H- Ω -7)	EDIT0002
$COMMCN/POWER/ SIGEM(10.5) \cdot AKTIS(201) \cdot TOTP(10) \cdot SYLI(10) \cdot FISIT(10) \cdot$	ED IT 0003
1 FSDIT(10) .TMETOL(10).SVI IM(10) .FISITM(10).TMETLM(10).ALKGEM(10),	EDITOCO4
2GRPH2(10.5) .GRPHA1(10.5) .GRPHA2(10.5) .ALKGE(10).GRPH1(10.5).	ED IT 0005
3 STS • PHI (201.5) • SR(10.5) • SA(10.5) • SNUF(10.5) • STR(10.5) •	EDITUCO6
4 SGG(10.5.5).01(10.5)	EDIT0007
COMMON /CNTRL/ EPS1.EPS2.EPS3.EEEK.TH(10).RK1.RK2.BIG.AHOLD(90).	ED IT 0008
1NGP • NRG • NMAT • NGEDM • JBCL • JBCR • NEG • JAC • NP • NPT (10) • IOP • NRV AR Y •	ED IT0009
2 IRVARY (90) . MVARY. ITMAXO. ITMAXI. ITO. ITI. KEEP. MCODE, LBIG, JBIG, IAJ,	EDIT0010
3 JDUM• IHOLD(90)	ED ITOO 11
COMMON /MACX/ SPECT (5),XA(10,5),XNUF(10,5),XTR(10,5),XGG(10,5,5),	EDIT0012
1CONC(10,10), D(10,5), XR(10,5), CC, CT, IDMAT(10)	EDITCO13
COMMCN /MICX/ SIGC(10,5) ,SIGTR(10,5) ,XNU(10,5) ,SIGF(10,5),	EDIT0014
1 SIGGG(10,5,5)	ED IT0 015
COMMON /FLUX/ PHI(201,5) ,ANORM,BNORM,A(201,5) ,B(201,5) ,	ED IT001 6
1 C(201,5),W(201,5,5),S(201,5)	EDIT0017
WRITE (6,991)	EDIT0018
WRITE (6,996)	EDIT0019
WRITE (6,997) (1,IHOLD(I),AHOLD(I),I=1,ITO)	EDIT0020
GO TO (1,2,3), IOP	EDIT0021
1 EFFK1=1.0/EFFK	EDIT0022
WRITE (6,993) ((I,J,PHL(I,J),I=1,NP),J=1,NGP)	EDIT0023
WRITE (6,992) EFFK1	EDIT0024
RETURN	EDIT0025
2 WRITE (6,992)RK2	EDIT0026
WRITE $(6,995)$ $(J,TH(J),J=1,NRG)$	ED110027
WRITE (6,993) ((I,J,PHL(I,J),I=1,NP),J=1,NGP)	EDIT0028
RETURN	ED110029
3 WRITE (6,992)RK2	EDITOU30
WRITE $(6,994)$ MVARY, $(J,CONC(MCODE,J), J=1, NRG)$	EDITOUSI
WRITE (6,993) ((I,J,PHL(I,J),I=1,NP),J=1,NGP)	EDITU032
RETURN	EU 11 UU 33
991 FORMAL ('L', 20X, 'PRUGRAM EDIL')	E0110034
$992 \ge 0RMAT (///) = K = EFFEUTIVE = Y_FIX_00J$	ED110933
-993 FURMAL (/// 1+J+PHL(1+J) · · · I=SPACE PUINT, J=GRUUP /0(1)+I3+U1	10110030

12.511	EDIT0037
994 EDRMATI///! CRITICAL CONCENTRATION OF MATERIAL', 15,/(' REGION =',	EDIT0038
1.15.10X.1CONCENTRATION = 1.F10.71)	EDIT0039
495 EDRMAT(/// CRITICAL STZE!./(!THICKNESS OF REGION!.15." ='.F10.5,	EDIT0040
	ED IT0041
996 FORMAT (///! OUTER ITERATION NUMBER OF INNER ITERATIONS EIGENV	EDIT0042
	EDIT0043
997 EOPMAT (17.20%,15,15%,E10,6)	ED IT 0044
	EDIT0045

END

٠

.

	SUBROUTINE AJOINT	AJ010001
	IMPLICIT REAL*8 (A-H.D-Z)	AJ010002
	CUMMON /CNTRL/ EPS1, EPS2, EPS3, EFFK, TH(10), RK1, RK2, BIG, AHOLD(90),	AJ010003
	1 NGP, NRG, NMAT, NGEOM, JBCL, JBCR, NFG, JAD, NP, NPT(12), IOP, NRVARY,	AJOI0004
	ZIRVARY(90), MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	AJ010005
	3 JDUM, 1HOLD(90)	AJ010006
	COMMON /MACX/ SPECT(5),XA(10,5),XNUF(10,5),XTR(10,5),XGG(10,5,5),	AJ010007
	1CONC(10,10), D(10,5), XR (10,5), CC, CT, IDMAT(10)	AJDIQOOB
	COMMON /ERR/IERR	AJ010009
	ABS(ZZ) = DABS(ZZ)	AJ010010
	IAJ=1	AJ010011
	RK1=0.0	AJ010012
	TK=0.9	AJ0I0013
	BTG=1000.0	AJ0I0014
	KEEP=0	AJ010015
	ITI=0	AJ0I0016
2	CALL SOLVE	AJ010017
	CALL RESCAL	AJ0I0018
	ITI=ITI+1	AJ010019
	IF(ITI.GT.ITMAXI) CALL ERROR(1)	AJ010020
	IF(IERR.NE.O) RETURN	AJ010021
	IF(ABS(RK2-TK).LT.EPS1) GO TO 6	AJUI0022
	TK=RK2	A J 0 I 0 0 2 3
	GO TO 2	AJ010024
6	TE (BIG.LT.EPS3) GO TO 100	AJ010025
	BIG=0.0	AJ010026
	KEEP=1	AJ010027
	60 TO 2	AJOI 0028
100	RETURN	AJ010029
	END	AJ010030

.

SUBROUTINE AEDIT	AED10001
IMPLICIT REAL*3 $(A-H, 0-Z)$	AEDI 0002
CUMMUN /CNTRL/ EPS1, EPS2, EPS3, EFFK, TH(10), RK1, RK2, BIG, AHOLD(90),	AEDI0003
1 NGP + NRG + NMAT + NGEOM + JBCL + JBCR + NEG + JAD + NP + NPT (10) + IOP + NRVARY +	AEDI0C04
2IRVARY (90), MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	AEDI0005
3 JDUM, IHOLD(90)	AEDI0006
COMMON /MACX/ SPECT (5), XA(10,5), XNUF(10,5), XTR(10,5), XGG(10,5,5),	AED10007
1CONC(10.1)).D(10.5).XR(10.5).CC.CT.IDMAT(10)	AEDI0008
CEMMON /FLUX/ PHI(201,5) ,ANORM, BNORM, A(201,5) ,B(201,5) ,	AEDI0009
1 $C(201,5) + W(201,5,5) + S(201,5)$	AEDI0010
WRITE (6,991)	AEDI0011
WRITE (6,993) ((I, J, PHI(T, J), I=1, NP), J=1, NGP)	AFD10012
991 FORMAT ('1',20X,'ADJOINT EDIT')	AEDI0013
993 FORMAT(///' I, J, PHIA(I, J) I=SPACE POINT, J=GROUP', /6(15, 13, D12	AEDI0014
1.5))	AEDI0015
RETURN	AEDIC016
END	AEDIO017

•

÷

SUBROUTINE WINI	WINI0001
IMPLICIT REAL*8 (A-H.D-Z)	WINI0002
COMMON/POWER/ SIGFM(10,5) ,AKTIS(201),TOTP(10),SYLI(10),FISIT(10),	WINI0003
1FSDIT(10).TMFT0L(10).SYLTM(10).FISITM(10).TMETLM(10).ALKGEM(10).	WINI0004
2GRPH2(10.5) , GRPHA1(10.5) , GRPHA2(10.5) , ALKGE(10), GRPH1(10.5),	WINI0005
3 STS, PHL (201,5), SR (10,5), SA (10,5), SNUF (10,5), STR (10,5),	WINI0006
4 SGG(1 ⁴ •5•5)•DI(10•5)	WINI0007
COMMON /MACX/ SPECT(5).XA(10.5).XNUE(10.5).XTR(10.5).XGG(10.5.5).	WINI0008
1CONC(1-1)).D(1-5).XP(10.5).CC.CT.IDMAT(1))	WINI0009
COMMON /CNTRL/ EPS1.EPS2.EPS3.EFFK.TH(1C).RK1,RK2,BIG,AHOLD(90),	WINICO10
1NGP.NRG.NMAT.NGEOM.JBCL.JBCR.NFG.JAC.NP.NPT(10),IOP.NRVARY,	WINI0011
2IPVARY(90), MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	WINI0012
3JDUM. THOLD(90)	WINICO13
COMMON/DELTA/ THSA(10,5),THNSE(10,5),THD(10,5),THST(10,5,5),	WINIO014
1 THTPP(10,5), THSTT(10,5), DSAM(10,5), DNSFM(10,5), DDM(10,5),	WIN10015
2 DSTM(10,5,5), DTRPM(10,5), DSTTM(10,5), THSF(10,5), DSFM(10,5),	WINICO16
3 SFU(10,5), SCU(10,5), SUP(10,5), POWED(10), CONCP(10), VNO	WINI0017
COMMON /MICX/ SIGC(10,5) ,SIGTR(10,5) ,XNU(10,5) ,SIGF(10,5),	WINICO18
1 SIGGG(10,5,5)	WINICO19
COMMON/KSWY/_SB(10,5),PPU(10),PU(10),PDU(10),PRS(10),URN(10),	WINIOO20
1 URC(10), SD(10), DOPL(10)	WINI0021
COMMON/CONV/ CRMA(30),NPR,KNA,NCR,ICNA	WINI0022
COMMON/DELFI/ IP,IU	WINI0023
COMMON/ITER/ NIT	WINI0024
NCE=NCR+1	WINI0025
IF (KNA.FQ.1) GO TO 2	WINI0026
IF(NIT.NE.) GO TO 2	WINICO27
READ(5,250) VNO,NPR,NCR	WINI0028
2500 FORMAT(F10.0,215)	WINI0029
IF(NPR.NE.2) GO TO 1	WINI0030
READ(5,252C) IDNA	WINIQ031
2521 FORMAT([5]	WINIQ032
1 READ(5,2510) IP,IU	WINI0033
2510 FORMAT(215)	WINI0034
READ(5,6.3) CONCP(IP),CONCP(IU)	WINI QC 35
60. FORMAT(2F15.0)	WINI0036

	WRITE(6,61%)	WINI0037
	WRITE(6,611) CONCP(IP), CONCP(IU)	WINI0038
611	FORMAT(///5X, ' CONCENTRATION OF PURE MATERIALS')	WINI0039
± 11	FORMAT(///2F15.8)	WINIOG40
	00 9 I=1, NRG	WINIOC41
	DD 9 J=1,NGP	WINICO42
	THSA(I,J)=).(WINI0043
	THSF(I,J)=	WINICO44
	THNSE(I,J)=0.	WINICO45
	THTRP(I,J)=0.0	WINICC46
	THSTT(I,J)=C.C	WINIGO47
	<pre>DSAM(I,J)=0.0</pre>	WINI 0048
	DSFM(I,J)=0.0	WINICO49
	DNSFM(I,J)=0.0	WINI005C
	DTRPM(I,J)=0.0	WINI0051
	OSTTM(I,J)=O O	WINI0052
	SFU(I,J)=0.0	WINI0053
	SCU(I,J)=0.0	WINI0054
	SUP(I,J)=0.0	WINI0055
	SB(I,J)=0.0	WINIOC56
	DO 9 K=1,NGP	WINI0057
	THST(I,J,K)=○.0	WINI0058
	OSTM(I,J,K) = 0.0	WINI0059
9	CONTINUE	WINI0060
	DO 11 I=1,NGP	WINICC61
	DD 11 K=1,NCR	WINICO62
	THSA(K,I)=THSA(K,I)+CONCP(IP)*SIGC(IP,I)	WINIC063
	THSA(K, I) = THSA(K, I) - CONCP(IU) * SIGC(IU, I)	WINI0064
	THSF(K,I)=THSF(K,I)+CONCP(IP)*SIGF(IP,I)	WINI0C65
	THSF(K,I)=THSF(K,I)-CONCP(IU)*SIGF(IU,I)	WINICG66
	THMSF(K,I)=THNSF(K,I)+CONCP(IP)*SIGF(IP,I)*XNU(IP,I)	WIN10067
	THNSF(K,I)=THNSF(K,I)-CONCP(IU)*SIGF(IU,I)*XNU(IU,I)	WINI0068
	THTRP(K,I) = THTRP(K,I) + CONCP(IP) + SIGTR(IP,I)	WINI0069
	THTRP(K,I) = THTRP(K,I) - CONCP(IU) * SIGTR(IU,I)	WINICO70
	DG 11 L=1,NGP	WIN10071
	THST(K,I,L)=THST(K,I,L)+CENCP(1P)*SIGGG(1P,1,L)	WINIO072

	THST(K,I,L)=THST(K,I,L)-CONCP(IU)*SIGGG(IU,I,L)	WIN10073
	THSTT(K,I) = THSTT(K,I) + THST(K,I,L)	WINIOC74
11	CONTINUE	WINI0075
2	DC 13 I=1.NGP	WINIO076
	00 13 K=1.NRG	WINI0077
	DDM(K,I) = -DTRPM(K,I)/(3,0*(STR(K,I)*STR(K,I)))	WINI0078
13	$THD(K \cdot I) = -THTRP(K \cdot I) / (3 \cdot 0 * (STR(K \cdot I) * STR(K \cdot I)))$	WINI0079
	00 60 I=1.NGP	WINI0080
	DO 61 K=1.NCR	WINIO081
	$SFU(K \cdot I) = CONCP(IU) * SIGF(IU \cdot I)$	WINIOC82
	SCU(K,I) = CONCP(IU) * (SIGC(IU,I) - SIGF(IU,I))	WINI0083
	SUP(K,I) = SCU(K,I) + CONCP(IP) * SIGC(IP,I)	WINIOC84
	SB(K,I) = CONC(IU,K) * (SIGC(IU,I) - SIGF(IU,I)) - CONC(IP,K) * SIGC(IP,I)	WINI0085
61	CONTINUE	WINIOC86
	DO 60 K=NCE, NRG	WINICO87
	SFU(K,I) = CONCP(IU) * SIGF(IU,I)	WINIOC88
	SUP(K, I) = 0.0	WINIO089
	SB(K,I)=CONC(IU,K)*(SIGC(IU,I)-SIGF(IU,I))	WINI0090
	SCU(K,I)=CONCP(IU)*(SIGC(IU,I)-SIGF(IU,I))	WINI0091
60	CONTINUE	WINICO92
	DO 10 K=1,NCR	WINI0093
10	SD(K) = CONC(IU, K) * SIGC(IU, 5)	WINI0094
	RETURN	WINI0095
	END	WINI0096

	SUBROUTINE ISCHIS	ISCH0001
•	IMPLICIT REAL*8 (A-H,O-Z)	ISCH0002
	COMMEN/POWER/ SIGFM(10,5) ,AKTIS(201),TOTP(10),SYLI(10),FISIT(10),	I SCH0003
	1FSDIT(10),TMETOL(10),SYLIM(10),FISITM(10),TMETLM(10),ALKGEM(10),	I SCHCOO4
	2GRPH2(10,5) ,GRPHA1(10,5) ,GRPHA2(10,5) ,ALKGE(10),GRPH1(10,5),	I SCH0005
	3 STS,PHL(201,5),SR(10,5),SA(10,5),SNUF(10,5),STR(10,5),	ISCH0006
	4 SGG(10,5,5),01(10,5)	ISCHOOD7
	COMMON /CNTRL/ FPS1, EPS2, EPS3, EFFK, TH(1)), RK1, RK2, BIG, AHOLD(90),	I SCHOOO8
	1NGP,NRG,NMAT,NGEOM,JBCL,JBCR,NFG,JAC,NP,NPT(10),IOP,NRVARY,	ISCH0009
	2IRVARY(90),MVARY,ITMAXO,ITMAXI,ITO,ITI,KEEP,MCODE,LBIG,JBIG,IAJ,	ISCH0010
	3JOUM, IHOLD(9 ^m)	I SCH0011
	COMMON /MACX/ SPECT(5),XA(10,5),XNUF(10,5),XTR(10,5),XGG(10,5,5),	ISCH0012
	1CONC(10,10),D(10,5),XR(10,5),CC,CT, IDMAT(10)	I SCH0013
	COMMON /ERR/IERR	ISCH0014
	COMMON /MICX/ SIGC(10,5) ,SIGTR(10,5) ,XNU(10,5) ,SIGF(10,5),	ISCH0015
	1 SIGGG(10,5,5)	I SCH0016
	COMMON /FLUX/ PHI(201,5) ,ANORM,BNORM,A(201,5) ,B(201,5) ,	ISCH0017
	1 C(201,5) ,W(201,5,5) ,S(201,5)	ISCH0018
	COMMON/KSWY/ SB(10,5),PPU(10),PU(10),PDU(10),PRS(10),URN(10),	I SCH0019
	1 URC(10),SD(10),DOPL(10)	ISCH0020
	COMMON/DELTA/ THSA(10,5),THNSF(10,5),THD(10,5),THST(10,5,5),	I SCHC021
	1 THTRP(10,5), THSTT(10,5), DSAM(10,5), DNSFM(10,5), DDM(10,5),	ISCH0022
	2 DSTM(10,5,5), DTRPM(10,5), DSTTM(10,5), THSF(10,5), DSFM(10,5),	ISCH0023
	3 SEU(10,5), SCU(10,5), SUP(10,5), POWED(10), CONCP(10), VNO	ISCH0024
	COMMON/ITER/ NIT	ISCH0025
	COMMEN/CONV/ CRMA(30),NPR,KNA,NCR,IDNA	ISCH0@26
	DIMENSION BRA(30), SPOL(30), DOPC(30)	ISCH0027
	[FFK1=1.0/EFFK	ISCH0028
	$I = (K N \land E Q \cdot I)$ GD TO 1	I SCH0029
	WRITE (6.992) EFEK1	ISCH0030
	992 EORMAT $(///! K EEEECTIVE = !.E10.6)$	ISCH0031
		I SCH0032
	10 WRITE(6.993) EEEK1	ISCHOC33
	993 FORMAT(///! K EFFECTIVE OF VOIDED CORE ='.F10.6)	I SCH0034
	4=NTT+1	ISCH0035
	SPOL(M) = EEEK1	ISCH0036

	IF(NIT.EQ.0) GO TO 11 LE(DARS(SPOL(M)-SPOL(M-1)) (T 3 20201) CALL EXIT	ISCH0037
11	TEADADSASPOLAMATSPOLAMATIANALIAJAGUGIA CALL LAIA	ISCHOO39
1. 1	TEANT WE GALCO TO 12	ISCH0040
	11 (N11+4N) + (27 - 51) - 12 AVII + (3)	ISCH0041
		TSCH0042
		ISCH0043
U U		ISCH0044
12		ISCH0045
L <i>C</i>	DK-V-V BDEV-C O	ISCH0046
		ISCH0047
		ISCH0048
		ISCH0049
	ESDIN=0.0	ISCH0050
		ISCH0051
	NPT(1) = NPT(1) + 1	ISCH0052
	STSI=STS*0, 33333333333333	ISCH0053
	$DD = 1 + I = 1 \cdot NRG$	ISCH0054
	$TOTP(I) = 3 \cdot 3$	ISCH0055
	$\text{URN}(1) = 2 \cdot 2$	ISCH0056
	URC(L)=0.0	ISCH0057
	PU(L) = 0.0	ISCH0058
	PPU(L)=0.0	ISCH0059
	PRS(L) = 0.0	I SCH0060
	PDU(L)=0.0	ISCH0061
	POWED(L)=0.0	ISCH0062
	SYLD= J.O	ISCH0063
	SYLOM=0.0	ISCH0064
	FISIO=0.0	ISCH0065
	FISIOM=0.3	ISCH0066
	FSDIO=0.€	ISCH0067
	IF(L.FQ.1)G0 TO 2	I SCH0068
	MA = MA + NPT (L-1)	ISCH0069
	K=NPT(L)-2+MA	ISCH0070
	·)=MA ·	I SCHOO71
	GO TO 3	ISCH0072

•

2	K = NPT(1) - 2	I SCH0073
	N=1	ISCH0074
3	DO = 4 I = 1, NGP	ISCHOO75
	TEMP=	ISCHO076
	SYL=C.	ISCH0077
	FISI=0.0	ISCHO078
	FISIM=0.0	ISCH0079
	FSDI=C.	ISCH0080
	DO 5 J=N,K,2	I SCH0081
	$TEMP = TEMP + PHL(J, I) * AKTIS(J) + 4 \cdot 0 * PHL(J+1 \cdot I) * AKTIS(J+1) + PHL(J+2 \cdot I)$	ISCH0082
	1*AKTIS(J+2)	I SCHOO83
	SYL=SYL+PHL(J,I)*PHI(J,I)*AKTIS(J)+4.0*PHL(J+1.I)*PHI(J+1.I)*	I SCH0084
	1AKTIS(J+1) + PHL(J+2,I) * PHI(J+2,I) * AKTIS(J+2)	ISCH0085
5	CONTINUE	I SCHOO86
•	DO = 6 M = 1, NGP	ISCHOO87
	FIS=C.O	ISCH0088
	FSD=₽.	ISCH0089
	DD 7 J = N, K, 2	I SCH0090
	FIS=FIS+PHL(J,M)* PHI(J,I)*AKTIS(J)+4.0*PHL(J+1,M)* PHI(J+1,I)*	I SCH0091
	1AKTIS(J+1)+PHL(J+2,M)* PHI(J+2,I)*AKTIS(J+2)	ISCH0092
	FSD=FSD+PHL(J,M)* PHI(J,I)*AKTIS(J)+4.3*PHL(J+1,M)* PHI(J+1,I)*	ISCH0093
	1AKTIS(J+1)+PHL(J+2,M)*PHI(J+2,I)*AKTIS(J+2)	I SCH0094
7	CONTINUE	ISCH0095
	FISM=FIS*DNSFM(L,M)	ISCH0096
	FIS=FIS*THNSF(L,M)	I SCH0097
	FIS1=FISI+FIS	I SCH0098
	FISIM=FISIM+FISM	I SCH0099
	FSD=FSD*SNUF(L,M)	ISCH0100
	FSDI=FSDI+FSD	ISCH0101
6	CONTINUE	ISCH0102
	FIS!=FISI*SPECT(I)	ISCH0103
	FISIM=FISIM*SPECT(I)	ISCH0104
	FISIO=FISIO+FISI	ISCH0105
	FISICM=FISIOM+FISIM	I SCH0106
	SOI=FSDI*SPECT(I)	ISCH0107
	FSDIC=FSDIO+FSDI	ISCH0108

	UPN(L)=URN(L)+TEMP*SFU(L,I)		ISCH0109
	PPU(L)=PPU(L)+TEMP*THSF(L,I)		ISCH0110
	PP=BP+TEMP*SB(L,I)		ISCH0111
	IF(L.GT.NCR) GO TO 250		ISCH0112
	BRIN=BR		I SCH0113
	GO TO 260		ISCH0114
251	BREX=BREX+TEMP*SB(L,I)		ISCH0115
26	₽U(L)=PU(L)-TEMP*SUP(L,I)		ISCH0116
	URC(L)=URC(L)-TEMP*SCU(L,I)		ISCH0117
	BPU=BRU+TEMP*SCU(L,I)		ISCH0118
	TOTP(L)=TOTP(L)+TEMP*SIGEM(L,I)		ISCH0119
	POWED(L)=POWED(L)+PHL(N,I)*SIGFM(L,I)		ISCH0120
	PRS(L)=PRS(L)+PHL(N,I)*SFU(L,I)*VNO		ISCH0121
	POU(L)=PDU(L)+PHL(N,I)*THSF(L,I)		ISCH0122
	SYLM=SYL*DSAM(L,I)		ISCH0123
	IF(I.NE.5) GO TO 45		ISCH0124
	IF(L.GT.NCR) GO TO 45		ISCH0125
	DOP=DOP+SYL*SD(L)		I SCH0126
	DOPL(L)=SYL		ISCH0127
45	SYL=SYL*THSA(L,T)		ISCH0128
	SYLO=SYLO+SYL		I SCH0129
	SYLOM=SYLOM+SYLM		ISCH0130
4	CONTINUE		ISCH0131
	DOPL(L)=DOPL(L)*STSI		ISCH0132
	TOTP(L)=TOTP(L)*STSI		ISCH0133
	SYLI(L)=SYLO*STSI		I SCH0134
	SYLIM(L)=SYLOM*STSI		ISCH0135
	POWERT=POWERT+TOTP(L)		ISCH0136
	URC(L)=URC(L)*STSI		I SCH0137
	PU(L) = PU(L) * STSI		ISCH0138
	FISIT(L)=FISIO*STSI*EFFK		ISCH0139
	FISITM(L)=FISIOM*STSI*EFFK		ISCH0140
	FSDIT(L)=FSDIO*STSI		ISCH0141
	FSDIN=FSDIN+FSDIT(L)	í	ISCH0142
	URN(L)=URN(L)*STSI		I SCH0143
	PPU(L)=PPU(L)*STSI		I SCH0144

•

1	CONTINUE	ISCH0145
	BR=BR*STSI/POWFRT	ISCH0146
	BRIN=BRIN*STSI/POWERT	ISCH0147
	BREX=BREX#STSI/PUWERT	1 SCH0148
	DOP=DOP*STST/FSDIN	ISCH0149
	BRU=BRU*STST	ISCH0150
	PNORM=1 ng. / POWERT	ISCH0151
	BRU=BRU*PNORM	ISCH0152
•	$\mathbf{F}(\mathbf{KNA}, \mathbf{FO}, 1)$ GO TO 210	I SCH0153
	WRITE(6.521) BR	ISCH0154
	WRITE(6.522) BRIN	ISCH0155
	WRITE(6.523) BREX	I SCH0156
	TE(NPR.NE.1) GO TO 200	ISCH0157
	LE(NIT_EQ.e) GO TO 210	ISCH0158
	BRAINTTLERR	ISCH0159
	$IE(NIT_{1}E0, 1)$ GP TO 210	ISCH0160
	$I = (DABS(BRA(NIT) - BRA(NIT - 1)) \cdot (T - 1) \cdot (COOO1) CALL = FXIT$	ISCH0161
		ISCH0162
21	TE(NPR.NE.3) GD TO 218	ISCH0163
	NI=NIT+1	ISCH0164
	n P C (N T) = n n P	ISCH0165
21	$\Delta = \Delta = 0.0$	ISCH0166
ζ. ι	$\frac{10}{14} = 1 \cdot \text{NRG}$	ISCH0167
	TMETO =0.0	ISCH0168
	TMETOM=0.0	ISCH0169
		ISCHO170
	MA = MA + NPT (I - 1)	ISCH0171
	K = NPT(1) - 2 + MA	ISCH0172
		ISCH0173
		I SCH0174
15	K=NPT(1)-2	ISCH0175
19	N-1	ISCH0176
		ISCH0177
16		ISCH0178
10		I SCH0179
		ISCH0180
		<u>H</u>
		34

	TMETAM=0.0 DO 18 M=IA,NGP TMET=0.0 DO 19 J=N,K,2 TMET=TMET+PHL(J,I)*(PHI(J,I)- PHI(J,M))*AKTIS(J)+4.0*PHL(J+1,I)* 1(PHI(J+1,I)- PHI(J+1,M))*AKTIS(J+1)+PHL(J+2,I)*	ISCH0181 ISCH0182 ISCH0183 ISCH0184 ISCH0185 ISCH0186
19	1(PH1(J+2,I)- PH1(J+2,M))*AK11S(J+2) CONTINUE	ISCH0187
•	TMFTM=TMET*DSTM(L,I,M)	ISCH0189
	TMET=TMET*THST(L,I,M)	ISCH0190
	TMETA=TMETA+TMET	ISCH0191
	TMETAM=TMETAM+TMETM	I SCH0192
18	CONTINUE	ISCH0193
	TMETO =TMETO +TMETA	ISCH0194
'	TME TOM= TME TOM+ TME TAM	I SCH0195
17	CONTINUE	ISCH0196
	TMETOL(L)=TMETO *STSI	ISCH0197
	TMETLM(L) = TMETOM*STSI	15CH0198
14	CONTINUE	12CH0144
	STSIZ=(0.5/STS)	
	90 20 L=L,NRG	
		13000203
	ALKGEM(L)=0.0	1500204
		1 2010203
		ISCH0200
		ISCH0208
		I SCH0209
21	K=NPT(1)-3	ISCH0210
ζ. Ι.	N=2	ISCH0211
22	KA = K + 2	ISCH0212
e i	KB=K+3	ISCH0213
	DO 23 I=1.NGP	ISCH0214
	ALKG=0.0	ISCH0215
	DO 24 J=N,KA	ISCH0216

	$A(J \cdot I) = (PHI(J+1 \cdot I) - PHL(J-1 \cdot I)) * STSIZ$	ISCH0217
	$B(J \cdot I) = (PHI(J+1 \cdot I) - PHI(J-1 \cdot I)) * STSIZ$	ISCH0218
24	CONTINUE	I SCH0219
-	DO_{32} $I=N \cdot K \cdot 2$	ISCH0220
	$\Delta I KG = \Delta I KG + \Delta (J \cdot I) * B (J \cdot I) * A KTIS(J) + 4 \cdot 0 * A (J + 1 \cdot I) *$	ISCH0221
	1 $B(J+1,I)*AKTIS(J+1)+ A(J+2,I)* B(J+2,I)*AKTIS(J+2)$	I SCH0222
32	CONTINUE	ISCH0223
22	IF(1, FQ, 1) = GQ = TQ = 25	ISCH0224
	$GRPH1(I \cdot I) = DI(I - 1 \cdot I) * GRPH2(I - 1 \cdot I) / DI(L \cdot I)$	ISCH0225
	$GRPHA1(I \cdot I) = DI(I - 1 \cdot I) * GRPHA2(I - 1 \cdot I) / DI(L \cdot I)$	ISCH0226
		I SCH0227
25	$GRPH1(1 \cdot I) = 0.0$	I SCH0228
	$GRPHA1(1 \cdot I) = 0.0$	I SCH0229
	$A(1 \cdot I) = 0 \cdot 0$	I SCH0230
	B(1,I)=0.0	ISCH0231
40	AD1=0.0	I SCH0232
	AD2=0.0	ISCH0233
	ADA1=0.0	ISCH0234
	ADA2=0.0	I SCH0235
	DO 41 M=1,NGP	ISCH0236
	CR=SGG(L,M,I)+SPECT(I)*SNUF(L,M)*EFFK	I SCH0237
	CRA=SGG(L,I,M)+SPECT(M)*SNUF(L,I)*EFFK	ISCH0238
	AD1=AD1+CR*FHL(KB,M)	ISCH0239
	AD2=AD2+CR*PHL(KA,M)	I SCH0240
	ADA1=ADA1+CRA*PHI(KB,M)	ISCH0241
	ADA2=ADA2+CRA*PHI(KA,M)	ISCH0242
41	CONTINUE	I SCH0243
	CR=SA(L,I)+SR(L,I)	ISCH0244
	AF1=CR*PHL(KB,I)	I SCH0245
	AF2=CR*PHL(KA,I)	ISCH0246
	AFA1=CR*PHI(KB,I)	ISCH0247
	AFA2=CR*PHI(KA,I)	I SCH0248
	GRPH2(L,I)=AKTIS(KA)*A(KA,I)/AKTIS(KB)+0.5*STS*((AF1-AD1)+	I SCH0249
	1 AKTIS(KA)*(AF2-AD2)/AKTIS(KB))/DI(L,I)	ISCH0250
	GRPHA2(L,I)=AKTIS(KA)*B(KA,I)/AKTIS(KB)+C.5*STS*((AFA1-ADA1)+	ISCH0251
	1 AKTIS(KA)*(AFA2-ADA2)/AKTIS(KB))/DI(L,I)	ISCH0252

		I SCH0253
	ALKO-ALKO+STST	ISCH0254
		I SCH0255
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	ISCH0256
	$\frac{1}{1} \times V \text{TIS}(V \wedge 1) \times 0 \text{S} \times \text{S} \text{S}$	ISCH0257
	1 ANTIS(NATT+) STS	I SCH0258
		I SCH0259
		ISCH0260
		I SCH0261
	ALKGEM(L)=ALKGEM(L)+ALKGM	ISCH0262
23		1 SCH0263
	SYLI(L)=SYLI(L)/FSDIN	ISCH0264
	SYLIM(L)=SYLIM(L)/FSDIN	TSCH0265
	FISII(L) = FISII(L) / FSDIN	I SCH0266
	FISIIM(L)=FISIIM(L)/FSUIN	ISCH0267
	TMETOL(L) = METUL(L)/FSUIN	ISCH0268
	METLM(L) = METLM(L)/FSDIN	I SCH0269
		I SCH0270
		I SCH0271
		I SCH0272
		ISCH0273
		I SCH0274
		ISCH0275
	PU(L)=PU(L) * PNURM	ISCH0276
	PRS(L)=PRS(L)*PNORM	I SCH0277
		ISCH0278
	PUWED(LI=PUWED(LI*PNURM	I SCH0279
	1F(KNA+E9+17-60-10-20 NDITE/(FA() DDUED(1)	ISCH0280
~ ~		ISCH0281
20		I SCH0282
	NPT(1) = NPT(1) = 1	I SCH0283
	DU 70 J=LINP	ISCH0284
		I SCH0285
-	PHL(J)I/FYTE(J)I/TTNUTT CONTINUE	ISCH0286
()		ISCH0287
	PUWERTELUTOU Noite// 504) Dowert	1 SCH0288
	WKTIELO (SAMENI	

		•
504	FORMAT(///! TOTAL POWER=!,F15.7)	I SCH0289
506	FORMAT('OREGION', I3, 10X, 'POWER DENSITY=', 1PD15.7)	ISCH0290
521	FORMAT(///' BREEDING GAIN =',F15.7)	I SCH0291
522	FORMAT(///' INTERNAL BREEDING GAIN =', F15.7)	I SCH0292
523	FORMAT(///' EXTERNAL BREEDING GAIN =', F15.7)	ISCH0293
	RETURN	I SCH0294
	END	ISCH0295

•

.

	SUBROUTINE BASE	BASE0001
	IMPLICIT REAL*8 (A-H,D-Z)	BASE0002
	COMMON/POWER/ SIGFM(10,5) ,AKTIS(201),TOTP(10),SYLI(10),FISIT(10),	BASE0003
	1FSDIT(10),TMETOL(10),SYLIM(10),FISITM(10),TMETLM(10),ALKGEM(10).	BASE0004
	2GRPH2(10,5) ,GRPHA1(10,5) ,GRPHA2(10,5) ,ALKGE(10),GRPH1(10,5),	BASE0005
	3 STS, PHL(201,5), SR(10,5), SA(10,5), SNUF(10,5), STR(10,5).	BASEDOD6
	4 SGG(10,5,5),DI(10,5)	BASE0007
	COMMON /CNTRL/ EPS1.EPS2.EPS3.EEEK.TH(10).RK1.RK2.BIG.AHOLD(90).	BASEDODB
	1NGP • NRG • NMAT • NGEOM • JBCL • JBCR • NEG • JAC • NP • NPT (10) • IOP • NRVARV.	BASEDOOG
	2 IRVARY (90) • MVARY • ITMAXA • ITMAXI • ITA • ITI • KEEP • MCODE • I BIG • IBIG • IA.	BASEOOIO
	3 JOUM. THOLD (90)	BASE0010
	COMMON/COWEZ HA(10), APG(3), WK(99,11), HUL(13), HUR(13), VH (13,5),	BASE0012
	1 VUR(13.5).NOP(10).NBD(10).NOPT.NRE	BASEDOIZ
	COMMON/GREKO/ U21 (13), U2R (13), UVI (13,5), UVR (13,5), V2R (13,5,5),	BASEDOIA
•	1 DU2L(13) • DU2R(13) • DUUL(13) • DUUR(13) • V2L(13.5.5) • VVL(13.5.5)	BASE0015
	2 DVUSR(13.5).VVR(13.5.5).DV2R(13.5).DV2I(13.5).DVVI(13.5).	BASE0016
	3 DVVR(13,5),UVSR(13,5),UVSL(13,5),VUSR(13,5),VUSL(13,5).	BASE0017
	4 DVUSL(13,5), DUVL(13,5), DVUR(13,5), DVUL(13,5), DUVR(13,5),	BASE0018
	5 DUVSR(13,5), DUVSL(13,5), G(99,99)	BASE0019
5		BASE0020
5	NON-ZERO PRODUCTS	BASE0021
2		BASE0022
	DD 69 K=1,NRG	BASE0023
	NOP(K)=2	BASE0024
	HA(K)=0.5*TH(K)	BASE0025
69	CONTINUE	BASE0026
1000	STSI=STS*0.3333333333333333	BASE0027
	NOPT=0	BASE0028
	DO 23 K=1,NRG	BASE0029
	NOPT=NOPT+NOP(K)	BASE0030
23	CONTINUE	BASE0031
	NF=NOPT+1	BASE0032
	DO 5 K=1,NF	BASE0033
	U2L(K)=0.0	BASE0034
	U2R(K)=0.0	BA SE0035
	0U2L(K)=0.0	BASE0036

С С С

	DU2R(K) = 0.0		BASE0037
	DUUL(K)=0.0		BASE0038
	DUUR(K)=0.0		BASE0039
	UUL(K)=0.0		BASE0040
	HUR(K) = 0.0		BASE0041
			BASE0042
			BASE0042
			84550044
			BASEOU
			BASE0049
	UVR(K, I) = 0.03		BASEUU46
	DVUSR(K,I)=0.0		BASE0047
	DVUSL(K,I)=0.0		BASE0048
	DUVSR(K,I)=0.0		BASE0049
	DUVSL(K,I)=0.0		BASE0050
	DV2R(K,I)=0.0		BASE0051
	DV2L(K,I)=0.0		BASE0052
	DVVL(K,I)=0.0		BASE0053
	DVVR(K + I) = 0.0		BASE0054
	UVSR(K,I)=0.0		BASE0055
	UVSL(K,I)=0.0		BA SE0056
	VUSP(K,I)=0.0		BASE0057
	$VUSL(K \cdot I) = 1 \cdot 0$		BASE0058
	$DUVI(K \cdot T) = 0$		BASE0059
	DUVR(K,T)=0.0	·	BASE0060
	DVIIR(K,T)=0.0		BASE0061
			BASE0062
	$DO_{15} = 1 \cdot NGP$		BASE0063
			BA SEOO64
			BASEOO65
			BASEODEE
	$VVU(K, 1, 1) = 0 \cdot 0$		BASE0000
~			BACEAALO
5			DAJEUUDO
	NKE=NKG-L		DASEUUOY
	NBD(1) = NOP(1) + 1	· · · · · ·	BASEUU/U
	DO 1 K=2,NRG		DASEUU/I
	NBD(K)=NBD(K-1)+NUP(K)		BA SEUD 72

U2R(1)=HA(1)*HA(1)*(13.0/35.0-2.0/7.0) UUR(1)=9.0*HA(1)*HA(1)/140.0 DU2R(1)=1.2-0.6 DUUR(1)=-0.6 N=1 R=0.0 DD 2 K=1,NRG	BA SE0074 BASE0075 BASE0076 BASE0077 BASE0078 BASE0079 BASE0080 BASE0081 BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
UUR(1)=9.0*HA(1)*HA(1)/140.0 DU2R(1)=1.2-0.6 DUUP(1)=-0.6 N=1 R=0.0 DO 2 K=1,NRG	BASE0075 BASE0076 BASE0077 BASE0078 BASE0079 BASE0080 BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
DU2R(1)=1.2-0.6 DUUP(1)=-0.6 N=1 R=0.0 DD 2 K=1,NRG	BASE0076 BASE0077 BASE0078 BASE0079 BASE0080 BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
DUUP(1)=-0.6 N=1 R=0.0 DD 2 K=1,NRG	BASE0077 BASE0078 BASE0079 BASE0080 BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
N=1 R=0.0 DD 2 K=1,NRG	BASE0078 BASE0079 BASE0080 BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
R=0.0 DD 2 K=1,NRG	BASE0079 BASE0080 BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
DO 2 K=1, NRG	BASE0080 BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
	BASE0081 BASE0082 BASE0083 BASE0084 BASE0085 BASE0086
M = NOP(K) - 1	BA SE0082 BASE0083 BASE0084 BASE0085 BASE0086
DO 3 $J=1, M$	BASE0083 BASE0084 BASE0085 BASE0086
R=R+HA(K)	BASE0084 BASE0085 BASE0086
N=N+1	BASE0085 BASE0086
U2L(N)=(2.0*HA(K)*HA(K)/7.0)+13.0*HA(K)*(R-HA(K))/35.0	BASE0086
U2R(N)=-(2.0*HA(K)*HA(K)/7.0)+13.0*HA(K)*(R+HA(K))/35.0	0.400000
UUR(N)=(9.0/140.0)*HA(K)*HA(K)+(9.0/70.0)*HA(K)*R	DAJEUUSI
UUL(N)=(-9.0/140.0)*HA(K)*HA(K)+(9.0/70.0)*HA(K)*R	BASE0088
DU2L(N)=(6.0/5.0)*(R-HA(K))/HA(K)+0.6	BASE0089
DU2R(N)=(6.0/5.0)*(R+HA(K))/HA(K)-0.6	BA SE0090
DUUR(N) = -0.6 - 1.2 * R/H4(K)	BASE0091
DUUL(N)=0.6-1.2*R/HA(K)	BASE0092
3 CONTINUE	BASE0093
N=N+1	BASE0094
R=R+HA(K)	BASE0095
2 CONTINUE	BASE0096
R=0.0	BASE0097
DO 4 K=1,NRE	BASE0098
R=R+NOP(K)*HA(K)	BASE0099
N=NBD(K)	BASE0100
U2L(N)=(2.@*HA(K)*HA(K)/7.0)+13.0*HA(K)*(R-HA(K))/35.0	BASE0101
U2R(N)=-(2.G*HA(K+1)*HA(K+1)/7.0)+13.0*HA(K+1)*(R+HA(K+1))/35.0	BASE0102
UUL(N) = UUR(N-1)	BASE0103
UUR(N)=UUL(N+1)	BASE0104
DU2R(N)=1.2*(R+HA(K+1))/HA(K+1)-0.6	BASE0105
DU2L(N) = 1.2*(R-HA(K))/HA(K)+0.6	BASE0106
DUUL(N)=DUUR(N-1)	BASE0107
DUUR(N) = DUUL(N+1)	BASE0108

4	CONTINUE	BASE0109	
	N=1	BASE0110	
	R=00	BASE0111	
	DO 10 K=1,NRG	BASE0112	
	M=NOP(K)-1	BASE0113	
	00 11 J=1,M	BASE0114	
	R=R+HA(K)	BASE0115	
	N=N+1	BASE0116	
	DO 12 I=1,NGP	BASE0117	
	DO 13 L=I,NGP	BASE0118	
	V2R(N,I,L)=((R+HA(K))/105.0-HA(K)/168.0)*HA(K)*HA(K)*HA(K)/	BASE0119	
	1 (DI(K, I) * DI(K, L))	BASE0120	
	V2L(N,I,L)=((R-HA(K))/105.0+HA(K)/168.0)*HA(K)*HA(K)*HA(K)/	BASE0121	
	1 (DI(K,I)*DI(K,L))	BASE0122	
•	VVR(N,I,L)=(-R/140.0-HA(K)/280.0)*HA(K)*HA(K)*HA(K)/(DI(K,I)*	BASE0123	
	1 DI(K,L))	BASE0124	
	VVL(N,I,L)=(-R/140.0+HA(K)/28C.0)*HA(K)*HA(K)*HA(K)/(DI(K,I)*	BASE0125	
	1 DI(K,L))	BASE0126	
13	CONTINUE	BASE0127	
	UVSR(N,I)=((R+HA(K))*11.0/210.0-HA(K)/28.0)*HA(K)*HA(K)/DI(K,I)	BASE0128	
	UVSL(N,I)=(-(R-HA(K))*11.0/210.0 -HA(K)/28.0)*HA(K)*HA(K)/DI(K,I)	BASE0129	
	UVR(N,I)=(-13.0*R/420.0-HA(K)/70.0)*HA(K)*HA(K)/DI(K,I)	BASE0130	
	UVL(N,I)=(13.0*R/420.0-HA(K)/70.0)*HA(K)*HA(K)/DI(K,I)	BASE0131	
	VUSL(N,I)=UVSL(N,I)	BASE0132	
	VUSR(N,I) = UVSR(N,I)	BASE0133	
	VUR(N,I)=(13.0*R/420.0+HA(K)/60.0)*HA(K)*HA(K)/DI(K,I)	BASE0134	
	VUL(N,I)=(-13.0*R/420.0+HA(K)/60.0)*HA(K)*HA(K)/DI(K,I)	BASE0135	
	DUVSR(N,I) = (R+HA(K))*0.1/DI(K,I)	BASE0136	
	DUVSL(N,I) = -(R-HA(K)) * 0.1/DI(K,I)	BASE0137	
	DVUSL(N,I)=DUVSL(N,I)	BASE0138	
	DVUSR(N,I)=DUVSR(N,I)	BASE0139	
	DUVR(N,I)=0.1*R/DI(K,I)	BA SE0140	
	DUVL(N,I) = -DUVR(N,I)	BASE0141	
	DVUR(N,I) = -0.1 * (R + HA(K)) / DI(K,I)	BASE0142	
	DVUL(N,I)=0.1*(R-HA(K))/DI(K,I)	BASE0143	1. A A A A A A A A A A A A A A A A A A A
	DV2R(N,I)=((R+HA(K))*2.0/15.0-0.1*HA(K))*HA(K)/(DI(K,I)*DI(K,I))	BASE0144	
			142

	DV2L(N,I) = ((R-HA(K))*2.0/15.0+0.1*HA(K))*HA(K)/(DI(K,I)*DI(K,I))	BASE0145
	DVVL(N,I)=(HA(K)/(DI(K,I)*DI(K,I)))*(-1.0*R/30.0+HA(K)/60.0)	BASE0146
_	DVVR(N,I)=(HA(K)/(DI(K,I)*DI(K,I)))*(-1.0*R/30.0-HA(K)/60.0)	BASE0147
-	CONTINUE	BASE0148
	CONTINUE	BASE0149
	N=N+1	BA SEO 150
	R=R+HA(K)	BASE0151
	CONTINUE	BASE0152
	DO 14 I=1,NGP	BASE0153
	DO 15 L=I,NGP	BASE0154
	V2L(N,I,L)=((R-HA(K))/105.0+HA(K)/168.0)*HA(K)*HA(K)*HA(K)	BASE0155
	1 /(DI(K,I)*DI(K,L))	BASE0156
	VVL(N,I,L)=VVR(N-1,I,L)	BASE0157
	CONTINUE	BASE0158
	DV2L(N,I)=((R-HA(K))*2.0/15.0+0.1*HA(K))*HA(K)/(DI(K,I)*DI(K,I))	BASE0159
	DVVL(N,I)=DVVR(N-1,I)	BASE0160
	VUL(N,I)=UVR(N-1,I)	BASE0161
	DVUL(N,I)=DUVR(N-1,I)	BASE0162
	CONTINUE	BASE0163
	$R=i \langle \cdot \rangle \cdot C$	BASE0164
	DO 16 K=1,NRE	BASE0165
	R=R+NOP(K)*HA(K)	BASE0166
	N=NBD(K)	BASE0167
	DO 17 I=1,NGP	BASE0168
	DO 18 L=I,NGP	BASE0169
	V2R(N,I,L)=((R+HA(K+1))/105.0-HA(K+1)/168.0)*HA(K+1)*HA(K+1)*HA(BASE0170
	1 K+1)/(DI(K+1,I)*DI(K+1,L))	BASE0171
	V2L(N,I,L)=((R-HA(K))/105.0+HA(K)/168.0)*HA(K)*HA(K)*HA(K)/	BASE0172
	1 (DI(K,I)*DI(K,L))	BASE0173
	VVL(N,I,L)=VVR(N-1,I,L)	BASE0174
	VVR(N,I,L)=VVL(N+1,I,L)	BASE0175
	CONTINUE	BASE0176
	UVSR(N,I)=((R+HA(K+1))*11.0/210.0-HA(K+1)/28.0)*HA(K+1)*HA(K+1)/	BASE0177
	1 DI(K+1,I)	BASE0178
	UVSL(N,I)=(-(R-HA(K))*11.0/210.0 -HA(K)/28.0)*HA(K)*HA(K)/DI(K,I)	BASE0179
	UVR(N,I)=VUL(N+1,I)	BA SE0180
		14 14
	UVL(N,I)=VUR(N-1,I)	BASE0181
----	--	------------------
	VUSL(N,I)=UVSL(N,I)	BASE0182
	VUSR(N, I) = UVSR(N, I)	BASE0183
	VUR(N,I) = UVL(N+1,I)	BA SE0184
	VUL(N,I)=UVR(N-1,I)	BASE0185
	DUVSR(N,I)=(R+HA(K+1))*0.1/DI(K+1,I)	BASE0186
	$DUVSL(N,I) = -(R-HA(K))*) \cdot 1/DI(K,I)$	BASE0187
	DUVR(N,I) = DVUL(N+1,I)	BASE0188
	DVUSL(N,I) = DUVSL(N,I)	BASE0189
	DVUSR(N,I) = DUVSR(N,I)	BASE0190
	DVVL(N,I)=(HA(K)/(DI(K,I)*DI(K,I)))*(-1.0*R/30.0+HA(K)/60.0)	BASE0191
	DVVR(N,I)=(HA(K+1)/(DI(K+1,I)*DI(K+1,I)))*(-1.0*R/30.0-HA(K+1)	BASE0192
	1/60.0)	BASE0193
	DUVL(N,I)=DVUR(N-1,I)	BASE0194
•	DVUR(N,I) = DUVL(N+1,I)	BASE0195
	DVUL(N,I) = DUVR(N-1,I)	BASE0196
	DV2R(N,I)=((R+HA(K+1))*2.0/15.0-0.1*HA(K+1))*HA(K+1)/(DI(K+1,I)	BASE0197
	1 *DI(K+1,I))	BASE0198
	DV2L(N,I)={(R-HA(K))*2.0/15.0+0.1*HA(K))*HA(K)/(DI(K,I)*DI(K,I))	BASE0199
17	CONTINUE	BASE0200
16	CONTINUE	BASE0201
	DO 19 I=1,NGP	BASE0202
	UVR(1,I)=VUL(2,I)	BASE0203
	DUVR(1,I)=DVUL(2,I)	BASE0204
19	CONTINUE	BASE0205
	RETURN	BASE0206
	END	BASE0207

	SUBROUTINE BIGMAT IMPLICIT REAL*8 (A-H,O-Z)	BIGM0001 BIGM0002
	COMMON/POWER/ SIGFM(10,5) ,AKTIS(201),TOTP(10),SYLI(10),FISIT(10), IESDIT(10), THETOL(10), SYLIM(10), FISIT(10), THETOL(10),	BIGMOOD3
	$\frac{1}{2} \frac{1}{1} \frac{1}$	BI GM0004
	$\frac{2}{3} STS_PHI(201 - 5) SP(10 - 5) SA(10 - 5) SA(10 - 5) SAUGULT - 5) STS(10 - 5) SP(10 - 5) SA(10 - 5) SAUGULT - 5) STS(10 - 5) SAUGULT - 5) SAU$	BIGM0005
	4 - SCC(10.5.5) - DI(10.5)	BIGMOOD6
	COMMON /CNTRI/ EDS1.EDS2 EDS3 EEEK THILDI DK1 DK2 DIC AND D/DOA	BIGMOOO7
	1 NGP + NRG - NMAT + NGEAM - 1901 - 1800 - NEC - 140 - NDT (10) - TOD NOVADV	BIGMUUU8 BIGMODOO
	2 IRVARY (90) MVARY ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, IRIC, IRIC, IA I.	BIGMUUU9 BICMOOLO
	3 JDUM. HOLD (90)	BICMOOIU
	COMMON /MACX/ SPECT(5),XA(10,5),XNUF(10,5),XTR(10,5),XGG(10,5,5).	BIGM0012
	1CONC(10,10),D(10,5),XR(10,5),CC,CT,IDMAT(10)	BIGMOO13
	COMMON/COWE/ HA(10), ARG(3), WK(99,11), UUL(13), UUR(13), VUL(13,5),	BIGM0014
	1 VUR(13,5),NOP(10),NBD(10),NOPT,NRE	BIGM0015
	COMMON/GREKO/ U2L(13),U2R(13),UVL(13,5),UVR(13,5),V2R(13,5,5),	BIGMOO16
	1 DU2L(13),DU2R(13),DUUL(13),DUUR(13),V2L(13,5,5),VVL(13,5,5),	BIGM0017
	2 DVUSR(13,5),VVR(13,5,5),DV2R(13,5),DV2L(13,5),DVVL(13,5),	BIGM0018
	3 DVVR(13,5),UVSR(13,5),UVSL(13,5),VUSR(13,5),VUSL(13,5),	BIGM0019
	4 DVUSL(13,5),DUVL(13,5),DVUR(13,5),DVUL(13,5),DUVR(13,5),	BIGM0020
	$\frac{1}{2} DUVSK(13) \frac{1}{2} $	BIGM0021
	$\frac{1}{1} DDV(5) TU(12) S TV(12) S TU(12) S TU(12) S TU(12) S TV(12) S TV(1$	BIGM0022
	$2 \qquad \qquad \text{DII}(13.5) \cdot \text{DV}(13.5) \cdot \text{DII}(13.5) \text{DII}(13.5) \text{DII}(13.5) \text{DV}(13.5) DV$	BIGMOUZ3
	$\frac{2}{100} = \frac{100}{100} = $	BIGMUU24 BICHOO25
C	DINERGION (/ / / / / / / / / / / / / / / / / /	BICMOD26
Č	MATRICES CONSISTING THE DIAGONAL ELEMENTS OF THE BIG MATRIX	BIGM0020
Ċ	ATTICLE CONCLUTING THE BIRGONAL ELEMENTS OF THE DID HANNIN	BIGMOO28
	DO 1 K=1.NRG	BIGM0020
	DO 1 $I=1, NGP$	BIGM0030
	SNUF(K,I)=SNUF(K,I)*EFFK	BIGM0031
1	CONTINUE	BIGM0032
	NAGN=2*NRG+1	BIGM0033
	NOM=2*NOPT*NGP-1	BIGM0034
	DU 24 M=1,NOM	BIGM0035
	UU 29 K=1, NAGN	BIGM0036

				1
	E(M,K) = U(D)			BIGMO037
20				BIGM0038
27				BIGMO039
	CIM NI-O O			BICMODAD
24				BIGHOO40 BIGHOO40
24				BICMOO42
			1	DIGMUCHZ DICMOQ42
	UU 25 I=I,NGP			
	NA=1			BIGMUU44
	N=NA+K			BIGMUU45
	M=1+K	· · · · · ·		BIGM0046
	CR=SPECT(I)*SNUF(1,I)-SR(1,I)-SA(1,I)			BIGMO047
	IF(I.EQ.1) GO TU 100			BIGM0048
	G(M,N) = -DI(1,I) * 0.6 + CR * U2R(1)			BIGMO049
	G(M,N+1)=DI(1,I)*().6+CR*UUR(1)			BIGM0050
	G(M,N+2)=-DI(1,I)*DUVR(1,I)+CR*UVR(1,I)			BIGM0051
	M=M+1			BIGM0052
	G(M,N)=-DI(1,I)*DUUL(2)+CR*UUL(2)			BIGM0053
	G(M,N+1) = -DI(1,I) * (DU2R(2) + DU2L(2)) + CR * (U2R(2))	2)+U2L(2))		BIGMO054
	G(M,N+2)=-DI(1,I)*(DUVSR(2,I)+DUVSL(2,I))+CR	*(UVSR(2,I)+UVSL(2,		BIGM0055
	G(M,N+3)=-DI(1,I)*DUUR(2)+CR*UUR(2)			BIGMO056
	G(M,N+4)=-DI(1,I)* DUVR(2,I)+CR*UVR(2,I)			BIGM0057
	M=M+1			BIGMO058
	G(M,N)=-DI(1,I)*DVUL(2,I)+CR*VUL(2,I)			BIGM0059
	G(M, N+1) = -DI(1, I) * (DVUSR(2, I) + DVUSL(2, I)) + CR	*(VUSL(2,1)+VUSR(2,		BIGM0060
	G(M, N+2) = -DI(1, I) * (DV2R(2, I) + DV2L(2, I)) + CR*(V2R(2,I,I)+V2L(2,I,	[]]	BIGM0061
	G(M, N+3) = -DI(1, I) * DVUR(2, I) + CR * VUR(2, I)		· · ·	BIGM0062
	$G(M \cdot N+4) = -DI(1 \cdot I) * DVVR(2 \cdot I) + CR * VVR(2 \cdot I \cdot I)$			BIGMO063
	$N\Delta = N\Delta + 1$			BIGM0064
	GO TO 101	1. Sec. 1. Sec		BIGM0065
100	G(M,N) = -DT(1,T)*(DU2R(2)+DU2L(2))+CR*(U2R(2))	2) + U2L(2)		BIGM0066
T VE OF	E(M,N) = DI(1,I) * DUUU(2) - CR*UUU(2)			BIGM0067
	$G(M_{*}N+1) = -DI(1, 1) * (DUVSR(2, 1) + DUVSI(2, 1)) + CR$	*(UVSR(2.1)+UVSL(2.)	T))	BIGM0068
	$C(M, M+2) = -DI(1, I) \times DUUR(2) + CR \times UR(2)$			BIGM0069
	$G(M, N+3) = -DI(1, I) \times D[VR(2, I) + CR \times I[VR(2, I)]$	4		BIGM0070
	M=M+1	•		BIGM0071
	$F(M,N) = DI(1,I) \times DV(U(2,I) - CR \times VUU(2,I)$			BIGM0072
	TINTIN DITITIONOLIZIT ON TOLIZIT		•	
				6
	•			₩

	G(M,N) =-DI(1,I)*(DVUSR(2,I)+DVUSL(2,I))+CR*(VUSL(2,I)+VUSR(2,I))	BIGM0073
	G(M,N+1)=-DI(1,I)*(DV2R(2,I)+DV2L(2,I))+CR*(V2R(2,I,I)+V2L(2,I,I))	BIGM0074
	G(M,N+2)=-DI(1,I)*DVUR(2,I)+CR*VUR(2,I)	BIGM0075
	G(M,N+3)=-DI(1,I)*DVVR(2,I)+CR*VVR(2,I,I)	BIGM0076
101	L=2	BIGM0077
	DO 26 $NR=2$, NRG	BIGM0078
	DO 27 $JJ=1,2$	BIGM0079
	JI=2-JJ	BIGM0080
	M=M+1	BIGMOO81
	L=L+1	BIGM0082
	N=NA+K	BIGM0083
	J=NR-JI	BIGM0084
	CRL=SPECT(I)*SNUF(J,I)-SR(J,I)-SA(J,I)	BIGM0085
	CRR=SPECT(I)*SNUF(NR,I)-SP(NR,I)-SA(NR,I)	BIGM0086
•	G(M,N)=-DI(J,I)*DUUL(L)+CRL*UUL(L)	BIGMOO87
	G(M,N+1)=-DI(J,I)*DUVL(L,I)+CRL*UVL(L,I)	BIGM0088
	G(M,N+2)=-DI(J,I)*DU2L(L)-DI(NR,I)*DU2R(L)+CRL*U2L(L)+CRR*U2R(L)	BIGM0089
	G(M,N+3)=-DI(J,I)*DUVSL(L,I)-DI(NR,I)*DUVSR(L,I)+CRL*UVSL(L,I)+	BIGM0090
	1 CRR*UVSR(L,I)	BIGM0091
	G(M,N+4)=-DI(NR,I)*DUUR(L)+CRR*UUR(L)	BIGM0092
	G(M,N+5)=-DI(NR,I)*DUVR(L,I)+CRR*UVR(L,I)	BIGM0093
	M=M+1	BIGM0094
	G(M,N)=-DI(J,I)*DVUL(L,I)+CRL*VUL(L,I)	BIGM0095
	G(M,N+1) = -DI(J,I) * DVVL(L,I) + CRL * VVL(L,I,I)	BIGM0096
	G(M,N+2)=-DI(J,I)*DVUSL(L,I)-DI(NR,I)*DVUSR(L,I)+CRL*VUSL(L,I)+	BIGM0097
	1 CRR*VUSR(L,I)	BIGM0098
	G(M,N+3)=-DI(J,I)*DV2L(L,I)-DI(NR,I)*DV2R(L,I)+CRL*V2L(L,I,I)+	BIGM0099
	1 CRR*V2R(L,I,I)	BIGM0100
	G(M,N+4)=-DI(NR,I)*DVUR(L,I)+CRR*VUR(L,I)	BIGM0101
	G(M,N+5)=-DI(NR,I)*DVVR(L,I)+CRR*VVR(L,I,I)	BIGM0102
	NA=NA+2	BIGM0103
	IF(NR.EQ.NRG) GO TO 28	BIGM0104
27	CONTINUE	BIGM0105
26	CONTINUE	BIGM0106
28	M=M+1 .	BIGM0107
	J=NRG	BIGM0108

		PTCM0100
		DIGMUIU7
	L = L + L	DIGMULLU
	$CK = SPECITIF \times SNUF(J,I) - SK(J,I) - SA(J,I)$	DIGMUIII
	G(M,N) = -DI(J,I) * DUUL(L) + CR * UUL(L)	BIGMUIIZ
	G(M,N+1) = -DI(J,I) * DUVL(L,I) + CR * UVL(L,I)	BIGM0113
	G(M,N+2)=-DI(J,I)*(DU2L(L)+DU2R(L))+CR*(U2L(L)+U2R(L))	BIGM0114
	G(M,N+3)=-DI(J,I)*(DUVSL(L,I)+DUVSR(L,I))+CR*(UVSL(L,I)+UVSR(L,I))	BIGM0115
	G(M,N+4)=-DI(J,I)*DUVR(L,I)+CR*UVR(L,I)	BIGM0116
	M=M+1	BIGM0117
	G(M,N)=-DI(J,I)*DVUL(L,I)+CR *VUL(L,I)	BIGM0118
	G(M,N+1)=-DI(J,I)*DVVL(L,I)+CR *VVL(L,I,I)	BIGM0119
	G(M,N+2)=-DI(J,I)*(DVUSL(L,I)+DVUSR(L,I))+CR*(VUSL(L,I)+VUSR(L,I))	BIGM0120
	G(M, N+3) = -DI(J, I) * (DV2L(L, I) + DV2R(L, I)) + CR*(V2L(L, I, I) + V2R(L, I, I))	BIGM0121
	G(M,N+4) = -DI(J,I) * DVVR(L,I) + CR * VVR(L,I,I)	BIGM0122
•	M=M+1	BIGM0123
	N=N+2	BIGM0124
	L=L+1	BIGM0125
	G(M,N) = -DI(J,I) * DVUL(L,I) + CR * VUL(L,I)	BIGM0126
	G(M,N+1) = -DI(J,I) * DVVL(L,I) + CR * VVL(L,I,I)	BIGM0127
	G(M, N+2) = -DI(J, I) * DV 2 L(L, I) + CR * V 2 L(L, I, I)	BIGM0128
	IF(I.EQ.1) GO TO 102	BIGM0129
	K=K+2*NOPT	BIGM0130
	GO TO 25	BIGM0131
102	K=K+2*N0PT-1	BIGM0132
25		BIGM0133
َرَّمَ		BIGM0134
ř	MATRICES CONSISTING THE ABOVE THE DIAGONAL FLEMENTS OF THE BIG	BIGM0135
ř	MATRIX	BIGM0136
r		BIGM0137
C		BIGMO138
		BIGMO139
		BIGM0140
	DU DD LEIYNDER Viledwiider	BIGMO141
		RIGM0142
	ID-LTI DD 54 I-IR.NGD	BIGMO142
	UU DO I-LOYNOF M-TALI	BIGMO144

¥

	NA = 1		BIGM0145
	N=NA+KW		BIGM0146
	CR=SPECT(L)*SNUF(1,I)		BIGM0147
	IF(L.EQ.1) GO TO 103		BIGM0148
	$G(M \cdot N) = CR \star U2R(1)$		BIGM0149
	$G(M \cdot N+1) = CR \times UUR(1)$		BIGM0150
	$G(M \bullet N+2) = CR * UVR(1 \bullet I)$		BIGM0151
	M=M+1		BIGM0152
103	$G(M \cdot N) = CR * UUU(2)$		BIGM0153
	$G(M \cdot N+1) = CR * (1/2R(2) + 1/2L(2))$		BIGM0154
	$G(M \cdot N+2) = CR * (UVSR(2 \cdot 1) + UVSL(2 \cdot 1))$	``	BIGM0155
	$G(M \cdot N+3) = CR * UUR(2)$		BIGM0156
	$G(M \cdot N+4) = CR \times UVR(2 \cdot I)$		BIGM0157
	M=M+1		BIGM0158
	G(M,N)=CR*VUL(2,L)		BIGM0159
	G(M,N+1)=CR*(VUSR(2,L)+VUSL(2,L))		BIGM0160
	G(M, N+2) = CR * (V2R(2, L, I) + V2L(2, L, I))		BIGM0161
	G(M,N+3)=CR*VUR(2,L)		BIGM0162
	G(M,N+4)=CR*VVR(2,L,I)		BIGM0163
	NA = NA + 1		BIGM0164
	K=2		BIGM0165
	DO 57 NR=2, NRG		BIGM0166
	DO 58 JJ=1,2		BIGM0167
	JI = 2 - JJ		BIGM0168
	J=NR-JI		BIGM0169
	K=K+1		BIGM0170
	N=NA+KW		BIGM0171
	M=M+1		BIGM0172
	CRL=SPECT(L)*SNUF(J,I)		BIGM0173
	CRR=SPECT(L)*SNUF(NR,I)		BIGM0174
	.G(M,N)=CRL*UUL(K)		BIGM0175
	G(M,N+1)=CRL*UVL(K,I)		BIGM0176
	G(M,N+2)=CRL*U2L(K)+CRR*U2R(K)		BIGM0177
	G(M,N+3)=CRL*UVSL(K,I)+CRR*UVSR(K,I)		BIGM0178
	G(M,N+4)=CRR*UUR(K)	•	BIGM0179
	G(M,N+5)=CRR*UVR(K,I)		BIGM0180

	M=M+1	BIGM0181
	G(M,N) = CRL * VUL(K,L)	BIGM0182
	$G(M,N+1) = CRL \neq VVI(K,L,I)$	BIGM0183
	G(M.N+2)=CRL*VUSL(K.L)+CRR*VUSR(K.L)	BIGM0184
	$G(M \cdot N + 3) = CRL * V2L(K \cdot L \cdot I) + CRR * V2R(K \cdot L \cdot I)$	BIGM0185
	$G(M \cdot N+4) = CRR \neq VUR(K \cdot L)$	BIGM0186
	$G(M \cdot N + 5) = CRR * VVR(K \cdot L \cdot I)$	BIGM0187
	NA=NA+2	BIGM0188
	IF(NR.EQ.NRG) GD TO 59	BIGM0189
58	CONTINUE	BIGM0190
57	CONTINUE	BIGM0191
59	M=M+1	BIGM0192
	J=NRG	BIGM0193
	K=K+1	BIGM0194
,	N=NA+KW	BIGM0195
	CR=SPECT(L)*SNUF(J,I)	BIGM0196
	G(M,N)=CR*UUL(K)	BIGM0197
	$G(M,N+1)=CR \neq UVL(K,I)$	BIGM0198
	G(M,N+2)=CR*(U2L(K)+U2R(K))	BIGM0199
	G(M,N+3)=CR*(UVSL(K,I)+UVSR(K,I))	BIGM0200
	$G(M, N+4) = CR \times UVR(K, I)$	BIGM0201
	M=M+1	BIGM0202
	G(M,N)=CR*VUL(K,L)	BIGM0203
	G(M,N+1)=CR*VVL(K,L,I)	BIGM0204
	G(M,N+2)=CR*(VUSL(K,L)+VUSR(K,L))	BIGM0205
	G(M,N+3)=CR*(V2L(K,L,I)+V2R(K,L,I))	BIGM0206
	G(M,N+4)=CR*VVR(K,L,I)	BIGM0207
	M=M+1	BIGM0208
	N=N+2	BIGM0209
	K=K+1	BIGM0210
	G(M,N)=CR*VUL(K,L)	BIGM0211
	G(M, N+1)=CR*VVL(K, L, I)	BIGM0212
	G(M,N+2)=CR*V2L(K,L,I)	BIGM0213
	KW=KW+2*NOPT	BIGM0214
56	CONTINUE	BIGM0215
	IF(L.EQ.1) GO TO 104	BIGM0216

	IA=IA+2*NOPT			BIGMO217
	GO TO 55			BIGM0218
104	$IA = IA + 2 \neq NOPT - 1$			BIGM0219
55	CONTINUE			BIGM0220
С				BIGM0221
С	MATRICES CONSISTING THE BELOW THE DIAGONAL	ELEMENTS OF THE	BIG	BIGM0222
С	MATRIX			BIGM0223
Ç				BIGM0224
	KW = ?}			BIGM0225
	00 65 L=1.NGPE			BIGM0226
	IA=2*N()PT*L-1		× · · · ·	BIGM0227
	IB=L+1			BIGM0228
	$DO 66 I = IB \cdot NGP$	•		BIGM0229
	$M = I \Delta + 1$			BIGM0230
•	$N\Delta = 1$			BIGM0231
	N=NΔ+KW			BIGM0232
	$CR = SGG(1 \cdot L \cdot T) + SPECT(T) \times SNUE(1 \cdot L)$			BIGM0233
	IF(1,FQ,1) GO TO 105			BIGM0234
	$G(M \cdot N) = CR \times 112R(1)$	•		BIGM0235
	$G(M, N+1) = CR \times IIIR(1)$			BIGM0236
	$G(M, N+2) = CR \times IVR(1, 1)$			BIGM0237
	M=M+1			BIGM0238
	$G(M,N) = CR \times UU(2)$			BIGM0239
	$G(M, N+1) = CP \times (112P(2) + 112P(2))$			BIGM0240
	$C(M, N+2) = CP \pm (HVSP(2, 1) + HVSI(2, 1))$			BTGM0241
	C(M, N+2)-CD±0000(2)			BIGM0242
	$O(M_1, M+2) = O(M_1, M+2)$			BIGM0243
				BIGM0244
				BIGM0245
	CIM MAIN-CD + IVUCD (2 I) + VUCI (2 I)	•		BIGM0246
	$\frac{G(M + N+1) - G(K + (VOSK(2 + 1) + VOSL(2 + 1))}{G(M + N+2) - G(K + (VOSL(2 + 1) + VOSL(2 + 1))}$			BICM0247
				BICM0241
				RICM0240
	$U \left[M \right] M + 4 J = U K + V V K \left[2 \right] L = 1 J$	•	· · · · · · · · · · · · · · · · · · ·	BIGM0247
		¢		BIGM0251
105				RIGM0252
100				UI UNVE JE

.

	F(M,N) = -CR + U2R(1)		BIGM0253
	G(M,N+1)=CR*UVR(1,L)		BIGM0254
	M=M+1		BIGM0255
	$F(M,N) = -CR \times UUL(2)$		BIGM0256
	$G(M \cdot N) = CR * (U2R(2) + U2L(2))$		BIGM0257
	$G(M \cdot N+1) = CR * (UVSR(2 \cdot L) + UVSL(2 \cdot L))$		BIGM0258
	$G(M \cdot N+2) = CR \times UUR(2)$		BIGM0259
	G(M, N+3) = CR * IVR (2.1)		BIGM0260
	M=M+1		BIGM0261
	$F(M,N) = -CR \times V(1)(2,T)$		BIGM0262
	G(M,N) = CR * (VUSR(2,T) + VUSI(2,T))	`	BIGM0263
	$G(M, N+1) = CR * (V2R(2 \cdot I \cdot I) + V2I(2 \cdot I \cdot I))$		BIGM0264
	$G(M, N+2) = CR \times VIR(2, T)$	•	BIGM0265
	$G(M_*N+3)=CR*VVR(2\cdot 1\cdot 1)$		BIGM0266
106	K=2		BIGM0267
1.0	N = 2		BIGM0268
	DO 68 J = 1.2		BIGM0269
	.11=21.1		BIGM0270
	.I=NRII		BIGM0271
	K=K+1		BIGM0272
	N=NA+KW		BIGM0273
	M=M+1		BIGM0274
	$CRI = SGG(J \cdot I \cdot I) + SPECT(I) + SNUE(J \cdot L)$		BIGM0275
	$CRR = SGG(NR \bullet I \bullet T) + SPECT(T) + SNUF(NR \bullet I)$		BIGM0276
	G(M,N) = CR[*][1][(K)]		BIGM0277
	$G(M, N+1) = CR1 \times UV1 (K_{-1})$		BIGM0278
	$G(M_{*}N+2) = CR[*1 2](K) + CRR*12R(K)$		BIGM0279
	$G(M, N+3) = CR1 \times UVS1 (K \cdot I) + CRR \times UVSR(K \cdot I)$		BIGM0280
	$G(M, N+4) = CRR \times IIIR(K)$		BIGM0281
	$G(M_*N+5) = CRR \times UVR(K_*I_)$		BIGM0282
	M=M+1		BIGM0283
	$G(M,N) = CR [\times V] I (K, I)$		BIGM0284
	$G(M, N+1) = CR1 \times VVI (K+1 + T)$		BIGM0285
	$G(M_N+2) = CR[*VUS](K_1) + CRR*VUSR(K_1)$	i i	BIGM0286
	$G(M_*N+3) = CRI * V21(K \cdot I \cdot T) + CRR*V2R(K \cdot I \cdot T)$		BIGM0287
	$G(M_{\bullet}N+4) = CRR * VUR(K \bullet I)$		BIGM0288
	water for the more than the first mat		

	G(M,N+5)=CRR*VVR(K,L,I) NA=NA+2	BIGM0289 BIGM0290
	TEINR ED NRGI GO TO 69	BIGM0290
68		BIGM0292
67	CONTINUE	BIGM0293
69	M=M+1	BIGM0294
	J=NRG	BIGM0295
	CR=SGG(J,L,I)+SPECT(I)*SNUF(J,L)	BIGM0296
	K=K+1	BIGM0297
	N=NA+KW	BIGM0298
	G(M,N)=CR*UUL(K)	BIGM0299
	G(M,N+1)=CR*UVL(K,L)	BIGM0300
	G(M,N+2)=CR*(U2L(K)+U2R(K))	BIGM0301
	G(M,N+3)=CR*(UVSL(K,L)+UVSR(K,L))	BIGM0302
,	G(M,N+4)=CR*UVR(K,L)	BIGM0303
	M= M+ 1	BIGM0304
	G(M,N)=CR*VUL(K,I)	BIGM0305
	$G(M, N+1) = CR \neq VVL(K, L, I)$	BIGM0306
	$G(M,N+2) = CR \neq (VUSL(K,I) + VUSR(K,I))$	BIGM0307
	G(M, N+3) = CR * (V2L(K, L, I) + V2R(K, L, I))	BIGM0308
	G[M,N+4]=CR*VVR(K,L,1)	BIGM0309
		BIGM0310
		BIGMUSII
		DIGMUSIZ
	$G(M, N+1) = CK \neq VUL(K, 1)$	BICM0314
	$C(M, N+2) = CC \pm V2 L(N+L+1)$	BIGM0315
		BIGMO316
66		BIGN0317
00		BIGM0318
	KW=KW+2*NOPT	BIGM0319
	GO TO 65	BIGM0320
107	KW=KW+2*N0PT-1	BIGM0321
65	CONTINUE	BIGM0322
	DO 95 M=1,NOM	BIGM0323
	DO 95 N=1,NOM	BIGM0324

	G(M,N)=0.01 * G(M,N)		BIGM
95	CONTINUE		BIGN
	CALL WENDO		BIGN
С			BIGN
С	RIGHT HAND SIDE MATRIX		BIGN
С			BIGM
	LB=NRG-2		BIGN
	K=-1		BIGM
	DO 81 I=1.NGP		BIGM
	IE(I.FQ.1) GO TO 116		BIGN
	F(1+K,2)=TU(1,1)		BIGN
	F(1+K,3)=DU(1,I)		BIGM
116	F(2+K,2)=TU(2,1)		BIGM
	F(3+K,2)=TV(2,I)		BIGM
	F(4+K,2)=TUL(3,I)		BIGN
	F(5+K,2)=TVL(3,1)		BIGM
	F(2+K,3)=DU(2,I)		BIGN
	F(3+K,3)=DV(2,I)		BIGN
	F(4+K,3)=DUL(3,I)		BIGN
	F(5+K,3)=DVL(3,I)		BIGN
	N=3		BIGN
	J=2		BIGN
	L=4+K		BIGN
	DO 150 LA=1,LB		BIGM
	J=J+2		BIGM
	M=J+1		BIGM
	F(L,J)=TUR(N,I)		BIGN
	F(L+1,J)=TVR(N,I)		BIGN
	F(L+2,J)=TU(N+1,I)	· · · · ·	BIGN
	F(L+3, J) = TV(N+1, I)		BIGM
	F(L+4,J)=TUL(N+2,I)		BIGM
	F(L+5,J)=TVL(N+2,I)		BIGM
2			BIGN
	F(L,M)=DUR(N,I)		BIG
	F(L+1,M)=DVR(N,I)		BIGM

	F(L+3,M)=DV(N+1,I)		BIGM0361
	F(L+4,M)=DUL(N+2,I)		BIGM0362
	F(L+5,M)=DVL(N+2,I)		BIGM0363
	L=L+4		BIGM0364
	N=N+2		BIGM0365
150	CONTINUE		BIGM0366
	J=J+2		BIGM0367
	M=J+1		BIGM0368
	F(L,J)=TUR(N,I)		BIGM0369
	F(L+1,J)=TVR(N,I)		BIGM0370
	F(L+2,J)=TU(N+1,I)	```	BIGM0371
	F(L+3,J)=TV(N+1,I)		BIGM0372
	F(L+4,J)=TVL(N+2,I)		BIGM0373
С			BIGM0374
	F(L,M)=DUR(N,I)		BIGM0375
	F(L+1,M)=DVR(N,I)		BIGM0376
	F(L+2,M)=DU(N+1,I)		BIGM0377
	F(L+3,M)=DV(N+1,I)		BIGM0378
	F(L+4,M)=DVL(N+2,I)	· ·	BIGM0379
	K=2*NOPT+K		BIGM0380
. 81	CONTINUE		BIGM0381
	DO 94 M=1,NOM	·	BIGM0382
	DO 94 N=1,NAGN		BIGM0383
	$F(M_{0}N) = 0.01 * F(M_{0}N)$	• "·	BIGM0384
94	CONTINUE		BIGM0385
_	CALL DMINV(G,NOM,DT,LW,MW)		BIGM0386
C			BIGMO387
	N=NOM		BIGM0388
	M=NOM	· · · · · ·	BIGM0389
	L= NAGN		BIGM0390
	CALL ELIZA(G,F,WK,N,M,L)		BIGM0391
	RETURN		BIGM0392
	END		BIGM0393

· ·

	UEND 0001
SUDKUUTINE WENUU	WEND0001
$IMP[1U11 REAL + 8 (A-H_{1}U-Z)]$	WENDOUU2
CUMMUN/POWER/ SIGFM(10,5) ,AKTIS(201),101P(10),SYL1(10),FISIT(10),	WEND0003
1FSDIT(10),TMETOL(10),SYLIM(10),FISITM(10),TMETLM(10),ALKGEM(10),	WEND0004
2GRPH2(10,5),GRPHA1(10,5),GRPHA2(1C,5),ALKGE(10),GRPH1(10,5),	WEND0005
3 STS,PHL(201,5),SR(10,5),SA(10,5),SNUF(10,5),STR(10,5),	WEND0006
4 SGG(10,5,5),DI(10,5)	WEND0007
COMMON /CNTRL/ EPS1,EPS2,EPS3,EFFK,TH(10),RK1,RK2,BIG,AHOLD(90),	WEND0008
1NGP,NRG,NMAT,NGEOM,JBCL,JBCR,NFG,JAD,NP,NPT(10),IOP,NRVARY,	WEND0009
2IRVARY(90), MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	WEND0010
3JDUM, IHOLD(90)	WENDO011
COMMON /MACX/ SPECT(5),XA(10,5),XNUF(10,5),XTR(10,5),XGG(10,5,5),	WEND0012
1CONC(10,10),D(10,5),XR(10,5),CC,CT,IDMAT(10)	WEND0013
COMMON/COWE/ HA(10), ARG(3), WK(99,11), UUL(13), UUR(13), VUL(13,5),	WEND0014
1 VUR(13,5),NOP(10),NBD(10),NOPT,NRE	WEND0015
COMMON/ATHENS/ BU(3), BV(3), OLU(5), OLV(5,5), ADU(5), ADV(5), DDU(5),	WEND0016
1 DDV(5),TU(13,5),TV(13,5),TUL(13,5),TUR(13,5),TVL(13,5),TVR(13,5),	WEND0017
2 DU(13,5), DV(13,5), DUL(13,5), DUR(13,5), DVL(13,5), DVR(13,5)	WEND0018
COMMON/DELTA/ THSA(10,5), THNSF(10,5), THD(10,5), THST(10,5,5),	WEND0019
1 THTRP(10.5), THSTT(10.5), DSAM(10.5), ENSFM(10.5), DDM(10.5),	WEND0020
2 DSTM(10,5,5), DTRPM(10,5), DSTTM(10,5), THSF(10,5), DSFM(10,5),	WEND0021
3 SEU(10.5).SCU(10.5).SUP(10.5).POWED(10).CONCP(10).VNO	WEND0022
	WEN00023
	WEND0024
*** ***	WEND0025
$DO(1) = 1 \cdot NBC$	WENDO026
DO = 1 + T = 1 + NCP	WEND0027
CP(1 - 1) + CP(1 - 1) + CP(1 - 1)	WEND0028
	WENDOO20
*** *** CTC1_CTC+1 00000000000	WENDOO31
NFTTI=NFTTITT	WENDAA22
L=1	MENDO034
	HENDOO25
HSW=HA(1)#HA(1)	WENDUU33
N1=K+Z	MENUUU 30

С С С

1 C

	DO 40 I=1.NGP	WEND0037
	DLU(I) = 0.0	WEND0038
	$DO 41 J=1 K \cdot 2$	WEND0039
	DO 42 JA=1.3	WEND0040
	JI = J + JA - I	WEND0041
	ARG(JA) = AKTIS(N1) - AKTIS(JI)	WEND0042
	BU(JA) = (ARG(JA) * ARG(JA) / HSQ) * (3.0-2.0 * ARG(JA) / HA(1)) * AKTIS(JI)	WEND0043
42	CONTINUE	WEND0044
	J1=J+1	WEND0045
	.12=.1+2	WEND0046
	$\Pi \cup (I) = \Pi \cup (I) + PHL (J, I) + BU(1) + 4 \cdot 0 + PHL (J1, I) + BU(2) + PHL (J2, I) + BU(3)$	WEND0047
41	CONTINUE	WEND0048
	OLU(I)=OLU(I)*STSI	WEND0049
40	CONTINUE	WEND0050
	DO 43 I=1.NGP	WEND0051
	ADU(I)=0.0	WEND0052
	DDU(I) = 0.0	WEND0053
	DO 44 M=1, NGP	WEND0054
	PROS=(THD(1,I)/DI(1,I))*(SGG(1,M,I)+SPECT(I)*SNUF(1,M))-THST(1,M	WEND0055
	1 ,I)-SPECT(I)*THNSF(1,M)*EFFK	WEND0056
	PROD=(DDM(1,I)/DI(1,I))*(SGG(1,M,I)+SPECT(I)*SNUF(1,M))-DSTM(1,M	WEND0057
	1 ,I)-SPECT(I)*DNSFM(1,M)*EFFK	WEND0058
	ADU(I)=ADU(I)+PROS*OLU(M)	WEND0059
	DDU(I)=DDU(I)+PROD*OLU(M)	WEND0060
44	CONTINUE	WEND0061
	AF = THSA(1,I)+THSTT(1,I)-(THD(1,I)/DI(1,I))*SR(1,I)	WEND 006 2
	DF =DSAM(1,I)+DSTTM(1,I)-(DDM(1,I)/DI(1,I))*SR(1,I)	WEND0063
	TU(1,I) = AF $*OLU(I) + ADU(I)$	WEND0064
	DU(1,I)=DF *OLU(I)+DDU(I)	WEND0065
43	CONTINUE	WEND0066
	KK=1	WEND0067
	MA=0	WEND0068
	DO 45 L=1,NRG	WEND0069
	KK=KK+1	WEND0070
	HSQ=HA(L) *HA(L)	WEND0071
	TE () EO 1) CO TO 44	WEND0072

	MA=MA+NPT(L-1)	WEND0073
	K=NPT(L)-2+MA	WENDO074
	N=MA	WEND0075
	K1=MA+0.5*NPT(L)-2+0.5	WEND0076
	N1 = K1 + 2	WEND0077
	K2=K+2	WEND0078
	GO TO 47	WEND0079
46	K = NPT(1) - 2	WEND0080
• • •	N=1	WEND0081
	$K1 = (NPT(1) - 1) \neq 0, 5 - 1 + 0, 5$	WEND0082
	N1=K1+2	WEND0083
	$K_{2} = K_{+2}$	WEND0084
47	DO 48 T=1.NGP	WEND0085
•••	D(U(I)=0.0	WEND0086
	DO 2 M=1.NGP	WEND0087
2	O(V(M, I) = 0.0	WEND0088
6	$DO 49 J = N \cdot K I \cdot 2$	WEND0089
	DO 50 JA=1.3	WEND0090
	JI = J + JA - 1	WEND0091
	ARG(JA) = AKTIS(JI) - AKTIS(N)	WEND 00 92
	$BU(JA) = (ARG(JA) * ARG(JA) / HSQ) * (3 \cdot 0 - 2 \cdot 0 * ARG(JA) / HA(L)) * AKTIS(JI)$	WEND0093
	BV(JA)=(ARG(JA)*ARG(JA)/(DI(L,I)*HA(L)))*(-1.C+ARG(JA)/HA(L))*	WEND 00 94
	1 AKTIS(JI)	WEND0095
50	CONTINUE	WEND0096
	J1=J+1	WEND0097
	$J_{2}^{2}=J_{2}^{2}$	WEND0098
	OLU(I)=OLU(I)+PHL(J,I)*BU(1)+4.0*PHL(J1,I)*BU(2)+PHL(J2,I)*BU(3)	WEND0099
	DO 49 M=1.NGP	WEND0100
	01 V (M.I)=01 V (M.I)+PHL (J.M)*BV(1)+4.C*PHL(J1,M)*BV(2)+PHL(J2,M)*	WEND0101
	1 BV(3)	WEND0102
49	CONTINUE	WEND0103
• •	$D_{1} = 1 + 1 + K + 2$	WEND0104
	$D_{1} = 52 \ A = 1 \cdot 3$	WEND0105
	$JI = J + J \Delta - 1$	WEND0106
	ARG(JA) = AKTIS(K2) - AKTIS(JI)	WEND0107
	211 121 121 121 121 121 121 121 121 121	WENDOLOS

	BV(JA)=(ARG(JA)*ARG(JA)/(DI(L,I)*HA(L)))*(1.0-ARG(JA)/HA(L))*	WEND0109
	1 AKTIS(JI)	WEND0110
52	CONTINUE	WEND0111
	J1=J+1	WEND0112
	$J_{2}^{2}=J_{2}^{2}$	WEND0113
	OLU(I)=OLU(I)+PHL(J,I)*BU(1)+4.0*PHL(J1,I)*BU(2)+PHL(J2,I)*BU(3)	WEND0114
	DO 51 M=1,NGP	WEND0115
	OLV(M,I)=OLV(M,I)+PHL(J,M)*BV(1)+4.C*PHL(J1,M)*BV(2)+PHL(J2,M)*	WEND0116
	1 BV(3)	WEND0117
51	CONTINUE	WEND0118
	OLU(I)=OLU(I)*STSI	WEND0119
	DO 48 M=1,NGP	WEND0120
	OLV(M,I)=OLV(M,I)*STSI	WEND0121
48	CONTINUE	WEND0122
•	DO 53 I=1,NGP	WEND0123
	ADU(I)=0.2	WEND0124
	DDU(I)=0.0	WEND0125
	ADV(I)=0.0	WEND0126
	DDV(I)=0.0	WEND0127
	DO 54 M=1,NGP	WEND0128
	PROS=(THD(L,I)/DI(L,I))*(SGG(L,M,I)+SPECT(I)*SNUF(L,M))-THST(L,M	WEND0129
	1 ,I)-SPECT(I)*THNSF(L,M)*EFFK	WEND0130
	PROD=(DDM(L,I)/DI(L,I))*(SGG(L,M,I)+SPECT(I)*SNUF(L,M))-DSTM(L,M	WEND0131
	1 ,I)-SPECT(I)*DNSFM(L,M)*EFFK	WEND0132
	ADU(I)=ADU(I)+PROS*OLU(M)	WEND0133
	DDU(I)=DDU(I)+PROD*OLU(M)	WEND0134
	ADV(I) = ADV(I) + PROS + OLV(M, I)	WEND0135
	DDV(I) = DDV(I) + PROD * OLV(M, I)	WEND0136
54	CONTINUE	WEND0137
	AF =THSA(L,I)+THSTT(L,I)-(THD(L,I)/DI(L,I))*SR(L,I)	WEND0138
	DF =DSAM(L,I)+DSTTM(L,I)-(DDM(L,I)/DI(L,I))*SR(L,I)	WEND0139
	TU(KK,I)=AF *OLU(I)+ADU(I)	WEND0140
	DU(KK,I)=DF *OLU(I)+DDU(I)	WEND0141
	TV(KK,I)=AF*OLV(I,I)+ ADV(I)	WEND0142
	DV(KK,I)=DF *OLV(I,I)+DDV(I)	WEND0143
53	CONTINUE	WEND0144

.

	KK=KK+1	WEND0145
45	CONTINUE	WEND0146
	NPT(1) = NPT(1) - 1	WENDO147
	K = NPT(1) * 0.5 + 1 + 0.5	WEND0148
	DO 89 L=1.NRE	WEND0149
	KK=NBD(L)	WEND0150
	HSQ=HA(L)*HA(L)	WEND0151
	N=K	WEND0152
	K = K + (NPT(L) + NPT(L+1)) * 0.5 + 0.5	WEND0153
	K1 = N + NPT(1) * 0.5 - 2 + 0.5	WEND0154
	N1=K1+2	WEND0155
	K2=K-2	WEND0156
	DO 85 I=1,NGP	WEND0157
	OLU(I)=0.0	WEND0158
	DO 3 M=1, NGP	WEND0159
3	OLV(M,I)=0.0	WEND0160
	DO 86 J=N,K1,2	WEND0161
	DO 87 JA=1,3	WEND0162
	JI = J + JA - 1	WENDO163
	ARG(JA) = AKTIS(JI) - AKTIS(N)	WEND0164
	BU(JA)=(ARG(JA)*ARG(JA)/HSQ)*(3.0-2.0*ARG(JA)/HA(L))*AKTIS(JI)	WEND0165
	BV(JA)=(ARG(JA)*ARG(JA)/(DI(L,I)*HA(L)))*(-1.0+ARG(JA)/HA(L))*	WEND0166
	1 AKTIS(JI)	WEND0167
87	CONTINUE	WEND0168
	J1=J+1	WEND0169
	J2=J+2	WEND0170
	OLU(I)=OLU(I)+PHL(J,I)*BU(1)+4.0*PHL(J1,I)*BU(2)+PHL(J2,I)*BU(3)	WEND0171
	DO 86 M=1,NGP	WEND0172
	<pre>OLV(M,I)=OLV(M,I)+PHL(J,M)*BV(1)+4.C*PHL(J1,M)*BV(2)+PHL(J2,M)*</pre>	WEND0173
	1 BV(3)	WEND0174
86	CONTINUE	WEND0175
	OLU(I)=OLU(I)*STSI	WEND0176
	DO 85 M=1,NGP	WEND0177
	OLV(M,I)=OLV(M,I)*STSI	WEND0178
85	CONTINUE	WEND0179
	DO 88 I=1,NGP	WEND0180

	$\Delta D U(\mathbf{I}) = 0.0$	WEND0181
	$DDU(\mathbf{I}) = 0.0$	WEND0182
	$\Delta DV(1)=0.0$	WEND0183
	DDV(I)=0.0	WEND0184
		WEND0185
	PROS=(THD(I • I)/DI(I • I))*(SGG(L • M • I)+SPECT(I)*SNUF(L • M))-THST(L • M	WEND0186
	1 . I)-SPECT(I)*THNSE(1 . M)*EFEK	WEND0187
	PROD= (DDM(I • I)/DI(I • I))*(SGG(I • M• I)+SPECT(I)*SNUF(L•M))-DSTM(L•M	WEND0188
	1 . T) - SPECT(T) * DN SEM(T . M) * EEEK	WEND0189
	$\Delta D U (T) = \Delta D U (T) + PR \Omega S * O U (M)$	WEND0190
	$D_{D}(T) = D_{D}(T) + P_{D}(D * O) U(M)$	WEND0191
	$\Delta D V (I) = \Delta D V (I) + PR O S * O V (M \cdot I)$	WEND0192
	$DDV(I) = DDV(I) + PR(ID * 0 V(M \cdot I))$	WEND0193
60	CONTINUE	WEND0194
~ • •	AF = THSA(1,1) + THSTT(1,1) - (THD(1,1)/DI(1,1)) * SR(1,1)	WEND0195
	DF = DSAM(L,I) + DSTTM(L,I) - (DDM(L,I)/DI(L,I)) * SR(L,I)	WEND0196
	$TUL(KK \cdot I) = AF * OLU(I) + ADU(I)$	WEND0197
	DUL(KK,I) = DF * OLU(I) + DDU(I)	WEND0198
	TVL(KK,I) = AF * OLV(I,I) + ADV(I)	WEND0199
	$DVL(KK \cdot I) = DF + OLV(I \cdot I) + DDV(I)$	WE ND0200
88	CONTINUE	WEND0201
	HSQ = HA(L+1) * HA(L+1)	WEND0202
	DO 61 I=1,NGP	WEND0203
	OLU(I) = 0.0	WEND0204
	DO 7 M=1,NGP	WEND0205
7	OLV(M, I) = 0.0	WEND0206
	DD 62 J=N1,K2,2	WEND0207
	00 63 JA=1,3	WEND0208
	JI = J + JA - 1	WEND0209
	ARG(JA)=AKTIS(K)-AKTIS(JI)	WEND0210
	BU(JA)=(ARG(JA)*ARG(JA)/HSQ)*(3.0-2.0*ARG(JA)/HA(L+1))*AKTIS(JI)	WEND0211
	BV(JA)=(ARG(JA)*ARG(JA)/(DI(L+1,I)*HA(L+1)))*(1.0-ARG(JA)/HA(L+1))	WEND0212
	1 *AKTIS(JI)	WEND0213
63	CONTINUE	WEND0214
	J1=J+1	WEND0215
	J 2= J + 2	WEND0216

.

	CLU(I)=OLU(I)+PHL(J,I)*BU(1)+4.0*PHL(J1,I)*BU(2)+PHL(J2,I)*BU(3)	WEND0217
	DO 62 M=1,NGP	WEND0218
	OLV(M,I)=OLV(M,I)+PHL(J,M)*BV(1)+4.0*PHL(J1,M)*BV(2)+PHL(J2,M)*	WEND0219
	1 BV(3)	WEND0220
62	CONTINUE	WEND0221
	O(U(I)=O(U(I)*STSI	WEND0222
	$DD = 61 \text{ M}=1 \cdot \text{NGP}$	WEND0223
	$O(V(M \cdot I) = O(V(M \cdot I) * SISI$	WEND0224
61	CONTINUE	WEND0225
	$DD = 64 I = 1 \cdot NGP$	WEND0226
	ADU(I)=0.0	WEND0227
	DDU(I)=0.0	WEND0228
	ADV(I)=0.0	WEND0229
	DDV(I)=0.0	WEND0230
	DD 90 M=1,NGP	WEND0231
	PROS=(THD(L+1,I)/DI(L+1,I))*(SGG(L+1,M,I)+SPECT(I)*SNUF(L+1,M))-	WEND0232
	1 THST(L+1,M,I)-SPECT(I)*THNSF(L+1,M) *EFFK	WEND0233
	PROD=(DDM(L+1,I)/DI(L+1,I))*(SGG(L+1,M,I)+SPECT(I)*SNUF(L+1,M))-	WEND0234
	1 DSTM(L+1,M,I)-SPECT(I)*DNSFM(L+1,M)*EFFK	WEND 0235
	ADU(I)=ADU(I)+PROS*OLU(M)	WEND0236
	DDU(I)=DDU(I)+PRUD*OLU(M)	WEND0237
	ADV(I) = ADV(I) + PROS + OLV(M, I)	WEND0238
	DDV(I) =DDV(I)+PROD*OLV(M,I)	WEND0239
90	CONTINUE	WEND0240
	AF =THSA(L+1,I)+THSTT(L+1,I)-(THD(L+1,I)/DI(L+1,I))*SR(L+1,I)	WEND0241
	DF =DSAM(L+1,I)+DSTTM(L+1,I)+(DDM(L+1,I)/DI(L+1,I))*SR(L+1,I)	WEND0242
	TUR(KK,I)=AF *OLU(I)+ADU(I)	WEND0243
	DUR(KK,I)=DF *OLU(I)+DDU(I)	WEND0244
	TVR(KK,I)=AF*OLV(I,I)+ADV(I)	WEND0245
	DVR(KK,I)=DF *OLV(I,I)+DDV(I)	WEND0246
64	CONTINUE	WEND0247
89	CONTINUE	WEND0248
	L=NRG	WEND0249
	N=NP-NPT(L)*0.5+0.5	WEND0250
	K=NP-2	WEND0251
	HSQ=HA(L) *HA(L)	WEND0252

		WENDO 253
		WENDO 254
~		
8	ULV(M,I)=0.0	
	DO 71 J=N,K,2	WENDU250
	DO 72 JA=1,3	WENDU257
	JI = J + JA - 1	WENDU258
	ARG(JA) = AKTIS(JI) - AKTIS(N)	WENU0259
	BV(JA)=(ARG(JA)*ARG(JA)/(DI(L,I)*HA(L)))*(-1.0+ARG(JA)/HA(L))*	WEND0260
	1 AKTIS(JI)	WEND0261
72	CONTINUE	WEND0262
	J1=J+1	WEND0263
	$J_{2}=J_{2}+2$	WEND0264
	DO 71 M=1,NGP	WEND0265
	OLV(M.I)=OLV(M,I)+PHL(J,M)*BV(1)+4.0*PHL(J1,M)*BV(2)+PHL(J2,M)*	WEND0266
	1 BV(3)	WEND0267
71	CONTINUE	WEND0268
• •	DD 76 M=1 • NGP	WEND0269
	$\Pi V(M \cdot I) = \Omega V(M \cdot I) * STSI$	WEND0270
70		WEND0271
	DO 73 I=1.NGP	WEND0272
	ADV(I)=0.0	WEND0273
	DDV(I)=0.0	WEND0274
	DO 74 M=1.NGP	WEND0275
	DPDS=(THD((, T))DT((, T))*(SGG((, M_T)+SPECT(T)*SNUE((, M)))-THST(L+M	WEND0276
		WEND0277
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	WEND0278
		WEND0279
		WEND0280
	ADV(I) = ADV(I) + PROS + OLV(M, I)	WEND0281
-		WEND0282
14		WEND0283
	AF = HSA(L, I) + HSII(L, I) - (HU(L, I)/UI(L, I)/TSN(L, I))	
	$UF = USAM(L_1)+US(IM(L_1)-(UUM(L_1))/UI(L_1)) + SK(L_1)$	
		WENDU200
73		WENDA200
	RETURN	WENDU200

·

SUBROUTINE ELIZA(G.A.C.N.M.L)	EL IZOOO1
IMPLICIT REAL*8 $(4-H\cdot 0-Z)$	EL IZ0002
DIMENSION $A(1) \cdot G(1) \cdot C(1)$	EL IZ0003
IR=0	EL IZ0004
IK=-M	ELIZO005
DO 92 K=1.L	EL IZOOO6
IK=IK+M	EL IZ0007
DO 92 J=1.N	ELIZ0008
IR=IR+1	EL IZ0009
JI = J - N	EL IZ0010
IB=IK	EL IZ0011
C(IR)=0.0	EL IZOO12
DO 92 I=1,M	ELIZ0013
JI=JI+N	EL IZOO14
IB=IB+1	EL IZO015
C(IR)=C(IR)+G(JI)*A(IB)	ELIZ0016
RETURN	EL IZ 0017
END	EL IZOO18

END

92

	SUBROUTINE DMINV(A,N,D,L,M)		DMIN0001
	IMPLICIT REAL*8 (A-H,O-Z)		DMIN0002
	DIMENSION A(1), L(1), M(1)		DMIN0003
			DM IN0004
	D=1.0		DMIN0005
	NK = -N		DMIN0006
	DO 80 K=1.N		DM IN0007
	NK=NK+N		DMIN0008
	I (K)=K		DMIN0009
	M(K)=K		DMIN0010
	KK=NK+K		DMIN0011
	BIGA=A(KK)		DMIN0012
	DO 20 J=K.N		DMIN0013
	IZ=N*(J-1)		DMIN0014
•	DO 20 I=K, N		DMIN0015
	IJ=IZ+I		DMIN0016
10	IF(DABS(BIGA)-DABS(A(IJ))) 15,20,20		DMIN0017
15	BIGA=A(IJ)		DMIN0018
	L(K)=I		DMIN0019
	M(K)=J		DMIN0020
20	CONTINUE		DMIN0021
	J=L(K)		DMIN0022
	IF(J-K) 35,35,25		DMIN0023
25	K I = K - N		DMIN0024
	DO 30 $I=1, N$		DMIN0025
	KI=KI+N		DMIN0026
	HOLD=-A(KI)		DMIN0027
	JI=KI-K+J		DMIN0028
	A(KI) = A(JI)		DMIN0029
30	A(JI) =HOLD		DMIN0030
35	I=M(K)		DM IN0031
	IF(I-K) 45,45,38		DMIN0032
38	JP = N * (I - 1)		DM IN 0033
	DO 49 J=1,N		DM INOO34
	JK=NK+J		DMINOD35
	JI=JP+J		UMIN0036

C C

-

	HOLD=-A(JK)	DMIN0037
	A(JK) = A(JI)	DMIN0038
40	A(JI) =HOLD	DMIN0039
45	IF(BIGA) 48,46,48	DMIN0040
46	D=0.0	DMIN0041
	RETURN	DMIN0042
48	$DO 55 I = 1 \cdot N$	DMIN0043
, 0	IF(I-K) 50.55.50	DMIN0044
50		DMIN0045
20	A(TK) = A(TK)/(-BTGA)	DMIN0046
55		DMIN0047
,,,		DMIN0048
		DMIN0049
		DMIN0050
		DMIN0051
	$D_{1} = 1 + N$	DM IN0052
	1.1=1.1+N	DMIN0053
	IE(I-K) 60.65.60	DMIN0054
60	IE(J-K) = 62.65.62	DMIN0055
62	K.1=T.1-T+K	DMIN0056
92	$\Delta(\mathbf{I},\mathbf{I}) = H \cap (\mathbf{D} \star \Delta(\mathbf{K},\mathbf{I}) + \Delta(\mathbf{I},\mathbf{I}))$	DMIN0057
65	CONTINUE	DMIN0058
		DM IN0059
	$D_{1} = 1 \cdot N$	DMIN0060
		DMIN0061
	IE(J-K) 70.75.70	DMIN0062
70	$\Lambda(K_1) = \Lambda(K_1) / BIG\Lambda$	DMIN0063
75		DMIN0064
15		DMIN0065
	A(KK) = 1.0 / BTGA	DMIN0066
0.3		DM1N0067
0.41		DMIN0068
100		DMIN0069
TOO	TE(K) 150-150-105	DMIN0070
105	T=1 (K)	DMIN0071
100	TE(T-K) 120.120.108	DMIN0072
	TI TE THE ENDERTY ENDER	

•

108 JQ = N*(K-1)JR=N*(I-1)DO 110 J=1,N JK = JQ + JHOLD=A(JK)JI = JR + J $\Delta(JK) = -\Delta(JI)$ 110 A(JI) =HOLD 120 J = M(K)IF(J-K) 100,100,125 125 KI=K-N DO 130 I=1,N . KI = KI + NHOLD=A(KI) JI = KI - K + JA(KI) = -A(JI)130 A(JI) =HOLD GO TO 100 150 RETURN END

DMIN0074 DMIN0075 **DMIN0076** DMIN0077 DMIN0078 DMIN0079 DMIN0080 DMIN0081 DMIN0082 **DMIN0083 DMIN0084 DMIN0085 DM IN0086 DMIN0087 DMIN0088** DMIN0089 DMIN0090 DMIN0091 DMIN0092

DMIN0073

	SUBROUTINE BASINT	BASI0001
	IMPLICIT REAL *8 (A-H, D-7)	BASI0002
	COMMON /CNTRL/ EPS1.EPS2.EPS3.EEEK.TH(10).RK1.RK2.BIG.AHOLD(90),	BASI0003
	1 NGP - NRG - NMAT - NGEOM - IBCL - IBCR - NEG - JAD - NP - NPT (10) - IOP - NRVARY -	BASI0004
	21RVARY(90), MVARY, ITMAXO, ITMAXI, ITO, ITI, KEEP, MCODE, LBIG, JBIG, IAJ,	BASI0005
		BASI0006
	COMMON/DOWER/ STGEM(10.5) .AKTIS(201).TOTP(10).SYLI(10).FISIT(10).	BASI0007
	IESDIT(10). THETO((10). SYLTH(10). FISTTM(10). THETLM(10). ALKGEM(10).	BASI0008
	2CPDH2(10,5) _CRPHA1(10.5) _CRPHA2(10.5) _ALKGE(10) -GRPH1(10,5)	BAS10009
	2 STS. PHI (201.5) SR(10.5) SA(10.5) SNUE(10.5) STR(10.5)	BASI0010
	4 SGG(10.5.5).DI(10.5)	BAS10011
	COMMON/COWE/ HA(10).ARG(3).WK(99.11).UUL(13).UUR(13).VUL(13.5).	BASI0012
	1 VIR(13.5) • NOP(10) • NBD(10) • NOPT • NRE	BASI 0013
•		BASI0014
	INTEGRALS OF BASE POLYNOMIALS	BASI 0015
		BASI0016
•	UUR(1)=HA(1)*HA(1)*C.15	BASI0017
	N=1	BASI0018
	R=0.0	BASI0019
	DO 1 K=1, NRG	BA SI 0020
	M = NOP(K) - 1	BASI 0021
	DO 2 J=1,M	BAS10022
	R=R+HA(K)	BASI 0023
	N=N+1	BASI0024
	$DO_3 I=1, NGP$	BASI0025
	VUL(N,I)=-HA(K)*HA(K)*((R-HA(K))/(12.0*DI(K,I))+0.05*HA(K)/	BASI0026
	1 DI(K,I))	BASI 0027
	VUR(N,I)=HA(K)*HA(K)*((R+HA(K))/(12.0*DI(K,I))-0.05*HA(K)/	BASI0028
	1 DI(K,I))	BASI0029
3	CONTINUE	BASI0030
	UUL(N)=HA(K)*(0.35*HA(K)+0.5*(R-HA(K)))	BASI0031
	UUR(N)=HA(K)*(-0.35*HA(K)+C.5*(R+HA(K)))	BASI0032
2	CONTINUE	BASI 0033
	N=N+1	BASI0034
	R=R+HA(K)	BASI0035
1	CONTINUE	BAS10036

С С С

	00.4 I=1.NGP	BASI0037
	VUL(N.I)=-HA(K)*HA(K)*((R-HA(K))/(12.0*DI(K,I))+0.05*HA(K)/	BASI 0038
	1 DI(K.I))	BASI0039
4	CONTINUE	BASI0040
	3 = (1, 1)	BASI 0041
	DD 5 K=1.NRF	BASI0042
	R=R+NOP(K)*HA(K)	BASI0043
	N=NBD(K)	BASI0044
	$D \cap G$ I=1.NGP	BASI0045
	VUL (N.I)=-HA(K)*HA(K)*((R-HA(K))/(12.0*DI(K,I))+0.05*HA(K)/	BASI 0046
	1 DI(K•I))	BASI0047
	VUR(N,I)=HA(K+1)*HA(K+1)*((R+HA(K+1))/(12.0*DI(K+1,I))-0.05*	BASI0048
	1 HA(K+1)/DI(K+1,I)	BASI0049
6	CONTINUE	BASI0050
	UUL(N)=HA(K)*(0.35*HA(K)+0.5*(R-HA(K)))	BASI0051
	UUR(N)=HA(K+1)*(-0.35*HA(K+1)+0.5*(R+HA(K+1)))	BASI0052
5	CONTINUE	BASI0053
	RETURN	BASI 0054
	END	BASI0055

.

	SUBROUTINE LINPRO	LINP0001
	IMPLICIT REAL*8 (A-H,O-Z)	LINP0002
	COMMON/POWER/ SIGFM(10,5) ,AKTIS(201),TOTP(10),SYLI(10),FISIT(10),	LINP0003
	1FSDIT(10),TMETOL(10),SYLIM(10),FISITM(10),TMETLM(10),ALKGEM(10),	LINP0004
	2GRPH2(10,5) ,GRPHA1(10,5) ,GRPHA2(10,5) ,ALKGE(10),GRPH1(10,5),	LINP0005
	3 STS, PHL (201, 5), SR (10, 5), SA (10, 5), SNUF (10, 5), STR (10, 5),	LINP0006
	4 SGG(10.5.5).DI(10.5)	LINP0007
	COMMON /CNTRL/ EPS1.EPS2.EPS3.EFFK.TH(10).RK1.RK2.BIG.AHOLD(90).	LINP0008
	1NGP+NRG+NMAT+NGEDM+JBCL+JBCR+NFG+JAD+NP+NPT(10)+IOP+NRVARY+	LINP0009
	2IRVARY (90) . MVARY . ITMAXO. ITMAXI . ITO. ITI. KEEP. MCODE. LBIG. JBIG. IAJ.	LINP0010
	3JDUM · THOLD (90)	LINP0011
	COMMON /MACX/ SPECT (5), XA(10,5), XNUF(10,5), XTR(10,5), XGG(10,5,5),	LINPO012
	1CONC(10,10),D(10,5),XR(10,5),CC,CT,IDMAT(10)	LINP0013
	COMMON/KSWY/ SB(10,5), PPU(10), PU(10), PDU(10), PRS(10), URN(10),	LINPOO14
	1 URC(10), SD(10), DOPL(10)	LINP0015
	COMMON/DELTA/ THSA(10,5),THNSF(10,5),THD(10,5),THST(10,5,5),	LINP0016
	1 THTRP(10,5),THSTT(10,5),DSAM(10,5),DNSFM(10,5),DDM(10,5),	LINPOO17
	2 DSTM(10,5,5),DTRPM(10,5),DSTTM(10,5),THSF(10,5),DSFM(10,5),	LINP0018
	3 SFU(10,5), SCU(10,5), SUP(10,5), POWED(10), CONCP(10), VNO	LINPOO19
	COMMON/COWE/ HA(10), ARG(3), WK(99,11), UUL(13), UUR(13), VUL(13,5),	LINPO020
	1 VUR(13,5), NOP(10), NBD(10), NOPT, NRE	LINPOO21
	COMMON/CONV/ CRMA(30),NPR,KNA,NCR,IDNA	LINPOO22
	COMMON/DELFI/ IP,IU	LINP0023
	COMMON/ITER/ NIT	LINP0024
	DIMENSION CA(13,5,13),CB(13,5,13)	LINPO025
	DIMENSION UD(10),AS(14,17),CS(17),BS(14),P(14),XX(14),Y(14),	L I NP 00 26
	1 PE(14),E(200),KO(6),JH(14)	LINPO027
	REAL*4 X(17)	LINP0028
С		LINP0029
	IF(KNA.EQ.1) GO TO 350	L1NP0030
	IF(NIT.NE.0) GO TO 1500	LINP0031
	NVC =NCR	LINP0032
	NAR=1	LINPOO33
	NEQ=3*NCR+2	LINP0034
	NAV=4*NCR+1	LINPO035
	READ(5,1000) (UO(L),L=1,NCR)	LINP0036

	PEAD (5. 2000) DDL - THUO		LINP0037
1000	E09MAT(7E10.0)		LINP0038
2003			LINP 0039
ZUÇO	$\frac{1}{10000000000000000000000000000000000$		LINP0040
	WRITE/6,55007 (UULL/9L-190087 WRITE/4 54001 DDL THUO		LINP0041
5400			LINP0042
1500	CALL DACINT		LINP0043
1900			LINP0044
	NAGN=Z*NRG+1 DD 15 to1 NAV		LINP0045
	DU 15 J=1+NAV		LINP0046
			LINP 0047
1/			LINPO048
14			LINP0049
16			LINP0050
15			LINP0051
	DU IO IFINEW	•	LINP0052
14	DD(I)=V•M CONTINUE		LINP0053
10			LINP0054
	$N_{T} = N_{T} + 1 \qquad (A + 1) = 1 \qquad (A + 1) $		LINP0055
	$\begin{array}{c} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{I} \mathbf{U} \mathbf{I} \mathbf{U} \mathbf{I} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$		LINP0056
100	CA(1, 1, M) = C O		LINP0057
T (34)			LINP0058
			LINP0059
	$\frac{1}{1} = 1 + 1 = 1 + 1 = 1 = 1$		LINP0060
	$\frac{1}{10000000000000000000000000000000000$		LINP0061
	DU 92 M=I,NAGN		LINP0062
97	CALL919MV=WRIN9MV		LINP0063
01			LINP0064
91	DU 95 J=2 NOPT		LINP0065
	CALLY MI-LUKIK MI	·	LINP0066
~	CONTINUE		LINP0067
94			LINP0068
	N=NTI DO OF M-1 NACN		LINP0069
	COLL.T.M)=WK(K.M)		LINP0070
05			LINP0071
70			LINPO072
	N-NT L		

93	CONTINUE	LINP0073
	DO 96 M=1,NAGN	LINPO074
	CB(NF, I, M) = WK(K, M)	L I NP0075
96	CONTINUE	LINP0076
	Κ=Κ+1	LINPO077
9±)	CONTINUE	LINPO078
- //	D(1 97 I=1.NGP	LINP0079
	DD 97 M=1.NAGN	LINPOO80
	$CB(1 \cdot T \cdot M) = 0$	LINPO081
	$(\Delta (NE_{1} I_{1} M) = 0.0)$	LINP0082
97		LINPO083
	LE(NAR-E0-21 GD TO 60	LINP0084
	11=2	LINP0085
		LINPO086
		LINPOO87
60	$11 = 2 \times N \cap R + 3$	LINP0088
00	1 U=2*NRG+1	LINP0089
61	$DO_2C_{M=1.NGP}$	LINP0090
	COM = S IGEM(1,M) * UUR(1)	LINP0091
	C(R = SB(1, M) + I) R(1)	LINP0092
		LINP0093
	$\Delta S(1,1) = \Delta S(1,1) + C \cap M * C \Delta (1, M, 1)$	LINP0094
	$(S(1))=(S(1))+(OB*(\Delta(1.M.1)))$	LINP0095
	$D_{0} = 27$ [=1.1.1.2	LINP0096
		LINP0097
	$\Delta S(1, 1) = \Delta S(1, 1) + C \cap M + C \Delta (1, M, 1)$	LINP0098
	(c(1)=c(1)+c(0)*c(1)*c(1)	LINP0099
27		LINP0100
21		LINP0101
	$DO 22 I = 1 \cdot NRG$	LINP0102
	DC 23 + 1 = 1.2	LINP0103
		LINP0104
		LINPO105
		LINP0106
	$COM_1 = SIGEM(1,M) *UUI(N) + SIGEM(NR,M) *UUR(N)$	LINPO107
	$CDM2 = STGFM(I \cdot M) * VUI (N \cdot M) + STGFM(NR \cdot M) * VUR(N \cdot M)$	LINP0108

	COB1=SB(L,M)*UUL(N)+SB(NR,M)*UUR(N)	LINPO109
	$COB2 = SB(I \cdot M) * VUL(N \cdot M) + SB(NR \cdot M) * VUR(N \cdot M)$	LINPO110
		LINPO111
	AS(1,1) = AS(1,1) + COM1 + CA(N,M,1) + COM2 + CB(N,M,1)	LINPO112
	$CS(1) = CS(1) + COB1 + CA(N \cdot M \cdot 1) + COB2 + CB(N \cdot M \cdot 1)$	LINPO113
	DO 24 T = 11.1 U 2	LINPO114
	.l=.l+1	LINPO115
	$\Delta S(1, I) = \Delta S(1, I) + C \Box M 1 + C \Delta (N, M, I) + C \Box M 2 + C B (N, M, I)$	LINPO116
	CS(1)=CS(1)+COB1*CA(N.M.T)+COB2*CB(N.M.T)	LINPO117
24	CONTINUE	LINPO118
6.7	TELL_EQ_NRG1 GD_TD_25	LINPO119
23		LINP0120
22	CONTINUE	LINPO121
25	N=N+1	LINPO122
	COM=SIGEM(I . M) *VUI (N.M)	LINPO123
	$COB = SB(1 \cdot M) \times VUI(N \cdot M)$	LINPO124
	J=1	LINPO125
	$\Delta S(1,J) = \Delta S(1,J) + CCM * CB(N,M,J)$	LINPO126
	$CS(J) = CS(J) + CDB + CB(N \cdot M \cdot J)$	LINP0127
	D0.26 1=L1.1U.2	LINPO128
	J=J+1	LINPO129
	$AS(1 \cdot J) = AS(1 \cdot J) + C\Pi M * CB(N \cdot M \cdot I)$	LINPO130
	$CS(J) = CS(J) + COB + CB(N \cdot M \cdot I)$	LINPO131
26	CONTINUE	LINP0132
20	CONTINUE	LINPO133
	WRITE (6.90%) (CS(J).J=1.NAV)	LINP0134
900	EORMAT(8D15.7)	LINPO135
	1 M = NVC + 1	LINPO136
	$BS(1) = BS(1) + AS(1 \cdot 1) * PHL(1 \cdot 1)$	LINPO137
	$DO(21) J=2 \cdot LM$	LINPO138
	I = I - I	LINPO139
	BS(1) = BS(1) + AS(1, J) * UO(I)	LINP0140
21	CONTINUE	LINPO141
•	IF(NAR.EQ.2) GO TO 62	LINPO142
	$DO_{3} = 2 \cdot LM$	LINPO143
	L=J-1	LINPO144

	AS(1,J)=AS(1,J)+PPU(L)	LINPO145
	CS(J)=CS(J)+PU(L)	LINP0146
	BS(1)=BS(1)+PPU(L) *UD(L)	LINPO147
	PERT =FISIT(L)-SYLI(L)-TMETOL(L)-ALKGE(L)	LINP0148
	AS(2, J)=PERT	LINPO149
	BS(2)=BS(2)+UO(L)*PERT	LINP0150
63	CONTINUE	LINPO151
	GO TO 64	LINPO152
62	L=NCR	LINP0153
	DO 30 J=2,LM	LINP0154
	L=L+1	LINP0155
	M = J - 1	LINP0156
	AS(1,J) = AS(1,J) - URN(L)	LINP0157
	CS(J)=CS(J)+URC(L)	LINP0158
	BS(1)=BS(1)-URN(L)*UO(M)	LINP0159
3	CONTINUE	LINP0160
C		LINP0161
64		LINP0162
	N=-1	LINP0163
	IF (NAR • EQ • Z) GU TU 70	LINPO164
		LINPUIG
-		
1		
-7 1		
11		
	UU 40 M=1,NGP	
	J=1	
	UU 411 NALLYLUYZ 1-1-1	
	1 T L = L 1 T L = L = L = L = L = L = L = L = L = L	
40	ASTINJ-ASTINJTSIUFFILLYMJ MUATNYMYNJ CONTINIE	
40		LINPULIS

	BS(I)=BS(I)+AS(I,1)*PHL(1,1)		LINPO181
	DO 28 J=2.LM		LINP0182
	L=J-1		LINP0183
	BS(I)=BS(I)+AS(I,J)*UO(L)		LINPO184
28	CONTINUE		LINPO185
	IF (NAR. EQ.2) GO TO 65		LINPO186
	DO 66 $I=3,LN$		LINPO187
	J=I-1		LINP0188
	L=J-1		LINPO189
	AS(I,J)=AS(I,J)+PDU(L)		LINP0190
66	CONTINUE		LINP0191
	DO 67 L=1,NCR		LINP0192
	I=2+L	·	LINP0193
	BS(I) = PDL - PRS(L) + BS(I)		LINP0194
67	CONTINUE		LINP0195
	GO TO 68		LINP0196
65	00 45 L=1,NCR		LINPO197
	I=1+L		LINPU198
	BS(I)=BS(I)+PDL-POWED(L)		LINPO199
45	CONTINUE		LINP0200
68	K=LN+1		LINPU201
	KA=LN+NVC		
	L=0		LINPUZU3
	DD 50 I=K,KA		
	L=L+1		
	J=L+1		
	AS(I,J)=1.0		
	BS(I)=UO(L)-THUO		
	M=I+NVC		
	AS(M, J) = 1.0		
	_ BS(M)=UO(L)+THUO		
5Q	CONTINUE		L 1NF 0212
	GO TO (201, 201, 203), NPR		1 TND0214
203	CS(1) = 0.0		LINP0215
	(S(2)=1H(1)*1H(1)		LINP0216
	R1=0.0		E140 9610

	R2=TH(1)			LINP0217
	DD 85 K=2 • NCR			LINP0218
	J=K+1			LINP0219
	$R_1 = R_1 + TH(K-1)$			LINP0220
	$R_2 = R_2 + TH(K)$			LINPO221
	$CS(J) = R2 \times R2 - R1 \times R1$			LINP0222
85	CONTINUE			LINP0223
C				LINP0224
C	SLACK VARIABLES			LINP0225
č				LINP0226
201	J = NVC + 1		`	LINP0227
	DO 55 I=LI.LN			LINP0228
	J = J + 1	· · ·		LINP0229
	AS(I, J) = 1.0			LINP0230
55	CONTINUE			LINPO231
	K=LN+1			LINP0232
	KA=LN+NVC			LINP0233
	M=NEQ+1			LINP0234
	L = NAV + 1	· ·		LINP0235
	DO 56 I=K,KA			LINPO236
	J=J+1			LINPO237
	AS(I,J) = -1.0			LINP0238
	M = M - 1		7,	LINP0239
	L=L-1	· · ·		LINPO240
	AS(M,L) = 1.0			LINP0241
56	CONTINUE			LINPO242
	IF(NPR.NE.1) GU TO 332			LINP0243
	DO 57 J=1, NAV			LINP0244
	CS(J) = -CS(J)			LINP0245
57	CONTINUE			LINP0246
332	IF(NPR.NE.2) GO TO 335			LINPO247
	KNA=1			LINP0248
	RETURN			LINP0249
350	I = NCR + 1			LINP0250
	L=0			L I NPO 251
	DO 340 J=2,I			LINP0252

•

	1=1+1	LINP0253
	PERT = ETSTT(1) - SYLT(1) - TMETOL(1) - ALKGE(1)	LINP0254
340	CS(I)=PERT	LINP0255
J T V	(S(1)=0.0	LINP0256
235	11=0	LINP0257
		LINP0258
		LINP0259
	CALL STMPLEITT, MY, NN, AS, BS, CS, KD, X, P, 1H, XX, Y, PF, F)	LINP0260
		LINP0261
	TEINDRINE 31 CO TO 334	LINP0262
	CM=0.0	LINPO263
	$\mathbf{I} = \mathbf{N} \mathbf{C} \mathbf{D} + 1$	LINP0264
	1 = 100001	LINP0265
	M = CM + CS(1) + X(1)	LINP0266
85		LINP0267
	CM=0.0313881267*CM	LINPO268
	WRITE(6.5900) CM	LINP0269
334	WRITE(6.6000) KO(1)	LINPO270
6000	FORMAT(///! FFASIBILITY=!.12)	LINP0271
5900	FORMAT(/// CRITICAL MASS IN KG =' \cdot 1PD15.7)	LINP0272
5500	EORMAT(10D12.4)	LINP0273
2203	M = NVC + 1	LINP0274
		LINP0275
	DD 80 J=2.M	LINP0276
	1 = 1 + 1	LINP0277
	I(0(1) = X(1))	LINP0278
នក		LINP0279
C .	WRITE(6.5000) (1.00(L).L=1.NCR)	LINPO280
5000	FORMAT(' REGION'. 15.10X. 'FISSILE VOLUME FRACTION=',D15.7)	LINPO281
2000	$DO_{R1} K=1 \cdot NCR$	LINP0282
	$CONC(IP_{K}) = CONCP(IP) * UO(K)$	LINPO283
•	$CONC(IU \cdot K) = CONCP(IU) * (0 \cdot 35 - UO(K))$	LINP0284
81	CONTINUE	LINP0285
	NIT=NIT+1	LINPO286
	WRITE(6.6100) NIT	LINPO287
6100	FORMAT(///' NUMBER OF ITERATIONS=', 15)	LINPO288

TE(KO(1), EQ.1) CALL EXIT	LINP0289
GD TO(301.301.303).NPR	L INP 0290
CRMA(NIT) = CM	LINP0291
IF(DABS(CRMA(NIT)-CRMA(NIT-1)), LT.0.001) CALL EXIT	LINP0292
RETURN	LINP0293
END	LINP0294
END	LINP
	IF(KO(1).FQ.1) CALL EXIT GD TO(301,301,303),NPR CRMA(NIT)=CM IF(DABS(CRMA(NIT)-CRMA(NIT-1)).LT.0.001) CALL EXIT RETURN END

· · ·
	SUBROUTINE SIMPLE(INFLAG, MX, NN, A, B, C, KO, KB, P, JH, X, Y, PE, E)	SIMP0001
	IMPLICIT REAL*8 (Δ -H $_{\bullet}$ O-Z)	SIMP0002
C A	UTOMATIC SIMPLEX REDUNDANT EQUATIONS CAUSE INFEASIBILITY	SIMP0003
	DIMENSION $B(1) \cdot C(1) \cdot P(1) \cdot X(1) \cdot Y(1) \cdot PE(1) \cdot E(1)$	SIMP0004
	RFAL*4 XX	SIMP0005
	INTEGER INELAG.MX.NN.KO(6).KB(1).JH(1)	SIMP0006
	FOUTVALENCE (XX.LL)	S I MP0 00 7
	DIMENSION $\Delta(14.17)$	SIMP0008
	INTEGER I. TA. INVC. IR. ITER. J. JT. K. KBJ. L. LL. M. M2. MM. N	SIMP0009
	INTEGER NCHT.NPIV.NHMVR.NVFR	SIMP0010
	I OGICAL FEAS.VER.NEG.TRIG.KO.ABSC	SIMP0011
С		SIMP0012
č	SET INITIAL VALUES. SET CONSTANT VALUES	SIMP0013
0	ITFR = 0	SIMP0014
	NUMVR = 0	SIMP0015
	NUMPV = C	SIMP0016
	M = MX	SIMPOO17
	N = NN	SIMP0018
	TEXP = .000015259	SIMP0019
	NCUT = 4*M + 200	SIMPOO2O
	NVER = M*.5 + 5	SI MP0021
	$M_2 = M * M$	SIMP0022
	FEAS = .FALSE.	SIMPO023
	IF (INFLAG.NE.()) GD TO 1400	SIMP0024
C* !	NEW' START PHASE ONE WITH SINGLETON BASIS	SIMPO025
	DO 1402 J = 1, N	SIMPOO26
	KB(J) = 0	SIMPOO27
	KQ = .FALSE.	SIMP0028
	DO 1403 I = 1,M	SIMPOO29
	IF (A(I,J).EQ.0.0) GO TO 1403	SIMP0030
	IF (KQ.OR.A(I,J).LT.0.0) GO TO 1402	SIMP0031
	KQ = .TRUE.	SIMP0032
140	3 CONTINUE	SIMP0033
	KB(J) = 1	SIMP0034
140	2 CONTINUE	SIMP0035
140	0 D0 1401 I = 1 , M	SIMP0036

	JH(T) = -1	SIMP0037
1401	CONTINUE	SIMP0038
C* VI	FR' CREATE INVERSE FROM 'KB' AND 'JH' (STEP 7)	SI MP0039
1320	VFR = TRUF.	SIMP0040
1969	INVC = 0	SIMPO041
	NUMVR = NUMVR +1	SIMP0042
	TRIG = FAISE	SIMP0043
	DO(1101) I = 1.02	SIMPOO44
	E(I) = 0.0	SIMP0045
1101	CONTINUE	SIMPO046
	MM=1	SIMPO047
	DO 1113 I = $1.M$	SIMP0048
	E(MM) = 1.0	SIMP0049
	PE(I) = 0.0	SIMP0050
	X(I) = B(I)	SIMP0051
	IF (JH(I) .NE.0) JH(I) = -1	SIMP0052
	MM = MM + M + 1	SIMP0053
1113	CONTINUE	SIMP0054
С	FORM INVERSE	SIMP0055
	DO 1102 $JT = 1,N$	SIMP0056
	IF (KB(JT).EQ.0) GO TO 1102	SIMP0057
	GO TO 600	SIMP0058
C 600	CALL JMY	SIMP0059
С	CHOOSE PIVOT	SIMP0060
1114	TY = 0.0	SIMP0061
	KQ = .FALSE.	SIMP0062
	DO 1104 I = $1, M$	SIMPUU63
	IF (JH(I).NE1.OR.DABS(Y(I)).LE.TPIV) GO TU 1104	SIMPUU64
	IF (KQ) GO TO 1116	SIMPUUDD
	IF (X(I).EQ.0.) GO TO 1115	SIMPUU00
	IF (DABS(Y(I)/X(I)).LE.TY) GU TU II04	51MP0068
	TY = DABS(Y(I)/X(I))	51MP0040
	GO TO 1118	C 1 MD 00 70
1115	$KQ = \cdot 1KUE \cdot$	51MP0070 51MP0071
	$\frac{1}{10} \frac{111}{100} = \frac{100}{100} 100$	SIMPUVII SIMPONIZ
1116	IF [X(I]•NE•U••UK•UADS(T(I)]•LE•ITI GU IU IIV4	JIMP UV 12

1117	TY = DABS(Y(I))					SIMP 9073
1118	IR = I					SIMPOO74
1104	CONTINUE					5 I MP 00 75
	KB(JT) = 0					SIMPO076
r		TEST PIVOT				SIMPOO77
0	TE (TY, LE, C,)	60 TO 1102				SIMPOO78
C		PIVOT				SIMPO079
6	CO TO 900	11401				SIMP0080
c 000		·				STMP0081
1102						STMP0082
		ADTICICIALS			х.	STMP0083
C	RESEI	ARTIFICIALS				STMP0084
	100 1109 I = 1, M	$\lambda = \lambda + (T \lambda - 0)$				SIMP0085
		/ JH(1) = U				ST MP0086
1100	IF (JH(I).EQ.U)	FRAS - PALSE				STMP0087
1109						STMP0088
1200	VER = •FALSE•		TEPATION	***		SI MP 0089
		PERFURN UNC	ITERATION	1)		SIMP0090
U# • A(NEC - EALCE	EASIDILITY		1.		SIMP0091
	$NEG = \bullet FALSE \bullet$	Ean				SIMP0092
	IF (FEAS) GU IU :					SIMP0093
	FEAS= .IKUE.					STMP0094
	D(1 I Z O I I = 1	1,M				SIMPOO95
	$\mathbf{IF} \left(\mathbf{X} \left(\mathbf{I} \right) \cdot \mathbf{L} \right) \cdot 0 \cdot 0$					STMP0096
	1F (JH(1).EQ.())	FEAS = .FALSE.				STMP0090
1201	CONTINUE			21		SIMPOOPT
C* G	ET GET APPLICA	BLE PRICES	(3158	21		SIMP0090
	IF (.NOT.FEAS) G	D TO 501				SIMP0099
<u>500</u>	DO 503 I = 1.M					SIMPOIDU
	P(I) = PE(I)					SIMPUIUI
	IF (X(I).LT.0.)	X(I) = 0.				SIMPOIDZ
5C 3.	CONTINUE					SIMPU105
	ABSC = .FALSE.					SIMPUIU4
	GN TO 599					SIMPUIU5
1250	FEAS = .FALSE.					SIMPUIUD
	NEG = .TRUE.					21WP0101
501	DO 504 J = 1, M					21060108

	P(J) = 0		SIMP0109
504	CONTINUE		SIMPO110
2.2.4	ABSC = TRUE.		SIMP0111
	D0.505 I = 1.M		SIMP0112
	MM = I		SIMP0113
	TE (X(T),GE,0,0) GO TO 507		SIMPO114
	ABSC = -FAISE.		SIMPO115
	DO 508 J = 1.M		SIMPO116
	P(J) = P(J) + E(MM)		SIMP0117
	MM = MM + M		SIMPO118
508	CONTINUE	· ·	SIMP0119
2.70	GO TO 505		SIMPO120
507	IF (JH(I).NE.() GO TO 505	·	SIMPO121
, .	IF $(X(I).NE.O.)$ ABSC = .FALSE.		SIMPO122
	00 510 J = 1.M		SIMPO123
	P(J) = P(J) - E(MM)		SIMP0124
	MM = MM + M		SIMPO125
510	CCNTINUE		SIMPO126
505	CONTINUE		SIMP0127
C* M	IN' FIND MINIMUM REDUCED COST	(STEP 3)	SIMPO128
599	JT = 0		SIMP0129
	BB = 0.0		SIMP0130
	DO 701 $J = 1, N$		SIMP0131
	IF (KB(J).NE.0) GO TO 701		SIMP0132
	DT = 0.0		SIMP0133
	DO 303 I = 1, M		SIMP0134
	DT = DT + P(I) * A(I,J)		SIMP0135
303	CONTINUE		SIMP0136
	IF (FEAS) $DT = DT + C(J)$		SIMPO137
	IF (ABSC) $DT = -DABS(DT)$		SIMPO138
	IF (DT.GE.BB) GO TO 701		SIMPOL39
	BB = DT		SIMP0140
	J = J		SIMPO141
701	CONTINUE		SIMPUI42
C TE	ST FOR NO PIVOT COLUMN		51MP0143
	IF (JT.LE.0) GO TO 203		51MPU144
		•	

C TEST FOR ITERATION LIMIT EXCEEDED	SIMP0145
IF (ITER.GF.NCUT) GO TO 160	SIMP0146
ITFR = ITFR + 1	SIMP0147
C* JMY! MULTIPLY INVERSE TIMES A(JT) (STEP 4)	SIMP0148
600 DD 610 I= 1.M	SIMP0149
$f_{1,0} = (1) \mathbf{Y}$	SIMP0150
610 CONTINUE	SIMP0151
11 = 0	SIMP0152
C(1) = C(1)	SIMP0153
$D_{0} = 0.017$	SIMP0154
$\Delta T_{\rm eff} = \Delta (T_{\rm eff})$	SIMP0155
$IE (ALIT_{2}EQ_{2}Q_{2}) GQ TQ 602$	SIMP0156
$COST = COST + \Delta I JT * PF(I)$	SIMP0157
$D(1 - 6)^{\circ} 6 = 1 \cdot M$	SIMP0158
$\frac{1}{1} = 11 + 1$	SIMP0159
Y(1) = Y(1) + AIJT * F(11)	SIMP0160
606 CONTINUE	SIMP0161
GD_TO_605	SIMP0162
602 11 = 11 + M	SIMP0163
605 CONTINUE	SIMP0164
C COMPUTE PIVOT TOLERANCE	SIMP0165
YMAX = 2.0	SIMP0166
$DO_{620}I = 1.M$	SIMP0167
YMAX = DMAX1(DABS(Y(I)), YMAX)	SIMP0168
62 CONTINUE	SIMP0169
TPIV = YMAX * TFXP	SIMPO170
C RETURN TO INVERSION ROUTINE, IF INVERTING	SIMP0171
1F (VFR) GO TO 1114	SIMP0172
C COST TOLERANCE CONTROL	SIMP0173
BCOST = YMAX/BB	SIMP0174
IF (TRIG.AND.BB.GETPIV) GO TO 203	SIMP0175
TRIG = .FALSE.	SIMP0176
IF $(BB \cdot GE \cdot -TPIV)$ TRIG = $\cdot TRUE \cdot$	SIMP0177
C* TROWT SELECT PIVOT ROW (STEP 5)	SIMPO178
C AMONG EQS. WITH X=0, FIND MAXIMUM Y AMONG ARTIFICIALS, OR, IF NONE,	SIMPO179
C GET MAX POSITIVE Y(I) AMONG REALS.	SIMP0180

IR = 0	SIMP0181
$\Delta \Lambda = 0.0$	SIMP0182
KQ = -FALSE	SIMP0183
00 - 1.059 = 1 - M	SIMP0184
IE (X(I), NE, C, Q, QR, Y(I), IE, TPIV) = GO TO 1050	SIMPO185
IE (IH(I), EQ.0) = GO TO 1044	SIMP0186
IF (KO) GO TO 1050	SIMPO187
1045 TE (Y(T) \downarrow E-AA) GO TO 1050	SIMP0188
60 TO 1047	SIMP0189
1044 IE (KO) GO TO 1045	SIMP0190
KQ = TRUE	SIMP0191
$1347 \Delta \Delta = Y(1)$	SIMP0192
IR = I	SIMP0193
	SIMP0194
$IE (IE_{NE_{2}}) = GO TO 1099$	SIMP0195
$\Delta \Delta = 1.9 \text{F} + 29$	SIMP0196
C FIND MIN. PIVOT AMONG POSITIVE EQUATIONS	SIMP0197
DD = 1010 I = 1.M	SIMP0198
IF (Y(I), F, TPIV, OR, X(I), LE.O.O. OR, Y(I) *AA, LE.X(I)) GO TO 1010	SIMP0199
AA = X(I)/Y(I)	SIMPO200
IR = I	SIMPO201
1010 CONTINUE	SIMP0202
IF (NOT NEG) GO TO 1099	SIMP0203
C FIND PIVOT AMONG NEGATIVE EQUATIONS; IN WHICH X/Y IS LESS THAN THE	SIMPO204
C MINIMUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST ABSE(Y)	SIMP0205
BB = -TPIV	SIMP0206
D = 1030 I = 1.M	SIMP0207
IE (X(I).GE.O., OR.Y(I).GE.BB.OR.Y(I)*AA.GT.X(I)) GO TO 1030	SIMP0208
BB = Y(I)	SIMP0209
IR = I	SIMP0210
1030 CONTINUE	SIMPO211
C TEST ERR NO PIVOT ROW	SIMP0212
1099 IF (IR.IF.C) GO TO 207	SIMPO213
(* PIV) PIVOT ON (IR, JT) (STEP 6)	SIMP0214
IA = JH(IR)	SIMPO215
IF $(IA \cdot GT \cdot C)$ $KB(IA) = 0$	SIMP0216

900	NUMPV=NUMPV+1	SIMPO217
	JH(IR) = JT	SIMP0218
	KB(JT) = IR	SIMP0219
	YI = -Y(IR)	SIMPO220
	Y(IR) = -1.0	SIMP0221
	11 = 0	SIMP0222
r ·	TRANSEORM INVERSE	SIMP0223
L	$\frac{1}{10000000000000000000000000000000000$	SIMP0224
		SIMP0225
	L = LL = IN	SIMP0226
		SIMP0227
	LL = LL + M	SIMPO228
-		SIMPO229
905	XY = E(L) / YI	STMP0220
	PE(J) = PE(J) + CUSI = XY	SIMPO230
	E(L) = 0.0	SINF9231
	DO 906 I = 1,M	SIMPUZ32 SIMPUZ32
	LL = LL + 1	SIMPU233
906	CONTINUE	SIMPOZZE
904	CONTINUE	51MP0222
С	TRANSFORM X	51MP0230
	XY = X(IR) / YI	SIMPU237
	DO 908 I = 1, M	SIMPU238
	XOLD = X(I)	SIMP0239
	$X(I) = XOLD + XY \neq Y(I)$	SIMP0240
	IF (.NOT.VER.AND.X(I).LT.GAND.XGLD.GE.O.) X(I) = 0.	SIMP0241
90 8	CONTINUE	SIMP0242
	Y(IR) = -YI	SIMP0243
	X(JR) = -XY	SIMPO244
	IF (VER) GD TO 1192	SIMP0245
	IF (NUMPV.LE.M) GO TO 1200	SIMP0246
C TES	ST FOR INVERSION ON THIS ITERATION	SIMP0247
• • • •	INVC = INVC + 1	SIMPO248
	IF (INVC.FQ.NVER) GO TU 1320	SIMP0249
	GO TO 1200	SIMP0250
(* FI	ND OF ALGORITHM. SET EXIT VALUES ***	SIMP0251
207	IF (.NOT.FFAS.OR.RCOST.LE1000.) GO TO 203	SIMP0252
	이 밖에 이 밖 부탁하는 이 문제 가장 것 것 같아. 그 것 같아. 이 이 것 같아. 이 이 것 같아. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	

С	INFINITE SOLUTION	SIMPO253
	K = 2	SIMPO254
	GO TO 250	SIMP0255
C	PROBLEM IS CYCLING	SIMP0256
160	K = 4	SIMP0257
10.0	GO TO 250	STMP0258
r	EEASTRIE OR INFERSIBLE SOLUTION	ST MP0259
202	K - A	SIMPO260
2:25		SIMP0260
200	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	STRF0201 STRF0201
	$U^{(1)} = 1 + N$	SIMP0202
	$\mathbf{X} \mathbf{X} = (0 \cdot \mathbf{i})$	SIMPU203
	KBJ = KB(J)	SIMP0264
	IF (KBJ.NE.0) $XX = X(KBJ)$	SIMP0265
	KB(J) = LL	SIMP0266
1399	CONTINUE	SIMPO267
	$K_{D}(1) = K$	SIMP0268
	$K_{\Omega}(2) = ITER$	SIMP0269
	$K\Omega(3) = INVC$	SIMPO270
	KO(4) = NIMVR	SIMP0271
		SIMP0272
	KO(2) = MOMPY	STNDO272
	KU(6) = JI	31MPU275
	RETURN	SIMP U2 74
	END	SIMPO275

•

REFERENCES

- 1. Hasnain, S. A. and D. Okrent, "On the Design and Management of Fast Reactor Blankets", Nucl. Sci. Eng., 9, 314 (1961).
- 2. Perks, M. A. and R. M. Lord, "Effects of Axial and Radial Blanket Design on Breeding and Economics", ANL-6792 (October, 1963).
- 3. Evans, P. V., Ed., "Fast Breeder Reactors. Proceedings of the London Conference on Fast Breeder Reactors organized by the British Nuclear Energy Society. May 1966", Pergamon Press, Oxford, 1967.
- 4. Ott, K. O., "An Improved Definition of the Breeding Ratio for Fast Reactors", Trans. Amer. Nucl. Soc., Vol. 12, No. 2, 719 (1969).
- 5. Spinrad, B. I., "On the Definition of Breeding", ANL-6122 (October, 1959).
- 6. Goertzel, G., "Minimum Critical Mass and Flat Flux", J. Nucl. Energy, 2, 193 (1956).
- Kochurov, B. P., "Minimum Critical Mass at Limited Uranium Concentration", Soviet Atomic Energy, Vol. 20, No. 3, 267 (1966).
- 8. Goldschmidt, P. and J. Quenon, "Minimum Critical Mass in Fast Reactors with Bounded Power Density", Nucl. Sci. Eng., 39, 311 (1970).
- Zaritskaya, T. S., and A. P. Rudik, "Using L. S. Pontryagin's Maximum Principle in Minimum-Critical-Size and Maximum-Power Reactor Problems", Soviet Atomic Energy, Vol. 22, No. 1, 5 (1967).
- Rosztoczy, Z. R. and L. E. Weaver, "Optimum Reactor Shutdown Program for Minimum Xenon Buildup", Nucl. Sci. Eng., 20, 318 (1964).
- Roberts, J. J. and P. Smith, "Time Optimal Solution to the Reactivity-Xenon Shutdown Problem", Nucl. Sci. Eng., <u>22</u>, 470 (1965).
- 12. Ash, M., "Application of Dynamic Programming to Optimal Shutdown Control", Nucl. Sci. Eng., 24, 77 (1966).
- 13. Wall, I. and H. Fenech, "The Application of Dynamic Programming to Fuel Management Optimization", Nucl. Sci. Eng., 22, 285 (1965).
- Gandini, A., M. Salvatores and G. Sena, "Use of Generalized Perturbation Methods for Optimization of Reactor Design", J. Nucl. Energy, 23, 469 (1969).
- Purica, I., M. Pavelescou and V. Anton, "Optimizing the Initial Conversion Ratio of Fast Breeders", JPRS 48331, Vol. 2, (July, 1969).

- Hadley, G., "Linear Programming", Addison-Wesley, Reading, Massachusetts, 1962.
- 17. Lamarsh, J. R., "Introduction to Nuclear Reactor Theory", Addison-Wesley, Reading, Massachusetts, 1966.
- Rohan, P. E., "Comparisons of Transport and Diffusion Theory Calculations of Performance Characteristics for Large Fast Reactors", University of Illinois, Urbana, 1970.
- Kang, C. M., Tentative title: "Finite Element Methods for Space-Time Reactor Problems", Ph.D. Thesis, Department of Nuclear Engineering, M.I.T., Expected publication date: September, 1971.
- 20. Loewenstein, W. B. and G. W. Main, "Fast Reactor Shape Factors and Shape-Dependent Variables", ANL-6403 (November, 1961).
- 21. "Proceedings of the Conference on Safety, Fuels and Core Design in Large, Fast Power Reactors", ANL-7120 (October, 1965).
- 22. "Proceedings of the International Conference on Sodium Technology and Large Fast Reactor Design", ANL-7520 (November, 1968).
- Hansen, H. E. and W. H. Roach, "Six and Sixteen Group Cross Sections for Fast and Intermediate Critical Assemblies", LAMS-2543 (December, 1961).
- 24. Shapiro, M. M., "Minimum Critical Mass in Variable Density and Epithermal Reactors", Nucl. Sci. Eng., 10, 159 (1961).
- Devooght, J., "Restricted Minimum Critical Mass", Nucl. Sci. Eng., 5, 190 (1959).
- Hofmann, P. L. and H. Hurwitz, "Application of Minimum Loading Conditions to Enriched Lattices", Nucl. Sci. Eng., 2, 461 (1957).
- Otsuka, M., "Fuel-Importance Function and Minimum Critical Mass", Nucl. Sci. Eng., <u>18</u>, 514 (1964).
- 28. Monroe, C. W., "Sodium Void Coefficient of Reactivity. A Review and Study of Analytical Work", UNC-5123 (May, 1965).
- 29. Hummel, H. H. and D. Okrent, "Reactivity Coefficients in Large Fast Power Reactors", American Nuclear Society, 1970.
- 30. "Large Fast Reactor Design Study", ACNP-64503 (January, 1964).
- 31. Gass, S. I., "Linear Programming: Methods and Applications", 2nd ed. McGraw-Hill, New York, 1964.

- 32. Dantzig, G. B., "Linear Programming and Extensions", Princeton Univ. Press, Princeton, New Jersey, 1963.
- 33. Weaver, L. E., "Reactor Dynamics and Control", Americal Elsevier, New York, 1968.